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Introduction

One of the most intriguing aspects of high energy physics is CP violation. On

the experimental side, it is one of the least tested aspects of the Standard Model.

There is only one CP violating parameter that has been unambiguously measured,

that is the e parameter in the neutral h’ system [1]. A genuine testing of the

Kobayashi-M=kawa picture of CP violation [2] in the Standard Model [3 – 5]

awaits the building of B factories that would provide a second, independent,

measurement of CP violation [6]. On the theoretical side, the Standard Model

picture of CP violation has two major difficulties. First, CP violation is necessay

for baryogenesis [7], but the Standard Model CP violating processes seem unable

to produce the observed baryon asymmetry of the universe. Second, an extreme

fine tuning is needed in the CP violating part of the QCD Lagrangian in order

that its contribution to the electric dipole moment of the neutron [8,9] does not

exceed the experimental upper bound [10, 11]. This suggests that an extension

of the Standard Model, such as the Peccei-Quinn symmetry [12], is required.

In this series of lectures we concentrate on three classes of CP violating pro-

cesses where the Standard Model will be tested and the existence of new physics

may be revealed: neutral 1{ decays into two pions, neutral B decays into find

CP eigenstates, and fermionic electric dipole moments. The best determination

of the CP violating parameters in the Standard Model will come from the neutral

meson decays and we put our emph~is on these.

The first part of these lectures is a general discussion of CP violation in

meson decays. We define three types of CP violation in neutral meson systems:

CP violation in decay, CP violation in mixing, and CP violation in the interference

of mixing and decay. We describe how each of the three types can be observed and

we explain the difficulties in the respective theoretical calculations. We anqlyze

the differences between the 1{ and the B systems in both experiment and theory.

The whole discussion is free of phase conventions and uses one language for both

h’ and B mesons.

The second part of the lectures describes the CKM picture of CP violation

within the Standard Model. We use unitarity triangles to explain the features of

CP violation in K, B and B. decays. We accompany this with a detailed calc-

ulation, updated with recent experimental measurements and theoretical consid-

erations (such m Heavy Quark Symmetry). The predictions for CP ~ymmetries

in neutral B decays are presented in a novel way which makes comparison to

models of new physics more straightforward.

The third pat of these lectures is devoted to theories beyond the Standard

Model. We analyze in detail CP violation in several extensions of the Stan-

dard Model: An extension of the quark sector with an SU(2)L down-like singlet;

Extensions of the Higgs sector which maintain Natural Flavor Conservation; Ex-

tensions of the gauge sector into Left-Right Symmetry which allow CP to be

only spontaneously broken; and Supersymmetry. For each of these models we

andyse the constraints and predictions concerning CP violation. We end this

part by presenting the predictions of various schemes for quark mass matrices for

CP asymmetries in B decays.

In preparing this series of lectures, I have used the following reviews: Ref.

[13] for a general review; Ref. [14] for the K system; Refs. [15 – 18] for the B

system; Refs. [19 – 21] for electric dipole moments; Refs. [22 – 24] for the CKM

picture. In these reviews the reader may find more complete lists of references:

I here included only those references which have actually been used in preparing

these lectures.

1,
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I. CP ~OLATION IN NEUTRAL MESON SYSTEMS

1. Fomahsm and Notations ‘

1.1.Cp-CONJUGATEDECAYS

We are interested in pairs of decay processes that are related by a CP trans-

formation. If P and P are CP conjugate mesons and j and ~ We CP conjugate

states, then be denote by A and A the the two CP conjugate decay arnphtudes:

1

As(flHIP), ~-(jlHIP). (1.1)

There are two types of phases that may appear in A and A. Weak phases are

parameters in the Lagrangian which violate CR They appear in A and A with

opposite signs. They usually appear in the electrowed sector of the theory and

hence the name “wed .“ Strong phaJes appear in scattering or decay amplitudes

even when the Lagrangian is red. They do not violate CP and appear in A and A

with the same sign. Their origin is in the possible contribution from intermediate

on-shell states in the deeay process, namely in the absorptive part of an amplitude

that has contributions from coupled channels. Usurdly the relevant rescattering

is due to strong interactions and hence the name “strong .“

It is useful to factorize A into three: the absolute value of A; a strong phase

shift 6 which is the result of find state interaction (and is CP invariant); and a

w&& phase ~ which is CP violating. Then, if several amplitudes contribute to

Po + f,

A = ~ Aiei~ieioi; ~= e-2it~e+21tj ~Aiei~ie-i#i, (1.2)

I i

where Ai are rerd, (p and (f are phwes related to the CP transformation law

for P and f, respectively (see below). If f is a CP eigenstate then e-zi~~ = +1,

according to whether f is CP even or odd. The notation a: - Ajei@’ is dso

common in literature.

1.2. MIXING OF NEUTRAL MESONS

We consider a neutral meson P“ and its antiparticle p“ [25]. An arbitrary

neutrrd P-meson state

alP”)+bl~o) (1.3)

is governed by the time-dependent Schfid~nger equation

(1.4)

Here M and r are 2 x 2 hermitian matrices. CPT invariance guarantees H11 =

H22. In H, the anti-hermitian part - ir - describes the exponential decay of the

P-meson system, while the hermitian part – M – is cded a mass matrix. The

non-dlagond terms wodd be important in the discussion of CP violation:

M12=(Pol HAP=zlPo)+P~
(P”l Hap=, In) (nl HAP=, IF”)

mp — Enn (1.5)

r12 =2r ~ P. (P”l HAP=l In) (~1 HAp=l l~”),

n

where P stands for principrd vrdue and p. is the density of the state n.

The m=s eigenstates are

IP,) =p]Po) +glPo),

IP2) =plPo) -qlPo),

with the normfllzation condition

(1.6)

lq12+ IP12=1. (1.7)

You may be puzzled by the form of (1.6). First, PI and Pz are not necessarily
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orthogonal states: or, equivalently,

(P11P2) = IP12 – 1912. (1.8)

If r12 = O then H would be the sum of a unit matrix (times a complex num-

ber) and a hermitian matrix and its eigenvectors would be orthogonrd. In the

usurd treatment of field theory, one indeed diagonalized M and treats r as in-

teraction among the orthogonal states. Here we incorporate r into our effective

Hamiltonian which has, therefore, non-orthogonal eigenvectors. In other words,

PI and P2 are resonances and not elementary particles. Furthermore, if r12 # O

but arg(r12/M12) = O, then PI and P2 would still be orthogonal, in the sense

that (1.8) would vanish. This case corresponds to PI and Pz carrying different

quantum numbers under a good symmetry (CP). Second, there are no four in-

dependent components Pi and gi in (1.6). The relations pl = pz, ql = –g2 are a

result of HI ~ = H22, namely of CPT.

The eigenvsdues of H are

P1,2 = M1,2 – ;r1,2, (1.9)

where Mi and ri are the mass and the decay width, respectively, of Pi. We

further define

Ap=p2–pl=AM–;Ar.

The eigenvdue problem,

det (M– ~r –pi)= O,

leads to the condition

(1.10)

(1.11)

(1.12)

(AM)2 - ~(Ar)2 =4( IM1212 - ~lrlz12),

AMAr =4Re(M12r;2).

For the ratio g/p we find

g= –Ap 2(Mi2 – ~r~2)—
P 2(M12 – ;r12) – – Ap .

(1.13)

(1.14)

Of p and g only the ratio q/p has physical significance. First, there is the

normalization condition (1. 7). Second, arg(g/p* ) is just an overall common phae

for IPI) and IP2).

1.3. PHASECONVENTIONS

There is some freedom in defining phases which has to be clarified. (We follow

here the discussion in Ref. [13]. ) In pmticular, each time we define a CP violating

observable, we would like to verify that it is independent of phase conventions.

The states P“ and P“ are related through CP trmsformation:

CP IP”) = e2if lF”), CP IF”) = e-2i~ Ip”), (1.15)

where ~ is an aTbitra~ phase, The freedom in defining phases is related to the

fact that P“ and P“ are defined by strong interactions which conserve flavor.

Therefore, a phase transformation,

[P:) =,-’{ IPO), IP:)= e+’~ IFO), (1.16)

haa no physicsd effects. This invariance is just the Strangeness, Charm or Beauty
i

symmetry of strong interactions for 1{, D or B, respectively. In the new basis,

-85-



I

CP transformations take the form 2. The Three Types of CP Violation in Meson Decays

(CP)C [P:)= e2i(6-c) ]Pf), (CP)C IP:)= e-2i(f-() IP:). (1.17)

,

The various quantities discussed in this chapter transform according to

M~2=e2i<A412, r$2 = e2i~r12, (q/p)( = e-2iC(q/p),
(1.18)

AC =e-i~A, AC = ei~A.

Furthermore, frdm the transformation of states (1.16), md ~he transformation of

q/p in Eq. (1.18), we find that

IPlc) = eic’ IPI) , lP2~) = ei(’ IP2) , (1.19)

namely both mass eigenstates are rotated by a common phase factor, which has

no physical significance.

An alternative common notation is to define z such that

(1.20)

Note that the normfllzation condition (1.7) is explicitly incorporated and, fur-

thermore, part of the freedom in phaaes is used to set Ire(q)= –Ire(p).

We distinguish between three types of CP violation:

(i) CP violation in decay.

The following quantity is independent of phaae conventions and physically

meaningful:

(2.1)

When CP is conserved, the weak phases di are dl equal. Therefore, Eq. (2.1)

implies

[A/Al # 1 * CP violation. (2.2)

We cdl this type of CP violation CP violation in decay or direct CP violation.

It results from the interference among various decay amplitudes that lead to the

same final state. CP asymmetries in charged meson decays are of this type.

(ii) CP violation in mixing.

The following quantity ig independent of phaae conventions and physically

meaningful:

2
g=

M;2 – $r;2

P Mlz – jr12 .
(2.3)

When CP is conserved, the relative phase between M12 and r12 vanishes. There-

fore, Eq. (2.3) implies

19/Pl # 1 * CP violation. (2.4)

We cdl thig type of CP violation CP violation in mixing or indirect CP violation.

It results from the mass eigenstates being different from the CP eigenstates.
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CP asymmetries in semileptonic decays are of this type.

we have

lq/Pl = 1(1 - ~)/(1 +~)1,

so that CP violation in mixing is related to Re(=) # 0.

In the notation (1.20)

(2.5)

(iii) CP violation in the interference of mixing ad decay.

We denote by A ~cp the amplitude for P“ decay into a finrd CP eigenstate fcp.

Then the following quantity is independent of phase conventions and physically

meaningful:’

(2.6)

When CP is conserved lq/pl = 1, Idfcp /Afcp I = 1 rmd the relative phase between

(q/P) ~d (Asc~ /Aft, ) v~ishes Therefore! Eq. (2.6) implies

A#l + CP violation. (2.7)

CP asymmetries in neutral meson decays into CP eigenstates are of this type.

There are severrd important points concerning (2.7):

a. CP violation in decay (2.2) is sufficient for (2.7) through IJI # 1.

b. CP violation in mixing (2.4) is sufficient for (2.7) through 1~1# 1.

J c. Neither (2.2) nor (2.4) is necegsa~y for (2.7) to reahze. In fact, the the-

oretically favorable situation is when lq/pl = 1 and \A/Al = 1, yet lmJ # 1,

namely ~ is a pure phase. The point is that in this case there are no hadronic

uncertainties in the calculation of J, as will be discussed in Chapter 5. We will

cdl CP violation of the form

CP violation in the inteTfeTence of mixing and decay.

d. Take the decay amplitudes of P“ into two different final CP eigenstates,

A. and Ab. A nonvanishing difference between ~a and ~b,

(2.9)

would establish the existence of CP violation in AP = 1 processes. Yet, unlike

the case of direct CP violation, no nontrivial strong phases are necessary.

3. I{ and B Mesons

Discussing CP violation for the most general neutral meson system is ex-

tremely complicated and not very illuminating. Therefore, we will concentrate

on two specific types of neutral meson systems: the case of “small phaaes” and

the case of “small lifetime difference .“ In the end, there are three neutrrd meson

systems useful for our understmding of CP violation, and they correspond to the

two clmses: in the neutral 1{ system all relevant phases we small, while in the

neutral B and B, systems the two mass eigenstates have similar lifetimes. (In

the D system the effects are small md arise mainly from long distance physics.

Top quarks are likely to decay before T mesons form.) Thus, in this chapter we

describe the 1{ and the B systems.

3.1. THE NEUTRAL I< SYSTEM

The two neutral’ 1{ meson states differ significantly in their ‘hfetimes [26]:

I

TS = (0.8922 ~ 0.0020) X 10–10 S, TL = (5.17 + 0.04) X 10–8 S, (3.1)

where the sub-indices S and L stand for Short and Long, respectively. We choose

I
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The amplitudes of the states Ks and l(L at time t can be written as

as(~) = aS(o)e-iMs*e–+rsf,aL(~) = aL(o)e–iMLte–~rLt.(3.3)

The mass difference between the two neutral kaons is measured to be
,

AM s ML – Ms = (3.522+ 0.016) x 10-15 GeV. (3.4)

Equations (3. 1) and (3.4) together imply a useful approximate relation,

Next, we turh to the calculation of

8 ~=_ 2(Mi2 – ~r;2)

P AM – ~Ar ~
(3.6)

We define a phase ~lz according to

Mll M12
e:dt2——

rlz = r12 .
(3.7)

As CP violating effects in the 1{ system are known to be small, we have ~lz <1.

Solving (1.13) to first order in +12 gives

AM = 21M121, Ar = –21r121.

Consequently, to first order in 41Z,(3.7) is equivrdent to

M12
— = %(1 +24,2).
r12

In any given phase convention

rlz = lr121e-2if.

Using (3.9) and (3.10), we get from (3.6):

Note that to a good approximation q/p is a pure phase,

(3.8)

(3.9)

(3.10)

(3.11)

Actually (3.1 1) implies

that the CP transformation law is CP IIf”) = e2it l~o ). Indeed we experime-

ntally know that the 1{s and l{L states are to a good approximation CP eigen-

states. The violation of this approximation is of order 41Z= 0( 10–3). In the

calculation of the deviation from Iq/p[ = 1 there are significant hadronic uncer-

tainties. They will be discussed in detail later. Here we just mention that they

arise from a parameter called BK which introduces an overall uncertainty of a

factor of 2-3 in lq/pl – 1.

3.2. TIIE NEUTRAL B SYSTEM

The two neutral B mesons are expected to have a negligible difference in

lifetimes,

Ar/r = 0(10-2).

(Note that Ar has not been experimentrdly measured.

statement based on experimental evidence, as discussed

define

IBI) = IBL) , IB2) = lB~) ,

AM =MH – ML >0,

(3.12)

(3.12) is a theoretical

below. ) We choose to

(3.13)

where the sub-indices L and H stand for Light and Heavy. Note that (1.12) and

(1.14) now lead to

AM =21M121, Ar = 2m(M12r:2)/lM121,
(3.14)

qlp = – lM121/M12.

)The time evolution of B~hY. , an initirdly pure B“ (aL(0) = aH(0) = l/(2p)),

)
and of B:hv= , an initially pure ~“ (aL(O) = –a~(0) = l/(2q)), is given by [27]

IBjh,s(t)) ‘9+(~) lB”) + (q/P)g-(~) l~”) ,
(3.15)

l~;h,s(~)) =(P/q)~-(t) l~”) +9+(t) Iao) ,
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where M s ~(M~ + ML), 4. Experimental Observations of CP Violation

~+(t) =e–t~te–~rt cos(~AM t),

~_(t) =e-iMt –~rt
e z z sin(~AM t).

(3.16)

The maas difference between the two neutral B mesons is measured to be

Zd = AMB/rB = 0.67+0.10. (3.17)

The calculation of q/p in the B system is quite different from the 1{ system.

Here we expect, model independently,

ArB K AMB. (3.18)

The model independent argument for the relation (3.18) goes as follows [15]. On

the one hand, there is the experimental measurement (3.17). On the other hand,

Ar has not been measured and is probably impossible to measure. But Ar

is produced by decay channels which are common to B“ and Do. The (upper

bounds on) branching ratios for such channels are at or below the level of 10-3.

As various channels contribute to rlz with differing signs, one expects that their

sum would not exceed the individual level, say

ArB/rB ~ 10-2. (3.19)

Equations (3.17) and (3.19) lead to (3.18) which implies, in turn, lrlz] << IM121.

Therefore, in the B system

-“-* [l-’lm(%)l

q

P
(3.20)

Note that q/p is a pure phase, up to corrections < 0(10–2 ). However, to study

the deviation from a pure phase, one needs to calculate r12 and M12. This will

involve large hadronic uncert aint.ies, in particular in the hadronization models

for rlz. In Ref. [15] it is estimated that this will induce an overall uncertainty of

a factor of 2-3 in \q/p[– 1.

4.1. lA/Al # 1

In the decays of neutral mesons, effects of CP violation in mixing are unavoid-

able. Thus, to unambiguously observe direct CP violation, it is best to me~ure

CP asymmetries in charged meson decays,

In terms of decay amplitudes

1 – [A/A12

‘f = 1 + [i/A12’

(4.1)

(4.2)

As discussed above, af # O requires contributions to the decay process which

differ in both their strong phases and their weak phmes so that lA/Al # 1.

Purely leptonic and semileptonic decays are dominated by a single diagram and

thus are unlikely to exhibit any measurable direct CP violation. On the other

hand, non-leptonic decays often have contributions from at least two types of

processes. This hm to do with the existence of tree and penguin processes. The

two types of diagrams are depicted in Fig. 1.

In penguin processes there is a loop with a W boson, while dl other pro-

cesses of order GF are tree processes. Penguin diagrams can be f~rther classified

according to the ide~tity of the quark in the 100P, as diagram with different

intermediate quarks may have both different strong phases and different weak

ph=es. On the othet hand, the subdivision of tree processes into spectator, ex-

change and annihilation diagrams is unimportant since they all carry the same

weak phase.

There are,three particularly promising types of processes [28]:

-89-



(a) (b)

*
f

8
w (d)

(c)

from Bose symmetry it cannot be an I = 1 state and therefore must be I = 2.

Consequently, the decay has only one isospin channel, AI = 3/2. As strong

interactions are isospin invariant, there is only one strong ph~e shift, denoted

by 62. The condition of contributions from different strong phases is not met and

am+mO = O. (4.3)

The same argument holds for B+ ~ E+no.

There is no unambiguous experimental evidence for direct CP violation yet.

m =gluon
4.2. lq/pl # 1

We now study the decays P“, P“ ~ e&vX. From the AP = AQ rule,

Figure 1. M~on dmays relevmt to our discu=ion divide into tre diagrams (a) sp=tator,
(b) exchange, (c) annihilation) and (d) penguin diagram. Penguin diagrams may contain
any number of gluons between the quark lines, but if perturbative QCD holds, the Iesding

contribution come from a diagram where the two gluon hnm in (d) are co”nmtd.

a. Decays with suppressed tree contribution. k these types of decays, the

penguin and the tree contributions may be comparable in magnitude and give

large interference effects. An example is the decay B ~ pK (where the tree

decay is suppressed by small mixing angles, V“&V”~).

b. Decays with forbidden tree decays. Here the interference may come from

penguin contributions with d: fferent charge 2/3 quarks in the loop. Examples

me B ~ ~1{ and B ~ I{ I{.

c. Radiative decays. The mechanism here is the same as in case b except that

the leading contribution to the decay is an electromagnetic penguin.

It is unfortunate that the leading non-leptonic K decay, K+ ~ m+ro, is

unlikely to have direct CP violation. The re~on is as follows. The 1{+ meson is

a member in an isospin doublet, 1 = 1/2. The finrd n+no state h= 13 = 1, and

P“ ~e-vx, P“ ~e+vx. (4.4)

For the rdlowed processes, we define the following amphtude:

(e+vXl H lP”) = A, (e-”Xl H l~”) = A*.

For the 1< system, we can measure

r(~{~ ~ e+vx) – r(KL ~ /-vx)

as’ = r(KL ~ e+vx) + r(KL ~ e-vx).

(4.5)

(4.6)

As

(e+vXl H IK.) = pA, (e-vXl H [K.) = qA*, (4.7)

we get

1 – lq/p[2

as’ = 1 + lq/p12“
(4.8)

With the notation (2.5), (4.8) becomes a,l = 2Re(Z)/(1 + IFIZ).



a,~ was measured for both final e and final p. The weighted average is [26]

a,~ = (3.27 * 0.12) x 10–3. (4.9)

For the B system, we can measure

As

(e-.x

we get

H lB;h,8(t)) = (q/p) g-( f) A”, (e+~xl H [~;hy.(t)) = (~/~)g-(~)A,

(4.11)

1 – lq/p14
as’= 1 + ]q/p[4 .

(4.12)

There is no experimental measurement yet of a~l in B decays.

For both the K and the B systems, the CP ~ymmetry in semileptonic decay

depends on the deviation of lq/pl from unity.

4.3. A # 1

The importace of CP violation in neutral meson decays into find CP eigen-

states lies in the possibility of theoretical interpretation free of hadronic uncer-

tainties. Moreover, the two CP violating parameters which have been experi-

mentally measured, e and e’/ c, belong to this class of CP violation.

The two CP violating quantities measured in the neutral K system are

(4.13)

The experimental results are [26]

1~001= (2.253 * o.024) x 10-3, #00 = 46.6x 2.0°;

Iv+-( = (2.268* o.023) x 10-3, d+- = 46.6+ 1.2°.
(4.14)

We define

Aoo =( TomolH lKo) , Aoo = (Tomol HIF”) ,

A+- =( T+T-l H Il.’”) , A+_ = (T+m-l H Ix”),
(4.15)

(4.16)

Then

pAoo – qAoo 1 – Aao
?00 =

pAoo + q~oo ‘l+ Aoo’

p-4+_ – qA+– _ 1 – A+_
(4.17)

~+- =
pA+_ + qA+_ – ~’

As we shall later see in detail, qoo and q+- are tiected by all three types of

CP violation: lq/p[ # 1 and ImJ # O give 0(10-3) effects, while lA/Al # 1 gives

an 0(10–6) effect.

For the B system, we should measure quantities of the form [6, 29, 30]

r(Bghy,(~) + fCP) – ‘(~~hys (f) + fcP).
(4.18)

aft’ - r(Bj~Y,(t) + fCP) + r(~~hy,(t) + fCP).

Equations (3. 15) and (3.16) lead to the following form for the time-dependent

asymmetry:

~fcp, = (1 – /J12)cos(AMt) – 21m~sin(A~t) J

1 + jA12
(4.19)

For decay modes such that 1AI = 1 (the “clean” modes), (4.19) simplifies consid-

erably:

~~.p(l~l= 1) = -ImJsin(A~t). (4.20)

The modes afiropriate for measuring asymmetries of the type (4.20) are those

1.
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dominated by a single weak phase. Likely candidates are *Ks, D+ D-, T+ T-,

~Ks and others.

5. Theoretical Calculations of CP Violation I

In this chapter we point out the hadronic uncertainties that enter the ca-

lculations of CP violating phenomena. The reaaon for hadronic uncertainties is

that we do not understand low ener~ strong interactions in, quantitative detail.

We separate our calculations into two parts. First, we crdculate the effective

Lagrangian in t~rms of quark and gluon fields at a high energy scale, typicrdly

N mz, and use ,Renormfllzation Group Equations (RGEs) to run Z. j j down

to the relevant hadronic scale. This part is well understood and can be crdcu-

lated with high accuracy. Second, to calculate physicrd decay rates (or mixing)

we must calculate the matrix elements of Leff between the relevant physical

states. That is the part where we lack in theoreticrd technology. In some cases,

e.g.. semileptonic maon decays, approximate symmetries may help us fix the

form and norrndlzation of the matrix element. Known examples are the chirrd

symmetry for K decay and heavy quark symmetry for B decay. However, in

non-leptonic decays (and in mixing amplitudes) the quark operators do not corre-

spond to currents and therefore we do not know the normrdization of their matrix

elements. We may use phenomenologicrd models to estimate them but have ht-

tle control over the resulting uncertainties. Eventurdly, lattice calculations may

solve the problem, but at present, they are rdso subject to approximations and

uncerttint ies.

There is a significant differenw in the cleardiness of the theoretical calcul-

ations in the three types of CP violation. Furthermore, there me differences in

the cleardiness of predictions for CP violating quantities between the K and the

B systems. In th]s chapter we clarify these issues.

From Ms. (2.3), (2.1) and (2.6), we see that the relevant quantities that need

to be calculated are g/p and A/A. kt us start with the latter one. Recall

Eq. (1.2):

A = ~ Alei6’e’4i; ~= e-2ifpe+2itf ~Aiei~,e-i*, (5.1)
i ,

Notice the following two facts:

a. If dl contributing arnpfitudes had the same strong phase shift, then A/A

would be a pure phase.

b. If all contributing amplitudes had the same weak phase, then A/A would

be a pure phze.

Thus, for direct CP violation, lA/Al # 1, there should be both non-trivird

CP conserving phases (&i– 6j # O) and non-trivial CP violating phases (di – @j #

O). Conversely, the calculation of direct CP violation requires knowledge of strong

phase shifts and of absolute values of various amplitudes and therefore necessmily

involves hadronic uncertainties;

In the previous sections we concluded that for both the K and the B systems,

q/p is of the form q/p = ei~(l + z), where # is a phaae which depends purely

on phwe convention and electroweak parameters, and z is smrdl, 0(10–3 ), but

haa hadronic uncertainties. In the K system these uncertainties arise from the

BK parameter in the crdculation of M12. In the B system the uncertainties arise

from the need to calculate r12. But in any case, we are led to one conclusion for

both systems: effects of CP violation in mixing, namely lq/pl # 1, are small and

subject to lmge hadronic uncertainties for both Ko and B“.

This leaves one possiblfity for a potentirdly clean CP violating quantity,

namely CP violation in the interference of mixing and decay. The condition is

that we have to choose decays into finrd CP eigenstates which are dominated by

a single CP violating phase. Then Xfc P1A j~~ is a pure phme with no h~ronic

uncertainties. Such modes are available in principle for both K and B. For

* In some csse, it is pmible to overcolne the hdronic uncertainties by me=uring several
isospin-relatd rates [31, 32, 33].



Ko decays, we look into either r+r- or r“mo. The AI = 1/2 rule implies that

both are dominated by a single strong phase 60. For B“ decays we may choose,

for example, @Ks. It is dominated by a single weak phase. Then, in princi-

ple, the phase difference between (q/p) (neglecting the smrdl deviation from a

pure phase) and (A/A) will determine the CP asymmetry and is free of hadronic

uncertainties!

In practice this observation is useful only in the B system. The reason that it

does not work in the K system is that the difference in width, rlz, is completely

dominated by the two pion intermediate state and therefore

~g(r12) = arg(A:

Inthe approximation that (Az=/A2.,

A..

A2r) = arg(Azm/A2m). (5.2)

is a pure phase we consequently have

-., _ Ar ~–2i(
7——== (5.3)
~2 r LLi2

(Seeeq. (3.10 )forthe last equation.) However, eq. (3.11) shows that in the

approximation where q/p is a pure phme it is given by q/p = e2i~. Thus, the

prediction for CPssymmetryin K ~ 2T which is clean ofhadronic uncertainties

is simply zero:

A(K ~ nm) = 1 ~ ImJ=T = O. (5.4)

It should hold (as it does! ) up to 0(10–3 ). To learn something about CP violation

we have to give up this approximation and use

q A.. 1+2*
— —=l–i#lz
p A== 1+ (*)2”

Therefore, we would encounter hadronic uncertainties.

(5.5)

On the other hand, to take (q/p) of the B system to be a pure phase means

that we set lr12/M12 I ~ O. The phase of r12 or, more important, of any exclu-

sive CP eigenmode, is still different from that of Ml ~ and we may have (as we

do!) clean predictions for large CP asymmetries in the decays of neutral B into

CP eigenstates.

6. The e and e’ Parameters

6.1, WHAT ARE E AND E’/e?

There is a possible contribution in (4.17) from direct CP violation [34, 35].

This is due to the fact that there are two isospin channels, leading to find (2n)I=o

and (2 T)I=2 states:

(
=Oro

(T+ T-
(6.1)

=J((~~)I=ol - fi((Tn)I=21,

=fi((~~)I=ol+fi((~~)I=21.

However, the possible effects are smrdl because (on top of the smallness of rdl

CP violating phases in the K system) the finrd 1 = O state is dominant (this is

the A1 = 1/2 rule). Defining

we have, experimentally,
I

lA,/Aol x 1/20.

(6.2)

(6.3)

Instead of Voo and ~+_ we may define two combinations, e and e’, in such a way

that the possible direct CP violating effects are isolated into e’.
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Our experimental definition of the e parameter is then:

2(AO0 – A+-)

(

~:q Aoo A+_———
6’ = 3(1 + Aoo)(l + A+_) ‘6; AOO )A+_ ‘

(6.8)

*
To zeroth order in Az /Ao, we have qoo = q+- = e. However, the specific com-

bination (6.4) is chosen in such a way that the following relation holds to firgt

order in A2/Ao [see (6.1)]:

where in the last equality we used (4.14) which gives A+- = AOO N 1. We Cm

further evaluate (6.8) in terms of AO and Az. We use (q/p)(Ao /Ao) N 1, w

discussed in Chapter 5, and IAz I ~ IAO[ and get

1–JO
6=1+A0.

(6.5)
c’ =~lA2/Aolei(b2–bO) sin(~z–~0).

&
(6.9)

As, by definition, only one strong channel contributes to Ao, there is indeed no

direct CPviolation in (6.5). Equation (6.5) mayserve ~atheoreticd definition ofc.

Thetwodefini;ions, (6.4) and (6.5), areidentical to an excellent approximation.
As in the derivation of (6.9) we find that replacing q/p with a pure phaae is

a good approximation there is no Cp violation in mixing in ~’. We Cm now

ask whether e’ is a manifestation of CP violation in decay or in the interference

between mixing and decay. Toanswer that, wenote that e’#Odoes not require

62 #60. Inttissense, [e'l#Ois notaproofof direct CPviolation, but Re(e')#O

is.

Is e a manifestation of CP violation in mixing or in the interference of mixing

and decay? The answer is that in the k’ system the two are related, and thus

c # O is a manifestation of both. To be explicit, we examine Eqs. (3.11) ~d

(5.5):

The definitions of c in Eq. (6.4) and e’ in Eq. (6.7) give

(6.6)

(6.10)

As AF z –2AM, the deviation of lq/pl from 1 (CP violation in mixing) and

the phase deviation of (q/p)(Ao /Ao) from 1 (CP violation in the interference of

mixing and decay) are both 0(41 z) and thus contribute to ~ at the s-e order.

One may say that Re(c) # O is a manifestation of CP violation in mixing, but that

(6.6j predicts arg(c) = =/4 and so there is dso CP violation in the interference

of mixing and decay. It is amusing to note that, if dr << AM then e would be

a manifestation of interference between mixing and decay only.

The way in which e’ is determined is actually by memuring

lqoo/q+_l N 1— 3Re(c’/e). (6.11)

The experimental result is [26]

l~oo/n+-l= 09935+ 00032” (6.12)
Our experimental definition of the c’ parameter is

(6.7) Actually, there are two recent measurements with somewhat different results
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[36,37]:

Re(e’/e) =
{

(2.3 + 0.7)X 10-3 NA31,

(0.6 + 0.7)X 10-3 E731.

From Eq. (6.6) and using –Ar/(2AM) % 1, we have

(6.13)

arg(e) % arctan(-2AM/Ar) = 43.67 + 0.13°. (6.14)

From Eq. (6.9) and the experimental vrdues of 62 and 60, we have

ag(c’) = T/2+62 –60 % 47k5°. (6.15)

Thus, we get arg(~’/e) w O. Then

Re(e’/e) N e’/~. (6.16)

This is why you may often encounter statements that the ratio (6.11) gives a

measurement of e’ /6.

6.2. HADRONIC UNCERTAINTIES IN THE CALCULATION OF e

In a phase convention for the I{ system where rdl phases are small, and using

Ar=– 2AM, we may write

%=– 2[ReM12(l + i) – iImMlz – }Imrlz]

P AM(1 + i)

In the limit of CP invariance, q/p = e2i~ so that 1{s (I<L )

(odd) state. In the notation (1.20), (6.17) translates into

(iImM12 Imrlz

)~=(l:z) T-T “

(6.17)

is a pure CP even

(6.18)

To calculate the last term, we use the fact that for the If system r12 is dominated

by the intermediate (nr)I=o state. Equation (1 .5) gives then

Imrlz/Rerl* = Im(a~)2/Re(aJ)2 w –21m(ao)/Re(ao) - –2to, (6.19)

where a. is the amplitude for neutral 1( decay into two pions in isospin-zero

state, with the strong phase shift factored out:

The quantity tohas an upper bound from measurements of the c’ /e parameter

to be discussed later. This bound implies that it is the first term in the

parenthesis in the RHS of (6.17) which dominates. The main theoretical input

is then in the calculation of Ml z. There are two main uncertainties in this

calculation:

a. Long dist ante contributions. These are parametrized by a parameter D,

(6.21)

The intermediate states that contribute to (Mlz )LD include no, q, 2r, 3m, V’

and others. It is important to rerdize that long distance processes contribute

differently to ImMlz md to ReM12 (see the clear discussion in Ref. [38] and

references, therein). The contribution to ReM12 could be significant: dl the states

mentioned above could contribute to AM at the same order or even dominate

over the short distance contributions, namely D of order 1 is not unlikely. On the

other hand, it is commonly believed that the long distance contributions are not
t

import ant in Z. All the dispersive diagrams involving no, q, 2T and 3T share the

same phase because their amplitudes are related by PCAC and 1SU(3), and the

PCAC extrapolation is the same for CP conserving and CP violating interactions.

These contributions All obey the relation

Im(Mlz)~,7,,zn,3m = _D~to,

AM
(6.22)

where D’ is the contribution to D from these states. The contribution from

an intermedi~te q. could be important and does not obey (6.22). Still, it is

1,
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(

proportional to tO,

(6.23)

Calculations of Nvo are model dependent but do not show ~Y, su~rising en-

hancement, No. <1. Thus, as long as neither D’ nor NVO me pmticulmly l~get

long distance contributions to ImM12 are small, while for ReM12 they may be

large.

b. The vacuum insertion approximation. The short distance contributions

depend on a matrix element of a four quark operator between A’” and ~f” states.

At present, th~re is no model independent way to calculate it. We parametrize

this uncertainty with a parameter BK, which is just the ratio between the true

value of the matrix element and its value in the vacuum insertion approximation:

Note that ~K tiects Im(M12)sD and %(~12 )SD in the s~e waY.

If D were small, then we would crdculate Im(Mlz )/Re(MIz ) t~]ng into ac-

count only short distance contributions. In this caae, BK would cancel out of

the crdculation and the hadronic uncertainties would be negligible. However, D

is probably not small and, furthermore, we have no reliable way to calculate it.

Thus we prefer to use Im(M12 )/AM which, though independent of D, has large

UnCert~ntieS frOrn ~K.

7. Summary

There are three types of CP violation in meson

(i) lA/Al # 1

A—=
A

decays:

1’
(7.1)

CP violation results from interference between direct decay amplitudes. It can

be observed in non-leptonic charged meson decays. There are large hadronic

uncertainties in the calculation.

(ii) lg/pl # 1

I:l=m (7.2)

CP violation results from the physicrd neutral meson states being different from

the CP eigenstates. It can be observed in semileptonic neutral meson decays.

There are hadronic uncertainties in the crdculation.

(222) A # 1

‘=(:)(k) (7.3)

CP violation with IAI = 1, Im~ # O, results from interference between mixing and

decay. It can be observed in neutrrd meson decays into CP eigenstates. There

exist several B decay modes that have only tiny hadronic uncertainties in the

calculation.

—
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I’. ELECTRIC DIPOLE MOMENTS (EDMs)

8. Why Are EDMs CP Violating

An electric dipole moment (EDM) D of an elementary particle is a manifes-

tation of CP violation [39]. The simple argument for that is as follows. The only

vector which characterizes an elementary particle is its spin Ji. Therefore, we

must have

Di = dJi. (8.1)

Under P-transformation D ~ –D and J ~ J. Under T-transformation D ~ D

and J ~ —J. Consequently, if either P or T (or, equivrdently, CP ) is a good

symmetry, we must have d = O. A more formal proof goes as follows [40]. Let us

study the matrix element of DO for a state with spin S:

‘sM’Do’sM)=’’D”(:~~:)
Using T invarimce we get

(S M

Using S

T-lTDOT-lT IS – M) =(–1)’~ (s –MID, /s – M)

(8.2)

=(-1)2~+2~+111~11 (:~~:) ’83)
M = integer (~ (–l)’(~+s)+l = –1) we conclude that IIDII = O.

Most of our discussion of EDMs will concentrate in the EDM of the neutron,

D.. One may wonder why should the above argument apply to it, as the neutron

is not an elementary particle. The answer is that the only feature of the particle

that we used in (8.1) is that it is characterized by its spin only. This certainly

applies to the neutron as well. (Otherwise, there should have been degenerate

neutron states. )

No EDM of an elementary particle has been observed yet. The most useful

uPPer bound (for our purposes) is that on the EDM of the neutron [10, 11],

ID”I < 1.2X 10-25 e cm. (8.4)

We also use the upper bound on the EDM of the electron [41],

lDe[ <1.5 x 10-’6 e cm. (8.5)

9. Hadronic Uncertainties in Dn

The current experimental bound on the EDM of the neutron (8.4) provides

one of the most sensitive constraints on CP violating extensions of the Stan-

dard Model. However, the strong interactions are an obstacle to improving the

constraints from Dn. The essential problem is to calculate the neutron dipole mo-

ment induced by a given CP violating operator, where the operator is generated

by short distance physics and is expressed in terms of quark and gluon fields. In

some cases, it is possible to make a current rdgebra crdculation of contributions

that diverge in the third limit [9] so that they are formally dominut, but for

most operators one has to resort to a non-relativistic approximation [42] or sim-

ply to a ntive dimension analysis [43 – 45]. Lattice calculations are still far from

practicrdity [46]. We discuss three useful examples: current tigebra calculation

of the contribution from a two gluon operator, non-relativistic approximation for

a two quark operator, and naive dimensional estimate of a three gluon operator.

A two gluon operator of the form

1
(9.1)

can be transformed, dsing anomtiy relations, into [8] CP violating quark opera-

tors:

3m.mdm.
0i(ti~5u + d~~d+ S75S). (9.2)

mumd + mums + mdma

This can be trtislated into imaginary parts in the m=s terms for the meson octet

1,
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in the third Lagrangian,

LM = ~tr(MU +Mtut – M – Mt),

with

(9.3)

(9.4)

The most singular contribution to D. in the chirrd mm ~ O limit was identified

in Ref. [9] as coming from a one loop diagram, with the res’ult

Di = ‘“4~~~N ln(MN/mm) = +3.6x 10-16 e e cm. (9.5)

Here MN is th~ nucleon mass, and grNN (9=NN) is the pseudoscalar couphng

(CP violating scalar coupling) of the nucleon.

A very d;fferent appro~h was taken in Ref. [47] where the Skyrme model w~

used to crdculate the contribution from (9.3) to D.. The results are numerically

similar though the calculated contributions are different: Ref. [47] has contribu-

tions of order m~Nc while Ref. [9] crdculates contributions of order m: in m:.

This impfies that the corrections to either result are of O(l), and they should be

taken only as an order of magnitude estimate, namely within a factor of a few.

b many models, it is simple to Aculate the EDM of the elementary fields,

namely D“ and Dd for the up quark and the down quark, respectively. Then, a

non-relativistic approximation relates these to the EDM of the nucleon through

SU(6) wavefunction relations:

(9.6)

The result for Dq is proportional to mg. An instructive measure of the uncer-

tainty in the crdculation is the fact that it is not at all clear whether one should

use running quark mwses at the hadronic scrde (say, 1 GeV) or constituent quark

masses. The difference for the u and the d quarks is about two orders of magni-

tude.

There is one dimension six operator that is P and CP violating whose coeffi-

cient involves neither fight quark masses nor small mixing angles. It is the three

gluon operator [45]

A naive dimensional analysis gives a contribution to V. of order

eMC
D-—

‘- 4X ‘

(9.7)

(9.8)

where ‘M = 2rF= N 1190 MeV is the third symmetry breaking scale. A typicrd

meaaure of the uncertainty here is that various anrdyses may differ by a factor of

(4r)3, namely by three orders of magnitude.
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II. CP VIOLATION IN THE STANDARD MODEL

10. The CI<M Picture of CP Violation

In the Standard Model of SU(3)C x SU(2)L x U(l)Y gauge symmetry with

three fermion generations, CP violation arises from a single phase in the mixing

matrix for quarks. Each quark generation consists of three multiples:

()u~
Q~ = = (3,2)1/8; Ui = (3,1)2/3; Di = (3, 1)-1/3.

Di

The interactions of quarks with the SU(2)L gauge bosons are given by

(10.1)

(10.2)

where y~ operates in Lorentz space, r’ operates in SU(2)L space and 1 is the unit

matrix operating in generation space. We have written this unit matrix explicitly

to make the transformation to m~s eigenbasis clearer. The interactions of quarks

with the single scalar doublet 4(1, 2)1/z of the Standmd Model we given by

–LY = GijQ~i4d~j + Fij~~uLj + h.c. (10.3)

G and F are general complez 3 x 3 matrices. Their complex nature is the source of

CP violation in the Standard Model. With the spontaneous symmetry breaking

SU(2)L x U(l)Y ~ U(l)E~ due to (~) # O, the two components of the quark

doublet become distinguishable, as are the three members of the W triplet. The

charged current interaction in (10.2) is given by

J–
–Lw = ~gu~iyfilijd~jw~ + h.c. (10.4)

The mass terms that arise from the replacement of Re(d” ) ~ fi(v + Ho) in

(10.3) are given by

‘~M = &vGijd~id~j + &vFiju~,u~j + h.c.,

namely

M~ = Gv/&, Mu = Fv/ti.

The phase information is now contained in these mass matrices,

the mass eigenbasis, we find four unitwy matrices such that

VdLMdV~~ = M~iaE, VULM”V~R= M$=g,

(10.5)

(10.6)

To transform to

(10.7)

where M$ag are diagonal and real (but VgL and VqR are complex). The ch~ged

current interactions (10 .4) are given in the mass eigenbmis by

–Zw = J~g~7pvljdLjw~ +h.c. (10.8)

(Quark fields with no superscript denote mass eigenstates.) The matrix V =

V“LVjL is the mixing matrix for three quark generations. It is a 3 x 3 unitary

matrix. As such it generally depends on nine parameters, of which three can be

chosen red angles and six are phases. However, we may reduce the number of

phases in V by a transformation

v * V= P.VP; , t (10.9)

where P“ and pd are diagonal phase matrices. This is a legitimat~ transformation

because it amounts to redefining the phases of the quark mass eigenstates:

qLi ~ (pq)ii~Li, qRi ~ (pg)ii~Ri, (10.10)

which renders Mdias unchanged (and, in particular, real). The five phase differ-
9

ences among \he elements of Pu and pd can be chosen to eliminate five phases
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from ~ in the transformation (10.9), so that V has one unremovable phase. This

phase [2] is crdled the Kobayashi-M~kawa (KM) phase and the mixing matrix

[48] is called the Cabibb-Kobay=fi-Makawa (CKM) matrix.

A similar analysis would show that CP violation cannot arise’ in this way if

there were only two quark generations. A 2 x 2 unitary matrix (V) has three

phases but there are dso three phase differences among the elements of two

2 x 2 phase matrices (PWand Pal). Thus rdl phases can be eliminated from the

Lagrangian in the two generation case.

The unrem~vable phase in the CKM matrix allows posdible CP violation. TO

see that, note that the CP transformation of spinor fields is

(10.11)

where q is m arbitrary phase, C is the charge conjugation matrix (fulfilling

and 5* = Xp. The CP transformations of scalar and left-handed currents are

then

di~j bdj+i,
(10.12)

Ji7P(l – 75)@j ~ – Jj7P(l – 75)#i,

where we used

(Jir@j)* = ‘Jj(70rt70)@i.

Ch&ged vector bosons trmsform under CP according to

(10.13)

(10.14)

Mass terms and gauge interactions can be invariant under (10.12) if the masses

and couphngs are real. In particular, consider the coupling of W* to quarks. It

has the form

The CP operation interchanges the two terms except that Vij ti.d V; are not

interchanged. Thus, CP is a good symmetry only if there is a basis in which dl

couplings and masses are red.

CP is not necessarily violated in the three generation Standard Model. If two

quarks in either sector (up or down) were degenerate, one mixing angle and the

phase could be removed from V. Thus CP violation requires

If the value of any of the three mixing angles ig O or ~/2, then again the phase

is removable. Finally, CP would not be violated if the value of the single phase

were O or r. These last eight conditions are elegantly incorporated into one,

parametrization independent, condition [49]. To find this condition, one notes

that unitarity requires that for any choice of i, j, k, Z (between 1 and 3)

3
Im[VijVi:Vl~Vlj] = J ~ ~iim~jk.. (10.17)

m,n=l

Then, the conditions on the mixing parameters are simply summarized by

J#O. (10.18)

The fourteen conditions incorporated in (10.16) and (10.18) can dl be written =

a single requirement of the mass matrices in the interaction eigenb=is [49],

Im{det[MdM~, M“J4~]} # O - CP violation. (10.19)

The quantity J is of great interest in the study of CP violation from the CKM

matrix. The maximum value that J may assume is 1/(6fi), but in reality it is
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known to be smaller than 10-4, providing a concrete meaning to the notion that

CP violation in the Standard Model is smrdl.

The unitarity of the CKM matrix is manifest when using an explicit parametriza-

tion. There are various useful ways to parametrize it, but the standard choice

[26] is a parametrization due to Chau and Keung [50]:

(

c12c13 s12c13 s~3e —i6

v= ‘S12c23 — c12523s13e :6
c12c23 — s12523513e t6

)

s23c13 ,

s12s2i — c12c23s13e i$ ‘c12s23 — s12c23s13e i6
c23c13

where Cij ~ cos Oij and Sij = sin ~lj. In the stadard parametrization

J = clzcz3c~3slzs23s13 5in6.

(10.20)

(10.21)

This explicitly shows the requirement that rdl mixing angles are different from

O, m/2 and the phase different from O,n.

The unitmity of the CKM matrix implies various relations among its el-

ements. We will find three of them very useful to our understanding of the

Stand~d Model predictions for CP violation:

V“~V:, + V.dvcj + Vfdv; = 0, (10.22)

V“,VU**+ VcsVc~+ v~svt~= 0, (10.23)

Vtidv:b + Vcdv: + Vtdv; = O. (10.24)

Each of these three relations requires the sum of three complex quatities to

vanish and so can be geometrically represented in the complex plane as a trian-

gle. These are “the unitarity triangles ,“ though the term “unitarity triangle” is

usually reserved for the relation (10.24) only (for reasons soon to be understood).

(a)

7–92

(b)

a

(c) 7204A4

Figure 2. The thr- unitarity triangles of the CI<M matrix: (a) ~i ~dVi: = O; (b)

xi Ken= 0; (c) Z, y~~ = O. The three triangles are drawn at a common scale.

It is instructive to draw the three triangles, knowing the experimental values

of the various [Vij 1. This is done in Fig. 2. In the first two triazzgl,es, one side

is much shorter than the other two, and so they rdmost collapse to a line. This

would give m intuitive u~derstanding of why CP violation is so smul in the 1(

system (the first triangle) and why certain CP asymmetries in B. decays vanish

(the second triangle). The most exciting physics of CP violation lies in the B

system, related to, the third triangle. Its overall smallness is related to the long

lifetime of the B meson. To observe CP asymmetries in B decays, we would

have to produce many B“’s because the relevant branching ratios are smrdl. But

the openness of th~ third triangle guarantees that once we produce them, we are

1,
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likely to observe Imge CP symmetries.

Equation (10.17) has striking implications for the unitarity triangles:

(z) All unitarity triangles are equal in area.
,

(ii) The area of each unitarity triangle is given by ~lJ1.

(iii) The sign of J gives the direction of the complex vectors.

The rescded unitarity triangle (Fig. 3) is derived from the triangle (10.24)

by:

a. Choosing a ~hase convention such that ( VcdVc~) is red. This aligns one side

of the trian~le along the red axis.

b. Dividing the lengths of all sides by lv.dva 1. This m~es the length of the

red side 1. The form of the triangle remains unchanged.

Two vertices of the rescrded unitarity triangle are thus fixed at (0,0) and

(1,0). The coordinates of the remaining vertex are denoted by (p, n) [51]. The

three angles of the unitarity triangle are denoted by a, @ and ~:

They are physical quantities and, as we will see later, can be independently

measured by CP symmetries in B decays.

o

(a)

I
A---------

>

0 P 1

742 (b) 72M-

Figure 3. The unitarity triangle xi vidv~ = 0. (a) shows the original triangle while (b)
depicts the r=caled unitarity triangle.

11. Me=uring CI(M Parameters with CP Conserving Processes

Six of the nine absolute values of the CI{M entries are measured directly,

namely by tree level processes. Nuclear beta decays give

Ivudl = 0.9744 + 0.0010. (11.1)
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Semileptonic kaon decays, lC 4 mev, and hyperon decays give

[Vtisl= 0.2205 + 0.0018. (11.2)

Semileptonic D decays, D ~ ~ev, and neutrino and antineutrino production of

charm off valence d quarks give

lV.d\= 0.204+ 0.017. (11.3)

Semileptonic D decays, D ~ I<ev, and neutrino and antineutrino production of

charm off sea s quarks give

IV,, I = 1.06+ 0.18. (11.4)

Semileptonic B decays, B ~ D*ev, give

Ivcbl = 0.040+ 0.007. (11.5)

The endpoint spectrum in semileptonic B decays, B + Xeu, give

lVti*/VC*l = 0.10+ 0.03. (11.6)

(We take the various ranges for Iujl above from Ref. [26], except for Ivcbl where

we use an update of Ref. [52]. ) Using unitarity constraints, one can narrow some

of the above ranges (most noticeably, that of IV=,I) and put constraints on the

top mixings lVt,\. The full information on absolute values of the CKM elements

(at one sigma) from both direct measurements and unitarity is summarized by

(

0.9749 – 0.9754 0.2187 – 0.2223 0.002 – 0.006

[v] = 0.218 – 0.221 0.9735 – 0.9752

)

0.033 – 0.047 . (11.7)

0.003 – 0.016 0.032 – 0.048 0.9986 – 0.9993

Note that the only large uncertainties are in Iv.b[ and ]Vt~l. However, the two

are related through Eq. (10.24). Thus, the unitarity triangle is a very convenient

i’

U,c ,

Figure 4. The quark diagram description of fifl? (B) and r12 (B)

tool for presenting constraints from indirect me~urements on the most poorly

determined parameters.

The most useful CP conserving indirect me~urement, namely a loop-level

process, is that of mixing in the B“ – go system. The experimental result is [53]

_ AbIB ,
— = 0.67+ 0.10.

‘d = ~E
(11.s)

I

The theoretical calculation is on more solid ground than in the 1(0 system, be-

cause short distance ‘physics dominate Mlz. Thus, it can be reliably calculated

from the box diagram (Fig. 4) with intermediate top quarks [54],

1,
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where
,1

2y
l+— 1~_Y2in(y). (11.10)

Note that, typicaf of loop processes, there is a strong dependence on mt which

affects our ability to constrain the CKM parameters. Recently: there h= been

improvement in the determination of the two most uncertain parameters in (11.9)

due to heavy quark symmetry considerations [52, 55, 56]:

Alvcbl = 0.040 + 0.05, (11.11)

f

~B = 190+50 MeV. (11.12)

The end results is that the lower bound on lv~d[ is raised to 0.006 [compare

to (11.7)]. However, for any specific value of mt the information on the CKM

parameters is more detailed, as presented later.

The constraints from (11.7) on the mixing angles of the standard parametriza-

tion are:

s]z = 0.2205 ~ 0.0018, ~z3 = 0.040 + 0.007, SIS/SZ3 = 0.10 + 0.03. (11.13)

From (11.13) we find

J = (3.5+ 1.5) x 10-5 sin6, (11.14)

As discussed in Section 6.2, an approximate expression for e (in a phase

convention where A2 is rerd) is

(12.1)

Furthermore, ImMl z is dominated by short distance physics and thus can be

reliably calculated from the box diagrams [57]:

There are several suppression factors in ( 12.2). First, it is fourth order in the weak

coupling. Second, there are small mixing angles. And third, there is the G IM

mechanism which guarantees that when any two up quark m=ses are equal, Ml z

vanishes. These three ingredients suppress Ml z by a factor of g4 s~2~ which

explains why AMK /mK is such a tiny quantity. However, there is an extra

suppression factor for ImMl ~ from the mixing parameters:

(12.3)

Equation (12.3) is related to the first unitarity triangle [Fig. 2(a)]: it is the ratio

between its area and the length of its long basis squared or, in other words, the

ratio between the height and the basis of the triangle. It is the ratio (12.3) which

determines the size of e in the Standard Model.

Let us make these arguments more rigorous. The phase convention indepen-
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dent expression for e is

+~2vtj2(Yt)h[(V~VtaV ”dV:.)2] + 2q3f3(Uc, Vt)Im[V2Vcswd~s(VudV:s)2]}

(12.4)

where yi = m~/m2w, ~z(y) is given in Eq. (1 1.1O), and

()f3(X, y) = in ~ – ~
[ 1~ in(y) .

4(1–Y) 1+ l–y

WeH meaaurdd parameters in (12.4) are

(12.5)

G~ =1.166x 10-5 GeV-2, mw = 80 GeV,
(12.6)

fK =0.165 GeV, AMKfmK = ~ X 10-15.

The factors VI = 0.7, qz = 0.6 and q3 = 0.4 are QCD correction factors [58, 59].

The only significant uncertainty (apart, of course, from the CKM parameters

which we try to determine) is in

BK = 2/3& 1/3. (12.7)

We can write (12.4) in a way which m~es the dependence on J manifest:

e = 4 x 104ei*~4BK~{[qsf3(y.,yt) – ql]y~ + n2Ytf2(Yt)Re(vtlvtsv. dv~.)/s?2}.

(12.8)

The terms in curly brackets are 0(10-3). If [el were much larger than 0(10-3),

it would have contradicted the Standard Model explanation of CP violation as

arising from the single phase in the CKM matrix. But as long w ]el % 0(10-3)

it does not redly test the CKM picture but merely fixes the value of sin6. Yet,

the fact that the experimental vrdue is

{cl = (2.258+ 0.018)X 10-3, (12.9)

implying sin 6 x 0(1) and not much smaller, makes the CKM picture phenomen~

logically attractive: CP violation as observed in the neutral kaon system is con-

veniently accommodated in the Standard Model.

2

m, = 90 GeV

o
,1

I I I I

m, = 150 GeV

-1 0 1 2

7-92 P

mt = 120 GeV

11

I I I I I

m, = 180 GeV

I I I [ I I I
-1 0 ,1 2

P 7204A6

t

Figure 5. Constraints on the unitarity triangle from c (solid curves), Zd (d=hed curves)
and lV”b/Vcb I (dotted curves) for various top n~~es, The dotted area give$ the final allowed
range. I

The detailed constraints on the Standard Model parameters are presented in

Fig. 5. The e constraint (12.4) requires that the vertex .4 of the unitarity triangle

lies between two hyperbola. The width of the allowed band is determined mainly

by the uncert~inty in Bfi. The bounds on the mixing parameters depend on

1,
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the yet unknown msss of the top, so we give the constraints for various top 

masses within the experimentally allowed range, 91 5 ml < 180 GeV. Also 

presented are the direct measurement of jVub/Vcbj [Eq. (ll.S)], and the indirect 

measurement of JVtdVtbl from B - fi mixing [Eq. (11.9)]. The phase 6 of the 

standard parametrization is the same as the angle 7 of the unitarity triangle. We 

see that indeed all constraints can be met consistently in the Standard Model; 

the measurement of e is the one which requires 6 # 0, or more explicitly 

weak phase, 

4~ = arg(V:dVua). (13.2) 

Second, there are three penguin diagrams, one for each intermediate charge 2/3 

quark. They all contribute to the final Z = 0 state only. However, each depends 

on a different CKM combination: 

4; = wdqfv,,). (13.3) 

20” 5 6 S 178’. (12.10). 

Note that sign[Re(c)] reveals that J is positive or, equivalently, that 6 is in one 

of the first two quadrants. For the resealed unitarity triangle, this means that 

the vertex A lies in the upper half plane or, equivalently, that r~ is positive. 

, 13. The d/c Parameter 

The most recent measurements of c’/c give (36,371 

Re(e’/c) = 
(2.3 i0.7) x 1O-3 NA31, 

(0.6 f 0.7) x 1O-3 E731. 
(13.1) 

i 
I Thus, there is yet no compelling evidence for direct CP violation: while consistent 

with the Standard Model predictions, the weighted average for e’/e is only two 

standard deviations from zero. 

The calculation of e’/e has many theoretical uncertainties. Let us first isolate 

the important ingredients in the calculation and try to get an order of magnitude 

estimate. There are several types of diagrams that contribute to K -B rrx. First, 

there are tree diagrams of both exchange and spectator types. The exchange 

diagram contributes only to the final Z = 0 state, while the spectator diagrams 

contribute to both Z = 0 and Z = 2 final states. All three diagrams have a common 

A difference in the weak phases between A0 and A* is then a result of the fact that 

A0 has contributions from penguin diagrams with intermediate c and t quarks. 

Consequently, c’ is suppressed by the following factors: 

a. (A~/A~( - 0.045. 

6. lag@’ /ApI = 0.05. (There is no relative weak phase between the tree 

contributions to Ao and to A*.) 

c. I(Vt~Vt,)/(Vc>Vc,)j N 10s3. (The penguin diagrams with intermediate u or 

c quarks give a contribution which is dominated by the same weak phase 

as the tree diagrams.) 

The last factor is U( J/s:*) - e. Thus, it cancels in the ratio 0(/e, and we are 

left with (the very rough) order of magnitude estimate, e’/e N 10e3. 

The actual calculation is very complicated. It can be cast into the form (see 

Ref. [60] and references therein) 

d/e = 300 J Jz ReAo GFxYo- (Qe) [I - f&+,1 - REWP - (a, + i-&, + np)]. (13.4) 

The ys factor is the Wilson coefficient for the operator 

&6 = -8 c (~LQR)(‘?&) 
q=u.d,s 

(13.5) 
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which describes the strong penguin contribution. The matrix element of Qe,

(Q6)=-’16Gev3[’:Hl‘mkim:)(13.6)

(given here in the I/N approach) is very sensitive to the mass of the strange

quark, and introduces large uncertainties into the calculation. The various 0’s

give the relative contribution of other four quark operators. The three Q’s in

parenthesis are smrdl (s 0.2 in absolute vtiue). ~~+~, represents isospin breaking

effects in quark masses and does not depend on m*,

However, the contribution from electroweak penguins is rather large and depends

sensitively on mt. For AQCD = 100 MeV and m~ = 200 MeV, Ref. [60] quotes

{

–0.04 mt = 100 GeV,

flEwP - +0.21 m~ = 150 GeV, (13.8)

+0.56 mt = 200 GeV.

Thus, for large mt (N 200 GeV) there is a cancellation among the various con-

tributions in (13.4), providing yet another, somewhat accidentrd, suppression

factor for e’/e. It leads to the conclusion that the Standard Model would not

be excluded if e’/e N O. The calculation is consequently even more sensitive to

hadronic uncertainties.

To summarize, c’/e gets contributions from many four quark operators. The

hadronic matrix elements of these operators involve large uncertainties. The

fact that various operators contribute with similar order of magnitude but with

differing signs, enhances the uncertainties. The result is very sensitive to the top

mass. A wide range of e’/ e values can be accommodated in the Standard Model.

Reference [60] finds, for example,

2 x 10-4 ~ c’/e s 3 x 10-3 mt = 100 GeV,

3 x 10-5 s e’/e s 2 x 10-4 m, = 200 GeV.
(13.9)

14. CP Asymmetries in Neutral B Decays

14.1. MEASURING TIIE ANGLES OF THE UNITARITY TRIANGLES

As mentioned in Section 3.2, in the B system we expect model independently

that rlz << Mlz. However, within the Standard Model and assuming that the

box diagram (with a cut) is appropriate to estimate rlz, we can actually calculate

the two quantities from the quark diagrams in Fig. 4. The crdculation gives (see

Ref. [15] and references therein)

rlz 3T 1 ~

–(

8 m2 Vcbvc>

M12 = ~f2(Yt) m?
1+-G_

)3 m; v,bvt>
(14.1)

This confirms our order of magnitude estimate, lr12/M12 I S 10–2. Thus, to a

very good approximation,

(:)B=E=_. (14.2)

We will use this result in our calculations of CP violation in the interference of

mixing and decay. However, before doing that we note that (14.1) allows an

estimate of CP violation in mixing, namely

Notice that the last term is the ratio of the area of the unitarity ~triangle to the

length of one of its sid~s squared, so it is 0(1). (For the B, system, J/ lVtbVt~Iz w

10–2, as can be seen frpm the unitarity triangles in Fig. 2.) The only suppression

factor is then (m~/m~ ). The uncertainty in the calculation comes from the use

of a quark diagram to describe rlz, and could be a factor of 2–3.

Now we turn back to decays into CP eigenstates. We would like to choose
i

modes dominated by a single cliagram because these, as explained above, are
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II

theoreticrdly clean. However, most channels have contributions from both tree

and penguin diagrams. The ratio between the two for a decay b e q~’g’ is

[61,62,63]

=“(R1n%)- ‘p?~:)‘ ‘144)
penguin

The factor in parenthesis is 0(0.02), but it maybe partially compensated by the

ratio of matrix elements. Thus, there are three appropriate classes:

(2)

(ii)

(iii)

.
Modes with ~ S 1. Examples are B ~ rr, ~ d DD, B. d ph’s

and B8 * $I{s.
f

Modes with no tree contribution. Examples are B * ~Ks, B ~ KsKs,

B. d q’q” and B8 d ~Ks.

()
Modes with arg ~ = O, r. Examples are B 4 @Ks md B. ~ ~~.

Our first exaple is B ~ nr. The quark subprocess is b + uti~ which is

dominated by a W-mediated tree diagram. Thus, to a good approximation

A=. vubv;~ .—=
A Xn v:bv”d

Combining (14.2) and (14.5), we find

(14.5)

‘(B+”+”-)=(-) (-)*lm’m”=sin(20)‘146)
The penguin contribution to this decay has a weak phase, ~g(v~vtb), different

from the tree diagram, so it may modify both 1~1and ImA. We ~timate that the

resulting hadronic uncertainty is s 0.1, but it cm be ehminated using isospin

andy~is [31, 32, 33].

The anrdysis of B ~ D+ D- proceeds along very similar lines. The quark

subprocess here is b + c~d, and so

‘(B+D+D-)=(-)(-)*lm’DD=-sin(2’)‘147)
Again, there may be a small hadronic uncertainty due to penguin contributions.

The same weak phase can be measured without hadronic uncertainties in

B ~ +Ks. A new ingredient in the analysis is the effect of K – ~ mixing. For

decays with a single KS in the finrd state, K – K mixing is essentird because

B“ ~ Z{” and Do ~ Ko, and interference is possible only due to K – ~ mixing.

This adds a factor of

()9 _VCSV3

FK V;vcd
(14.8)

into (A/A). The quark subprocess in so e @K” is b + CESwh]ch is, again,

dominated by a W-mediated tree diagram:

&=_

()

~
A+I<* VJVC=

(14.9)

The minus sign on the right hand side of (14.9) is a result of @Ks being a CP odd

state. Combining (14.2) and (14.9), we get

‘(B+”KS)=-(-) (-)*lm’’Ks=sin(2’)‘1410)
The theoreticrd advantage of using this mode is the following. As in previous

cases, there is a small penguin contribution to the direct decay in this process

as well. However, its weak phase, arg( VtbVt~), is similar (mod ~) to the we~

phase of the tree decay and thus tiects neither IAI nor ImA. Thus, ~. (14.10) is

clean of hadronic uncertainties to 0(10-3) – This gives the theoretically cleanest

determination of a CKM parameter, even cleaner than the determination of sin Oc

from K d xev.

The third angle of the unitarity triangle (~) can be measured in B. decays:

Crdculations in the Bs system are very similar to the B“ system. One finds,

* This method for nle~”ri”g y seem to be experimentally very difficult. Various alternative
ways were suggmted [64, 65, 66].
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similar to (14.2), expected to be dominated by a single CKM phase, so that the leading CP vio-

(:)B.=@=-
It is then straightforward to show that

(14.11)

‘(BS+PI’S)=(-) (-) (-)*lm’.Ks=-sin(2’)
(14.12)

In the last equation we neglected a small correction of O(@’), where ~’ is an angle

in the unitarjty triangle (10.23):

(14.13)

Another interesting possibility is the study of tree-forbidden B decays, for

example B ~ @Ks. The quark sub process b ~ sss involves flavor changing

neutral current and cannot proceed via a tree level Standard Model diagram. The

leading contribution comes then from penguin diagrams. In generti (as is the case

in K decays), each of the three penguin diagrams is of different magnitude and

phasei inducing direct CP violation. But here, to a very good approximation,

the diagrams with intermediate u and c quarks are of similar magnitude except

for their CKM factors. and their strong phases are very small. Using unitarity

one finds that

%= (-) (-)
which leads to (neglecting O(P’ ) corrections)

(14.14)

‘(14.15)

Our final example is B. ~ D$D:. The quark subprocess is b + CES,so that

‘(BS+D’D’)=(-) (-)+lmADD=-sin(2”)“4’6)
There are five quark subprocesses in each of B“ and Bs decays which are

-1o9-

lating effect is interference between mixing and decay. We list them in Tables 1

and 2. The list of hadronic final states gives examples only. Other states may be

more favorable experimentally. We rdways quote the CP asymmetry for CP even

states, regardless of the specific hadronic state listed. In previous adyses in the

literature, the approximation ~’ = O is used.

TABLE 1

CP Asymmetries in B Decays

Final Quark SM I
state sub-process prediction

$I<s 5 + Eci – sin 2P

D+ D- i + Ecz – sin 2P

~+T- 6 + Gud sin 2a

~Ks i + 5ss – sin2(@ – ~’)

I{sKs i + Ssd o

TABLE 2

CP Asymmetries in B= Decays

Final Quark SM t

state sub-process prediction
t

D: D: i + Eci – sin 2P’

$I{s b + Ccd – sin 2P’

pI{s b + tiud – sin2(~ + ~’)

V’v’ b b ~S~ o

~I{s b + 5SZ sin2(~ – ~’)



14.2. T1lE ALLOWED RANGES FOR T}lE ASYhfMETRIES

The sallowed ranges for the angles a, ~, ~ and 0’ are found from the various

constraints on the form of the unitarity triangles [56, 67-70].

to study is ~’. Note that @ is the angle in the triangle related

therefore it is very small. Exphcitly

Isin2@’1 = 21(sin~)V”$V”*/(Vc#Vc*)l <0.06.

The simplest

to (11.6) and

(14.17)

The bound is sa~urated when sin T = 1 md lVtib/Vcb I = 0.13, However> from the

lower bounds on these quantities, we find that sin 2P’ could be as small as 10-3,

in which case the hadronic uncertainties, which we neglected, become important.

Experimentally, CP asymmetries in B decays are hkely to be measured long

before those in B, decays. Thus, we now concentrate in the Standard Model

predictions for sin 2a and sin 2P. We will present our results directly in the

sin 2a – sin 2@ plane [71]. These are the quantities meaaured (see Table 1) md,

furthermore, it rdlows a direct comparison of the Standard Model predictions

with models of new physics where the asymmetries are not necessarily related to

angles of the unitarity triangle [72].

We use the following relations to transform from the (p, q) coordinates of the

free vertex A of the unitarity triangle to (sin 2a, sin 28):

2n[v2 + P(P– 1)1sin 2a =
[n2 + (1 - P)’I[V2 + P21’

2q(l – p)
sin~O =7)2 + (l _p)2.

(14.18)

Note that these coordinate transformations are highly nonlinear; hence the pre-

dictions in the sin 2a – sin 2~ plane will be very different from the more famihar

constraints in the p —q plane. Furthermore, since ( 14.18) are not invertible, we

may not simply map the regions in the p —~ plane allowed by each of the vari-

ous constraints into corresponding regions in the sin 2a — sin 2P plane, and then

assume that the overlap in the latter is rdlowed. To see this, note that a single

point in the overlap region in the sin 2a – sin 2P plane may correspond to two

different points in the p – q plane. If each of these two points is rdlowed by one

constraint but forbidden by the other, then the originrd point in the sin 2a – sin 2P

plane is in fact forbidden though it is in the overlap of two regions allowed by

the individud constraints. We therefore form the overlap in the p – q plane first,

and then map this overrdl-allowed region into sin 2a — sin 2P coordinates.

Since the Xd and c constraints depend on m,, we have carried out our analysis

for various mt values within the range 90 GeV< mt s 185 GeV. We present

our anrdysis in Fig. 6 in two ways [71]. First, the solid curves encompass rdl

values of (sin 2a, sin 2P) which satisfy dl three constraints using values of the

input parameters within their 1 – a ranges (or within the theoretically favored

ranges for the parameters Bl,. and ~B ). That is, the SM Cm accommodate

a B-factory result anywhere within these curves without stretching any input

parameter beyond its 1 – u range. We will refer to these regions as the “dlowe&

areas of the SM.

Second, in order to get a sense of the expected value of (sin 2a, sin 2P) given

our current knowledge of the v~ious input parameters, we generated numerous

sample vrdues for these parmeters baaed on a Gaussian distribution for lv~d1,

TBl Vcb12, lV.b/Vcbl$ TB, ~d> me ~d IcI,and a uniformdistribution(= o outside
of the “1 – u“ range) for ~E. For each sample set we used the constraints (11.6)

and (11 .9) to determine p and q, and then rejected those sets which did not meet

the constraint (12.4) for 1/3 < BK < 1. We binned the sets which P~sed in

the sin 2a – sin 2P plane, and thus obtained their probability distribution. We

show in Fig. 6 the resulting 90% probability contours in d~hed curves. SinCe

we do not know the true origin of the CI{M parameters and thus do not know

the true probability distribution from which the experimented inputs result, and

since the theoretical restrictions on ~B and B~ cannot be posed statistically, we

can only interpret these probability contours as an indication of likely outcomes

for B-factory results baaed on the SM. For example, the “tail” of the allowed
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areas which extends towards small values of (sin 2a, sin 2P) requires many of the

parameters to be stretched to their 1 – u bounds and so seems unlikely and lies

outside the probability contour.

We find that sin 2a can have any value in the full rmge from –1 to 1, while

sin 2P is always positive and has a lower bound [71]

sin2~ >0.15. (14.19)

Note that none of the angles is allowed to vanish due to the e constraint. The fact

that sin 24 may vanish for a certain angle is actually a result of the possibility

~ = ~/2. However, due to \v.b/vcbl < \vcdl, P < n/2 (actually, ~ S m/5) and

hence the lower bound in (14.19).

We further find that sin 2a is likely to be positive if the top mass is near

its present lower bound, and most importantly the favored valueg foT sin 2P aTe

above 0.5. We also find that the bounds on the two quantities are correlated. In

particular, we note that:

a.

b.

The magnitude of at least one of the two asymmetries is always larger than

0.2, rmd probably larger than 0.6.

If sin 2P <0.4, then sin 2a must be positiv-in fact, above 0.2.

Once the top mass is measured firmer predictions will of course be possible, b=ed

on one of the graphs in Fig. 6.

We conclude that neutral B mesons provide many decay modes into find

CP eigenstates whiFh have CP violation purely from interference between mix-

ing and decay. The asymmetries are expected to be large, and the hadronic

uncertainties enter ~nly at 0(10–3 ).

Figure 6. The Standard Model allowed range for the =ymmetries in B + @I{s and
B + X+m- (solid curves). The 90% C.L. range is given in d~hed curves (see text).
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15. The EDM of the Neutron

The Standard Model prediction for the EDM of the neutron is extremely

small. Rrst, we discuss the contributions from quark EDMs. One loop diagrams

do not contribute. The reason is that any one loop diagrams that c~ntributes to

D~ (q = d, u) is proportional to V; Vi~; the phase cancels out and no CP violating

effects are possible. Two loop diagrams do not contribute either [73]. Here there

is no intuitive re~on. Acturdly, individual two loop diagrams ,do not vanish. But

an explicit crdculation shows that the sum of dl two loop diagrams vanishes. Con-

sequently, the leading contribution to Dn comes from three l~p diagrams. There

is no expficit calculation available, but only an order of magnitude estimate:

(15.1)

The calculation of diagrams other than Dq is subject to even larger uncertainties.

It seems unhkely, however, that Standard Model mechanisms give D“ larger by

more than three orders of magnitudes than (15.1). It seems then that, if the

KM phase is the only source of CP violation, the EDM of the neutron is much

too small to be experimentrdly observed in the foreseeable future. (This feature

makes it a very sensitive probe of physics beyond the Standard Model!)

As mentioned in our introductory discussion of the EDM of the neutron, the

QCD Lagrmgian will generally include a CP violating term of the form

LO = &OG:”G.p.. (15.2)

We found that the upper bound on D“ requires that O is extremely small, O S

10-9. The important point about the Standard Model of electroweak interactions

in this regard is that it makes it impossible to avoid this problem by requiring

CP symmetry so that there is no term of the form (15.2). The reason is that

in the Standard Model, CP is explicitly broken. The actual parameters which

contributes to Dn is not 8 but rather the combination

e= e + arg[det M]. (15.3)

Thus, without extending the Standard Model, there is no natural way to suppress

the effects of e.

16. Summay

The Standard Model predicts that dl CP violating phenomena in neutrrd

meson decays are related to the single phase of the Cabibb~Kobayashi-Maakawa

matrix. Consequently, the model is very predictive. CP violation as observed in

the 1{ system (the ~ parameter) is conveniently accommodated in the Standard

Model. Together with other (CP conserving) measurements of CKM parameters

it gives clean predictions for large CP asymmetries in neutral B decays. Their

measurement in the future will stringently test the CKM picture of CP violation.

The KM phase gives tiny electric dipole moments for the neutron and the electron.

If either of them is found in near future experiments, it will unambiguously require

a source of CP violation additiond to 6KM. On the other hand, the smallness of

D. requires extreme fine tuning of eQCD and implies that our understanding of

CP violation is incomplete.
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III. CP VIOLATION BEYOND THE STANDARD MODEL Neutral current interactions are described by

17. Extending the Quark Sector:

Z-Mediated FCNCS

17.1. lNT~ODUCTION

In this chapter, we update the analysis of Refs. [74, 75]. We study a model

with an extended quark sector. In addition to the three standard generations

of quarks, there is an SU(2) L-singlet of charge –1 /3. For our purposes, the

importat feature of this model is that it allows for CP violating Z-mediated

Flavor Changing Neutral Currents (FCNC).

To understand how these FCNC arise, it is convenient to work on the b~is

where the up sector interaction eigenstates are identified with the mass eigen-

states. The down sector interaction eigenstates are then related to the mass

eigenstates by a 4 x 4 unitary matrix 1<. Charged current interactions are de-

scribed by

z:, =~(Wp-Jp+ + W; J”-),
d (17.1)

J~- =vljfilL~kdjL.

The charged current mixing matrix V is a 3 x 4 sub-matrix of If:

V:j=I{lj for i=l,. ..,3; j=l,4 ..,4. (17.2)

Note that V is parametrized by six real angles and three phases, instead of three

angles and one phase in the original CI{M matrix. AS we shall see, all three

phases may affect CP asymmetries in B“ decays.

(17.3)

The neutral current mixing matrix for the down sector is U = VtV. As V is not

unit ary, U # 1. In particular, its non-diagond elements do not vanish:

UPq= –I{~PI{4q for p # q. (17.4)

The three elements which are relevant for our study are

Ud, =V:dV”s + VC:Vc, + V~:Vts,

Udb ‘V:dvub + Vc;vcb + Vt;vtb, (17.5)

usb =V:~V”b + V:vcb + V:Vtb.

The fact that, unlike the SM, the various Upg do not necess~ily vanish, ~lOWS

FCNC at tree level. This may substantially modify the analysis of CP asymme-

tries.

17.2. EXPERIMENTAL CONSTRAINTS ON THE Upq ELEMENTS

The flavor chmging couplings of the Z contribute to various FCNC processes:

(z) AMK, the mass difference between the neutrrd kwns. ‘

(ii) e, the CP violating parameter in the 1< system.

(17.6)

(17.7)
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(iii)

(iv)

(v)

T(K+)BR(KL + p+p–)z

T(KL)BR(Z{+ + p+v)
= 2 [(* – sin20w)2 + (sin26w)2] ‘~vUfj)2.

‘“(17.8),

B ~ e+e-x.

BR(B ~ e+e-X)z
BR(B ~ evX) =

[(* –sin20W)2 + (sinz 6W)2], ,$$1~F~j~~12.
.

(17.9)

f
zd, the mixing parameter in the B system.

(17.10)

The experimental measurements of these processes puts severe constraints

[74-77] on the flavor changing couplings of the Z boson (Um):

Ifi Ud#l < 2.4x 10-5, lIm Udal < min{6.4x 10-4, 1.3x 10-g/lRe Uds!}, (17.11)

lUdb/Vc*l s 0.037, l~sb/Vcbl <0041. (17.12)

17.3. IMPLICATIONS OF Z-MEDIATED FCNC

If ~he UP9 elements are not negligibly small, they will tiect many aspects of

physics related to CP asymmetries in B decays:

(i) Mixing of neutrrd mesons

The experimentally measured values of mixing in the Z{ and B systems cm be

explained by SM processes. Still, the uncertainties in the theoreticrd calculations

(such as in the values of B,{, f~ or V,d) allow a situation where SM processes do

not give the dominant contributions to various mixing processes. For example,

“d)b0x=oo24”’f2(yt)[o~:v]2[[-12
(17.13)

namely, the Standwd Model box diagram could contribute as httle as 370 of the

experimental value of rd, and even less if unitarity of the CKM matrix does not

hold, in which cwe the lower bound IV~d/VCbI >0.09 can be violated. Instead, it

is possible that the dominant mechanism is Z-mediated FCNC. We will now find

how large should the elements of the neutral current mixing matrix be in order

that this would be the exe.

For Z{ – ~ mixing to be dominated by Z-mediated tree level diagrams, Eq.

(17.6) requires

lRe[(Ud,)2]l > 1.4x 10-7. (17.14)

For e to be dominated by Z-mediated tree level diagrams, Eq. (17.7) requires

lIm[(UdO)2]l > O.g X 10-9. (17.15)

For Bq – Bq mixing to be dominated by Z-mediated tree level diagrams, Eq.

(17.10) requires

lU~b/Vcbl > 0.014; l~db/(V&Vtb)l ~ 0.08; l~sb/(w,Vtb)l > 0.0S. (17.16)

Note that if unituity is only weakly violated, so that lv~sv:bl w lvcavcb 1, then the

last requirement in (17.16) is in contradiction with (17.12) and cannot be fulfilled,

implying that the dominant mechanism for Bs mixing is still the Standard Model

box diagram.
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(ii) Unitarity of the 3 x 3 CI<M matrix

Within the SM, unitarity of the three generation CI{M matrix gives:

However, Eq. (17.5) shows that now Eq. (17. 17) is replaced by

A measure of the violation of (17.17) is given by

(17.18)

\Udsl/lV:dV”sl < 10-4; lush\/lv:vcb[ < 0.04; ludbl/lv:dvcbl <0.17. (17.lg)

These bounds follow from the experimental bounds given above. The first of

the SM relations is practically maintained, while the second is violated by less

tha 5y0. However, the Udb = O constraint may be violated by ~(0.2) effects: it

should be replaced by a unitarity quadrangle. A geometrical presentation of the

new relation is given in Fig. 7. It should be stressed that, at present, only the

magniiudeg of udb and Usb are experimentally constrained, but not their phases.

Each of the angles @ and ~ could be anywhere in the range [0, 2T].

(iii) Z-mediated B decays

Our main interest is in hadronic B“ decays to CP eigenstates, where the

quark sub-process is ~ ~ tii~idj, with ~i = u, c and dj = d, S. These pro-

cesses get additional contributions from Z-mediated FCNC. The ratio between

the magnitudes of the Z-mediated amplitude and the W-mediated amplitude is:

(17.20)

To bound this ratio, we use the experimental constraints in Eq. (17.12), our

requirement that mixing of Bd mesons is dominated by Z-mediated FCNC in Eq.

V,dV:b

.-

7-92 ‘Cd ‘:b 7204A3

Figure 7. The unitarity qutirangle in a model with a fourth, SU(2)L-singlet, charge -1/3
quark. Vlj are elements of tile cl~arged current mixing matrix while U~b is an element in the
neutral current mixing matrix.

(17.16), and the range 0.07< lVU~/~jbl <0.13. We find that the Z-mediated

diagrams cannot dominate the relevant B decays. They can be safely neglected

for b ~ s transitions, but maybe significant for b ~ d (3-18%).

On the other hand, diagrams with no SM tree contributions [78] now have

comparable contributions from penguin and Z-mediated tree dtigrms.

(iv) New contributions to rlz(B,)

The difference in width comes from decay modes which are common to Bq and

Bq. As discussed above, there are new contributions to such decay modes from

Z-mediated FCNC. 16 is important to note, however, that while tie contributions

to the difference in mass, N112, are from tree level diagrams, namely 0(g2 ), those

to the difference in width, r12, are still of 0(g4). Consequently, no significant

enhancement of the SM value for r12 is expected, and the relation rlj (Bg ) <<

M12(Bg) is maintained.

In summa;y, the dominant mechanism for mixing in neutral Bd systems could

1,
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