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1 Introduction : 

The lattice’ version of QCD, was invented by Wilson’ in 1974. It has been a 
fruitful source of qualitative and quantitative information about QCD, the lat- 
ter especially in the years since Creutz, Jacobs, and Rebbi3 performed the first 
numerical simulations of a lattice gauge theory. Lattice methods are presently 
the only way to compute masses and matrix elements in the strong interactions 
beginning with the Lagrangian of QCD and including no additional parameters. 
In the past few years, the quality of many lattice predictions has become very 
high, and they are beginning to have a large impact in the wide arena of “testing 
the standard model.” My goal in these lectures is to give enough of an overview 
of the subject that an outsider will be able to make an intelligent appraisal of a 
lattice calculation when s/he encounters one later on. 

The first lecture will describe why one puts QCD on a lattice, and how it is 
done. This is a long story with a lot of parts, but at the end, I will show you 
“standard” lattice results for light hadron spectroscopy. The main problem with 
these calculations is that they are so unwieldy: to get continuum-like numbers 
requires very large-scale numerical simulations on supercomputers, which can take 
years to complete (sort of like the high-energy experiments themselves, except that 
we do not have to stack lead bricks). We would like to reduce the computational 
burden of our calculations. In Lecture Two, I will describe some of the different 
philosophies and techniques which are currently being used to invent “improved 
actions.” Some of these methods actually work: some QCD problems can be 
studied on very large work stations. Finally, in Lecture Three, I will give a survey 
of recent lattice results for matrix elements, using physics done at SLAC as my 
unifying theme. 

2 Gauge Field Basics 

2.1 Beginnings 

The lattice is a cutoff which regularizes the ultraviolet divergences of quantum 
field theories. As with any regulator, it must be removed after renormalization. 
Contact with experiment only exists in the continuum limit, when the lattice 
spacing is taken to zero. 

We are drawn to lattice methods by our desire to study nonperturbative phe- k 
nomena. Older regularization schemes are tied closely to perturbative expansions: 
one calculates a process to some order in a coupling constant; divergent 

% 
are 

removed order by order in perturbation theory. The lattice, however, is a no per- 
turbative cutoff. Before a calculation begins, all wavelengths less than a lattice 
spacing are removed. Generally, one cannot carry out analytical studies of a field 
theory for physically interesting parameter values. However, lattice techniques 
lend themselves naturally to implementation on digital computers, and one can 
perform more-or-less realistic simulations of quantum field theories, revealing their 
nonperturbative structure, on present-day computers. I think it is fair to say that 
little of the quantitative results about QCD which have been obtained in the last 
decade, could have been gotten without the use of numerical methods. 

On the lattice, we sacrifice Lorentz invariance but preserve all internal symme- 
tries, including local gauge invariance. This preservation is important for nonper- 
turbative physics. For example, gauge invariance is a property of the continuum 
theory which is nonperturbative, so maintaining it ss we pass to the lattice means 
that all of its consequences (including current conservation and renormalizability) 
will be preserved. 

It is very easy to write down an action for scalar fields regulated by a lattice. 
One just replaces the space-time coordinate z,, by a set of integers n,, (2, = on,, , 
where o is the lattice spacing). Field variables O(z) are defined on sites d(z.) 5 &,. 
The action, an integral over the Lagrangian, is replaced by a sum over sites 

and the generating functional for Euclidean Green’s functions is replaced by an 
ordinary integral over the lattice fields 

2 = 
/ 

(l-p$“)&? 
” 

Gauge fields are a little more complicated. They carry a space-time index p in 
addition to an internal symmetry index o (A;(z)) and are associated with a path 
in space z,(s): a particle traversing a contour in space picks up a phase factor 
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P is a path-ordering factor analogous to the time-ordering operator in ordinary 
quantum mechanics. Under a.gauge transformation g, cl(s) is rotated at each 
end: 

w + g-‘(x,(s))~(s)g(x,(o)). (5) 

These considerations led Wilson* to formulate gauge fields on a space-time lattice, 
as follows: 

The fundamental variables are elements of the gauge group C which live on the 
links of a four-dimensional lattice, connecting z and z+p: VP(z), with fJ,,(z+p)f = 

qI(4 
V,,(n) = exp(igoT”A;(n)) (6) 

I for SU(N) (g is the coupling, a the lattice spacing, A,, the vector potential, and 

I P is a group generator). 
Under a gauge transformation, link variables transform as 

I 
I and site variables as 

11(4 -+ VW(x). (8) 
I so the only gauge invariant operators we can use as order parameters are matter 

I fields connected by oriented “strings” of U’s [Fig. l(a)] 

I 4(x1)qI(+Jp(x* + fi). . . dJ,(z*) (9) 

or closed-oriented loops of U’s [Fig. l(b)] 

Tr.. . up(x)up(z + fi) . . . 4 Tr.. . Up(x)V’(x + /l)V(x + jl)U,(x + p) . . . (10) 

I An action is specified by recalling that the classical Yang-Mills action involves 
the curl of A,,, FpY. Thus, a lattice action ought to involve a product of U,,‘s around 
some closed contour. There is enormous arbitrariness at this point. We are trying 
to write down a bare action. So far, the only requirement we want to impose 
is gauge invariance, and that will be automatically satisfied for actions built of 
powers of traces of U’s around closed loops, with arbitrary coupling constants. 
If we assume that the gauge fields are smooth, we can expand the link variables 
in a power series in goA,‘s. For almost any closed loop, the leading term in the 
expansion will be proportional to F$ We might want our action to have the 

(a) (b) 

Figure 1: Gauge invariant observables are either (a) ordered chains (“strings”) of 
links connecting quarks and antiquarks, or (b) closed loops of link variables. 

same normalization as the continuum action. This would provide one constraint 
among the lattice coupling constants. 

The simplest contour has a perimeter of four links. In SLI(N), 

PS = TC C Rf. n (1 - U,(n)U,(n + ji)Uj(n + ir)UL(n)). (11) 
Y- (1 la>” 

This action is called the “plaquette action” or the “Wilson action” after its in- 
ventor. The lattice parameter /3 = 2N/g* is often written instead of g* = ~AQ,. 

Let us see how this action reduces to the standard continuum action. Special- 
izing to the U( 1) gauge group, and slightly redefining the coupling, 

S=&CRe(l - exp(igo[A,(n) + Av(n + ji) - A,(n + t) - A”(n)])). (12) 
Y n p>v 

The naive continuum limit is taken by assuming that the lattice spacing o is small, 
and Taylor expanding 

A,(n + t) = A,,(n) + o&A,(n) + . . . , (13) 

so the action becomes 

PS = 11 c 1 - Re (exp(igo[o(&A, - l&A,) + O(o*)])) (14) 
Y ” iI>” 

= &04CCg*F;“+... (15) 
n PU 

=- : / ax~;v 

transforming the sum on sites back to an integral. 

(16) 

I 
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2.2 Relativistic Fermions on th& Lattice 

Defining fermions on the lattice presents a new problem: doubling. The naive 
procedure of discretizing the continuum fermion action results in a lattice model 
with many more low energy modes than one originally anticipated. Let’s illustrate 
t.his with free field theory. 

The free Euclidean fermion action in the continuum is 

One obtains the so-called naive lattice formulation by replacing the derivatives 
by symmetric differences: we explicitly introduce the lattice spacing a in the 
denominator and write 

The propagator is: 

G(p) = (iy,, sinp,,a + ma)-’ = 
--i-yp sinp,a + ma 

C, sin* p,a + m2a2 

We identify the physical spectrum through the poles in the propagator, at po = iE: 

sinh2 Ea = c sin2 p,a + m2a2. 

The lowest enerbv solutions are the expected ones at p = (0, 0, 0), E N fm, but 

t,here are other degenerate ones, at p = (x, O,O), (0, ~,0.), (n, ?F, r). This is a 
model for eight light fermions, not one. 

(a) Wilson Fermions 

There are two ways to deal with the doublers. The first way is to alter the 
dispersion relation so that it has only one low-energy solut,ion. The other solu- 
tions are forced to E N l/a and become very heavy as a is taken to zero. The 
simplest version of this solution (and almost the only one seen in the literature 
until recently) is due to Wilson: add a second-derivative-like term 

to S”“‘“~. The parameter r must lie between 0 and 1; T = 1 is almost. always 
i used and “r = 1” is implied when one speaks of using “Wilson fermions.” The 
!. 
I propagator is I 

G(P) = 
-i?, siup,,a + ma - r C,,(cosp,a - 1) 

C,sin2p,,n + (ma - r&(cosp,a - 1))2’ (22) 

It has one pair of poles at y, 2 (fzm,O,O, 0), plus other poles at p N r/a. In 
the cont,inuum, these states become infinitely massive and decouple (although 
decoupling is not trivial to prove). 

\Vith Wilson fermions, it is conventional t.0 use not the mass but the “l~opping 
parameter” ti = i(7na + 4r)-‘, and to rescale the fields GJ -+ &<I. The act.ion 
for an interacting theory is then writ.ten 

S = C J;,$,, - KC(&(r - y,)U,(n)i,+,, + &(r + *fp)Ujti,-p). (23) 
n nfl 

Wilson fermions are closest t,o the cont.inuum formulat.ioii-there is a four-compo- 
nent spinor on every lattice site for every color and/or flavor of quark. Const.ruct,- 
ing currents and states is just like in the continuum. 

However, the \Vilson term explicitly breaks chiral symmetry. This has the con- 
sequence t,hat the zero bare quark mass limit, is not respected by interact.ions; the 
quark mass is addit.ively renormalized. The value of t+, the value of the hopping 
parameter at which the pion mass vanishes, is not. known a priori before beginning 
a simulation; it. must. be comput.ed. This is done in a simulation involving CVilson 
fermions by varying n‘ and watching the pion mass ext.rapo1at.e quadratically t.0 
zero as 711: N li, - yi (K, - I(‘ is proportional to the quark mass for small m,). For 
the lattice person, this is unpleasant. since preliminary calculations are required 
to find “interesting” K values. For the outsider t.rying t.o read lattice papers, it is 
unpleasant because t.he graphs in the lattice paper typically list K, and not. quark 
(or pion) mass, so the reader does not know 3vhere” the simulat.ion was done. 
Note also that the relation between K and physical mass changes wit.11 lat.tice 
coupling :I. 

(1)) St.aggered or Kogut-Susskind Fermions 

III this formulation, one reduces the number of fermion flavors by using one- 
component “staggered” fermion fields rather than four-component Dirac spinors. 
The Dirac spinors are constructed by combining staggered fields on different. lat- 
t.ice sites. Staggered fermions preserve an explicit chiral symmetry as mp --t 0 
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even for finite lattice spacing, as long as all four flavors are degenerat,e. They 
are preferred over Wilson fermions in sibiations in which the chid propert,ies of 
the fermions dominate t,he dynamics-for example, in st,udying the chiral restora- 
tion/deconfinement. transition at, high t,emperature. They also present a compu- 
tat.ionally less intense sit,uat,ion from the point of view of numerics t,han Wilson 
fermions, for the trivial reason that there are less variables. However, flavor 
symmetry and translational symmetry are all mixed together. Construdion of 
meson and baryon stat,es (especially ‘the A) is more complicat,ecl t,han for Wilson 
fermions.’ 

2.3 Enter the Computer 

A “generic” Monte Carlo simulation in QCD breaks up naturally int,o t.wo parts. 
In the “configuration generation” phase, one constructs an ensemble of stat,es 
with t,he appr0priat.e Bolt,zmann weighting: we compute observahles simply by 
averaging N measurements using t,he field variables b(‘) appropriate t.o the sample 

(I-) N r f ; $ I-p”‘]. (24) 
1-I 

As t,he number of measurements :V becomes large, t,he quant.ity r will become a 
Gaussian dist.rihution about a mean value. 1t.s st.antlard deviation is” 

0; = +; 2 ,I?[&‘],” - F2). (25) 
,=I 

The idea of essentially all simulation algorit.hms is t.hat. one c0nst.ruct.s a new con- 
figurat.ion of field variables from an old one. One begins wit.h some simple field 
configuration and monit.ors observables while the algorit,hm st.eps along. Aft.er 
some number of st.eps, the value of observaldes will appear t.0 become indepen- 
dent of t.lie start.ing configurat.ion. At, t.liat point., t.he syst,em is said to be “in 

I equilibrium” and Eq. (24) can be used to make measuremenb. 
The simplest met.hocl for generaring configurat.ions is called t.he I\fetropolis” 

I algorit.hm. It works as follows: From t.he old configurat.ion {d} with action ,K, 
, transform the variables (in some reversible wa,y) to a new t,rial configurat.ion {d)’ 
/ and compute the new act.ion OS’. Then, if S’ < S. make the change and updat.e 
! all the variables; if not, make t.he change wit.h probahilit,y exp(-O(S’ - S)). 
I Why does it work:’ In equilibrium, the rate at which configurat.ions i t.urn 

int.o configurations ,j is t.he same as t.he rate for the back reaction ,j + i. The 

rate of change is (number of configurat.ions) x (probability of change). Assume 
for t.he sake of t,he argument. that. Si < Sj. Then t,he rate i --t .i is ,ViP(i --t ,j) 
with P(i --t ,j) = exp(-B(S, - Si)) ant1 t,he rate ,j + i is .VJP(,j --t i) wifh 
P(,j -+ i) = 1. T~Iw., N;/jVj = exp(-/?(S, - S,)). 

If you have any int.erest, at all in the t,echniques I am describing, you sl~ould 
writ,e a little M0nt.e Carlo program to simulat,e t,lie t.wo-dimensional Ising model. 
Incitlent,ally, t.he favorite modern method for pure gauge models is overrelaxat.ion.’ 

One complicat,ion for QCD which spin models don’t have is fermions. The 
fermion path int.egral is not, a number and a comput.er can’t. simulat,e fermions 
directly. However, one can formally integrat.e out. t.he fermion fields. For n, 
c1egenerat.e flavors of st.aggered fermions. 

Z = J [fJU][d$][tJli;] exp(-DS(U) - 2 $Mli/) 
,=I 

(26) 

= [dU](det M)““2exp(-BS(U)). 
/ (27) 

(One can make t,he determinant. posit.ive-c1efinit.e by writ,ing it. as tlet(Mt.M)“~“.) 
The tlet,erminant. int.rociuces a nonlocal int.eract,ion among the U’s: 

Z = 
/ 

[rJU]exp(-BS(CI) - ?Trln(,M’M)). (28) 

All large-scale dynamical fermion simulations t,oda,y generate configurations 
using some variation of t.he microcanonical ensemble. That. is, they int.rotluce 
moment.um variables P conjugate t.o t.he U’s and int.egrat,e Hamilt.on’s equat.ions 
through a simulation time t 

CT = iply (29) 

(30) 

The int.egrat.ion is done numerically by int,roclucing a timest,ep At. The momenta 
are repeat.edly refreshed by bringing them in contact wit.11 a heat. bat.11. and the 
merhotl is t.hus called R.efreshecl or Hybrid Molecular Dynamics.* 

For special values of nf (mult.iples of t,wo for Wilson fermions or of four for 
st.aggered fermions), t.he equarions of mot.ion can be derived from a local Hamil- 
t,onian, anti in t,hat case; At systematics in the integration can be removed by an 
ext.ra Slet,ropolis accept./reject st.ep. This met.hocl is called Hybrid Monte Carlo.s 

The reason for t.he use of these small timestep algorithms is that for an,v change 
in any of the U’s, (.Mt.Lf)-’ must, be recomputed. \\‘hen Eq. (30) is integrat.eci. all 
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of the U’s in the lattice are updated simultaneously, and only one matrix inversion 
is needed per change of all the bosonic variables. 

The major computational problem dynamical fermion simulations face is in- 
verting the fermion matrix M. It has eigenvalues with a very large range-from 
2s down to m,a-and in the physically interesting limit of small mclr the matrix 
becomes ill-conditioned. At present, it is necessary to compute at unphysically 
heavy values of the quark mass and to extrapolate to mr = 0. The standard inver- 
sion technique today is one of the variants of the conjugate gradient algorithm.” 

2.4 Taking the Continuum Limit, and Producing a Num- 

ber in MeV 

When we define a theory on a lattice, the lattice spacing a is an ultraviolet cutoff 
and all the coupling constants in the action are the bare couplings defined with 
respect to it. When we take a to zero, we must also specify how g(o) behaves. The 
proper continuum limit comes when we take a to zero holding physical quantities 
fixed, not when we take a to zero holding the couplings fixed. 

On the lattice, if all quark masses are set to zero, the only dimensionful pa- 
rameter is the lattice spacing, so all masses scale like l/o. Said differently, one 
computes the dimensionless combination am(o). One can determine the lattice 
spacing by fixing one mass from experiment. Then all other dimensionful quanti- 
ties can be predicted. 

Now imagine computing some masses at several values of the lattice spacing. 
(Pick several values of the bare parameters at random and calculate masses for 
each set of couplings.) Our calculated mass ratios will depend on the lattice cutoff. 
The typical behavior will look like 

(oml(o))/(am2(o)) = ml(O)/m2(0) + Wmlo) + O((mlo)2) + . . . (31) 

The leading term does not depend on the value of the UV cutoff, while the other 
terms do. The goal of a lattice calculation (like the goal of almost any calculation 
in quantum field theory) is to discover the value of some physical observable as the 
UV cutoff is taken to be very large, so the physics is in the first term. Everything 
else is an artifact of the calculation. We say that a calculation “scales” if the 
o-dependent terms in Eq. (31) are zero or small enough that one can extrapolate 
to a = 0, and generically refer to all the o-dependent terms as “scale violations.” 

We can imagine expressing each dimensionless combination am(o) as some 
function of the bare coupling(s) {g(o)}, am = f({g(o)}). As.0 + 0, we must tune 
the set of couplings {g(o)} so I 

!,a ~f(lsW l) + constant. (32) 

Prom the point of view of the lattice theory, we must tune {g} so that correlation 
lengths l/ma diverge. This will occur only at the locations of second- (or higher-) 
order phase transitions in the lattice theory. 

Recall that the P-function is defined by 

,0(g) = a? = dl$;~o). (33) 

(There is actually one equation for each coupling constant in the set. A is a 
dimensional parameter introduced to make the argument of the logarithm dimen- 
sionless.) At a critical point, p(ge) = 0. Th us, the continuum limit is the limit 

(34) 

Continuum QCD is a theory with one dimensionless coupling constant. In QCD, 
the fixed point is ge = 0, so we must tune the coupling to vanish as a goes to zero. 

Pushing this a little further, the two-loop p-function is prescription indepen- 
dent, 

P(g) = -bd + b2g5, (35) 

and so if we think that the lattice theory is reproducing the continuum, and if we 
think that the coupling constant is small enough that the two-loop p-function is 
correct, we might want to observe perturbative scaling, or “asymptotic scaling,” 
m/A fixed, or a varying with g as 

oh=(- l 1 g2(4 
W W ) exp(-- . l 1 b2(o) (36) 

Asymptotic scaling is not scaling. Scaling’means that dimensionless ratios of 
physical observables do not depend on the cutoff. Asymptotic scaling involves 
perturbation theory and the definition of coupling constants. One can have one 
without the other. (In fact, one can always define a coupling constant so that one 
quantity shows asymptotic scaling.) 

And this is not all. There are actually two parts to the problem of producing a 
number to compare with experiment. One must first see scaling. Then one needs 
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to set. t.lle scale by t.aking some experimental number as input,. A complicat.ion 
that. you may not. have t.liouglit~ of is t,hat. t.he t.heory we simu1at.e on t.lie coniput,er 
is different from bhe real world. For example. a commonly used approximation 
is called the ~‘quenchrtl approximat,ion”: one neg1ect.s virt,ual quark loops but 
includes valence quarks in t.he calculat.ion. The pion propagaror is t,he propagabr 
of a qr] pair. appropriat,elv coupled. moving in a background of gluons. This 
t1leor.v almost. cert.ainly does not. have t.he same spectrum a3 QCD wit.11 six flavors 
of clynaniical quarks with their appropriate masses. (In fact,. an open question in 
the lattice c0mmunit.y is what. is the accuracy of quenched approximat~ion?) IJsing 
me mass t,o set. t.lie scale from one of these approximations t,o t,he real world might. 
not give a predidon for another mass which agrees wit.11 experiment,. We will see 
examples where t,liis is import.ant. 

2.5 Spectroscopy Calculations 
I 
! -In a valley somet,hing like a race took place. A lit.tle crowd watched lnmches of 
/ cars. each consisting of t.wo ‘ups’ and a ‘clown’ one, st.arting in regular int,ervals and 

disappearing in about the same diredon. ‘It. is t.lie measurement, of the proton 
mass,’ commented Mr. St.range, ‘t.hey have clone it for ages. A very dull job, I am 
glad I am not in t.he game.“’ ” 

hlasses are romput.ed in lattice simulat.ions from the asymptotic behavior of 
Euclidean-t,ime correlation functions. A @pica1 (diagonal) rorrelator can 1~ writ.- 
t.en as 

C(f) = (olo(t)o(o)lo). (37) 

Making the replacement 
O(t) = PHtOP-H’ (38) 

i 
and inserting a complete set. of energy eigenstab Eq. (37) becomes 

C(t) = 1 I(Opln)(2C-““t. (39) 
n 

At large separation. t,he correlat.ion function is apprnximatel> 

C(t) 2 ~(o~0(1)~2f.-“1L, 

where El is t.he energy of t,lie lightest stare which the operabr 0 can create from 

(i t.he vacuum. If t.lie operator does not couple to the vacuum. thc9 in t.hcb limit 

!. 

of large t, one hopes t,o find the mass El by measuring t,lie leading rxponf=nt,ial 
falloff of t,lie correlatSion function, and most. lat,tice simulations begin with t,liat, 
mrasurement. If the operat.or 0 ha5 poor overlap with the lightest. st.at,e, a reli 2 Me 
value for t,he ma5s can be ext,ract,etl only at a large t,iine f. In some crrses, t.hat. 
st.ate is t.he vacuum itself, in which El = 0. Then one looks for t,he next higher 
stdte-a signal which disappears into t,he constant 1)ackgrountl. This makes the 
adual calculation of t.lie energy more difficult 

This is t.he basic way hatironic mayses are found in lattice gauge theor,y. The 
many ralculat~inns differ in important specific tlet.ails of choosing the operators 
o(t). 

2.6 Recent Results 

Today’s supercomputer QCD simulations range from 163 x 32 to 32” x 100 point.s 
and run from hundreds (quenched) to t,housantls (full QCD) of hours on the faTrest 
supercomput,ers in t,he world. 

Resub are presedecl in four common ways. Oft,en one sees a plot. of some bare 
paramet.er versus another bare paramet.er. This is not, very useful if one want.s 
to see continuum physics, but it is how we always begin. Next, one can plot. a 
dimensionless ratio as a funct.ion of the lattice spacing. These p1ot.s represent. 
quant.it.ies like Eq. (31). Both axes can show ma5s rafios. Examples of such p1ot.s 
are t.he so-called Edinln~rgh plot, (mN/rnp versus m,/m,) and the R.ome plot. 
( IR,V/T~~ versus (77~~/777~,,)~). These p1ot.s can answer cont,inuum questions (how 
does t.he nucleon ma5s change if the quark ma%5 is changed’?) or can he used t,o 
show (or hide) scaling violat,ions. Pl0t.s of one quant,ity in MeV versus another 
quantit)r in MeV are t.ypirally rat.her heavily processed aft.er t.he data comes off 
t.lie coniput,er. 

Let’s look at. snme examples of spdroscopv, done in the “standard way,” wit.11 
t.he plaquet.te gauge adinn and Wilson or st.aggereti quarks. I will rest.rict, the 
discussion t,o quenched simulat,ions because only t.here are the st,at.ist.ical errors 
small enough t,o be int.errsting t.0 a nonlatt,ice audience. Most dynamical fermion 
simulations are unfortunat~e1.y so nois,v that. it. is hard t.o sul)ject them to det.aileti 
questioning. 

Figure 2 sl~ows a plot of t,he rho mass as a furlction of t,he size of the simulation, 
for several values of the quark mass (or 711,/771~ ratio in the simulat.ion) ant1 lat.tice 

-175- 



1 

6/g’+ 7(0 0). 6 0 (:: X) Quenched.Staggered 

i 
x 0.51 

a, I 
m  

i 
0 0.64 

i 
0 053 

600’ ’ ’ I I ’ ( ’ I I ’ / I ’ ’ ’ 
0 2 4 6 

Box Size (fm) 

Figure 2: Rho mass vs box size. 

spacing (J =  G.0 is a N 0.1 fm and :j =  5.7 is about. twice that.).” This pict.urr 
shows that. if the box lias a tliamet.er bigger t.han about 2 fm, the rho mass is little 
affected, but if t.he box is made smaller, the rho is “squeezed” and its mass rises. 

Next, we look at. an Edinburgh plot, Fig. 3 (Ref. 12). The different. pldting 
symbols correspond to different bare couplings or (equivalcnt~ly) different. lat tier 
spacings. This plot shows large scaling violat.ions: mass rat.ios from different 
latt.ice spacings do not lie on t.op of each other. \Ve can expose t.he level of scaling 
violations by raking “sections” through the plot ant1 plot I~,v/~/I~ at fixed valurs 
of t.he quark mass (fixed rn,/mp) versus lat.tice spacing, in Fig. 4. 

Now for some examples of scaling test.s in the chiral limit. (Ext.rapolating to 
t.he chiral limit. is a whole can of worms cm it.s own. but for now, let’s aSsunw we can 
do it..) Figure 5 shows the nucleon to rho mass rat.io (at. chiral limit) versus lattice 
spacing (in unit,.5 of l/m,) for st,aggered I2 anti \Vilson’” fermions. The ~~analytic” 
result is from strong coupling. The t.wo curves are quadratic tdrapolations to 
zero lat,tice spacing using different set.s of p0int.s from the st,aggered t1at.a set. 
The burst. is from a linear extrapohdion to t.he Wilson t1at.a. The reason I show 

! 
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+ (5.54.163) 
i:c (5.7.203) 
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0.0 0.2 0.4 0.6 0.6 1.0 1.2 

Figure 3: An Edinburgh plot for staggered fermions, from the MILC Collabora- 
tion. 
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Figure 4: “Sections” t,hrough the Edinburgh plot. 
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Figure 5: Nucleon to rho mass ratio (at chiral limit.) vs labtice spacing (in units 
of l/r+). 

this figure is that one would like to know if the continuum limit of quenched 
spectroscopy “predicts” the real-world N/p mass ratio of 1.22 or not. The answer 
(unfortunately) depends on how the reader chooses to extrapolate. 

Another testI is the ratio of the rho mass t,o the square root of the st.ring 
tension, Fig. 6. Here the diamonds are staggered data and the crosses from the 
Wilson action. Scaling violations are large, but t,he eye extrapolates t,o somet.hing 
close to data (the burst). 

Finally, despite Mr. Strange, very few authors have attempted t.o ext.rapolate 
to infinite volume, zero lattice spacing, and to physical quark masses, including 
the strange quark. One group which did, Butler et al.,13 produced Fig. 7. The 
squares are lattice data, the octagons are the real world. They look quite similar 
within errors. Unfortunately, to produce this picture, they had to build their own 
computer. 
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Figure 6: Scaling test for the rho mass in terms of the string tension, with data 
points labeled as in Fig. 5. 
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Figure 7: Quenched approximation mass rat.ios from Ref. 13. 

3 Doing a Better Job-Maybe! 

The slow approach t.o scaling present,s a pract,ical problem for QCD simulations, 
since it, means that. one needs to work at small lat.tice spacing. This is expensive. 
The cost of a h1ont.e Carlo simulat.ion in a box of physical size L with lattice 
spacing u and quark mass m9 scales roughly as 

(41) 

where the 4 is just the number of sites, the l-2 is the cost of “critical slowing 
down”--the ext.ent to which successive configurations are correlated, and t.he 2--3 
is the cost of invert.ing the fermion propagator, plus crit.ical slowing down from 
the nearly massless pions. The problem is that one needs a big computer to do 
anyt.liing. 

However, all t.he simulations I described in the last. lecture were done wit.11 a 
particular choice of lattice act.ion: the p1aquet.t.e gauge act.ion, and eit.her \\Ylson 
or st.aggered quarks. \IIile t,hose act.ions are the simplest ones to program. they 
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are just part.icular arbitrary choices of bare actions. Can one invent a better lattice 
discretization, which has smaller scaling violations? 

People are trying many approaches. One could just write down a slightly 
more complicated action, inciude some parameters which can be tuned, do a 
spectroscopy calculat,ion, and see if there is any improvement as the parameters 
are varied. The problem with this method is that it. is like hunting for a needle 
in a multidimensional haystack-there are so many possible terms t.o add. One 
needs an organizing principle. s 

3.1 Improvement Based on Naive Dimensional Analysis 

The simplest idea is to use the naive canonical dimensionality of operators to 
guide us in our choice of improvement. If we perform a naive Taylor expansion of 
a lattice operator like the plaquette, we find that it. can be written as 

1 - :Fte TrUpl.,, = rsTrFi” + a*[rr ClrV TrDpFVyDIIFpy + 

7-Z Cpva TrD,Fv,D,Fvn + 
r3 C&J”0 TrD,F,dJv,] + 

+0(d). (42) 

The expansion coefficienm have a power series expansion in the coupling, rJ = 
Aj + g2B, + . . . and the expectation value of any operator T computed using the 
plaquette action will have an expansion 

(T(Q)) = (T(0)) + O(n) + O(g2a) + . . (43) 

Other loops have a similar expansion, with different, coefficients. Now the idea 
is to take t.he lattice action to be a minimal subset of loops and syst,ematically 
remove the a” terms for physical ohservahles order by order in n by taking the 
right linear combination of loops in t.he action. 

s = cc,o, 

with 
Cj = Cy $ g’CJ + (45) 

This method was developed by Symanzik and co-workers’“-” ten years ago. 

Figure 8: The value of some parameter in a lattice action for which physical 
observables have no a” errors. The dotted line is the lowest order perturbative 
expectation. 

To visualize this technique, look at, Fig. 8. We imagine parameterizing the 
coefficients of various terms in the lattice act.ion, which for a pure gauge theory 
could be a simple plaquett,e, a 1 x 2 closed loop, the square of the 1 x 2 loop, and 
so on. as some function of g2. “Tree-level improvement” involves specifying the 
value of the j-th coefficient cj(g2) at g’ = 0. As we move away from g2 = 0, the 
value of c,(g2) for which observahles calculated using the lattice action have no 
errors through the specified exponent n (no a” errors) will trace out a trajectory 
in coupling constant space. For small g2, the variation should he describable hy 
perturbation theory, Eq. (45), but when g* gets large, we would not expect. that. 
perturbation theory would be a good guide. 

The most, commonly used “improved” fermion action is the “Sheikholeslami- 
Wohlert”‘s or “clover” act,ion. an order a2 improved Wilson action. The original 
Wilson action has O(a) errors in its vertices, SW = S, + O(a). This is corrected 
by making a field redefinition 
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Figure 9: The “clover term.” 

and the net result is an action with an extra lattice anomalous magnetic moment 
term, 

It is called the “clover” action because the lattice version of F,,” is the sum of 
paths shown in Fig. 9. 

Studies performed at the time showed that this program did not improve 
scaling for the pure gauge theory (in the sense that the cost of simulating the 
more complicated action was greater than the savings from using a larger lattice 
spacing.) The whole program was re-awakened in the last few years by Lepage 
and collaborators,” and variations of this program give the most widely used 
“improved” lattice actions. 

3.2 Nonperturbative Determination of Coefficients 

Although I am breaking chronological order, the simplest approach to Symanzik 
*’ improvement is the newest. The idea is to force the lattice to obey various 

desirable identities to some order in a, by tuning parameters until the identities 
are satisfied by the simulations. That is, we try to find the solid line in Fig. 8 by 

doing simulations. Then use t,he action to calcu1at.e ot,hrr t.hings and test to see 
if scaling is improved. One example is the PCAC relat,ion 

where t.hr axial and pseutlosralar currents are just 

1 
.4;(r) = (i’(.C)^,p-{S-TaC”(x) 

2 

a11tl 
1 

P”(T) = t/l(.r)m{j-T”C’J(I) 

2 
(7“ is an isospin index.) The PCAC relation for the quark mass is 

I (49) 

(;o) 

(51) 

(52) 

Now the idea is to take some Symanzik-improved action, with the improvement. 
coefficients allowed to vary, and perform simulations in a litt.le box with some 
particular choice of boundary conditions for t.he fields. Parameters which can be 
tuned include the cgw in t.he clover t,erm i/4c.vwao,,F,,, and t.he ones used for 
more complicat,etl expressions for the currenm 

P” = Zp(1 + hpa7nJP. (54) 

They are varied until t,hr quark mass, defined in Eq. (52), is independent of 
location in the box or of the boundary contlit.ions. Figures 10 and 11 illusrrate 
what CRII be done with this tuning procedure. It is still too soon for definit.ive 
test.s of scaling wit,11 this procedure. 

3.3 Improving Perturbation Theory 

The older version of Symanzik improvement uses lat.tice perturbation t,heory t.o 
compute t.he coefficients of the operat.ors in the action. The idea here is to find a 
uew definit~ion of 9” for which t.he solid line in Fig. 8 is transformed into a st.raight. 
line (compare Fig. 12). 

Let’s make a digression int.o latt.ice perturbation t,heory.*’ It. has t,hree major 
uses. First,, we need t.o re1at.e lattice quantit.ies (like m&ix elements) to continuum 
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ones: Oat(p) = Z(~a,g(a))O’an(a). This happens because the renormalization 
of an operator is slightly different in the two schemes. In perturbation theory, 
2 has an expansion in’powers of g*. Second, we can use perturbation theory 
to understand and check numerical calculations when the lattice couplings are 
very small. Finally, one can use perturbative ideas to motivate nonperturbative 
improvement schemes.** 

Perturbation theory for lattice actions is just like any other kind of perturba- 
tion theory (only much messier). One expands the Lagrangian into a quadratic 
term and interaction terms, and constructs the propagator from the quadratic 
terms: 

L = A,W,vb - Y)&(Y) + gA3 + . . . (55) 
= Lo + cr. (56) 

For example, the gluon propagator in Feynman gauge for the Wilson action is 

DJq) = C,( 1 -g:I&q@)) (57) 

To do perturbation theory for any system (not just the lattice), one has to do three 
things: one has to fix the renormalization scheme (R.8) (define a coupling), specify 
the scale at which the coupling is defined, and determine a numerical value for 
the coupling at that scale. All of these choices are arbitrary, and any perturbative 
calculation is intrinsically ambiguous. 

Any object which has a perturbative expansion can be written 

O(Q) = co + c~(Q/cl, W~,(P, RS) + c2(Q/p, RS)c+, RS)* + (58) 

In perturbative calculations, we truncate the series after a fixed number of terms 
and implicitly assume that’s all there is. The coefficients ci(Q/p,RS) and the 
coupling a,(p,RS) depend on the renormalization scheme and choice of scale 
p. The guiding rule of perturbation theory *’ is “For a good choice of expansion 
the uncalculated higher order terms should be small.” A bad choice has big 
coefficients. 

There are many ways to define a coupling: The most obvious is the bare cou- 
pling; as we will see shortly, it is a poor expansion parameter. Another possibility 
is to define the coupling from some physical observable. One popular choice is to 
use the heavy quark potential at very high momentum transfer to define 

w (9) V(q) = 4*c,-. 
** 

(5%  

There are also several possibilities for picking a scale: One can use the bare 
coupling, then p = l/a t.he lat,tice spacing. One can guess the scale or play games 
just like in the continuum. One game is t,he Lepage-Mackenzie q’ pr 

I@ 
cription: 

find t,lie “typical” momentum transfer q- for a process involving a loop graph by 
pulling n,(q) out of the loop int,egral and set 

%(*-) /atom = / ~~4*~(*h(*). (‘50) 

To find q‘, write as(q) = os(fl) + bln(q’/p*)cr,(p)* +. ., and similarly for as(q’), 
insert. t.hese expressions into Eq. (60) and compare the o,(fi)* terms, t.o get. 

ln(*-) = / ~~“*ln(*W / (l”*t. (61) 

This is the lattice analog of the Brodsky-Lepage-hlackenzie23 prescript.ion in con- 
tinuum PT. 

Finally, one must determine the coupling: If one uses the bare lattice coupling, 
it is already known. Otherwise, one can c0mput.e it in t.erms of the bare coupling: 

o&s/a) = ae+(5.88-1.75 lns)n~+(43.41-21.89lns+3.06 In’.s)tr~+. . (62) 

Or one can determine it. from soniet.hing one measures on t,he latt.ice, which ha. a 
perturbative expansion. For example, 

-~n(~TrU+,,) = $<tp(3.41/~1)(1 - 1.185~1~) (63) 

(t.o this order, op = ov), Does “improved pert.urbation t,heory” actually improve 
pert.urbat.ive catculat.ions? In many cases, yes: some examples are shown in Fig. 13 
from Ref, 22: On the upper left., we see a calculat.ion of t.he average link in Lan- 
dau gauge, from simulat.ions (octagons) and then from lowest-order perturbative 
calculat,ions using the bare coupling (crosses) and cLv and m  (diamonds and 
squares). In t.he upper right. panel, we see,liow t.he lat.t.ice predict,ion of an observ- 
able involving the t.wo-by-two \Vilson loop depends on the choice of momentum 
q-/a (at 3 = 6.2, a rat.her weak value of t.he bare coupling) in the running cou- 
pling constant The burst is t.he value of t.he prescription of Eq. (61). 111 the lower 
panel are perturbat.ive predictions, t.he same observables as a funct.ion of lat.tice 
coupling. These pictures illustrate that perturbat.ion t.heory in t.erms of t.he bare 
coupling does not. work well, but. t.hat. using &her definitions for couplings, one 
can get, much bet,t.er agreement with t.he laMice %lata.” 
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Figure 13: Examples of “improved perturbation theory.” 

Straight perturbative expansions by  themselves for the commonly used  lattice 1  
i actions are typically not very convergent.  The  culprit is the presence of U,,‘s in .I 
!. the action. One  might think that for weak coupling, one  could expand  
, I 

&J$ = li;[l + igaA + . .]$ (64) s 

and  ignore the . ., hut the higher order term @g2a2A2$ generates the “tadpole 
graph” of Fig. 14. The  UV divergence in the gluon loop N l/a2 cancels the a* in 
the vertex. The  same thing happens  at higher order, and  the tadpoles add  up  to 
an  effective a0  C c,,g*” contribution. Parisi and  later Lepage  and  Mackenzien 
su’ggested a  heuristic way to deal with this problem: replace U,, +  ue(l +  igaA) 

where us, the “mean  field term” or “tadpole improvement term” is introduced 
phenomenological ly to sum the loops. Then  one  rewrites the r&ion as  

(65) 

where g* =  gTaI/ui is the new expansion parameter.  Is ui =  (TrU,+/3)? This 
choice is often used;  it is by  no  means  unique. 

A “standard action” (for this year, anyway)  is the “tadpole- improved Liischer- 
Weisz” action,” composed of a  1  hy  1, 1  by  2, and  “twisted” loop (+x, +y, +z, 

-x, -Y, -z), 

0.5 =  -/3[Tr(l x  1) - A(1 + 0.48a,)Tr(l x 2) - -$0.33a.Tr&,] (66) 
0 

with ~0  - (TrUpro9/3)‘/4 and  3.068a, E - ln(TrU+J3) determined self-consistently 
in the simulation. 

3.4 Fixed-Point Actions 

Let’s recall the quest ion we were trying to answer in the previous sections: Can  
one  find a  trajectory in coupl ing constant space,  a long which the physics has  no  
corrections to some desired order in a” or gma”?  Let’s take the quest ion one  step 
further: Is there a  trajectory in coupl ing constant space in which there are no  
corrections at all, for any  n  or m?  

To  approach the answer,  let’s think about  the connect ion between scaling and  
the propert ies of some arbitrary hare action, which we assume is def ined with 
some UV cutoffs (which does  not have  to he  a  lattice cutoff, in principle). The  
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Figure 14: The “tadpole diagram.” 

action is characterized by an infinite number of coupling constants, {c}. (Many of 
them could he set to zero.) When the c’s take on almost any arbitrary values, the 
typical scale for all physics will be the order of the cutoff: m  N l/a, correlation 
length < N a. There will be strong cutoff effects. 

The best way to think about scaling is through the renormalization group.‘” 
Take the action with cutoff a and integrate out degrees of freedom to construct a 
new effective action with a new cutoff a’ > a and fewer degrees of freedom. The 
physics at distance scales r > a is unaffected by the coarse-graining (assuming 
it is done exactly.) We can think of the effective actions as being similar to the 
original action, but with altered couplings. We can repeat this coarse-graining 
and generate new actions with new cutoffs. As we do, the coupling constants 
“flow” : 

S(a,Cj) --t S(QT',C~) + S(O3”,Cy) + . . 

If under repeated blockings the system flows to a fixed point 

(67) 

S(a,,c,“) --f S(a,+,,c;+’ = c;,, 
then ohservahles are independent of the cutoff a, and in particular, the correlation 
length < must either be zero or infinite. 

This can only happen if the original c’s belong to a particular restricted set, 
called the “critical surface.” It is easy to see that physics on the critical surface is 
universal: at long distances, the effective theory is the action at the fixed point, 
to which all the couplings have flowed, regardless of their original bare values. 
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Figure 15: A schematic picture of renormalization group flows along a one- 
dimensional critical surface, with the associated renormalized trajectory, and su- 
perimposed contours of constant correlation length. 

In particular, physics at the fixed point is independent of the underlying lattice 
structure. 

But < = 03 is not < large. Imagine tuning bare parameters close to the critical 
surface, hut not on it. The system will flow towards the fixed point, then away 
from it. The flow lines in coupling constant space will asymptotically approach 
a particular trajectory, called the renormalized trajectory (RT), which connects 
(at [ = 00) with the fixed point. Along the renormalized trajectory, t is finite. 
However, because it is connected to the fixed point, it shares the scaling properties 
of the fixed point-in particular, the complete absence of cutoff effects in the 
spectrum and in Green’s functions. (To see this remarkable result, imagine doing 
QCD spectrum calculations with the original bare action with a cutoff equal to 
the Planck mass and then coarse-graining. Now exchange the order of the two 
procedures. If this can he done without making any approximations, the answer 
should he the same.) 

A Colorado analogy is useful for visualizing the critical surface and renormal- 
ized trajectory: think of the critical surface as the top of a high mountain ridge. 
The fixed point is a saddle point on the ridge. A stone released on the ridge will 
roll to the saddle and come to rest. If it is not released exactly on the ridge, it 
will roll near to the saddle, then go down the gully leading away from it. For a 
cartoon, see Fig. 15. 



So the ultimate goal of “improvement programs” is to find a true perfect action, 
without cutoff effects, along the renormalized trajectory of some renormalization 
group transformation. At present, finding an RT has not been done in a convincing 
way for any renormalization group transformation. However, an action at the 
fixed point might also be an improved action, and fixed-point actions really can 
be constructed and used. 

In lattice language, a bare action for QCD is described by one overall factor 
of p = 2N/gs and arbitrary weights of various closed loops, 

Asymptotic freedom is equivalent to the statement that the critical surface of any 
renormalization group transformation is at g2 = 0. The location of a fixed point 
involves some relation among the cj’s. 

A direct attack on the renormalized trajectory begins by finding a fixed-point 
action. Imagine having a set of field variables (4) defined with a cutoff a. Intro- 
duce some coarse-gained variables {a} defined with respect to a new cutoff a’, 
and integrate out the fine-grained variables to produce a new action 

e -BSW = 
/ 

++wm+)+S(~)) ( (70) 

where P(T(@,+) is the blocking kernel which functionally relates the coarse and 
fine variables. Integrating Eq. (70) is usually horribly complicated. However, 
P. Hasenfratz and F. NiedermayerZd noticed an amazing simplification for asymp 
totically free theories: Their critical surface is at p = 00, and in that limit, 
Eq. (70) becomes a steepest-descent relation 

ST*) = mjn((T(@, 4) + S(4)) (71) 

which can be used to find the fixed-point action 

sFP(@) = mjn((T(*, 4) + SFPb)). (72) 

The program has been successfully carried out for d = 2 sigma modelaze and 
for four-dimensional pure gauge theories. ” These actions have two noteworthy 
properties: First, not only are they classically perfect actions (they have no a” 
scaling violations for any n), hut they are also one-loop quantum perfect: that is, 
as one moves out of the renormalized trajectory, 

;s,(g2) = $SFP + Ob4b (73) 

Physically, this happens because the original action has no irrelevant operators; 
i and they are only generated through loop graphs. Thus, these actions are an 
.b extreme realization of the Symanzik program. Second, because these acti 
1 Y 

s are 
at the fixed point, they have scale invariant classical solutions. This fact can 
he used to define a topological charge operator on the lattice in a way which is 
consistent with the lattice action.28 

These actions are Uengineeredn in the following way: one picks a favorite 
blocking kernel, which has some free parameters, and solves hkb (72), usually 
approximately at first. Then one tunes the parameters in the kernel to optimize 
the action for locality and perhaps refines the solution. Now the action is used 
in simulations at finite correlation length (i.e., do simulations with a Boltzmann 
factor exp(-PSFp)). Because of &. (73), one believes that the FP action will be 
a good approximation to the perfect action on the RT; of course, only a numerical 
test can tell. As we will see in the next section, these actions perform very well. 
At this point in time, no nonperturhative FP action which includes fermions has 
been tested, hut most of the formalism is there.zs 

3.5 Examples of “Improved” Spectroscopy 

I would like to show some examples of the various versions of “improvement” and 
remind you of the pictures at the end of the last chapter to contrast results from 
standard actions. 

Figure 16 shows a plot of the string tension measured in systems of con- 
stant physical size (measured in units of l/T,, the critical temperature for de- 
confinement), for SU(3) pure gauge theory. In the quenched approximation, with 
fi N  440 MeV, T, = 275 MeV and l/T’ = 0.7 fm. Simulations with the atan- 
dard Wilson action are crosses, while the squares show FP action results2’ and 
the octagons from the tadpole-improved Liischer-Weisz action.30 The figure il- 
lustrates that it is hard to quantify improvement. There are no measurements 
with the Wilson action at small lattice spacing of precisely the same observahles 
that the “improvement people” measured. The best one can do is to take similar 
measurements (the diamonds) and attempt to compute the a = 0 prediction for 
the observable we measured (the fancy cross at a = 0). This attempt lies on a 
straight line with the FP action data, hinting strongly that the FP action is indeed 
scaling. The FP action seems to have gained about a factor of three to four in 
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Figure 16: The square root of the string tension in lattices of constant physical 
size L = 2/T,, hut different lattice spacings (in units of l/T,). 

lattice spacing, or a gain of (3 - 4)” compared to the plaquette action, according 
to Eq. (41), at a cost of a factor of seven per site because it is more complicated 
to program. The tadpole-improved Liischer-Weisz action data lie lower than the 
FP action data and do not scale as well. As a --t 0, the two actions should yield 
the same result; that is just universality at work. However, there is no guarantee 
that the approach to the continuum is monotonic. 

Figure 17 shows the heavy quark-antiquark potential in SU(2) gauge theory, 
where V(r) and r are measured in the appropriate units of T,, the critical temper- 
ature for deconfinement. The Wilson action is on the left and an FP action is on 
the right. The vertical displacements of the potentials are just there to separate 
them. Notice the large violations of rotational symmetry in the Wilson action 
data when the lattice spacing is a = 1/2Ter which are considerably improved in 
the FP action results. 

Next, we consider nonrelativistic QCD. A comparison of the quenched char- 
monium spectrum from Ref. 19 using data from Ref. 31 is shown in Fig. 18. 

l E-FAT= 0 l/2 0 l/4 

(b) q *- 
l ‘ 

Figure 17: The heavy quark potential in SU(2) pure gauge theory measured in 
units of T,. (a) Wilson action, and (h) an FP action. 

GeV t 
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0 0.40 fm 
0 0.33 fm 
l 0.24 fm 
. 0.17 fm 

Figure 18: S, P, and D states of charmonium computed on lattices with: a = 
0.40 fm (improved action, /3plap = 6.8); a = 0.33 fm (improved action, /&,p = 7.1); 
a = 0.24 fm (improved action, pprop = 7.4); and a = 0.17 fm (Wilson action, 
b = 5.7, from Ref. [31]), from Ref. 19. The dashed lines indicate the true masses. 
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When the tadpole-improved L-W action is used to generate gauge configurations, 
the scaling window is pushed out to a 2: 0.4 fm for these observables. 

Now we turn to tests of quenched QCD for light quarks. The two actions 
which have been most extensively tested are the S-W action, with and without 
tadpole improvement, and an action called the D234(2/3) action, a higher-order 
variant of the S-W action.32 Figures 19 and 20 are the analogs of Figs. 5 and 
6. Diamond8 and plusses3” are S-W actions, ordinary and tadpole-improved, 
squares are the D234(2/3) action. They appear to have about half the scaling 
violations as the standard actions but they don’t remove all scaling violations. It’s 
a bit hard to quantify the extent of improvement from these pictures because a 
chiral extrapolation is hidden in them. However, one can take one of the “sections” 
of Fig. 4 and overlay the new data on it, Fig. 21. It looks like one can double 
the lattice spacing for an equivalent amount of scale violation. However, the 
extrapolation in a is not altogether clear. Figure 22 is the same data as Fig. 21, 
only plotted versus a*, not a. All of the actions shown in these figures are supposed 
to have O(a*) (or better) scaling violations. Do the data look any straighter in 
Fig. 22 than in Fig. 21? 

0 1 2 
m,(a=O) a 

Figure 19: Nucleon to rho mass ratio (at chiral limit) vs lattice spacing (in units 
of l/m,). 

.‘ 

*.oI 
0.0 0.5 1.0 

a-6 

Figure 20: Rho mass scaling test with respect to the string tension. 
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Figure 21: mN/mp vs amp at fixed quark mass (fixed mm/m,,). Interpolations of 
the S-W and D234(2/3) data were done by me. 
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Figure 22: mNJmp vs (am,)* at fixed quark mass (fixed m,/m,). 

3.6 The Bottom Line 
i 
!. At the cost of enormous effort, one can do fairly high-precision simulations of 

, QCD in the quenched approximation with standard actions. The actions I have 
shown you appear to reduce the amount of computation required for pure gauge 
simulations from supercomputers to very large work stations, probably a gain 
of a few hundreds. All of the light quark data I showed actually came from 
supercomputers. According to Eq. (41), a factor of two in the lattice spacing 
gains a factor of 64 in speed. The cost of either of the two improved actions I 
showed is about a factor of eight to ten times the fiducial staggered simulation. 
Improvement methods for fermions are a few years less mature than ones for pure 
gauge theory, and so the next time you hear a talk about the lattice, things will 
have changed for the better (maybe). 

4 SLAC Physics from the Lattice 

One of the major goals of lattice calculations is to provide hadronic matrix ele- 
ments which either test QCD or can be used as inputs to test the Standard Model. 
In many cases, the lattice numbers have uncertainties which are small enough that 
they are interesting to experimentalists. I want to give a survey of lattice calcu- 
lations of matrix elements, and what better way at this summer school, than to 
recall science which was done here at SLAC. as the framework’? 

4.1 Generic Matrix Element Calculations 

Most of the matrix elements measured on the lattice are expectation values of 
local operators composed of quark and gluon fields. The mechanical part of the 
lattice calculation begins by writing down some Green’s functions which contain 
the local operator (call it J(z)) and somehow extracting the matrix element. For 
example, if one wanted (OIJ(s)[h), one could look at the two-point function 

Inserting a complete set of correctly normalized momentum eigenstates 

(75) 

-l&is- 



and using translational invariance and going to large t gives 

A second calculation of 

Co(+) = ~(0~0(x,t)0(0,0)l0) = e-At I(“y/Ai)I’ 
= (77) 

is needed to extract (O(JIA) by fitting two correlators with three parameters. 
Similarly, a matrix element (hj.Jlh’) can be gotten from 

CAB@, t’) = ~(OIOA(t)+, t’)oB(o)lo) (78) 
z 

by stretching the source and sink operators 04 and 0s far apart on the lattice, 
letting the lattice project out the lightest states, and then measuring and dividing 
Out @lo,+) and (910&t). 

These lattice matrix elements are not yet the continuum matrix elements. 
The lattice is a WV regulator, and changing from the lattice cutoff to a continuum 
regulator (like MS) introduces a shift 

(flow-‘(p = l/a)li)x = aD(l+ -(C ;; s- Gtd + ...)(flO’““(a)li)+O(a)+ . . . . 

(79) 
The factor aD converts the dimensionless Iattice number to its continuum result. 
The O(a) corrections arise because the lattice operator might not be the contin- 
uum operator: df /dx = (f (x + a) - f (z))/a + O(n). The C’s are calculable in 
perturbation theory, and the “improved perturbation theory” described in the last 
section is often used to reduce the difference Cm - CI.~~. 

4.2 Structure Functions 

In the beginning, there was deep inelastic scattering. The lattice knows about 
structure functions through their moments: 

/ 
o' dxx”-*F&r, Q*) I M,(Q*) = ~&t," (8’4 

has a representation in terms of matrix elements of fairly complicated quark (for 
the nonsinglet structure function) or gluon bilinears: for quarks 

(81) 

1 .o 

0.9 

0.8 

0.7 

0.6 
h 

I 
1:: k---+---i 
0.0 - 

6.4 6.5 6.6 
1 /K 

Figure 23: (x) for the proton (MOM scheme) from Ref. 35. The circles (boxes) 
correspond to different choices of lattice operators. The upper (lower) band of 
data represents the results for the up (down-) quark distribution. 

?I)* “la~/,i..,.,lP, s) = u~“(ppI . . .p,. + . . .). 

D is a lattice covariant derivative, which is approximated by a finite difference. 
The Wilson coefficients c$! are calculated in perturbation theory and depend on 
/.I*/Q* as well as on the coupling constant g(p). The lattice calculation is done 
by sandwiching the operator in EJq. (78). 

It is presently possible to calculate the two lowest moments of the proton 
structure function on the lattice. Two gro~ps~*~ presented results at this year’s 
lattice conference. Figure 23 shows (x) from Ref. 35, a calculation done in 
quenched approximation. In this picture, the massless quark limit is the left 
edge of the picture. There are several different lattice operators which serve as 
discretizations of the continuum operator, and the figure shows two possibilities. 

Unfortunately, the calculation is badly compromised by the quenched approx- 
imation. It shows (x),, = 0.38 and (x)d = 0.19, while in the real world, we expect 
about 0.28 and 0.10, respectively. In the computer, there are no sea quarks, and 
their momentum is obviously picked up (at least partly) by the valence quarks. 

One nice feature about the lattice calculation is that the spin structure func- 
tion can be calculated in essentially the same way; the operator 0 has an extra 
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Figure 24: Au (upper values) and,Ad (lower values) for the proton from Ref. 35. 

gamma-5 in it. Reference 35 computed Au = 0.84 and Ad = -0.24 (in contrast to 
0.92 and -0.34 in the real world). A plot versus quark mass is shown in Fig. 24. 

There is no problem in principle which prevents extending these calculations 
to full QCD (with dynamical sea quarks). It will probably be very expensive to 
push beyond the lowest moments. 

4.3 Heavy Quark Physics 

Then there was the November revolution. Twenty years later, systems with one 
or more heavy quarks remain interesting objects for study. The lattice is no 
exception. Many groups study spectroscopy, decay amplitudes, form factors, etc., 
with the goal of confronting both experiment and analytic theoretical models. 

There are several ways to study heavy quarks on the lattice. If the quark 
has infinite mass (the “static limit”), its propagator is very simple: the quark is 
confined to one spatial location, and as it evolves in time, its color “twinkles.” 
The propagator is just a product of link matrices going forward in time. 

One can simulate nonrelativistic quarks directly on the lattice.31 This has 
evolved into one of the most successful (and most elaborate) lattice programs. 

‘So 3Sl ‘Pl ‘D2 

Figure 25: T spectrum. 

The idea is to write down lattice actions which are organized in an expansion of 
powers of the quark velocity and to systematically keep all the terms to some 
desired order. For example, one might write 

including kinetic and magnetic moment terms, suitably (and artistically) dis- 
cretized. Tadpole-improved perturbation theory is heavily used to set coefficients. 
Figures 25 and 26 show the Upsilon spectrum and its hyperfine splittings from 
various NRQCD calculations (from a recent summary by Shigemitsu3’). 

The main shortcoming of nonrelativistic QCD is, of course, that when the 
quark mass gets small, the nonrelativistic approximation breaks down. For char- 
monium, v/c c= 0.3, so the method is less safe for this system than for the Upsilon. 

Finally, one can take relativistic lattice quarks and just make the mass heavy. If 
the quark mass gets too heavy (ma N l), lattice artifacts dominate the calculation. 
For Wilson fermions, the dispersion relation breaks down: E(p) N ml + p2/2mz 

where mz # ml. The magnetic moment is governed by its own different mass, 
too. 

Another signal of difficulty is that all these formulations have their own pattern 
of scale violations. That is, nonrelativistic quarks and Wilson quarks approach 
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Figure 26: Y spin splittings: Symbols have the same meaning as in Fig. 25. 

their a + 0 1imit.s tlifferedly. This is oft,en described in the literature by t.he stat.e- 
ment t.hat. “the lattice spacing is different. for different observahles.” For example, 
in one data set.,ss the inverse lattice spacing (in MeV) is given as 2055 MeV from 
fitt.ing t.he heavy qQ potential, 2140 MeV from t,he rho mass, 1800 MeV from the 
proton mass, and 2400 MeV from the Upsilon spectrum. These simulations are 
just sitting in t.he middle of figures like Fig. 5 with only one point, trying to guess 
where the left-hand edge of the picture will he. This is a problem for calculations 
of B meson and baryon spedroscopy, where t.he heavy quarks might be treated 
nonrelativistically and the light quarks are relatividic. What observable shoultl 
be used to set. rhe overall scale’?3Q 

One of the major uses of heavy quark systems by the lattice communit,y is to 
try t,o calculate the strong coupling constant at Q2 = Mg. This topic deserves it.s 
own section. 

4.4 % (MZ) 
Now we are at the SLC and LEP. For some t,ime now, there have been claims that. 
physics at t,he 2 pole hid at. a possible breakdown in Ihe Standard Modddo A 
key question in rhe discussion is whether or not, the value of w inferred from t,he 
decay wi&h of t,he Z is anomalously high relat,ive t,o other det,erminations of the 
strong coupling (which are usually measured at. lower Q  and run to t,he Z pole). 

The most recent analysis of cr,(&fz) I am aware of is due t,o Erler and Lan- 
gacker. ” linrshopc Currently, am = 0.123(4)(2)(l) for the Standard Model Higgs 
mass range, where a first, second, and third uncedainty is from the inputs, 
Higgs mass, and edmate of 01 terms, respedively. The central Higgs rnsss is 

assumed to be 300 GeV, and the second error is for MM = 1000 GeV (+), 60 
GeV (-). For the SUSY Higgs maqs range (60-150 GeV), one has the lower value 
c~ = .121(4)(+1 - O)(l). A global fit. to all t1at.a gives 0.121(4)(l). Hir$hcliffe 
in the same compilat,ion quotes a global average of 0.118(3). 

The lattice can contribute t,o this question by precliding w from low-energy 
1 physics. The basic idea is simple: The lattice is a (peculiar) UV cutoff. A lattice 

msss p = Ma plus an experiment,al mass M  give a lattice spacing 0 = p/b4 in 
fm. If one can meaSure some quantity related t.o (1, at a scale Q  N l/a, one can 
t,lien run the coupling condant out to the Z. 

The best (recent) lattice number. from Shigemitsu’s Lattice ‘96 summar,y 
talk 37 i4 3 * 

fzk&Mz) = 0.1159(19)(13)(19), (84) 

where the first error includes both statistics and estimates of tliscretization errors, 
the second is due to uncertainties from the dynamical quark mass, and the third 
is from conversions of conventions. The lattice number is about one srandard 
deviation below the pure Z-physics number. Latt,ice results are compared t,o other 
recent. determinations of m(Z) in Fig. 27, a figure provided hy P. Burrows.‘* 

Two ways of calculating o,(Mz) from lattice have been proposed: The first, is 
the “small loop method.““3 This method uses the “improved perrurhation theory” 
described in Chap. 2: One assumes that a version of perturbation theory can 
describe t.he behavior of short-distance objects on the lattice: in particular, that 
the plaquette can he used t.o (lefine crv(q = 3.41/a). With typical latt,ice spacings 
now in use, this gives the coupling at, a momerdum QO = 8 - 10 GeV. One t,hen 
converts t,he coupling to w and runs out. t.o t.he Z using the (published) three- 
loop beta fun&ion.” 

Usually, t,lie lat.tice spacing is determined from rlie mass split.tings of heavy 
Qa st,at.es. This is done because the mass differences between physical heavy 
quark st,aPes are nearly independent of t.he quark mass-for example, t,he S-P 
maSS split.ting of the 3 family is about. 460 MeV, and it, is about. 440 MeV for 
the T. A second reason is that. the mass splitt.ing is believed to he much less 
sensitive t.o sea quark effects t.han light quark observables, and one can estitiare 
the effects of sea quarks through simple pot.ent,ial models. The uncertaidy in t.he 
lat,tire spacing is three t.0 five per cent, but. systematic effects are much great,er 
(as we will see below). 

: 
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Figure 27: Survey of m(A4z) from Ref. 42. 

The coupling constant comes from Eq. (63). The plaquette can he measured 
to exquisite accuracy (0.01 per cent is not atypical) and so the coupling constant 
is known essentially without error. However, the scale of the coupling is uncertain 
(due to the lattice spacing). 

The next problem is getting from lattice simulations, which are done with 
n, = 0 (quenched) or nf = 2 (hut unphysical sea quark masses) to the real 
world of nf = 3. Before simulations with dynamical fermions were available, the 
translation was done by running down in Q to a “typical gluonic scale” for the 
psi or the upsilon (a few hundred MeV) and then matching the coupling to the 
three-flavor coupling (in the spirit of effective field theories). This produced a 
rather low a, N 0.105. Now we have simulations at nf = 2 and can do better. 
Recall that in lowest order 

l&~(~)ln!$ 
One measures l/a, in two simulations, one quenched, the other at nl = 2, runs 
one measurement in Q to the Q of the other, then extrapolates l/o linearly in n/ 
to nl = 3. Then one can convert to MS and run away. 

Pictures like Fig. 27 are not very useful when one wants to get a feel for the’ 
errors inherent in the lattice calculation. Instead, let’s run our expectations for 
a,(Mz) down to the scale where the lattice simulations are done, and co ‘f pare. 
Figure 28 does that. The squares are the results of simulations of charmed quarks 
and the octagons are from bottom quarks, both with nf = 0. The crosses and 
diamond are n, = 2 bottom and charm results. (The bursts show upsilon data 
when the KS-2s mass difference gives a lattice spacing.) Note the horizontal error 
bars on the lattice data. Finally, the predicted ni = 3 coupling op is shown 
in the fancy squares, with error bars now rotated because the convention is to 
quote an error in Q,. The lower three lines in the picture (from top to bottom) 
are m(Mz) = 0.118, 0.123, and 0.128 run down and converted to the lattice 
prescription. 

The two top lines are predictions for how quenched a should run. 
Now for the bad news. All of the nf = 2 data shown here were actually run on 

the same set of configurations. The bare couplings are the same, but the lattice 
spacings came out different. What is happening is that we are taking calculations 
at some lattice spacing and inferring continuum numbers from them, but the lat- 
tice predictions have scale violations which are different. (The f calculations use 
nonrelativistic quarks, the $J calculations use heavy Wilson quarks.) Notice also 
that the bottom and charm quenched lattice spacings are different. This discrep- 
ancy is thought to be a failure of the quenched approximation: the characteristic 
momentum scale for binding in the 1/, and Y are different, and because nl is not 
the real world value, a runs incorrectly between the two scales. Said differently, 
in the quenched approximation, the spectrum of heavy quark bound states is 
different from the real world. 

There is a second method of determining a running coupling constant which 
actually allows one to see the running over a large range of scales. It goes hy the 
name of the “Schriidinger functional,” (referring to the fact that the authors study 
QCD in a little box with specified boundary conditions) but “coupling determined 
by varying the box size” would be a more descriptive title. It has been applied to 
quenched QCD but has not yet been extended to full QCD,45 and so it has not 
yet had an impact on phenomenology. This calculation does not use perturbation 
theory overtly. For a critical comparison of the two methods, see Ref. 46. 
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4.5 Glueballs 

Figure 28: Survey of w(Q) at the scale where lattice simulations are actually 
done. 

i 
!. I have been hearing people t.alk about glueballs from psi decay for almost 20 .pars. 
, Toki”7 has summarized the experimental situation for gluehalls. What do thebrists 

expect, for a spect,rum? The problem is t,hat any nonlartice model requires making 
u;lcont,rolled approximations t.o get, any kind of an answer: t.here are no obvious 
zeroth order solutions wit,h small expansion parameters. The lattice is the only 
game in town for a first.-principles calculation 

People have been trying to measure the masses of t,he lightest glueballs (the 
scalar and the tensor) using lattice simulations for many years. The problem has 
proven to he very hard, for several reasons. 

R.ecall how we measure a mass from a correlat,ion function [Eq. (40)]. The 
problem with the scalar gluehall is that the operator 0 has nonzero vacuum 
expectation value, and the correlation function approaches a constant at large t: 

;i+zC(t) -i I(O(Olp’= O)l*exp(-mt) + 1(0(010)1*. (86) 

The statistical fluctuations on C(t) are given by Eq. (25), and we find after a 
short calculation that 

(87) 

Thus, bhe signal-to-noise ratio collapses at large t like fiexp(-nt) due to t.he 
constant term. 

A part.ial cure for this problem is a good t.rial wave function 0. LVhile in 
principle the plaquett,e itself could he used, it is so dominahed by ultraviolet 
fluctuations that. it. does not. produce a good signal. Inst,ead, people invent “fat 
links” which average the gauge field over several lattice spacings, and t.hen make 
interpolating fields which are closed loops of these fat links. The lat.tice glueball 
is a smoke ring. 

The second problem is that. lat.tice act.ions can have phase t,ransit,ions at. st.rong 
or intermediate coupling, which have nothing to do with the cont.inuum limit., but 
mask continuum behavior.‘s As an example of this, consider t.he gauge group 
SU(2), where a link matrix can be parameterized as U = lcos0 + iii. n’sin0, 
so TrU = 2~0~6’. Now consider a generalization of t,he Wilson acrion -S = 
pTrU+-y(TrU)2. (This is a mixed fundament,al-adjoint representation action.) At. 
y + 03, Trll -+ fl and t,he gauge symmetry is broken down to Z(2). But Z(2) 
gauge theories have a firs&order phase transit.ion. First-order transitions are st.able 
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under perturbations, and so the phase diagram of this theory, shown in Fig. 29, 
has a line of first-order transitions which terminate in a second-order point. At the 
second-order point, some state with scalar quantum numbers becomes massless. 
However, now imagine that you are doing Monte Carlo along the y = 0 line, that 
is, with the Wilson action. When you come near the critical point, any operator 
which couples to a scalar particle (like the one you are using to see the scalar 
glueball) will see the nearby transition and the lightest mass in the scalar channel 
will shrink. Once you are past the point of closest approach, the mass will rise 
again. Any scaling test which ignores the nearby singularity will lie to you. 

This scenario has been mapped out for SU(3), and the place of closest approach 
is at a Wilson coupling corresponding to a lattice spacing of 0.2 fm or so, meaning 
that very small lattice spacings are needed before one can extrapolate to zero 
lattice spacing. A summary of the situation is shown in Fig. 30 (Ref. 49). Here 
the quantity rs is the i‘Sommer radius,“” defined through the heavy quark force, 
F(r) = -W(r)/&, by r~F(rs) = -1.65. In the physical world of three colors 
and four flavors, rs = 0.5 fm. 

Finally, other arguments suggest that a small lattice spacing or a good approx- 
imation to an action on an RT are needed to for glueballs: the physical diameter 
of the glueball, as inferred from the size of the best interpolating field, is small, 
about 0.5 fm. Shafer and Shuryak 51 have argued that the small size is due to 
instanton effects. Most lattice actions do bad things to instantons at large lattice 
spacing.*s 

Two big simulations have carried calculations of the glueball mass close to the 
continuum limit: the UKQCD Collaboration5’ and a collaboration at IBM which 
built its own computer.53 (The latter group is the one with the press release last 
December announcing the discovery of the glueball.) Their predictions in MeV 
are different, and they each favor a different experimental candidate for the scalar 
glueball (the one which is closer to their prediction, of course). It is a useful 
object lesson because both groups say that their lattice numbers agree before 
extrapolation, but they extrapolate differently to a = 0. 

The UKQCD group sees that the ratio m(O++)/,/Z can be well-fitted with a 
form 6 + ca2u (a is the string tension) and a fit of this form to the lattice data 
of both groups gives m(O++)/fi = 3.64 f 0.15. To turn this into MeV, we need 
u in MeV units. One way is to take m,/J;f and extrapolate that to a = 0 using 
b + cafi. Averaging and putting 770 MeV for mp, one gets fi = 432 f 15 MeV, 

Figure 29: Phase transitions in the fundamental-adjoint plane. 
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Figure 30: Glueball mass vs TO with the Wilson action, from a summary picture 
in R,ef. 49. 

which is consist.ent with the usual estimate (from extracting the string tensioi 
from the heavy quark potential) of about 440 MeV. Using the total average, they 
get m(O++) = 1572 f 65 f 55 MeV where the first error is statistical T d the 
second comes from the scale. 

The IBM group, on the other hand, notices that mpu and m,+a scale asymp- 
, totically, and uses the phi mass to predict quenched Am, then extrapolates 
m(O++)/A = A + By. They get 1740(41) MeV from their data; when they 
analyze UKQCD data, they get 1625(94) MeV; and when they combine the data 
sets, they get 1707(64) MeV. 

A neutral reporter could get hurt here. It seems to me that the lattice predic- 
tion for the scalar glueball is 1600f 100 MeV, and that there are two experimental 
candidates for it, the fo(1500) and the f~(1710). 

Masses are not the end of the story. The IBM group has done two interesting 
recent calculations related to glueballs, which strengthen their claim that the 
f-,(1710) is the glueball. 

The first one of them54 was actually responsible for the press release. It is a 
calculation of the decay widt,h of the glueball into pairs of pseudoscalars. This is 
done by comput.ing an unamputat,ed three-point function on the lattice, with an 
assumed form for the vertex, whose magnitude is fitted. The result is shown in 
Fig. 31. The octagons are t,he results of the simulation, and the diamonds show 
interpolations in the quark mass. The “experimental” points (squares) are from a 
partial wave analysis of isoscalar scalar resonances hy Longacre and Lindenbaum.% 

The response of a member of the other side is that the slope of the straight 
line that one would put through the three experimental points is barely, if at all, 
compatible with the slope of the theoretical points. Since they argue theoretically 
for a straight line, the comparison of such slopes is a valid one. 

If one of the experimental stat,es is not a glueball, it is likely to he a 3Po orbital 
excitation of quarks. Weingarten and Lee56 are computing the mass of this state 
on t,he lattice and argue that it is lighter than 1700 MeV; in their picture, the 
fo(l500) is an SB state. I have now said more t,han I know and will just refer you 
to recent, discussions of t,he question.“’ 

Bot,h groups predict t,hat the 2 ++ gluehall is at. about 2300 MeV. 
Can “improved actions” help the sit.uation. 7 R.ecentlg, Peardon and Morn- 

ingstar’” implemented a clever method for beating the exponential signal-to-noise 
ratio: make t.he lat.tice spacing smaller in t.he t,ime direction than in t.he space 
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Figure 31: Scalar glueball decay couplings from Ref. 54. 
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Figure 32: Glueball mass vs re from Ref. 49, including large lattice spacing data. 

direction. Then the signal, which falls like exp(-mar&) after Lr lattice spacings, 
dies more slowly because at is reduced. Their picture of the glueball mass versus 
TO is shown in Fig. 32. They are using the tadpole-improved Liischer-Weisz action. 
The pessimist notes the prominent dip in the middle of the curve; this action also 
has a lattice-artifact transition (somewhere); the opt,imist notes that the dip is 
much smaller than for the Wilson action, and then the pessimist notes that there 
is no Wilson action data at large latt.ice spacing to compare. I think the jury is 
still out. 

4.6 The B Parameter of the B Meson 

And finally we are at BaBar. 0 - B mixing is parameterized by the ratio 

(AWti 
zd= --G- (88) 
Experiment is on the left, theory on t,he right. Moving into the long equation from 
the left, we see many known (more or less) parameters from phase space integrals 
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or perturhative QCD calculations, then a combination of CKM matrix elements, 
followed by a four-quark hadronic matrix element. 58 We would like to extract the 
CKM matrix element from the measurement of rd (and its strange partner x,). 
To do so, we need to know the value of the object in the curly brackets, defined as 
3/8i& and parameterized as rr&.f&&,~ where L?b, is the so-called B parameter, 
and fB is the B-meson decay constant 

@lh~^tsW) = few (89) 
Naive theory, which is expected to work well for the B system, suggests that 
Be = 1 to good accuracy. Of course, the stakes are high and a good determination 
of MM is needed to test the Standard Model. The lattice can do just that. 

In Rq. (88) b(p), the coefficient which runs the effective interaction down 
from the W-boson scale to the QCD scale p, and the matrix element M(p) both 
depend on the QCD scale, and one often sees the renormalization group invariant 
quantities M M  = b(p)M&) or & = b(p)B&) quoted in the literature. 

Decay constants probe very simple properties of the wave function: in the 
nonrelativistic auark model. 

where Ii/(O) is the ijq wave function at t.he origin. For a heavy-quark (Q) light- 
quark (q) system, $(O) should become independent of t,he heavy quark’s mass as 
the Q  mass goes to infinity, and in that limit, one can show in QCD that @ fM 
approaches a constant. 

One way to compute the decay constant is to put a light quark and a heavy 
quark on the lattice and let them propagate. It is difficult to calculat,e fn directly 
on present. day lat,tices with relativistic lattice fermions because the lat.tice spacing 
is much great.er t.han t.he b quark’s Compton wavelength (or the UV cut.off is 
below mb). In this limit, the b quark is strongly affected by lattice artifacts as 
it propagates. However, one can make mb infinite on the lattice and determine 
t.he combination fife in the limit. Then one can extrapolate down to the 
B mass and see if the two extrapolations up and down give the same result. 
(Nonrelativistic b quarks can solve this problem in principle, hut the problem of 
setting the lattice spacing between light and nonrelativistic quarks has prevented 
workers from quoting a useful decay constant from these simulations.) 

Among the many lattice decay constant calculations, the one of Ref. 59 stands 
out in my mind for being the most complete. These authors did careful quenched 
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Figure 33: Pseudoscalar meson decay constant vs l/M, from Ref. 59. 

simulations at many values of the lattice spacing, which allows one to extrapolate 
to the continuum limit by brute force. They have also done a less complete set of 
simulations which include light dynamical quarks, which should give some idea of 
the accuracy of the quenched approximation. 

The analysis of all this data is quite involved. One begins with a set of lat- 
tice decay constants measured in lattice units, from simulations done with heavy 
quarks which are probably too light and light quarks which are certainly too 
heavy. One has to interpolate or extrapolate the heavy quark masses to their real 
world values, extrapolate the light quarks down in mass to their physical values, 
and finally try to extrapolate to a + 0. It is not always obvious how to do this. 
Complicating everything are the lattice artifacts in the fermion and gauge actions, 
and the lattice-to-continuum renormalization factors as in Dq. (79). 

The (still preliminary) results of Ref. 59 are shown in Figs. 33 and 34. The 
Nf = 2 dynamical fermion data in Fig. 34 have moved around a bit in the past 
year and may not have settled down yet. 
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a (GeV)-’ 

Figure 34: f~ vs o from Ref. 59. Octagons are quenched data; crosses, Np = 2. 
The solid line is a linear fit to all quenched points; the dashed line is a constant 
fit to the three quenched points with o < 0.5 GeV-‘. The extrapolated values at 
o = 0 are indicated by bursts. The scale is set by f, = 132 MeV throughout. 

The numerical results of Ref. 59 are: 
i 

J. f~ = 166(11)(28)(14) fo = 196(9)(14)(8) I” 
, 

fo, = 181(10)(36)(18) fo, = 211(7)(25)(11) ’ 

+ = 1.10(2)(5)(8) k = 1.09(2)(5)(5), 

where the first error includes statistical errors and systematic effects of changing 
fitting ranges; the second, other errom within the quenched approximation; the 
third, an estimate of the quenching error. Decay constants are in MeV. 

Note that the error bars for the B system are small enough to be phenomeno- 
logically interesting. The Particle Data Group’s@ determination of CKM matrix 
elements, which does not include this data, says, “Using hn, f& = (1.2*0.2)(173* 
40 MeV)*..., IV,;l&l* = 0.009 f 0.003, where the error bar comes primarily from 
the theoretical uncertainty in the hadronic matrix elements.” 

Can we trust these numbem? Lattice calculations have been predicting fD, N 
200 MeV for about eight years. The central values have changed very little, 
while the uncertainties have decreased. So far, four experiments have reported 
measurements of this quantity. The most recent is the Fermilab E653 Collabora- 
tion61 fo. = 194(35)(20)(14) MeV. The older numbers, with bigger errors, were 
238(47)(21)(43) from WA75 (1993) (Ref. 62); 344(37)(52)(42) from CLEO (1994) 
(Ref. 63); 430 (+150 -130)(40) from BES (1995) (Ref. 64). 

Now back to the mixing problem. On the lattice, one could measure the decay 
constants and B parameter separately and combine them after extrapolation, or 
measure M directly and extrapolate it. In principle, the numbers should be the 
same, but in practice, they will not be. 

A recent calculation illustrates this point.& The authors computed the four 
fermion operatom Mb and MM directly on the lattice. Figure 35 shows the be- 
havior of M ss a function of hadron msss at one of their lattice spacings. 

The ratio r,d = Mb/Mu is presumably much less sensitive to lattice spacing 
or to quark msss extrapolation. The authors’ result for the lattice spacing de- 
pendence of this ratio is shown in Fig. 36, along with an extrapolation to zero 
lattice spacing. They find 1.54 f .13 f .32 from their direct method, compared 

to f.d x 1.32 f .23 from separate extrapolations of the decay constants and the 
B parameter. (They measure equal B parameters for strange and nonstrange 
B mesons, B(p) = 1.02(13) for Jo = 2 GeV.) 
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Figure 35: MhC (octagons) and Mhb (squares) ss a function of the inverse heavy- Figure 36: The SU(3) flavor breaking ratio M~/MM vs the lattice spacing o. The 
down (strange) meson mass, at /3 = 6.0. The dashed line shows the effect of the points denoted by crosses were used in the fit (solid line). The burnt shows the 
lightest points on the fit. extrapolation to o = 0. 
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It looks like SL1(3) breaking is fairly large, and if that is so, it looks like the 
parameter z,, the strange analog of Eq. (88), might be about 20, unmessurably 
large.66 

5 Conclusions 

Lattice methods have arrived. There are so many lattice calculations of different 
matrix elements that it is impossible to describe them all, and in many cases, the 
quality of the results is very high. One can see plots showing extrapolations in 
lattice spacing which show that the control of lattice spacing has become good 
enough to make continuum predictions with small uncertainties. Calculations 
with dynamical fermions and a small lattice spacing are still nearly impossibly 
expensive to perform, and “quenching” remains the dominant unknown in all 
lattice matrix element calculations. 

There are two major tasks facing lattice experts. I believe that all the people 
in our field would agree that the first problem is to reduce the computational 
burden, so that we can do more realistic simulations with smaller computer re- 
sources. I have illustrated several of the approaches people are using to attack 
this problem. I believe that some of them have been shown to be successful and 
that “improvement” will continue to improve. 

There is a second question for lattice people, which I have not discussed, but 
I will mention at the end: Is there a continuum phenomenology of light hadron 
structure or confinement, which can be justified from lattice simulations? The 
motivation for asking this question is that there are many processes which cannot 
be easily addressed via the lattice, but for which a QCD prediction ought to exist. 
For examples of such questions, see the talk of Bjorken in this conference,“7 or 
Shuryak’s article. ” Few lattice people ate thinking about this question. Part of 
the lattice community spends its time looking for “structute” in Monte Catlo- 
generated configurations of gauge fields: instantons, monopoles, etc. This effort 
is not part of the mainstream because the techniques either involve gauge fixing 
(and so it is not clear whether what is being seen is just an artifact of a particular 
gauge), ot they involve arbitrary decisions during the search (perform a certain 
number of processing operations, no more, no less). To answer this question 
requites new ideas and a controlled approach to simulation data. Will an answer 
be found? 
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