
SLAC-362
UC-405
WI

JAZELLE Users Manual

A. S. Johnson

Stanford Linear Accelerator Center
Stanford University

Stanford, California 94309

- AlGil 1990

Prepared for the Department of Energy
under contract number DE-AC03-76SFOO5 15

Printed in the United States of America. Available from the National
Technical Information Service, U.S. Department of Commerce,
5285 Port Royal Road, Springfield, Virginia 22161.

JAZELLE Users Manual

The data management system JAZELLE was developed explicitly for the SLD
experiment. While it has many similarities with earlier high-energy physics
data management systems such as YBOS and ZBOOK, it has many other
features not found in these systems. The basic data structure in JAZELLE
is called a ‘bank,’ and families of JAZELLE banks are used to store and
manage the experimental data all the way from the SLD online Vax to the
end of the reconstruction chain and physics analysis. JAZELLE replaces both
the raw data and the track-list/vertex-list used in previous SLAC experiments
such as Mark II and Mark III. Beyond this, however, JAZELLE is also used to
store calibration constants and correction factors, detector geometry, physics
parameters (such-as particles masses and branching ratios) and program
control parameters.

The structure of each JAZELLE bank is defined in a “template” file where
each element is typed (Real, Integer etc.) and named. The template file
allows a description to be attached to each element and therefore fulfills
an important documentation function as well. All data in JAZELLE banks is
referenced by name - an extremely convenient feature. JAZELLE banks can
be created and destroyed dynamically as required by a specific analysis, and
data in them can be examined or modified. JAZELLE also includes a system
of relational tables that connect related families of banks and input-output
facilities to handle input and output of data. Data written on either VM or VMS
can be read back on either system.

Revision/Update Information: Version 3.0 (SLD/MORTRAN VERSION)

Contents

PREFACE

PREFACE Xi

CHAPTER 1 INTRODUCTION

CHAPTER 2 TEMPLATES

2.1 EXAMPLE

2.2 BLOCKS WITHIN TEMPLATES 2-2

2.3 VARIABLY DIMENSIONED BLOCKS 2-3

2.4 SCOPE OF VARIABLES

2.5 USE OF TEMPLATES 2-4

2.6 DETAILED SYNTAX OF TEMPLATES 2-4
BANK OR BLOCK 2-4
PARAMETER DECLARATION 2-s
ELEMENT DEFINITION 2-6

CHAPTER 3 MANIPULATING BANKS

3.1 INTRODUCTION 3-l

3.2 USAGE 3-l

3.3 EXAMPLES 3-l

. . .
III

Contents

3.4 IMPLEMENTATION DETAILS
3.4.1 Bank ordering within families
3.4.2 Bank header

CHAPTER 4 REFERENCING JAZELLE DATA ELEMENTS FROM
MORTRAN 4-l

4.1 ACCESS TO NORMAL VARIABLES 4-l

4.2 INDEXED POINTERS

4.3 ACCESSING STRING VARIABLES FROM JAZELLE BANKS

4.4 REFERENCING ITEMS IN THE BANK HEADER

4.5 ACCESS TO JAZELLE PARAMETERS

4.6 LOOPING OVER BANKS

4.7 THE Q% MACROS

CHAPTER 5 PRODUCING DUMPS OF JAZELLE BANKS

5.1 INTRODUCTION

5.2 USAGE 5-l

5.3 EXAMPLES
5.3.1 Producing an Index of Banks
5.3.2 Producing a Dump of a Bank or Family of Banks
5.3.3 Tabulating Banks

iv

Contents

CHAPTER 6 LISTS 6-l

6.1 INTRODUCTION 6-l

6.2 USAGE 6-l

CHAPTER 7 CONTEXT 7-l

7.1 INTRODUCTION 7-l

7.2 USAGE 7-2

7.3 IMPLEMENTATION DETAILS 7-2

CHAPTER 8 USING POINTERS WITH JAZELLE 8-l

8.1 INTRODUCTION 8-l

8.2 REGISTERING POINTERS

8.3 IMPLEMENTATION DETAILS 8-2

CHAPTER 9 SEQUENTIAL INPUT/OUTPUT 9-l

9.1 INTRODUCTION 9-l

9.2 USAGE 9-l

9.3 MACHINE INDEPENDENCE OF IO 9-2

9.4 POINTER RELOCATION

Contents

9.5 EXAMPLE

9.6 IMPLEMENTATION DETAILS

CHAPTER 10 INDEXED INPUT/OUTPUT

CHAPTER 11 RELATIONAL TABLES

11.1 INTRODUCTION II-I

11.2 ASSIGNING VALUES TO KEYS II-I

11.3 USING KEYS II-2

11.4 EFFECTS OF KEYS DURING BANK DELETION II-3

Ii.5 - USING RELATIONAL TABLES WITHOUT JZTSCN

CHAPTER 12 CONSTANT MANAGEMENT SYSTEM

12.1 INTRODUCTION 12-I

12.2 USAGE 12-2
12.2.1 Reading CONSTANT Files 12-3
12.2.2 Linking Routines to Banks 12-4

CHAPTER 13 DEBUGGING AIDS WITH JAZELLE

13.1 USEFUL ROUTINES

vi

Contents

13.2 INTERACTIVE COMMANDS 13-1
PEEK 13-2
POKE 13-3
ADD 13-4
REMOVE 13-S
GET 13-6
STATUS 13-7
INDEX 13-a
MAP 13-9
PM 13-10
POINTER 13-11

13.3 USE WITH VAX DEBUGGER 13-12

13.4 USE WITH IDA 13-12

CHAPTER 14 DETAILED DESCRIPTION OF JAZELLE ROUTINES

14.1 SUMMARY OF USER ROUTINES
14.1.1 Initialization
14.1.2 Bank Creation and Manipulation
14.1.3 Producing Readable Dumps of Banks
14.1.4 Constant Manipulation
14.1.5 List Manipulation
14.1.6 Input Output
14.1.7 Pointer Handling
14.1.8 Context Manipulation Routines
14.1.9 STRING/CHARACTER Conversion Routines
14.1.10 Miscellaneous

14.2 DETAILS OF USER ROUTINES 14-3
JZBADD 14d
JZBCPY 14-7
JZBDEL 14-9
JZBDMI 14-10
JZBDMP 14-12
JZBEXP 14-14
JZPEXP 14-16
JZBFND 14-18
JZBLOC 14-20
JZBLONG 14-22
JZBMAP 14-23
JZBNAME 14-25
JZBNXT 14-26

vii

Contents

JZBTBL 14-28
JZC 14-30
JZC4 14-31
JZC8 14-32
JZFDEF 14-33
JZINDX 14-35
JZIOCL 14-37
JZIOPN 14-38
JZIORD 14-40
JZIORW 14-42
JZIOWC 14-43
JZIOWR 14-45
JZIOWP 14-47
JZKGET 14-49
JZKLNK 14-51
JZKPOK 14-53
JZKUPD 14-54
JZLCRE 14-55
JZUNC 14-57
JZLREM 14-59
JZLWIP 14-61
JZMAP 14-62
JZPCMP 14-64
JZPCPY 14-67
JZPDEL 14-69
JZPDMP 14-70
JZPIDX . _ 14-72
JZPM 14-73
JZPREG 14-75
JZS 14-77
JZS4 14-79
JZS8 14-80
JZSTAT 14-81
JZSTRT 14-83
JZTDEF 14-84
JZTDFL 14-86
JZTMOD 14-88
JZTSCN 14-90
JZVERS 14-92
JZXWIP 14-93

APPENDIX A CONTROLLING JAZELLE’S GLOBAL PARAMETERS A-l

APPENDIX B JAZELLE UTILTIES PROGRAMS B-l

. . .
VIII

Contents

APPENDIX C DEFINING USER DATA TYPES C-l

APPENDIX D MAPPING COMMON BLOCKS TO BANKS D-l

APPENDIX E ERROR CONDITIONS E-l

INDEX

ix

Preface

. -

X

Acknowledgments
The JAZELLE data management system has been written for the SLD
collaboration by Tony Johnson ‘and Dave Sherden with much help from
visiting students Will Ballentyne, Helmut Hissen and Sean Sterner. In
addition, much constructive input has come from many collaborators
including; D.Aston, G.Baranko, C.Boeheim, M.Briedenbach, T.Burnett,
R.Dubois, M.Gravina, PKunz, L.Rochester, and O.&&on.

Intended Audience
This manual is intended to be read by all Jazelle users. Some small
knowledge of SLD MORTRAN and the SLD ERROR system is assumed,
reading the appropriate color books before this manual should prove
sufficient.

Users encountering JAZELLE for the first time should find it sufficient
to read the first five chapters which introduce all the concepts that are
required for successful use of JAZELLE. Each chapter starts with a simple
introduction and then progresses into more and more detail, so the later
sections of each chapter should probably be omitted on a first reading.

For users who are already familiar with previous versions of JAZELLE,
a list of changes between versions is included in the preface. Browsing
through this list should alert users to any new features which they may
be interested in. -A comprehensive index is provided at the back of the
manual to allow individual features of interest to be looked up.

The last chapter of the manual contains a reference section listing all of
the user routines and their arguments. This section should be useful as a
reference for experienced users.

Finally if you should experience any problems with this manual, or while
trying to use JAZELLE please do not hesitate to ask me about your
problems. I can be contacted at office G106 in the central lab, extension
2278, or as TONYJ@SLACVM.BITNET.

Update History
Changes Introduced for JAZELLE 3.0

To be supplied.

Changes Introduced for JAZELLE 2.2

Indexed Pointers

Indexed pointers have been added to JAZELLE. These pointers provide an
alternate method of accessing banks using an array indexed by bank Id
containing pointers to banks within a family Index pointers are discussed
in the chapter on referencing JAZELLE data elements.

A new user routine JZPIDX is provided to initialize indexed pointer arrays.

xi

Preface

Templates

A new bank qualifier, MAXID is added. This allows an upper limit for Id’s
within a family to be specified, used primarily with the indexed pointer
scheme.

Relational Tables

A new routine JZTSCN is provided to simplify the task of scanning a
relational table to find occurences of a given key value.

Backward Compatibility

JAZELLE release 2.2 is fully backward compatible.

Changes Introduced for JAZELLE 2.1

Input/Output

A new set of IO routines are installed. These routines are more efficient
than the old routines.

Input and output of entire contexts is now supported.

Opening files by name on VM and VMS is now supported.

Backward Compatibility

JAZELLE 2,l is backward compatible except for the following restrictions:

i Datasets written with previous versions of JAZELLE cannot be read
with JAZELL-E 2.1.

ii The arguments to some 10 routines, in particular JZIOPN, have
changed.

iii The default action on reading in a bank which already exists has
changed.

Changes Introduced for JAZELLE 2.0

Templates

TPLPAR files are now completely obsolete. The template command still
exists but is just a tool for checking the syntax of TEMPLATE files.

TEMPLATE files may now contain continuation lines.

The comment delimiter may occur at any position within TEMPLATE file
lines.

New derived datatypes have been defined, namely COMPLEX, STRING20
and KEY.

New element qualifiers may be specified in TEMPLATE files, namely
TABULATE and HEADING.

POINTERS and KEYS in banks can now be bound to families. I.e. the
syntax

POINTER TRACK->MCTRACK

is now supported in banks.

xii

Preface

Context

The concept of CONTEXT is now supported within JAZELLE. Statistics on
memory usage will be available on a per-context basis.

Context wipe (deleting all banks within a context) is now supported.

Pointers

The implementation of pointers has significantly changed. All changes
should however be backward compatible with previous releases of
JAZELLE.

Pointers are now fully relocatable. I.e. they will continue to point to a
bank even after that bank is contracted or expanded.

Pointers in user code can now be registered using JZPREG. Dumps of all
registered pointers can now be generated.

Registered user pointers and bound pointers in banks will be zeroed when
ever a bank in the same context is deleted.

The concept of a pointer to a family (as returned by JZBLOC) has been
formalized.

Debug Aids

An additional routine JZMAP has been provided to produce a map of
virtual memory usage.

A routine JZSTAT has been produced to provide statistics on JAZELLE
memory usage. -

A new routine JZPM has been provided to produce a JAZELLE post
mortem. In addition, a post mortem will automatically be produced
whenever a fataL JAZELLE or GETVM error occurs and whenever an
access violation (VMS) or OC4/5 (VM) occurs.

Dump Routines

A powerful new routine will be provided for producing dumps of banks
as tables. The routine can be used to tabulate blocks inside banks or to
tabulate entire families of banks (or a combination of the two). The new
routine is called JZBTBL.

Elements to be tabulated can be specified in the template or using the
JZTDEF routine.

Constants Management

An interim system for managing constants is provided.

Relational Tables

The concept of a relational table (modeled on relational databases) is now
supported via the new KEY data type.

When banks are deleted any banks which have KEYS referring to that
bank will also be deleted.

Preface

Backward Compatibility

JAZELLE 2.0 is backward compatible with previous releases of JAZELLE
subject to the following restrictions.

i All code which refers to JAZELLE variables will have to be recompiled
with the new release of MORTRAN available with JAZELLE 2.0.

ii No i/o package is available with JAZELLE 2.0. This will be rectified
soon with JAZELLE 2.1.

iii The old Q% method of referencing variables is now officially obsolete.
Code using the Q% syntax will continue to compile but JAZELLE will
issue a warning message. The Q% syntax will be removed completely
soon.

iv The following user routines are obsolete having been replaced by more
powerful routines: JZDUMP replaced by JZINDX JVPEEK replaced
by JVSHOW

xiv

!

1 Introduction

JAZELLE is a data management package, designed to provide facilities
for data structure manipulation considerably more powerful than those
provided by standard FORTRAN 77. Since JAZELLE is built on top of
FORTRAN it cannot hope to provide the level of integration between
program design and data structure typical of more modern languages, but
by the use of data structure definitions (called “TEMPLATES’ in JAZELLE
jargon) and the power of MORTRAN macros, JAZELLE attempts to
make the use and manipulation of data structures within programs as
unobtrusive as possible.

The basic element from which JAZELLE data structures are built is
called a bank. Just like the familiar FORTRAN common block, a bank
may contain any combination of variable types such as INTEGER, REAL,
STRING etc.. Banks may contain both scalar elements and vectors.
Unlike common blocks however, JAZELLE banks can be dynamically
created and destroyed during program execution and also expanded or
contracted as the need arises. In addition to this JAZELLE provides
facilities for inputting and outputting banks, and for interactively
examining and modifying the contents of banks.

Jazelle banks are grouped into families, each of which has a unique
“family name”. Each family has a template which defines the structure of
the banks belonging to that family. All banks within a family therefore
share the same structure. In addition to the family name each bank has
an associated ID, which is an integer in the range O-65535. In order to
uniquely identify a bank it is necessary to specify its family name, ID and
context. Context will be defined in a later chapter, but for now it is only
necessary to know that it is an 8 character name associated with every
bank.

When used, banks can be referred to in two ways, either by the bank name
and ID described above or by a pointer. A pointer is simply a variable
which contains the address of the bank in memory, i.e. a variable that
“points” to the bank. Pointers can either be normal FORTRAN variables
or they can be elements in banks. In the second form they allow banks
to point to other banks and this enables banks to be logically grouped
together to build up arbitrarily complex data structures.

The remainder of this manual describes in more detail the various features
of JAZELLE. In Chapter 2 templates are discussed in detail. Chapter 3
gives a brief introduction to creating and manipulating banks. In chapter
4 we explain the use of MORTRAN macros for accessing the contents of
banks. Chapter 5 deals with producing human readable dumps of banks.
The remaining chapters then go on to discuss some of the more advanced
features of JAZELLE. Finally the last chapter lists all of the user routines
and describes their arguments and functions.

l-l

2 Templates

The data structure of a JAZELLE bank of a given family is described by a
template of the same name as the family. Template information for a given
family is derived from a human readable/editable file of type TEMPLATE.
The TEMPLATE file is used by MORTRAN (and IDA) in such a way as
to allow named access to any element within the data structure from any
MORTRAN (or IDA) program.

Template information is also read into memory during program execution
and used to allocate banks and perform VMWM IO conversion. Because
data elements within templates are named, this information can be further
used in dumping, displaying, and accessing the data interactively.

The syntax of the TEMPLATE file allows descriptions to be attached to
each of the banks defined, and also to each element within a bank. Thus
well written TEMPLATE’s will also contain all the information necessary
to document the data structure defined.

2.1 Example
Before going on to describe the full syntax of a template file it will
probably prove instructive to examine a simple example, and then to
examine some of-the more specialized features of templates.

The above template defines a family of banks whose family name is
NONSENSE. The template then goes on to define the structure that each
bank of family nonsense will have. Even without much explanation the
structure of the bank should be fairly clear from the example. Note that
the syntax and meaning of each variable declaration is very similar to
FORTRAN, but a few differences should be pointed out.

l Multiple dimensions on one variable are not allowed, e.g. REAL
D(lO,lO) is illegal. However there is a way around this problem which
is described under the heading “blocks within templates” below.

l Each variable and the bank itself has a description associated with
it. This description is more than just a comment since it is stored in
memory and can be optionally output along with each variable when
the data is dumped.

l Rather than the familiar CHARACTER type of FORTRAN, JAZELLE
has a type STRING. Note that the statement STRING F(80) defines
a string of length 80 characters, i.e. it is similar to the FORTRAN
statement CHARACTER*80 F. JAZELLE provides a special set
of routines to convert from its internal string representation to
FORTRAN’s character representation.

2-l

Templates

l JAZELLE has the concept of a block. In the above example the bank
NONSENSE has a block called P, which is repeated 5 times. Each of
the five occurrences of the block contains a string F and an integer I.
The use of blocks will be described further below.

2.2 Blocks within Templates
The example discussed above already contained a simple example of a
block within a template. Blocks are used whenever it is desirable to
group a set of variables together logically. They are particularly useful
when it is desired to repeat a set of variables a number of times as in the
NONSENSE example above. Blocks may occur anywhere within a bank,
including within other blocks. Blocks also provide a means of effectively
creating multiple dimension arrays. Consider the following bank for
instance.

BANK CUBE CONTEXT=XYZ NOMAXID

PARAMETER DIM=3

BLOCK X(DIM)
BLOCK Y(DIM)

PARAMETER VALUE=5
INTEGER Z(DIM)/DIM*VALUE/

ENDBLOCK
ENDBLOCK

ENDBANK

The variable Z now has three indices associated with it. The index for
block X, the index for block Y and the index of Z itself. It therefore
effectively represents a 3x3x3 matrix. Also note the use of the JAZELLE
parameter statement in the above example.

All of the blocks discussed so far have been what are called “internal
blocks”. JAZELLE also supports the concept of an external block. External
blocks are defined and used as follows.

BLOCK TRACK

REAL MOMENTUM(3)
REAL MASS
INTEGER CHARGE

ENDBLOCK

BANK DECAY CONTEXT=VERTEX NOMAXID

TRACK IN(l)
TRACK OUT(2)

ENDBANK

In this example an external block called TRACK has been defined.
Information stored with each track consists of its momentum, mass and
charge. The block TRACK is used in bank DECAY. Note that external
blocks are referenced as if they were a variable type such as INTEGER or
REAL. External blocks therefore allow users to define their own variable
types in addition to the standard ones provided by JAZELLE.

2-2

2.3

Templates

Variably Dimensioned Blocks

2.4

So far each bank that we have discussed has been of fixed size. JAZELLE
also offers the possibility to have variable dimensions within banks. Only
the last element or block of a bank may be variably dimensioned. Consider
the following example:

BANK VARIABLE CONTEXT=JUNK NOMAXID

INTEGER NELEMS 'Repeat count of variable block VBLK'

BLOCK VBLK(NELEMW20) 'Variably dimensioned block'
INTEGER A(101 'Array A within VBLK'
REAL B(20) 'Array B within VBLK'

ENDBLOCK
ENDBANK

In this example the dimension of VBLK is not fixed, but is in fact specified
as an integer defined previously in the bank. Since only the last block of
a bank may be variable dimensioned it follows that each bank can have at
most one variable dimension.

Whenever a bank contains a variable dimension JAZELLE keeps track
of two quantities associated with the dimension. These are called the
“allocated repeat count” and the “used repeat count”. The allocated repeat
count is controlled by JAZELLE and represents the maximum value for
the variable dimension which JAZELLE has allocated memory for. The
used repeat count, which is stored in the variable associated with the
variable dimension (NELEMS is this example), represents the elements of
VBLK which have actually been used by the user. JAZELLE maintains
the allocated repeat count, whilst the user controls the used repeat count,
and it is the users responsibility to always check that the used repeat
count is less than or equal to the allocated repeat count. If necessary
the allocated repeat count can be increased or decreased by expanding or
contracting the bank as discussed in the following chapter.

Whenever a bank is created the used repeat count is set to zero. The
allocated repeat count is set to 10, unless a different value is specified in
the template. In the above example the allocated repeat count would be
set to 20 (controlled by the ~20 in the BLOCK VBLK declaration). The
value specified in the template can also be overriden when the bank is
created, as discussed later.

Scope of Variables
Bank names and external (but not internal) block names are global. Hence
their names must be unique and should follow SLD naming conventions
(which the examples do not). Element names within templates and the
names of parameters are local. Hence their names need not follow global
naming conventions and need be unique only within the scope in which
they are defined. The scope of any variable is the bank or block in which
it is defined.

2-3

Templates
Use of Templates

2.5 Use of Templates
Templates are used by MORTRAN when compiling a program and they
are also read by JAZELLE when a program is run in order to control the
creation and deletion of banks. It is extremely important that when a
program runs it accesses the same version of the template which was read
by MORTRAhI at compile time, otherwise the program will not be able to
access the data structures correctly. A template command is available to
check the syntax of template files. The form of this command is identical
on the VAX and the IBM, namely:

TEMPLATE template-name

where template-name is the name of a file whose file type is
TEMPLATE, and which contains the template(s) to be compiled.

2.6 Detailed Syntax of Templates
A template file may contain bank templates and/or block templates. The
only difference between a bank and a block is that a bank template defines
a complete data structure, whilst a block template defines a structure
which can only exist within a bank. Comments may be placed anywhere
inside a template preceded by an ! (exclamation mark). Continuation lines
are allowed, and identified by a trailing - (minus sign) on the line to be
continued.

BANK or BLOCK __ -
The BANK and BLOCK statements are used to delimit banks and blocks
respectively. Each TEMPLATE file must contain at least one BANK or BLOCK
statement.

Format

BANK Bank-name Bank-qualifiers
Declarative-statements

.

.

.

ENDBANK

BLOCK Block-name
Declarative-statements

.

2-4

Templates
BANK or BLOCK

ENDBLOCK

Bank- qualifiers:
DEMAND-ZERO
CONTEXT=name
MAXID=n I NOMAXID

DESCRIPTION Bank- name is the name of a bank. It may contain l-8 characters. It
must start with a letter and consist of any of the characters (A-Z),(OS) $
and _. Block-name is the name of a block. It may contain l-8 characters.
It must start with a letter and consist of any of the characters (A-Z>,(O_S)
$ and _. Bank-qualifiers are used to modify some properties of the bank.
The legal qualifiers are summarized below.

l DEMAND-ZERO Requests that when this bank is created all
elements should be set to zero.

l CONTEXT=name Defines the default context for this bank. This
qualifier is mandatory. name may be any l-8 character name.

l MAXIDEn Specifies a maximum Id which banks in this family can
take. If specified n must be in the range l-32768. If NOMAXID
is specified banks may have any Id up to 65536. This qualifier is
mandatory. -

A Declarative-statement may be either a JAZELLE
Parameter-declaration or an Element-definition. The syntax for
both of these are given below.

Parameter declaration

Used to define constants or parameters within a TEMPLATE.

Format
PARAMETER Parm-name=Value [, Par-m-name=value]...

DESCRIPTION P arm-name is the name of the parameter being defined. It must obey
the normal JAZELLE naming conventions (ie l-8 characters starting with
a letter). Value is the value assigned to the parameter. It may be any
string of up to sixteen characters.

23

Templates
Parameter declaration

Parameters may be defined anywhere within a template, but they can only
be referred to following the point at which they are defined. The scope
of the parameter is within the block/bank in which it is defined, and any
sub-blocks contained within that block. The name of any parameters must
be unique with respect to other parameters and variables in the same
bank.

Parameters may be used as dimensions, as initial values and as initial
value repeat specifiers. Parameter values are also accessible within
MORTRAN or IDA programs, using the P% macro discussed later.

Element definition
Used to define elements within banks.

Format

Type Variable [Qualifiers] “Description ’

Variable:
[/initial_ values/J

initial- values:

Type:

Variable-name [([First:]Last)][binding-expression]

[repeatcoun t*]initial_ value [, . . .] .
Intrinsic- type
Derived- type
User-defined- type

2-6

Templates
Element definition

Intrinsic- type:

Derived- type:

Qualifiers:

INTEGER
HEX
LOGICAL
REAL
PTR
STRING*4
INTEGER*4
HEX*4
LOGICAL*4
REAL *4
POINTER
STRING *8
INTEGER*2
HEX*2
LOGICAL*1
REAL *8
STRING

STRING*20
KEY -
COMPLEX

FMT=format_descriptor
TABULATE
HEADING=column-heading I

DESCRIPTION ‘Qv d fi e e nes the type of the variable. There are three categories of
JAZELLE types, intrinsic, derived and user defined. Generally the
three types may be used in exactly the same way, although there are
a few restrictions which are mentioned below. A user defined type is
indicated either by using the word BLOCK for type, in which case the
block definition must immediately follow, or by specifying type as the
name of an external block defined elsewhere.

Qualifiers all effect the way in which a variable is displayed and will be
discussed later in the chapter on displaying banks.

Description is a l-80 character description of the variable. When a
detailed dump of a bank is requested this description will be printed with
each variable dumped.

Variable-name is a l-8 character name. The name must start with a
letter and must contain only letters, digits or $ and _.

2-7

Templates
Element definition

First and Last if present denote that the variable is a vector with indices
covering the range First- Last. If First is omitted it defaults to 1. The
dimensions may be specified as either:

l An integer

l A JAZELLE parameter

l A variable (See “variable dimension blocks” above.)

Binding expression may only be specified when the variable type is
POINTER or KEY. The format of the binding expression is ->family-name,
where family-name is the name of the family which the pointer or key will
point to.

Initial-Values defines values which this element will be initialized to
when the bank is created. Only JAZELLE intrinsic types may have initial
values.

Repeat-count is an integer or JAZELLE parameter specifying the
number of times the proceeding initial value is to be repeated (c.f.
FORTRAN DATA statements). The total number of values specified must
be one if the associated variable is a scalar, or the number of elements if it
is a vector.

Initial-value Is the value to be assigned to the variable. The type of
the initial value must be appropriate to the variable. The initial-value
can also be specified as a JAZELLE parameter. The format of the value
specification for various types is shown in the table below.

. -
Type Syntax

INTEGER, HEX [%X I %D] [+ I-] Digits

STRING “string’

LOGICAL T I TRUE I YES
F I FALSE I NO

REAL [+ I-] [digits][.][digits][E[+ I -]digits]

POINTER, KEY integer I bankname I bankname

COMPLEX real I (real,real)

2-8

3 Manipulating Banks

3.1 Introduction
Data in Jazelle are allocated in banks, with a single bank being a
contiguous data structure, consisting of a header and a data region.
Banks of common format are grouped together into families. A bank is
uniquely identified by the combination of an 8-character family name, a
16-bit bank ID, and an El-character context name. For most applications
the family name and Bank ID suffice to uniquely identify the bank.

Banks may be dynamically allocated or deleted during program execution,
and thus do not have static addresses in memory. Hence, to access data
in a bank, one must first have a pointer to the bank specifying its location
in memory. Given such a pointer, data within the bank can be accessed
directly, as will be discussed in Chapter 4. The present chapter deals with
the creation and deletion of banks and the means of obtaining pointers to
specific banks.

3.2 Usage
The principal routines for the manipulation of single banks are:

l JZBADD - Create (add) a new bank

l JZBDEL - Delete a bank

l JZBEXP - Expand/contract the size of a bank

l JZBFND - Find pointer to an individual bank

l JZBLOC - Locate a family of banks

l JZBNXT - Find the next bank of a given family

3.3 Examples
Jazelle routines make extensive use of optional arguments in order to
allow simple calling sequences. In the examples below, we do not attempt
to fully describe all arguments, but rather present some simple examples
as introductory material. The full description of the individual routines is
given in Chapter 14.

All programs must include a one-time call to JZSTRT, which initializes the
Jazelle system:

$CALL JZSTRT ERROR RETURN;

In its simplest form, a call to create a new bank in the family NONSENSE
would look like

$CALL JZBADD('NONSENSE', NSPTR, NSID) ERROR RETURN;

3-1

Manipulating Banks

Here ‘NONSENSE’ is the name of the desired family; NSPTR and NSID
are returned as the pointer and ID of the newly created bank. The same
bank could be deleted through the call

$CALL JZBDEL('NONSENSE', NSID) ERROR RETURN;

If, in another subroutine, the pointer to the bank were unknown, it could
be found using

$CALL JZBFND('NONSENSE', NSPTR, IDOUT, NSID) ERROR RETURN;
IF (NSPTR .EQ. 0) [. . . I

Here ‘NONSENSE’ and NSID are input parameters specifying the desired
family name and bank ID. NSF’TR is the returned pointer to the bank.
IDOUT is in this case superfluous, and is the returned ID of the bank
found (= NSID in this case). The argument NSID may also be input as
‘FRST’ or ‘LAST’, or may be omitted entirely, in which case it defaults
to ‘FRST’. This allows one to find the first or last banks of a family For
example,

SCALL JZBFND('NONSENSE', NSPTR, NSID) ERROR RETURN;
IF (NSPTR .EQ. 0) [. . . I

would find the first bank of family NONSENSE, and return its pointer and
bank ID in NSPTR and NSID respectively.

The check against 0 of the returned pointer NSPTR is required in order to
determine whether or not the requested bank exists. Most JAZELLE
routines do not consider the non-existence of a bank to be an error
condition, instead they return an error severity of information. Thus
an alternative way to test for the existence of a bank would be to specify:

SCALL JZBFND('NONSENSE', NSPTR, NSID) ERROR RETURN;
IF SSEVERITY>SSUCCESS [. . . I

See the SLD error system manual for more details of how to test for error
conditions.

It is frequently desirable to “chain” through the banks of a family. Given
a pointer NSF’TR to one bank of a family, a pointer NXTFTR to the next
bank of the same family can be obtained using

SCALL JZBNXT(NSPTR, NXTPTR) ERROR RETURN;
IF (NXTPTR .EQ. 0) [. . . I

Note: The use of JZBNXT is generally discouraged in cpu-time sensitive
applications. See Section 4.6 for alternative ways of accessing the
next bank in a family.

The reader is referred to Chapter 14 for a more complete specification of
these and other routines.

3.4 Implementation Details

3-2

Manipulating Banks

3.4.1 Bank ordering within families
In calls to JZBADD application routines may specify a particular ID, or
allow JZBADD to assign an arbitrary ID. In all cases, banks of a given
family will be linked together in order of monotonically increasing, but not
necessarily consecutive, bank ID. If assigned by JZBADD, the bank ID of
a created bank will be one greater than that of the last previously existing
bank of that family.

3.4.2 Bank header
With the exception of the header parameters JB$VBALO and JB$FORF’T,
application routines will rarely need to access data in the bank header.
For reference we list the elements of the bank header and their byte
offsets from the data region of the bank. These parameters are defined in
MORTRAN macros whose use will be discussed in Chapter 4.

Parameter Use

JB$FORPT Pointer to next bank of family
JB$BAKPT Pointer to previous bank of family
JB$ID Bank ID
JB$FAMLY Pointer to family block
JB$VBALO Allocated variable block count (banks with variable dimensions only)

. -

3-3

4 Referencing JAZELLE Data Elements from Mortran

Access to Normal Variables
By exploiting the power of MORTRAN it has been possible to make
references to variables in JAZELLE banks look very similar to normal
array references in FORTRAN. References to JAZELLE variables always
contain a % sign so that people reading the code can easily differentiate
JAZELLE references from normal array references.

Before a JAZELLE element can be accessed a pointer which points to the
bank must be available. A pointer can be declared using the POINTER
statement. A typical POINTER declaration looks like:

POINTER BPTR-->NONSENSE, CUBEPTR-->CUBE;

This statement declares a pointer BPTR which will be used to point to
banks in family NONSENSE, and a pointer CUBEPTR which will be
used to point to family CUBE. MORTRAN must know which family BPTR
will be used with so that it can correctly calculate the offsets of elements
within the bank. After BPTR has been assigned a value (see previous
chapter), elements of the bank can be referred to in the following manner.

BPTR%(A)
BPTR%(D(5)) - -
BPTR%(X(K-1))

In the first example a scalar element A in bank NONSENSE is referenced.
In the last two examples array elements are referenced. The array index
can consist of any valid FORTRAN expression.

References to JAZELLE variables can be used anywhere that a normal
variable may be used in FORTRAN, e.g.

A=BPTR%(A);
BPTR%(A)=E*I;
BPTR%(D(5))=BPTR%(A)*BPTR%(B);

When the JAZELLE variable to be accessed exists within a sub-block then
a path name must be used to access the variable. For example to access
an element of bank CUBE defined in chapter 2 a reference of the form

CUBEPTR%(X(l),Y(2),2(3))

would be used. The POINTER macro can also be used to declare arrays of
pointers as in the following example.

POINTER APTR(lO)-->NONSENSE;

APTR(4)%(A)=5;
APTR%(A)=O; n using pointer array without index defaults l

" to element 1 l

Referencing JAZELLE Data Elements from Mortran

‘lb access any JAZELLE variables, routines should include the signpost
common block /JAZELL/. Thus to access the NONSENSE bank it is
necessary to include the following line at the top of the program.

'© FROM JAZELL.COMMON l

Indexed Pointers
Indexed pointers provide an alternative method of accessing banks.
Instead of using the POINTER macro users may use the $USEBANK
macro. The $USEBANK macro accesses a common block consisting of an
array which contains pointers to each bank in a family.

Indexed pointers are simpler to use than local pointers, especially for
people who have suffered prolonged exposure to FORTRAN and who may
be unfamiliar with the use of pointers in other languages. On the other
hand indexed pointers suffer from some limitations compared to local
pointers:

l Due to the necessity of generating a fixed size common block to contain
the indexed pointer it is necessary to specify a maximum ID that
this family will contain. This maximum ID is then used as the upper
dimension of the indexed pointer array. The maximum ID is specified
using the MAXID qualifier in the bank template.

l Indexed pointers are implicitly one dimensional, whereas local pointers
may have any number of dimensions.

l The use-of explicit ID’s for banks can be very restrictive in some
advanced applications. For, instance overlaying two event is trivial if
they are described using local pointers, but is much more difficult if
they are described using explicit ID’s as the ID’s in the two events will
clash.

Indexed pointer arrays are declared in each routine that they are used in,
using the $USEBANK macro. The format is:

SUSEBANK family1 [,family21 ;

Any number of families may be specified on one $USEBANK statement,
with each name separated from the previous name by a comma. Each
family specified causes an indexed pointer array of the same name as
the family to be accessed. The layout and contents of the indexed pointer
array are given below:

Element’ Meaning

J$FIRST
J$LAST
J$MAXID

ID of first bank in family2 (i.e. lowest ID existing)
ID of last bank in family2 (i.e. highest ID existing)
Maximum ID allowed (as specified by MAXID in template)

‘Array is dimensioned (J$STARTMAXID).
‘If there are no banks existing then element J$FIRST will be greater than element
J$LAST, thus ensuring that loops from first to last will be zero trip.

4-2

Referencing JAZELLE Data Elements from Mortran

4.3

Element’ Meaning

J$NUMBER
J$FAMILY
0-MAXID

Number of existing banks in family
Family pointer for this family
Pointer to bank of this ID or 0 if bank does not exist

‘Array is dimensioned (J$START:MAXlD).

The indexed pointer is in a common block of the same name as the
family Due to the temporary restriction that SLD common block names
should be limited to seven characters, the names of families used with the
$USEBANK statement should also be kept to seven characters. Failure to
comply with this restriction will cause PREPMORT to generate a warning
message when the routine is compiled.

In the current version of JAZELLE it is necessary for each indexed pointer
array to be initialized using the routine JZPIDX. Since the array is stored
in a common block it is only necessary for it to be initialized once in any
program. (Subsequent initializations of the same indexed pointer will
be ignored.) Once the array has been initialized for a given program
JAZELLE will continue to keep it up to date as banks are added or
deleted.

An example of the use of indexed pointers is given below:

SUSEDANK TRACK;

ETOT=O;

DO ID=TRACK(J$FIRST),TRACK(JSLAST)

[IF TF.ACK(ID)<>O [ETOT=TRACK(ID)%(ENERGY); 1 1

Accessing STRING Variables from JAZELLE banks
The representation of STRING variables within JAZELLE is not exactly
the same as the representation of CHARACTER variables within
FORTRAN. Therefore a set of JAZELLE routines exist which can be
used to convert CHARACTER to STRING and STRING to CHARACTER.
There are three types of JAZELLE string variables, namely STRING*4,
STRING*8 and STRING. One routine exists for converting to/from each
type of string variable. The following example demonstrates the use of the
conversion routines.

CHARACTER*80 C80,JZC ; 'JZC must be declared as large as the largest '
CHARACTER*8 C8 ,JZCE; 'string it will be used to convert .
CHARACTER*4 C4 ,JZC4;

INTEGER JZS,JZSI;
REAL*8 JZSE; 'JZSE must be declared RSAL*E! .

POINTER SPTR-->SBANK;

' String ---> Character .

CEO=JZC(EO,SPTR%(SEO));
C8 =JZCE(SPTR%(SE));
C4 =JZCII(SPTR%(S4));

' Character ---> String '

Referencing JAZELLE Data Elements from Mortran

SPTR%(S4)=JZS4(C4);
SPTR%(SE)=JZSE(CE);
SCALL JZS(80, SPTR%(S80),C80);

Where the template for SBANK is:

Bank SBANK CONTEXT=EXAMPLE NOMAXID 'Example of using STRINGS'

STRING SEO(80) 'String of length 80 characters'
STRING*8 SE 'String of length 8 characters'
STRING*4 S4 'String of length 4 characters'

Endhank

4.4 Referencing Items in the Bank Header
Elements of the bank header are referenced in a manner completely
analogous to elements of the data. All that is needed is to know the names
by which JAZELLE refers to the items in the header. These names are all
given in Section 3.4.2.

Items in the header can now be referred to using the references of the
form:

BPTR%(JB$ID)
BPTR%(JBSFORPT)

The elements in the bank header may be freely examined, but the only
items normally of interest to users are JB$VBALO, JB$FORPT and
JB$BAKPT. Care should be taken never to attempt to modify any element
in the bank header as this will almost certainly result in disaster.

. -

4.5 Access to JAZELLE parameters
The values assigned to JAZELLE parameters in TEMPLATE definitions
may be accessed from MORTRAN programs using the P% macro. For
instance, to access the parameter DIM from bank CUBE (Section 2.2) a
statement of the form

A=P%(CUBE,DIM);

is used. It is, of course, not possible to assign values to parameters.
Parameters defined within sub-blocks are accessed using a path-name is
direct analogy to accessing variables from within sub-blocks; e.g.

A=P%(CUBE,X,Y,VALUEl;

4.6 Looping over Banks
It is often desirable to loop over all of the banks in a family One way
of doing this is to use the JZBFND routine to find the first bank in the
family and then the JZBNXT routine to progressively step to the next
bank until the last bank is reached. This method has the disadvantage
of requiring one routine call for each bank and is thus too inefficient for
many applications.

Referencing JAZELLE Data Elements from Mortran

A better way of looping over families is to make use of the JZBLOC
routine and the JB$FORPT element in the bank header. The JZBLOC
routine returns a pointer to the entire family of banks. This pointer is
referred to as the “family pointer”. The family pointer is always available
and never changes during the execution of a program and can therefore be
found once and then stored in a local variable for future use. The following
example illustrates how to loop over a family of banks using JZBLOC and
JB$FORPT.

POINTER BPTR-->NONSENSE, BPTRO-->NONSENSE;
LOGICAL FIRST/.TRUE./;

IF FIRST [SCALL JZBLOC('NONSENSE',BPTRO) ERROR RETURN; I

BPTR=BPTRO;
LOOP [

BPTR=BPTR%(JBSFORFT);
IF BPTR=O [EXIT; 1

Note that this method of looping over banks will work even if there are
no banks in the family (the loop will then be a zero-trip loop). Since this
construct is so common in programs written using JAZELLE a special
statement called BANKLOOP has been incorporated into SLD MORTRAN.
Using BANKLOOP the above example would be replaced with:

POINTER BPTR-->NONSENSE, BPTRO-->NONSENSE;
LOGICAL F1RSTI.TRUE.I;

IF FIRST [SCALL JZBLOC('NONSENSE',BPTRO) ERROR RETURN; I
. -

BANKLOOP BPTRO,BPTR [

The BANKLOOP example would work in exactly the same manner as
the previous example, but is slightly clearer to read. EXIT and NEXT
statements can be used inside a BANKLOOP construct in the normal
way. See the SLD MORTRAN manual for a complete description of the
BANKLOOP statement.

Yet another way to loop over banks in a family is to use indexed pointers.
The following example illustrates how to create a loop using indexed
pointers.

SUSEBANK NONSENSE;
LOGICAL FIRST/.TRUE./;
INTEGER I;

IF FIRST [SCALL JZPIDXt'NONSENSE') ERROR RETURN; 1

DO I=NONSENSE(JSFIRST),NONSENSE(JSLAST) [
IF NONSENSE(I)=0 [NEXT; 1

4-s

4.7

Referencing JAZELLE Data Elements from Mortran

The Q% Macros
In addition to the ways of accessing variables described earlier another
means of accessing variables also exists, namely to use the Q% set of
macros. These macros are obsolete having been superceded by the macros
described earlier but they are described briefly here as they may be
encountered in some older programs.

Q%(BPTR, NONSENSE, A) is equivalent to BPTR%(A)
Q%(BPTR, NONSENSE, D(5)) is equivalent to BPTR%(D(S))
Q%(BPTR, NONSENSE, P(3),1) is equivalent to BPTR%(P(3),1)

. -

Producing Dumps of JAZELLE Banks

5.1 Introduction
This chapter deals with producing human readable dumps of the contents
of JAZELLE banks. Routines are available to produce an index of all
the existing banks, to produce dumps of banks, and to produce tabulated
output from banks.

When outputting banks JAZELLE attempts to make the output as
readable as possible. In so doing it uses an algorithm which attempts
to maximize the aesthetic quality of the output by varying the number
of columns in the output and the space allocated to each element. When
outputting individual elements JAZELLE always attempts to output the
variable using the minimum space possible, except that all elements of an
array, or all items in one column are always output using the same format.
Real numbers are always output to five significant figures l. Users may
override JAZELLE’s default output format by using an explicit format
qualifier in the TEMPLATE for any element, e.g.

REAL X FMT=F6.3 'This variable is always output in F6.3 format'

All JAZELLE dump routines have a common set of three optional
arguments that control the output from the routines. These arguments
are described below:

l LUN - Logical unit number for output, default 6.

l LEVEL - Level of detail requested, O=Brief, l=Average, 2=Verbose.
Default varies.

l WIDTH - Width of output, default 80. This argument controls the
maximum width of the output produced. Useful values are normally
80 when the output will be viewed at the terminal, and 132 when it
will be printed on the line printer.

Usage
The following routines are discussed in this chapter:

l JZINDX - Produce an index of all banks or of one family

l JZBDMI - Dump a bank or a family of banks

l JZBDMP - Dump a bank

l JZBTBL - Tabulate one bank or a family of banks

l JZTDEF - Add a column to a table

1 See Appendix A for a method of overriding this default

5-I

5.3

5.3.1

5.3.2 Producing a Dump of a Bank or Family of Banks

Producing Dumps of JAZELLE Banks

Examples
This chapter gives only some example of how to use the various routines
discussed. Complete details of all arguments etc. are given in Chapter 14.

Producing an Index of Banks
The routine JZINDX is used to produce an index of currently defined
banks. It can be used to produce an index of all banks, or of the banks of
one particular family, as shown by the examples below:

SCALL JZINDX(' ') ERROR RETURN;
SCALL JZINDX('MCROOTS') ERROR RETURN;

The output produced by the calls might look something like:

Bank Number Title
MCLUNDPM 1 MC generator control bank: one per run
MCROOTS 22 Particle genealogy bank
MCTRACK 57 MC particle bank, l/particle
MCEVENT 1 Monte Carlo event bank, one per event
EVENTHDR 1

Family: MCROOTS Version: 0.00
Title: Particle genealogy bank

ID Pointer Size Allot
1 157812 100 5
2 157866 60 0
3 157944 156 12
5 158034 68 1
6 ._ l-58092 76 2

10 158252 76 2
11 158308 68 1
13 158400 76 2
14 158458 76 2
15 158516 76 2
16 158574 76 2
17 158632 76 2
18 158692 84 3
20 158786 84 3
23 158912 16 2
24 158968 68 1
28 159128 76 2
29 159186 76 2
30 159244 76 2
32 159336 76 2
39 159598 76 2
42 159724 76 2

Context: EVENT

Used
5
0

12
1
2
2
1
2
2
2
2
2
3
3
2
1
2
2
2
2
2
2

Complete dumps of banks can be produced by the routines JZBDMI and
JZBDMP The only difference between these two routines is that JZBDMI
accepts a bank name and Id as arguments whereas JZBDMP accepts a
pointer as an argument. Typical uses of these routines plus some typical
output are given below.

5-2

Producing Dumps of JAZELLE Banks

SCALL JZBDMIt'MCEVENT') ERROR RETURN;
SCALL JZBDMI('MCEVENT',1,6,2) ERROR RETURN;
SCALL JZBDMI('MCTRACK',l) ERROR RETURN;
SCALL JZBDMI('MCTRACK','ALL*') ERROR RETURN;
SCALL JZBDMP(TRKPTR) ERROR RETURN:

Family: MCEVENT ID: 1 Template Version: 0.00
Title: Monte Carlo event bank, one per event

Name Value Name Value Name Value Name Value
---- - - - - - - - - - __--- ---- - - - - - - - - - -----
EVENTNUM 1 BEAMWT 1.0000 ANNIWT 1.0000 HADRWJ! 1.0000
BEAMCOMP 0 RADCCOMP 0 ANNICOMP 0 HADRCOMP 2
DCAYCOMP 0 EMINENGY 47.000 EPLSENGY 47.000 PCMIVEC Below
PTOTCM 0.0000 XPRIMVTX Below TPRIMVTX 0.0000 NTRACKS 57
NCHGTRCK 14 NNEUTRCK 21

PCM4VEC 1: 0.0000 0.0000 0.0000 84.000
XPRIMVTX l:O.OOOO 0.0000 0.0000

Family: MCEVENT ID: 1 Template Version: 0.00
Title: Monte Carlo event bank, one per event

Name Value Offset Type Comment
---- ----- ------ ---- -------
EVBNTNUMl 0 I*4 Event number
BEAMWT 1.0000 4 R*4 Beam weight
ANNIWT 1.0000 8 R*4 Annihilation weight
HADRWT 1.0000 12 R*4 Hadronization weight
BEAMCOMP 0 16 I*2 Beam generator completion code
RADCCOMP 0 18 I*2 Radiative correction completion code
ANNICOMP 0 20 1*2 Annihilation completion code
HADRCOMP 2 22 1*2 Hadronization completion code
DCAYCOMP 0 24 I*2 Decay generator completion code
EMINENGY 47.000 28 R*4 Electron energy before radiation
EPLSENGY 47.000 32 R*4 Positron energy before radiation
PCM4VEC Below _ 36 R*4 F'x.Py.Pz,E of annihilation cm system
PTOTCM 0.0000 52 R'4 /P/ of annihilation cm system
XPRIMVTX Below 56 R*4 x,y,z of primary vertex in cm
TPRIMVTX 0.0000 68 R*4 c*time of primary vertex in cm
NTRACKS 57 72 I*4 Total no of particles
NCHGTRCK 14 76 I*4 No of charged tracks in final state
NNEUTRCK 21 80 I*4 No of neutral particles in final state

PCM4VEC 1: 0.0000 0.0000 0.0000 94.000
XPRIMVTX l:O.OOOO 0.0000 0.0000

5.3.3 Tabulating Banks
Outputting banks in tabular format is slightly more complex than
producing dumps of banks. The reason for this is that in general it is
desirable to restrict the table to a subset of the bank elements so that the
table fits onto the screen or output device being used. Therefore, before
a table can be produced the subset of elements of a given bank must be
selected. There are two ways to do this, either by using the TABULATE
qualifier in the TEMPLATE or by using the JZTDEF routine.

‘lb define a table using the TEMPLATE it is merely necessary to add the
qualifier TABULATE to each element that is to be output. By default
JAZELLE uses the name of the variable as the heading for the column.
The default can be changed by using the HEADING=“heading” qualifier to
specify a different heading. If the HEADING qualifier is specified it is not
necessary to also specify the TABULATE qualifier.

Producing Dumps of JAZELLE Banks

Bank Nonsense Nomaxid Context=Junk

Integer I TABULATE
Integer J

Block A TABULATE

Real E
Real P HEADING='Momentum'

Endblock

Endbank

In the above example the elements I, A and P of bank nonsense will
be included in the table. Note that elements of a sub-block will only be
included in a table if the TABULATE option is specified on the declaration
of the block in which they are included, i.e. If the second TABULATE in
the above example were removed only element I would be included in the
table.

A table defined using the TABULATE or HEADING qualifiers in the
TEMPLATE for a family is called the default table for that family Tables
can also be defined using the JZTDEF routine as in the following example:

Table=O;
SCALL JZTDEF(table,'MCTRACK.TRACKTYP','Type' ' '

:I '
) ERROR RETURN;

SCALL JZTDEF(table,'MCTRACK.CHARGE' ' '
SCALL JZTDEF(table,'MCTRACK.MASS' :I ' ,' '

) ERROR RETURN;
) ERROR RETURN;

SCALL JZTDEF(table,'MCTRACK.P4VEC(l) ', 'Px' ,' ') ERROR RETURN;
SCALL JZTDEF(table,'MCTRACK.P4VEC(Z)', 'Py' ,' ') ERROR RETURN;
SCALL JZTDEF(table,'MCTRACK.PIVEC(3)', 'Pz' ' '
SCALL JZTDEF(table,'MCTRACK.P4VEC(4)','Energy':

) ERROR RETURN;
'F6.3') ERROR RETURN;

The first argument to this routine is a pointer to the table being defined.
If JZTDEF is called with the first argument set to zero it creates a new
table and sets the pointer to point to it. Otherwise it adds a new column
to the table pointed to.

The second argument describes the bank element to be tabulated. The
third argument is the heading for the column. If the third argument is
blank the name of the element is used. The fifth and final argument may
be used to specify the Fortran format to be used to output elements in
the column. If specified as a blank JAZELLE will substitute a suitable
default.

lb actually produce the table the JZBTBL routine is used. For example:

SCALL JZBTBL('MCTRACK','ALL*',table) ERROR RETURN;

If a table is specified as the third argument it is used, otherwise the
default table (as defined in the template) is used. The output produced by
the above call might look something like:

Family: MCTRACK Template Version: 0.00
Title: MC particle bank, l/particle

Producing Dumps of JAZELLE Banks

Type Charge
-- ---- --------

1 502 -0.33333
2 500 +o.oooo
3 -502 +0.33333
4 17 +1.0000
5 19 +o.oooo
6 -27 -1.0000
7 -42 +O.OOOO
8 42 +O.OOOO
9 17 +1.0000

10 -28 -1.0000
11 -19 +o.oooo
12 18 +l.OOOO
13 -28 -1.0000
14 -67 +l.OOOO
15 -27 -1.0000
16 64 -1.0000
17 23 +O.OOOO
18 24 +O.OOOO
19 17 +1.0000
20 34 +o.oooo
21 38 +O.OOOO
22 -17 -1.0000
23 23 +O.OOOO
24 -19 +o.oooo
25 -17 -1.0000
26 38 +O.OOOO
27 -18 -1.0000
28 23 +O.OOOO
29 -45 +1.0000
30 23 +O.OOOO

Mass
- - - - - - -
0.32500
0.0000
0.32500
0.14000
0.49800
0.76700
0.94000
0.94000
0.14000
0.89200
0.49800
0.49400
0.89200
1.3870
0.76700
1.2330
0.13500
0.54900
0.14000
0.78300
0.49800
0.14000
0.13500
0.49800
0.14000
0.49800
0.49400
0.13500
1.1970
0.13500

PX

-41.344
- 0.51671
+41.860
+24.617
- 1.6467
+ 6.0034
+ 4.7287
+ 4.0263
+ 0.50161
+ 0.25688
- 9.0844
+ 0.75052
+ 0.069470
- 0.55262
- 8.4975
- 2.3704
- 3.0519
- 2.4240
- 4.7062
- 2.6202
- 7.6467
+ 4.1643
+ 1.8391
+ 0.46076
- 0.20389
- 9.0844
+ 0.23707
- 0.16760
- 0.60968
+ 0.057061

w PZ
----------- -_--_______
-17.252 + 9.1365
+ 3.1523 - 1.1134
+14.100 - 8.0230
+ 8.7517 - 5.1469
- 3.1907 + 1.9733
+ 1.5807 - 0.51009
+ 1.5774 - 1.0431
+ 1.9004 - 1.1558
+ 0.43537 + 0.17883
+ 1.1790 - 1.0720
- 3.0334 + 2.0335
- 0.090912 + 0.093900
+ 0.45814 + 0.43293
- 0.13075 + 0.33953
- 4.2734 + 1.5031
- 0.23836 - 0.60193
- 0.73999 + 1.0949
- 0.81817 + 1.0349
- 1.7182 + 0.55913
- 1.6488 + 0.28584
- 3.1907 + 1.9733
+ 1.3143 - 0.60319
+ 0.26643 + 0.093094
+ 0.83127 - 0.79479
+ 0.34771 - 0.27717
- 3.0334 + 2.0335
+ 0.29870 + 0.52052
+ 0.15944 - 0.087586
- 0.14671 + 0.30755
+ 0.015966 + 0.031982

Energy
----------_
+45.722
+ 3.3828
+44.895
+26.629
+ 8.5319
+ 6.2760
+ 5.1788
+ 4.6949
+ 0.70196
+ 1.8441
+ 9.8036
+ 0.90797
+ 1.0944
+ 1.5367
+ 9.6600
+ 2.7492
+ 3.3284
+ 2.8138
+ 5.0431
+ 3.2061
+ 8.5319
+ 4.4105
+ 1.8655
+ 1.3353
+ 0.50882
+ 9.8036
+ 0.81265
+ 0.28179
+ 1.3859
+ 0.15086

5-5

6 Lists

6.1 Introduction
Jazelle lists provide a mechanism for grouping banks belonging to different
families. Lists are useful in situations where a single operation can be
performed on multiple banks (e.g. bank deletion, IO). As an alternative to
lists, see also the chapter on context.

‘Iwo types of lists are implemented in Jazelle: symbolic and pointer.
For symbolic lists, banks belonging to the list are stored in symbolic
form, i.e. by family name and bank ID. These are intended for long-lived
applications (e.g. applicable to all events) in which the banks constituting
the list are frequently created and deleted over the life of the list. For
pointer lists, the banks belonging to the list are directly specified by
pointers to the banks. Pointer lists are primarily intended for applications
in which lists are dynamically created to access particular sets of already
existing banks (e.g. the lifetime of the list is less than or equal to that
of the relevant banks). All Jazelle list routines are applicable to both
symbolic and pointer lists.

In its simplest form, a Jazelle list consists of a set of bank identifiers,
either by family name and ID, or by pointer. Additionally, members of
a list may be specified by the keyword ‘ALL*‘, in order to specify all
members of a family.

‘lb gain additional structure, each entry in a list also contains an
indirection flag. When a list operation is performed, and the indirection
flag for a given list entry is set, then the specified operation is not
performed on the indicated bank. Instead, the indicated bank is
interpreted as another list upon whose entries the operation is to be
performed. Thus one can construct a hierarchy of lists, with any given list
referring to additional lists.

6.2 Usage
The user is referred to the detailed description of these routines in
Chapter 14.

l JZLCRE - Create a list

l JZLINC - Add (IN&de) an entry to a list

l JZLREM - Remove an entry from a list

l JZLWIP - Delete (WIPe) all banks specified by a list

l JZIOWR - Write a Jazelle record containing all banks specified by a
list

6-l

Context

Introduction
Jazelle Context is used for two purposes. The first is to allow one to group
families together without having to specifically generate Jazelle lists. For
each defined family, the Jazelle template defines a default context for
that family. Thus global operations can be performed all families of the
same context (e.g. EVENT) in a fashion similar to that of lists (e.g. bank
deletion, I/O).

The second purpose of Jazelle context is to provide a finer-grained
mechanism for grouping banks which belong to the same family For
example, in online applications it may be desirable for a single process
to store a single event for one-event purposes, while at the same time be
analysing events as they occur. Since many of the families used may be
common to the two applications, a mechanism is needed to distinguish the
two events. Jazelle allows families to contain banks belonging to different
Contexts, thus allowing one to distinguish between two. As a second
example, in Monte Carlo applications, it may be desirable to combine two
different events or fragments of events into a single event. Since these
share families, with each event using the same bank ID’s for the same
family, a similar-mechanism is needed. Thus, while for most purposes a
bank is uniquely defined by family and bank ID, for some applications it is
desirable to define uniqueness by context, family, and bank ID.

The logic of banks, families, and context is as follows:

A bank has a single, unchanging bank ID and belongs to a single
unchanging Family. At any one time a bank is associated with a single
context, but may be switched from one context to another. Within a
family, bank ID’s must be unique within a single context, but need not
be unique across different contexts.

A Family may be associated with more than one context. At any one
time only a single context is active within a family. Any calls to Jazelle
routines specified by Family name rather than direct bank pointers
will find or operate on only those banks associated with the currently
active context for that family.

Different families may be associated with the same context. A given
context may be activated and deactivated. When a given context is
activated, it becomes the currently active context for all families with
which it has been associated. When a context is deactivated, the active
context of a given associated family reverts to that which was in effect
immediately prior to the activation.

7-l

7.2

Context

Usage
When the first bank of a family is created, the active context for
that family is set to the default specified in the template. In most
applications this never need be changed, and context name may be used
interchangeably with Jazelle List operations (e.g. JZLWIP, JZIOWB).

Note: Currently context in JAZELLE is only partially implemented.
Currently banks can only exist in the default context specified
in their template. The only operations currently available are
context wipe JZXWIP (delete all the banks in a given context) and
I/O operations. In general performing an operation on an entire
context is much quicker than performing the same operation on
many individual banks within the context.

The remainder of this discussion is given only as an indication of the
direction in which JAZELLE implementation is expected to proceed.

For applications in which Context switching is desired, banks (or all banks
of a family) may be switched from their current context to another through
the routine JZXCHB, specifying the new context name, the family name
and bank ID (or ‘ALL*‘). Similarly a Jazelle list of banks may be switched
through the routine JZXCHL. These routines associate the specified banks
and families with the new context, but do NOT activate that context.
(Thus the switched banks become “invisible”).

A context may be activated through the routine JZXACT, specifying the
desired context name. The specified context becomes the active context for
all families which have been associated with that context. (Within those
families all banks not associated with the new context become “invisible”.)

In order that application routines may obtain predictable results, it
is important that applications which activate a context also take the
responsibility for deactivating the context when finished (the push/pop
concept) to restore the previous context(s). This is done through the
routine JZXDAC, specifying the context name to be deactivated. This will
cause the active context of all associated families to revert to those which
were in effect before the activation.

7.3 Implementation Details
Contexts in JAZELLE are implemented using the concept of virtual
memory zones. The native virtual memory services of the host operating
system are used to keep each jazelle context in a separate virtual memory
pool. This enables operations such as deleting the context (context wipe)
or performing IO of an entire context to be achieved far more efficiently
than operations on arbitrary sets of banks.

7-2

8 Using Pointers with JAZELLE

0.1 Introduction
Because JAZELLE banks can be continually allocated and deallocated
during the execution of a program the compiler cannot know where in
memory the banks will be located. Because of this it is always necessary
to have a pointer to a bank before elements in the bank can be accessed.

Pointers are supported as a new variable type in JAZELLE, and can be
declared either in banks (using the template) or in user’s programs (user
pointers). As discussed in earlier chapters, pointers are declared, in either
of these cases, using a POINTER statement of the form:

POINTER name-->family

where name is the name of the pointer and family is the name of the
family of banks that the pointer will be used to point to.

Pointers in user routines can optionally be registered, as discussed in the
next section. Registering of pointers is primarily a debugging aid.

8.2 Registering Pointers
There are two routines that are used in conjunction with registering
pointers:

l JZPREG - Register user pointers

l JZPDMP - List user pointers

The arguments for JZPREG are as follows:

$CALL JZPREG(comment,context,pointer,nptrs) ERROR RETURN

Where the arguments have the following meaning:
. comment is a comment to be associated with this pointer. This

comment is used to identify the pointer when the pointers are printed
out by a call to JZPDMP or during a JAZELLE post mortem. The
comment can be any string but will typically be the name of the
pointer or the common block containing the pointer.

. context is a string describing the context in which the pointer is to be
registered. This argument is discussed further below.

l pointer is the pointer, or array of pointers, to be registered.
. nptrs is the dimension of pointer.

Registering a user pointer has two effects, firstly the pointer and its value
will be output whenever JZPREG is called or during a JAZELLE post
mortem, and this can be a powerful debugging tool. Secondly registered
pointers will be zeroed if the bank which they point to is deleted.

8-l

Using Pointers with JAZELLE

The second argument to JZPREG is the context in which the pointer is
to be registered. The context of a pointer has two functions, first when a
context is wiped, any pointers registered in that context are automatically
deregistered. This can be useful for registering pointers which are only
used in a particular section of the code and which are of no interest once
the program leaves this sections of code. Secondly, when a bank is deleted
only pointers which are registered in the same context as the deleted bank
and which point to the deleted bank are zeroed. This is mainly to increase
execution efficiency.

Implementation Details
JAZELLE pointers are actually implemented as indirect pointers. That is
to say that the pointer actually points to an intermediate link area which
in turn points to the bank, as shown below.
+----------+ +------------+ +------+
1 Pointer 1 ------------a 1 Link area 1 -----------> 1 Bank 1
+----------+ +---------------+ +------+

Pointers are implemented in this way so that if a bank is moved it is
only necessary to change the value in the link area and the user pointer
will continue to point to the bank. The indirection is normally totally
transparent to the user since all of the Mortran macros and JAZELLE
routines automatically take care of the indirection.

A different problem occurs when a bank is deleted, in which case the
pointer is left pointing to the middle of nowhere. In the case of registered
user pointers and of bound pointers in banks, JAZELLE will take care of
zeroing the pointer. In other cases it is up to the user to be aware of the
fact that the bank has been deleted. In practice this should not prove to
be a problem.

8-2

Sequential Input/Output

9.1 Introduction
Jazelle contains facilities for both sequential and indexed IO. In sequential
IO records are always read in the same order in which they were written,
while indexed IO allows records to be read in an arbitrary order, using an
index to specify which record is to be read next. This chapter describes the
basics of sequential IO while Chapter 10 goes on to describe the differences
for indexed IO.

Jazelle provides for input and output of multiple banks as single logical
records to sequential devices. The banks to be written can either be
specified by a Jazelle list or by context name (e.g. EVENT). In general it
is much faster to write out an entire context than to write out the same
banks using a JAZELLE list. JAZELLE contains facilities to allow data to
be written on one machine and later be read on a different type of machine
(at present IBM and VAX machines are supported).

In addition to the banks themselves, Jazelle IO records contain an
application defined CHARACTER*8 record type and two INTEGER*4
parameters to identify the information within the record. On input, all
banks from the IO record are linked into the Jazelle bank structure, and
can be accessed in the normal way. For files containing different types of
records (e.g. event, begin/end run, constants), the record type can be used
by the application routines to take the action appropriate to that record.

9.2 Usage
Files or tapes are opened through the routine JZIOPN , in which the
device and disposition parameters are input. A device identifier is
returned, which is used as input to all other Jazelle IO routines to
identify the device. The first argument to the JZIOPN routine specifies
the device/file which is to be opened. On the IBM this may either be a
DDNAME (assigned using a FILEDEF command) or an explicit filename
(e.g. MY DST A). The default filetype is JAZZDATA and the default
filemode is ‘*‘.

Note: There is a temporary restriction that the DDNAME on VM must be
of the form TAPEnn where nn are digits.

,

On the VAX the argument can either be a logical name or any valid VMS
file specification. Again the default filetype is .JAZZDATA.

Records are output through the routines JZIOWR or JZIOWC. Input
arguments consist of a device identifier, the Jazelle list and ID specifying
the banks or families to be output (JZIOWR) or the context to be written
(JZIOWC), and the application defined record type and its two parameters.

9-l

Sequential Input/Output

Records can be input through the routine JZIORD with the device
identifier as input, and with the record type and its parameters returned
as output arguments. If the record was written using JZIOWC, the
specified context will first be wiped (i.e. all existing banks in that context
will be deleted) and then the new record will be read in to memory. If the
record was written using JZIOWR individual banks will be read in and if
the bank already exists the old version will be deleted.

Finally the routine JZIOCL allows a device to be closed. If JZIOCL is not
called the device will be closed when the program terminates.

Machine Independence of IO
When JAZELLE writes data out it always does so in the native format of
the host operating system. This allows the files to be read in again on the
same machine very efficiently since no conversion to machine independent
format is required. When a file is opened for reading JAZELLE checks
the file header to see what type of machine the file was written on. If
necessary IO conversion is enabled for the file and each record is converted
to the host format on reading. This is totally transparent to the user,
apart from the fact that the conversion operation takes some time.

A separate command, JIO, described in Appendix B allows a complete
file to be converted from one format to another to avoid the overhead of
conversion each time the file is read.

In order for files to be readable when written on one machine and read on
another one it is important that the method used to transfer the file does
not itself attempt to do any conversion of the file, including no attempt
to perform byte-swapping. The following methods can be used to transfer
files from the VAX to the IBM and vice-versa at SLAC.

l BITNET (subject to size constraints).

VM VMS
-- ---

SENDFILE fn ft TO xyz AT abc --> RECEIVE/BINARY fn.ft

RECEIVE <-- SEND/FILE/BINARY fn.ft xyz&abc

l SLACNET (recommended for large files).

VM VMS
-- ---

SLACNET EXPORT fn ft TO -->
[xyz]fn.ft AT abc (AUTH ?
INRECFM VARIABLE BINARY 1

RECEIVE <-- TRANSFER/BINARY=1 fn.ft/VARIABLE
abc#[xyz.RDRlfn.ft

l DUCS

VM VMS
-- ---

TODUCS fn ft (BINARY TODUCS/BINARY fn.ft

9-2

Sequential Input/Output

9.4 Pointer Relocation

9.6 Implementation Details

Pointers inside banks will be relocated during IO (i.e. will continue to
point to the correct place after IO) so long as both the bank containing the
pointer, and the bank pointed to are output as part of the same record.
Pointers pointing to banks which are not part of the same record will be
zeroed.

Example
In order to create a file of events the following code could be used:

$CALL JZIOPN('MYFILE','WRITE',' ',DID) ERROR RETURN; 'Open file"

Do 1=1,100 [

'Generate event here'

$CALL JZIOWC(DID,'EVENT',RNAME,PARAM) ERROR RETURN; 'Write record'

1
SCALL JZIOCL(DID) ERROR RETURN; 'Close file'

To read the same file the following code could be used:

$CALL JZIOPN('MYFILE','READ',' ',DID) ERROR RETURN; 'Open file'

LOOP [

$CALL JZIORD(DID,RNAME,PARAM) ERROR RETURN; 'Read event'
IF $SEVERITY>$SUCCESS [EXIT; I 'Check for end-of-file'

'Process event here' . . -
1

SCALL JZIOCL(DID) ERROR RETURN; 'Close file'

Jazelle supports two types of output records, context IO and list IO,
created by JZIOWC and JZIOWR respectively. Context IO allows only a
single context to be written per record, while list IO allows any arbitrary
combination of banks to be written out.

Context IO is optimized to minimize the CPU time needed for reading
records, at the expense of some extra overhead in terms of size of the
output file and time taken to write records. List IO is optimized to
minimize the size of the file created, but requires slightly more cpu time to
read a record.

The action JAZELLE takes on reading a record depends on the type of
record and the option parameter specified on the JZIORD routine. If the
record was written using the JZIOWC routine then before reading the
record the specified context is cleared (wiped) and the new banks are read
in. In this case the option argument to JZIORD is ignored.

If the record was written using the JZIOWR routine then the logic depends
on the option specified to JZIORD as follows:

Sequential Input/Output

l ADD - Banks are read from the input record and placed into memory
with the same ID that they had when they were written. If the bank
already exists in memory an error occurs (this is the default action).

l REPLACE - Banks are read from the input record and placed into
memory with the same ID that they were written with. If the bank
already exists in memory it is replaced.

l APPEND - Banks are read from the input record and added to the
end of their family. If there are no banks existing in that family the
first bank is given Id 1. When this option is specified banks will not
necessarily be created with the same Id that they had when they were
written. Despite the ID of the banks changing any pointers between
the banks will continue to point to the correct banks.

Note that if an entire family was written out, then on reading the entire
family must be empty (ADD) or will be replaced (REPLACE).

10 Indexed Input/Output

Write-up not yet available.

11 Relational Tables

11.2

Introduction
Unlike most similar memory management systems JAZELLE supports
the concept of a relational table, modeled on ideas taken from relational
database architecture. An example of the use of a relational table would be
to link together tracks and vertices in an event. There may be any number
of TRACK banks each representing a track found in the detector, and in
addition a number of VERTEX banks representing vertices. Some means
is required of specifying which tracks are attached to which vertices,
taking into account that, due to ambiguities in reconstruction, tracks may
be associated with more than one vertex.

One way of generating this mapping is by use of a relational table. In
JAZELLE a relational table is a family of banks, each of which links
one TRACK bank with one VERTEX bank. A possible template for this
track/vertex table is shown below.

Bank Trk-Vtx Context=Event

KEY Track -->Track 'The track associated with this table entry'
KEY Vertex-->Vertex 'The vertex associated with this table entry'

!
! The rest of thebank would typically contain information relevant only
! in the context of a track/vertex association.
!

REAL P4VEC 'Track four-vector at this vertex'
REAL CH12 'Chi2 of track fit to this vertex'

The only thing which distinguishes a table entry from a normal bank is
the presence of one or more elements of type KEY. In the example above
there are two keys, one for the TRACK and one for the VERTEX.

Assigning Values to Keys
From a user point-of-view keys are very similar to pointers, but from a
system point of view they are different in that the system maintains much
stricter control over keys than it does over pointers. One consequence of
this is that values should NEVER be directly assigned to keys by users.
E.g. the following statement would be ILLEGAL:

TRK-VTX%(TRACK)=TRACK-POINTER; ' THIS IS ILLEGAL!!! l

Values must be assigned to keys when the bank containing the keys is
created This is achieved using the JZBADD routine as demonstrated in
the following example:

11-1

11.3

Relational Tables

$CALL JZBADD('TRK-VTX', 'Name of bank being created .
TRK-VTX-POINTER, 'Pointer to created bank .
TRK-VTX-ID, 'Id of created bank .
'DFLT', 'Id to be assigned to created bank l

'DFLT', 'Repeat count for created bank '
TRACK-POINTER, "Value to be assigned to first key l

VERTEX-POINTER); 'Value to be assigned to second key'

The number of key values specified must correspond to the number of
keys in the bank (2 in this example). The values of the keys specify which
banks this table entry is associated with, in this example which TRACK
bank and which VERTEX bank.

Values assigned to keys must never be changed in an assignment
statement. The only legal way to change the value of a key after the
bank containing it has been created is by the use of the JZTMOD routine.
See Chapter 14 for a description of this routine.

Using Keys
In the simplest case KEYS can be used in exactly the same way as
pointers, that is to get from a TRK-VTX bank to the corresponding TRACK
bank all that is necessary is to write:

TRACK-POINTER =TRACK-VERTEX-POINTER%(TFACK);
VERTEX~POINTER=TRACK_VERTEX_POINTEX~POINTER%(VERTEX);

A more complicated example is to loop over all the TRACK banks
associated with a particular VERTEX bank. The routine JZTSCN has
been provided for this purpose. It searches a table for all occurrences of
a given KEY with a particular value and returns a list of all the matches
found. An example of the use of JZTSCN is given below:

SPARAMETER MAXTFW~K=~~~; l Maximum number of tracks at vertex '

POINTER MATCH-ARRAY(MAXTRACK)-->TRK-VTX;
POINTER VERTEX-->VERTEX;
POINTER TRACK -->TRACK;
POINTER TV-TABLE;

. . .
$Call JZBLOC('TRK-VTX',TV-TABLE) Error return;

$Call JZTSCN(W-TABLE, ' Table to be scanned .
'VERTEX', ' Name of KEY to be scanned .

VERTEX, l Pointer to vertex of interest .
MAXTRACK, ' Size of array to receive matches '
MATCH-ARRAY ' Said array .
MATCHES-FOUND ' Number of matches found I

) Error return;

DO I=l,MATCHES-FOUND ['Loop over tracks at vertex'

TRACK=MATCH-ARRAY(I)%(TRACK); 'Get pointer to track'

PX=PX+TRACK%(Px);
PY=PY+TRACK%(Py); . Do whatever needs to be done inside the loop .
PZ=PZ+TRACK%(Pz);

1

The details of the arguments for JZTSCN are given in the final chapter of
this manual. While JZTSCN is relatively easy to use it suffers from two
disadvantages; a fixed size array is needed to receive the results which
may not always be sufficiently large (in which case JZTSCN returns an
error condition), and there is some overhead in calling JZTSCN. In most

11-2

Relational Tables

applications these limitations will probably be unimportant, but for other
applications an alternative method of scanning tables is described in the
next section.

11.4 Effects of KEYS during bank deletion
When a bank is deleted a search is made for any KEYS in other banks
which point to that bank. If any such KEYS are found then the banks
which contain those KEYS are also deleted. The search then continues for
any banks containing KEYS pointing to the newly deleted bank and these
banks are deleted etc.

11.5 Using Relational Tables without JZTSCN
In addition to the value of each KEY, JAZELLE maintains two additional
pieces of information for each KEY, namely:

l SAME - A pointer to the next entry in the table which has the same
KEY value.

l FIRST - A pointer to the next entry in the table which has a different
KEY value.

Thus to find all of the tracks corresponding to a particular table it is
necessary to follow three steps:

l Locate the beginning of the track vertex table.

l Find the first entry corresponding to the vertex of interest.

l Loop over all entries corresponding to the same vertex.

The following example demonstrates how to search the example TRK-VTX
table to find all tracks at a given vertex without suffering from the
limitations implicit in the use of JZTSCN.

' Find all tracks associated with vertex VERTEX n

' First find the first entry in the TRK-VTX table '

$Call JZBFND('TRK_VTX',FIRST,IDOUT, 'FRST') Error return;
If FIRST=0 [$Return;]

' Find the first entry associated with VERTEX '

TRK-VTX = FIRST;
Until TRK-VTX%(VERTEX)=VERTEX

[TRK-VTX = TRK-VTX%(VERTEX,FIRST);
IF TRK-VTX=FIRST [$Return;] 'NO tracks found'

1

' Now loop over all the tracks associated with this vertex '

Loop [TRACK = TRK-VTX%(TRACK);

PX = PX+TRACK%(Px);
PY = PY+TRACK%(Py); * Do whatever needs to be done"
PZ = PZ+TRACK%(Pz);

TRK-VTX=TRK-VTX%WERTEX,SAME);

1 Until TRK-VTX=O;

11-3

Relational Tables

Since the above code is somewhat difficult to read a special statement,
TABLELOOP, has been introduced into SLD MORTRAN. Using
TABLELOOP the above example may be rewritten.

IF FIRST [$CALL JZBLOC('TRK-VTX',TRK-WXO) ERROR RETURN;]

TABLELOOP TRK-VTXO,VERTEX=VERTEX,TRK_VTX [

TRACK = TRK-VTX%(TRACK);

PX = PX+TRACK%(Px);
PY = PY+TRACK%(Py); ' Do whatever needs to be done"
PZ = PZ+TRACK%(Pz);

EXIT and NEXT statements may be freely used within the TABLELOOP
construct. See the SLD MORTRAN manual for a complete description of
the TABLELOOP statement.

II-4

12 Constant Management System

12.1 Introduction
The JAZELLE constants management system is designed to handle the
wide range of constants that will be generated as part of the offline
analysis package. Specific aims of the system are to provide a uniform
method of storing all constants, to handle run dependent constants as
transparently as possible, and to avoid wasting time loading in constants
which will not be used for a particular job.

So far only a subset of the final capabilities of the system have been
implemented, in particular there is so far no handling of run dependent
constants and no central database in which data is stored. The system
has been designed however so that these omissions can be rectified in the
future without the need to change existing code.

In an earlier chapter the initialization of elements inside TEMPLATES was
described, using a construct similar to the FORTRAN data statement. The
constant system allows elements to be initialized in a similar, although
much more powerful, manner using a file known as a CONSTANT file. An
example of a typical constant file is given below.

! . . -
! OWNER: Dubois, Richard CO-OWNER: Waite, A.P.
! SECTION: LAC FILE: LGTMED TEMPLATE

Bank LGTMED(1)

XVAR / 3.1, 4.1, 5.9, ! Assign values to XVAR
2.6, 5.3, 5.8 / !

FRED(l).1 /3/
FRED(2j.I /4/ ! This initializes elements inside
FRED(3j.I /4/ ! different occurrences of block FRED

BLOCK JUNK(3)

NAME /*Abcdefg'/ ! This refers initializes elements
! inside block JUNK(3)

ENDBLOCK

Endbank

Bank LGTMED(2)

XVAR / 6*0.0 /

Endbank

This example should be reasonably self explanatory. A few points that are
worth further mention are:

l Comments delimited by ! can appear anywhere within a constant file.

l Constant files must begin with a BANK statement, this defines which
bank is to be initialized. An explicit ID may also be specified.

12-1

Constant Management System

l Variables are initialized using a method again very similar to the
FORTRAN data statement. No explicit continuation character is
needed, each line continues until the closing /.

l The values specified must correspond to the type and dimension of the
element as declared in the corresponding template.

l Elements inside sub-blocks can be initialized either by explicitly
giving the sub-block name on each line (eg FRED(B).I) or by using the
BLOCK ENDBLOCK construct shown.

l A constant file may initialize any number of banks. The banks do not
all have to belong to one family.

An additional construct available within a constant file is the TABLE
construct. This is very useful when a large number of elements inside a
sub-block have to be initialized. The following example illustrates the use
of the TABLE construct.

Bank PMDSIMP

Table CHAMBERlO: DOMNAME ABSZMIN ABSZMAX RHOMIN RHOMAX
/'VTX' 0.00 5.00 3.1 3.9 /
/'VTX' 0.00 5.00 3.9 4.5 /
/'DRFT' 0.00 100.00 20.0 100.0 /
I 'DEND- 100.00 124.80 20.0 100.0 /
/~DENDU 196.50 218.00 20.0 176.0 /

Endtable

Table CHAMBER(O:4) PTMIN ARCCOMP ARCMIN ARCMAX
/o.ooo TOTAL 0.0 20.0 /

_ /o.ooo TOTAL 0.0 20.0 /
/0.050 TRANS 20.0 76.0 /
/o.ooo LONG1 18.0 20.0 /
/o.ooo LONG1 18.0 20.0 /

Endtable

Endbank

The first argument to the TABLE statement is the name of the sub-block
within which elements are to be initialized. The range of the sub-block
index for which initialization is to be performed must be specified
explicitly The remaining elements are the names of elements within the
sub-block to be initialized. This is followed by the values to be assigned to
these elements in the natural order. The list of initial values is terminated
by the ENDTABLE statement.

12.2 Usage
There are currently only a few routines which comprise the SLD constants
system. These routines are:

l JZKGET - Read a CONSTANT file

l JZKLNK - Link a routine to a bank

l JZKUPD - Call linked routines

Of these routines JZKGET will be most used. This routine is discussed
first below.

12-2

Constant Management System

12.2.1 Reading CONSTANT Files
The JZKGET routine is used to read a constant file and initialize the
associated banks. The calling sequence for JZKGET is as follows:

$CALL JZKGET(filename,options,ptr,routine) ERROR RETURN;

where the arguments have the following meanings:

l filename is the name of the constants file to be read. The file must
have filetype CONSTANT. As JZKGET reads the constant file it
creates each bank that is specified and then initializes any elements
specified. If an explicit ID is given on the bank statement the created
bank is given that ID. If no bank Id is given then the new bank is
added to the end of the family, or given Id 1 if no banks yet exist in
that family.

l options is a string specifying options for the JZKGET routine. At
present this string can have only two legal values, namely ‘RELOAD
or ’ ’ (blank). If blank is specified then an attempt to initialize a bank
which already exists will be ignored. This is so that JZKGET can
be called multiple times for the same bank with no adverse effect.
This feature is useful where constants are used in two or more places,
for example geometry constants might be used in the MC and in
the analysis. JZKGET can be called in both places to make sure
the constants are always available when needed with no danger of
interference if both MC and analysis routines are used in the same job.

If the RELOAD option is specified it will cause constants to be loaded
into banks even if that bank already exists.

l ptr is set to point to the bank created. If more than one bank is
created by reading the constants file then the pointer will point to the
last one created. This argument is optional.

. routine is a routine to be linked to this bank. Linking routines to
banks is discussed in the next section. This argument is optional.

Note: The use of the routine argument to JZKGET is not recommended
since it can, under certain circumstances, lead to problems with
recursive calls to JZKGET. A better method is to link the routine
to the banks by using the JZKLNK routine described later.

JZKGET should be called in each routine, or at the head of each set of
routines in which the associated constants are required. The advantage of
calling JZKGET here, rather than in some global initialization routine, is
that the constants will then only be loaded if the routines which use them
are actually used in a particular job. This avoids wasting time managing
constants which may not actually be needed. When analysing compressed
DSTs which may contain events from many different runs this can save
appreciable time as the constants may be changing rapidly.

Calling JZKGET more than once will not cause any problems, as discussed
above, but since it still takes some time the call to JZKGET in any routine
should only be made the first time that routine is called. E.g.

IF FIRST [FIRST=.FALSE.; $CALL JZKGET('MYFILE', ' ') ERROR RETURN;]

12-3

Constant Management System

Once JZKGET is called the constant system will take care of updating
banks when, for instance, the run number changes (although this is
not yet implemented). Because there may be other constants derived
from these constants some mechanism is needed to enable these derived
constants to be recalculated when the base constants change. For this
purpose it is possible to link routines to banks, and this is the subject of
the next section of this chapter.

12.2.2 Linking Routines to Banks
Consider the case where the position of each wire of some chamber is to
be stored in an array. Since there may be many wires it may be useful
to have the position of the chamber specified in some constant file and
then have a routine which calculates the position of the wires based on the
chamber position. At some time during a job the run number may change
and a new set of chamber coordinates may be loaded into the chamber
position bank. At this point it is clearly necessary that the routine to
calculate wire positions is called again to calculate the new wire positions.
For this reason it is possible to link routines to banks so that the routine
will be called whenever the values stored in the bank are changed.

Routines can be linked to banks in one of two ways, by specifying the
routine as the forth argument in the call to JZKGET or by using the
JZKLNK routine. lb link the routine mentioned above to the chamber
geometry bank the following call could be used.

SCALL JZKLNK(WIRPOS,'GEOMBANK') ERROR RETURN; . . -

where GEOMBANK is, for example, a chamber geometry bank and
WIRPOS is the routine which calculates the wire positions. Once a routine
has been linked to a bank it will be called whenever the associated bank
is changed by new constants being read in (INCLUDING the first time
constants are read in) or whenever a JAZELLE interactive command is
used to modify the bank from the debugger or from IDA.

Continuing to consider the example discussed above, the chamber positions
in GEOMBANK may in turn be specified relative to an overall detector
position bank. In this case the wire positions may have to be recalculated
whenever either the chamber geometry bank changes or the overall
position bank changes. ‘lb handle this and similar cases a routine can be
linked to several banks and will be called whenever any of these banks
change. E.g.

$CALL JZKLNK(WIRPOS,'GEOMBANK') ERROR RETURN;
$CALL JZKLNK(WIRPOS,'OVERALL') ERROR RETURN;

The last subtlety that needs to be mentioned is that the routines are not
called immediately after the banks are updated. In fact when a bank is
changed JAZELLE merely marks the associated routine to be called, but
it is not actually called until the routine JZKUPD is called. JZKUPD is
not normally called by the user but would typically be called by the main
analysis program (IDA) before entering the event loop, and after each run
number change.

As always, complete details on the routines described in this chapter are
given in Chapter 14.

12-4

13 Debugging Aids with JAZELLE

JAZELLE includes a number of debugging aids some of which are
described in this chapter. The debugging aids fall into two categories,
routines which can be called to output useful information, and interactive
commands that can be used to examine JAZELLE banks. These two
categories are described below.

13.1 Useful Routines
The following routines output useful information concerning JAZELLE.

l JZINDX - Produce an index of all existing banks

l JZSTAT - Produce statistics on JAZELLE memory usage

l JZPDMP - Produce a list of all registered pointers

l JZMAP - Produce a complete map of JAZELLE memory

l JZPM - Produce a JAZELLE post mortem

Detailed descriptions of all of these routines can be found in Chapter 14.

As an additional debugging aid JAZELLE automatically traps all fatal
JAZELLE or GETVM errors as well as access violations (VMS) and
OC4/5’s (VM) and produces a post mortem output.

13.2 Interactive commands
Jazelle supports a set of interactive commands which can be used for
debugging purposes. The same set of commands is available both from the
VAX debugger and within IDA. These commands are summarized below:

l PEEK - Examine a bank or an element of a bank

l POKE - Modify an element of a bank

l ADD - Create a new bank

l REMOVE - Delete a bank

l GET - Read a constant file

l STATUS - Output summary of JAZELLE memory usage

l INDEX - Produce an index of existing banks

l MAP - Produce a complete map of JAZELLE memory

l PM - Produce a JAZELLE postmortem

l POINTER - Examine a user pointer

Each of these commands is described in more detail below.

13-1

Debugging Aids with JAZELLE
PEEK

PEEK
The peek command can be used to examine the contents of a whole family of
banks, of one particular bank, an element of one bank, or a sub-block of one
bank. The PEEK command can also be used to examine items from bank
headers or parameters defined in banks. The format of the output will depend
on what is requested.

FORMAT PEEK Item

Command Qualifiers
/LEVEL=n

Defaults
0

PARAMETERS Item
Specifies the bank, family or element to be dumped.

Specifying JUNK(*) would output all banks of family JUNK, JUNK(4)
would output bank JUNK id 4 and JUNK(S).FRED would output element
FRED of bank JUNK id 3 Fred may be either a single element of a
sub-block of family junk.

QUALtFIERS /LEVEL .. -
Selects the level of detail required,

A value of 0 (the default) provides brief output, 1 medium and 2 verbose.

EXAMPLES
P PEEK MCTRACK(*)

The PEEK command causes all banks of family MCTRACK to be output
using level 0 (brie0 format.

I PEEK MCTRACK.FRED.X.Y.Z

Element FRED.X.Y.Z of the last MCTRACK bank is output.

I PEEK/LEVEL=2 FRED(I).H(3)

Sub-block or element H(3) of bank FRED id 4 is output using level 2
(verbose) format.

I PEEK MCTRACK.JB$VBALO

The element JB$VBALO from the header of the last MCTRACK bank is
output.

13-2

Debugging Aids with JAZELLE
POKE

POKE
The poke command is used to modify elements within banks. Values can be
assigned to any element.

FORMAT POKE Element= Value

Command Qualifiers Defaults
None. None.

PARAMETERS Element
Specifies the element to be modified.

A single element must be specified. No wildcards are allowed.

Value
Specifies the value to be assigned to element.

The syntax of value depends on the type of element being modified.
For a list of valid value specification see the section on initial values in
templates.

EXAMPLE6
. . -

POKE FRED.INTEGER=lO

Assign an integer value to element INTEGER of the last FRED bank.

POKE FRED.BLOCK.REAL=56.8

Assign a real value to element X.Y.Z of bank FRED id 4. Element
FRED(4j.X.Y.Z of the last MCTRACK bank is output.

POKE FRED.ARRAY(4)=8

Assign an integer value to element 4 of array ARRAY in the last FRED
bank.

POKE FRED(FIRST).STRING='Abcdefghijkl"

Assign a STRING value to element STRING of the first FRED bank.
The element JB$VBALO from the header of the last MCTRACK bank is
output.

POKE FRED.POINTER=MCTRACK(4)

Assign a pointer value to a pointer in the last FRED bank. The value
of the pointer is evaluated when the POKE command is executed so the
target bank must exist at that point (or the value will be stored).

13-3

Debugging Aids with JAZELLE
ADD

ADD
The ADD command is used to create a new bank.

FORMAT ADD Bank

Command Qualifiers
None.

Defaults
None.

PARAMETERS Bank
Specifies the bank to be created.

Bank must specify a family name and optionally an ID. If no id is specified
a new bank is added to the end of the specified family.

EXAMPLES
Q ADD FRED(25)

I ADD FRED

Create bank FRED with ID 25. If the specified bank already exists an
error message will be generated.

Add an new member of family FRED with an Id one greater than the
highest existing ID. If no banks already exist in family FRED the new
bank will have ID 1.

13-4

Debugging Aids with JAZELLE
REMOVE

REMOVE
The remove command is used to delete a bank or a family of banks.

FORMAT REMOVE Bank

Command Qualifiers
None.

Defaults
None.

PARAMETERS Bank
Specifies the bank or family to be deleted.

Bank must specify a family name. If an explicit ID is specified that bank
is deleted, otherwise the entire family is deleted.

EXAMPLES
I REMOVE FRED(25)

Delete bank FRED with ID 25. If the specified bank does not exist no
error message will be generated.

1 - REMOVE FRED

Delete all members of family FRED. If no banks already exist in family
FRED no error message will be generated.

13-5

Debugging Aids with JAZELLE
GET

GET
The get command causes a constant file to be read (c.f. JZKGET). Any banks
referred to in the constant file will be created and initialized.

FORMAT GET Name

Command Qualifiers Defaults
None. None.

PARAMETERS Name
Specifies the name of the constant file to be read.

The file named must exist in the normal JAZELLE search order and have
filetype CONSTANT.

EXAMPLES
II GET JUNKFILE

JAZELLE will search for and read the file JUNKFILE.CONSTANT. If the
file can not be found an error message will be issued.

.

13-6

Debugging Aids with JAZELLE
STATUS

STATUS
The status command outputs statistics on JAZELLE memory usage (c.f.
JZSTAT).

FORMAT STATUS

Command Qualifiers Defaults
/LEVEL=n 0

QUALIFIERS /LEVEL
Selects the level of detail required,

A value of 0 (the default) provides brief output, 1 medium and 2 verbose.

EXAMPLES
II STATUS

Produce a brief summary of JAZELLE memory usage.

I STATUS/LEVEL=2

Produce a detailed breakdown of JAZELLE memory usage.

13-7

Debugging Aids with JAZELLE
INDEX

INDEX
The index command can be used to produce an index JAZELLE banks.
All the banks in one family may be selected, or all of the banks known to
JAZELLE (c.f. JZINDX).

FORMAT INDEX [fami/y]

Command Qualifiers
/LEVEL=n

Defaults
0

PARAMETERS Name
Optionally specified a family about which information is required.

If family is specified only banks in that family are listed, otherwise all
banks will be included in the index.

QUALIFIERS /LEVEL
Selects the level of detail required,

A value of 0 (the default) provides brief output, 1 medium and 2 verbose.

EXAMPLES
I INDEX

Produce a brief index of all existing families.

I INDEX/LEVEL=2

Produce a detailed index of all JAZELLE banks.

I INDEX MCTRACK

Produce a detailed index of banks within family MCTFUCK

13-8

Debugging Aids with JAZELLE
MAP

MAP
The map command produces a complete map of JAZELLE memory usage
(c.f. JZMAP).

FORMAT

Command Qualifiers Defaults
/LEVEL=n 0

QUALIFIERS /LEVEL
Selects the level of detail required.

A value of 0 (the default) provides brief output, 1 medium and 2 verbose.

EXAMPLES
I MAP

Produce a brief map of JAZELLE memory usage.

I . MAP/LEVEL=2

Produce a detailed map of JAZELLE memory usage.

13-9

Debugging Aids with JAZELLE
PM

PM
The PM command generates a JAZELLE post mortem (c.f. JZPM).

FORMAT

Command Qualifiers Defaults
/LEVEL=n 0

QUALIFIERS /LEVEL
Selects the level of detail required.

A value of 0 (the default) provides brief output, 1 medium and 2 verbose.

EXAMPLES
I PM

Produce a brief post-mortem dump.

I MAP/LEVEL=2

Produce a d&ailed post-mortem dump.

13-10

Debugging Aids with JAZELLE
POINTER

POINTER
The POINTER command is only available inside the VAX debugger, It
allows the value of any pointer to be examined (c.f. the debugger EXAMINE
command).

FORMAT POINTER Variable-list

PARAMETERS Variable-list
Specifies one or more variables, using the normal debugger syntax.

EXAMPLES
I POINTER MYPTR

Shows the value of pointer MYPTR, which must be a variable in the
current debugger scope.

I POINTER PTRA,PTRB

Shows the values of pointers F’TRA and F’TRB, which must be variables in
the current debugger scope.

I - POINTER MCLUND\MCHITS

Shows the value of pointer MCHITS in routine MCLUND.

13-11

Debugging Aids with JAZELLE

13.3 Use with VAX Debugger
‘Ib use the JAZELLE interactive commands with the VAX debugger it
is necessary to ensure that the JAZELLE commands are known to the
debugger. The method of doing this depends whether or not you have your
own DBG$INIT file or not. If not you have to issue the command:

$ DEFINE DBG$INIT DUCSJAZELLE:JAZELLE.DBGCOM

before entering the debugger. This command could well be included into
your LOGIN.COM file. If you do have your own DBG$INIT file you should
include the line:

$ &DUCSJAZELLE:JAZELLE.DBGCOM

somewhere in that file.

Inside the debugger JAZELLE interactive commands can be typed directly
at the debug prompt (which is changed to jDBG to remind you). Note that
JAZELLE commands cannot be issued until after JZSTRT has been called
by the program being debugged.

13.4 Use with IDA
See the IDA manual for details of using JAZELLE commands from IDA.
The syntax of the commands may vary slightly from that given above.

13-12

14 Detailed Description of JAZELLE Routines

14.1 Summary of User Routines
The following is a complete list of all of the JAZELLE user routines, with a brief one line summary
of their function. A more complete description of each one can be found in the following pages.

14.1 .I Initialization
l JZSTRT - Initialize JAZELLE

14.1.2 Bank Creation and Manipulation
.

.

.

.

.

.

.

.

.

.

JZBADD - Create (add) a new bank

JZBDEL - Delete a bank by name/id

JZPDEL - Delete a bank by pointer

JZBEXP - Expand/Contract a bank by ID

JZPEXP - Expand/Contract a bank by pointer

JZBFND - Find a pointer to an existing bank

JZBLOC - Locate a complete family of banks

JZBNXT - Find the next bank of a given family

JZBCPY - Create a new bank which is a copy of an existing bank

JZPCPY - Copy the contents of a bank to another existing bank

14.1.3 Producing Readable Dumps of Banks

l JZBDMI - Dump a bank or family of banks (by NAME/ID)

l JZBDMP - Dump a bank (by pointer)

l JZBTBL - Output banks in tabular form

l JZTDEF - Add a column to a table or create a new table

l JZTDFL - Make a table the default table for a family

14-1

Detailed Description of JAZELLE Routines

14.1.4 Constant Manipulation
l JZKGET - Read a CONSTANT file (initialize banks)

l JZKLNK - Link an update routine to a bank

l JZKUPD - Call update routines for changed banks

l JZKPOK - Mark a bank as changed

14.1.5 List Manipulation
l JZLCRE - Create a list

l JZLINC - Add an entry to a list

l JZLREM - Remove an entry from a list

l JZLWIP - Delete all of the banks pointer to by a list

14.1.6 Input Output
l JZIOPN - Open a file for JAZELLE io

l JZIOCL - Close a file

l JZIOWR - Write a record using a list

l JZIOWC - Write a record using a context

l JZIORD - Read a record

14.1.7 Pointer Handling
l JZPREG - Register a user pointer

l JZPDMP - Produce a list of all registered user pointers

l JZPIDX - Register an indexed pointer array

14.1.8 Context Manipulation Routines

l JZXWIP - Delete entire context

14.1.9 STRING/CHARACTER Conversion Routines
l JZC - Convert a JAZELLE STRING to a character variable

l JZC4 - Convert a JAZELLE STRING*4 to a character variable

l JZC8 - Convert a JAZELLE STRING*8 to a character variable

l JZS - Convert a character variable to a STRING variable

14-2

Detailed Description of JAZELLE Routines

. JZS4 - Convert a character variable to a STRING*4 variable

l JZS8 - Convert a character variable to a STRING*8 variable

14.1 .I 0 Miscellaneous
l

.

.

.

.

.

.

.

.

.

.

.

JZFDEF - Attach input/output routines to a family or block

JZTSCN - Scan a table for particular values of a given key

JZINDX - Produce an index of currently defined banks

JZMAP - Produce a complete JAZELLE memory map

JZPM - Produce a JAZELLE postmortem

JZSTAT - Produce a summary of JAZELLE statistics

JZBLONG - Obtain the length of a bank

JZBNAME - Obtain the name of a bank from a pointer

JZBMAP - Map a common block to a bank

JZPCMP - Compare two banks

JZTMOD - Change the value of a KEY

JZWRS - return information about the current version of JAZELLE

14.2 Details of User Routines -. -
The following is an alphabetical list of all of the JAZELLE user routines,
giving a complete description of all arguments, and a description of each
routine.

14-3

Detailed Description of JAZELLE Routines
JZBADD

JZBADD - Add Bank to family

This function adds a Jazelle bank to the specified family.

FORMAT JZBADD FNAME[, UDATPTR [, UIDOlJT[, UIDIN[,
URPTCNT[, KEY1 1, KEYZ[, KEY3[, KEY4
L KEwlllllllll

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS FNAME
VMS Usage:. string
type: character-coded text string {CHARACTER*(“)}
access: read only
mechanism: by descriptor

Family name of bank to be added.

UDATPTR
VMS Usage: longword
type: longword {INTEGER}
access: write only (optional)
mechanism: by reference

Pointer to data region of created bank, byte-relative to JAZELLE signpost
variable /JAZELL!JZL$B(O). (= 0 if error.)

UIDOUT
VMS Usage: longword
type: longword {INTEGER}
access: write only (optional)
mechanism: by reference

Bank ID actually assigned. (0 < ID c 2**16). (= 0 if error.)

14-4

Detailed Description of JAZELLE Routines
JZBADD

UIDIN
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Bank ID requested or ‘LAST’ (default).

URPTCNT
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Repeat count of variable length block or ‘DFLT’.

KEY1
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Keys (if any) associated with this bank.

KEY2
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Keys (if any> associated with this bank.

KEY3
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Keys (if any) associated with this bank.

KEY4
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Keys (if any) associated with this bank.

14-5

Detailed Description of JAZELLE Routines
JZBADD

KEY5
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Keys (if any) associated with this bank.

DESCRIPTION
JZBADD allocates memory for a new bank and links it into to a familv.
If the family does not already exist in memory, then the template for the
family is read from disk, and the family block is created. The number of
variable blocks which are allocated is taken from argument RPTCNT,
if present, or from the default value specified in the template. If a
specific bank ID is requested, it will be linked into the family to maintain
monotonically increasing ID. Otherwise it will be linked onto the end of
the family with ID one greater than the last previously existing bank.

RETURN
VALUES SLD$NORMAL (S) Successful completion

JZL$IDEXISTS (E) Requested ID already exists
JZL$BADID
JZL$

(F) Illegal ID requested
Additional error conditions listed in the Jazelle Errors
Appendix.

14-6

Detailed Description of JAZELLE Routines
JZBCPY

JZBCPY - Copy a Bank

This routine creates a new Jazelle bank and copies data to it from another
bank.

FORMAT JZBCPY FROMPTR, UTOPTR [, UIDOUT[, UIDIN [,
URPTCNT]]]

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) (INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VATLJES.

ARGUMENTS FROMPTR
VMS Usage: longword-unsigned
type: ~ lorigword (unsigned) {POINTER}
access: read only
mechanism: by reference

Family name of bank to be added.

UTOPTR
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: write only
mechanism: by reference

Pointer to created bank.

UIDOUT
VMS Usage: longword
type: longword {INTEGER}
access: write only (optional)
mechanism: by reference

Bank id of the created bank.

14-7

Detailed Description of JAZELLE Routines
JZBCPY

UIDIN
VMS Usage: iongword
type: longword {INTEGER)
access: read only (optional)
mechanism: by reference

Bank id for the new bank (requested by user).

URPTCNT
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Number of VRBs (variable repeat blocks) to be allocated in the new bank.
By default, a bank will be created that is sufficiently large to hold the data
found in the source bank.

DESCRIPTION
JZBCPY creates a bank and copies the contents of the bank pointed to by
FROMPTR to the newly created bank. UTOPTR is set to point to the new
bank and UIDOUT is set to the bank ID of the new bank.

RETURN
VALUES SLD$NORMAL (S) Successful completion

JZL$NOCOPY (E) Copy Failed
JZL$STATIC
JZL$

(E) Copy Failed
Additional error conditions listed in the Jazelle Errors
Appendix.

14-8

Detailed Description of JAZELLE Routines
JZBDEL

JZBDEL - Delete a Bank

This routine will delete a bank or a series of banks currently in the data
structure.

FORMAT JZBDEL FNAME[, ID]]

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER)
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS FNAME
VMS Usage: string
type: character-coded text string {CHARACTER*(*)}
access: -. read only
mechanism: by descriptor

Family name of JAZELLE bank(s) to be deleted.

ID
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

= ‘ALL*’ to delete all banks of family (default).

= Explicit ID to delete a particular bank.

RETURN
VALUES SLD$NORMAL (S) if requested bank was successfully deleted.

JZL$NOBANK (I) if requested bank was not found.
JZL$ Additional error conditions listed in the Jazelle Errors

Appendix.

14-9

Detailed Description of JAZELLE Routines
JZBDMI

JZBDMI - Formatted dump of named bank

Allows users to dump out a bank by name.

FORMAT JZBDMI NAME/-, lD[, LUN [, LEVEL [, WIDTH]]]]]

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS NAME
VMS Usage: string
type: character-coded text string {CHARACTER+(*))
access: read only
-mechanism: -. by-descriptor

Family name of bank to be dumped.

ID
VMS Usage: longword
type: longword {INTEGER)
access: read only (optional)
mechanism: by reference

ID of bank to be dumped (Def ‘ALL*‘).

LlJN
VMS Usage: longword
type: longword {INTEGER)
access: read only (optional)
mechanism: by reference

LUN to which bank should be dumped (def 6).

LEVEL
VMS Usage: longword
type: longword {INTEGER)
access: read only (optional)
mechanism: by reference

14-10

Detailed Description of JAZELLE Routines
JZBDMI

Dump level (min=O,l,max=2) (def 0).

WIDTH
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Width of output (default 80).

RETURN
VALUES SLD$NORMAL

JZL$
(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-11

Detailed Description of JAZELLE Routines
JZBDMP

JZBDMP - Formatted dump of bank - by pointer

This routine allows the caller to dump a bank referenced by the bank pointer.

FORMAT JZBDMP PTt?[, LUN [, LEVEL 1, WIDTH]]]]

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) (INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS PTR
VMS Usage: longword
type: longword {INTEGER}
access: read only
mechanism: -. by-reference

Pointer to bank to be dumped.

LUN
VMS Usage: longword
type: longword {INTEGER}
adcess: read only (optional)
mechanism: by reference

LUN to which bank should be dumped (def 6).

LEVEL
VMS Usage: longword
We: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Dump level (def 0).

WIDTH
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

14-12

Detailed Description of JAZELLE Routines
JZBDMP

Width of output (default 80).

RETURN
VALUES SLD$NORMAL

JZL$
(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-13

Detailed Description of JAZELLE Routines
JZBEXP

JZBEXP - Expand a JAZELLE bank

This routine expands the specified bank without changing the bank contents.

FORMAT JZBEXP NAME, lD[, COUNT/[, PTRI]]

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) (INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS NAME
VMS Usage: string
type: character-coded text string {CHARACTER*(+)}
access: read only
mechanism:-. by-descriptor

Name of bank to be expanded.

ID
VMS Usage: longword
type: longword {INTEGER}
access: read only
mechanism: by reference

ID of bank to be expanded.

COUNTI
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

New allocation for number of variable blocks.

PTRI
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER)
access: write only (optional)
mechanism: by reference

14-14

Detailed Description of JAZELLE Routines
JZBEXP

Pointer to expanded bank.

DESCRIPTION JZBEXP expands (or contracts) a bank by creating a new bank with
different allocated variable block count (COUNTI), copying the contents of
the old bank into the new, and deleting the old bank.

If COUNT1 is omitted the bank is expanded to twice its current size.

RETURN
VALUES SLD$NORMAL

JZL$

(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-15

Detailed Description of JAZELLE Routines
JZPEXP

JZPEXP - Expand a JAZELLE bank

This routine expands the specified bank without changing the bank contents.

FORMAT JZPEXP PTRI, COUNT/

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) (INTEGER)
access: write only
mechanism: by value

Long-word condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS PTRI
VMS Usage: longword-unsigned
type: longword (unsigned) (POINTER}
access: read only
mechanism: - byreference

Pointer to bank to be expanded.

COUNTI
VMS Usage: longword
type: longword (INTEGER}
access: read only (optional)
mechanism: by reference

New allocation for number of variable blocks.

DESCRIPTION
JZPEXP expands (or contracts) a bank by creating a new bank with
different allocated variable block count (COUNTI), copying the contents of
the old bank into the new, and deleting the old bank.

If COUNT1 is omitted the bank is expanded to twice its current size.

14-16

Detailed Description of JAZELLE Routines
JZPEXP

RETURN
VALUES SLD$NORMAL

JZL$

(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-17

Detailed Description of JAZELLE Routines
JZBFND

JZBFND - Find pointer to named JAZELLE bank

This routine finds the pointer to the bank specifed by family name and
(optionally) bank ID.

FORMAT JZBFND FNAME, DATPTR[, IDOUT[, IDIN]]

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) (INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS FNAME
VMS Usage: string
type: character-coded text string {CHARACTER*(*)}
access: -. read only
mechanism: by descriptor

Family name of requested bank.

DATPTR
VMS Usage: longword
type: longword (INTEGER}
access: write only
mechanism: by reference

Pointer to requested bank byte-relative to /JAZELL/JZL$B(O). (= 0 on
error.)

IDOUT
VMS Usage: longword
We: longword (INTEGER}
access: write only (optional)
mechanism: by reference

ID of located bank (= 0 on error).

14-16

Detailed Description of JAZELLE Routines
JZBFND

IDIN
VMS Usage: longword
type: longword {INTEGER)
access: read only (optional)
mechanism: by reference

‘FRST’ to locate first bank of family (default).

‘LAST’ to locate last bank of family Explicit ID to locate bank with
particular ID.

RETURN
VALUES SLD$NORMAL if requested bank was found

JZL$NOBANK if bank does not exist
JZL$ Additional error conditions listed in the Jazelle Errors

Appendix.

14-19

Detailed Description of JAZELLE Routines
JZBLOC

JZBLOC - Locate a JAZELLE family

Locates the specified family returning the family pointer and bank count.

FORMAT JZBLOC FNAME, FAMPTR, NBANKS

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS FNAME
VMS Usage: string
type: character-coded text string {CHARACTER*(*)}
access: read only
mechanism: -. by-descriptor

Requested family name.

FAMPTR
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER)
access: write only
mechanism: by reference

Returns a pointer to a jazelle family. If used as input to JZBNXT or as
FAMPTR%(JB$FORPT) yields pointer to first bank.

Note: If family exists, but contains no banks, FAMPTR will be valid if
banks are subsequently added to the family.

NBANKS
VMS Usage: longword
type: longword {INTEGER}
access: write only
mechanism: by reference

Number of banks in family (=O if family does not exist) (optional).

14-20

Detailed Description of JAZELLE Routines
JZBLOC

RETURN
VALUES SLD$NORMAL

JZL$
(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-21

Detailed Description of JAZELLE Routines
JZBLONG

JZBLONG - Length of a bank

This routine is a replacement for the version 2 header element JB$LONG. The
routine returns the length (in bytes) of a bank including header.

FORMAT JZBLONG PTR

RETURNS VMS Usage: longword
type: longword {INTEGERV}
access: write only
mechanism: by value

Value corresponding to the requested data as defined in the function
overview.

ARGUMENTS PTR
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: -. reed only
mechanism: by reference

Pointer to bank.

14-22

Detailed Description of JAZELLE Routines
JZBMAP

JZBMAP - Make Common block a bank

This routine makes the common block look like a newly added bank.

FORMAT JZBMAP TNAME, COMPTR, IOCHAR [, STCPTR]]

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) (INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS TNAME
VMS Usage: string
type: character-coded text string {CHARACTER*(*)}
access: read only
mechanism:-. by descriptor

Template name to be used.

COMPTR
VMS Usage: longword
type: longword {INTEGER)
access: read only
mechanism: by reference

Pointer to the common block.

IOCHAR
VMS Usage: string
type: character-coded text string {CHARACTER}
access: read only
mechanism: by descriptor

‘l’)pe of operation to be performed on the common block by the user
program. R = read, W = write, B = both.

STCPTR
VMS Usage: longword
type: longword {INTEGER}
access: write only (optional)

14-23

Detailed Description of JAZELLE Routines
JZBMAP

mechanism: by reference

Pointer to the static bank.

DESCRIPTION
JZBMAP makes the common block look like a new bank and links it into a
family. If the family already exists (there can only be one static bank per
family) and the same input pointer is given then an error does not occur
and the indirect pointer is returned as if JZBMAP had actually done the
mapping. A specific bank ID can not be requested, it will always be 1. NO
variable blocks can be allocated (remember this is a STATIC bank).

This routine actually makes a copy of the common block and this copy
is the static bank everyone will see. A table is kept that contains both a
pointer to the copy and the address of the common block. This is so that
any changes made to the common block or the static bank can be reflected
in the other.

RETURN
VALUES SLD$NORMAL

JZL$BADARGC
(S) Successful completion.
(E) Invalid IOCHAR given.
(E) Incorrect number of parameters passed.
(E) Tried to map a non static bank.
(E) The static bank is already mapped to different
address.
Additional error conditions listed in the Jazelle Errors
Appendix.

JZL!$ARGS
JZL$NOTSTIC
JZL$STCARG -

JZL$

14-24

Detailed Descriptiqn of JAZELLE Routines
JZBNAME

JZBNAME - Get bank name from pointer

Returns the name of a bank given a pointer to the bank. This replaces
JB$NAME.

FORMAT JZBNAME PTR

RETURNS VMS Usage: string
type: charactercoded text string {CHARACTER*(“)}
access: write only
mechanism: by value

This function returns a character-coded text string

ARGUMENTS PTR
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: read only
mechanism:-. byreference

Pointer to bank.

14-25

Detailed Description of JAZELLE Routines
JZBNXT

JZBNXT - Find next bank of JAZELLE family

FORMAT JZBNXT PTRIN, PTROUT[, ID]

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS PTRIN
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: read only
mechanism: by reference

Pointer to a JAZELLE bank, byte relative to /JAZELL/JZL$B(O).

PTROUT -
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: write only
mechanism: by reference

Pointer to next bank in same family (= 0 on error).

ID
VMS Usage: longword
type: longword {INTEGER}
access: write only (optional)
mechanism: by reference

ID of located bank (= 0 on error).

DESCRIPTION
JZBNXT spends some time checking the integrity of the data structure
in applications where speed is at a premium, inside nested loops for
example, an alternative method of finding the next bank may be prefered,
for instance:

PTROUT=PTRIN%(JB$FORPT);

14-26

Detailed Description of JAZELLE Routines
JZBNXT

RETURN
VALUES SLD$NORMAL (S) if requested bank was found

JZL$LASTBANK (I) if INPUT bank is last bank in family
JZL$BADBANKP
JZL$

(F) if corrupted pointers detected
Additional error conditions listed in the Jazelle Errors
Appendix.

14-27

Detailed Description of JAZELLE Routines
JZBTBL

JZBTBL - Formatted dump of named bank

Allows users to dump out a bank by name.

FORMAT JZBTBL NAME [, 101,. TABLE [, LUN [, LEVEL [,
~~wlllll

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) (INTEGER)
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS NAME
VMS Usage: string
type: character-coded text string (CHARACTER*(“))
access: ~ read only
mechanism: by descriptor

Family name of bank to be dumped.

ID
VMS Usage: longword
type: longword (INTEGER}
access: read only (optional)
mechanism: by reference

ID of bank to be dumped (Def ‘ALL*‘).

TABLE
VMS Usage: longword-unsigned
type: longword (unsigned) (POINTER}
access: read only (optional)
mechanism: by reference

Table to be used (0 or missing, default used).

LUN
VMS Usage: longword
type: longword (INTEGER}
access: read only (optional)

14-26

Detailed Description of JAZELLE Routines

mechanism: by reference

LUN to which bank should

LEVEL
be dumped (def 6).

VMS Usage: longword
type: longword (INTEGER}
access: read only (optional)
mechanism: by reference

JZBTBL

Dump level (min=O,l,max=2) (def 0).

WIDTH
VMS Usage: longword
type: longword (INTEGER}
access: read only (optional)
mechanism: by reference

Width of output (default 80).

RETURN
VALUES SLD$NORMAL

JZL$
(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-29

Detailed Description of JAZELLE Routines
JZC

JZC - Convert string to character

This routine converts a Jazelle string (Hollerith) to a character-coded text
string of length 1.

FORMAT JZC N, STRING

RETURNS VMS Usage: string
type: character-coded text string {CHARACTER*(“)}
access: write only
mechanism: by value

This function returns a character-coded text string

ARGUMENTS N
VMS Usage: longword
type: longword {INTEGER}
access: read only
mechanism:-. by reference

Length of STRING in bytes.

STRING
VMS Usage: longword
type: longword {INTEGER}
access: read only
mechanism: by reference

JAZELLE string to be converted.

14-30

Detailed Description of JAZELLE Routines
JZC4

JZC4 - Convert 4-byte string to character

This routine converts a STRING’4 (hollerith) Jazelle data type to a character
coded text string.

FORMAT JZC4 STRING

RETURNS VMS Usage: string
type: character-coded text string {CHARACTER*r))
access: write only
mechanism: by value

This function returns a character-coded text string

ARGUMENTS STRING
VMS Usage: longword
type: longword {INTEGER}
access: read only
mechanism:-. by reference

JAZELLE (hollerith) string to be converted.

14-31

Detailed Description of JAZELLE Routines
JZC8

JZC8 - Convert 8-byte string to character

This routine converts a STRING*8 (hollerith) Jazelle data type to a character
coded text string.

FORMAT JZC8 STRING

RETURNS VMS Usage: string
type: character-coded text string (CHARACTER*(*)}
access: write only
mechanism: by value

This function returns a character-coded text string

ARGUMENTS STRING
VMS Usage: quadword
type: quadword {REAL*8}
access: read only
mechanism:-. by-reference

JAZELLE (hollerith) string. The Fortran data type corresponds to a
REAL*8.

14-32

Detailed Description of JAZELLE Routines
JZFDEF

JZFDEF - Attach routine to a family or block

Routine is used to define routines for dumping, inputing or outputing a block
or family.

FORMAT JZFDEF NAME, DUMP, PEEK, POKE[, ARG]]]

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS NAME
VMS Usage: string
type: character-coded text string (CHARACTER*(*)}
access: - read only
mechanism: by descriptor

Name of block or family.

DUMP
VMS Usage: longword-unsigned
type: longword (unsigned) {EXTERNAL}
access: read only
mechanism: by reference

Dump routine.

PEEK
VMS Usage: longword-unsigned
type: longword (unsigned) {EXTERNAL}
access: read only
mechanism: by reference

Peek routine.

POKE
VMS Usage: longword-unsigned
type: longword (unsigned) {EXTERNAL)
access: read only

14-33

Detailed Description of JAZELLE Routines
JZFDEF

mechanism: by reference

Poke routine.

ARG
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Argument passed to routines.

RETURN
VALUES SLD$NORMAL

JZL$
(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-34

Detailed Description of JAZELLE Routines
JZINDX

JZINDX - list all families and banks

This routine dumps a list of all the families and banks in memory.

FORMAT JZINDX FAMILYI, LUN[, LEVEL [, WIDTH]]]]

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS FAMILY
VMS Usage: string
type: character-coded text string {CHARACTER*(*)}
access: read only
mechanism: - by descriptor

Family to be dumped (Default ALL*).

LUN
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

LUN to which bank should be dumped (default 6).

LEVEL
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Dump level (default 0).

WIDTH
VMS Usage: longword
type: longword {INTEGER)
access: read only (optional)
mechanism: by reference

14-35

Detailed Description of JAZELLE Routines
JZINDX

Width of output (default 80).

RETURN
VALUES SLD$NORMAL

JZL$
(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-38

Detailed Description of JAZELLE Routines
JZIOCL

JZIOCL - Close Jazelle IO device

FORMAT JZIOCL D/D

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) (INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS DID
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: read only
mechanism: by reference

Device ID obtained from JZIOPN.
. -

RETURN
VALUES SLD$NORMAL

JZL$
(S) Successful completion
Additional error conditions listed in the Jazelle Errors
Appendix.

14-37

Detailed Description of JAZELLE Routines
JZIOPN

JZIOPN - Open IO device

This routine opens an IO device and sets up the header bank for the device.

FORMAT JZIOPN DDNAME, RW, DISP, DlD[, RECL 1, OLDDID
1111

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS DDNAME
VMS Usage: string
type: ., character-coded text string {CHARACTER*(‘)}
access: read only
mechanism: by descriptor

Device name. On VM this is the file name or DDNAME of the device; On
VMS it is the file name or logical name of the device.

Default filetype is JAZZDATA.

RESTRICTION: On VM DDNAME is restricted to be TAPEnn.

RW
VMS Usage: string
type: character-coded text string {CHARACTER*(‘)}
access: read only
mechanism: by descriptor

‘Read’, Write’, or both seperated by a comma. May be abbreviated to ‘R
and W’. ‘READ,WRITE’ is only valid if DIRECT is specified in the DISP
argument.

DISP
VMS Usage: string
type: character-coded text string {CHARACTER*(“)}
access: read only
mechanism: by descriptor

14-38

Detailed Description of JAZELLE Routines
JZIOPN

‘DIRECT’, ‘DELETE’, ‘APPEND’, and ‘EXCLUS’. More than one
of these values can be specified by seperating them by commas,
eg ‘DIRECT,DELETE’. Other values will be ignored for backward
compatability. DIRECT must be present for APPEND, DELETE, or
EXCLUS to be valid. APPEND is only valid when the file is being opened
as read only. DELETE is only valid if the file is being created. EXCLUS is
only valid if the file is not in use. EXCLUS is the default for new files and
on IBM.

DID
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER)
access: modify
mechanism: by reference

Device ID to be used in subsequent calls to Jazelle IO routines for this
device or if APPEND then this is an input pointer which must correspond
to a direct access file already opened for read to which the file being
opened is to be logically concatenated to.

RECL
VMS Usage: longword
type: longword {INTEGER)
access: read only (optional)
mechanism: by reference

Record length of-file. For direct access files the default is 1024. For
sequential files this is ignored if the file already exists.

OLDDID
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: read only (optional)
mechanism: by reference

Device ID to of another file. When a new file is created some of its header
attributes (such as creation date and owner) will be copied from this
devices header record. Useful when copying files.

RETURN
VALUES SLD$NORMAL

JZL$
(S) Successful completion
Additional error conditions listed in the Jazelle Errors
Appendix.

14-39

Detailed Description of JAZELLE Routines
JZIORD

JZIORD - Read record and link

This routine reads a Jazelle record from an IO device and links the banks into
memory so they may be accessed using the normal methods.

FORMAT JZIORD DID, RNAME, PARAM[, OPTION]]

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) (INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS DID
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: - read only
mechanism: by reference

Device ID obtained from JZIOPN.

RNAME
VMS Usage: string
type: character-coded text string {CHARACTER*(“)}
access: write only
mechanism: by descriptor

Record name (8 characters max> associated with record.

PARAM
VMS Usage: longword
type: longword {INTEGER)
access: write only
mechanism: by reference

Application defined parameters read from record header.

OPTION
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)

14-40

Detailed Description of JAZELLE Routines
JZIORD

mechanism: by reference

See Description.

DESCRIPTION
All banks contained in record will be linked into Jazelle directory and can
be accessed in normal fashion.

If record was written with JZIOWC then entire context will be replaced In
this case the option argument is ignored.

If record was written with JZIOWR then action depends on OPTION.

Options:

ADD (Default) Read banks and add to existing banks. If bank already
exists returns error condition.

REPLACE Read banks and add or replace existing banks.

APPEND Read banks and add to end of existing families. (ID of bank will
not be the same as when written)

Note: If an entire family of banks was written out then the entire family
will be replaced (REPLACE) or an error will result if any banks
exist in the family (ADD).

RETURN
VALUES SLD$NORMAL

JZL$
(S) Successful completion
Additional error conditions listed in the Jazelle Errors
Appendix.

14-41

Detailed Description of JAZELLE Routines
JZIORW

JZIORW - Rewind Jazelle IO device

FORMAT JZIORW DID

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS DID
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER)
access: read only
mechanism: by reference

Device ID obtained from JZIOPN.

RETURN
VALUES SLD$NORMAL

JZL$
(S) Successful completion
Additional error conditions listed in the Jazelle Errors
Appendix.

14-42

Detailed Description of JAZELLE Routines
JZIOWC

JZIOWC - Write entire context to IO device

FORMAT JZIOWC DID, CNAME, RNAME, PARAM[, USERP]]
I

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS DID
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: read only
mechanism: by reference

Device ID obtained from JZIOPN.

CNAME
VMS Usage: string
type: character-coded text string (CHARACTER*(*)}
access: read only
mechanism: by descriptor

Name of context to be written.

RNAME
VMS Usage: string
type: character-coded text string {CHARACTER*(“))
access: read only
mechanism: by descriptor

Record name (8 characters max) to be associated with record.

PARAM
VMS Usage: longword
type: longword {INTEGER}
access: read only
mechanism: by reference

Parameters to be written with record header.

14-43

Detailed Description of JAZELLE Routines
JZIOWC

USERP
VMS Usage: longword-unsigned
type: longword (unsigned) (POINTER)
access: read only (optional)
mechanism: by reference

User data to be written into the record header.

RETURN
VALUES SLD$NORMAL

SLD$STATICON

JZL$

(S) Successful completion
(E) Can not write static banks.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-44

Detailed Description of JAZELLE Routines
JZIOWR

JZIOWR - Write Jazelle record to IO device

FORMAT JZIOWR DID, LIST; LID, RNAME, PARAM[, USERP]
111

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS DID
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER)
access: read only
mechanism: by reference

Device ID obtained from JZIOPN.

LIST
VMS Usage: string
type: character-coded text string {CHARACTER*(“)}
access: read only
mechanism: by descriptor

Name of Jazelle List to be written.

LID
VMS Usage: longword
type: longword {INTEGER}
access: read only
mechanism: by reference

Bank ID of LIST.

RNAME
VMS Usage: string
type: character-coded text string {CHARACTER*(“)}
access: read only
mechanism: by descriptor

Record name (8 characters max) to be associated with record.

14-45

Detailed Description of JAZELLE Routines
JZIOWR

PARAM
VMS Usage: longword
type: longword (INTEGER}
access: read only
mechanism: by reference

Parameters to be written with record header.

USERP
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: read only (optional)
mechanism: by reference

User data to be written into record header.

RETURN
VALUES SLD$NORMAL

JZL$
(S) Successful completion
Additional error conditions listed in the Jazelle Errors
Appendix.

14-46

Detailed Description of JAZELLE Routines
JZIOWP

JZIOWP - Write Jazelle record to IO device

FORMAT JZIOWP DID, LPTRX, RNAME, PARAM, USERP

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS DID
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: read only
mechanism: by reference

Device ID obtained from JZIOPN.

LPTRX ~ -
VMS Usage: longwordunsigned
type: longword (unsigned) {UNKNOWN}
access: read only
mechanism: by reference

Pointer to list to be written.

RNAME
VMS Usage: string
type: character-coded text string {CHARACTER*(“))
access: read only
mechanism: by descriptor

Record name (8 characters max) to be associated with record.

PARAM
VMS Usage: longword
type: longword {INTEGER}
access: read only
mechanism: by reference

Parameters to be written with record header.

14-47

Detailed Description of JAZELLE Routines
JZIOWP

USERP
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: read only (optional)
mechanism: by reference

User data to be written into record header.

RETURN
VALUES SLD$NORMAL

JZL$
(S) Successful completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-46

Detailed Description of JAZELLE Routines
JZKGET

JZKGET - User interface to the JAZELLE constant
system

Is used to load constants into a file and to inform the JAZELLE constants
system that it should continue to process constants for the specified bank.

FORMAT JZKGET FILE, OPTlON[, PTR[, ROUTNE]]

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER)
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS FILE
VMS Usage: string
type: character-coded text string {CHARACTER*(“)}
access: read only
mechanism: by descriptor

Name of bank to be initialized.

OPTION
VMS Usage: string
type: character-coded text string {CHARACTER*(*)}
access: read only
mechanism: by descriptor

Any options that need to be specified.

PTR
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: write only (optional)
mechanism: by reference

Pointer to bank created.

14-49

Detailed Description of JAZELLE Routines
JZKGET

ROUTNE
VMS Usage: longword-unsigned
type: longword (unsigned) (EXTERNAL}
access: read only (optional)
mechanism: by reference

Routine to be called when constants updated.

RETURN
VALUES SLD$NORMAL

JZL$
(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-50

Detailed Description of JAZELLE Routines
JZKLNK

JZKLNK - Routine to add a routine to the constant
chain

Is used to define a routine which will be called each time a bank or set of
banks is marked as changed either by the constants system or by a call to
JZKPOK.

FORMAT JZKLNK ROUTNE, NAMEI, ID]

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) (INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS ROUTNE _
VMS Usage: longword
type: longword (INTEGER}
access: read only
mechanism: by reference

Routine to be called.

NAME
VMS Usage: string
type: character-coded text string (CHARACTER*(*)}
access: read only
mechanism: by descriptor

Name of bank to be added to chain.

ID
VMS Usage: longword
type: longword (INTEGER)
access: read only (optional)
mechanism: by reference

ID of bank to be added to chain (optional, default ALL).

14-51

Detailed Description of JAZELLE Routines
JZKLNK

RETURN
VALUES SLD$NORMAL

JZL$
(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-52

Detailed Description of JAZELLE Routines
JZKPOK

JZKPOK - Routine to mark a bank as updated

Is called to mark a bank as having been updated. It will trigger any linked
routines to be called nxet time JZKUPD is called.

FORMAT JZKPOK BANK

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS BANK
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: -. read only
mechanism: by reference

Bank to be marked as updated.

RETURN
VALUES SLD$NORMAL

JZL$
(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-53

Detailed Description of JAZELLE Routines
JZKUPD

JZKUPD - Routine to update all banks in constant
chain

Is called to call the initialization routines corresponding to any banks which
have been updated since the last call to JZKUPD.

FORMAT JZKUPD

RETURNS VMS Usage: longword-unsigned
We: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

RETURN
VALUES SLD$NORMAL

JZL$.’ -
(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-54

Detailed Description of JAZELLE Routines
JZLCRE

JZLCRE - Create list bank

This routine creates a Jazelle symbolic or pointer list bank.

FORMAT JZLCRE NAME, CONTXT; KiND[, PTR[, IDOUT[,
ID/N 1, NPTRS]]]]]

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER)
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS NAME
VMS Usage: string
type: __ ch_aractercoded text string {CHARACTER*(*))
access: read only
mechanism: by descriptor

Family name of list to be created.

CONTXT
VMS Usage: string
type: character-coded text string (CHARACTER*(+)}
access: read only
mechanism: by descriptor

Context name in which list is to be created.

KIND
VMS Usage: string
type: character-coded text string {CHARACTER*(*)}
access: read only
mechanism: by descriptor

= ‘SYMBOLIC’ to create sympolic list;

= ‘POINTER’ to create pointer list;

(Only first character required).

1445

Detailed
JZLCRE

Description of JAZELLE Routines

PTR
VMS Usage: longword
type: longword {INTEGER}
access: write only (optional)
mechanism: by reference

Pointer to created list bank.

IDOUT
VMS Usage: longword
type: longword {INTEGER}
access: write only (optional)
mechanism: by reference

Actual ID of created list bank. (= 0 if error).

ID/N
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Requested ID, or ‘LAST (default).

NPTRS
VMS Usage:’ longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Number of pointers for which space will be allocated.

RETURN
VALUES SLD$NORMAL

JZL$BADARGC
(S) Normal completion.
(E) Illegal specification of KIND.
(E) KIND does not match already existing list family
Additional error conditions listed in the Jazelle Errors
Appendix.

JZL$BADKIND
JZL$

14-66

Detailed Description of JAZELLE Routines
JZLINC

JZLINC - Include pointer in list

FORMAT JZLINC LNAME, FNAME[, FID[, LID[, INDFLG]]]

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS LNAME
VMS Usage: string
We: character-coded text string {CHARACTER*(f)}
access: read only
mechanism: by descriptor

Name of list to which pointer is to be added.

FNAME” -
VMS Usage: string
type: character-coded text string {CHARACTER*(f)}
access: read only
mechanism: by descriptor

Family name of bank(s) to be added.

FID
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Explicit ID of bank to be added, or ‘ALL*’ (default). If LNAhIE refers to a
pointer list, and an explicit ID is used, the bank (FNAME, ID) must have
been previously created. If LNAME refers to a pointer list and ‘ALL*’ is
used, and the family FNAME has not been created, then the template
bank and family block for that family will be created.

LID
VMS Usage: longword
type: longword {INTEGER)
access: read only (optional)
mechanism: by reference

14-57

Detailed Description of JAZELLE Routines
JZLINC

Explicit ID of list to which pointer is to be added, or ‘FRST’, or ‘LAST’
(default). The specified list bank must have been previously created.

INDFLG
VMS Usage: longword
type: longword {LOGICAL}
access: read only (optional)
mechanism: by reference

.TRUE. if FNAME is another list and should be used as another level
of indirection; i.e. for list operations such as IO and wipe, the requested
operation will be performed not on bank(s) (FNAME, FID), but on the
banks specified therein. (default = .FALSE.).

DESCRIPTION
JZLINC adds a pointer to a JAZELLE symbolic or pointer list bank. If
the list bank is full, a garbage collection is performed to squeeze out null
entries left by previous calls to JZLREM. If this fails to create space, then
the list bank is expanded. The new pointer is added as the last pointer in
the list.

RETURN
VALUES JZL$NOLIST

JZL$NOBANKl -
(E) Requested list does not exist.
(E) Requested bank does not exist.
(E) Cannot include a static bank in a list.
(F) Number of used pointers exceeds number
allocated.
Additional error conditions listed in the Jazelle Errors
Appendix.

JZL$STATIC
JZL$BADALO

JZL$

14-66

Detailed Description of JAZELLE Routines
JZLREM

JZLREM - Remove pointer from list

FORMAT JZLREM LNAME, FNAME[, FID[, LID]]

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS LNAME
VMS Usage: string
type: character-coded text string {CHARACTER*(*)}
access: read only
mechanism: by descriptor

Name of list from which pointer is to be removed.

FNAME .. -
VMS Usage: string
type: character-coded text string {CHARACTER*(“)}
access: read only
mechanism: by descriptor

Family name of bank(s) to be removed.

FID
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Explicit ID of bank : Removes entry which was added to list with an
explicit ID.

‘ALL*‘: removes entry which was added to list with ID ‘ALL*‘.

‘ANY*‘: (default) Removes any entry in the list belonging to the specified
family.

LID
VMS Usage: longword
type: longword {INTEGER)
access: read only (optional)

1449

Detailed Description of JAZELLE Routines
JZLREM

mechanism: by reference

Explicit ID of list from which pointer is to be removed, or ‘FRS?” or ‘LAST’
(default).

RETURN
VALUES JZL$NOLIST

JZL$

,’

(E) Requested list bank does not exist.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-60

Detailed Description of JAZELLE Routines
JZLWIP

JZLWIP - W ipe (delete) banks in list

FORMAT JZLWIP LNAME [, LID]]

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS LNAME
VMS Usage: string
type: character-coded text string {CHARACTER*(+))
access: read only
mechanism: by descriptor

Name of list.

LID .. -
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Explicit ID of list, or ‘FRST’ or ‘LAS’I” (default).

RETURN
VALUES JZL$NOLIST

JZL$

(E) Requested list does not exist.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-61

Detailed Description of JAZELLE Routines
JZMAP

JZMAP - Memory map of banks

Produces a memory map of all the JAZELLE banks.

FORMAT JZMAP [, LlJN [, LEVEL [, W lD7-j]]

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER)
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS LUN
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: .’ by -reference

Logical unit number for output (Default 6).

LEVEL
VMS Usage: longword
type: longword {INTEGER)
access: read only (optional)
mechanism: by reference

Output level (Default 0).

WIDTH
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Output width (Default SO>.

14-62

Detailed Description of JAZELLE Routines
JZMAP

RETURN
VALUES SLD$NORMAL

JZL$
(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-63

Detailed Description of JAZELLE Routines
JZPCMP

JZPCMP - Compare Bank Contents

FORMAT JZPCMP Pl, P2, UOPTlON[, UMATCH [, URPTCNT
Ill

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS PI
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: read only
mechanism: by reference

Pointer to first bank.

P2
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: read only
mechanism: by reference

Pointer to second bank.

UOPTION
VMS Usage: longword
type: longword {INTEGER}
access: write only
mechanism: by reference

Dergee of Match in the Data Area.

UMATCH
VMS Usage: longword
type: longword {INTEGER}
access: write only (optional)
mechanism: by reference

Match Flags.

14-64

Detailed Description of JAZELLE Routines
JZPCMP

URPTCNT
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Compare only the first RPTCNT variable blocks.

DESCRIPTION
JZPCMP compares the banks pointed to by pl and p2.

It returns JZL$NORMAL or the error code JZL$MISMATCH, depending
on whether the banks are equal with respect to the given criteria or not.

The following match options can be specified:

Options:

JZPCMP$SAME the pointers point to the same bank.

JZPCMP$FAMILY banks belong to the same family

JZPCMP$TEMPLATE banks use the same template.

JZPCMP$COMPAT banks have compatible structures.

JZPCMP$DATA the data is identical (=JZPCMP$FIXDATA+VARDATA).

JZPCMP$FIXDATA the fixed part data is identical.

JZPCMP$VARDATA vrb data is identical (but one bank might be larger).

JZPCMP$SIZE same size.

JZPCMP$FIXSIZE fixed size parts have the same size.

JZPCMP$VARSIZE vrb’s have the same size.

JZPCMP$VARALOC allocation counts for vrb’s are identical.

JZPCMP$MATCH test for all of the above, return bits in MATCH.

The above are integer*4 values and the usual comparison operators
can be used. The above table shows the values in order of size where
JZPCMP$SAME is largest.

In the calling user routine, the above bit masks are used to

a) specify the type of comparison to be performed and

b) to interpret the result of the comparison (as returned in the optional
parameter MATCH)

Users of these bitmask values need to include JZPCMPPAR to obtain the
definitions for these constants.

14-65

Detailed Description of JAZELLE Routines
JZPCMP

RETURN
VALUES SLD$NORMAL

JZL$MISMATCti
(S) Banks match wrt the given criteria.
(I) Banks dont match.

JZL$BADCMOPT
JZL$

(E) Bad compare option specified.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-66

Detailed Description of JAZELLE Routines
JZPCPY

JZPCPY - Bank to Bank Copy

This routine copies the contents of one existing bank to another existing bank.

FORMAT JZPCPY FROMPTR, TOPTR

RETURNS VMS Usage: longword-unsigned
We: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS FROMPTR
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: read only
mechanism: .’ by reference

Pointer to bank holding the data to be copied (source).

TOPTR
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: read only
mechanism: by reference

Pointer to bank to which the data is to be copied (target>.

DESCRIPTION
JZPCPY copies the contents of one bank (FROMPTR->) to another existing
bank (TOPTR->). Extra repeat blocks in the other bank will be initialized
as specified in the template file.

If the other bank (TOPTR->) is too small, the bank is expanded to match
the size of the first bank.

14-67

Detailed Description of JAZELLE Routines
JZPCPY

RETURN
VALUES SLD$NORMAL

JZL$NOCOPY
JZL$

(S) Successful completion.
(E) Failure.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-88

Detailed Description of JAZELLE Routines
JZPDEL

JZPDEL - Delete a bank

This routine deletes a Jazelle bank referenced by pointer.

FORMAT JZPDEL BANK

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS BANK
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: read only
mechanism: ~ by reference

Pointer to bank to be deleted.

RETURN
VALUES SLD$NORMAL

JZL$NOBANK
JZL$

(S) if requested bank was successfully deleted.
(I) if requested bank was not found.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-69

Detailed Description of JAZELLE Routines
JZPDMP

JZPDMP - Dump user pointers

Is used to produce a dump of registered user pointers in one context or in all
contexts. Flags may be specified to overide the default action.

FORMAT JZPDMP CONTXT[, FLAGS1 [, LUN[, LEVEL 1,
~DWIJIl

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER)
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS CONTXT
VMS Usage!, string
type: character-coded text string {CHARACTER*(*)}
access: read only
mechanism: by descriptor

Context to be dumped (‘*’ or ’ ’ dumps all).

FLAGS1
VMS Usage:
type:
access:
mechanism:

longword
longword {INTEGER}
read only (optional)
by reference

Overide flags specified when pointers registered. The bits in FLAGS1 are
defined in JZPFLG.PAR. (No useful bits are yet defined.)

LUN
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Logical unit number for output (Default 6).

14-70

Detailed Description of JAZELLE Routines
JZPDMP

LEVEL
VMS Usage: longword
type: longword (INTEGER}
access: read only (optional)
mechanism: by reference

Dump level (Default 0).

WIDTH
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Width of output (Default 80).

RETURN
VALUES SLD$NORMAL

JZL$
(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-71

Detailed Description of JAZELLE Routines
JZPIDX

JZPIDX - Initialize JAZELLE indexed pointer array

FORMAT JZPIDX FNAME, PARRAY

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) (INTEGER}
&kess: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RE’I’URN VALUES.

ARGUMENTS FNAME
VMS Usage: string
type: character-coded text string {CHARACTER*(*)}
access: read only
mechanism: by descriptor

Name of family to be associated with array.

PARRAY’ -
VMS Usage: longword
type: longword {INTEGER}
access: write only
mechanism: by reference

Indexed pointer array.

RETURN
VALUES SLD$NORMAL

JZL$
(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-72

Detailed Description of JAZELLE Routines
JZPM

JZPM - Map banks

This routine produces a Jazelle post mortem dump.

FORMAT JZPM [, LUN[, LEVEL [, WIDT]]]

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS LlJN
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: __ by reference

Logical unit number for output (Default 6).

LEVEL
VMS Usage: longword
type: longword {INTEGER)
access: read only (optional)
mechanism: by reference

Output level (Default 2).

WIDTH
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Output width (Default SO).

14-73

Detailed Description of JAZELLE Routines
JZPM

RETURN
VALUES SLD$NORMAL

JZL$

(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-74

Detailed Description of JAZELLE Routines
JZPREG

JZPREG - Register a user pointer

Is used to register a user pointer. The pointer is inserted into a binary tree for
the specified context along with the comment specifed.

FORMAT JZPREG COMMENT; CONTXIT; PTR[, NPTRI 1,
FLAGS1]]I

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) (INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS COMMENT
VMS Usage: string
type: .’ ch%racter-coded text string (CHARACTER*(‘)}
access: read only
mechanism: by descriptor

The comment to be associated with pointer.

CONTXT
VMS Usage: string
type: character-coded text string (CHARACTER*(*)}
access: read only
mechanism: by descriptor

The context for this pointer.

PTR
VMS Usage: longword
We: longword (INTEGER}
access: read only
mechanism: by reference

The pointer to be registered.

14-75

Detailed Description of JAZELLE Routines
JZPREG

NPTRI
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

The dimension of the pointer (default 1).

FLAGS1
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Flags associated with pointer (default 0) The bits in FLAGS are defined in
JZPFLG.PAFC (No useful flags are yet defined.)

RETURN
VALUES SLD$NORMAL

JZL$
(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-76

Detailed Description of JAZELLE Routines
JZS

JZS - Character to (hollerith) string

This routine converts character-coded text to a Jazelle string (hollerith) data
type.

FORMAT JZS N, IN, OUT

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS N
VMS Usage: longword
type: longword {INTEGER}
access: __ read only
mechanism: by reference

Length of JAZELLE string in bytes.

IN
VMS Usage: string
type: character-coded text string {CHARACTER*(*))
access: read only
mechanism: by descriptor

Character string to be converted.

OUT
VMS Usage: longword
type: longword {INTEGER}
access: write only
mechanism: by reference

Resultant JAZELLE string.

14-77

Detailed Description of JAZELLE Routines
JZS

RETURN
VALUES SLD$NORMAL

JZL$

(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-76

Detailed Description of JAZELLE Routines
JZS4

JZS4 - 4-byte string to JAZELLE string

This routine converts a 4-byte character-coded text string to a 4-byte longword
corresponding to a Jazelle string (hollerith) data type.

FORMAT JZS4 STRING

RETURNS VMS Usage: iongword
type: longword (INTEGERV}
access: write only
mechanism: by value

Jazelle string (hollerith) data. This longword corresponds to a 4-byte
string representing character-coded data

ARGUMENTS STRING
VMS Usage: string
We: character-coded text string {CHARACTER*(*))
access: ~ read only
mechanism: by descriptor

character string to be converted.

14-79

Detailed Description of JAZELLE Routines
JZS8

JZS8 - Character to 8-byte string

This routine converts an 8-byte character-coded text string to a Jazelle
String’8 (hollerith) data type.

FORMAT JZS8 STRING

RETURNS VMS Usage: Quadword
type: Quadword {REAL*6}
access: write only
mechanism: by value

Jazelle string (hollerith) data. This quadword corresponds to an 8-byte
hollerith string representing character-coded data. In Fortran, this
corresponds to a double precision Real variable type.

ARGUMENTS STRING
VMS Usage: string
type: __ character-coded text string {CHARACTER*(“))
access: read only
mechanism: by descriptor

Character string to be converted.

14-60

Detailed Description of JAZELLE Routines
JZSTAT

JZSTAT - Summary of memory usage

This routine produces a summary of Jazelle memory usage.

FORMAT JZSTAT L LUN [, LEVEL [, WIDT]]]

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS LlJN
VMS Usage: iongword
type: longword {INTEGER}
access: read only (optional)
mechanism: ~ by reference

LUN to which bank should be dumped (default 6).

LEVEL
VMS Usage: iongword
type: iongword {INTEGER}
access: read only (optional)
mechanism: by reference

Dump level (default 0).

WIDTH
VMS Usage: iongword
type: iongword {INTEGER}
access: read only (optional)
mechanism: by reference

Width of output (default 80).

14-81

Detailed Description
JZSTAT

of JAZELLE Routines

RETURN
VALUES SLD$NORMAL

JZL$
(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-82

Detailed Description of JAZELLE Routines
JZSTRT

JZSTRT - Initialize Jazelle

initializes the JAZELLE Data Management System, and must be called once,
before other JAZELLE routines can be used.

FORMAT JZSTRT 1, LU]

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}

-

access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS LUN
VMS Usage: longword
type: longword {INTEGER)
access: __ read only (optional)
mechanism: by reference

If specified JAZELLE banner will be written to LUN.

RETURN
VALUES SLD$NORMAL

JZL$
(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-83

Detailed Description of JAZELLE Routines
JZTDEF

JZTDEF - Add columns to tables

This is a user routine used to add new columns to tables and to create new
tables.

FORMAT JZTDEF TABLE/, PATH, HEADER, FMT

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS TABLE/
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: .’ moUify
mechanism: by reference

Pointer to the table bank for the table If 0 table is created and pointer is
set

Note: If TABLE1 is non-zero then PATH must belong to the same family
as the table pointed to by TABLEI.

PATH
VMS Usage: string
type: character-coded text string {CHARACTER*(“)}
access: read only
mechanism: by descriptor

Path defining element to be added to table.

HEADER
VMS Usage: string
type: character-coded text string {CHARACTER*(*)}
access: read only
mechanism: by descriptor

Title for this column. If blank element name is used.

14-84

FMT
VMS Usage:
type:
access:
mechanism:

Detailed Description of JAZELLE Routines
JZTDEF

string
character-coded text string {CHARACTER*(“)}
read only
by descriptor

Format to be used. If blank default used.

RETURN
VALUES SLD$NORMAL

JZL$

(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-85

Detailed Description of JAZELLE Routines
JZTDFL

JZTDFL - Define default table for a bank

Allows users to specify a default table for a family.

FORMAT JZTDFL NAME, TABLE/[, TABLEO]

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS NAME
VMS Usage: string
type: character-coded text string {CHARACTER*(“)}
access: read only
mechanism:- by-descriptor

Family to which default is to be attached.

TABLE/
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: read only
mechanism: by reference

Table to be used (0 default not changed).

TABLE0
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: write only (optional)
mechanism: by reference

Default table before any change.

14-66

Detailed Description of JAZELLE Routines
JZTDFL

RETURN
VALUES SLD$NORMAL

JZL$
(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-87

Detailed Description of JAZELLE Routines
JZTMOD

JZTMOD - Sets JAZELLE bank key values

Changes the key pointers in the specified bank to point to other banks (whose
pointers are passed as KEY1 ..KEY5). If KEYn is 0, the corresponding key in
the bank will not be changed.

FORMAT JZTMOD DATPTR [, KEY1 [, KEY2 [, KEY3 [, KEY4 1,
KEwIIIll

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS DATPTR
VMS Usagei longword-unsigned
type: longword (unsigned) {POINTER}
access: read only
mechanism: by reference

Pointer to data region of bank containing keys.

KEY1
VMS Usage: iongword
type: iongword (INTEGER}
access: read only (optional)
mechanism: by reference

Keys (if any) associated with this bank.

KEY2
VMS Usage: longword
type: iongword {INTEGER}
access: read only (optional)
mechanism: by reference

Keys (if any) associated with this bank.

14-66

Detailed Description of JAZELLE Routines
JZTMOD

KEY3
VMS Usage: longword
We: longword {INTEGER)
access: read only (optional)
mechanism: by reference

Keys (if any) associated with this bank.

KEY4
VMS Usage: longword
type: longword {INTEGER}
access: read only (optional)
mechanism: by reference

Keys (if any) associated with this bank.

KEY5
VMS Usage: longword
type: iongword {INTEGER)
access: read only (optional)
mechanism: by reference

Keys (if any) associated with this bank.

RETURN -
VALUES

. -

SLD$NORMAL
JZL$INCFAMLY
JZL$

(S) Successful completion.
(E) bank pointed to belong to the wrong family.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-99

Detailed Description of JAZELLE Routines
JZTSCN

JZTSCN - Scan a table for key

This routine is used to scan a relational table finding all occurences of a
specified key with a given value. The user supplies an array in which the
pointers to the table entries are returned. If the array is not big enough for all
the pointers an error occurs.

FORMAT JZTSCN TABLE, KE’1: VALUE, MAXOUT; OU7;
NOUT

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER)
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS TABLE - -
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: read only
mechanism: by reference

Pointer to the family (table) as returned by JZBLOC.

KEY
VMS Usage: string
type: character-coded text string {CHARACTER*(‘)}
access: read only
mechanism: by descriptor

Name of the KEY to be scanned (as specified in the template for the table.

VALUE
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER)
access: read only
mechanism: by reference

Key value to be scanned for.

14-90

Detailed Description of JAZELLE Routines
JZTSCN

MAXOUT
VMS Usage: longword
type: longword (INTEGER}
access: read only
mechanism: by reference

Size of array OUT.

Note: If MAXOUT is not big enough for all the entries found the routine
will return an error condition and NOUT will be set to zero.

OUT
VMS Usage: longword-unsigned
type: longword (unsigned) {POINTER}
access: write only
mechanism: by reference

Array to receive pointers to found table entries. Must be dimensioned
MAXOUT.

NOUT
VMS Usage: longword
type: longword {INTEGER}
access: write only
mechanism:” by- reference

Actual number of entries found.

Note: If no entries are found with the specified value then NOUT will
be set to zero and the routine will return an information level
response.

RETURN
VALUES SLD$NORMAL

JZL$
(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-91

Detailed Description of JAZELLE Routines
JZVERS

JZVERS - Jazelle Version numbers

This routine returns the current JAZELLE version number and, optionally, the
IO system version number.

FORMAT JZVERS JVERS[, IOVERS]]

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS JVERS
VMS Usage: longword
type: longword {REAL}
access: __ write only
mechanism: by reference

The JAZELLE version number.

IOVERS
VMS Usage: longword 1 .
type: longword {REAL}
access: write only (optional)
mechanism: by reference

The IO system version number.

RETURN
VALUES SLD$NORMAL

JZL$
(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-92

Detailed Description of JAZELLE Routines
JZXWIP

JZXWIP - W ipe an entire context

This routine deletes an entire context. This routine is much faster than
deleting individual banks.

FORMAT JZXWIP CONTXT

RETURNS VMS Usage: longword-unsigned
type: longword (unsigned) {INTEGER}
access: write only
mechanism: by value

Longword condition value. Condition values that this function returns are
listed under RETURN VALUES.

ARGUMENTS CONTXT
VMS Usage: string
type: character-coded text string {CHARACTER*(*))
access: __ read only
mechanism: by descriptor

Name of context to be wiped

RETURN
VALUES SLD$NORMAL

JZL$

,
(S) Normal completion.
Additional error conditions listed in the Jazelle Errors
Appendix.

14-93

A Controlling JAZELLE’s Global Parameters

Write-up not yet available.

A-l

B JAZELLE Utilties Programs

Write-up not yet available.

B-l

I

C Defining User Data Types

Write-up not yet available.

C-l

,

D. Mapping Common Blocks to banks

Write-up not yet available.

D-l

E Error Conditions

Jazelle uses a standard error reporting mechanism to report all errors
back to the user. See the SLD Error manual for more details on the error
reporting system.

All the error conditions that can be returned are given below, along with
an explanation of each error condition.

ABORT, Template processing aborted due to error

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-F-ABORT

ABORT, Constant processing aborted due to error

Facility: KONSTANT, Constant management system

Severity: KONSTANT-F-ABORT

ACCVIO, Access violation trapped by jazelle

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-ACCVIO

Explanatik: An access violation (or OC4 for you VMites) has occurred.
JAZELLE has trapped it so that it can produce a post-mortem which
may help someone figure out what has happened. Probably someone has
called a routine (not necessarily a JAZELLE routine) with the wrong
number of arguments, or someone is trying to use a pointer which has an
invalid value. (Maybe someone is using an indexed pointer but the routine
JZPIDX has not been called for the corresponding family). If not probably
memory has been overwritten in some other way. There are two common
ways of overwriting memory: The first is to write to an element of an array
larger than the upper dimension, or smaller than the lower dimension
(note that array here may mean either an array inside a JAZELLE bank,
or an FORTRAN array). The second common way of overwriting memory
is not to have allocated enough memory for a particular variable repeat
block inside a bank. When a bank which contains a variable repeat block
(or variable dimension) is created a certain number of blocks (or elements)
are allocated. The user can then use as many or as few of these as he
likes, however it is the users responsibility to ensure that he does not use
more than are allocated. If more are required the bank must be expanded
using the JZPEXP or JZBEXP routines.

E-l

Error Conditions

ARGS, ‘I’ arguments passed to ‘A’ which expected ‘I’-‘I’ arguments

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-ARGS

Explanation: A JAZELLE routine has been called with an inappropriate
number of arguments. Read the manual!!

BADALIGN, JAZELL COMMON is incorrectly aligned

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-BADALIGN

Explanation: The common block JAZELL must be aligned in memory
on an &byte boundary. On the VAX this error probably means that the
line DUCSJAZELLE:JAZELLE/OPT was somehow missed out of your link
command.

BADALO, Variable block count exceeds allocated count; bank ‘A’, Id ‘%JID’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-BADALO

BADARGC, Bad character argument ‘A’ = ‘A’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-BADARGC

BADBANRP, Inconsistent bank pointers in bank ‘%PTR

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-BADBANKP

Explanation: This error indicates that the memory managed by
JAZELLE has become corrupted. While it is possible that this due to
some internal JAZELLE bug it is more likely that the memory has been
overwritten by some other program. There are two common ways of
overwriting memory: The first is to write to an element of an array larger
than the upper dimension, or smaller than the lower dimension (note
that array here may mean either an array inside a JAZELLE bank, or an
FORTRAN array). The second common way of overwriting memory is not
to have allocated enough memory for a particular variable repeat block
inside a bank. When a bank which contains a variable repeat block (or
variable dimension) is created a certain number of blocks (or elements) are
allocated. ‘I’he user can then use as many or as few of these as he likes,
however it is the users responsibility to ensure that he does not use more
than are allocated. If more are required the bank must be expanded using
the JZPEXP or JZBEXP routines.

BADBASE, Base must be 8, 10 or 16

Facility: KEY, Parsing utility

Severity: KEY-E-BADBASE

E-2

Error Conditions

BADBLOCK, Bad BLOCK statment

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-BADBLOCK

BADBLOCK, Bad BLOCK statment

Facility: KONSTANT, Constant management system

Severity: KONSTANT-E-BADBLOCK

BADCHAB, JAZELLE name ‘A’ contains an illegal character (‘A’)

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BADCHAI3

Explanation: All JAZELLE names must be 1-8 characters, consisting
only of uppercase letters, digits and the special symbols $ and _. All name
must begin with a letter. JAZELLE names include bank names, element
names, parameter names and context names.

BADCMOPT, Bad options specified for JZPCMP

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BADCMOPT

Explanation: JZPCMP has been called with invalid option bits set in the
OPTION parameter. DUCSJAZELLE:JZPCMP.PAB lists the valid options.
These options can be logically or’ed together. . -

BADCNT, Illegal repeat count (‘I’cO) given for JZBADD

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BADCNT

Explanation: If specified, the repeat count for JZBADD must be >= 0.

BADCON, Bad context...cannot parse line

Facility: KEY, Parsing utility

Severity: KEY-F-BADCON

BADDEF, Default repeat count not valid in this location

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-BADDEF

BADDIMEN, A dimension has an illegal value

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-BADDIMEN

BADDNAME, Bad IO DDNAME = ‘A’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BADDNAME

E-3

Error Conditions

BADEBASE, Illegal base expression: ‘A’

Facility: KEY, Parsing utility

Severity: KEY-E-BADEBASE

BADEND, End statement does not correspond to BANK or BLOCK statement

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-BADEND

BADEND, Constant file contains unclosed blocks

Facility: KONSTANT, Constant management system

Severity: KONSTANT-E-BADEND

BADEXPR, Error processing expression ‘A’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BADEXPR

BADFAMP, Inconsistent Family pointers

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-BADFAMP

Explanation: This error indicates that the memory managed by
JAZELLE has become corrupted. While it is possible that this due to
some internal J&ELLE bug it is more likely that the memory has been
overwritten by some other program. There are two common ways of
overwriting memory: The first is to write to an element of an array larger
than the upper dimension, or smaller than the lower dimension (note
that array here may mean either an array inside a JAZELLE bank, or an
FORTRAN array). The second common way of overwriting memory is not
to have allocated enough memory for a particular variable repeat block
inside a bank. When a bank which contains a variable repeat block (or
variable dimension) is created a certain number of blocks (or elements) are
allocated. The user can then use as many or as few of these as he likes,
however it is the users responsibility to ensure that he does not use more
than are allocated. If more are required the bank must be expanded using
the JZPEXP or JZBEXP routines.

BADFILE, File ‘A’ has invalid format for JAZELLE IO

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BADFILE

Explanation: An attempt has been made to read a file which JAZELLE
does not recognize as containing valid JAZELLE data. Maybe it does not
contain JAZELLE data, or alternately it may have been copied incorrectly,
or it may have been somehow corrupted.

E-4

Error Conditions

BADFMTP, Inconsistent format bank pointers in family ‘A’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-BADFMTP

.Explanation: This error indicates that the memory managed by
JAZELLE has become corrupted. While it is possible that this due to
some internal JAZELLE bug it is more likely that the memory has been
overwritten by some other program. There are two common ways of
overwriting memory: The first is to write to an element of an array larger
than the upper dimension, or smaller than the lower dimension (note
that array here may mean either an array inside a JAZELLE bank, or an
FORTRAN array). The second common way of overwriting memory is not
to have allocated enough memory for a particular variable repeat block
inside a bank. When a bank which contains a variable repeat block (or
variable dimension) is created a certain number of blocks (or elements) are
allocated. The user can then use as many or as few of these as he likes,
however it is the users responsibility to ensure that he does not use more
than are allocated. If more are required the bank must be expanded using
the JZPEXP or JZBEXP routines.

BADFNUMB, number of banks in family ‘A’ inconsistent with family block

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BADFNUMB

Explanation: The number of banks actually found in memory by
traversing the linked list of banks does not match the number of banks
as advertised in the family block. This is most likely due to an internal
Jazelle error.

BADFORM, Record format ‘A’ unrecognised

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BADFORM

BADHASH, Hash table corrupted

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-BADHASH

Explanation: This error indicates that the memory managed by
JAZELLE has become corrupted. While it is possible that this due to
some internal JAZELLE bug it is more likely that the memory has been
overwritten by some other program. There are two common ways of
overwriting memory: The first is to write to an element of an array larger
than the upper dimension, or smaller than the lower dimension (note
that array here may mean either an array inside a JAZELLE bank, or an
FORTRAN array). The second common way of overwriting memory is not
to have allocated enough memory for a particular variable repeat block
inside a bank. When a bank which contains a variable repeat block (or
variable dimension) is created a certain number of blocks (or elements) are
allocated. The user can then use as many or as few of these as he likes,
however it is the users responsibility to ensure that he does not use more

E-5

Error Conditions

than are allocated. If more are required the bank must be expanded using
the JZPEXP or JZBEXP routines.

BADID, Illegal bank Id = ‘%JID

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-BADID

Explanation: Bank ID’s must be in the range O-32767. Sometime you can
also use FIRST, LAST or ALL (or ‘FRST’,‘LAST’,‘ALL*’ as the argument to
a routine.

BADIND, Bad index ‘I’ for element ‘A’U’:‘I’) in ‘%JPTR

Facility: JBCHK, JAZELLE bounds checking utility

Severity: JBCHK-E-BADIND

BADINDEX, Index ‘I’ out of range, ‘A’ dimensioned (‘I’:‘I’)

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BADINDEX

Explanation: An attempt has been made to reference a dimension
block or element with an index which is outside of the range of the
dimension specified in the template. In the case of a variable dimension
the dimension is outside the range of the currently used dimension.

BADKIND, Requested list ‘A’ with wrong kind of list

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-BADKIND

BADLASTP, Inconsistent last bank pointers in family ‘A’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-BADLASTP

Explanation: This error indicates that the memory managed by
JAZELLE has become corrupted. While it is possible that this due to
some internal JAZELLE bug it is more likely that the memory has been
overwritten by some other program. There are two common ways of
overwriting memory: The first is to write to an element of an array larger
than the upper dimension, or smaller than the lower dimension (note
that array here may mean either an array inside a JAZELLE bank, or an
FORTRAN array). The second common way of overwriting memory is not
to have allocated enough memory for a particular variable repeat block
inside a bank. When a bank which contains a variable repeat block (or
variable dimension) is created a certain number of blocks (or elements) are
allocated. The user can then use as many or as few of these as he likes,
however it is the users responsibility to ensure that he does not use more
than are allocated. If more are required the bank must be expanded using
the JZPEXP or JZBEXP routines.

E-6

Error Conditions

BADLINE, ‘A’

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-BADLINE

BADLINE, ‘A’

Facility: KONSTANT, Constant management system

Severity: KONSTANT-E-BADLINE

BADLOGI, Invalid logical expression: ‘A’

Facility: KEY, Parsing utility

Severity: KEY-E-BADLOGI

BADNODE, Corrupted jazelle balanced binary tree node. Addr= ‘I’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-BADNODE

Explanation: This error indicates that the memory managed by
JAZELLE has become corrupted. While it is possible that this due to
some internal JAZELLE bug it is more likely that the memory has been
overwritten by some other program. There are two common ways of
overwriting memory: The first is to write to an element of an array larger
than the upper dimension, or smaller than the lower dimension (note
that array here may mean either an array inside a JAZELLE bank, or an
FORTRAN array). The second common way of overwriting memory is not
to have allocated enough memory for a particular variable repeat block
inside a bank. When a bank which contains a variable repeat block (or
variable dimension) is created a certain number of blocks (or elements) are
allocated. The user can then use as many or as few of these as he likes,
however it is the users responsibility to ensure that he does not use more
than are allocated. If more are required the bank must be expanded using
the JZPEXP or JZBEXP routines.

BADOPAPP, Bad use of APPEND option when opening file ‘A’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BADOPAPP

Explanation: A file that is opened for non-direct access can not be opened
with the append option, and a direct access file can not be opened with
write and the append option. APPEND can not be used to append to a file
not opened for direct access or to a file opened for write.

BADOPDEL, Bad use of DELETE option when opening file ‘A’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BADOPDEL

Explanation: A file that is opened for non-direct access can not be opened
with the delete option, and a direct access file can not be opened with the
delete option if the file already exists.

E-7

Error Conditions

BADOPEN, Open failure on IO device ‘A’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BADOPEN

Explanation: An attempt to open a file or tape for JAZELLE IO has
failed. Maybe the specified file or tape doesn’t exist?

BADOPEXC, Bad use of EXCLUS option when opening file ‘A’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BADOPEXC

Explanation: A file that is opened for non-direct access can not be opened
with the exclusive option.

BADOPRW, Bad use of READ/WRITE when opening file ‘A’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BADOPRW

Explanation: A sequential file can not be opened for both read and write.

BADOPT, Bad options specified for JZIORD

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BADOPT

BADPARM, Undefined parameter

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BADPARM

BADPATH, Bad path: ‘A’

Facility: KONSTANT, Constant management system

Severity: KONSTANT-E-BADPATH

BADPATH, Bad pathname: ‘A’ . . . ‘A’...

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BADPATH

BADPTR, Jazelle bounds checking detected bad pointer (%JPTR’)

Facility: JBCHK, JAZELLE bounds checking utility

Severity: JBCHK-E-BADPTR

BADPTR, Error in PTR value ‘A’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BADPTR

E-8

Error Conditions

BADRANGE, Second value in range must be greater than or equal to the first

Facility: PATH, JAZELLE path parsing utility

Severity: PATH-E-BADRANGE

BADRANGE, The first dimension must be less than or equal to the second

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-BADRANGE

BADRANGE, Index out of range: bank = ‘A’, pathname = ‘A’, index = ‘I’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-BADRANGE

BADREAD, Error during read operation on file ‘A’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BADREAD

BADRENM, Can not rename record to ‘ATI’:‘I’. New name already in use.

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BADRENM

Explanation: The record can not be renamed to the requested name
because that record name is already in use by another record.

BADRWOPT, Bad RW option = ‘A’ in JZIOPN

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BADRWOPT

BADSYNTX, Syntax error whilst parsing constant file

Facility: KONSTANT, Constant management system

Severity: KONSTANT-E-BADSYNTX

BADTABLE, Insufficient rows specified in table

Facility: KONSTANT, Constant management system

Severity: KONSTANT-E-BADTABLE

BADTBLPT, Bad table pointer specified for family ‘A’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BADTBLPT

E-9

Error Conditions

BADTEMPP, Inconsistent template pointers in family ‘A’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-BADTEMPP

Explanation: This error indicates that the memory managed by
JAZELLE has become corrupted. While it is possible that this due to
some internal JAZELLE bug it is more likely that the memory has been
overwritten by some other program. There are two common ways of
overwriting memory: The first is to write to an element of an array larger
than the upper dimension, or smaller than the lower dimension (note
that array here may mean either an array inside a JAZELLE bank, or an
FORTRAN array). The second common way of overwriting memory is not
to have allocated enough memory for a particular variable repeat block
inside a bank. When a bank which contains a variable repeat block (or
variable dimension) is created a certain number of blocks (or elements) are
allocated. The user can then use as many or as few of these as he likes,
however it is the users responsibility to ensure that he does not use more
than are allocated. If more are required the bank must be expanded using
the JZPEXP or JZBEXP routines.

BADTINDX, Bank name in table definition cannot be qualified with index

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BADTINDX

BANKNEST, BANK statement cannot be nested

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-BANKNEST

BANKNEST, BANK statement cannot be nested

Facility: KONSTANT, Constant management system

Severity: KONSTANT-E-BANKNEST

BIGTOC, Table of contents too big for IO header record

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-BIGTOC

BTABERR, Inconsistency in table of static banks. Missing entry

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-BTABERR

Explanation: Somehow a bank has been flagged as static yet is is not in
the JSTCTAB table.

BUGCHECK, Unexpected error returned from GETVIWFREEVM

Facility: GETVM, Virtual memory utility

Severity: GETVM-F-BUGCHECK

E-10

Error Conditions

BUGCHECK, Jazelle internal coding error

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-BUGCHECK

Explanation: JAZELLE internal coding error. Report to JAZELLE
expert.

BYTESWAP, File ‘A’ has bytes swapped...converting

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-W-BYTESWAP

Explanation: JAZELLE has detected that the byte-ordering in a file it is
reading is not that which it expected. JAZELLE will translate each record
as it is read in, but this is a time consuming process so if you intend to
read this file many times, or if it is very long, you may wish to use the JIO
command to convert it to the correct format first.

CONTEND, Template ends with a continuation line

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-CONTEND

CONTRACT, Bank ‘%JPTR’ has repeat count ‘I’ > requested allocate count ‘I

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-CONTRACT . -
Explanation: JZBEXP or JZPEXP has been called to contract a bank.
However the allocation requested for the variable dimension or variable
repeat count is less than is currently being used.

CTRLCABT, JAZELLE output aborted by CTRL-C interrupt

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-I-CTRLCABT

Explanation: You hit CTRL”C or its equivalent during JAZELLE output.
JAZELLE was insulted and has decided to give you the silent treatment.

DECIMAL, Illegal character in decimal integer constant-‘A’

Facility: KEY, Parsing utility

Severity: KEY-E-DECIMAL

DISKFULL, IO disk full

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-DISKFULL

Explanation: The message just about says it all.

E-l 1

Error Conditions

DUPFAM, Family ‘A’ already exists

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-DUPFAM

DUPKEY, Duplicate key in jazelle balanced binary tree

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-I-DUPKEY

DUPNAME, The name ‘A’ has been defined twice in a bank

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-DUPNAME

ENDOFLIN, More characters expected in path

Facility: PATH, JAZELLE path parsing utility

Severity: PATH-E-ENDOFLIN

EOF, End of file

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-I-EOF

Explanation: End of file has been detected during a read operation on
JAZELLE data. Probably nothing to worry about.

EOFLINE, End of line found too soon

Facility: KEY, Parsing utility

Severity: KEY-E-EOFLINE

EOREEL, Tape has run off reel

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-EOREEL

Explanation: Boy are you going to be popular with the tape operator.
Probably you didn’t stop writing after a previous routine reported you had
reached the end of tape. Or maybe your events are just so hugh they don’t
fit. Better consult a JAZELLE expert.

EOT, End of tape

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-W-EOT

Explanation: End of tape detected during a read operation on JAZELLE
data. If more than one tape was specified for input reading will continue
with the next tape, otherwise the read will be terminated.

E-l 2

Error Conditions

ERROR, Jazelle bounds checking detected error in routine ‘A’

Facility: JBCHK., JAZELLE bounds checking utility

Severity: JBCHK-F-ERROR

EXISTS, Bank already initialized, no action taken

Facility: KONSTANT, Constant management system

Severity: KONSTANT-I-EXISTS

EXISTS, Input bank, ‘A’(T), already exists

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-EXISTS

Explanation: An attempt has been made to read a bank using JAZELLE
IO, but a bank of the same name and ID already exists. JAZELLE IO
supports three options for reading banks, ADD, REPLACE and APPEND.
This error can only be generated with the ADD option specified.

EXTRA, Extra tokens

Facility: KEY,. Parsing utility

Severity: KEY-E-EXTRA

FCPFAIL, File copy failed

Facility: JAZELLE, JAZELLE data manager

Severity: Jf&LLE-E-FCPFML

FEXISTS, Input family, ‘A’, already exists

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-FEXISTS

Explanation: An attempt has been made to read a family of banks
using JAZELLE IO, but at least one bank in the family already exists
already exists. JAZELLE IO supports three options for reading data,
ADD, REPLACE and APPEND. This error can only be generated with the
ADD option specified.

FRSTBANK, First bank of family (could not locate first - 1)

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-I-FRSTBANK

HASHED, Eight letter name used with $USEBANK, ‘A’ shortened to ‘A’, check
for conflicts

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-W-HASHED

Explanation: Due to IBM silliness common blocks are only allowed to
have seven characters. Since using $USEBANK generates a common block
of the same name as the family it is not advisable to use 8 character bank

E-l 3

Error Conditions

names. If you do JAZELLE will form a common block name by omitting
one letter from the bank name, but this may cause clashes so beware.

HEADONLY, Names beginning with JB$ are reserved for use by JAZELLE

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-HEADONLY

HEX, Illegal character in hexadecimal integer constant-‘A’

Facility: KEY, Parsing utility

Severity: KEY-E-HEX

IDEXISTS, Requested new Id already exists, bank ‘A’(‘%JID’)

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-IDEXISTS

Explanation: An attempt has been made to add a bank when a bank
with the same name and ID already exists.

IDTOOBIG, Attempt to create ID=‘I’>MAXID=‘I’ in family ‘A’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-IDTOOBIG

Explanation: An attempt has been made to create a bank with an ID
bigger than the maximum ID (MAXID) specified in the template for that
family. Maybe the program logic is incorrect or maybe you have found
an event with more tracks or vertices than anyone imagined we would
ever have. You can increase the MAXID in the template of the bank, but
you must recompile at least one routine which references the template
withe a $USEBANK statement or disaster will occur. (If there are no
routines which reference this template with a $USEBANK you don’t need
to recompile anything...lucky you!)

ILCHRS, Illegal characters found

Facility: KEY, Parsing utility

Severity: KEY-E-ILCHRS

ILGLOPTN, Illegal option passed to JZKGET, call ignored

Facility: KONSTANT, Constant management system

Severity: KONSTANT-E-ILGLOPTN

ILLCHR, Illegal character ‘A’

Facility: KEY, Parsing utility

Severity: KEY-E-ILLCHR

E-l 4

Error Conditions

ILLGLFMT, Illegal FMT=‘A’ specified in template, format ignored

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-ILLGLFMT

Explanation: An explicit format has been specified for an element in a
template using the FMT= qualifier, but the value specified is not a legal
FORTRAN format specifier. The qualifier has been ignored.

ILLOP, Operand ‘A’ has illegal value

Facility: KEY, Parsing utility

Severity: KEY-E-ILLOP

ILLRW, ‘A’ attempted on a file that was not opened for that action.

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-ILLRW

Explanation: A file that is not opened for read can not be read so this
error occurs when someone attempts to perform a read on the file and the
same goes for write.

ILLVAL, Operand ‘A’ has illegal value (‘A’<=op<=‘A’)

Facility: KEY, Parsing utility

Severity: KEY-E-ILLVAL

INCBANKS, Incompatible banks (must use the same template)

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-INCBANKS

Explanation: The operation failed because the two banks specified are
not compatible. Banks are considered to be compatible iff they use the
same template. In the current version of Jazelle that means that they
have to belong to the same family

INCNEST, Inconsistent nesting of Blocks

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-INCNEST

INCNEST, Inconsistent block nesting in constant file

Facility: KONSTANT, Constant management system

Severity: KONSTANT-E-INCNEST

E-i 5

Error Conditions

INCONKEY, Key value ‘%JPTR’ is inconsistent with binding ‘A’ in family ‘A’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-INCONKEY

Explanation: An attempt has been made to store a value into a key,
however the value is not consistent with the type of pointer. More
specifically the value given for the key is not a pointer to a bank of the
kind declared for that key in the TEMPLATE for the bank containing the
key.

INFILE, Error occurred in file ‘A’

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-INFILE

INFILE, Error occurred in file ‘A’

Facility: KONSTANT, Constant management system

Severity: KONSTANT-E-INFILE

INIT, Jazelle bounds checking initiated from routine ‘A’

Facility: JBCHK, JAZELLE bounds checking utility

Severity: JBCHK-I-INIT

INITBAD, The number of initial values does not equal the number of elements

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-INITBAD

INITOOLN, An initial value string is too long

Facility: KONSTANT, Constant management system

Severity: KONSTANT-E-INITOOLN

INPATH, Error in path ‘A’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-INPATH

INSFSTOR, Insufficient virtual storage available

Facility: GETVM, Virtual memory utility

Severity: GETVM-F-INSFSTOR

INVDSIZE, Invalid virtual memory request (non-positive byte count)

Facility: GETVM, Virtual memory utility

Severity: GETVM-F-INVDSIZE

IlVVDWORD, Invalid word size request

Facility: GETVM, Virtual memory utility

Severity: GETVM-F-INVDWORD

E-l 6

Error Conditions

INVTOKEN, Invalid token ‘A’ in path ‘A’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-INVI’OKEN

IOCONV, File ‘A’ is being converted from ‘A’ format to ‘A’ format

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-W-IOCONV

Explanation: A file is being read which was written on a different type
of computer from the one it is being read on. JAZELLE will translate each
record as it is read in, but this is a time consuming process so if you intend
to read this file many times, or if it is very long, you may wish to use the
JIO command to convert it to the correct format first.

IOFAIL, IO failure

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-IOFAIL

Explanation: How can such a clear message be explained.

IOSYNCH, IO records out of synch

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-IOSYNCH

Explanatim: JAZELLE has detected input records which are not in
the order in which it expected them to be. Maybe the data is corrupted
(disk/tape problem, incorrectly copied?) or maybe the program which wrote
this data experienced some unexpected problems?

IOVCONV, File ‘A’ is being converted from JAZELLE V’F5.2’ to V’F5.2’ format

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-W-IOVCONV

Explanation: The input file just opened was created with an older version
of Jazelle. Since it is of a different format, the data will be converted
during the read operation. This is transparent to the user, but is more
CPU intensive; also, current data formats may not be supported in future
releases. Thus, it is a good idea to keep data files up to date at the current
level of Jazelle. Utilities are provided with Jazelle to convert data files to
the current data format.

IOVERS, IO Record format is not supported (anymore)

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-IOVERS

Explanation: The data file cannot be read because it was written by an
ancient version of Jazelle which is not supported anymore or because it
was written by a more recent version of Jazelle.

E-l 7

Error Conditions

KEYNTFND, Key ‘A’ does not exist in table ‘A’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-KEYNTFND

Explanation: The name of a non-existent key has been specified for a
table scan.

KEYBEP, Keyword ‘A’ specified twice.

Facility: KEY, Parsing utility

Severity: KEY-E-KEYREP

LASTBANK, Last bank of family (could not locate last + 1)

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-I-IASTBANK

LTOOLONG, A line in the template is too long

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-LTOOLONG

LTOOLONG, A line in the template is too long

Facility: KONSTXNT, Constant management system

Severity: KONSTANT-E-LTOOLONG

MAXCHAIN, Attempt to create too many constant chains

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-MAXCHAIN

Explanation: Consult a JAZELLE expert.

MAXIDMIS, Template for family ‘A’ should specify MAXID or NOMAXID

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-W-MAXIDMIS

Explanation: All templates must specify either MAXID=n or NOMAXID.
If you specify NOMAXID then no-one will be able to use indexed pointers
with banks in the family specified with the template. This is generally
thought to be anti-social.

MISMAT, Mismatched

Facility: KEY, Parsing utility

Severity: KEY-E-MISMAT

MISMATCH, Banks dont match

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-I-MISMATCH

E-l 6

Error Conditions

MISMATP, Mismatched parentheses (1

Facility: KEY, Parsing utility

Severity: KEY-E-MISMATP

MISSDEL, Missing delimiter in line.

Facility: KEY, Parsing utility

Severity: KEY-E-MISSDEL

MISSOP, Missing operand ‘A’

Facility: KEY, Parsing utility

Severity: KEY-E-MISSOP

MTRANGE, Range (‘1’3’) is empty

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-MTRANGE

MULTINIT, JZSTRT called more than once, multiple call ignored

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-W-MULTINIT

Explanation: The JAZELLE initialization routine JZSTRT has been
called more than once in the same program. Calls after the first call are
ignored. __ _

MULTVARD, Only one variable dimension allowed per bank

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-MULTVARD

NEEDMXID, MAXID must be specified in template to use JZPIDX (bank ‘A’)

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-NEEDMXID

Explanation: In order to use indexed pointers with a family the
TEMPLATE for that family must specify MAXID=n. Most banks do
this but for some banks this is not possible or undesirable for some other
reason. In this case indexed pointers cannot be used, and the POINTER
macro should be used instead.

NESTBANK, Bank ‘A’ illegally referenced from bank ‘A’

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-F-NESTBANK

NEVERALO, Attempt to free unallocated memory, Address ‘z8’, Size ‘28

Facility: GETVM, Virtual memory utility

Severity: GETVM-E-NEVERALO

E-l 9

Error Conditions

NOBANK, Template must start with BANK or BLOCK statement

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-NOBANK

NOBANK, Constant file must start with BANK statement

Facility: KONSTANT, Constant management system

Severity: KONSTANT-E-NOBANK

NOBANK, Requested bank does not exist

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-I-NOBANK

NOBANKl, Bank ‘A’ Id ‘?&JID’ not found

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-NOBANKl

NOBIND, Only pointers and keys can be bound to a family

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-NOBIND

NOBIND, Unable to bind pointer in family ‘A’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-W-NOBIND

Explanation: A pointer or key has been declared in a bank, but the
template for the bank to which the pointer points to (->> can not be found.
The program will continue anyway.

NOCHANCE, Context JAZELLE cannot be wiped

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-W-NOCHANCE

Explanation: You have tried to wipe the JAZELLE context. JAZELLE is
programmed to preserve itself at all costs, so it won’t let you do that.

NOCOPY, Bank was not copied

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-NOCOPY

Explanation: A bank copy operation has failed. No banks have been
created. Consult the messages issued in conjunction with this message for
further clues as to why the operation failed. Most likely it is due to the
source and target banks being of incompatible types.

E-20

Error Conditions

NODEFTBL, No default table defined for family ‘A’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-NODEFTBL

Explanation: An attempt has been made to tabulate a family for which
no default table has been defined (either in the template or otherwise).
You must explicitly define which elements of the family you wish to
tabulate. You can do this by using the JZTYDEF routine, either directly or
indirectly (for example using the IDA TABLE command).

NODEVICE, IO device, ID = ‘I’, has not been opened

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-NODEVICE

Explanation: A read or write operation has been attempted on a file or
tape which has never been opened. try opening it first.

NODOTS, Path must contain at least one period (.)

Facility: PATH, JAZELLE path parsing utility

Severity: PATH-E-NODOTS

NOEQUAL, Equals sign missing or misplaced in PORE command

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-NOEQUAL . -
NOEXPAND, Cannot expand fixed length bank: ‘%JPTR

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-NOEXPAND

Explanation: JZBEXP or JZPEXP has been called to expand a bank
which doesn’t have a variable dimension. ‘l’ry reading the manual again.

NOFAMILY, JZFDEF has been called for a non-existent family

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-NOFAMILY

NOFORMAT, A FMT= qualifier is only allowed with JAZELLE intrinsic types

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-NOFORMAT

NOFRECON, No more free contexts...cannot parse line

Facility: KEY, Parsing utility

Severity: KEY-F-NOFRECON

E-21

Error Conditions

NOIBMOCT, Octal numbers are not implemented on VM

Facility: KEY, Parsing utility

Severity: KEY-E-NOIBMOCT

NOINIT, Blocks must have a POKE routine defined to be initialized

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-NOINIT

NOINIT, JAZELLE has not been initialized (c.f. JZSTRT)

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-NOINIT

Explanation: An attempt has been made to call a JAZELLE routine
before the JAZELLE initialization routine JZSTRT has been called.
JZSTRT must be the first JAZELLE routine called in any program.

NOKEY, Jazelle balanced binary tree key not found

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-NOKEY

Explanation: This error indicates that the memory managed by
JAZELLE has become corrupted. While it is possible that this due to
some internal JAZELLE bug it is more likely that the memory has been
overwritten by some other program. There are two common ways of
overwriting’ineniory: The first is to write to an element of an array larger
than the upper dimension, or smaller than the lower dimension (note
that array here may mean either an array inside a JAZELLE bank, or an
FORTRAN array). The second common way of overwriting memory is not
to have allocated enough memory for a particular variable repeat block
inside a bank. When a bank which contains a variable repeat block (or
variable dimension) is created a certain number of blocks (or elements) are
allocated. The user can then use as many or as few of these as he likes,
however it is the users responsibility to ensure that he does not use more
than are allocated. If more are required the bank must be expanded using
the JZPEXP or JZBEXP routines.

NOKEYBLK, Keys can not occur in blocks (as opposed to banks)

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-NOKEYBLK

NOKEYDIM, Keys cannot be dimensioned

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-NOKEYDIM

NOKEYSTC, Keys can not occur in static banks

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-NOKEYSTC

E-22

Error Conditions

NOKEYl, Jazelle balanced binary tree key not found

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-I-NOKEY 1

NOLE’ITER, JAZELLE name ‘A’ does not begin with a letter

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-NOLETTER

Explanation: All JAZELLE names must be l-8 characters, consisting
only of uppercase letters, digits and the special symbols $ and _. All name
must begin with a letter. JAZELLE names include bank names, element
names, parameter names and context names.

NOLIST, List ‘A’ Id ‘%JID’ not found

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-NOLIST

NOMAXID, MAXID must be specified in template to use $USEBANK (bank
‘A’)

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-NOMAXID

Explanation: In order to use a $USEBANK statement for a family the
TEMPLATE for that family must specify MAXID=n. Most banks do this
but for some banks this is not possible or undesirable for some other
reason. In this case $USEBANK cannot be used, and the POINTER macro
should be used instead.

NOMEMORY, Unable to allocate virtual memory

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-NOMEMORY

NONINTGR, Variable dimension must be an INTEGER*4

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-NONINTGR

NOPADSTC, JAZELLE tried to add padding to a static bank

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-NOPADSTC

Explanation: Jazelle aligns elements in banks on multiples of four bytes
and then pads the in between space (if necessary). Common blocks do not
have any padding so a static bank which is the copy of a common block can
not have any either. In other words, all common blocks that are mapped to
a static bank must consist of elements that are of a size that is a multiple
of four bytes.

E-23

Error Conditions

NOPARM, Undefined parameter

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-I-NOPARM

NORANGE, Cannot specify range with bank name in constant file

Facility: KONSTANT, Constant management system

Severity: KONSTANT-E-NORANGE

NORANGE, Cannot handle range of indices

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-NORANGE

Explanation: A range of ID’s or indices (ie 1:3) has been used in a place
where its use is not supported. Use an explicit ID (eg 2) instead.

NORMAL, Normal successful completion

Facility: KONSTANT, Constant management system

Severity: KONSTANT-S-NORMAL

NORMAL, Normal successful completion

Facility: KEY, Parsing utility

Severity: KEY-S-NORMAL

NOROUTNE, JAZELLE has unexpectedly been unable to find the JROUTINE
bank

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-NOROUTNE

Explanation: Consult a JAZELLE expert.

NOSCALER, Variable dimension must be a scaler

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-NOSCALER

NOSUPORT, Setting values for this type of variable is not supported

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-NOSUPORT

NOSYMBOL, Symbol does not appear in JAZELLE family table

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-I-NOSYMBOL

NOTABCRE, Cannot create table for table insertion

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-NOTABCRE

E-24

Error Conditions

NOTABLE, ENDTABLE occurs outside a table definition

Facility: KONSTANT, Constant management system

Severity: KONSTANT-E-NOTABLE

NOTALLOC, Attempt to free memory that was not allocated

Facility: GETVM, Virtual memory utility

Severity: GETVM-E-NOTALLOC

NOTDIR, Cannot get a directory for a sequential file.

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-NOTDIR

Explanation: An attempt was made to get a directory for a file that has
been opened for sequential access and for sequential files there are no
directories, only direct access files have them.

NOTENTRY, Cannot delete table entry-not found in table

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-NOTENTRY

Explanation: Either the pointer used in the operation does not point to
a proper Jazelle memory allocation table, or the table entry is already
flagged as deleted. This error is most likely to occur during the expansion
or deletion of banks when the pointer to a bank has been modified by
incrementing or-decrementing it or by assigning a random value to it,
or when an attempt is made to delete the same bank more than once. If
not, probably memory has been overwritten in some other way. There
are two common ways of overwriting memory: The first is to write to
an element of an array larger than the upper dimension, or smaller
than the lower dimension (note that array here may mean either an
array inside a JAZELLE bank, or an FORTRAN array). The second
common way of overwriting memory is not to have allocated enough
memory for a particular variable repeat block inside a bank. When a bank
which contains a variable repeat block (or variable dimension) is created
a certain number of blocks (or elements) are allocated. The user can
then use as many or as few of these as he likes, however it is the users
responsibility to ensure that he does not use more than are allocated.
If more are required the bank must be expanded using the JZPEXP or
JZBEXP routines.

NOTFOUND, Template for family ‘A’ could not be found

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-NOTFOUND

NOTFOUND, Constant file ‘A’ could not be found

Facility: KONSTANT, Constant management system

Severity: KONSTANT-E-NOTFOUND

E-25

Error Conditions

NOTIMPL, ‘A’ not yet implemented

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-NOTIMPL

Explanation: Of course if you would like to volunteer your assistance...

NOTLIST, Bank ‘A’, Id ‘%JID’ is not a list

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-NOTLIST

NOTSTIC, JZBMAP cannot be used to add nonstatic banks

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-NOTSTIC

Explanation: An attempt was made to use the JZBMAP routine on
nonSTATIC banks.

NOTUSED, Parameter ‘A’ not used.

Facility: KEY, Parsing utility

Severity: KEY-E-NOTUSED

NOVARBLK, BLOCKs cannot contain variable dimensions

Facility: TEMPLATE, Template parsing system

Severity: TEMf LATE-E-NOVARBLK

NOVARSTC, Static banks cannot contain variable dimensions

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-NOVARSTC

Explanation: Since static banks are by definition static they can not have
variable dimensions.

NOVCONV, File ‘A’ written with JAZELLE V’F5.2’ cannot be read by V’F5.2’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-W-NOVCONV

Explanation: In general old versions of JAZELLE cannot read files
written by more recent versions of JAZELLE. Relink reading program
with most recent version of JAZELLE.

NOWILD, Cannot specify wild cards with bank name in constant file

Facility: KONSTANT, Constant management system

Severity: KONSTANT-E-NOWILD

E-26

Error Conditions

NOWILD, Cannot handle wild cards

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-NOWILD

Explanation: The * character, or the word ALL, has been used as a wild
card in a position for which its use is not supported. Replace it with an
explicit ID or index.

NOWMTCTX, Context ‘A’ is empty and therefore cannot be written out

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-NOWMTCTX

Explanation: JAZELLE is currently unable to write contexts which
contain no banks. I know you REALLY wanted to write an empty
context...if you like I could explain how to upgrade the IO routines...it
will probably only take you a month or so.

NTENGHRM, Scan for key ‘A’=‘%JPTR’ results in too many matches

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-NTENGHRM

Explanation: JZTSCN has been called to scan a relational table, but it
has found more entries matching the specified search criterian than it is
able to fir into the output buffer provided. There are better ways to scan
a table than tio use JZTSCn...maybe you will want to consult a JAZELLE
expert, or maybeyou just want to increase the size of the array passed to
JZTSCN.

NUCSDEST, Nucleus storage pointers destroyed

Facility: GETVM, Virtual memory utility

Severity: GETVM-F-NUCSDEST

OBSOLETE, Q% macro is now obsolete, use PTR% macro instead

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-W-OBSOLETE

OCTAL, Illegal character in octal integer constant-‘A’

Facility: KEY, Parsing utility

Severity: KEY-E-OCTAL

OLDRTNE, Routine ‘A’ is obsolete, use ‘A’ instead

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-OLDRTNE

Explanation: Some very old JAZELLE routines have been discontinued.
Consult the manual for details on the new usage.

E-27

Error Conditions

OPENBANK, Template contains a bank or block with no END statement

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-F-OPENBANK

OPENBANK, Constant file contains a bank or block with no END statement

Facility: KONSTANT, Constant management system

Severity: KONSTANT-E-OPENBANK

OVERFLOW, Error translating ‘A’ (probably overflow)

Facility: KEY, Parsing utility

Severity: KEY-E-OVERFLOW

PARSE, Error parsing line

Facility: KEY, Parsing utility

Severity: KEY-E-PARSE

PATHINV, Path contains invalid token

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-PATHINV

PMOPENF, Unable to open post mortem file specified by JPM

Facility: JAZELLE, JAZELLE data manager . -
Severity: JAZELLE-E-PMOPENF

Explanation: You (or someone else) has requested that the JAZELLE
post-mortem that is generated automatically when a program abends
be put into a file. file instead of being dumped to the normal output
stream. JAZELLE was however unable to open the specified file for some
reason...too bad it would probably have made interesting reading.

PMSPRSD, Post-mortem suppressed by JPM

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-W-PMSPRSD

Explanation: You (or someone else) has requested that the JAZELLE
post-mortem that is normally generated when a program abends be
suppressed. We are happy to oblige...just don’t ask us to figure out what
the problem is.

PNTRDEST, User storage pointers destroyed

Facility: GETVM, Virtual memory utility

Severity: GETVM-F-PNTRDEST

E-26

Error Conditions

PSHOVER, Pushdown overflow

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-PSHOVER

Explanation: JAZELLE maintains a stack where it stores temporary
information. Normally the stack amply large to contain all the temporary
information but somehow it has overflowed. Unless you have an extremely
large number of banks this probably indicates some internal JAZELLE
error. It is possible to increase the maximum stack size allowed by
changing the value of the STACKMAX element in the JAZELLE bank.

PSHUNDER, Pushdown underflow

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-PSHUNDER

Explanation: This error probably indicates an internal JAZELLE error.
Contact a JAZELLE expert.

PSYNTAX, Syntax error in parameter statement

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-PSYNTAX

PTHEXTRA, Extra tokens following legal path: ‘A’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-PTHEXTRA

PTOOLONG, Path name is too long

Facility: KONSTANT, Constant management system

Severity: KONSTANT-E-PTOOLONG

RDFAIL, IO read fail

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-W-RDFAIL

Explanation: An IO failure has occurred during a read operation on
JAZELLE data. Maybe your tape is dirty or otherwise corrupted (you
probably shouldn’t have left it by that magnet!

REAL, Illegal character in real constant-‘A’

Facility: KEY, Parsing utility

Severity: KEY-E-REAL

RECCOPY, ‘I’ records successfully copied

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-I-RECCOPY

E-29

Error Conditions

RECNF, Could not find requested record name ‘A’ with param ?‘:‘I’.

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-RECNF

Explanation: The record requested for reading was not found.

RECURSE, JZKGET has been called recursively

Facility: KONSTANT, Constant management system

Severity: KONSTANT-F-RECURSE

RESERVED, The family name ‘A’ is reserved for use by JAZELLE

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-RESERVED

RESRVD, ‘A&Y is a reserved record specification. Rename record.

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-RESRVD

Explanation: The requested record name is reserved for a direct access
file’s directory. This record should not be written to file by anyone, only
internal code can play around with it.

STATIC, STATIC banks cannot be ‘A’

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-STATIC

Explanation: The only thing that can be done to static banks is peeking
and poking. They are added via the JZBMAP routine and so cannot be
added, deleted, wiped, expanded, included in lists, and other such stuff
that would contradict the very meaning of the word static.

STATICON, Cannot ‘A’ STATIC context

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-STATICON

Explanation: This is really the same error as JZL%STATIC except that
the operation was based on the context rather than just on the bank.

STCARG, Requested template already mapped with different parameters.

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-STCARG

Explanation: An attempt was made to use the JZBMAP routine to map
an already mapped template to an address different from the one it is
already mapped to and/or to map it with a different I/O specification.

E-30

Error Conditions

SYNTAX, Syntax error in path: ‘A’

Facility: PATH, JAZELLE path parsing utility

Severity: PATH-E-SYNTAX

SYNTAX, Syntax error whilst parsing template

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-SYNTAX

TABALIGN, Table entry pointer alignment error

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-F-TABALIGN

Explanation: The pointer used in the operation points to a proper Jazelle
memory allocation table, but it does not coincide with the starting address
of any of its entries. This error is most likely to occur during the deletion
of banks when the pointer to a bank has been modified by incrementing
or decrementing it or by assigning a random value to it. If not, probably
memory has been overwritten in some other way. There are two common
ways of overwriting memory: The first is to write to an element of an array
larger than the upper dimension, or smaller than the lower dimension
(note that array here may mean either an array inside a JAZELLE bank,
or an FORTRAN array). The second common way of overwriting memory
is not to have allocated enough memory for a particular variable repeat
block inside a bank. When a bank which contains a variable repeat block
(or variable-dimension) is created a certain number of blocks (or elements)
are allocated. The user can then use as many or as few of these as he
likes, however it is the users responsibility to ensure that he does not use
more than are allocated. If more are required the bank must be expanded
using the JZPEXP or JZBEXP routines.

TABLPATH, Error creating table entry

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-TABLPATH

TBTOOBIG, ‘Ibo many rows specified in table

Facility: KONSTANT, Constant management system

Severity: KONSTANT-E-TBTOOBIG

TBTOOWID, ‘Ibo many columns in table (Maximum allowed ‘I’)

Facility: KONSTANT, Constant management system

Severity: KONSTANT-E-TBTOOWID

TBWRNGE, Wrong number of values specified for table row, ‘I’ given, ‘I’
expected

Facility: KONSTANT, Constant management system

Severity: KONSTANT-E-TBWRNGE

E-31

Error Conditions

TMNYNAME, ‘Ibo many names have been defined in one bank

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-TMNYNAME

TMYDEL, Too many delimiters in line (max.7’)

Facility: KEY, Parsing utility

Severity: KEY-E-TMYDEL

TMYKEY, ‘Ibo many keywords specified (max. ‘I’)

Facility: KEY, Parsing utility

Severity: KEY-E-TMYKEY

TNDRNGE, An explicit range musty be given for the TABLE control variable

Facility: KONSTANT, Constant management system

Severity: KONSTANT-E-TNDRNGE

TOMNYCTX, Attempt to create too many contexts (VM zones)

Facility: GETVM, Virtual memory utility

Severity: GETVM-F-TOMNYCTX

TOODEEP, ‘Ibo many nested blocks in block ‘A’

Facility: TFMP-LATE, Template parsing system

Severity: TEMPLATE-F-TOODEEP

TOODEEP, Path contains too many tokens

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-TOODEEP

TOOLGE, No number where expected or number too large

Facility: KEY, Parsing utility

Severity: KEY-E-TOOLGE

TOOLONG, A block or bank name is too long

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-TOOLONG

TOOLONG, Operand ‘A’ too long (max. length ‘I’)

Facility: KEY, Parsing utility

Severity: KEY-E-TOOLONG

E-32

Error Conditions

TOOLONG, JAZELLE name ‘A’ is longer than 8 characters

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-TOOLONG

Explanation: All JAZELLE names must be l-8 characters, consisting
only of uppercase letters, digits and the special symbols $ and _. All name
must begin with a letter. JAZELLE names include bank names, element
names, parameter names and context names.

TOOMNYDF, JZFDEF has been called for too many families

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-TOOMNYDF

TRUNCATE, Token ‘A’ truncated

Facility: KEY, Parsing utility

Severity: KEY-W-TRUNCATE

TRUNCATE, String ‘A’ was too long and has been truncated

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-TRUNCATE

TRUNLINE, Line too long, truncated

Facility: KEY, Parsing utility

Severity: KEY-W-TRUNLINE

TUFFLUCK, PEEK/POKE to variables of this type is not allowed

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-TUFFLUCK

UEXPCHAR, Unexpected characters: ‘A’

Facility: PATH, JAZELLE path parsing utility

Severity: PATH-E-UEXPCHAR

UEXPDELM, Unexpected delimiter: ‘A’

Facility: PATH, JAZELLE path parsing utility

Severity: PATH-E-UEXPDELM

UNDEFINE, Undefined block ‘A’ referenced in block ‘A’

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-F-UNDEFINE

VALUE, Illegal value

Facility: KEY, Parsing utility

Severity: KEY-E-VALUE

E-33

VARDLAST, Variable dimension element must be last in bank

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-E-VARDLAST

VARINIT, Variable dimension cannot be initialized, initial value ignored

Facility: TEMPLATE, Template parsing system

Severity: TEMPLATE-I-VARINIT

WRNGNKEY, ‘I’ key values specified but template ‘A’ defines ‘I’ keys

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-WRNGNKEY

Explanation: An attempt has been made to ADD a bank, but the number
of keys specified does not correspond to the number of keys declared in the
TEMPLATE for that bank.

WRONGBNK, Path ‘A’ specifies element in wrong family for table ‘%JPTR

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-E-WRONGBNK

Explanation: All columns in a table must represent elements in the same
bank. You have attempted to mix different banks within one table.

WRONGSIZ, Attempt to deallocate wrong size, Address ‘~8, Size ‘~8’

Facility: G&IV%, Virtual memory utility

Severity: GETVM-E-WRONGSIZ

WROTEPM, Jazelle wrote post mortem to disk file

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-W-WROTEPM

Explanation: You (or someone else) has requested that the JAZELLE
post-mortem that is generated automatically when a program abends
be put into a file instead of being dumped to the normal output stream.
JAZELLE has obliged.

WRTFAIL, IO write fail

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-W-WRTFAIL

Explanation: IO failure during a write operation of JAZELLE data.
Probably means your tape is dirty of something of that ilk.

WTRUNC, Output was too long and was truncated

Facility: JAZELLE, JAZELLE data manager

Severity: JAZELLE-W-WTRUNC

E-34

I

Index

A D
Access Violations l 13-l

B
Bank l 3-l

creation l 3-l
deletion l 3-1, 3-2
dumping l 5-2
expansion/contraction l 3-l
finding pointers to l 3-1, 3-2
header l 3-3,4-4
id l 3-1, 3-3, 7-l
index of l 5-2
name l 2-5
ordering l 3-3
tabulating l 5-3

Banks deleting.

effects of keys l 11-3
looping over l 4-4

Block name l 2-5
Blocks

external 02-2
internal l 2-1, 2-2

C
Character variables

See strings
Constant file l 12-1

reading l 12-3
Constants l 12-l
Context l 3-1, 7-1, 9-l

activation l 7-2
switching l 7-2
wipe l 7-2

DBG$INIT*13-12
DDNAME l 9-l
Debugging l 3-1, 12-4
Displaying banks l 5-2, 5-3
dumps*5-2

F
Family*3-1
FILEDEF l 9-l

H
HEADING l 5-3

I
IDAe12-4
Index l 5-2
Indexed pointers l 2-5, 4-2, 4-5
Initialization l 3-l
Input/Output 09-l
Interactive commands l 13-1

ADD.134
GET* 13-6
INDEX l 13-3
MAP* 13-9
PEEK l 13-2
PM*13-10
POINTER l 13-l 1
POKE l 13-3
REMOVE l 13-5
STATUS l 13-7

io
device identifier l 9-l

10.9-l
pointer relocation l 9-3

IO

Index-l

Index

IO (Cont.)
Machine Independence l 9-2

J
J$FAMILY l 4-3
J$FIRST*4-2
J$LAST l 4-2
J$MAXID l 4-2
J$NUMBER 04-2
J$START l 4-3
JAZELL COMMON 04-2
JAZZDATA l 9-l
JlO*9-2
JXBCHK*7-2
JZBADD*3-1, 3-3, 11-1, 14-1, 14-4
JZBCPY l 14-1, 14-7
JZBDEL l 3-1,3-2, 14-1,14-g
JZBDMI l 5-1,5-2, 14-1, 14-l 0
JZBDMP*5-1, 5-2, 14-1, 14-12
JZBEXP l 3-1, 14-l) 14-l 4
JZBFND*3-1,3-2,4-4,14-l, 14-18
JZBLOC*3-1,4-5,14-l, 14-20
JZBLONG l 14-3, 14-22
JZBMAP l .l 4-3, l-4-23 . -
JZBNAME l 14-3,14-25
JZBNXT l 3-1,3-2,4-4, 14-1, 14-26
JZBTBL*5-1,5-4,14-l, 14-28
JZC l 14-2, 14-30
JZC4*14-2, 14-31
JZC8 l 14-2, 14-32
JZFDEF l 14-3,14-33
JZINDX*!%l, 5-2, 13-1, 14-3, 14-35
JZIOCL l 9-2, 14-2, 14-37
JZIOPN*9-1, 14-2, 14-38
JZIORD 09-2, 9-3, 14-2, 14-40
JZIORW l 14-42
JZIOWC l %l , %3, 14-2, 14-43
JZIOWP l 14-47
JZIOWR l 6-1, 7-2, 9-1, 9-3, 14-2, 1445
JZKGET* 12-2, 14-2, 14-49
JZKLNK*12-2, 12-4, 14-2, 14-51
JZKPOK l 14-2, 14-53
JZKUPD*12-2, 12-4, 14-2, 14-54
JZLCRE*6-1, 14-2, 14-55
JZLINC l 6-1, 14-2, 14-57
JZLREM*6-1, 14-2, 14-59
JZLWIP.61, 7-2, 14-2, 14-61
JZMAP*13-1,14-3,14-62
JZPCMP l 14-3,14-64

JZPCPY l 14-lI14-67
JZPDEL l 14-1, 14-69
JZPDMP*&l, 13-1, 14-2, 14-70
JZPEXP* 14-1,14-16
JZPIDX l 4-3. 14-2. 14-72
JZPM*13-1,14-3,14-73
JZPREG l 8-1,14-2,14-75
JZS* 14-2, 14-77
JZS4 l 14-2, 14-79
JZS8*14-3, 14-80
JZSTAT*13-1, 14-3, 14-81
JZSTRT*3-1,14-l, 14-83
JZTDEF*5-1,5-4,14-l, 14-84
JZTDFL l 14-1, 14-86
JZTMOD l 1 l-2, 14-3, 14-88
JZTSCN l 11-2, 14-3, 14-90
JZVERS l 14-3,14-92
JZXACT l 7-2
JZXCHL l 7-2
JZXDAC l 7-2
JZXWIP*7-2, 14-2, 14-93

K
Key

FIRST*ll-3
SAME* 11-3

Keysell-1, 11-2

L
LEVEL l 5-l
List l 6-l

Adding entries to l 6-l
creation l 6-l
deletion l 6-l
hierarchy l 6-l
indirection l 6-l
10.6-l
pointer l 6-l
removing entries from l 6-l
symbolic l 6-l

Lists l 9-l
Looping over banks 04-4
LUN l 5-l

Index-2

Index

M
Multiple dimensions 02-2

0
oc4* 13-1
oc5*13-1

P
Parameter l 2-2, 2-6

access from MORTRAN l 4-4
Parameter statement 02-5
Pointer l 3-1, 8-l

declaration l 4-l
Pointer relocation l 9-3

Q
Q% macro.4-6
Qualifier

bank
CONTEXT l 2-5
DEMAND-ZERO l 2-5
MAXID l 2-5

element
FMT l 5-l
HEADING 05-3
TABULATE l 5-3

Qualifiers
Bank

MAXI D l 4-2

R
Record type l 9-l
Relational table l 11-1
Relocation

io*9-3
Repeat count

allocated l 2-3, 4-4
used l 2-3

Run dependent constants l 12-l

S
scope l 24
strings

conversion l 4-3
Strings l 2-l

T
Table l 5-3, 12-2
TABLELOOP l 11-4
Template command 02-4
Templates l 2-l

comments in l 2-4
continuation lines 02-4

U
$USEBANK l 4-2,4-5

v
Variable

scope l 2-3
Variable dimensions l 2-3
Variable types

defining new l 2-2
derived l 2-7
intrinsic l 2-7

Vax debugger l 13-l 2

W
WIDTH l 5-l

Index-3

