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Introduction

One of the most intriguing aspects of high energy physicsis CP violation. On
the experimental side, it is one of the least tested aspects of the Standard Model.
There is only one CP violating parameter that has been unambiguously measured,
that is the e parameter in the neutral K system [1]. A genuine testing of the
Kobayashi-Maskawa picture of CP violation [2] in the Standard Model [3 — 5]
awaits the building of B factories that would provide a second, independent,
measurement of CP violation [6]. On the theoretical side, the Standard Model
picture of C'P violation has two major difficulties. First, CP violation is necessary
for baryogenesis [7], but the Standard Model CP violating processes seem unable
to produce the observed baryon asymmetry of the universe. Second, an extreme
fine tuning is needed in the CP violating part of the QCD Lagrangian in order
that its contribution to the electric dipole moment of the neutron {8, 9] does not
exceed the experimental upper bound [10,11}. This suggests that an extension

of the Standard Model, such as the Peccei-Quinn symmetry [12], is required.

In this series of lectures we concentrate on three classes of CP violating pro-
cesses where the Standard Model will be tested and the existence of new physics
may be revealed: neutral K decays into two pions, neutral B decays into final
CP eigenstates, and fermionic electric dipole moments. The best determination
of the CP violating parameters in the Standard Model will come from the neutral

meson decays and we put our emphasis on these.

The first part of these lectures is a general discussion of CP violation in
meson decays. We define three types of CP violation in neutral meson systems:
CP violation in decay, CP violation in mixing, and CP violation in the interference
of mixing and decay. We describe how each of the three types can be observed and
we explain the difficulties in the respective theoretical calculations. We analyze
the differences between the K and the B systems in both experiment and theory.
The whole discussion is free of phase conventions and uses one language for both

K and B mesons.
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The second part of the lectures describes the CKM picture of CP violation
within the Standard Model. We use unitarity triangles to explain the features of
CP violation in K, B and B, decays. We accompany this with a detailed calcu-
lation, updated with recent experimental measurements and theoretical consid-
erations (such as Heavy Quark Symmetry). The predictions for CP asymmetries
in neutral B decays are presented in a novel way which makes comparison to

models of new physics more straightforward.

The third part of these lectures is devoted to theories beyond the Standard
Model. We analyze in detail C'P violation in several extensions of the Stan-
dard Model: An extension of the quark sector with an SU(2); down-like singlet;
Extensions of the Higgs sector which maintain Natural Flavor Conservation; Ex-
tensions of the gauge sector into Left-Right Symmetry which allow CP to be
only spontaneously broken; and Supersymmetry. For each of these models we
analyse the constraints and predictions concerning CP violation. We end this
part by presenting the predictions of various schemes for quark mass matrices for

CP asymmetries in B decays.

In preparing this series of lectures, I have used the following reviews: Ref.
[13] for a general review; Ref. [14] for the K system; Refs. [15 — 18] for the B
system; Refs. [19 — 21] for electric dipole moments; Refs. {22 — 24] for the CKM
picture. In these reviews the reader may find more complete lists of references:
I here included only those references which have actually been used in preparing

these lectures.



I. CP VIOLATION IN NEUTRAL MESON SYSTEMS

1. Formalism and Notations
1.1. CP -CONJUGATE DECAYS

We are interested in pairs of decay processes that are related by a CP trans-
formation. If P and P are CP conjugate mesons and f and f are CP conjugate

states, then We denote by A and A the the two CP conj{xgate decay amplitudes:

A= (fIH|P), A=(f|H|P). (1.1)

There are-two types of phases that may appear in A and A. Weak phases are
parameters in the Lagrangian which violate CP. They appear in A and 4 with
opposite signs. They usually appear in the electroweak sector of the theory and
hence the name “weak.” Strong phases appear in scattering or decay amplitudes
even when the Lagrangian is real. They do not violate CP and appear in A and A
with the same sign. Their origin is in the possible contribution from intermediate
on-shell states in the decay process, namely in the absorptive part of an amplitude
that has contributions from coupled channels. Usually the relevant rescattering

is due to strong interactions and hence the name “strong.”

1t is useful to factorize A into three: the absolute value of A4; a strong phase

shift § which is the result of final state interaction (and is CP invariant); and a

weak phase ¢ which is CP violating. Then, if several amplitudes contribute to
P~ f,

A= Z Ajeibieiti, A = em2i€ret2its Z AjeiSiemid (1.2)

where A; are real, £p and £; are phases related to the CP transformation law

for P and f, respectively (see below). If f is a CP eigenstate then e~ % = 41,

-gi4-

according to whether f is CP even or odd. The notation a; = A;e'® is also

common in literature.
"1.2. MIXING OF NEUTRAL MESONS

' We consider a neutral meson P° and its antiparticle P° [25]. An arbitrary

neutral P-meson state
a|P%) +b|P°) (1.3)

is governed by the time-dependent Schrédinger equation

i% (‘;) =H<:) (M—gr)(ab). (1.4)

Here M and I are 2 x 2 hermitian matrices. CPT invariance guarantees Hy; =

Hy;. In H, the anti-hermitian part — i’ — describes the exponential decay of the
P-meson system, while the hermitian part -~ M - is called a mass matrix. The

non-diagonal terms would be important in the discussion of CP violation:

0 Do
M2 = (Pol Hap=2 |P°) +P Z (P ‘HAP:I In) {n| Hap=1 |P )»

_E,
mP (1.5)
Flg =27 Z Pn <P0| HA,;:] In) (nl HAp:l |Po> ’
where P stands for principal value and p, is the density of the state n.
The mass eigenstates are
|P) = p|P°) +q|P°), (1.6)
|P;) = p|P°) —q|P%),
with the normalization condition
lgl> + Ipl* = 1. (1.7

You may be puzzled by the form of (1.6). First, Py and P; are not necessarily



orthogonal states:
(P1]Py) = |p|* — qI*. (1.8)

If T';2 = 0 then H would be the sum of a unit matrix (times a complex num-
ber) and a hermitian matrix and its eigenvectors would be orthogonal. In the
usual treatment of field theory, one indeed diagonalizes M and treats T as in-
teraction among the orthogonal states. Here we incorporate T into our effective
hamiltonian which has, therefore, non-orthogonal eigenvectors. In other words,
Py and P, .are resonances and not elementary particles. Furthermore, if T';, #0
but arg(I'y2/Mi2) = 0, then P, and P, would still be orthogonal, in the sense
that (1.8) would vanish. This case corresponds to P, and P carrying different
quantum numbers under a good symmetry (CP). Second, there are no four in-
dependent components p; and ¢; in (1.6). The relations P1=Pp2, 1 = —qp are a
result of Hy; = Hyz, namely of CPT.

The eigenvalues of H are
P12 = My — 3T, (1.9)

where M; and T'; are the mass and the decay width, respectively, of P;. We
further define

Ap = pp — py = AM — LAT. (1.10)
The eigenvalue problem,
det (M — iT - pu1) =0, (1.11)
leads to the condition
(Ap)? = 4(Myz ~ iT12) (M7, — 41T, (1.12)
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or, equivalently,

(AM)? = 3(AT)? =4(|My2|* — L[Tyzf?),

(1.13)
AMAT =4Re(M;,T75,).
For the ratio ¢/p we find
9. B AMip - 3T5) (1.14)
P 2(My, - §F12) Ap

Of p and g only the ratio ¢/p has physical significance. First, there is the
normalization condition (1.7). Second, arg(q/p*) is just an overall common phase
for |P;) and |P).

1.3. PHASE CONVENTIONS

There is some freedom in defining phases which has to be clarified. (We follow
here the discussion in Ref. [13].) In particular, each time we define a CP violating
observable, we would like to verify that it is independent of phase conventions.

The states P° and P° are related through CP transformation:

CP|PY) = %€ |BY),  CP|P0) = ¢=2¢ | Py, (115)
where £ is an arbit"rary phase. The freedom in defining phases is related to the
fact that P® and 1‘50 are defined by strong interactions which conserve flavor.
Therefore, a phase transformation,

|P2) = =€ [P0, | B9) = ¢ | BV, (1.16)

has no physical effects. This invariance is just the Strangeness, Charm or Beauty
1

symmetry of strong interactions for K, D or B, respectively. In the new basis,



CP transformations take the form

(CP)|P) = ¥ €O P, (CP)|P?) = e 2&-0|P2). (1.17)

The various quantities discussed in this chapter transform according to

Mlcz =62i(1\412, rfg = 62""‘1“12, (¢/p)c = C—ZEC(Q/P)»

, B o (1.18)
A =e%A, A;=€CA. '

Furthermore, frdm the transformation of states (1.16), and the transformation of
q/p in Eq. (1.18), we find that

[Pic) =€ |P),  |Py) =€ |Py), (1.19)

namely both mass eigenstates are rotated by a common phase factor, which has

no physical significance.

An alternative common notation is to define € such that

L LI el (1.20)

V2 + &)’ V20 + )

Note that the normalization condition (1.7) is explicitly incorporated and, fur-

thermore, part of the freedom in phases is used to set Im(q) = —Im(p).
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2. The Three Types of CP Violation in Meson Decays

We distinguish between three types of CP violation:
(2) CP violation in decay.

The following quantity is independent of phase conventions and physically

meaningful:
A 3o Ajetbie—id
el R 7 ol L R
4 [is &)

When CP is conserved, the weak phases ¢; are all equal. Therefore, Eq. (2.1)

implies

|A/A|#1 = CP violation. (2.2)

We call this type of CP violation CP wviolation in decay or direct CP violation.
It results from the interference among various decay amplitudes that lead to the

same final state. CP asymmetries in charged meson decays are of this type.
(i2) CP violation in mixing.

The following quantity is independent of phase conventions and physically
meaningful:
P |Mbh-3Th
My —~ 3T 12

q

p

X (2.3)

When CP is conserved, the relative phase between M2 and I';2 vanishes. There-

fore, Eq. (2.3) implies

lg/pl#1 => CP violation. (2.4)

We call this type of CP violation CP wieclation in mizing or indirect CP violation.

It results from the mass eigenstates being different from the CP eigenstates.



CP asymmetries in semileptonic decays are of this type. In the notation (1.20)

we have
la/pl = |(1-8)/(1 + &), (2.5)

so that CP violation in mixing is related to Re(€) # 0.
(it7) CP violation in the interference of mixing and decay.

We denote by Ay, , the amplitude for P® decay into a final CP eigenstate fcp.
Then the following quantity is independent of phase conventions and physically

meaningful:’

_ 9 “ifcp
A = . .
p AfCF (2 6)

When CPis conserved |¢/p| = 1, |A.,/Afcr| = 1 and the relative phase between
(¢/p) and (Aj., /A ) vanishes. Therefore, Eq. (2.6) implies

A#1 = CP violation. (2.7)

CP asymmetries in neutral meson decays into CP eigenstates are of this type.
There are several important points concerning (2.7):
a. CP violation in decay (2.2) is sufficient for (2.7) through jA| # 1.
b. CP violation in mixing (2.4) is sufficient for (2.7) through |A] # 1.

c. Neither (2.2) nor (2.4) is necessary for (2.7) to realize. In fact, the the-
oretically favorable situation is when |¢/p| = 1 and |A/A] = 1, yet ImX # 1,
namely ) is a pure phase. The point is that in this case there are no hadronic
uncertainties in the calculation of A, as will be discussed in Chapter 5. We will

call CP violation of the form
Al=1, ImA#0, (2.8)

CP violation in the interferehce of mizing and decay.
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d. Take the decay amplitudes of P° into two different final CP eigenstates,

A, and A;. A nonvanishing difference between A\, and Ay,

q Aa Ab
A== ——— s .
b P(Aa Ab)#ﬂ (2.9)

would establish the existence of CP violation in AP = 1 processes. Yet, unlike

the case of direct CP violation, no nontrivial strong phases are necessary.

3. K and B Mesons

Discussing CP violation for the most general neutral meson system is ex-
tremely complicated and not very illuminating. Therefore, we will concentrate
on two specific types of neutral meson systems: the case of “small phases” and
the case of “small lifetime difference.” In the end, there are three neutral meson
systems useful for our understanding of CP violation, and they correspond to the
two classes: in the neutral K system all relevant phases are small, while in the
neutral B and B, systems the two mass eigenstates have similar lifetimes. (In
the D system the effects are small and arise mainly from long distance physics.
Top quarks are likely to decay before T mesons form.) Thus, in this chapter we

describe the K and the B systems.

3.1. THE NEUTRAL K SYSTEM

The two neutral K meson states differ significantly in their Nifetimes [26]:

]
rs = (0.8922 £ 0.0020) x 1070 s, 77 = (5.17 4+ 0.04) x 107 s, (3.1)
b

where the sub-indices § and L stand for Short and Long, respectively. We choose

[Ih) = | Ks), IIfz) = iI\’L) s
' AT =I'; - T's < 0.

(3.2)



The amplitudes of the states K's and K, at time ¢ can be written as
) 1 . 1 ‘
as(t) = as(0)e™*Mste=2Ts! q;(t) = ap(0)e~Mrte—3Tet, (3.3)

The mass difference between the two neutral kaons is measured to be
1

AM = My — Ms = (3.522 £ 0.016) x 10~!% GeV. (3.4)

Equations (3.1) and (3.4) together imply a useful approximate relation,

ATy ~ —2AMk. (3.5)

Next, we turh to the calculation of

-= —_— . (3.6)
p AM - AT
We define a phase ¢, according to
. M, Mi2| 4.,
- = — || "2, 3.7
Ty [12 3.7)

As CP violating effects in the K system are known to be small, we have ¢;2 < 1.
Solving (1.13) to first order in ¢ gives

AM = 2|My,|, AT = —2[T1a). (3.8)

Consequently, to first order in ¢y4, (3.7) is equivalent to

M AM .
—t = . 3.9
T AT (1 +i¢12) (3.9)
In any given phase convention
R Flg = 'F]zle_zif. (310)

Using (3.9) and (3.10), we get from (3.6):

. 1+i8%
9 _ erie |1 jg,, " 1IAM_ ‘200 (3.11)
P ( AT
2AM

Note that to a good approximation ¢/p is a pure phase. Actually (3.11) implies
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that the CP transformation law is CP|K°) = €2 |K°). Indeed we experimen-
tally know that the K5 and K states are to a good approximation CP eigen-
states. The violation of this approximation is of order ¢;2 = ©O(10~%). In the
calculation of the deviation from lg/pl = 1 there are significant hadronic uncer-
tainties. They will be discussed in detail later. He’re we just mention that they
arise from a parameter called By which introduces an overall uncertainty of a
factor of 2-3 in |¢/p| — 1.

3.2. THE NEUTRAL B SYSTEM

The two neutral B mesons are expected to have a negligible difference in

lifetimes,

AT/T = 0(1072). (3.12)

(Note that AT has not been experimentally measured. (3.12) is a theoretical
statement based on experimental evidence, as discussed below.) We choose to
define

|B1) =|BL), |B2)=|Bn),

(3.13)
AM =My — My >0,

where the sub-indices L and H stand for Light and Heavy. Note that (1.12) and
(1.14) now lead to

AM =2|Mj3|, AT = 2Re(M;,T},)/|Mial,

(3.14)
q/p = — |Mya| /M.

The time evolution of |thw>’ an initially pure B° (ar(0) = an(0) = 1/(2p)),
and of |thy.->v an initially pure B® (ar(0) = —an(0) = 1/(2q)), is given by [27]

| Bonya(1)) =9+(t)| B°) + (¢/p)g-(t) | B°),

_ _ (3.15)
| BO4ys(t)) =(p/0)g—-(t) | B®) + g4(t) | B°),



where M = L(My + ML),

. 1

g+(t) = iM1g=3Tt cos(%AM t), (3.16)
) 1 :
g-(t) =e~Mtem2TY sin(3AM t).

The mass difference between the two neutral B mesons is measured to be

24 = AMp/Tg = 0.67 + 0.10. (3.17)

The calculation of ¢/p in the B system is quite different from the K system.

Here we expect, model independently,
Al'p « AMgp. (3.18)

The model independent argument for the relation (3.18) goes as follows [15]. On
the one hand, there is the experimental measurement (3.17). On the other hand,
AT has not been measured and is probably impossible to measure. But AT
is produced by decay channels which are common to B® and B°®. The (upper
bounds on) branching ratios for such channels are at or below the level of 1073,
As various channels contribute to T'j, with differing signs, one expects that their

sum would not exceed the individual level, say
Alg/TB £ 1072, (3.19)

Equations (3.17) and (3.19) lead to (3.18) which implies, in turn, |T12| < |[Mi2].
Therefore, in the B system

q My, [ 1 (F12 )]
L% |1-21 —= 1. 3.20
P | M2| 7\ My, ‘ (3:20)

Note that ¢/p is a pure phase, up to corrections < O(10~%). However, to study
the deviation from a pure phase, one needs to calculate I'12 and Mi;. This will
involve large hadronic uncertainties, in particular in the hadronization models
for T19. In Ref. [15] it is estimated that this will induce an overall uncertainty of

a factor of 2-3 in |¢/p| — 1.
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4. Experimental Observations of CP Violation
4.1. |A/Al#1

In the decays of neutral mesons, effects of CP violation in mixing are unavoid-
able. Thus, to unambiguously observe direct CP violation, it is best to measure

CP asymmetries in charged meson decays,

L _DP*= ) =T(P~ > f)
TTr@EY S H+nP- =)

(4.1)

In terms of decay amplitudes

—_1A/AI2
af = %—:ﬁ% (4.2)
As discussed above, ay # 0 requires contributions to the decay process which
differ in both their strong phases and their weak phases so that |A/A| # 1.
Purely leptonic and semileptonic decays are dominated by a single diagram and
thus are unlikely to exhibit any measurable direct CP violation. On the other
hand, nonleptonic decays often have contributions from at least two types of
processes. This has to do with the existence of tree and penguin processes. The

two types of diagrams are depicted in Fig. 1.

In penguin processes there is a loop with a W boson, while all other pro-
cesses of order Gp are tree processes. Penguin diagrams can be f'urther classified
according to the ideptity of the quark in the loop, as diagrams with different
intermediate quarks may have both different strong phases and different weak
phases. On the othet hand, the subdivision of tree processes into spectator, ex-
change and annihilation diagrams is unimportant since they all carry the same

weak phase.

There are,three particularly promising types of processes [28]:

v



e (d) 700085

Figure1l. Meson decays relevant to our discussion divide into tree diagrams (a) spectator,
(b) exchange, (c) annihilation) and (d) penguin diagrams. Penguin diagrams may contain
any number of gluons between the quark lines, but if perturbative QCD holds, the leading
contribution comes from a diagram where the two gluon lines in (d) are connected.

a. Decays with suppressed tree contribution. In these types of decays, the
penguin and the tree contributions may be comparable in magnitude and give
large interference effects. An example is the decay B — pK (where the tree

decay is suppressed by small mixing angles, Vi3 Vi,).

b. Decays with forbidden tree decays. Here the interference may come from
penguin contributions with different charge 2/3 quarks in the loop. Examples
are B — ¢K and B —» KK.

¢. Radiative decays. The mechanism here is the same as in case b except that

the leading contribution to the decay is an electromagnetic penguin.

It is unfortunate that the leading nonleptonic K decay, K¥ — =x%x®, is
unlikely to have direct CP violation. The reason is as follows. The K+ meson is

a member in an isospin doublet, I = 1/2. The final 7+ ° state has I3 = 1, and
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from Bose symmetry it cannot be an I = 1 state and therefore must be I = 2.
Consequently, the decay has only one isospin channel, AI = 3/2. As strong
interactions are isospin invariant, there is only one strong phase shift, denoted

by 82. The condition of contributions from different strong phases is not met and
A+ x0 = 0. (43)

The same argument holds for B¥ — %70,

There is no unambiguous experimental evidence for direct CP violation yet.

4.2. |g/pl #1

We now study the decays P% P® — ¢y X. From the AP = AQ rule,
P® 4e~vX, P°plruX. (4.4)
For the allowed processes, we define the following amplitude:
(etvX|H|P%) = 4, (vX|H|P% = A°. (4.5)

For the K system, we can measure

_ PEL = vX)-T(KL - £~ vX)

ST TR~ v X) F T(KL, = E0X) (4.6)
As
(rvX|HIKL) =pA, (CvX|H|KL) =qA", - @7
we get
— 2
= T (48)

With the notation (2.5), (4.8) becomes a,; = 2Re(€)/(1 + |€]?).



as; was measured for both final e and final p. The weighted average is [26]

aq = (3.27+0.12) x 1073, (4.9)

For the B system, we can measure

_ F(th“(t) —{tuX) — F(thw(t) —~ £ vX)

" T(BYhy, (1) = £+vX) + T(BS,,,(t) = - vX)’

Qas

(4.10)
As

(€"vX| H B}y, (1)) = (a/p)g-()A", (LvX|H |BY,,(t)) = (p/0)9-(t)4,
(4.11)

we get

_1—|q/n* (4.12)

Ay = .
14 1g/pt

There is no experimental measurement yet of ay in B decays.

For both the K and the B systems, the CP asymmetry in semileptonic decay
depends on the deviation of |¢/p| from unity.

4.3. A#£1

The importance of CP violation in neutral meson decays into final CP eigen-
states lies in the possibility of theoretical interpretation free of hadronic uncer-
tainties. Moreover, the two CP violating parameters which have been experi-

mentally measured, € and € /¢, belong to this class of CP violation.
The two CP violating quantities measured in the neutral K system are.

_ <7r07r0| H|KyL) _{z*tx~|H|KL)

= e — 4.13
M0 = 0| B Ky Tt T (atn-| H |Ks) (4.13)
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The experimental results are [26]

00| = (2.253 +0.024) x 1073, g = 46.6 + 2.0°

(4.14)
In4—| = (2.268 £ 0.023) x 1073, ¢,_ = 46.6+ 1.2°.
We define
Aoo = (mOr®| H|K®), oo = (n°2%| H|R?),
_ } (4.15
Apo =(n*n"|H|K®), Ay =(zt2"|H|K®), )
_ 9 Ao q A+—
PP i LU VY e ) 4.16
00 7 Ao + p A ( )
Then
oo _PAoo — g0 _ 1= oo
A doo 14 oo’
pAoo + qAoo + Aoo (4.17)

_PAy-—gA 1)
PA+- +qAL- T4 A¢

N4

As we shall later see in detail, 199 and n4+— are affected by all three types of
CP violation: |g/p| # 1 and ImA # 0 give O(1073) effects, while |A/A| # 1 gives
an O(107%) effect.

For the B system, we should measure quantities of the form [6, 29, 30]

a — F(thys(t) - fCP) - F(?ghys(t) - fCP).
1eP = T(Bya(t) = foP) + T(B(t) — for)|

(4.18)

Equations (3.15) and (3.16) lead to the following form for the time-dependent

asymmetry:

(1= |)]?) cos(AMt) — 2ImAsin(AM?E)

afep TENE (4.19)

For decay modes such that |A| = 1 (the “clean” modes), (4.19) simplifies consid-
erably:

afep(|A] = 1) = ~ImAsin(AM?). (4.20)

The modes appropriate for measuring asymmetries of the type (4.20) are those

v



()
dominated by a single weak phase. Likely candidates are ¥ K, DtD—, atn—,
¢Ks and others.

5. Theoretical Calculations of CP Violation

In this chapter we point out the hadronic uncertainties that enter the cal-
culations of CP violating phenomena. The reason for hadronic uncertainties is
that we do not understand low energy strong interactions in quantitative detail.
We separate our calculations into two parts. First, we calculate the effective
Lagrangian in terms of quark and gluon fields at a high enlergy scale, typically
~ myz, and use Renormalization Group Equations {RGEs) to run L.f; down
to the relevant hadronic scale. This part is well understood and can be calcu-
lated with high accuracy. Second, to calculate physical decay rates (or mixing)
we must calculate the matrix elements of L. between the relevant physical
states. That is the part where we lack in theoretical technology. In some cases,
e.g.. semileptonic meson decays, approximate symmetries may help us fix the
form and normalization of the matrix element. Known examples are the chiral
symmetry for K decay and heavy quark symmetry for B decay. However, in
nonleptonic decays (and in mixing amplitudes) the quark operators do not corre-
spond to currents and therefore we do not know the normalization of their matrix
elements. We may use phenomenological models to estimate them but have lit-
tle control over the resulting uncertainties. Eventually, lattice calculations may
solve the problem, but at present,they are also subject to approximations and

uncertainties.

There is a significant difference in the cleanliness of the theoretical calcula-
tions in the three types of CP violation. Furthermore, there are differences in
the cleanliness of predictions for CP violating quantities between the K and the

B systems. In this chapter we clarify these issues.

From Eqs. (2.3), (2.1) and (2.6), we see that the relevant quantities that need
to be calculated are g/p and A/A. Let us start with the latter one. Recall

-g2.t
]

Eq. (1.2):

A= Z Ajeilieiti: A = e tlretl Z Ajetdie—idi, (5.1)
; .

Notice the following two facts:

a. If all contributing amplitudes had the same strong phase shift, then A/A

would be a pure phase.

b. If all contributing amplitudes had the same weak phase, then A/A would

be a pure phase.

Thus, for direct CP violation, |A/A| # 1, there should be both non-trivial
CP conserving phases (§; —§; # 0) and non-trivial CP violating phases (di—¢; #
0). Conversely, the calculation of direct CP violation requires knowledge of strong
phase shifts and of absolute values of various amplitudes and therefore necessarily

. . . . *
involves hadronic uncertainties.

In the previous sections we concluded that for both the K and the B systems,
g/p is of the form g/p = €'#(1 + z), where ¢ is a phase which depends purely
on phase convention and electroweak parameters, and z is small, O(1073), but
has hadronic uncertainties. In the K system these uncertainties arise from the
By parameter in the calculation of Miz. In the B system the uncertainties arise
from the need to calculate T'y2. But in any case, we are led to one conclusion for
both systems: effects of CP violation in mixing, namely |¢/p| # 1, are small and

subject to large hadronic uncertainties for both K % and B°.

This leaves one possibility for a potentially clean CP violating quantity,
namely CP violation in the interference of mixing and decay. The condition is
that we have to choose decays into final CP eigenstates which are dominated by
a single CP violating phase. Then Agop/Afep 18 a pure phase with no hadronic

uncertainties. Such modes are available in principle for both K and B. For

« In some cases, it is possible to overcome the hadronic uncertainties by measuring several
isospin-related rates 31,32, 33].



K° decays, we look into either 7+~ or 7%2°. The AT = 1/2 rule implies that
both are dominated by a single strong phase &,. For B® decays we may choose,
for example, ¥ Ks. It is dominated by a single weak phase. Then, in princi-
ple, the phase difference between (¢/p) (neglecting the small deviation from a
pure phase) and (A/A) will determine the CP asymmetry and is free of hadronic

uncertainties!

In practice this observation is useful only in the B system. The reason that it
does not work in the K system is that the difference in width, I'y3, is completely

dominated by the two pion intermediate state and therefore

arg(l'2) = arg(A;w/i%r) = arg(/i%r/AZfr)- (5.2)

In the approximation that (Ay,/A2.) is a pure phase we consequently have

Ayr AT —2i¢

LA = e 2%, 5.3

Aazx 2ry, (5-3)
(See eq. (3.10) for the last equation.) However, eq. (3.11) shows that in the
approximation where ¢/p is a pure phase it is given by ¢/p = ¢?*. Thus, the
prediction for CP asymmetry in K — 2r which is clean of hadronic uncertainties

is simply zero:

AMK > 7r) =1 = ImApr = 0. (5.4)

It should hold (as it does!) up to @(1073). To learn something about CP violation

we have to give up this approximation and use

q . ' ~
£ =1—-2 55)
p AT e (

Therefore, we would encounter hadronic uncertainties.
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On the other hand, to take (¢/p) of the B system to be a pure phase means
that we set [T'12/Mia| — 0. The phase of T'y5 or, more important, of any exclu-
sive CP eigenmode, is still different from that of My, and we may have (as we
do!) clean predictions for large CP asymmetries in the decays of neutral B into

CP eigenstates.

6. The ¢ and € Parameters

6.1. WHAT ARE € AND ¢ /¢?

There is a possible contribution in (4.17) from direct CP violation [34, 35].
This is due to the fact that there are two isospin channels, leading to final (27) ;-0

and (27)7=; states:

(7% =/3((rm) =l = /2 (am)1al
(| =2 () rmal + /3 (7)1l

(6.1)
However, the possible effects are small because (on top of the smallness of all
CP violating phases in the K system) the final I = 0 state is dominant (this is
the AI =1/2 rule). Defining

Ar=((xm)f|H|K®), A;=((xm)|H|R%), (6.2)

)
1

we have, experimentally,
t

Instead of noo and 14 _ we may define two combinations, € and €, in such a way

that the possible direct CP violating effects are isolated into ¢'.

v



QOur experimental definition of the € parameter is then:

€ = 1o + 2n4-). (6.4)

]

To zeroth order in A, /Aq, we have ngp = n4— = €. However, the specific com-

bination (6.4) is chosen in such a way that the following relation holds to first

order in Az /A [see (6.1)]:

_1=X ‘
14X

€

(6.5)

As, by definitidn, only one strong channel contributes to Ag, there is indeed no
direct CP violation in (6.5). Equation (6.5) may serve as a theoretical definition of €.
+

The two definitions, (6.4) and (6.5), are identical to an excellent approximation.

Is € a manifestation of CP violation in mixing or in the interference of mixing
and decay? The answer is that in the K system the two are related, and thus
¢ # 0 is a manifestation of both. To be explicit, we examine Egs. (3.11) and
(5.5):

q AT
‘—i —1=2¢y2 1+2AMF )2,
248
¢ 4o 3 21}," (6.6)
2e 1 — = — =¢12 2
P A0 T (AL’

As AT ~ —2AM, the deviation of |¢/p| from 1 (CP violation in mixing) and
the phase deviation of (g/p)(Aq/As) from 1 (CP violation in the interference of
mixing and decay) are both O(¢12) and thus contribute to € at the same order.
One may say that Re(e) # 0 is a manifestation of CP violation in mixing, but that
(6.6j predicts arg(e) &~ 7/4 and so there is also CP violation in the interference
of mixing and decay. It is amusing to note that, if AT <« AM then ¢ would be

a manifestation of interference between mixing and decay only.

Our experimental definition of the €' parameter is

¢ = (N4~ — Noo)- (6.7)

§
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Thus

€

) 1 (e de)
By |

T 31+ Aoo)(1 + Ago) Ao A4- (6:8)

where in the last equality we used (4.14) which gives A, = Ago &~ 1. We can
further evaluate (6.8) in terms of Ay and A;. We use (¢/p)(Ao/As) = 1, as
discussed in Chapter 5, and |4,] < jAo| and get

é = \/L§|A2 JAole*®289) sin( ¢, — ¢o). (6.9)

As in the derivation of (6.9) we find that replacing ¢/p with a pure phase is
a good approximation, there is no CP violation in mixing in ¢'. We can now
ask whether ¢ is a manifestation of CP violation in decay or in the interference
between mixing and decay. To answer that, we note that €' # 0 does not require
83 # 6o. In this sense, |¢'| # 0 is not a proof of direct CP violation, but Re(e') # 0
is.
The definitions of € in Eq. (6.4) and € in Eq. (6.7) give

Ne_=€e+¢€, noo=¢e—2¢. (6.10)

The way in which €' is determined is actually by measuring
Inoo/n+-| = 1 — 3Re(e'/¢). (6.11)

The experimental result is [26]

In0o/n+—| = 0.9935 + 0.0032. (6.12)

Actually, there are two recent measurements with somewhat different results



(36, 37):

2.3+0.7) x 10~ NA31,
Re(€'/e) = ( ) (6.13)
(0.6 +£0.7) x 103 E731.
From Eq. (6.6) and using —AT'/(2AM) ~ 1, we have
arg(e) = arctan(—2AM/AT) = 43.67 £ 0.13°. (6.14)
From Eq. (6.9) and the experimental values of §; and &, we have
arg(e) = 7/2 + 8 — do ~ 47 £ 5°. (6.15)
Thus, we get arg(e’'/e) ~ 0. Then
Re(€'/e) = € /e. (6.16)

This is why you may often encounter statements that the ratio (6.11) gives a

measurement of €'/e.

6.2. HADRONIC UNCERTAINTIES IN THE CALCULATION OF ¢

In a phase convention for the K system where all phases are small, and using

AT = ~2AM, we may write

q _ 2[ReM12(1 + l) - iIlig et %Iml"lz]

p AM(l +19) (6.17)
~ i€ 4 1 iImMyz Im]."lg)
= A+ \ AM AT -

In the limit of CP invariance, ¢/p = €?* so that K¢ (K1) is a pure CP even
(odd) state. In the notation (1.20), (6.17) translates into

(6.18)

€ =

1 (lImM12 _ ImF12>
1+ \ AM AT )

To calculate the last term, we use the fact that for the K system I’y is dominat‘;ed
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by the intermediate (77 )= state. Equation (1.5) gives then
ImFlg/Reflg = Im(aa)Q/Re(aS)z ~ —2Im(ao)/Re(a0) = —2tg, (619)

where a¢ is the amplitude for neutral KX decay into two pions in isospin-zero

state, with the strong phase shift factored out:
((xm)1| H|K®) = age’®, {((wm);| H |K®) = aje'®i. (6.20)

The quantity o has an upper bound from measurements of the €' /e parameter
to be discussed later. This bound implies that it is the first term in the

parenthesis in the RHS of (6.17) which dominates. The main theoretical input
is then in the calculation of M,;. There are two main uncertainties in this

calculation:

a. Long distance contributions. These are parametrized by a parameter D,

{(Mi2)1D
D= x——=/"" 6.21
Mg ( )

The intermediate states that contribute to (Mi2)rp include =%, n, 27, 3x, 7'
and others. It is important to realize that long distance processes contribute
differently to ImM;; and to ReM;; (see the clear discussion in Ref. [38] and
references,therein). The contribution to ReM;, could be significant: all the states
mentioned above could contribute to AM at the same order or even dominate
over the short distance contributions, namely D of order 1 is not unlikely. On the
other hand, it is commonly believed that the long distance contributions are not
important in €. All the dispersive diagrams involving 7%, 7, 27 a:nd 3r share the
same phase because t‘:heir amplitudes are related by PCAC andiSU(3), and the
PCAC extrapolation is the same for CP conserving and CP violating interactions.
These contributions 4ll obey the relation

Im(Mi2)m,ng,2m,37

= -D't 6.22
) D, (622)

where D' is the contribution to D from these states. The contribution from

1
an intermediate 1y could be important and does not obey (6.22). Still, it is



proportional to to,

Im(M” )Tla

e = Nygto. (6.23)

Calculations of N,, are model dependent but do not show any surprising en-
hancement, N, < 1. Thus, as long as neither D' nor Ny, are particularly large,
long distance contributions to ImMj, are small, while for ReM;; they may be

large.

b. The vacuum insertion approximation. The short distance contributions
depend on a matrix element of a four quark operator betwcleen K° and K° states.
At present, there is no model independent way to calculate it. We parametrize
this uncertainty with a parameter By, which is just the ratio between the true

value of the matrix element and its value in the vacuum insertion approximation:

(I dyu(1 = y8)sdy™(1 = 75)s |&°)
(KO dy,(1 — 75)s[0) (0] dy#(1 — vs)s | K°)

Bk = (6.24)

Note that Bx affects Im(M;,)sp and Re(My2)sp in the same way.

If D were small, then we would calculate Im(M;2)/Re(Mi2) taking into ac-
count only short distance contributions. In this case, Bx would cancel out of
the calculation and the hadronic uncertainties would be negligible. However, D
is probably not small and, furthermore, we have no reliable way to calculate it.
Thus we prefer to use Im(M;2)/AM which, though independent of D, has large

uncertainties from Bg.
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7. Summary

There are three types of CP violation in meson decays:

() 14/4] #1

I ‘ Lidieren® | (7.1)

S Aiebietioi

CP violation results from interference between direct decay amplitudes. It can
be observed in nonleptonic charged meson decays. There are large hadronic

uncertainties in the calculation.

(2) lg/pl #1
l!l = M=ot %F;’. (1.2)
p Myz — 3T,

CP violation results from the physical neutral meson states being different from
the CP eigenstates. It can be observed in semileptonic neutral meson decays.

There are hadronic uncertainties in the calculation.

(15) A # 1

() )

CP violation with |A| = 1, Im) # 0, results from interference between mixing and
decay. It can be observed in neutral meson decays into CP eigenstates. There
exist several B decay modes that have only tiny hadronic uncertainties in the

calculation.



I'. ELECTRIC DIPOLE MOMENTS (EDMs)

8. Why Are EDMs CP Violating

An electric dipole moment (EDM) D of an elementary particle is a manifes-
tation of CP violation [39]. The simple argument for that is as follows. The only
vector which characterizes an elementary particle is its spin J;. Therefore, we

must have
D; =dJ;. (8.1)

Under P-transformation D — —D and J — J. Under T-transformation D — D
and J — —J. Consequently, if either P or T (or, equivalently, CP ) is a good
symmetry, we must have d = 0. A more formal proof goes as follows [40]. Let us

study the matrix element of Dy for a state with spin S:

s S 1
<5MIDoISM)=I|DI|(M M 0)' (8:2)

Using T invariance we get

(S M|TITDyTIT|S — M) =(-1)*M (S —M|Dy|S — M)

=(_1)2M+25+1||Dl| ( S S 1> . (83)
M -M 0

Using S + M = integer (= (—1)2(¥+5)+1 = 1) we conclude that ||D}| = 0.

Most of our discussion of EDMs will concentrate in the EDM of the néutron,
D,. One may wonder why should the above argument apply to it, as the neutron
is not an elementary particle. The answer is that the only feature of the particle
that we used in (8.1) is that it is characterized by its spin only. This certéinly
applies to the neutron as well. (Otherwise, there should have been degenerate

neutron states.)
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No EDM of an elementary particle has been observed yet. The most useful

upper bound (for our purposes) is that on the EDM of the neutron [10, 11],
|Dn] €1.2x107%° ¢ cm. (8.4)
We also use the upper bound on the EDM of the electron [41],

[De| €1.5x107% ¢ cm. (8.5)

9. Hadronic Uncertainties in D,,

The current experimental bound on the EDM of the neutron (8.4) provides
one of the most sensitive constraints on CP violating extensions of the Stan-
dard Model. However, the strong interactions are an obstacle to improving the
constraints from D,,. The essential problem is to calculate the neutron dipole mo-
ment induced by a given CP violating operator, where the operator is generated
by short distance physics and is expressed in terms of quark and gluon fields. In
some cases, it is possible to make a current algebra calculation of contributions
that diverge in the chiral limit [9] so that they are formally dominant, but for
most operators one has to resort to a non-relativistic approximation [42] or sim-
ply to a naive dimensional analysis [43 —45]. Lattice calculations are still far from
practicality [46]. We discuss three useful examples: current algebra calculation
of the contribution from a two gluon operator, non-relativistic approximation for

a two quark operator, and naive dimensional estimate of a three gluon operator.

. t
A two gluon operator of the form

2
g ~
! 3—2’739(};‘"0“,, (9.1)
can be transformed, dsing anomaly relations, into [8] CP violating quark opera-

tors:

Imymgms,

Gi(uysu + dysd + 3755). (9.2)
MMy + MM, + Mgy

This can be translated into imaginary parts in the mass terms for the meson octet

v



in the chiral Lagrangian,

2
Ly = %tr(MU + MU - M- MY, (9.3)
with !
U=ex gid) A (9.4
= €exp F 0% ) 4)

The most singular contribution to D, in the chiral my — 0 limit was identified
in Ref. [9] as coming from a one loop diagram, with the result

D = grNNGnNN

_ ~16
42 My In(Mny/my) =+3.6x107°° 0 e cm. (9.5)

Here My is the nucleon mass, and gxn~ (§=nn) is the pseudoscalar coupling

(CP violating scalar coupling) of the nucleon.

A very different approach was taken in Ref. [47] where the Skyrme model was
used to calculate the contribution from (9.3) to Dn. The results are numerically
similar though the calculated contributions are different: Ref. [47] has contribu-
tions of order m2N, while Ref. [9] calculates contributions of order m}lnm?.
This implies that the corrections to either result are of O(1), and they should be

taken only as an order of magnitude estimate, namely within a factor of a few.

In many models, it is simple to calculate the EDM of the elementary fields,
namely D, and Dy for the up quark and the down quark, respectively. Then, a
non-relativistic approximation relates these to the EDM of the nucleon through
SU(6) wavefunction relations:

Dy = %'Dd — %Du, D, = %Du — %Dd. (9.6)

s
T

The result for D, is proportional to m,. An instructive measure of the uncer-
tainty in the calculation is the fact that it is not at all clear whether one should
use running quark masses at the hadronic scale (say, 1 GeV) or constituent quark
masses. The difference for the u and the d quarks is about two orders of magni-

tude.
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There is one dimension six operator that is P and CP violating whose coeffi-
cient involves neither light quark masses nor small mixing angles. It is the three

gluon operator [45]
"%Cfabcaappcgyég"’~ (97)
A naive dimensional analysis gives a contribution to D, of order

eMC
4r '

Dy = (9.8)
where M = 2nF, =2 1190 MeV is the chiral symmetry breaking scale. A typical
measure of the uncertainty here is that various analyses may differ by a factor of

(47)3, namely by three orders of magnitude.



II. CP VIOLATION IN THE STANDARD MODEL

10. The CKM Picture of CP Violation

In the Standard Model of SU(3)¢c x SU(2)r x U(l)y gauge symmetry with
three fermion generations, C'P violation arises from a single phase in the mixing

matrix for quarks. Each quark generation consists of three multiplets:

I UI{ . I I _
QL = DI = (3, 2)1/6y Ur= (3,1)2/3; Dy = (3, 1)-1/3- (10.1)
L

The interactions of quarks with the SU(2); gauge bosons are given by

~Lw = 19QL *7°14,Q] Wy, (10.2)

where v# operates in Lorentz space, 7¢ operates in SU(2)L space and 1 is the unit
matrix operating in generation space. We have written this unit matrix explicitly
to make the transformation to mass eigenbasis clearer. The interactions of quarks

with the single scalar doublet ¢(1,2);2 of the Standard Model are given by
—Ly = Gi; QL ¢dk; + Fi;QL uk; +h.c. (10.3)

G and F are general complez 3 x 3 matrices. Their complex nature is the source of
CP violation in the Standard Model. With the spontaneous symmetry breaking
SU2)L x U(l)y — U(1)gm due to (@) # 0, the two components of the quark
doublet become distinguishable, as are the three members of the W triplet. The

charged current interaction in (10.2) is given by
—Lw = /Lol y* 1, Wi +hec. (10.4)

The mass terms that arise from the replacement of Re(¢%) — \/;(v + H%) in
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(10.3) are given by
Lo = [3oGi L dh; + \/IoFjuluk, + he., (10.5)
namely
My =Gv/V2, M,=Fv/V2. (10.6)

The phase information is now contained in these mass matrices. To transform to

the mass eigenbasis, we find four unitary matrices such that
Var MgV}, = M§@E, Vo MV}, = Mdiss, (10.7)

where M| qdiag are diagonal and real (but V1 and Vjg are complex). The charged

current interactions (10.4) are given in the mass eigenbasis by
—Lw = \/%'giﬁ'y“l_/ijdj,jw: + h.c. (10.8)

(Quark fields with no superscript denote mass eigenstates.) The matrix V =
Vu LVJL is the mixing matrix for three quark generations. It is a 3 x 3 unitary
matrix. As such it generally depends on nine parameters, of which three can be
chosen real angles and six are phases. However, we may reduce the number of

phases in V by a transformation
V — V_—.PuVPd‘» t (10.9)

where P, and Py are diagonal phase matrices. Thisis a legitimaté transformation

because it amounts to redefining the phases of the quark mass eigenstates:
b

qri = (Po)iiqrLi,  qri = (Py)iiqri, (10.10)

which renders M, ;!iag unchanged (and, in particular, real). The five phase differ-

H
ences among the elements of P, and P, can be chosgn to eliminate five phases



i4
from V in the transformation (10.9), so that V has one unremovable phase. This
phase [2] is called the Kobayashi-Maskawa (KM) phase and the mixing matrix
[48] is called the Cabibbo-Kobayashi-Maskawa(CKM) matrix.

A similar analysis would show that CP violation cannot arise'in this way if
there were only two quark generations. A 2 x 2 unitary matrix (V) has three
phases but there are also three phase differences among the elements of two
2 x 2 phase matrices (P, and P;). Thus all phases can be eliminated from the

Lagrangian in the two generation case.

The unremevable phase in the CKM matrix allows possible CP violation. To

see that, note that the CP transformation of spinor fields is
4

P(z) — —nCP*(F), P(z) = —n*$*(F)C, (10.11)
where 7 is an aﬂ)ih‘m‘y phase, C is the charge conjugation matrix (fulfilling
CrC'=-T; —C=Cc'=CcT=C"),

and #* = z,. The CP transformations of scalar and left-handed currents are

then

iy —bivi,
_ _ (10.12)
Pir* (1 — vs)$; —= — ¥i7u(l — )i,
where we used
(%iT¥;)" = —j(vl M r0)¥i. (10.13)
Chm"ged vector bosons transform under CP according to
W(z) » —-WF(3). (10.14)

Mass terms and gauge interactions can be invariant under (10.12) if the masses

and couplings are real. In particular, consider the coupling of W to quarks. It

-100}

has the form
gVijair, WHE(L = y5)d; + gVijd;v W H(1 — s )ui- (10.15)

The CP operation interchanges the two terms except that V;; aud V; are not
interchanged. Thus, CP is a good symmetry only if there is a basis in which all

couplings and masses are real.

CP is not necessarily violated in the three generation Standard Model. If two
quarks in either sector (up or down) were degenerate, one mixing angle and the

phase could be removed from V. Thus CP violation requires
(m? — m2)(m? — m2)(m? — m%)(m} — m})(m} — m)(m§ —m) #0. (10.16)

If the value of any of the three mixing angles is 0 or 7/2, then again the phase
is removable. Finally, CP would not be violated if the value of the single phase
were 0 or 7. These last eight conditions are elegantly incorporated into one,
parametrization independent, condition [49]. To find this condition, one notes

that unitarity requires that for any choice of ,j, k,1 (between 1 and 3)

3
Im[Vi, ViV Vil = J D citmejin. (10.17)

m,n=1

Then, the conditions on the mixing parameters are simply summarized by
J#0. (10.18)

The fourteen conditions incorporated in (10.16) and (10.18) can all be written as

a single requirement of the mass matrices in the interaction eigenbasis [49],
Im{det[MsM}, M M}]} # 0 <= CP violation. (10.19)

The quantity J is of great interest in the study of CP violation from the CKM

matrix. The maximum value that J may assume is 1/ (6+/3), but in reality it is



known to be smaller than 1074, providing a concrete meaning to the notion that

CP violation in the Standard Model is small.

The unitarity of the CKM matrix is manifest when using an explicit parametriza-
tion. There are various useful ways to parametrize it, but the standard choice

[26] is a parametrization due to Chau and Keung [50]:

i6

C12€13 $12C13 s1ze”
V = | —s12¢23 — c12523513¢™®  cizcps — s12803513€% sazcs |, (10.20)
512823 — C12€23513€%  —c12823 — S12¢23513€  cazcin
where ¢;; = cos6;; and s;; = siné;;. In the standard parametrization
J= 612C23C¥3812823313 sin 6. (1021)
This explicitly shows the requirement that all mixing angles are different from 7-92

0,7/2 and the phase different from 0, 7.

The unitarity of the CKM matrix implies various relations among its el-
ements. We will find three of them very useful to our understanding of the

Standard Model predictions for CP violation:

Vudv;s + ‘/Cdvc: + VMV;‘; = 07 (1022)
VsV + VeV + ViV = 0, (10.23)
VudVgp + VeaViy + VaaViy = 0. (10.24)

Each of these three relations requires the sum of three complex quantities to
vanish and so can be geometrically represented in the complex plane as a trian-
gle. These are “the unitarity triangles,” though the term “unitarity triangle” is

usually reserved for the relation (10.24) only (for reasons soon to be understood).
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Figure 2. The three unitarity triangles of the CKM matrix: (a) Zi VidVs = 0; (b)
Z'. Vis V3 =0; () Z'. V;aV;j = 0. The three triangles are drawn at a common scale.

It is instructive to draw the three triangles, knowing the experimental values
of the various [V;|. This is done in Fig. 2. In the first two triangles, one side
is much shorter than the‘other two, and so they almost collapse to a line. This
would give an intuitive upderstanding of why CP violation is so small in the X
system (the first triangle) and why certain CP asymmetries in B, decays vanish
(the second triangle). The most exciting physics of CP violation lies in the B
system, related to.the third triangle. Its overall smallness is related to the long
lifetime of the B meson. To observe CP asymmetries in B decays, we would
have to produce many B?’s because the relevant branching ratios are small. But

]
the openness of the third triangle guarantees that once we produce them, we are



likely to observe large CP asymmetries.
Equation (10.17) has striking implications for the unitarity triangles:
(¢) All unitarity triangles are equal in area.
(#1) The area of each unitarity triangle is given by HJL
(i#1) The sign of J gives the direction of the complex vectors.

The rescaled unitarity triangle (Fig. 3) is derived from the triangle (10.24)
by:
a. Choosing a bhase convention such that (V.4V} ) is real. This aligns one side

of the triangle along the real axis.

b. Dividing the lengths of all sides by |Vc4V3|. This makes the length of the

real side 1. The form of the triangle remains unchanged.

Two vertices of the rescaled unitarity triangle are thus fixed at (0,0) and
(1,0). The coordinates of the remaining vertex are denoted by (p,n) [51]. The
three angles of the unitarity triangle are denoted by a, 8 and 7

ViaVi VeaVi VudVas
= —— = — = —a=n] 2
a arg[ Vel g =arg VaVz)’ 7= |~y (10.25)

They are physical quantities and, as we will see later, can be independently

measured by CP asymmetries in B decays.

ViaVib

ﬂ A
MNp-=====7~~ (
VidVib o VigVib
* —_— %
IVea Ve ! VeqVenl
{
]
{
l
Y . B
0 1 Ry
0 P 1
7-92 (b) 7204A8

Figure 3. The unitarity triangle Z,. ViaV;} = 0. (a) shows the original triangle while (b)
depicts the rescaled unitarity triangle.

11. Measuring CKM Parameters with CP Conserving Processes

Six of the nine absolute values of the CKM entries are measured directly,

namely by tree level processes. Nuclear beta decays give

|Viua| = 0.9744 % 0.0010. (11.1)
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Semileptonic kaon decays, ' — mev, and hyperon decays give
[Vis| = 0.2205 & 0.0018. (11.2)

Semileptonic D decays, D — wmev, and neutrino and antineutrino production of

charm off valence d quarks give
[Vea| = 0.204 £ 0.017. (11.3)

Semileptonic D decays, D — Kev, and neutrino and antineutrino production of

charm off sea s quarks give
|Ves| = 1.06 £ 0.18. (11.4)
Semileptonic B decays, B — D*ev, give
IVes| = 0.040 £ 0.007. (11.5)
The endpoint spectrum in semileptonic B decays, B — Xev, give
|Vaus/Ves| = 0.10 £ 0.03. (11.6)

(We take the various ranges for |V;;| above from Ref. [26], except for |Ves| where
we use an update of Ref. [52].) Using unitarity constraints, one can narrow some
of the above ranges (most noticeably, that of |V.,|) and put constraints on the
top mixings |V;;|. The full information on absolute values of the CKM elements

(at one sigma) from both direct measurements and unitarity is summarized by

0.9740 — 0.9754 0.2187 — 0.2223  0.002 — 0.006
Vi=| 0218-0221 09735-09752 0.033-0.047 |. (11.7)
0.003—0.016  0.032 —0.048  0.9986 — 0.9993

Note that the only large uncertainties are in [Vy3| and |Via|. However, the two

are related through Eq. (10.24). Thus, the unitarity triangle is a very convenient
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Figure 4. The quark diagram description of M12(B) and I'12(B).

tool for presenting constraints from indirect measurements on the most poorly

determined parameters.

The most useful CP conserving indirect measurement, namely a loop-level
process, is that of mixing in the B® — B? system. The experimental result is [53]
AM '
zg= =2 =0.67+0.10. (11.8)
T

i

|
The theoretical calculation is on more solid ground than in the K° system, be-

cause short distance'physics dominate Mj;. Thus, it can be reliably calculated

from the box diagram (Fig. 4) with intermediate top quarks [54],

G2
, Td= TbGW’ZnMs(BBfé)m?fz(m?/m%v)l vVl (11.9)

N



where

3y(l +
Z% ’)’2) [1+ ln(y)}

Note that, typical of loop processes, there is a strong dependence on m; which

foly)=1- (11.10)

affects our ability to constrain the CKM parameters. Recently, there has been
improvementin the determination of the two most uncertain parameters in (11.9)

due to heavy quark symmetry considerations [52, 55, 56):

V76| Ves| = 0.040 + 0.05, (11.11)
' .
fa =190+ 50 MeV. (11.12)

4

The end results is that the lower bound on |Vi4| is raised to 0.006 [compare
to (11.7)]. However, for any specific value of m, the information on the CKM

parameters is more detailed, as presented later.

The constraints from (11.7) on the mixing angles of the standard parametriza-

tion are:

812 = 0.2205 £ 0.0018, s23 = 0.040 £ 0.007, s;3/s23 = 0.10£0.03. (11.13)

From (11.13) we find

= (3.541.5) x 107° siné. (11.14)

Note that the only large uncertainties are in |Vyp| and |Viq|. However, the two

are related through Eq. (10.24). Thus, the unitarity triangle is a very convenient

12. The € Parameter

i As discussed in Section 6.2, an approximate expression for € (in a phase

convention where A, is real) is

e‘”/4 ImM12
€= ————", 12.1
V2AM (12.1)

Furthermore, ImM; is dominated by short distance physics and thus can be

reliably calculated from the box diagrams [57):

i (38) B [ 5 (5)

(12.2)
x (J ’Y“éiw‘ru ") <dLb7u (ﬁ+m;)7“ ) .

There are several suppression factors in (12.2). First, it is fourth order in the weak
coupling. Second, there are small mixing angles. And third, there is the GIM
mechanism which guarantees that when any two up quark masses are equal, Mj,
vanishes. These three ingredients suppress M;, by a factor of g“s?zfé- which
explains why AMg/mg is such a tiny quantity. However, there is an extra

suppression factor for ImM;; from the mixing parameters:

ImM;, _
ReM,; 3; S107°

(12.3)

Equation (12.3) is related to the first unitarity triangle [Fig. 2(a)]: it is the ratio
between its area and the length of its long basis squared or, in other words, the

ratio between the height and the basis of the triangle. It is the ratio (12.3) which

TIMB(BBfB)m Fa(m? mi WV Vas |

|

' Td =Ty (11‘9)

6 2
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dent expression for e is

o Gh  mic (Biflmd . .
" ot Jan i sﬁ) W eIV Ves VeaVit )]

+n2ye fo(y ) Im[(Via Ve Via Vil )*] + 2n 3 (ve, yO) Im[VgVea Via Vi (Vaa V2?1

€ =¢

(12.4)
where y; = m?/m¥,, fa(y) is given in Eq. (11.10), and
_ (¥Y_ 3y y
fle) =t (¥) - 2 [+ o] (125)
Well measuréd parameters in (12.4) are
Gr =1.166 x 1073GeV ™2, mw =80 GeV,
(12.6)

fx =0.165 GeV, AMjy/my =17 x 10715

The factors 5y = 0.7, 72 = 0.6 and 13 = 0.4 are QCD correction factors [58, 59].
The only significant uncertainty (apart, of course, from the CKM parameters

which we try to determine)} is in

Bk =2/3+1/3. (12.7)

We can write (12.4) in a way which makes the dependence on J manifest:

€= 4 x 10*"™/* B J{[n3 f3(ye, y1) — mlye + n2ye fa(y)Re(VigVes Vua V) /512}-
(12.8)
The terms in curly brackets are O(1073). If |¢| were much larger than O(1073),
it would have contradicted the Standard Model explanation of CP violation as
arising from the single phase in the CKM matrix. But as long as || $ 0(1073)
it does not really test the CKM picture but merely fixes the value of siné. Yet,
the fact that the experimental value is

le] = (2.258 £ 0.018) x 1072, (12.9)

implying sin§ ~ O(1) and not much smealler, makes the CKM picture phenomeno-
logically attractive: CP violation as observed in the neutral kaon system is con-

veniently accommodated in the Standard Model.
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Figure 5. Constraints on the unitarity triangle from e (solid curves), z4 (dashed curves)

and |V,;/V.s| (dotted curves) for various top masses. The dotted area gives the final allowed
range. !
b

The detailed constraints on the Standard Model parameters are presented in

Fig. 5. The e constraint (12.4) requires that the vertex A of the unitarity triangle

lies between two hyperbolae. The width of the allowed band is determined mainly

by the uncertz{inty in Br. The bounds on the mixing parameters depend on
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the yet unknown mass of the top, so we give the constraints for various top
masses within the experimentally allowed range, 91 < m, < 180 GeV. Also
presented are the direct measurement of |Va3/V.s) [Eq. (11.6)], and the indirect
measurement of {V;aVis| from B — B mixing [Eq. (11.9)]. The phase 6§ of the
standard parametrization is the same as the angle v of the unitarity triangle. We
see that indeed all constraints can be met consisiently in ihe Standard Model;
the measurement of ¢ is the one which requires § # 0, or more explicitly

20° < 6 5 178°. (12.10).

AT 31 : r 7.\ - e et ive Aar  ertisvalend i = te in ane
Note that sign{Re(e)] reveals that J is positive or, equivalently, that § is in one

of the first two quadrants. For the rescaled unitarity triangle, this means that

the vertex A lies in the upper half plane or, equivalently, that 7 is positive.

13. The €'/e Parameter

The most recent measurements of ¢’ /¢ give {36, 37}

(13.1)

o N

c»m

0.7) x 10~ NA31,
0.7) x 10~

Re(e'/e) = {§

183 E731.
Thus, there is yet no compelling evidence for direct CP violation: while consistent

with the Standard Model predictions, the weighted average for €'/ is only two

standard deviations from zero.
L 1 doato s P o Loe cnae thanratioal une inti i
The calculation of €' /¢ has many theoretical uncertainties. Let us first isclate

the important ingredients in the calculation get an order of magmtude

estimate. There are several types of diagrams that contribute to K — nr. First,

there are tree diagrams of both exchange and spectator types. The exchange

diagram contributes only to the final I = 0 state, while the spectator diagrams
1% B

contribute to both I = 0 and I = 2 final states. All three diagrams have a common

-106-

weak phase,
o1 = arg(VyVus)- (13.2)

Second, there are three penguin diagrams, one for each intermediate charge 2/3
quark. They all contribute to the final I = 0 state only. However, each depends

Pt

on a different CKM combination:

b = arg(VyuVes)- (13.3)

A. has

Ap has con
Consequently, ¢ is suppressed by the following factors:
a. lAg/AoI ~ 0.045.
b. |AEe8Uin/gtree| o (.05, (There is no relative weak phase between the tree
contributions to Ay and to A;.)

e {(ViiVia)/ (V4 Ves)| ~ 1073, (The penguin diagrams with intermediate u or

¢ quarks give a contribution which is dominated by the same weak phase

aa L bamna Aimavnana )
as Lvilc cC OBl AL, }
The last factor is @(J/s%;) ~ . Thus, it cancels in the ratio ¢'/¢, and we are

left with (the very rough) order of magnitude estimate, €' /e ~ 1072,

The actual calculation is very complicated. It can be cast into the form (see

Ref. [60] and references therein)

€/ex~300J ?/iR ™" ve (Q6) [1 — Qpine — SLEwp — (s + Q27 + Op)]. (13.4)
The y¢ factor is the Wilson coefficient for the operator
Qs =-8 > (514r)(drdL) (13.5)

g=u.d,s



which describes the strong penguin contribution. The matrix element of Qs,

{Qs) = —1.16 GeV3 [

2 _ o2
175M€V] (m}% — m2) (13.6)

ma(p) A2 ’
(given here in the 1/N approach) is very sensitive to the mass of the strange
quark, and introduces large uncertainties into the calculation. The various Qs
give the relative contribution of other four quark operators. The three Qs in
parenthesis are small (< 0.2 in absolute value). §,.4+, represents isospin breaking

effects in quark masses and does not depend on m;,
Q'I+17' ~ 0.3. (137)

However, the contribution from electroweak penguins is rather large and depends

sensitively on m;. For Agop = 100 MeV and m, = 200 MeV, Ref. [60] quotes

—-0.04 m, = 100 GeV,
Qewp ~ { +0.21 mq = 150 GeV, (13.8)
+0.56 m, = 200 GeV.

Thus, for large m; (~ 200 GeV) there is a cancellation among the various con-
tributions in (13.4), providing yet another, somewhat accidental, suppression
factor for €'/e. It leads to the conclusion that the Standard Model would not
be excluded if €’/e ~ 0. The calculation is consequently even more sensitive to

hadronic uncertainties.

To summarize, €' /e gets contributions from many four quark operators. The
hadronic matrix elements of these operators involve large uncertainties. The
fact that various operators contribute with similar order of magnitude but with
differing signs, enhances the uncertainties. The result is very sensitive to tfle top
mass. A wide range of €' /e values can be accommodated in the Standard Model.
Reference [60] finds, for example,

2x 1074 g /e £3x107 my =100 GeV,

(13.9)
3x107° S /e $2x 107 my =200 GeV.
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'14. CP Asymmetries in Neutral B Decays
14.1. MEASURING THE ANGLES OF THE UNITARITY TRIANGLES

As mentioned in Section 3.2, in the B system we expect model independently
that T'y; « M;2. However, within the Standard Model and assuming that the
box diagram (with a cut) is appropriate to estimate I'1;, we can actually calculate
the two quantities from the quark diagrams in Fig. 4. The calculation gives (see

Ref. [15] and references therein)

My B 7fZ(yt) H?

§m2 VcbV;;i)
3mi VuVia /-

This confirms our order of magnitude estimate, |['12/Mj2| < 1072, Thus, to a

q [Mpy _ ViiVia
1 = = = 14.2
(P)B Mys  VaVy ( )

We will use this result in our calculations of CP violation in the interference of

very good approximation,

mixing and decay. However, before doing that we note that (14.1) allows an

estimate of C'P violation in mixing, namely

q 1. Ty 4 m? J _3
1= ipatr o 2T Me  J 53 14.3
’ ! 27 My falye) mi [V Vial? (143)

p

t

Notice that the last term is the ratio of the area of the unitarity triangle to the
length of one of its sides squared, so it is O(1). (For the B, system, J/[Vi V4|2 ~
10~2, as can be seen from the unitarity triangles in Fig. 2.) The only suppression
factor is then (m?2/m?). The uncertainty in the calculation comes from the use

of a quark diagram to describe T3, and could be a factor of 2-3.

Now we turn back to decays into CP eigenstates. We would like to choose

]
modes dominated by a single diagram because these, as explained above, are



[}
theoretically clean. However, most channels have contributions from both tree

and penguin diagrams. The ratio between the two for a decay b — ¢@'q’ is

[61,62,63]

penguin ( G m_?) VaVy M. ; (14.4)

tree 1207 mi /) VooV,  (tree)
The factor in parenthesis is (0{0.02), but it may be partially compensated by the
ratio of matrix elements. Thus, there are three appropriate classes:

(1) Modes with IVV:—:“;'-:L < 1. Examples are B — =, B - DD, B, — pKs
5 e

and B, = ¥ Kgs. )
t

(it) Modes with no tree contribution. Examples are B — ¢Ks, B - KsKs,
B, - n'n"'and B, — ¢Ks.

(#11) Modes with arg(vv:—:“;';'—) = (0, n. Examples are B — K5 and B, — ¢¥.
LAAE A}

Our first example is B — 7w. The quark subprocess is b — uiid which is

dominated by a W-mediated tree diagram. Thus, to a good approximation

J‘imr _ VubV;d

= . 14.5
Aer = ViVud (145)
Combining (14.2) and (14.5), we find
VaVe | 4412
+.-) = th¥td ud Vub = si . 4.
AM(B—=rtnT) (V,I,V,;) (Vud :b) => ImA,~» = sin(2a) (14.6)

The penguin contribution to this decay has a weak phase, arg(V,5Vs), different
from the tree diagram, so it may modify both |A| and ImA. We estimate that the
resulting hadronic uncertainty is 5 0.1, but it can be eliminated using isospin
analysis (31, 32, 33].

The analysis of B — D* D~ proceeds along very similar lines. The quark

subprocess here is b — céd, and so

‘f“[ ‘It‘[ .
+Dn-) = thVd YedVeb Im\ = - 28). 14.7
MB—-D'D™)= (thvt;) (Vchc‘,,) = lmApp sin(20) ( )

Again, there may be a small hadronic uncertainty due to penguin contributions.
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The same weak phase can be measured without hadronic uncertainties in
B — $Kg. A new ingredient in the analysis is the effect of K — K mixing. For
decays with a single Kg in the final state, K — K mixing is essential because
B® - K9 and B® — K?, and interference is possible only due to K — K mixing,.
This adds a factor of ‘

) _ Ve.Va
(), - vt 145)

into (A/A). The quark subprocess in B® — ¥ K9 is b — c& which is, again,

dominated by a W-mediated tree diagram:

Ayks (Vcch‘.) (Vc. ‘.;)
wlhs < . 14.9
Aok Vaves ) \Vavi (14.9)

The minus sign on the right hand side of (14.9) is a result of ¥ K's being a CP odd
state. Combining (14.2) and (14.9), we get

‘fﬁ‘/ ‘f‘ ‘/
MB — = - th _td cd_cb =si . .
( ¥Ks) (thv,} Vchc‘b = ImAyxs sin(28) (14.10)

The theoretical advantage of using this mode is the following. As in previous
cases, there is a small penguin contribution to the direct decay in this process
as well. However, its weak phase, arg(VuV(3), is similar (mod =) to the weak
phase of the tree decay and thus affects neither |A| nor ImA. Thus, Eq. (14.10) is
clean of hadronic uncertainties to G(1073) — This gives the theoretically cleanest
determination of a CKM parameter, even cleaner than the determination of sinf¢

from K — wly.

The third angle of the unitarity triangle () can be measured in B, decays.

Calculations in the B, system are very similar to the B system. One finds,

* This method for measuring v seems to be experimentally very difficult. Various alternative
ways were suggested [64, 65, 66].



similar to (14.2),

g Mpy, _ VigVes
1 = = . 14.11
(P) B. Mz VuVy ( )

It is then straightforward to show that

Vit Vas V* Vs V*Vea .
A Bs Kg) = th ! ud’ csVe ) ~ .
(Be = pls) (Vsz,: VadVia ) \Ves V2 = ImA ks sin(27y)
(14.12)

In the last equation we neglected a small correction of O(3'), where 3’ is an angle

in the unitarity triangle (10.23):

VC‘VC"] . (14.13)

B = arg [——m

Another interesting possibility is the study of tree-forbidden B decays, for
example B — ¢Kg. The quark subprocess b — s3s involves flavor changing
neutral current and cannot proceed via a tree level Standard Model diagram. The
leading contribution comes then from penguin diagrams. In general (as is the case
in K decays), each of the three penguin diagrams is of different magnitude and
phase; inducing direct CP violation. But here, to a very good approximation,

the diagrams with intermediate « and ¢ quarks are of similar magnitude except

for their CKM factors. and their strong phases are very small. Using unitarity

one finds that
Agrcs (V:‘;Vw) ("&Ma)
= , 14.14
Aocs ~ \VuVi ) \ TV (1414

which leads to (neglecting O(f8') corrections)

ImAgrs = —sin(28). (14.15)

Our final example is B, — D} D, . The quark subprocess is b — cés, so that

Va Vi Vo Ve .
D7) = (2 s =— 23"). 14.16
NE: = Db (mm) (VC,V;,,) = fmAp.p, = =@, (1410)

There are five quark subprocesses in each of B® and B, decays which are
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expected to be dominated by a single CKM phase, so that the leading CP vio-
lating effect is interference between mixing and decay. We list them in Tables 1
and 2. The list of hadronic final states gives examples only. Other states may be
more favorable experimentally. We always quote the CP asymmetry for CP even
states, regardless of the specific hadronic state listed. In previous analyses in the

literature, the approximation 8’ = 0 is used.

TABLE 1
CP Asymmetries in B Decays
Final Quark SM
state [sub-process|{ prediction
pKg b — écs —sin2p
DtD-| b— éed —sin28
atr=| b— dud sin 2«
¢Ks | b— 355 |—sin2(8-8")
KsKs| & — 3sd 0
TABLE 2
C P Asymmetries in B, Decays
Final Quark SM '
state [sub-process prediction
D¥D;| b — ek —sin28’ i
YK b— éed —sin2p’
pKs | b—aud [—sin2(y+4")
n'n’' b — §s3 0
ﬁ ¢Ks b—3sd | sin2(8— 8"

v



14.2. THE ALLOWED RANGES FOR THE ASYMMETRIES

The allowed ranges for the angles a, 3, ¥ and 3’ are found from the various
constraints on the form of the unitarity triangles [56, 67-70]. The simplest
to study is 8. Note that 8’ is the angle in the triangle related to (11.6) and

therefore it is very small. Explicitly
ISin 2ﬂ,| = 2|(Sin 'Y)VusVub/(VcaVcb)‘ < 0.06. (14-17)

The bound is saturated when siny = 1 and |Vis/Ves| = 0.13. However, from the
)
lower bounds on these quantities, we find that sin 28’ could be as small as 1073,

in which case the hadronic uncertainties, which we neglected, become important.

Experimentally, CP asymmetries in B decays are likely to be measured long
before those in B, decays. Thus, we now concentrate in the Standard Model
predictions for sin2a and sin28. We will present our results directly in the
sin 2« — sin 28 plane [71]. These are the quantities measured (see Table 1) and,
furthermore, it allows a direct comparison of the Standard Model predictions
with models of new physics where the asymmetries are not necessarily related to

angles of the unitarity triangle [72].

We use the following relations to transform from the (p, ) coordinates of the

free vertex A of the unitarity triangle to (sin 2a,sin 23):

2n(n? + p(p — 1)

sin2a = —3 277
[17;;?1(1 p;o) Jn? + p7) (14.18)
) sxn?ﬁ =m

Note that these coordinate transformations are highly nonlinear; hence the pre-
dictions in the sin 2a — sin 28 plane will be very different from the more familiar
constraints in the p — n plane. Furthermore, since (14.18) are not invertible, we
may not simply map the regions in the p — n plane allowed by each of the vari-

ous constraints into corresponding regions in the sin2a — sin2p plane, and then
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assume that the overlap in the latter is allowed. To see this, note that a single
point in the overlap region in the sin 2a — sin 28 plane may correspond to two
different points in the p — 5 plane. If each of these two points is allowed by one
constraint but forbidden by the other, then the original point in the sin 2a~sin 23
plane is in fact forbidden though it is in the overiap of two regions allowed by
the individual constraints. We therefore form the overlap in the p — 7 plane first,

and then map this overall-allowed region into sin 2o — sin 28 coordinates.

Since the z4 and ¢ constraints depend on m,, we have carried out our analysis
for various m, values within the range 90 GeV< my < 185 GeV. We present
our analysis in Fig. 6 in two ways [71]. First, the solid curves encompass all
values of (sinZ2a,sin28) which satisfy all three constraints using values of the
input parameters within their 1 — o ranges (or within the theoretically favored
ranges for the parameters By and fg). That is, the SM can accommodate
a B-factory result anywhere within these curves without stretching any input
parameter beyond its 1 — o range. We will refer to these regions as the “allowed”
areas of the SM.

Second, in order to get a sense of the expected value of (sin 2a,sin28) given
our current knowledge of the various input parameters, we generated numerous
sample values for these parameters based on a Gaussian distribution for |Veal,
r8|Ves]?, |Vub/Ves|, 7B, Td, m. and |¢/, and a uniform distribution (= 0 outside
of the “1 — ¢” range) for fg. For each sample set we used the constraints (11.6)
and (11.9) to determine p and », and then rejected those sets which did not meet
the constraint (12.4) for 1/3 < By < 1. We binned the sets which passed in
the sin 2« — sin 23 plane, and thus obtained their probability distribution. We
show in Fig. 6 the resulting 90% probability contours in dashed curves. Since
we do not know the true origin of the CKM parameters and thus do not know
the true probability distribution from which the experimental inputs result, and
since the theoretical restrictions on fp and By cannot be posed statistically, we
can only interpret these probability contours as an indication of likely outcomes

for B-factory results based on the SM. For example, the “tail” of the allowed
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Figure 6. The Standard Model allowed range for the asymmetries in B — ¢ Kg and
B — ntx~ (solid curves). The 90% C.L. range is given in dashed curves (see text}).
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areas which extends towards small values of (sin 2a, sin 23) requires many of the
parameters to be stretched to their 1 — ¢ bounds and so seems unlikely and lies

outside the probability contour.

We find that sin 2a can have any value in the full range from —1 to 1, while

sin 20 is always positive and has a lower bound [71]
sin28 > 0.15. (14.19)

Note that none of the angles is allowed to vanish due to the € constraint. The fact
that sin2¢ may vanish for a certain angle is actually a result of the possibility
¢ = n/2. However, due to |Vyy/Ves| < |Veal, B8 < 7/2 (actually, 8 < 7/5) and
hence the lower bound in (14.19).

We further find that sin 2« is likely to be positive if the top mass is near
its present lower bound, and most importantly the favored values for sin23 are
above 0.5. We also find that the bounds on the two quantities are correlated. In

particular, we note that:

a. The magnitude of at least one of the two asymmetries is always larger than

0.2, and probably larger than 0.6.
b. If sin2f3 < 0.4, then sin 2« must be positive-~in fact, above 0.2.

Once the top mass is measured firmer predictions will of course be possible, based

on one of the graphs in Fig. 6.

t

We conclude that neutral B mesons provide many decay modes into final
CP eigenstates which have CP violation purely from interferehce between mix-
ing and decay. The asymmetries are expected to be large, and the hadronic

uncertainties enter only at O(1073).



15. The EDM of the Neutron

The Standard Model prediction for the EDM of the neutron is extremely
small. First, we discuss the contributions from quark EDMs. One loop diagrams
do not contribute. The reason is that any one loop diagrams that colntributes to
D, (g = d,u) is proportional to V}; V;,; the phase cancels out and no CP violating
effects are possible. Two loop diagrams do not contribute either [73]. Here there
is no intuitive reason. Actually, individual two loop diagrams do not vanish. But
an explicit calculation shows that the sum of all two loop diagrams vanishes. Con-
sequently, the leading contribution to D,, comes from three 106p diagrams. There

is no explicit calculation available, but only an order of magnitude estimate:
+

2,2

Gpaa,w J<107* ¢ cm.

Dy ~ emy

R (15.1)
The calculation of diagrams other than D, is subject to even larger uncertainties.
It seems unlikely, however, that Standard Model mechanisms give D, larger by
more than three orders of magnitudes than (15.1). It seems then that, if the
KM phase is the only source of CP violation, the EDM of the neutron is much
too small to be experimentally observed in the foreseeable future. (This feature

makes it a very sensitive probe of physics beyond the Standard Model!)

As mentioned in our introductory discussion of the EDM of the neutron, the

QCD Lagrangian will generally include a CP violating term of the form

g2 5
Lo = 2664 G-

15.2
327 ( )

We found that the upper bound on D, requires that 8 is extremely small, § <
10~°. The important point about the Standard Model of electroweak interactions
in this regard is that it makes it impossible to avoid this problem by requiring
CP symmetry so that there is no term of the form (15.2). The reason is that
in the Standard Model, CP is explicitly broken. The actual parameters which

-112-

b

contributes to D, is not # but rather the combination

0 = 6 + arg[det M]. (15.3)

Thus, without extending the Standard Model, there is no natural way to suppress

the effects of 4.

16. Summary

The ’Standard Model predicts that all CP violating phenomena in neutral
meson decays are related to the single phase of the Cabibbo-Kobayashi-Maskawa
matrix. Consequently, the model is very predictive. CP violation as observed in
the K system (the e parameter) is conveniently accommodated in the Standard
Model. Together with other ( CP conserving) measurements of CKM parameters
it gives clean predictions for large CP asymmetries in neutral B decays. Their
mesurement in the future will stringently test the CKM picture of CP violation.
The KM phase gives tiny electric dipole moments for the neutron and the electron.
If either of them is found in near future experiments, it will unambiguously require
a source of CP violation additional to §xa. On the other hand, the smallness of
D, requires extreme fine tuning of fgcp and implies that our understanding of

CP violation is incomplete.



III. CP VIOLATION BEYOND THE STANDARD MODEL

17. Extending the Quark Sector:

Z-Mediated FCNCs

17.1. INTRODUCTION

In this chapter, we update the analysis of Refs. [74,75]. We study a model
with an extended quark sector. In addition to the three standard generations
of quarks, there is an SU(2)L-singlet of charge —1/3. For our purposes, the
important feature of this model is that it allows for CP violating Z-mediated
Flavor Changing Neutral Currents (FCNC).

To understand how these FCNC arise, it is convenient to work on the basis
where the up sector interaction eigenstates are identified with the mass eigen-
states. The down sector interaction eigenstates are then related to the mass
eigenstates by a 4 x 4 unitary matrix K. Charged current interactions are de-
scribed by

L, =L (W Irt s W),
vzt g (17.1)

JET =Vt ytd;L.
The charged current mixing matrix V is a 3 x 4 sub-matrix of K:
V,'j:I\",']‘ for i=1,...,3;j=1,...,4. (17.2)
Note that V is parametrized by six real angles and three phases, instead of three

angles and one phase in the original CKM matrix. As we shall see, all three

phases may affect C P asymmetries in B® decays.
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Neutral current interactions are described by

2, =—9% 7,7 — sin? E
int = oo g Zu(J** — sin® Bw TEpg), (17.3)
JH =~ %quJpL‘Yuqu + %6ijﬁiL7“qu'

The neutral current mixing matrix for the down sector is U = VIV. As V is not

unitary, U # 1. In particular, its non-diagonal elements do not vanish:
Upg = —K [, K4y for p#gq. (17.4)

The three elements which are relevant for our study are

Uds = :dvua + V;,livca + ‘/tz‘/tu
Uap =ViyVus + Vg Ves + VigVas, (17.5)
Usb =VJ,Vub + I/‘;Vcb + ‘/g:‘/tb'

The fact that, unlike the SM, the various U, do not necessarily vanish, allows
FCNC at tree level. This may substantially modify the analysis of C'P asymme-

tries.

17.2. EXPERIMENTAL CONSTRAINTS ON THE Up, ELEMENTS

The flavor changing couplings of the Z contribute to various FCNC processes:

(i) AMg, the mass difference between the neutral kaons.

i

t _ ﬂGFBKfIZ(AlKnl |Re[(Uds)2]| (17.6)

(AMK)z = 6

i

(1) €, the CP violating parameter in the K system.

_ GrBgfiMim

) lelz = ToAMx |Im{(U4.)?)] . (17.7)

v



(113) Kp — ptp~.

(KHBR(Ky = ptu™)z T/1 .24 12 . 2, 2] (Re Ug,)?
S RDBRET = +0) 2 [(5 —sin® 8w)” + (sin® Ow) ] A
. (17.8)
(iv} B — ¢~ X.
BRB—-"X)z [/ 20 72, (o2g 2] Uasl® + [Us|?
BR(B — v X) [(5 = sin® )" + (sin” Ow) ]‘IV..:.P + FpolVas
(17.9)
t
(v) z4, the mixing parameter in the B system.
2GrBpf}
(za)z = V2Gr Bef"m””"’lU.,,,P. (17.10)

The experimental measurements of these processes puts severe constraints

[74-77] on the flavor changing couplings of the Z boson (Upg):

|Re Ug,| < 2.4x107%, |Im Ug,| < min{6.4x107*, 1.3x107%/|Re U]}, (17.11)

|Uas/Ves| < 0.037, |{Uss/Ves| < 0.041. (17.12)

17.3. IMPLICATIONS OF Z-MEDIATED FCNC

If the U, »g lements are not negligibly small, they will affect many aspects of
physics related to CP asymmetries in B decays:

(7) Mixing of neutral mesons

The experimentally measured values of mixing in the K and B systems can be

explained by SM processes. Still, the uncertainties in the theoretical calculations
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(such as in the values of By, fp or Vi4) allow a situation where SM processes do

not give the dominant contributions to various mixing processes. For example,

(a)box = 0.024 g, fo(ye)

VBafs r[ 7| Ves 2 ] [|m/ml]’
0.14 GeV'] 2.3 x10° GeV-! 0.09 ’

(17.13)
namely, the Standard Model box diagram could contribute as little as 3% of the
experimental value of z4, and even less if unitarity of the CKM matrix does not
hold, in which case the lower bound |Via/V.s| > 0.09 can be violated. Instead, it
is possible that the dominant mechanism is Z-mediated FCNC. We will now find
how large should the elements of the neutral current mixing matrix be in order
that this would be the case.

For K — K mixing to be dominated by Z-mediated tree level diagrams, Eq.
(17.6) requires

IRe[(Uds)?]l > 1.4 x 1077, (17.14)

For ¢ to be dominated by Z-mediated tree level diagrams, Eq. (17.7) requires
[Im[(Ua,)?]| > 0.9 x 1075, (17.15)

For B, — B, mixing to be dominated by Z-mediated tree level diagrams, Eq.
(17.10) requires

{Uds/Ves| > 0.014; |Uas/(VegVis)l 2 0.08; [Uas/(ViiVis)| 2 0.08.  (17.16)

Note that if unitarity is only weakly violated, so that [Vi,Vis] ~ |VeaVesl, then the
last requirement in (17.16) is in contradiction with (17.12) and cannot be fulfilled,
implying that the dominant mechanism for B, mixing is still the Standard Model

box diagram.



(7¢) Unitarity of the 3 x 3 CKM matrix

Within the SM, unitarity of the three generation CKM matrix gives:

uda = Jqus + ‘/c:livcs + ‘/g;‘/ts =0’
Upp = VJqub + VC:chb + Vttinb =0, (17.17)
Usp = Vi Vs + Vi Vs + Vit Vi =0.

However, Eq. (17.5) shows that now Eq. (17.17) is replaced by
Uas = Uds; Uas = Uap; Usp = Usp. (17.18)
A measure of the violation of (17.17) is given by
Uaol/IViaVusl £ 107% |Ua|/|V2 Vel < 0.04; |[Uasl/|VHVisl £0.17. (17.19)

These bounds follow from the experimental bounds given above. The first of
the SM relations is practically maintained, while the second is violated by less
than 5%. However, the Uy, = 0 constraint may be violated by ((0.2) effects: it
should be replaced by a unitarity quadrangle. A geometrical presentation of the
new relation is given in Fig. 7. It should be stressed that, at present, only the
magnitudes of Ugy and Uy, are experimentally constrained, but not their phases.

Each of the angles & and 3 could be anywhere in the range [0, 27].

(ii7) Z-mediated B decays

Our main interest is in hadronic B® decays to CP eigenstates, where the
quark sub-process is b — #;uid;, with u; = u,c and d; = d,s. These pro-
cesses get additional contributions from Z-mediated FCNC. The ratio between

the magnitudes of the Z-mediated amplitude and the W-mediated amplitude is:
[(1/2) = (2/3)sin® 8] [U/(VisVid)| = (1/3) [U/(VisVi) . (17.20)

To bound this ratio, we use the experimental constraints in Eq. (17.12), our

requirement that mixing of Bd mesons is dominated by Z-mediated FCNC in Eq.
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*
7-92 Vc d Vc b 7204A3

Figure 7. The unitarity quadrangle in a model with a fourth, SU(2)-singlet, charge -1/3
quark. V;; are elements of the charged current mixing matrix while Uy, is an element in the
neutral current mixing matrix.

(17.16), and the range 0.07 < |Vis/Ves| < 0.13. We find that the Z-mediated
diagrams cannot dominate the relevant B decays. They can be safely neglected

for b — s transitions, but may be significant for b — d (3-18%).

On the other hand, diagrams with no SM tree contributions [78] now have

comparable contributions from penguin and Z-mediated tree diagrams.
(7v) New contributions to I'12(By)

The difference in width comes from decay modes which are common to B, and
Bq. As discussed above, there are new contributions to such de::ay modes from
Z-mediated FCNC. It is important to note, however, that while the contributions
to the difference in mass, M4, are from tree level diagrams, namely O(g?), those
to the difference in width, I'j2, are still of O(g*). Consequently, no significant
enhancement of the SM value for Ty, is expected, and the relation T'12(B,) <

M12(By) is maintained.

In summaty, the dominant mechanism for mixing in neutral By systems could
. ]



