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After a brief review of the kinematics of deep inelastic lepton-proton 
scattering, the parton model is described. Small-z behavior coming 
from DGLAP evolution and from BFKL evolution is discussed, and 
the two types of evolution are contrasted and compared. Then a more 
detailed discussion of BFKL dynamics is given. The phenomenology of 
small-z physics is discussed with an emphasis on ways in which BFKL 
dynamics may be discussed and measured. 
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1 Introduction 

Small-z physics encompasses those high-energy reactions where there is a hard 
scattering (at scale Q) and where s/Q2 >> 1 with s the square of the center- 
of-mass energy of the reaction. Thus, deep inelastic lepton-proton scattering at 
small values of the Bjorken z-variable is a small-z reaction as is jet production 
at the Tevatron so long as the transverse momentum of the jet is much less than 
the center-of-mass energy. The new element which occurs in small-z reactions is 
that there are two large logarithms present, namely, &Q2/~2 and &l/z. We are 
used to summing (a en Q2/~2)” corrections as part of ordinary QCD evolution, 
and this summation is governed by the renormalization group, or equivalently by 
the Dokshitzer, Gribov, Lipatov, Altarelli, Parisi (DGLAP) [l-3] equation. The 
resummation of (a en l/z)” terms is less familiar. The leading series of a en l/z 
terms is governed by the Balitsky, Fadin, Kuraev, Lipatov (BFKL) (4-61 equation, 
and one expects a generalization of the BFKL kernel also to apply to nonleading 
series of (a f?n l/z) logarithms. The BFKL resummation is more like that which 
occurs in Begge pole models than that of the renormalization group. 

When Q2 is large and when aenl/r 2 1, in principle one must take into 
account both resummation in PnQ2/A2 and in M/z. The DGLAP formalism is 
sufficiently general to allow this, although resummation of &l/x terms means 
dealing with anomalous dimensions and coefficient functions to all orders in Q. 
We shall come back to this question in some detail in Sec. 3. 

Evolution in Q2, coming from the DGLAP equation, has been studied and 
tested in great detail in moderate z reactions. The physics is that of revealing 
partonic substructure as one probes shorter distance scales, a physics that is well- 
understood in the framework of perturbative &CD. 

Evolution in z, coming from the BFKL equation, has not yet been tested. As 
one goes to smaller and smaller values of z, at a given short-distance scale, BFKL 
evolution predicts a growth in hard scattering cross sections due to a growing 
number of partons. At very small values of z, udtarity corrections are expected 
to slow the rate of growth of these amplitudes while the growing numbers of 
overlapping partons (mainly gluons) are expected to initiate a strong field strength 
regime of QCD where Fey 2 l/g and where new nonperturbative QCD effects may 
appear. The experimental study of BFKL evolution is the most pressing problem 
in small-z physics, and I shall discuss these issues in some detail in Sec. 6. 
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These lectures are meant to be an introduction to the theoretical and phe- 
nomenological issues in small-z physics with technical details suppressed as much 
as possible. 

2 Structure Functions, the Parton Model, and 

DGLAP Evolution 

2.1 Deep Inelastic Scattering Structure Functions 

The cross section for deep inelastic lepton-proton scattering is given, in the proton 
rest system, by 

- = 4&@v2 do 
dE’dR’ 

Q 4 [w2cos%/2 + 2Wpi7&/2] , (1) 

where the process is illustrated in Fig. 1. E’ and a’ are the energy and scattering 
solid angle of the outgoing lepton, while 0 is the scattering angle between the 
incoming and outgoing lepton directions. Q2 = -r~,,q,, is the virtuality of the 
photon exchanged between the lepton and the proton. The structure functions 
WI and Wz appear in the decomposition of 

W,, = Z$ /d4xe’“.‘@Ij,(x)j,(O)Jp) 

ss 

(2) 

W,” = -($I” - ywl + $PJ#” - P$(P& + P”$) + (p$)2n,s.lw2. (3) 

WI and W2 depend on Q2 and on the scaling variable x = g. 

2.2 The Bjorlcen Frame 

The parton picture is only manifest in a special infinite momentum (Bjorken) 
frame where 

P, = (PO,$‘l,PZ,PS) = b+ $,o.o,P) (40) 
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Figure 1. 

with p very large and where 

S,‘ = (no, &43 = 0). 

One can evaluate q0 w y + 0 as p -+ 03 SO that 

Q* = CJ*. 

(46) 

(5) 

2.3 The Parton Model (Physical Picture) 

In order to describe 110~ the parton model comes about, it is convenient to write 

where 

W,, = 21111 T,,,, (6) 

TPy = i? Jd’z~‘~.“(plT~~(~)j,(O)Ip) (7) 

is the time-ordered product of two electromagnetic currents in a proton state. 
T,,” is given in terms of Feynman diagrams in contrast to W,,, where certain 
intermediate states are put on mass shell, consistent with 14Ly being related to 
a cross section rather than a scattering amplitude. T,,” is simply the forward 
Compton amplitude for virtual photon-proton scattering. 

Let us follow the time-ordered sequence of a proton absorbing a virtual photon 
and then reemitting it as given by T,,” in Eq. (7). Since the incoming photon has 
a transverse momentum Q, it must be absorbed over a transverse spatial size 
Ax, N l/Q. We view the proton as a collection of quarks and gluons spread over 
a transverse size of about one fermi. Because Ax* N l/Q is much less than a 
fermi, the incoming photon will be absorbed by a single quark, the probability of 
finding two or more quarks in Ax1 N l/Q being very unlikely. The quark which 
absorbs the photon is called the struck quark. The lifetime of the struck quark, 
after absorbing the incoming photon, is 

2 k 2k TNQ.Q=-@) (8) 

with the first factor being the typical virtuality of the struck quark and k/Q, 
with k the longitudinal momentum of the struck quark, being the time dilation 
factor. But the “normal” time scale for soft interactions between quarks in a high- 
momentum parton is 70 = 3 with p 2: 300 MeV. Thus, the struck quark is in 
the uncomfortable situation of having a lifetime much too short, and a transverse 
momentum much too large, to fit into the proton’s infinite momentum wavefunc- 
tion. In order to fit into the wavefunction, the struck quark will reemit the virtual 
photon, thus lowering its transverse momentum and increasing its lifetime to that 
of a normal quark in the light-cone wavefunction of a proton. The picture is illus- 
trated in Fig. 2. Thus, in the Bjorlen frame, the virtual photon resolves individual 
quarks and measures them with a resolution Ax, N l/Q. 

2.4 The Parton Model (Formulas) 

We have just seen that the virtual Compton amplitude can be viewed as the 
absorption of the photon by the struck quark followed by the reemission of the 
photon by the same quark. This suggests that the virtual photon actually deter- 
mines, or measures, the single-quark distribution in the proton. This is stated 
quantitatively by the formula for the “QCD improved” parton model 

VW&, Q*) = c +P,(x, Q’), 
J 

(9) 

where pJ(x, Q2) is the number density of quarks, measured to be bare at scale 
Ax, = l/Q, having longitudinal momentum fraction I. In terms of local operators 
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Figure 2. 

(W3% dxx”-‘P/(x, Q ’) =  - p; (PkiJ/a,% ’ ’ ’ ia,nqJb)i,,=+, (10) 

where the operator is renormalized at scale Q2, In general,  one  should write D, =  
a,, - igd, insteacl of a,, in Eq. (IO); however,  in l ight-cone gauge  A+ = 0  and  
Dp = ~7,. It is only in this gauge  that the partonic picture of deep  inelastic 
scattering is manifest. 

The renormaliza.tion scale dependence,  Q2, in Eqs. (9) and(l0) is governed 
by the DGLAP equat ion and  is expressed most simply in terms of flavor singlet, 
flavor nonsinglet, and  gluon distributions 

A,, =  qJ(",@) - '?J'hQ2) 

c =  CJ (q,(:L., Q2) + qy(5, Q2)) 

as 

Qz$$A(x, Q ’) =  a  J 
’ ~~&,x’)n(x’, Q ’) 

2n  I x’ (124 

and 

3 Small-z Behavior from the DGLAP Equation 

3.1 Leading Double Logarithms 

For very small values of I, the gluon distribution and  yoo dominate DGLAP 
evolution. The physical reason for this is clear. Soft g luons can be  emitted 
from harder quarks or gluons, while in a  gluon splitting into a  quark-ant iquark 
pair, the quark and  antiquark share the momentum of the gluon equally. In the 
leading double-logari thm approximation, one  requires a  logarithm from transverse 
momentum integration along with a  logarithm from longitudinal momenta for 
each power  of cr. In this approximation, g luons are not al lowed to split into quark- 
ant iquark pairs but only to break into an  asymmetric pair consisting of a  hard 
gluon and  a  soft gluon. Thus 

Q'$G(x, Q*) = 9  /I $YC~(X/X~)G(X~, Q~) 
I 

is the DGLAP equat ion in the leading double-logarithmic approximation. 
Using 

a(Q’) =  ’ llN, - ZN, 
b  tn Q2/~*’ 

b= 
12x 

YGG(X) = ?  

and  writing en  Q*/ A2 Q ”& = OPn p,,aoZlh3, one  finds 

& aell ~fJaQ2/h2~G(I, Q2) = $  xG(x, Q*). 

Equation (15) leads to a  small-x dependence 

(15) 
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(16) 

If one parametrizes xC(x, Q2) as a constant times x-x(E@) in a local region of x 
and Q2, then Eq. (16) leads to 

X(x,Q*) = 2 in 
en l/x (17) 

Since fi = c for NJ = 3, X need not be small so long as z is not too small and 
so long as Q~/A~ is not too large. Thus, DGLAP evolution can give a fairly steep 
rise of zG(z, Q*), and hence of P,(z, Q*), as x becomes small. 

3.2 Deep Inelastic Scattering from DGLAP in General 

The DGLAP equations furnish a general formalism for describing deep inelastic 
scattering in QCD. From the operator product expansion (factorization) 

vW~(X, Q*) = C /I $P,(xl, Q*)Ei(x/x’, a(Q’))v (18) 
i=/.G z 

with Ei the coefficient function and Pi the parton distribution. Ei is expressed 
ss a power series in a(Q*) with the first term being e:6(x/x’ - 1) and leading 
to Eq. (9). Although the separation between P and E in Eq. (18) is in the 
renormalization scheme department, as one goes beyond Eq. (9), the product is 
scheme independent up to powers in l/Q’. The parton distributions satisfy the 
DGLAP equation 

Q*&E(x, Q2) = Cl’ $Gij(x/x’v a(Q*))Pj(x’, Q*). 

j 
(19) 

The anomalous dimension matrix has a perturbative expansion 

y(z,a) = ay(‘)(z) + c&p(r) +. . a. (20) 
The level of approximation in solving Eq. (19) and in describing VW* in terms of 
Eq. (18) is as follows: (i) if one keeps only y (r) in Eq. (20) and sets Ei = ey, one has 
a first-order formalism, the leading logarithmic approximation. (ii) The second- 
order formalism keeps the a and cr* terms in y along with the constant and order 

a terms in Ei. This is the current level of precision of the QCD description oi hard 
processes [7-g], though in the near future, we may expect to see the third-order 
formalism come into use. 

So long ss o en l/x is small, the second-order QCD formalism is quite accurate. 
However, y(“)(.r) has terms of size (Pn l/x)” so that one can no longer expect a 
second-order formalism to be adequate when (Y en l/z is of order one or greater. 
In this case, one might expect that one should try to resum all terms of size 
(a&l/x)” in y and also in Ei. This resummation can be done, at the leading 
en l/x level (10-161, using the BFKL equation which we shall describe later. 

3.3 Physical Picture of DGLAP Evolution 

DGLAP evolution describes how parton distributions change as one measures the 
partons with better and better resolution in xl = l/Q. For example, a quark 
which looks bare at a scale Qc may actually be found to be a quark and a gluon 
when measured with a resolution Q > Qs. The situation is pictured in Fig. 3. 
Although DGLAP evolution can lead to large parton distributions at small x 
and at large Q*, a fixed-order DGLAP formalism, when consistently used, always 
leads to partons being dilute in the proton. Thus the DGLAP equation, even at 
small x, does not lead to any new domain of QCD. As we shall see later, BFKL 

rs,p-JJqiJ rs,p-JJqiJ 
O Proton O Proton Proton Proton 

wQJ WQ) 
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Figure 3. 
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evolution leads to large numbers of partons which become dense, and strongly 
overlap, leading to a new domain of QCD where partons can no longer be viewed 
as dilute and noninteracting. 

4 DGLAP as BFKL 

DGLAP evolution applies to two-scale problems where (at least) one of the scales 
is hard. For example, in deep inelastic lepton-proton scattering, the size of the pro- 
ton, 1 fm, furnishes one scale while Q* furnishes the second, hard scale. DGLAP 
evolution, in a fixed-order formalism, furnishes the information on the hard-scale 
dependence in terms of initial conditions giving the parton distributions at a scale 
Qi. The situation is illustrated in Fig. 4. In moving from lower Q* to higher 
Q2 values,& l/x always increases, as seen in Eq. (19). So long as the final x-value 
is not too small, the slope in Fig. 4 will not be large and a fixed-order formalism 
is quite adequate. 

en a’ 0 % i* en a*/~* - 
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Figure 4. 

If the final x-value is very small, DGLAP evolution may follow different types 
of paths as shown in Fig. 5. For path 1, the slope of the evolution is not large and 
a fixed-order DGLAP evolution should be adequate. However, for a path like 2, 
the AB part of that path should be well-described by low-order DGLAP evolution; 
however, the BC part of that path has a large slope and cannot be expected to be 
reliably described by fixed-order DGLAP. It is in such a circumstance where one 

must resum all (oen l/x)” terms in the anomalous dimension when using Eq. (19) 
and do a corresponding resummation for the coefficient function in Eq. (18). 

1 :A 
/ 

en Q’21A2 0 en Q21A2 - 
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Figure 5. 

While one use of the BFICL equation is to aid in the resummation of (&‘nl/s)” 
terms in the anomalous dimensions and coefficient functions in a DGLAP descrip- 
tion of deeply inelastic scattering, the BFKL equation applies directly to certain 
physical processes. The characteristics that a scattering process must have in 
order that BFKL evolution apply are: (i) there should be only one transverse 
momentum scale, Q, in the process; (ii) that scale should be hard enough that 
o(Q*) << 1; (iii) the center-of-mass energy squared, s, should be large enough so 
that s/Q2 >> 1. In these circumstances, all (aen s/Q*)” terms will be given by the 
BFKL equation, and thus predictions for the energy dependence will emerge. Such 
processes are not easy to fiud in practice. We shall describe several possibilities 
later on. Conceptually, the most straightforward process is heavy onium-heavy 
onium scattering at high energy. The only transverse scale is the size of the onium 
which, if the onium is heavy enough, will be in the domain of weak coupling. We 
shall use onium-onium scattering in the next section, as a means of describing the 
physics of the BFKL equation. 
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5 The BFKL Equation 

As mentioned above, we shall use heavy onium-heavy onium scattering [17-181 as 

4 a means to describe BFKL evolution. Later on, we shall discuss specific ways that 
one might test BFKL evolution in more phenomenologically practical situations. 

5.1 Lowest Order 

Consider, in the center-of-mass system, the scattering of a heavy onium having 
momentum P on a heavy onium having momentum P’. We begin by treating 
the heavy onium state as simply a heavy quark-heavy antiquark state bound by 
Coulomb interactions. Then the square of the light-cone wavefunction for the 
state P can be described in terms of the transverse coordinates xc and zl of the 
heavy quark and heavy antiquark, respectively, along with 1 - .zi and zr giving the 
(respective) longitudinal momentum fractions of the heavy quark and the heavy 
antiquark. Since the ground state wavefunction can only depend on ~01 = jxl-xOlr 
we may write @ = @(zel, z,) for the square of the wavefunction. Then, at lowest 
order, the cross section is given by the square of the one gluon exchange amplitude, 
shown in Fig. 6, and takes the form 

with 

D&& = 27rcr?+(l + en (X,/X<)) (22) 

the cross section for scattering a color dipole of size 501 on a color dipole of size 
Z& at high energy. In Eq. (22), X< = min{sei, XL,} and I, = max{ssi,&}. The 
cross section in Eq. (21) is clearly proportional to a2RZ with R the radius of the 
onium. 

In Coulomb gauge, the energy dependence of high-energy onium-onium scat- 
tering comes from the higher Fock space states of the onia, consisting of a heavy 
quark, a heavy antiquark, and some number of (virtual) transverse gluons. At the 
leading logarithmic level, one need only consider a single gluon exchange between 
the two onia in order to calculate the total onium-onium cross section. 
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Figure 6. 

5.2 One Soft Gluon in the Wavefunction in the Large-N, 
Limit 

In the leading logarithmic approximation, the gluons in the onium wavefunction 
carry a small fraction of the onium’s momentum. Thus, in the one-gluon approx- 
imation, the gluon can be viewed as coming off either the heavy quark or heavy 
antiquark external leg as illustrated in the left-hand part of Fig. 7. In the large N, 
limit, the gluon may he viewed as a quark-antiquark pair, as far as color factors 
are concerned. And since further soft gluon emission will only involve classical 
(eikonal) vertices, the gluon, in fact, acts exactly as a quark-antiquark pair at a 
definite transverse coordinate position. This is emphasized in the right-hand part 
of Fig. 7. 
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5.3 Scattering in the Leading Logarithmic Approximation 

In the large NC limit, the n-gluon component of the onium wavefunction may be 
viewed as it+1 dipoles made of the (color connected) heavy quark-heavy antiquark 
and II “quarkantiquark pairs” corresponding to the n gluons. In an onium-onium 
scattering, one dipole in the right-moving onium interacts with one dipole in the 
left-moving onium with a cross section given by Eq. (22). Thus, we may express 
the total onium-onium cross section as 

where N(r,Y/2) is number density of dipoles of transverse size z = 1x1 formed 
using gluons in a rapidity interval 1’/2, where 1’ = en(s/&12) with s = p. p’ and 
with A4 the onium mass. Thus, in order to calculate the high-energy cross section, 
we need to know the dipole density in an onium state. 

5.4 The BFKL Equation 

In order to writ,e an equation for N, it, is convenient to first write 

N(~,Y) = Jil’rr,l~’ da@,(zol, Z1)+%1, .r, Y), (24) 

where n(zsr, .r, 1’) has the simple interpretation of the number density of dipoles 
of size I in a rapidity interval I’ starting with a (parent) dipole of size ~01. The 
creation of dipoles proceeds by one gluon emission which changes a single dipole 
into two dipoIes as illustrated in Fig. 7. 

The equatiou for u is given as 

7l(XOJ, 2, Y) = .ld(n: - x”J)exp{ - q&71( xyY}+ 

and is illustrated in Fig. 8. The glaon (Q, y) is the hardest of the soft gluons in the 
wavefunction of the onium. The subscript R on the integral in Eq. (25) indicates 
that one is to integrate over the region ~02, rzi > p. The introduction of p serves to 
cut off ultraviolet divergences in the wavefunction. p appears correspondingly in 
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the virtual corrections [the exponential factors in Eq. (25)] which are determined 
from probability conservation. As always in a BFKL description, only leading 
logarithms [terms of the type (ol’)“] are kept in Eq. (25), although transverse 
coordinate expressions are exact, up to powers of p which will be unimportant 
when the p -+ 0 limit is taken for a physical quantity. 
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Figure 8. 

Taking a derivative with respect to I’ on both sides of Eq. (25) gives 

dn(zol,s,Y) aN, 
dY 

= K2 J,dzx2{ ‘;I. z - zd(s, - ao)en~}r+wJ). 
202512 

(26) 

The limit p --t 0 can be taken after performing the integration in Eq. (26). Equa- 
tion (2G) is the BFKL equation expressing the evolution of the number of giuons 
(dipoles) as one changes the available longitudinal momentum region which those 
gluons are allowed to occupy. 

5.5 The Solution to the BFKL Equation 

The solution to Eq. (26) is 

(27) 



with op - 1 = e&2. Using Eq. (27) in Eq. (23) and Eq. (24) gives 

with 

(28) 

the onium radius. 
From Eq. (28), we see that o becomes larger than the geometric cross section 

nR2 when Y M -&Pn l/o2 so it is at such rapiditics that one expects strong 
(unitarity) corrections to the BFKL equation to become important. 

5.6 The Physical Picture of BFKL Evolution 

Earlier, we saw that DGLAP evolution corresponds to a growing number of gluons 
in a state as one looks to smaller and smaller transverse distances, and that this 
growth is especially strong when a large longitudinal phase space is available. 
In BFKL evolution, the focus is on evolution for a fixed transverse size as one 
increases the available longitudinal phase space. The picture is illustrated in 
Fig. 9 with the formula given in Eq. (27). Equation (27) shows that in addition to 
a growth in Y of the number of dipoles (gluons), there is also a diffusion of dipoles 
sizes away from the starting size, rsr in Eq. (27). In principle, this diffusion is 
slow enough, compared to the rate of growth of the number of gluons, that the 
picture of the growth of the number of gluons of a fixed size as shown in Fig. 9, a 
hot spot of gluons in the proton, is a reasonably good picture of BFKL evolution. 
However, there are circumstances where the diffusion inherent in BFKL evolution 
is very important and cannot be neglected [19]. 

5.7 Unitarity, Saturation, and High Field Strengths 

With proper triggering on final-state characteristics, one should be able to discuss 
questions of unitarity, saturation, and high field strengths in the context of two 
hot spots colliding in a proton-proton collision. However, we prefer to keep the 
discussion simple and conceptual, so again, high-energy onium-onium scattering 

Proton Proton 
W ,Q) 
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Figure 9. 

will be our “theoretical laboratory” for these topics. In the center of mass, we 
may express, crudely, onium-onium scattering as 

~7 = [N(y/2)]2 ~dipoler (30) 

where we have simplified Eq. (23) by taking a typical dipole size in the inte- 
gral appearing there. Again, crudely, a&r&, z a2R2 so that LT is of size R2, 
where unitarity corrections can be expected to become important, when Y is 
large enough so that N(Y/2) z l/o. As we have seen earlier, this corresponds 
to Y M --&en l/a2. Thus, we expect the BFKL approximation to break down 
when the center-of-mass wavefunctions have on the order of l/o dipoles (gluons) 
spread over a rapidity interval Y/2. The number of dipoles (gluons) per unit ra- 
pidity, $$$$l, is a constant when N x l/o so that the field strength, F,,,, in 
the wavefunction is of order one for those gluons occupying the lowest unit of 
rapidity. (The field strengths coming from gluons in any other unit of rapidity in 
the wavefunction are even smaller.) Since F,," is not large, we expect unitarity 
corrections to be calculable perturbatively, and this is indeed the case. Including 
the dominant unitarity corrections in high-energy onium-onium scattering can be 
done, and numerical calculations are available [17,20,21]. Unitarity corrections in 
the center-of-mass system are just the multiple scattering corrections involving 
two or more dipoles. 

Perturbation theory is expected to break down when F,," takes on values as 
large as l/g for gluons occupying a unit of rapidity. This occurs, in the center-of- 
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mass frame, when w c l/o which corresponds to rapidity Y = &en l/a2, 
a rapidity twice that necessary for unitarity corrections to become important. At 
rapidities this large, the number of gluons in the wavefunctions becomes so large 
that our whole perturbative picture of the wavefunction breaks down and a new 
nonperturbative regime of QCD is reached. Unfortunately, one cannot expect to 
reach such a regime at Fermilab or HERA energies. 

6 Phenomenology 

6.1 The Soft Pomeron 

There are clearly strong similarities between small-x physics and high-energy soft 
hadronic processes. Unfortunately, high-energy soft processes are very difficult 
to deal with in &CD. For example, u = os(.s/~s)~, with c z 0.08, gives a good 
fit to many cross sections [22,23], including total photoabsorption as measured 
up through HERA energies. E is a nonperturbative parameter which should be 
calculable in &CD. However, in the present Euclidean formulations of lattice &CD, 
one cannot give an algorithm for calculating c, and in fact, it is likely that it is 
not possible to calculate e in an Euclidean formulation of lattice &CD. So for 
the moment, it is difficult to make progress in soft hadronic physics, and we 
await a successful formulation of nonperturbative QCD where such extremely 
Minkowskian quantities, such as E, can be calculated. A good candidate for such 
a formulation is discrete light-cone &CD. 

6.2 Y W (GQ*), Q uark and Gluon Distributions 

For Q2 1 1.5 GeV2, VW, rises rapidly with decreasing x with the rate of rise 
depending somewhat on the exact value of Q2 (Ref. [24]). For Q2 5 0.6 GeV2, 
VW, acts like a soft process with a moderate, z-<, x-dependence which appears 
independent of Q*. It will be interesting to have data in the 0.6 < Q2 < 1.5 region 
to see exactly how the transition from hard to soft physics comes about. Also, 
very precise data in the 1 GeV2 5 Q2 < 5 GeV’ regime could give evidence for, 
or against, the necessity of resummation effects in a DGLAP description of deep 
inelastic scattering. This is clearly a phenomenology of pressing urgency at the 
moment. 

On a more qualitative level, in the region 10 GeV2 < Q2 5 20 GeV* and 
x M  10A4, the number of quarks and antiquarks per unit of rapidity in the proton 
is about four while the number of gluons is likely between 20 and 30. These are 
rather extraordinary numbers when one recalls that a traditional gluon distribu- 
tion G(x) = $(l - Z)~ used for intermediate values of x corresponds to three 
gluons per unit rapidity. It would be very interesting to have gluon densities in 
the lower Q2 regime. It might be that gluon densities become large enough for 
saturation efffects [25] to become important in the Q2 x 1 GeV2 regime. 

6.3 Rapidity Gaps Bounded by Jets 

We now turn to some specific processes of special interest in small-r physics. The 
first of these, rapidity gaps bounded by jets, may furnish a window to BFKL 
behavior. Such events have now been studied both at Fermilab [26,27) and at 
HERA [28]. In each case, one measures two jets having kl 2 Q  with a rapidity 
gap between them. Except for the measured jets and the rapidity gap, the process 
is otherwise inclusive [29-311. One might guess that such a cross section would 
take the form 

4;; = xiq,h, Q2)W’~ Q2bmh Q2) (31) 

with 11 and xz being the momentum fractions of the two jets and q1 and q2 
being the quark and/or antiquark distributions from which the jets emerge. (For 
simplicity of discussion, we ignore gluons.) The process is illustrated in Fig. 10. 
Furthermore, one might suppose that 

e2h-I)Y 
&a--, 

Y3 (32) 

thus furnishing a possibility of measuring the BFKL Pomeron. 
However, the process is not inclusive enough to use the hard scattering for- 

mula (31). The problem is that requiring a rapidity gap destroys the delicate 
cancellation between real and virtual soft gluons, of which cancellation is key to a 
factorization such as expressed in Eq. (31). One knows how to write the cross sec- 
tion for the hard elastic quark-quark scattering 8, but the probability that there 
are no accompanying soft interactions between the spectator quarks, which would 
fill in the gap, is not something which can be calculated perturbatively. What has 
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become traditional is to include a factor [32,33] < S2 > on the right-hand side 
of Eq. (31), interpreted as the survial probability of the gap, or equivalently, the 
probability of no soft spectator interactions. 

Data from Fermilab show that about 1% of two-jet events have a gap of greater 
that two to three units of rapidity while at HERA that number is about 5%. This 
means that < S2 >z 0.1 at Fermilab and < S2 >rz 0.5 at HERA. If < S2 > 
is not very energy dependent and this is likely, one can take ratios of gap events 
at E = 1800 GeV to those at E = 630 GeV now that Fermilab has data at two 
energies. Keeping zi and 22 the same at the two energies, Eq. (31) leads to 

o2”‘$+(1800 GeV) = e4(op-l)tn 3 
~I!“+(630 GeV) (33) 

For example, if Y(630) = 4 then Y(1800) M 6 and 

0( 1800) 8 < S2 boo 
0(630)=- 27 < s2 >63Q 

. e4bP-1) 

or assuming that < S2 > does not increase with energy, 

@W < S e4+-1) 

~(630) - 27 ’ 

(34) 

(35) 

If ap - 1 = l/2, this ratio could be as large as 2. It will be interesting to see what 
happens when the data is analyzed. 

-24i 

6.4 Diffractive Vector Meson Production [34-371 

The process 7(Q) +protm -r V +proton’ with V a vector meson is illustrated in 
Fig. Il. We suppose that Q2 is large, although for heavy vector mesons, this need 
not be the case in order to carry out an analysis similar to the one outlined here. 

q-k 
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Fig. 11. 

The amplitude is expected to be dominated by two-gluon exchange to the y-V 
system. We suppose that t = A2 is very small. In the rest system of the target 
proton, the process proceeds in three steps. 
(i) Before reaching the target, 7(Q) g oes, virtually, into a quark-antiquark pair 
having lifetime 

2P(l - z) -23 
‘& = Q2z( 1 - z) + k: + m2 - Q2 9 

(36) 

where z is the fraction of the photon’s momentum carried by the antiquark, Ic, = 
zq,. For example, for Q2 = 5 GeV2 and q = 100 GeV, T; = 8 fm. 
(ii) The quark-antiquark pair scatters off the target. Since the k: integration 
is only cut off at Q2, the quark-antiquark pair has AZ, N l/Q, meaning that 
the coupling of the gluons, lines P and P + A, occur with o(Q2) strength. This 
justifies perturbation theory. In coupling to the small dipole moment of the quark- 
antiquark pair, one gets a factor of pL from lines e and P + A. This factor of CL 
gives a logarithmic e”,- integral, again cut off at Q2. The p,-integral is exactly 
the same as appears in defining the gluon distribution. 



(iii) The vector meson is formed from the quark-antiquark pair at a time 6.5.2 Gaps at Fermilab and HERA 

2qz( 1 - 2) 
T, = I;: + .x2 ’ (37) 

with m  the quark mass. One finds, for longitudinally polarized virtual photons, 

d@y+Na'+N' 12x3 
dt t=0 

= -rv~e+e-nzv~2(Q2)~~1xG(x, Q2)+i:$xG12 (38) 
Q,,Q~N~ c 

with 

and 

given in terms of the exclusive wavefunction @V of the vector meson. 
Equation (38) has been derived in a double-leading logarithmic approximation. 

Further refinements, necessa.ry to confront data, can be found in Ref. 36. At the 
moment, perhaps the maiu use of Eq: (41) is to get an independent check on the 
gluon distribution which occurs quadratically in the diffractive cross section. Data 
at HERA [24] have already found t,he extremely rapid rise of the diffractive cross 
section with decreasing N expected from a gluon distribution now known to grow 
rapidly at small Z. 

6.5 The Search for the BFKL Pomeron 

6.5.1 Deep Inelastic Scattering 

Precise studies of VW, may give evidence for resummation effects [13-161. This 
would be an indirect confirmation of BFKL dynamics, but one cannot directly 
measure op - 1 from YW~ data alone. Final state properties, such as transverse 
energy flow, may also prove useful in deciding how important BFKL dynamics 
is in deep inelastic scat,tering, but so far these analyses have not proved very 
definitive. 

-24% 

I think the best hope here is a comparison of gaps bounded by jets in the two 
Fermilab energies as given by Eq. (33). The difficulty is that the Ym3 prefactors to 
BFKL behavior suppress the 1800 GeV to 630 GeV ratio so that this measurement 
will only prove successful if op - 1 is near l/2 and if the survival probability is 
not very energy dependent. However, a ratio of two or more in the gap cross 
section comparing 1800 GeV data to 630 GeV data would be a definitive sign of 
BFKL dynamics, and one could try to extract (YP - 1, or at least bounds on that 
quantity. 

6.5.3 Large-t Vector Meson Diffractive Photoproduction 1381 

Earlier, we have seen that t=O diffractive electroproduction of vector mesons gives 
a measurement of the gluon distribution of the proton, at least in the leading 
double logarithmic approximation. If one takes --t large, say --t 2 3 GeV2 or so, 
the diffractive cross section has the asymptotic form 

$ cc (s/(-t))--” 
(e~z w-w 

and could furnish a determination of (up - 1. The most favorable measurement 

is to allow the proton to break up so that a quark jet takes the recoil transverse 
momentum of the vector meson. In some respects, this process is like the gap 
events bounded by jets which were discussed earlier, now with one of the jets 
replaced by a vector meson. There is no survival probability factor because the 
incoming photon is pointlike and has no spectators to interact with the target 
proton. However, the cross sections here are small, and apparently, the asymptotic 
behavior sets in rather slowly. Nevertheless, it will be interesting to see what 
emerges from the HERA data. 

6.5.4 Associated Jets in Proton-Antiproton and Electron-Proton Col- 

lisions 

One straightforward way to measure the BFKL intercept, op - 1, is to study 
the inclusive two-jet cross section at Fermilab (39,401 or the associated one-jet 
cross section at HERA (41-431. Let me illustrate the idea in terms of the Fermilab 
process. In a proton-antiproton collision, one measures two jets, inclusively, having 



momentum fractions xi and x2 and transverse momenta Icil,l;el 2 Q  with Q  a prediction [44,45]. More definitive comparisons between theory and experiment 

fixed (perturbative) scale. The process is illustrated in Fig. 12. can be expected soon and are eagerly awaited. 

k, k, 
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Figure 12. 

The two-jet cross section is 

u*-jet = XI[G(XI, Q*) + ~(GJ + ~)(x~,Q’)]x~[G(x~,Q’) + i(q + 4(~21 Q’)] 

. (a+)* ” &p-l)Y 
2Q* 4-l 

(42) 

where Y is the relative rapidity of the two measured jets. If one takes the ratio 
of oz-j,r, keeping xi, x2, and Q2 fixed, at 1800 GeV and 630 GeV, the result is 

~2-jet(1800) Y(630) 

02-jet(630) 
= e2k?P-l)ln3 

J---- 
Y(1800) (43) 

so long as Y(630) is large enough to use the asymptotic form (42). For example, 
for Y(630) = 4, one gets Y(1800) = 6, and the ratio in Eq. (43) is about 2 for 
(op - 1) = l/2. While Eq. (42) is only a leading logarithmic formula, a significant 
growth in the two-jet cross section with energy would be a significant beginning 
to a BFKL phenomenology. There should be a Fermilab result on this soon. 

The corresponding measurement at HERA, a forward inclusive jet measure- 
ment, has been vigorously pursued by the HI Collaboration [44]. The preliminary 
results are strongly encouraging and seem to agree reasonably with the BFKL 

7 What Is Needed 

From the experimental side, the most urgent issue is a measurement of the BFKL 
Pomeron, that is, a measurement of crp - 1. Also, extremely precise data in the 
low-z and low to intermediate Q*-region for VW. will be very useful. We can 
expect the level of phenomenology to improve to the point of deciding how well 
second order DGLAP fits really work and to what level resummation effects are 
important. Also, a good direct measurement of xG(z, Q2) either from two forward 
jet production or from heavy quark production is important to test how well 
second order DGLAP evolution works and to have confidence in the values of xG. 

From the theory side, the a2 correction to crp - 1 is very important in order to 
do BFKL phenomenology with a good level of confidence. We desperately need 
a better understanding of the Q2 x 1 regime, where perturbative and nonpertur- 
bative physics merge. Finally, from a purely theory point of view, clarification 
and a deeper understanding of unitarity corrections, saturation effects and their 
relationship to high field strength QCD are exciting areas where further progress 
should be possible. 
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