HIGH-SPEED SWITCHING PROPERTIES OF THE

 EMITTER-COUPLED TRANSISTOR-PAIR

 EMITTER-COUPLED TRANSISTOR-PAIR}

ARPAD BARNA
STANFORD LINEAR ACCELERATOR CENTER
STANFORD UNIVERSITY
Stanford, California

PREPARED FOR THE U.S. ATOMIC ENERGY COMMISSION UNDER CONTRACT NO. AT(04-3)-515

March 1969

Reproduced in the USA. Available from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151.
Price: Full size copy $\$ 3.00$; microfiche copy $\$.65$.

Abstract

High-speed switching properties of the emitter-coupled transistor-pair are analyzed by means of a digital computer. Waveforms and risetimes are computed for a wide range of parameters. The resulting risetimes are interpreted in terms of the gain-bandwidth products of the transistors, external capacitances, and the risetime of the input signal.

TABLE OF CONTENTS

Page
I. Introduction 1
II. Computation of the Transient 1
III. Results 4

I. INTRODUCTION

The emitter-coupled transistor pair of Fig. 1 has found many uses in highspeed switching circuits. When components are suitably chosen, the transistors do not saturate and switching times in the nanosecond region are readily attainable. There are many variations of the circuit: Both bases may be driven, one of the two collector resistors, $R_{C 1}$ or $R_{C 2}$ may be omitted, current source Q_{3} may be replaced by a resistor.

In the following it will be assumed that the circuit of Fig. 2 provides a reasonable approximation to the actual circuit. Transistors Q_{1} and Q_{2} are characterized by a single fixed parameter $\tau_{0} \triangleq 1 /\left(2 \pi f_{\tau}\right)$ where f_{τ} is the gain-bandwidth product of both transistors, ohmic base resistances are included in $\mathbf{R}_{\mathbf{g}}$, and all capacitances are lumped into $\mathrm{C}_{\text {ext }}$. This approximation is reasonably good if one has the circuit of Fig. 1 with $R_{C 1}=0$: In this case $R_{C 1}$ of Fig. 2 is chosen zero and the stray capacitance on the base of Q_{1} and its collector-to-base capacitance are included in $\mathrm{C}_{\text {ext }}$.

II. COMPUTATION OF THE TRANSIENT

The collector current $\mathrm{i}_{\mathrm{C} 1}{ }^{(\mathrm{t})}$ will be computed for the generator voltage signal $\mathrm{v}_{\mathrm{g}}(\mathrm{t})$ of Fig. 3. The hybrid equivalent circuit of Fig. 4 will be used for each transistor with $\alpha \approx 1$, i.e., $\beta \rightarrow \infty$. With these assumptions the circuit shown in Fig. 5 results. It can be seen that the circuit enclosed in the box of broken lines is grounded only via R_{B}, hence the value and location of R_{B} is arbitrary; in the following an $R_{B}=\infty$ will be taken. Also, observing the nodes at B_{1} and B_{2} it is apparent that all of $\mathrm{i}_{\mathrm{B} 1}$ flows into $\mathrm{C}_{\mathrm{e} 1}$ and all of $\mathrm{i}_{\mathrm{B} 2}$ into $\mathrm{C}_{\mathrm{e} 2}$. Thus, Fig. 5 can be redrawn as Fig. 6 where $\mathrm{C}_{\text {ext }}$ has been included in $\mathrm{C}_{\mathrm{e} 1}$ and $\mathrm{C}_{\mathrm{e} 2}$.

Now, the transient of the circuit can be computed solely from the loop of $\mathrm{v}_{\mathrm{g}}, \mathrm{R}_{\mathrm{g}}, \mathrm{C}_{\mathrm{e} 1}^{\prime}$ and $\mathrm{C}_{\mathrm{e} 2}{ }^{\prime}$.
Defining

$$
\begin{equation*}
\mathrm{v}_{\mathrm{BlE}} \triangleq \mathrm{v}_{\mathrm{Bl}}-\mathrm{v}_{\mathrm{E}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{v}_{\mathrm{B} 2 \mathrm{E}} \triangleq \mathrm{v}_{\mathrm{B} 2}-\mathrm{v}_{\mathrm{E}} \tag{2}
\end{equation*}
$$

the collector currents are given by the diode equations as

$$
\begin{equation*}
\mathrm{i}_{\mathrm{C} 1}=\mathrm{I}_{0}\left(\mathrm{e}^{\mathrm{v}_{\mathrm{B} 1 \mathrm{E}} / \mathrm{V}_{\mathrm{T}}}-1\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{i}_{\mathrm{C} 2}=\mathrm{I}_{0}\left(\mathrm{e}^{\mathrm{v}_{\mathrm{B} 2 \mathrm{E}} / \mathrm{V}_{\mathrm{T}}}-1\right) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{i}_{\mathrm{C} 1}+\mathrm{i}_{\mathrm{C} 2}=\mathrm{I}_{\mathrm{DC}} \tag{5}
\end{equation*}
$$

Here I_{0} is the saturation current (in the vicinity of nanoamperes); $V_{T}=n \frac{k T}{q}$, where k is the Boltzmann constant $\mathrm{k}=1.38 \times 10^{-23} \mathrm{Ws} /{ }^{\circ} \mathrm{K}, \mathrm{T}$ is the absolute temperature in ${ }^{\circ} \mathrm{K}$, and q is the charge of the electron $\mathrm{q}=1.6 \times 10^{-19}$ As. Constant n is dimensionless, $\mathrm{n} \approx 1$ to 1.5 for germanium, $\mathrm{n} \approx 1.5$ to 2 for silicon diodes. The value of kT / q at room temperature is $\approx 25 \mathrm{mV}$, thus V_{T} is typically between 25 mV and 50 mV .

Capacitances $C_{e 1}$ and $C_{e 2}$ are given by

$$
\begin{equation*}
\mathrm{C}_{\mathrm{e} 1} \triangleq \frac{\mathrm{dq}_{\mathrm{B} 1 \mathrm{E}}}{\mathrm{dv}}=\frac{\mathrm{d}\left(\mathrm{i}_{\mathrm{C} 1 \mathrm{C}} \tau_{0}\right)}{\mathrm{dv}_{\mathrm{B} 1 \mathrm{E}}}=\frac{\tau_{0}}{\mathrm{~V}_{\mathrm{T}}} \mathrm{I}_{0} \mathrm{e}^{\mathrm{v} \mathrm{~B} 1 \mathrm{E}} / \mathrm{v}_{\mathrm{T}} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{C}_{\mathrm{e} 2} \triangleq \frac{\mathrm{dq}_{\mathrm{B} 2 \mathrm{E}}}{\mathrm{dv}_{\mathrm{B} 2 \mathrm{E}}}=\frac{\mathrm{d}\left(\mathrm{i}_{\mathrm{C} 2} \tau_{0}\right)}{\mathrm{dv}_{\mathrm{B} 2 \mathrm{E}}}=\frac{\tau_{0}}{\mathrm{~V}_{\mathrm{T}}} \mathrm{I}_{0} e^{\mathrm{v}_{\mathrm{B} 2 \mathrm{E} / \mathrm{v}_{\mathrm{T}}} .} \tag{7}
\end{equation*}
$$

Also

$$
\begin{align*}
& C_{e 1}^{\prime}=C_{e 1}+C_{e x t} \frac{C_{e 1}+C_{e 2}}{C_{e 2}}, \tag{8}\\
& C_{e 2}^{\prime}=C_{e 2}+C_{e x t} \frac{C_{e 1}+C_{e 2}}{C_{e 1}}, \tag{9}
\end{align*}
$$

and

$$
\begin{equation*}
i_{B 1}=\frac{v_{g}+v_{B 2 E}-v_{B 1 E}}{R_{g}} \tag{10}
\end{equation*}
$$

The base-emitter voltages are given by the integrals

$$
\begin{equation*}
\mathrm{v}_{\mathrm{B} 1 \mathrm{E}}=\int \frac{\mathrm{i}_{\mathrm{B} 1}}{\mathrm{C}_{\mathrm{e} 1}} \mathrm{dt} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{v}_{\mathrm{B} 2 \mathrm{E}}=\int \frac{\mathrm{i}_{\mathrm{B} 2}}{\mathrm{C}_{\mathrm{e} 2}} \mathrm{dt}=-\int \frac{\mathrm{i}_{\mathrm{B} 1}}{\mathrm{C}_{\mathrm{e} 2}} \mathrm{dt} . \tag{12}
\end{equation*}
$$

Unfortunately $\mathrm{i}_{\mathrm{B} 1}, \mathrm{C}_{\mathrm{e} 1}$, and $\mathrm{C}_{\mathrm{e} 2}$ vary with time and the integrals have to be evaluated numerically. Equation (11) can be approximated as

$$
\mathrm{v}_{\mathrm{B} 1 \mathrm{E}}=\int \frac{\mathrm{i}_{\mathrm{B} 1}}{\mathrm{C}_{\mathrm{e} 1}} \mathrm{dt} \approx \sum \frac{\mathrm{i}_{\mathrm{B} 1}}{\mathrm{C}_{\mathrm{e} 1}} \Delta \mathrm{t}
$$

which can be also written as

$$
\begin{equation*}
\mathrm{v}_{\mathrm{B} 1 \mathrm{E}}(\mathrm{t}+\Delta \mathrm{t}) \approx \mathrm{v}_{\mathrm{B} 1 \mathrm{E}}(\mathrm{t})+\Delta \mathrm{v}_{1} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \mathrm{v}_{1} \triangleq \frac{\mathrm{i}_{\mathrm{B} 1}{ }^{(\mathrm{t})}}{\mathrm{C}_{\mathrm{e} 1}(\mathrm{t})} \Delta \mathrm{t} \tag{14}
\end{equation*}
$$

Similarly (12) becomes

$$
\begin{equation*}
{ }^{v_{B 2 E}}(\mathrm{t}+\Delta \mathrm{t}) \approx \mathrm{v}_{\mathrm{B} 2 \mathrm{E}^{(\mathrm{t})+\Delta \mathrm{y}_{2}}} \tag{15}
\end{equation*}
$$

with

$$
\begin{equation*}
\Delta \mathrm{v}_{2} \triangleq \frac{\mathrm{-i}_{\mathrm{B} 1}{ }^{(\mathrm{t})}}{\mathrm{C}_{\mathrm{e} 2}(\mathrm{t})} \Delta \mathrm{t} \tag{16}
\end{equation*}
$$

The initial values of $\mathrm{v}_{\mathrm{B} 1 \mathrm{E}}$ and $\mathrm{v}_{\mathrm{B} 2 \mathrm{E}}$ can be computed from (3), (4), and (5) as

$$
\begin{gather*}
\mathrm{v}_{\mathrm{B} 1 \mathrm{E}}(\mathrm{t}=0)=\mathrm{v}_{\mathrm{g}}(\mathrm{t}<0)+\mathrm{V}_{\mathrm{T}} \ln \frac{2+\mathrm{I}_{\mathrm{DC}} / \mathrm{I}_{0}}{1+\mathrm{e}_{\mathrm{g}}(\mathrm{t}<0) / \mathrm{V}_{\mathrm{T}}} \tag{17}\\
\mathrm{v}_{\mathrm{B} 2 \mathrm{E}}(\mathrm{t}=0)=\mathrm{V}_{\mathrm{T}} \ln \frac{2+\mathrm{I}_{\mathrm{DC}} / \mathrm{I}_{0}}{1+\mathrm{e}_{\mathrm{g}}(\mathrm{t}<0) / \mathrm{V}_{\mathrm{T}}} \tag{18}
\end{gather*}
$$

and $\mathrm{i}_{\mathrm{C} 1}$ can be computed by substituting (17) into (3).
Equations (3), (8), (9), (10), (13), and (15) are solved by a digital computer using the flow chart of Fig. 7 with $\Delta t_{\max }=0.01 \tau_{0}, \Delta t_{\min }=10^{-5} \tau_{0}$, and $\Delta \mathrm{v}_{\max }=0.01 \mathrm{~V}_{\mathrm{T}}$. The Fortran IV computer programs are shown in Fig. 10, 11, and 12.

III. RESULTS

Representative waveforms of $\mathrm{i}_{\mathrm{C} 1}{ }^{(\mathrm{t})}$ are shown in Fig. 8 and Fig. 9. The risetimes between the 10% and 90% points of $\mathrm{i}_{\mathrm{C} 1} / \mathrm{I}_{\mathrm{DC}}$ are summarized in Table 1 , together with those obtained from the approximation

$$
\begin{equation*}
\mathrm{t}_{\mathrm{r}} \approx \sqrt{\left(\mathrm{t}_{\mathrm{r} \tau}+\mathrm{t}_{\mathrm{rc}}\right)^{2}+\mathrm{t}_{\mathrm{rg}}^{2}} \tag{19}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{t}_{\mathrm{r} T} \triangleq 0.8 \frac{\mathrm{R}_{\mathrm{g} \mathrm{IDC}}}{\mathrm{v}_{\mathrm{g} 1}-0.4 \mathrm{~V}_{\mathrm{T}}} \tau_{0} \tag{20}\\
& \mathrm{t}_{\mathrm{rc}} \triangleq \frac{\mathrm{~V}_{\mathrm{T}} 2 \ln 9}{\mathrm{v}_{\mathrm{g} 1}-0.8 \mathrm{~V}_{\mathrm{T}}} \mathrm{R}_{\mathrm{g}} \mathrm{C}_{\mathrm{ext}} \tag{21}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{t}_{\mathrm{rg}} \triangleq \frac{\mathrm{~V}_{\mathrm{T}} 2 \ln 9}{\mathrm{v}_{\mathrm{g} 1}-\mathrm{v}_{\mathrm{g} 0}} \mathrm{t}_{\mathrm{g}} \tag{22}
\end{equation*}
$$

There are three contributions to the risetime: 1), $\mathrm{t}_{\mathrm{r} \tau}$ of (20) results from a finite τ_{0} (finite gain - bandwidth product), 2), t_{rc} of (21) results from the finite $\mathrm{C}_{\mathrm{ext}}$, and 3$), t_{r g}$ of (22) from the finite risetime t_{g} of the input signal.
1), $\underline{t}_{r \tau}$. In the limiting case when $C_{e x t}$ and t_{g} are zero, the risetime is given by (20). For $\mathrm{v}_{\mathrm{g} 1} \gg \mathrm{~V}_{\mathrm{T}}$ this is the current gain $\mathrm{R}_{\mathrm{g}} \mathrm{I}_{\mathrm{DC}} / \mathrm{v}_{\mathrm{g} 1}$ multiplied by τ_{0} and by a factor of 0.8 for a risetime computed between 10% and 90%. The term $0.4 \mathrm{~V}_{\mathrm{T}} \approx 20 \mathrm{mV}$ in the denominator of (20) represents a voltage "used up" for dc switching, which has to be taken account if $\mathrm{v}_{\mathrm{gI}}>\ngtr \mathrm{V}_{\mathrm{T}}$.
2), $\underline{t}_{r \mathrm{c}}$. In addition to the charge $\mathrm{I}_{\mathrm{DC}}^{*} \tau_{0}$ in the base emitter junction, the source has to provide a charge into capacitor $C_{e x t}$ which results in the risetime $t_{r c}$ of (21) The dc voltage swing on the bases between the 10% and 90% points of $\mathrm{i}_{\mathrm{C} 1}$ (from (3), (4), and (5) with $\mathrm{i}_{\mathrm{C} 1} \gg \mathrm{I}_{0}$ and $\mathrm{i}_{\mathrm{C} 2} \gg \mathrm{I}_{0}$) is $\approx \mathrm{V}_{\mathrm{T}} 2 \ln 9$. Assuming a voltage of $0.8 \mathrm{~V}_{\mathrm{T}}$ "lost" from $\mathrm{v}_{\mathrm{g} 1}$ for dc current transfer, t_{rc} represents the charge supplied to $\mathrm{C}_{\text {ext }}$ during a voltage swing of $\mathrm{V}_{\mathrm{T}} 2 \ln 9$.
3), t_{rg}. Equation (22) represents the risetime of the input waveform during the voltage swing of $\mathrm{V}_{\mathrm{T}}{ }^{2} \ln 9$. Since this risetime t_{rg} is independent of that of the circuit, $\mathrm{t}_{\mathrm{r} \tau}+\mathrm{t}_{\mathrm{rc}}$, the squares of the two risetimes are added in (19).

As can be seen in Table 1, Eq. (19) provides a rather good approximation, therefore it can be utilized to obtain risetimes for parameter values not listed in the table.
10% to 90% risetime of $i_{C 1}$ for various values of $\mathrm{V}_{\mathrm{g} 0}, \mathrm{~V}_{\mathrm{g} 1}, \mathrm{R}_{\mathrm{g}}, \mathrm{C}_{\text {ext }}$, and t_{g}, using the flow-chart of Fig. 7 ("EXACT"), and the approximation of Eq. (19) ("APPROX"). Legend: $R=R_{\mathrm{g}} \mathrm{I}_{\mathrm{DC}} / \mathrm{V}_{\mathrm{T}}, \mathrm{C}=\mathrm{C}_{\mathrm{ext}} \mathrm{V}_{\mathrm{T}} / \tau_{0} \mathrm{I}_{\mathrm{DC}}$.

$\xrightarrow{-\mathrm{v}} \mathrm{go}$	v_{gl}	R	C	$\mathrm{t}_{\mathrm{g}} / \tau_{\mathrm{o}}=0$		$\mathrm{t}_{\mathrm{g}} / \mathrm{T}_{0}=0.5$		$t_{g} / \tau_{0}=1$		$t_{g} / \tau_{0}=2$		$t_{g} / \tau_{0}=5$		$t_{g} / T_{0}=10$		$t_{g} / \tau_{o}=20$		$t_{g} / \tau_{0}=50$		$\mathrm{t}_{\mathrm{g}} / \tau_{\mathrm{o}}=100$	
${ }^{\text {T }}$ T	V_{T}			EXAC T	APPRCX	EXACT	APPRCX	EXACT	APPROX	EXACT	APPROX	EXACT	APPROX	EXACI	APPROX	EXACT	APPROX	EXACT	APPROX	EXACT	APPROX
3	3	1 C	0.0	3.1	3.1	3.2	3.1	3.3	3. 2	3.7	3.4	5. 2	4.8	8.2	7.9	15.1	15.0	36.8	36: 7	73.3	73,3
3	3	10	0.1	5.0	5.1	5.0	5.1	5.0	5.1	5.3	5.3	6.4	6.3	9.0	8.9	15.5	15.5	37.0	37.0	73.4	73,4
3	3	1 C	1.0	21.7	23.1	21.7	23.1	21.7	23.1	21.7	23.1	21.8	23.3	22.8	24.2	26.2	27.3	41.6	43.3	75.2	76.8
3	3	16	10.0	189.7	202.8	189.7	202.8	189.7	202.8	189.7	202.8	189.7	202.9	189.7	203.0	189.7	203.4	191.1	206.1	201.5	215,6
3	3	3 C	0.0	9.5	9.2	S. 5	9.2	9.5	9.3	9.7	9.3	10.7	9.9	13.0	11.8	18.5	17.3	38.5	37.8	74.0	73,8
3	3	3 C	0.1	15.0	15.2	15.0	15.2	15.1	15. 2	15.1	15.3	15.7	15.7	17.3	16,9	21.3	21.1	39,8	39.7	74.9	74.8
3	3	3 C	1.0	65.4	65. 2	65.4	69.2	65.4	69.2	65.4	69.2	65.4	69.3	65.4	69.5	66.5	70.7	75.0	78. 3	97.0	100,7
3	3	3 C	10.0	561.3	608. 5	561.3	608.5	561.3	608. 5	561.3	608.5	561.2	608.5	561.2	608.5	561.1	608.6	560.7	609.6	560.3	612.9
3	10	1 C	0.0	0.8	C. 8	C. 9	0.9	1.1	0.9	1.5	1.1	2.7	1.9	4.5	3. 5	$77_{8} 7$	6.8	17.3	16.9	34.0	33,8
3	10	16	0.1	1.2	1.3	1.3	1.3	1.4	1.4	1.7	1.5	3.0	2.1	4.8	3.6	8.1	6.9	17.7	17.0	34.2	33,8
3	10	1 C	1.0	5.2	506	5.2	5.6	5.2	5.6	5.3	5.7	5.8	5.9	7.4	6.5	11.3	8.8	21.6	17, 8	37.5	34, 3
3	10	10	10.0	45.4	48.6	45.4	48.6	45.4	48.6	45.4	48.6	45.4	48.6	45.4	48.7	45.8	49.1	51.9	51.5	68.5	59.2
3	10	36	0.0	2.4	2.5	2.4	2.5	2.5	2.5	2.9	2.6	4.1	3.0	6.3	402	10.0	7.2	19.9	17.1	35.8	33.9
3	10	3 C	0.1	3.7	3.9	3.7	3.9	3.8	3.9	3.9	400	4.9	4.3	6.9	5.2	10.8	$7 \mathrm{7c} 8$	21.0	17.4	37.1	34.0
3	10	3 C	2.0	15.8	1008	15.8	16.8	15.8	16.8	15.8	16.8	15.8	16.9	16.4	17.2	19.0	18.1	30.3	23.9	48.2	37.8
3	10	30	10.0	126.3	145.8	136.3	145.8	136.3	145.8	136.3	145.8	136.3	145.8	136.3	145.8	136.3	146. 0	136.7	146.8	143.8	149,7
3	30	1 C	0.0	0.3	0.3	0.4	0.3	0.6	0.3	0.9	0.4	1.5	0.7	2.3	1.4	3.7	2c7	7.6	6.7	13.9	13.3
3	30	1 C	0.1	0.4	C. 4	0.5	0.4	0.7	0.4	1.0	0.5	1.7	0.8	2.6	104	4.0	2.7	8.0	687	14.3	13.3
3	30	1 C	1.0	1.7	1.8	1.7	1.8	1.7	1.8	2.0	1.8	2.9	1.9	4.3	2.2	6.4	3.2	11.2	6.9	18.1	1304
3	30	10	10.0	14.9	15.3	14.9	15.3	14.9	15.3	14.9	15.3	14.9	15.3	15.3	15.4	17.5	15.5	26.7	16.7	39.4	20,3
3	30	30	0.0	0.8	C. 8	0.9	0.8	1.0	0.8	1.4	0.9	2.4	1.0	3.5	106	5.4	2. 8	909	6.7	16.5	13,3
3	30	3 C	0.1	1.2	1.3	1.3	1.3	1.4	1.3	1.7	1.3	2.7	1.4	4.0	1.8	6.0	2.9	10.7	6,8	17.5	13.4
3	30	3 C	1.0	5.2	5.3	5.2	5.3	5.2	5.3	5.2	5.3	5.7	5.4	7.1	5.5	10.2	6.0	17.2	8.5	26. 1	14.3
3	30	30	10.0	44.8	46.0	44.8	46.0	44.8	46.0	44.8	46.0	44.8	46.0	44.8	46.0	44.9	46.0	50.0	46.4	64.4	47.8
10	10	1 C	0.0	0.8	C. 8	0.8	0.8	0.9	0.9	1.2	0.9	2.0	1.4	3.2	2.3	5.4	4.5	11.7	11.0	22.3	22,0
10	10	10	0.1	1.2	1.3	1.2	1.3	1.2	1.3	1.3	1.4	1.9	1.7	3.2	2.6	5. 5	4.6	12.0	11.1	22.6	22.0
10	10	10	1.0	5.2	5.6	5.2	5.6	5.2	5.6	5.2	5.6	5.2	5.7	5.2	6.0	6.0	7.1	12.3	12.3	23.2	22.7
10	10	1 C	10.0	45.4	48.6	45.4	48.6	45.4	48.6	45.4	48.6	45.4	48.6	45.4	48.6	45.4	48.8	45.4	49.8	45.4	53,3
10	10	3 C	0.0	2.4	2.5	2.4	2.5	2.4	2.5	2.6	2.5	3.2	2.7	4.7	3.3	7.3	5.1	14.2	11.3	24.6	22.1
10	10	3 C	0.1	3.7	3.9	3.7	3.9	3.7	3.9	3.7	4.0	3.8	4.1	4.5	4.5	7.1	5.9	14.4	11. 7	25.3	22.3
10	10	30	1.0	15.8	16.8	15.8	16.8	15.8	16.8	15.8	16.8	15.8	16.9	15.8	17.0	15.8	17.4	16.8	20, 1	26.3	27.7
10	10	30	10.0	135.7	145.8	135.6	145.8	135.7	145.8	135.6	145.8	135.6	145.8	135.5	145.8	135.4	145.9	13501	146. 2	134.5	147.4
10	30	16	0.0	0.3	C. 3	0.4	0.3	0.5	0.3	0.8	0.3	1.3	0.6	2.0	1.1	3.2	2.2	6.5	5.5	11.7	11.0
10	30	10	0.1	0.4	C. 4	C0 4	0.4	0.5	0.4	0.7	0.5	1.2	0.7	1.9	1.2	3.2	2.2	6.6	5.5	12.0	11.0
10	30	1 l	1.0	1.7	1.8	1.7	1.8	1.7	1.8	1.7	1.8	1.7	1.9	2.3	2.1	3.5	2.8	6.9	5.8	12.3	11.1
10	30	16	10.0	14.9	15.3	14.9	15.3	14.9	15.3	14.9	15.3	14.9	15.3	14.9	15.4	14.9	15.5	15.0	16.3	20.3	18.9
10	30	30	0.0	0.8	C. 8	0.8	- 0.8	0.9	0.8	1.2	0.8	2.0	1.0	3.0	1.4	4.7	2.3	8.6	5.6	14.2	11.0
10	30	$3 C$	0.1	1.2	1.3	1.2	1.3	1.2	1.3	1.2	1.3	1.8	1.4	2.7	1.7	4.3	2.5	8.4	5.6	14.4	11.1
10	30	3 C	1.0	5.2	5.3	5.2	5.3	5.2	5.3	5.2	5.3	5.2	5.4	5.2	5.4	5,5	5.8	9.5	7.7	15.4	12.2
10	30	30	10.0	44.8	$46 . \mathrm{C}$	44.3	46.0	44.8	46.0	44.8	46.0	44.8	46.0	44.8	46.0	44.8	46.0	44.8	46.3	44.8	47.3

FIGURE CAPTIONS

1. Emitter-coupled transistor pair.
2. An approximation of the emitter-coupled transistor pair of Fig. 1.
3. Generator voltage for Fig. 2.
4. Hybrid transistor equivalent circuit.
5. The circuit of Fig. 2 with the transistor equivalent circuit of Fig. 4.
6. Simplification of the circuit of Fig. 5.

7a and 7b. Flow-charts of the computer program.
8 a through 8 s . Waveforms of $\mathrm{i}_{\mathrm{C} 1}(\mathrm{t})$ for $\mathrm{C}_{\text {ext }}=0$ and various values of $\mathrm{v}_{\mathrm{g} 0}$, $\mathrm{v}_{\mathrm{g} 1}, \mathrm{R}_{\mathrm{g}}$, and t_{g}.
9a through 9 h . Waveforms of $\mathrm{i}_{\mathrm{C} 1}(\mathrm{t})$ for $\mathrm{t}_{\mathrm{g}}=0$ and various values of $\mathrm{v}_{\mathrm{g} 0}$, $\mathrm{V}_{\mathrm{g} 1}, \mathrm{R}_{\mathrm{g}}$, and $\mathrm{C}_{\mathrm{ext}}$.
10. Fortran-IV computer program resulting in Fig. 8.
11. Fortran-IV computer program resulting in Fig. 9.
12. Fortran-IV computer program resulting in Table 1.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

$\overline{1189 A 5}$

FIG. 5

$\overline{1189 A 6}$

FIG. 6

1169 A 7

FIG. 7a

FIG. 7b

FIG. 8a

FIG. 8b

FIG. 8c

FIG. 8d

FIG. 8e

FIG. 8 f

FIG. 8 g

FIG. 8h

FIG. 8i

FIG. 8 j

FIG. 8k

FIG. 81

FIG. 8m

FIG. 8n

FIG. 8 p

FIG. 8 r

FIG. 8s

FIG. 9a

FIG. $9 b$

FIG. 9c

FIG. 9d

FIG. 9e

FIG. 9 f

FIG. 9 g

FIG. 9h

```
FUNCTICA CS(V)
(FIV.LT.-10C.0)V=}-100.
IFIV.LT*-100.0)V=-100.0
CS=EXP(v)
RETURN
ENC
FUACTICA CICCECVI
IF(V.LT.-100.0)V=-100.C
IF(V.LT.-100.0)V = -100.C
C:ODEEEXP(V)-1.0
RETURA
END
REAL*& IL,ICI,IZ,VIE,V2E,VE,VGZERC
CALL STFTPI(10)
FORNAT(5F10.5,11,F9.5)
FGRMAT(: ,5F10.5,I1,F9.5)
FCRMAT (, ,IPE10, 5:1PC10.21,4(1PE10.21)
```



```
4 FORMAT('.',R
5 \text { FORNAT (F10.5)}
6ORMAT(11:,F10.5)
REAC15,510VL
WRITE(6,6)OVL
99 CONTINUE
REACES, IIVGZERO,VG,R1,U1,CELT,NEWPLT, A
IFIUl.LE.OIGO TO 100
DELT2=0.001*DELT
WRITE(G,2)VEZERO,VG,RR1,UL, LELT,NEWPLT,A
IFINEWPLT.EG.OIGO TE II
CALL PLCT1{20.0,0.0,-3)
CALL AXIS110.0,0.0,'T, -1,8.0,0,C,C.7,1,0,10.01
11 CONTINUE
    XPLCT=C.0
    YPLCT=
    CALL PLCT1IXPLOT,YPLCT,*3)
    VGZERC=-VGZERO
    TG=1.C/A
    IZ=EXF(-Ul)
    T1=0.0
    T1=0.0
    VE=DLCG(11.0+DEXP(VGZERO))/(2.0+1.0/IZ))
    V1E=VGZERO-VE
    V2E=-VE
    T=0.0
    XP=-0.02
    YPLOT=-0.1
2 CONTINUE
    I1=12*CICDE(VIE)
    FIT1.EG.O.0.ANC.I1.GE.O.1)T1=T
    II.GE.0.9)T2=T
    F(T.LT.TG)V=VGZERO+A*T*(VG-VGZERO)
    IF(T.CGE.TGIV=VGG
    IFITME*TGIV=VG
    Cl=CS(V1E)*IZ
    Cl=CS(VIE)*IZ
    DELT1=DELT
    DELICI=ICI*OELT
    CVI=CELIC1/C1
    OEDELIC
    ABSOVZ=ABS(CV2)
    IFIABSOV1.LT.DVL.ANC.ABSOV2.LT.CVLIGO TO 15
    ABSMAY:= AMAX 1(ABSDV1,ABSDV2)
    CBSMAX=AMAX1/ABSDV1,AESDV2)
    IFIDELT1.LT.DELT 2 IOELT I=DELT2
    CELICI=ICl*CELT
    CVI=DELICl/Cl
    IF(CV..CT.0.1)OVI=0.1
    IF(OVI..LT.-0.11OOV }==0.
    CV2=0&LIC1/C2
    IF
    IFIOV2.LT.-0.1)OV 2=-0.1
    15 CENTINUE
    T=T+DELTII
    VIE*VIE+DVI
    V2E##2E
    IF(XPI.CT-XP.LT.O.O1)GC TO 14
    XP=XPI.CT
    IFIII.GEE.0.998)GC TO 98
    YPL=5..0*11
    IFYYPICT.GE.YFL.AND.YPL.GE.4.95)GO TO 58
    YPLCT:EYPL
    YPLCT:EYPL
    IFIYPI.OT.GE.10.0)YPLCT =10.0
    CALL PLCTL(XPLOT,YPLCT, +2)
14 CCATINUE
    IFIXPICT.LE.8.OIGO TO 12
    TR=T2..T I
    HRITE:6,4!TR
    MRITEIG,
9% CCNTINUE
CALL PLCTI(XPLOT,5.0,+2)
    CALL FLCT1(8,O,5,O.+2)
    TR=T2\cdotsTl
    *RITEI6,4ITR
    GO TO }9
00 CONTINUE
CALL PLCT1(20.0.0.0,-3)
    CALL ENCPI
    STEp
END
```

FIG. 10

FIG. 11
transistic palr with external capacitancen**
Funcrich csiv)
IFIV.LT. -100.0 IV $=-100 . \mathrm{C}$
IFiV.GT.+100.01V $=+100.0$
CS=EXP(V)
RETURN
c
FUNCTICN CICDEIV)
IF $\mathrm{V} .1 \mathrm{LT} .-100.0 \mathrm{~V}=-100.0$
IF $\mathrm{V} . \mathrm{GT}+100.01 \mathrm{~V}=+100.0$
IF (V.GTE+100.01V $=+100 . \mathrm{C}$
CICDEEEXF(V)-1.0
RETURA
c
FUACTICN TRGVCIERO,VG,RI,U1,CELT, A,CEXTI
CCUGLE PFEECISION II,ICL,IL,VIE,V2E,VE,VGZERO
OVL $=0.01$
OELT2=0.019) *DEL.
VGZERC=-VCZERC
IL=EXPI-U1
$i C 1=0.0$
$i 1=0.0$
$T 2=0.0$
$V E=C L C G(12.0+D E X P(V G Z E R O)) /(2.0+1.0 / 1 Z)!$
VIE=VGZEFC-VE
$\mathrm{V} 2 \mathrm{Ex}=\mathrm{VE}$
$\mathrm{T}=0.0$
12 CCNTSNUE
II*IZ*CICDETVIE)
IFTT1.EG.0.0.ANC. H1.GE-O.11T1=T
IFTT.LT.TGIV=VGZERC+**T*(VE-VGZERO1
IFTTEEETGJVVG
ICl=iV-VlE+V2EV/R
C1A=CS(VIEI*12
$C 2 A=C S(V E E)$
$C 1=C 1 A+C E X T *(C 1 A+C 2 A) / C 2 A$

CELT1=CE1. \dagger
DELICIFGI*DELTI
CVI=OELICI/CI
$C V 2=D E L T C I / C Z$
$A B S E V I=: B S t E V$
$A B S D V 2=A S S(C V 2)$
IFIABSEVLALT, OVL,ANC.ABSOV2-LT.CVLIGO TO 15
ABSMAX $=A M A X 1(A B S D V 1, A B S D V 2)$
CELTI=CVI. *DELT/AESRAX
IFCOELT1,LT. OELT $21 D E L T=D E L T 2$
CVI*DELICLCCL
IF (DVI.CT.0.11 DVI $=0.1$
$1 F(D V 1-L T-0+1) E V I=-0.2$
CV2=0ELKICC
IFCVV2.CT.0.11CV2=0.1
IF (CV2.1T.-0.1)CV2=-0.1
15 CCATINLE
VIE =VIE COVI
$\checkmark 2 \mathrm{E}=\mathrm{V} 2 \mathrm{E}-\mathrm{BV} 2$
101 GC LCNEINUE
$T 2=T$
$R^{2}=T 2-T 1$
RETURN
ENC
c
FUACTICA TCIVGZERC,VG,RI,A,CEXTI
ARG1=9.0 (ARG=AL(ARG1)*2

TRISG=TR1*TR1
TR2=ALCG/(IVG*VGIERO)
TR2SQ=TR2*TR2
TG=SGRTITR1SQ+TR2SQ)
RENDRN
c
1 FORMAT (5F10.5,11,F9.51
2 fGRMAT (', ', 12,1x,13,1x,1,
4 FERMAT: \because !
5 FCRYAT: $15 x$. 9 , EXACT APPROX:1)
WR1TE(6,3)
WRITE 6,51
WRITE
W,
C DDIMENSIEN CE(6), TRWR(91,TRCW(9), VGZM(16),VGIM(1E), PIM(10), AM(0),
ODINENSICN CE(C),
IXTRWRISI,XTRCW(G)
DATA CE/O.0.0.1*1.0,10.0/,VGZF/6*3.0,4*10.0,2*30.C/
OATA VG1M/2*3.0,2*10.0,2*30.0.2*10.3,4*30.0

$O E L T=0.01$
$U I=20.0$
DC 1001 J1 1 *1, 8
$R 1 M 12 * J 111=20.0$
$R 1 M+2 * J 12-1)=10.9$
1001 R1M12*J12
c
$D C \quad 1002$ JI2=1.12
$V G Z E R C=V G I M(J 12)$
$V G=\forall E_{1} M(J 12)$
$R 1=R 1 \psi(12)$
R1=R1\%(.JI2)
QC CEX ION $=C E 1 J 13=1,4$
DC 1094 J 14×1,

TRWR(JIC)=TRIVGIERO,VG,RI,U1, CELT,A,CEXTH

1004 CCNTINUE
IVGI=IAT(VG+0.5)
IRI $=1 A T I R 1+0.5$, .
1003 CCNTENCE
STCF
EAC

FIG. 12

