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Report 1

INTRCDUCT ION

Burton Richter and Matthew Sands
Stanford Linear Accelerator Center

A. The Summer Study

Interest in high-energy particle research with colliding beam storage
rings has been Increasing rapidly during the past few years. The
Italian group has cbserved the bremsstrahlung interaction between elec-
trons and positrons in a 130-MeV storage ring (ADA) operating at low
beam intensities. The Princeton-Stanford group has now achieved a large
encugh interaction rate to observe wide-angle electron-electron scatter-
ing at 300 MeV (in its 500-MeV rings). Beams have been stored in 130-
MeV electron-electron rings and in a 700-MeV electron-positron ring at
Novosibirsk. Two electron-positron rings are nearing completion in
Europe — a 450-MeV ring at Orsay, and a 1.5-GeV ring at Frascati.
Propogals have been made for a BQGéV electron-positron ring by two groups
in the United States. Colliding-beam storage rings for 30-GeV protons
are to be built at CERN.

The successful operation of colliding-beam storage rings requires
that two high intensity beams of small cross section be stored in an
intersecting geometry for pericds of many minutes to hours. In the past
five years several phencmena have been discovered experimentally or
theoretically which can cause instabilities in intense stored beams
leading either to a catastrophic loss of the beams or to a drastic re-
duction of the interaction rates in the beam intersection regions. Many
of these phenamena were first observed and studied in the pioneering
work of the Princeton-Stanford storage ring group. By early 1965, this
group — aided by contributions from Courant, Ritson, Sessler, and others —
had arrived at a reasonable understanding of the basic limitations of
the interaction rates and had been able to select operating parameters
of the rings which lead to stored currents in the colliding beams of
several tens of milliamperes and beam Interactlion rates high enough to
carry out measurements of wide-angle electron-electron scattering.
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The successful operation of the 500-MeV electron-electron rings gave
reasons for believing that one could proceed with socme confidence with
the construction of a 3-GeV electron-positron ring, although scme
guestions were still not completely clear. What laws governed the ex-
trapolations to higher energy? Would new phencmena appear with high
rf harmonics (and, therefore, with many circulating bunches)? Would
new phencmena appear with counter-circulating beams in one ring which
did not show up in the two-ring (electron-electron) configuration?

These questions were discussed and clarified scmewhat at a Review
Meeting held at Stanford in February 1965, attended by workers from
throughout the United States, and at an international meeting held at
Novosibirsk in Masrch 1965. In view of some of the guestions raised at
these meetings, and in view of the imminence of a decisicn tc proceed
with the ambitious prcject of a 3-GeV electron-positron ring, the summer
of 1965 appeared as a particularly appropriate time to bring together
the interested workers for a concentrated attack on the outstanding
problems. There was reason to believe that such an effort would result
in significant progress - as, in fact, turned out to be the case.

Iﬁ this Summary Report we have tried to bring together, very quickly,
brief reports of the principle results which came forth during the
Summer Study. In the next section we review the most relevant previous
work. This is followed by Report 2 by A. M. Sessler, which contains a
review of the main conclusions of the Study. In the rest of this
Summary Report will be found short reports of the work of various
participants. It is expected that more complete reports of these ef-
forts will be published by the authors at some later time and in the
normal literature. We feel, however, that this Summary Report will,
in the meantime, be useful to the workers in the field.

The Storage Ring Summer Study was held at the Stanford Linear Accel-
erator Center from June 28 to July 30, 1965. Several participants were
able to attend for only a part of the time, and scme contributed reports
of work carried out wholly or in part at their home institutions. The
appended table contains a list of the participants in the Study.

The Study was supported by the U.S. Atomic Energy Commission. The

attendance of scme of the participants was sponsored financially by

-2



by SLAC and of others, by their home laboratories, for whose cooperation

we are grateful.

from each of the participants.

We are also grateful for the contribution to the Study

Andrew Sessler made a special contribu-

tion in stimulating and, by taking part in several of the analyses, in

helping to guide the course of the Study, and in helping to put together

on a crash schedule this Summary Report.

Matthew Allen
Fernando Amman
Carl Barber
Ernest Courant
Gabriel Gendreau
Bernard Gittleman
Mervyn Hine
Everhard Keil
Jackson Laslett
M. Lee

Philip Morton
Jerry O'Neil
Claudio Pellegrini
John Rees

Burton Richter
David Ritson
Kenneth Robinson
Matthew Sands
Arnold Schoch

B. Earlier Work and Open Questions

List of Participants

Stanford
Frascati
Stanford
Brockhaven
Orsay
Princeton
CERN

CERN

Lawrence Radiation laboratory

" Stanford

Lawrence Radiation Laboratory
Princeton

Frascati

Stanford

Stanford

Stanford

Canmbridge Electron Accelerator
Stanford

CERN

Early in the Summer Study {on July 6-7) a General Review Meeting was

held to review the current status of our knowledge on beam instabilities.

This two-day meeting was asttended, in addition to the Summer Study par-

ticipants, by physicists from SIAC, fram the Lawrence Radiation Lebora-
sries, from MURA, and from Argonne. Reviews were given of the status

. the varicus storage-ring projects around the world, and of past

sretical and experimental studies of instabilities in circulating
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beams. What follows is an attempt to summarize the conclusions that
could be drawn from these reviews.

Instabilities which may limit the intensities of accelerated or
stored beams in eircular accelerators have been observed and studied at
many laboratories and now appear to be reasonably well understood. A
summary of this subject was recemtly given by E. Courant.t

It was Tirst pointed cut by Amman and Ritson® that the electranagnetic
interaction between two colliding beams (“space charge effects") would
limit the interaction rates whiech could be obtained. In the piloneering
work of the Princeton-Stanford storage ring group, new and unexpected
' instabilities were encountered at intensities below the Amman-Ritson
limit. The troublesome instabilities appear to be of two distincet type:
coherent instabilities, in which all of the particles (or a major fraction
of the particles) in a part of the beam execute anti-damped oscillations
about the expected equilibrium positions; and incoherent instabilities,
in which the dimensions of the beam are enlarged due to a growth of the
ogcillation amplitudes of individual particles. The incoherent instabil-
ities limit the interaction rates because of the reduction of the current
denéity in the beam. The coherent instabilities can cause a catastrophic
loss of one or both beams; they can also limit the reaction rates by
causing the beams to avoid each cother or by leading to a growth of the
beam size if the coherence of the oscillations is subsequently broken
up — as may happen if the guide field gives a nonlinear restoring force.

Transverse coherent osciliations of single beams in circular accel-
erators have been observed at MURA, Brookhaven, CERN, Argonne, Stanford,
and elsewhere. These instabilities are in most cases, explained guanti-
tatively by the theory of Laslett, Neil, and Sessler- (INS) or by that of

Hereward.? Only the observations at MURA are in serious quantitative

E. Courant, Proceedings of the Particle Accelerator Conference, Washing-
ton, D.C., March 10-12, 1965; p. 550.

2y, Amman and D. Ritson, Proceedings of the Brookhaven International
Conference on High Energy Accelerators (1961); p. 4(l.

>L. J. Laslett, V. K. Neil, A. M. Sessler, Rev. Sci. Instr. 32, 276 (1961).

‘*?. (é‘r&)Hereward, CERN International Report MPS/Int. DL 64-8, CERN, Geneva
1964%).



disagreement with the theory. In the INS theory it is shown that the
image currents in a resistive wall of the vacuum chamber produce fields
which can drive the beam particles into coherent transverse oscillations
of increasing amplitude. In the Hereward instabllity the driving forces
are provided by the interaction of the beam with resgidual ions in the
vacuunm chamber. Both of these instabilities can be quenched by an
electronic feedback system (Brookhaven, Argonne, Stanford) or by a non-
linesr focusing field which introduces a spread in the betatron frequen-
cies of the particles in the beam.

Coherent longitudinal oscillations have also been cbserved at CERN,
MURA, and Saclay and have been analyzed by Laslett; Neil, Nielsen, Sessler,
and Symon.5’6:7 Coherent longitudinal oscillations of a beam bunch sbout
its equilibrium rf phase may also arise from the interaction between the
beam and an accelerating cavity. This effect has been analyzed by
Robinson® and can be avoided by proper tuning of the cavity.

Tt was first suggested by Segsler that two individually stable beams
might become unstable when placed in a colliding geametry. The nonlinear
electromagnetic interaction at the intersection region can cambine with
the driving forces from the resistive-wall effects in the individual beams
to produce unstable coherent oscillations. It is likely that this effect
has been cbserved in the Princeton-Stanford storage rings. Analyses by
Ritson and Rees” and by Sessler suggested that this instability could be
avoided if the betatron frequencies of the two beams differ by an amount
related to the shift in betatron freguency of the particles of one beam
causéd by forces fram the other beam. The Princeton-Stanford rings are

being operated with different Q's in the two rings.

5C. E. Nielsen and A. M. Sessler, Rev. Sci. Imst. 30, 80 (1959).

€C. E. Nielsen, A. M. Sessler, and K. R. Symon, Proc. Internatiocnal
Conference on High Energy Accelerators and Instrumentation, CERN, Geneva

1959) Pe 239

L. J. Laslett, V. K. Neil, and A. M. Sessler, Rev. Sci. Instr. 32, 245
(1961).

%K. W. Robinson, CEA Report No. 11, Cambrldge Electron Accelerator,
Cembridge, Massachusetts (1956).

7D. Ritson and J. Rees, SLIAC Internal Report, Stanford Linear Accelerator
Center, Stanford, California (June 1965).
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When all coherent oscillations have apparently been suppressed in
the Princeton-Stanford storage rings, there is still observed an inco-
herent increase in the vertical dimension of one of the two beams when
they are brought into ¢ollision. This effect does not occur at low beanm
currents, but appears at currents significantly below the space-charge

limit originally recognized by Amman and Ritson.®

Robinson has suggested
that this incoherent beam growth may be due to the excitation of non-
linear rescnances by the strong nonlinearity of the space-charge fields
at the interaction region. Courant®? has carried out extensive numerical
computations which simulate the motion of a partiele moving in a linear
guide field but subjected to impulses each revclution (at the interaction
point) which are non-linear in both lateral coordinates of the particles
(gee Ref. 11). Courant finds that for beam currents well below the
Amman-Ritson limit there can be a "quasi-randam” growth of the transverse
oscillations of the particle. The onset of this growth does not appear
to be related to any simple machine resonance, but begins when one of.
the beams reaches a certaln critical charge density. Below thils critical
charge density there is no discernible growth over hundreds of thousands
of revolutions of the particle. These results are in reasonable agree-
ment with the behavior of the beams in the Princeton-Stanford storage
ring.

When the Summer Study was initiated there appeared to be several
gquestions which warranted further analysis:

(1) The resistive wall instability had been analysed in detail
only for azimuthally uniform beams; to what extent were these analyses
applicable to beams with cne, or with many, short bunches as one might
have in high-energy electron storage rings? Also, to what extent are
the discrepencies between the theory and the MURA cbservations fundamental?

(2) 1In what ways are the effects in an electron-positron-ring — in
which both beams circulate in the same chamber — the same or different

from the effects in electron-electren rings?

197, Amman and D. Ritscn, Proc. International Conf. on High Energy
Accelerators, Brookhaven, 1961; p. 4T1.

*1E. Courant, BNL Internal Report AADD-69, Brr khaven Naticnal Laboratory,
New York, (March 1965).
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(3) Are ccolliding beams stable generally with respect to coherent
longitudinal (phase) oscillations?

(4} Is the colliding beam incoherent stability sufficiently well
understood (on the basis of the experience with the electron-electron
rings and the semi-heuristic calculations of Courant and others) to
warrant extrapolations to a 3-GeV machine with currents as high as one
ampere?

(5) Are there any effects not thought of yet — particularly effects
which might only show up at ultra~relativistic energies?

These Questions were the ones faced — and in some instances answered —

by the Storage Ring Summer Study.




Report 2

CONCLUSIONS OF THE STUDY
A. M. SBessler

Lawrence Radiaticn Laboratory, University of California
Berkeley, Celifornia

A, Sumary of the Results Obtained

The next sections consist of summery reports by verious par-
ticipants in the Summer Study. These reports, which are brief,
superficially mey appear unmotivated or to lack relstion to each
other and to the problems of direct concern to the construction
and/br operation of storage rings. It is the purpcse of this section
to attempt to put the contributions into context (1) by discussing
the problems which motivated the specific and detailed investigsa-
tions, and (2) by describing the significance of the various contri-
butions.

Subsequent to the General Meeting held on July 6 and 7, there
was a group discussion held on July 9 concerning outgstanding problems
of beam instebillities in e--e+ storage rings. Much of the mater-
isl in this scection is drawn from the conversations of that day.

The extension of the theory of coherent resistive instabilities
for uniform beams (LNS theory) to azimuthally-bunched beams was
considered to be the most pressing problem at the session's be-
gimming. Prior to the conference, work performed by Courant ---
of a semi-heuristic nature --- indicated the results which might
be expected, while work by Skrinsky (of a preliminary character
at the time of the Novosibirsk Meeting, where he would only speak
informally of his results) shed insight into the physical origin
of Courant's conclusions.

The contributions by Morton and Sessler, Laslett and Sessler,
Robinson, Courant and Sessler, and Allen, Lee and Rees are all

devoted to the coherent resistive instability of a single bunched

-8 -



beam. Report 3 examines, in great detail, the wake fields behind

a shot of charge fired centrally down a straight pipe of circular

cross section. It is shown that the fields remain, after the -
charge has passed, for a surprisingly long time when the walls of

the pipe are not perfectly conducting. The longitudinal field

falls off only algebraically in the distance behind the particle

out to a critical distance which is proportional to odz, where

d is either the radius of the pipe or the thickness of the wall,

whichever is smaller. It is these very-long-persisting asymptotic
fields which are the physical basis of the resistive wall in-
stability. The contribution by Laslett and Sessler {Report 4)
gives expressions for the wake fields of transversely oscillating
and longitudinally moving charges in a straight pipe of rectangular
cross section. The results for the longitudinal field agree in
character with that obtained by Morton and Sessler, but do not
exhibit the critical distance (an unimportant feature in practice)
because the wall thickness was taken as infinite and resistance
put only on the top and bottom surfaces, so that corner or curva-
ture effects were neglected. The asymptotic field (transverse
magnetic) for an oscillating charge drops as the inverse sguare
root of the distance (with no critical distance, presumably be-
cause of the approximations), which is.in agreement with the pre-
vious preliminary results of Skrinsky, Courant, and Ferlenghi and
Pellegrini ~--- all of whom make approximations which would preclude
obtaining the correct "super asymptotic" behavior.

Report 5 by Robingon gives a simple physical derivation of
the wake fields in the asymptotic (distances much larger than the
pipe diameter or length of charge) --- but not the "super asymptotic'---
regime. This contribution is particularly important for the phys-
ical insight it supplies: One sees that in the laboratory frame the
field left behind a charé&hsimply slowly decays with time as t"l/é

(where t is the time since the charge passed).




The paper by Courant and Sessler (Report 6) studies the dynamics
of bunches in a circular accelerator which are subject to the wake
fields of each other (including the self-interaction). Tt is
shown that a single bunch, which has a slight stabilizing effect
directly upon itself, upon completing a turn is subject to its
own wake field which will be either stabilizing or unstabilizing
depending upon the phase of its oscillation; hence the result that
for Q between an integer and an integer plus one-half the motion
is stable, while for @Q Dbelow an integer the motion will be
ungtable unless adequately Landau-damped. Further results of the
Courant-Sessler paper concern many bunches in an accelerator: a
general formalism, and analytic results for equal-intensity bunches.
In the latter case it is shown that half of the modes are unstable;
consequently it is important to study the transition between stable
motion (Q just sbove an integer) of unequal bunches, and the un-
stable motion of equal bunches. This is the motivation behind the
computational program described in the contribution of Allen, ILee,
and Rees [Report 7).

The validity of the theory of resistive wall instabilities is
of vital importance since it is being empioyed so crucially in the
design of storage rings. Conseguently, although the agreement
with observations on the Cogmotron, Argonne, AGS, and Stanford
electron rings is good, the discrepancy with the observations at
MURA must be taken seriously. This was the motivation behind the
investigations of Laslett (Report 8) and of Briggs, Neil, and
Sessler {Report 9). In particular it is necessary to understand
a discrepency of approximately two orders of magnitude in both
U and V --- the out-of-phase and in-phase forces of the LNS
theory. The work was further motivated by a desire to ascertain
what values of U and V can reslly be expected in storage rings.
Chirikov (paper presented at Novosibirsk) has already shown that
laminated walls (as in a betatron) could change V by two orders
of magnitude; in addition, the (1 - %) cancellation in U

reduces it in relativistic machines to a negligible term, but if
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the cancellation is removed, U could again become very important
in ultra-relativistic machines.

Iet us digress to a discussion of the contributions to U.

In a translationally invariant, perfectly conducting unloaded guide
U~ (1 -p%) = 1/y%, which is the "Panofsky Theorem" of rf separators.
Terms in U not varying as 7"2 are:

(1) Resistive wall terms (U = V; consequently, these terms

are usually small for metal walls) .

(2) Dielectric loading, which can meke a large term.

(3) Corrugations in the longitudinal direction (or pins and

ferrites, ete.) which can give a large term.

(%) Contributions from the beam variation in the longitudinal

direction -- "k terms of LNS" -- which are guite small.

(5) Clearing electrodes (etc...) with impedence loading to

the walls, which can give large terms.

(6) cCurvature of vacuum tank, or of particle orbit between
two conducting planes, which gives contribution that is
small, of the order of the "k° terms" (unpublished re-
sult of ILaslett, Neil, and Sessler).

It is presently thought that slow electrons and iong are not suf-
ficiently trapped in the MURA accelerator to explain the discrepancy
(unpublished work by Morton and Sessler), but that dirty clearing
electrodes or effect (5) above may be the explanation. (A recent
private communication from R. A, Otte indicates that a modification
of the termination of the clearing electrodes converts the n =5
mode growth time from 100 times larger than theory to damping with
approximately the seme magnitude!)

With the soclution of the single bunched beam coherent resistive
instability problem -- or, at least, its reduction to numerical
studies -- the most pressing problem to solve was the two-beam
coherent instability. Preliminary work on this problem had been
done for two unbunched continﬁously interacting beams in June 1964

by Bessler; this work was extended and amplified by Ritson and Rees
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prior to the Summer Study. Report 10 by Pellegrini and Sessler
consists of a straightforward extension of the work of Courant and
Sessler to two interacting bunched beams. The consequences are
reslly remarkably simple: for individual beams with the seame
equilibrium orbits and with equal bunches, the modes of oscillation
obtained by Courant and Sessler are all unaltered except for the one
mode (of each beam) having net center-of-mass motion. Various
methods of handling possible instability in these two modes are
discussed.

Report 11 by Robinson is addressed to coherent longitudinal
motion in bunched beams. It does to the theory of Neil and Sessler
what Courant and Sessler have done to the LNS theory of trangverse
instabilities. The conclusion is that for e -e' rings the radia-
tion damping of synchrotron motion will-- in practice -- dominate
any resistive instability. _

We may mention here a tentative result obtained by Amman, but
not included in these reports. Amman attacked the point first raised
by Robinson and Collinsg in the spring of 1964; namely, if storage
rings are operated on a high harmonic of the circulation frequency,
a particle of one beam aé it passes through an interaction region
will be influenced by many bunches of the other beam. This will
tend to average out the nonlinear forces and perhaps reduce the
incoherent beam blow-up. The conclusion of Amman -- under certain
assumptions, the limiting nature of which is still moot -- is that,
in fact, there is not gain from such an averaging effect in the gquan-
tity of direct interest, namely the luminosity.

The two contributions by the CERN people are of more imme~
diate interest to-proton'storage rings than e-—e+ stofage rings.
In particular, Hine is concerned with the vossible long-term in-
stability of a particle subject to periodic nonlinear forces such
as one particle experiences from intersecting the other beam. He
reports the results of numerical computions which follow a particle

s - + .
through a large number of revolutions. For e -e storage rings
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the radiative damping mskes a slow growth (such as might show up

in these calculations) of no significance. The contribution of

Keil concerns itself with short-term growth; this subject was first
explored in mid-1964 by Sessler and Courant. Subsequent studies have
been made by Gendreau; Keil's studies are the most exhaustive to
date. The resulting requirement on beam intensity and shape -- as
reflected in the one parameter AQ which gives the frequency shift
of a single particle by an intense beam -- is that AQ must be

less than 0.05 to avoid blow-up in proton storage rings.

B. The Future: Areas of Confidence and Uncerdtainty; Subjects
for Further Study

Twice during the Summer Study general discussions were held,
in which all participants contributed, on the subjects of what
problems remained to be studied and what implications could be
drawn concerning present or future storage rings from the progress
made to date. These meetings, on July 9 and 27, form the basis
for the material in this section, but it is realized that the
comments contained here are one man's opinion; each reader will want
to form his own opinions.

The discussion is limited, as was the whole Summer Study, to
problems associated with beam instabilities. First, a survey was
made of subjects requiring further study; this was followed by
a discussion of the relative importance of the problems, which then
leads into more genersl comments concerning areas of confidence
and areas of uncertainty.

Theoreticai problems needing further work cen be simply listed
with a few explanatory comments:

1. Coherent instability in a single unbunched beam:
() The influence of various wall materials and types to
ascertain the influence on the (1 - B%)} cancellations
in U.

(b) Influence of variously terminated clearing electrodes,
primarily to attempt to remove the discrepancy between
theory and the cobservations at MURA.

- 13 -



(c)

Studies of nonlinear phenomena and the effect of ions,
primarily to ascertain the contributions to the Landau

damping.

2. Coherent instability in a single bunched beam:

(a)

()

(c)

Are the very high modes corresponding to internal motion
of a bunch stable? One expects that the rf mixing will
strongly damp such modes, but a quantitative study is
lacking.

Computation studies to learn how the equal bunch approxi-
mation goes over into independent bunch motion. This Is
of interest to explain observations at Cornell, 2GS,

AGS, and CERN. It is also important, when coupled with

1(a), to the behavior to be expected in storage rings.

Careful evaluation of the fields due to one bunch:

(i) Asymptotically, to see if vacuum tank dimensions
and wall thickness enter in the transverse fields
as they do in the one simple case of longitudinal
field so far tested.

(ii) Asymptotically, but considering the finite circum-
ference of the accelerator so that sums are retained
and not replsced by integrals. Since the agymp-
totic behavior is dominatéd by & small range of
wave numbers, this could easily mske a sizeable

numerical difference.

(1ii) At all distances, in order to ascertain the effect

on nearby bunches and of a bunch on itself numer-

ically more accurately.

3, Coherent ingtebilities involving two beams:

(a)

Extend the analysis of Pellegrini and Sessler for con-
tinuously interacting bunched beams to discretely inter-
acting continuous beams -~ of interest for application

to proton storage rings.
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{b) Numerical studies to learn how to handle the unstable
modes by Q-splitting, or Landau damping, or unequal
bunches. (The analog of 2(b) for two beams.)

(¢) Zmploy the Italian studies {private communication from
F. Amman) of incoherent-incoherent beam interaction to
obtain beam shape and hence make accurate estimates of the
cross-beam contribution to U (the term in 1/z of
ILNS) and %o the Landau demping {the cross-beam AS of
INS and Ritson and Rees).

4, Incoherent two-beam effects:

Further study of the Robinson-Collins propossal to employ
many bunches to average away some nonlinear effects; in par-
ticular, to see the sensitivity of the cancellation to geometry
and variation 1n intensity from bunch to bunch.

5. TIongitudinal coherent motion:

Further study -- for one and two beams -- of the coherent
motion of bunches with respect to each other, including the
interaction with the rf system (although it does not now appear
that there is likely to be & problem).

Experimental studieg are, of course, very much limited by the
avallability of suitable accelerators for beam behavicr studies.
It is clear that any further information from the CERN P.S., the
AGS, and the ZGS would be most valuable, but extensive experimental
studies would seem to be unlikely. On the other hand, continued
studies may be expected at MURA, on the CERN electron model, and
on the Stanford storage rings. The sorts of studies required are
clear and will not be detailed here, other than to comment upon
the special requirement at MURA to modify the clearing electrodes
in regard to their surface (meke it clean and good cornducting),
extent (presently as much as 20% of the circumference is not cleared,
much of it where magnetic fields might be trapping lons and
electrons), and electrical properties (the present results are

clearly sensitive to the mode of termination).
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Where then, do we stand at the present time? Despite the
formidable array of thecretical problems, I think that there is a
large area of phenomenz which we can feel confident that we both
understand and can control. This assumes that the theory is correct;
further studies on coherent phenomena in the Stanford rings will
be vital in reinforcing {or destroying!) this assumption, which is
the only reasonable basis upon which to rest our plans.

In particular, incoherent besm~beam effects are adequately
understood to allow a design of storage rings which (awaiting the
study of (4), above) at worst is overly conservative. Also, it
is probable that coherent longitudinal motioﬁ is no source of diffi-
culty. That leaves coherent transverse motion; and although the
studies cutlined above as (1), (2}, and (3) will make quantitative
differences -- and thus introduce an area of uncertainty which is
reflected in a conservative design -- the theory suggests a number
of ways of designing storage rings sc as to be assured of success-

ful operation:

1. Single beam coherent instabilities can be controlled, as in
the present Stanford rings or at Cornell, by landau damping‘intro-
duced via octopoles., It can also be controlled, as at the Cosmotron
or ZGS, by feedback. Theoretically, by loading or modifying a
smooth vacuum tank or by having unequal bunches, and choosing g
above an integer, the ingtability should be suppressed. This re-
mains to be confirmed by experiment.

2. Two-beam coherent instabilities can be handled by Q-splitting,
as at the Stanford electron rings; or by feedback on the one mode
with center-of-mass motion in the equal bunch case (Landau damping
is not adequate for this one mode, in most designs); or by unequal
loading and choice of Q-values (in loaded structures) so as to
damp 211 modes; or by choice of Q-values to damp the two coupled
modes and landau damping to handle the modes which are unstable
(equal bunch case) but unaffected by beam-beam effects. And there

are, clearly, other possibilities also.
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Thus, at the end of this Summer Study, we would appear to
have gained considerable insight into beam instabilities in storage
rings, enough insight to successfully circumvent all presently

known difficulties.

_-17 -



ReEort'B

THE LONGITUDINAL WAKE FIEIDS OF A
PULSE OF CHARGE MOVING DOWN A STRAIGHT PIPE
OF CIRCULAR CROSS SECTION WITH FINITE CONDUCTIVITY

P. L. Morton and A. M. Sessler

Lawrence Radiation laboratory, University of Californis
Berkeley, Califcornia

A. Introduction
It has been shown that, for the case of unbunched beams, the finite
conductivity of the walls of an accelerator can lead to unstable coherent

oscillations of the beam.™’Z

The question of stability then arises for
a bunched beam in which the distance between bunches is large compare to
the radius of the vacuum pipe. If the electric and magnetic fields fall
off fast enough, the motion of separate bunches would be independent of
each other, and one might expect to stabilize the ccherent beam oscil-
lations by bunching the beam longitudinally. In fact, for the case of
infinite conductivity the fields fall off exponentlally in a distance of
the order of the pipe radius, which is typically small compared to the
distance between bunches.

It is the purpose of this paper to compute the falloff of the fields
at large distances from z bunch of charge in the case of finite wall con-
ductivity. In all cases 1t has been assumed that the point of cbserva-
tion is at a distance which is large compared with the pipe radius and
the bunch length, and that the conductivity of the vacuum walls is such
that the displacement current in the wall can be neglected compared to

the conduction current.

B. TField Solution

We present here the solution for the electric and magnetic fields
produced by a pulse of charge traveling, in the =z direction with velocity
Bc, inside an infinitely long straight circular pipe of conductivity o.

The inner and outer radii of the pipe will be designated by b and d,
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respectively. The pulse of charge will have a constant radisl density

ingide of radius &a so that the charge density can be written ss:

o(r, z) = en(r) f(z - vt) (1)
with
n r<a
n(r) = ©
0 r>a

Fourier trensformation will be used in solving for the fields; the

convention that a curl above a quantity designates the Lransform of the

guantity will be adopted, for example:

o0

f(z - V£) = b/\ F(x) eik(Z~Vt) dk (2}

-0

The transformed Maxwell equations are employed to find general solutions
for the four regions r <a, a<r <b, b <r <d, and r >d. The
boundary conditions that ﬁ; and ﬁe be continuous then determine the

solution; for the special case that r = a =D, we obtain:

hen T
Ez ={ zko g_%f Jl(qb)}x
aft () (a) - 7 (e (oa)] 1 (g2) + a%2[v ()7 (00) - (o) (om)] u(qa)

O
ofF ()3 (ca) - 5 (ow)w_(oa)] B (aa) + @822 [N ()3 (0a) - N (ca)s (a0)] f(aa)

(3)

0

with

iRk and R = EEEE
2 C

FDI\J
I

1

l
S
il

The choice of sign for ¢ and «& is such that the imaginary part

of g and « is always positive
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C. Asymptotic Limit

It will be assumed that the outer pipe radius d, and the length of
the bunch ere both much smaller than |s |, where s = (z - vt) and
(z,t) is the point at which the field is evaluated. (The bunch of charge

has trajectory =z = vt.) In this case we need only retain in EZ the

dominant terms in the small quantities gb and gd. We will be interested

in two cases for the relative values of pipe inner and outer radii:
Case 1, where the wall thickness of the pipe is large compared to the
inner radius; and Case 2, there the radius of the pipe is larger than
the pipe thickness.

For Case 1 there are three regions of interest: |s|<< Rbag RbZ <K| s[;
and |s| >>‘Rd2. The relevant approximations for Ez are: gbh > 1;
ad >> 1 >> b and ad K 1, respectively, so that if N is the number

of particles in the pulse,

B =1 91%%— ('—2-;5{—|-)2 [1 5 sign(k)] |s| << Ro? (&)
~ 2 T 1
E =13 x [2a(apsl? + )2 sign<k))] B << |s| < Ba® (5)

- eN BE 5
B oo Ra% << |5 (6)
*R(a% - b%)

We use the fact that the Fourier inversion integral depends upon the

singularities of k to obtain’

eN g7 S(z,t)

E (z,t) = |s| << Rp® (1)
2 R b |s|§
8(z,t) o
E, (z,t) = N B° WE Ro® << | s | << R4® (8)
S
el p®
E t) = ————— B
. (2,%) ) (8)  Ra? «<|s| (9)



. 1 for (s) <O ’
where S(z,t) = , and 8(s) is a Dirsc & function.

0 for (s) >0
The functions S(z,t) and ©&(s) appear here only because we have
ignored all fields with fall-off distances of the order of the length of
the bunch or the radius of the pipe.
For Case 2, we have regions of interest where |s| <<R(d - b)Z;
R(d - b)® <«<| 8| << Rra®%; and Isl >> Rd®. With the appropriate approxi-
mations for ob and a(d - b) we have:

i eN g% (12%'—)% l:i + sign(k)] |s| << R(a - b)? (10)

Ez b

el g%

=2
]

—_— R(d - »)® <«< |s | < mra® (11)
nR d{d - b)

eN g2

ek
i

— Ri® << | 8| (12)
R (8% - p°)

Upon inverting EZ to find Ez, we cbtain

el g% 5(z,t)
7R b |4i%

E, (z,t) = |s| <<R(d - )2 (13)

which is the same expression that we have for the thick wall case except
that now the cutoff distance is Rld - ble. Since the value of R for

metal walls is of the order of 10' cm t

, We see that the falloff distance

of the fields behind a pulse of charge is sufficiently large for one

bunch of particles to affect the motion of a later bunch. Alsc, since

pulses in an accelerator return to their previcus position, it is possible

for a bunch to leave behind fields that it will subsequently encounter.
The expression for Ez(z,t) with |s | << Rb® or R(d - b)® can

be obtained* from Ref. 1, for the case of a circular pipe, by letting

w = kv in all expressions and noting that boundary condition is valid

only for values of kX > 0 and must be modified for k < O. One
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readily obtains

Ez (x) = - [l - i sign(k)] (lki—éi)% Bp

Sma

from which E_ (s) mey be computed. The result is identical to Egs. (7)
and (13) of this paper. The approximations of Ref. 1, for the circular
pipe case, are such that it is not possible to cbtain the cutoff distances
that are cobtained here.

The fields presented in Ref. 1 for the rectangular case are exact,
and would lead (following the procedure of the previous paragraph) to
fields which do not exhibit a cutoff. This may be traced to the use of
infinitely thick walls, and to the absence of curvature (or corner)
effects arising from the fact that only the top and bottom walls were

taken to have finite conductivity.
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Report L

THE ASYMPTOTIC PERTURBATION FIELDS OF A LONGITUDINALLY BUNCHED
BEAM WITHIN A RECTANGULAR PIFPE WITH RESISTIVE WALLS

L. Jackson Laslett and Andrew M. Sessler
Lawrence Radiation Laboratory, University of California, Berkeley, Calif.

A. Introduction

In connection with an examination of the stability of completely
bunched beams, it is of importance to recognize the presence of a con-
tinuous spectrum of spatial frequencies, Kk , in the longitudinal charge
distribution and_to examine specifically the remote (asymptotic) fields
that could affect neighboring bunches (or affect the same bunch on a
subsequent revolution within a cyclic accelerator). Previous unpublished
notes® have presented the fields of a bunched beam oscillating trans-
versely within a straight rectangular pipe with resistance in its upper
and lower walls. The formulas for the field components were explicitly
given, however, for bunching represented by a density distribution with

a single Fourier component

o{x,z,t) = }:on_sin B | cos & (ﬁpct-z) s

4l

or, in complex nctation,

H

E:O sin o X ejn (ﬂPCt"Z).
n W

n

o(x,z,t)

It is of interest to synthesize from these results the dominant remote

fields of a completely bunched beam.Z

1L. Jackson Laslett, "Electramagnetic Flelds ir a Rectangular Pipe due
to a Modulated Beam which is Displaced Transversely,” unpublished notes
(Lewrence Rediation Laboratory, 13 November 1963). In the present work
we set the bunching factor, B, egual to zero.

2Although we here derive the remote fields for a bunched beam by an
asymptotic synthesis of Fourier components, an alternative procedure,
such as that proposed by K. W. Robinson (see Report 5), might be
followed to obtain such fields directly.
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After indicating the notation to be employed, we summerize in the
present paper the formulas for the electric and magnetic fields of in-

terest® and then exhibit the corresponding asymptotic expressions for
the remote fields. These latter fields have been employed elsewhere>

in analyzing the coherent resistive instability of bunched heams.

B. Notation

The pipe is taken to have cross-sectional dimensions w X h , with
the side walls at x =0, W and the other boundaries st y = + h/2.
The "surface impedance” (ratioc of tangentisl E and H fields) is
characterized by (l+-j)ﬁ.9,4 in which (in unraticnalized Gaussian units)
the dimensionless guantity £ is given in terms of the resistivity (p)
of the (thick) boundary material and the angular frequency () of the

electromagnetic waves as # =V |w|p/8:r .

The surface density of charge in the beam will be represented by

n Jje(B _ct-z)
o(x,2z,t) = Z g ein -r;i x / F(x)e P ax

o

n -00

and the corresponding current density (e.s.u./cm) in the longitudinal
z-direction is Epc times o(x,z,t). It is convenient to express the
asymptotic flelds in terms of a charge density per unit width of the
beam, formed by integrating o(x,z,t} through the bunch:

© 00

Ax) = V/c(x,z,'t) dz =Z‘ A sin 2y,

where

3See Reports 6 and 10.

“With the time dependence expressed as e+Jwt, a factor 1 + j denotes &
phase advance and here serves to represent a partially inductive
impedance (electric field leading the magnetic field by H5 degrees, .
as is characteristic of the skin effect). For a time dependence e™*
J may be replaced by -i.

S ok .



" The beam is considered either to be circuleting in the median plane
(y=0) or to be undergoing a small transverse osecillation

Jk(Pwet-2)
y=%8e

cf specified k and BW. Although local perturbation fields require
recognition of a {non-resistive) "-2/7 term"” that applies to a beam of
finite thickness T 1in the y direction, this feature may be seen not
to affect the remote fields to be obtained in the present report.

We employ, for brevity, the following auxiliary quantitles:

P = kBK++”S Py = kﬁﬁ : zﬁ
6, = k(B _ct-z) 8, = K(cht-Z)
6, = (k+)(B ct-z) = € 46 8y = (k-k)(Byet-2z) = 6, -6
b= e 2t u® + KE(l-B;’)

b2 b (k) #(1-p%)  pf = 0¥ + (k-k)3(2-83) ,

-
1

in which the index n and the functional dependence on K are to be
implicitly understood. The angular frequencies kB c, Kﬁpc, (k+k)Bge,

and (k-k)Bge will lead respectively to the four resistance parameters

ﬂw: ﬁp, ﬁs: and ﬂd.

C. The Perturbation Fields

We 1ist here the continuocus field components in the median plane

(y=0) that are of interest for a perturbation analysis, together with
the values near the axis of certain related field components that may
be of interest in the interpretatiocn of the results. OSummation over
the index n and integration over kK 1s to be implicitly understood
in these expressions. The upper sign given in the complex coefficient
of A applies in each case to a positive frequency in 0, as derived in
the 13 November 1963 notes (Ref. 1); the lower sign (cbtained by
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replacing # by (1-j/1+j)# 1is to be applied when these results are

extended to negative freguencies.

i. Longitudinal Electric Field and Related Field Components for a
Bunched Beam in the Median Plane

For a bunched beam moving in the median plsne, the longitudinal

electric field 1s, with the sumation over n omitted for brevity,

= E— - 2 ..1}- - : 2 .1_1 : Jgp .
E, 21tcrn [Ju (1 Bp) tanh by 3 (liJ)BP fpsech by 2] cosh poysin puce ;

P
also
E = -2nag B tanh u h cosh By cos ix ej(ilp
x n pe kY
b
[ h EH h Jo
_ . h . 2 hi . ) 3
Ey erg, | -tanh by B F {(+1- 3) ”p fpsech My B sinh oy sin px e .
Correspondingly,
- . U2 g2 y ] h‘ j9p
H, = 2thrn Bp‘tanh By3t (+1-3) _E_—LL - psech by 5 sinh by sinpx e
L P i
h £ | Je
=~ —L -_— - E 2 ot p
Hy 2ro, l:“p Bp tanh 3 ¥ (+ 1-3) - psech Hy B cosh hY cos px e
je
H, =219 [(lij) EL; fpseche by -gjl sinh h¥ cos ux e P,

These field componehts, as listed, may be seen to satisfy the homogensous

Maxwell's equations for vacuum.

2. Fields Asgociated with Transverse Oscillations of a Bunched Beam

The field components Ey and Hx are of greatest significance for
the transverse stsbility of a beam undergoing transverse cscillations.

The relevant (E-dependent) terms for these field components are:
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s £°4 Ysoo
of

m P msum%wﬁ?ﬂﬂv = Erg Py (u-x1) +
("d mnﬂvmnw_nxv + Ni
P
< @1 Uyeo e
T a el I
K Aw§a + %9 - m;x - ("gg-Tya + o
£ % uoso” (E-TF) Gl S () +
=4 : d
: (P8 g-T)o (w3t) + ot
]
m m1 3092 n2

{[("a+ 6% - 7] s+ (g’ - T+ o

Mﬂbﬁm =

dJ
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ue B+ (k) (BB

p- b
- 21—15 coth “s >

cosh usy e
2 2_ (x4 2} - k(k+)ZBE(B -B )
M B};[“g (k+¢) s W T p (j-_l—j)?escschg ps%

eps (k) By

jo

H = 2ng &
X n _
-
2 vl
p2 B+ k(k-k)(B -B_)
LT = > L coth “d% .
Ha Jed
+ cosh Hqy ©
3n2
' 2 8 [12-()?] - K(e) %308, -B) )
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D. The Wake Fields

The geneial nature of the resistance-dependent terms in the fields

of Section C may be examined in the asymptoﬁic limit of

Z - cht

la.rge5 if we presume that ?(K) has the character required to construct
a particle bunch localized in the immediste vieinity of z = ﬁpct. We
introduce, for dimensional convenience, a distance {b given by
ﬁpcp/Bﬂ. The symbol 8S(z,t) is defined as unity for Byet-z > 0, end

vanishes for cht-z < 0 save for higher-order terms in l/(BPct-z).

1. Longitudinal Electric Field and Related Field Components for a
Bunched Beam in the Median Plane

Of the resistance-dependent fields given in Section C.1, that which

arises from E, dominates at large distances:

1 sech® u% cosh py sin px
E ~Ven A 47 B
z n p» p

S(z,t)
(B ct-2)%/2 =

The component E_ falls off more rapidly, to exhibit the asymptotic

¥
form (consistent with div & = 0):

sech® ug sinh py sin px

1
E, = -3 Va/a A 2 p S(z,t)

PP u(ﬁpct-z)s/a

The corresponding dominant magnetic-field components fall off more

slowly, to assume the form (consistent with div H=0):

1.8 h 3 3
1 sech® p= sinh py sin px
H ~2var A 47 p 2
X n p

S(z,t) .
(Epct-Z)l/E et

sech® u% cosh Wy cos Hx

(cht-Z)l/2

1
H =~ -2vex A 42 o s(z,t) .
y n p

Scf. M.J. Lighthill, Introduction to Fourier Analysis and Generalized
Functions, (Cembridge Press, Cambridge, Massachusetts, 1958) .
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It is geen that the E field may be regarded as Induced by the changing
magnetic field, as required by the equation curl B = - (1/c)d8/3%, in
thet OE,/dy = ~(1/c)dHy/dt and OE,/0x = (1/c)BHy/Bt.

2. TFields Associated with Transverse Oscillations of a Bunched Beam

From the expressions given in Section C.2 for the field components
Ey and H , it is evident that the greatest contribution of these in the
asymptotic limit comes from the resistance-dependent terms in Hy . The
ecsential limiting process for such terms 1s, in fact, analogous to
that applicable to H, and to Hy in Section C.1, with k B,/B, + K now
playing the role of k.6 One thus obtains the asymptotic form (for k

small in comparison to the feciprocal of the bunch length):

B -B
h . -jk Z
1 csch® p 2 cosh py sin px )
H~2ven Ah 22 2 2 T S(z,t)t e R
P (5pct-2)2

The "phase factor," expi—jk(ﬁp—ﬂw/ﬂp)z], may be understood by noting that
if we incresse z by Oz and advance t by &t = Az/ch (thus keeping
the bunch the same distance ahead of the observation point), the situa-
ticn remains essentially as before, save that the phase of the trans-
verse wave has changed by k(B,cit-2z) = —k(Bp—Bw/ﬁp)ﬁm. Specifically,
the magnitude of the resistance-dependent perturbation field at the
observation point is directly proportional to the transverse displace-
ment of the bunch at the time it passed that point.

As in Section D.1, there is a similar asymptotic field component

B *5w
1 cseh® p % ginh py cos ux -Jk ] z
Hy ~ -2vVox A.n {i ne S(z,t)t e p

(apct-w%

1
8 (1 ) By=kBy +6Bo=Bo (K By/Bp#t), K= V (et )Bgelp /8 =k By/Bps| 12,
and similarly Ffor (k-k)Bg end R 3 (with the sign of k reversed). TE

also 1s convenient to write

38 _ eJ(k Bw/fsP + K)(ﬁpct-z). e-Jk ap-ﬁw/ﬁp z
3
and e3% similarly with the opposite sign for k.
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3
and an associated &K -dependent E, that is proporticnal to l/(cht-z)E

and is related to & through the law of inductiocn,

g -B
h . -k L
1 csch® 3 sinh py sin px J B
E =~v2n A A2 up = S{z,t)t e p .
g npop (cht—z)E

The component Ey talls off even more rapidly — proporticnally to

l/(ﬁpct-z)s/z — s0 the effect of K, will dominate in determining the

effective Ey + Bp X H, field in the wake zone.
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Report 5

THE WAKE FIELDS OF A CHARGED PARTICLE TRAVELING
IN A VACUUM CHAMBER WITH RESISTIVE WALLS

K. W. Robinson

Cambridge Electron Accelerator
Harvard University, Cambridge, Massachusetts

A, Wall Currents

The wake fields associated with a charge moving in a vacuum chamber
can be obtained readily from the wake currents; i.e., the currents left
in the resistive walls of the vacuum chamber after the passage of the
charged particle. We may compute these currents easily if we know the
current generated in the wall by the application of a changing magnetic
field. Tﬁe later problem is solved by employing Maxwell's equations in

the conductor, where:

P s
- 3
oy z
2, 0
oy ot

iz = UEZ s

are appropriate to & conducting media for y > 0 , and a time-varying
magnetic field Bx(O,t) applied at the surface y = O and directed

along the surface (x-direction). Eliminating Bx and EZ , one obtains

"1 ot
Zz
= - 0’ ——

S9y° 3t

- 32 -



The solution of this equation for a specified applied field
BX(O,t) is

1/2 t ' Ko v
g OB_(0,t') exp |- T 7
L) = e [ 2 o caet
z A2 2 3t (t - 1)¥/2

dt!

B. ILongitudinal Field

The longitudinal field due to the passage of a charge g down the
center of a vacuum chamber, having a circular cross section with inner
radius b and an infinitely thick wall, is obtalned directly from the
wall current:

i (0,t) 1 /5 3B, (0,t") att

B (t) = =
() 3t (t - £1)H2

s) 7

1/2 1fz 1/2
R /

-0

In this expression the curvature of the vacuum chamber wall has been

neglected, as has the small variation of Ez with radial position for |
r <b . If we are interested in the fields at a time after particle

rassage which is large compared with the duration of the direct fields

produced by the particle, then we may expand the t-dependent term in

EZ to obtain

1 1 2 3B, (0,81) 1 ° aBX(o,é)
E (t) = - / . E—— L RS jp trdtt
z o 2gt 22 f2 | e 3t 24312 J 3t

The Tirst term vanishes; after integration by parts and employing the

relations dt? = dz/Be and B, = BEn/c, one ‘obtains
1 [=+]
ond/2 Si/2 ut/? £3/2 .2 :lj

Il

EZ(t) E az
n

4

L3/ 2 €, ptf2 o2 gt/2 pe3/ 2
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C. 'Transverse Magnetic Field

The transverse magnetic wake field of a slowly oscillating particle
of charge q, having amplitude of oscillation ¢ , may be obtained by
computing the field produced by a traveling dipole of charges +q with
digplacements = g/E . The geometry is ihdicated in Fig. 1. The wake

field BX will be generated by dipole currents in the walls:

y
i_\-\
g z
0
tq 4 P
N T8 X
q?t 542 X

Fig. l--Geometry for transverse magnetic wake field calculation.

2
°° 1/2 = L 3B (0,t") e [ LOp ]
\ XD |- (e
Lo = [iz(p,t)pdo = [ e % iS4 pditdp
o P ﬂl/Eul/E s ;L 3t (t - tt)l/g

Integrating over p we obtain:

t
2 - 3B _(0,t1)
I = . S R Y LT
zZp ﬂl/z 51/2 H3/2 J 3t

A series expansion of the factor (t - t')l/e now yields, from the

second term, after integration by parts

1 bt
= B {(0,tY) dt!
zp /2 /2 u3/2 12 \/ X( st

-0

B



The integral involving Bx may be expressed in terms of an integral
involving En :

3]

l (03]
t )
f BX(O,t)dt == [ B dz
=00

=00

which may be evaluated for a charge q whose longitudinal distribution
is such that the density varies only slightly in a distance b. In

this two-dimensional electrostatic approximation,

q £ cosé
[Edz=____
n

2
2 :r{eob

which, when employed in Izp and combined with the formula

yields for the transverse magnetic wake field:

q €
B =

X pp3fE 1/ €, c2 b3 oH/2 ¢t/ 2
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Report 6
TRANSVERSE COHERENT INSTABILITY OF BUNCHED BEAMS

E. D. Courant

Brookhaven National Laboratory
Associated Universities, Inc.
Upton, L. I., New York

and
A. M. Sessler

Tawrence Radiation Laboratory
University of California
Berkeley, California

Laslett, Neil, and Sessler * have studied the instability of trans-
verge oscillations that arigses by virtue of the interaction of a beam
circulating in a metallic vacuum chamber with the field induced by the
beam in the walls of the chamber. They show that instability may be
caused by the finite resistivity of the vacuum chamber walls. Their
treatment is confined to a continuous beam, of azimuthally constant
density and dimensions, oscillating ccherently in such a mode that its

transverse electric dipole moment is of the form

Py(e’t) = ﬁp(r;e;z,t)drdz = Pl’l el(n@—mt) (l)

where p 1s the density of the beam, and we use cylindrical coordinates
r,8,z; y is the direction of transverse oscillation [y =z for
vertical oscillations; y = r-R (R = radius of orbit) for horizontal
oscillations].

The mean force field acting on the beam is found to be of the form

= _ _ i j i(né-ut)
F,=E - 6B =P [U + W \/;T J e (2)

*L. J. Laslett, V. K. Neil, and A. M. Sessler, Rev. Sci. Inst. 36,
k36 (1965)
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wvhere U and W depend on the geometiry of the beam and the vacuunm
chamber. For a circular beam (radius a) in a circular vacuum chember

(radius ©) they obtain, approximately,

(3)

2 Py
W o= hep (Uro) 2
o3

where o 1is the conductivity of the wall materisl, expressed in Gaussian
units (dimension t *). The expressions (3) are valid if o >> o ,

g >> ¢®/d®w (d = thickness of vacuum chamber wall >> skin depth),

R/n >> D (wave length of oscillation >> transverse dimension of chamber).
For other geometries the expressions for U and W are different,

but subject to the above conditiong, they still possess the following

characteristics:

U and W are independent of mode number n

U has the factor 1/% ; W does not

U is sensitive to the beam dimensions; W is not

1
W is proportional to g 2

The resistive (W) term in Eq. (2) arises from the skin effect in
the chamber wall. The derivation of this effect shows that the sign
of the square root must be chosen, regardless of the sign of , such

that /i/w has a positive real part, corresponding to an attenuated

wave in the metal.
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If we consider a single particle (called the rth particle) circu-
lating with angular velocity I oscillating with angular freguency
v} , and an amplitude { , we have

i(Q +vat) .
P(6,t) = t.e r ap(e-er-nt) (%)

where Sp is the periodic delta function, and mr and Br are the
transverse phase and azimuthal location of the particle at time t=0.

Writing Bp as a Fourier series

(5)

22

= ik(6-6_-at)
1 E: el r

BP(Q-Gr-Qt) =

= =0

we obtain

r

P(G,t) = —2; [<]

i, ;z i[k(B—Br)-(k-v)Qt]
e (6)

k

which is a sum of terms of the form Eq. (l). The deflecting field is,
therefore, by Bq. (2),

€ ip i{k(6-6_)-(k-v)at]
F=-—2-E-e I.z:[U+W -(-k—{vm]e T (7
k

| e 10 ——  1[k(8-8_)-(k-
Upwm)+ﬁ7§elr§:Jﬁve[( r)&vMﬂ(&
o

- 38 -



Thug the nonresistive part of the field is -- in this approximation --
an exact copy of the dipole moment itself. The resistive part may be

written in the form

v S ilevar)

\/'_.Q. E(. e G(CI,V) (9)
with

=0 +Qt-0

r
and the function
w [
a(a,v) = z \/T:%\'F o 1K (10)
k=-®

will be shown in the Appendix to be equal to

e-O(y+iv)

dy
G(a,v) =2 | L) (11)

for 0 < & € 2x, (and periodic in @ for other values of ).

Now consider many particles. The force on a particular particle,
say the B particle, is Eq (8) evaluated at 6 = Ot + 6, » plus
the restoring force from the external focusing field. Thus its equation

of transverse motion is

.. oW i(q)r+th)
My (v, + Qaviys) = eUP(6_+at, t) v £ e a(e_-6_,v) |
I
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where we have written the U term in terms of the dipole moment of all

particies. Since it is assumed that all particles move with
¢ i(ms+vnt)
y=_(e

s we may rewrite this as

(12)

1(p_+vat) _ ) i(p +vat)
8 el
My Q= (vi—vz)gse = eUP(8_+0t,t) + mom— % { e r (6 -6_,v)
T

Here VSQ is the frequency of free oscillations of the sth particle,
while +vQ 1is the frequericy of the normal mode we want to investigate.
There will, in general, be a spread in vs because of spreads in
energy, synchrotron oscillation amplitude, and nonlinearity in the
focuging field.

Now assume that the particles are bunched tightly inte several
bunches. Within the mth bunch there are Nm particles, with an

assumed distribution in B,Q,m,vs

=

m

¥(e,te,v) = 5 D(E,0)f(v,) (13)

over an agimuthal range of width & and zero elsewhere; D and f are

normalized to unity. The dipole moment of the bunch is

Q, = N fD(Q,cp)Ceiq’ ata ;

m

the dipole moment per unit length is Qm/a.
We now multiply Eq. (12) by ¥ as given by Eq. (13), divide by
V§~v2, and integrate over the m#h bunch. At the same time, we re-

place the summation over r in Eq. (12) by integration over all bunches.
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We get

(14)
(v ) eW N
5 el
MyQ= = —dv [—N Z fdﬁ fae a(e” -8, V)]
o vey® 8 “«nm 2naaf R
where the sum is taken over all bunches.

For all bunches n £ m the argument of G in the double integral
can be taken as constant, egqual to en-em , the azimuthal distance
between the mth and nth bunch., For n =m we note, from the
Appendix, for small & :

- a(a,v) = 2\/% + 6{2n,v) O<a<<2n
a(-a,v) = G(2n,v)
so that the double integral for n = m , because of
3/2
of alen,v) + % vi O
and Eq. (14) becomes
f(v_)av
2 _ 8’ s U Ly W
MyQ™ Q = eN f = [(oz*"“&/m) Qm+7ﬁQmG(21t,v)
]
(15)

W z Q G(en-em,v)]

n#m

We must now solve for v ; 1if the solution has a negative imaginary

part, the oscillations will grow exponentially; if it has a positive
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imaginary part, they will damp. We assume that f(vs) is different from
zero only in the vicinity of Vs = Vo (or -VO), and we replace v by

vo in the argument of G. Iet us write

Myn2

— v )a
ef Ys s (16)

V2 - VB
S

A=

Then Eq. (15) can be written in the form
L —_
(NmU R)Qm + N W Z Q G, =0 (17)
n
where

' U . _W
U:a+m, W'-—m, (18)

and

o]
f

G(en—em,v) 3G = a{2n,v).

Equation (17) is in the standard form of an eigenvalue problem: We
must find A such that the determinant vanishes. Evidently for a delta
function distribution v© can have a negative imaginary part (instability)
only if A has a positive imaginary part.

In the case of & finite distribution it can be seen, just as in the
case treated by INS, that N may also be allowed to have a positive
imaginary part provided the real part is large enough; however, if
Im A < 0, instability certainly does not arise.

INS have also shown that in most cases (especially when 7 is not

very large) the nondissipative parts of the field are large compared
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to the dissipative ones, i.e.,

U s fwe G (19)

In that case, and if the bunch strengths Nm are substantially different,
we may treat W' as a perturbation compared to U' . Then, by stan-
dard perturbation theory, the eigenvalues depend to first-order on

the diagonal perturbations W' Gﬁm.’ but only to second-order on the

off-diagonal perturbations W' Gmn , and the eigenvalues are simply
A= N (U +w' alex,v)]. (20)

In this case -- which 1s equivalent to the case of a single bunch -- the
imaginary part of X is simply NﬁW' times the imaginary part of
G(2r,v).

Now from Eg. (11) we can see that the imaginary part of the inte-

grand, for O = 2x , is Jjust

Tm <E - z(1-z) _Imz _ - Y gin (2xv)

1-z l1-z12 ]1-2'2 ll~zl2

where 7z = e-gﬂ(y+iv).

Therefore, instability can occur ({Im X > 0)
only if sin (2xv) < 0, i.e., if v 1lies between an integer and the
next lower half-integer. This is true in the case of a single bunch;
for multiple bunches it is still true only if |U'| >> |W' G |,
and 1f the bunches are substantially different in intensity (numerical
calculations indicate that when U' = 10° W' and there are twelve
bunches, their intensities must vary by at least a few percent).

In the case of many bunches, they may well be nearly encugh alike to
vitiate the above condition. For the case of equal Nm's and equally

spaced bunches, it turns out that Egq. (17) can be solved explicitly.
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We write Eg. (17) in the form

-2 =
(Ao ) Qo v Al Q;L * * A'M—l QM—_‘L 0

il
O

AM_l QO + i‘AO—}V) Ql + ove. + AM_2 QM_l

(21)
+ A + iee + =0
AM~2 Qo M-z Ql ‘%‘4—3 QM"J.
A + A0 + ... F + (A -A =0 .
L9 AL Mo, Qs (a_-2) %,
-2t th
Tet a =e be an M root of unity. Then a sclution is
Q =1, § ==& Q@ = a2 e s aa = aM_l (22)
o} Y 7 T2 ? Q'M'l
for any m from O to M-1, and the eigenvalue is
M-1
A= T
0 Z A, a (23)
r=0
ag is easily verified. Now
AO =N [U + W' o(ex,v)]
2nr
= W' == >
Ar W G( T v) r>1
and M _Emi
M 2nr
A, = WU+ W e G(—M—, v) (24)
r=1
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In the Appendix it is shown that

M _ 2nmr ,

ZeMlG-E-EV-—.fMGBH (25)
T = T ) 5

r=1

By the theorem on the sign of G(2x,v) the imaginary part is positive
when (v+#m)/M Llies between an integer and the next lower half-integer
and negative in the other half-interval. Therefore, if M 1is even,
half the eigenvalues have positive and half have negative imaginary
partg; if M 1is odd, one more has a positive imaginary part than a
negative one (or vice versa). The only case where there is no eigen-
value with a positive imaginary part is when there is only one bunch
and Vv lies in the proper range.

When the bunches are not evenly spaced, no explicit solution has
been found. It might be expected that, when they are all confined to
one vicinity, the stability condition might be similar tc that fbr a
single bunch. Numerical work at Brookhaven has shown this expectation
to be false: with two bunches very near to each other, there was
always one stable and one unstable mode. The conditions for stability
are just too stringent. We alsgo believe that If twisting within a
bunch is allowed, there will always be unstable modes. Of course,
Landau damping can, in practice, kill these instabilities -- as can
electronic feedback circuits. :

One more remark: When |U'| >> ]W' G| 2 INS have shown that
the threshold particle intensity is nearly proportional te U' and
simost independent of W' (Jjust as long as the sign of G is right).
From Eq. (15) it is seen that this means that the thresholds depend
on the tightness of bunching (i.e., on ), while the growth rates

(depending on G) are independent of .
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APPENDIX

The function

cQ
N i -iké
G(GIV) "_'L v € (Al)
k=-00
is evaluated as follows:
[>]
=
[ i -iko
G =f v }4 6(k-n)e dk (AE)
e {‘r v =~
The path of lantegration 1s above singularity k=v so as to make
Re Vi/(k-v) positive.
u; oo
> & (k-n) =z _-2mski (A3)
A}
n=-% Gz =00
- -ik(6+2ns) dk
G =i z f e = - (a4)
S
M
Vv
Iet
0 <6 <2
Then, for s < 0 , integral contour may be cloged in upper half plane,
where there are nc irregularities: integral = 0. Only s >0 contributes.
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Change path of integration to

[q v

aY

in k-plane, change to variable

y = i(k-v) ¢
G- EZf e-(y+iv)(6+2ns) % (45)
: e—iv(é+2ﬂs)
-2 ) S (46)
s .
-6 y+iv)
= Ef i_e-ear(yﬁ*ﬂ % (a7)

For numerical calculations it is convenient to write

X-1 ®
G =2 2: + Ej
S=0 s=K

end to use the form (A6) for the first sum, (A7) for the second:

K-l e-iv(9+2ns) me-(9+2ﬁK) (y+iv)
G = EHZ m—- + 2 1_6-21(3"4-1\)) W (AB)
5=
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The second term has the asymptotic form

-iv(6+2nK) -2xvi
2V g L - + = - F e
v + Z2nK 1_8‘21‘[1'\) 2(1_6-23‘!'\)1) (231K+8)

Addition theorem (25) :

From (A6)
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Regort_z

THE TRANSVERSE STABILITY OF ULTRA-RELATIVISTIC
MULTIPLE -BUNCHED BEAMS

M. Allen, M. Lee, and J. Rees

Stanford Linear Accelerator Center
Stanford University, Stanford, Californis

A. Computer Program at SLAC For Bunched Beams

Courant and Sesgler have applied the existing ILNS theory for a con-
tinuous beam to a rigld bunched beam of many bunches. They have shown
in Report 6 that, for a beam with equal bunch length and the same distri-
bution in amplitude and frequency in each bunch, the stability of the

beam can be investigated by finding the roots of the following equation.

N A "?\ N A LY N
1 © l L lAM"J.
N A -7\ L) =O
NE AM'.'L 2 0
NM AJ. NM A2 L NM .A.o - 7\
where
Ly W
Ao=g+ + — G (2xv)
sy rna Vo

T ?73 M -
u
U = 28
S
V2w
Y= =5 Vins
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2
ena
pO

2vian

w=(n-v)a

Q = angular velocity of the particle

p = average charge density per unit length

L = gverage circumferential length of the machine
a = length of a bunch in radians

a = radius of a bunch

N. = number of particles in the jth bunch

2 e
I

total number of bunches

with G(8,v), the bunch function, given by:

6o,v) = e-i(gﬂk+9)v

which takes into account the wake fields of all bunches. The stability
of a beam can be characterized in terms of the normal mode freguencies,

v, whose velues are related to the A's through a dispersion relationship:

L2 ) @
i mya® vi-vi

with some suitable distribution function of the natural frequency of the

particles of the bunch. A beam is stable if Im (vi) >0 for all i.

In particular, f(vs) = B(VS - Vi) for the case of a rigid bunch. Then

H/\ f(vs) av, . 1 u/\ s(vS - vi) w - _i_
VoL P oV, voo- v, 5 Y

5 i i B i i
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and

Thus, the growth rate is given by:
R, - ~1
Im (Vi)KE = gﬁ;&; Im Ai (sec™)

where

@, = Re (v.i) Q> 0.

For protons of a few GeV where the coherent frequency shift is large
compared to the resistive-wall growth rates: U >>V, Courant has inves-
tigated the effects of variations in the bunch populaticns. 3By suitable
changes in Ni it is possible to cause the corresponding coherent fre-
quency shift changes to be large relative to the changes in growth rates.
This results in all coherent modes obeying the single-bunch stability
criterion; namely, stebility if v 1lies between an integer and the next
higher half-integer.

To solve these coherent normal mode problems, a computer program has
been brought into operation at SLAC for finding the eigenvalues and
eigenvectors of general complex matrices. Its first use has been for
computing the normal modes of bunched single-beam motion for a beam with
egual number of particles in each bunch.

In the electron-positron storage rings now planned or under construc-
tion, the coherent frequency shift may be much smaller than the growth
rate because of cancellation of electric and magnetic forces. It appears
that the technique of varying bunch population may not work to achieve
stability. The behavior of the modes may be more like that of the case
of identical bunch popﬁlations, where gbout half the modes are unstable.
The computations are being carried out to investigate whether this is

indeed the case.
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Report 8

THE INFLUENCE OF DIELECTRIC MEDIA
ON THE ELECTROMAGNETIC FIELDS OF A COASTING -BEAM
IN A STRAIGHT RECTANGULAR PIPE

L. Jackson Laslett

Lawrence Radiation Laboratory, University of California
Berkeley, California

A. Intrcduction

In an earlier treatment® of transverse instebilities of intense
coasting beams, use was made of electromagnetic fields generated by the
perturbed heam in an evacuated pipe with resistive walls. Terms in the
effective §?+-§; x field that remain in the limit that the wavelength
of the perturbation becomes infinite (k — O} exhibited, as expected, a
strong 1 - 63 cancellation between the effects of the in-phase compo-
nents of the electric and magnetic fields in the neighborhood of the beam.
Because of this strong cancellation, the real (resistance-independent)
term U, which entered in the dispersioﬁ analysis of Ref. 1, appeared
smaller than might be required to account for some of the empirical ob-
servations of transverse instsbility.

As a result of discussions during the SLAC Storage Ring Summer Study,
concerning observations of pressure-dependent instabilities and the pos-
sible presence of high-permittivity dielectric layers (oxide of titanium?)
on the inner surfaces of devices evacuated with titanium pumps,2 Dr. Sessler
suggested the relevance of reevaluating the perturbation fields for situ-

ations in which a dielectric medium occupies a strip centered about the

'L.J. Laslett, V.K. Neil, and A.M. Sessler, Rev. Sci. Instr. 36, 436
(1965). 1In deriving the electromagnetic fields in & pipe of rectangular
cross section, resistance was assumed to be present only in the top and
bottom wall surfaces. Unrationalized Gaussian units are used throughout.

“An alternative possibility, not examined in the present work, would
involve the present of a thin, spongy (and hence, poorly conducting)
metailic layer on the chamber walls.
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median plane (as might simulate a plasma layer in the region transversed
by the beam) or in which the material is located in layers adjacent to
boundary surfaces of the pipe (insulating oxide layer on metallic sur-
faces above and below the beam). It would be expected that the presence
of such dielectric media would reduce the strong 1 - B2 cancellation
otherwise present in certain prominent terms in U and, if a loss factor
is intrcduced through the mechanism of an imaginary term in the permit-
tivity, could also contribute to the magnitude of V.

Since the effects to be sought are primarily those that affect a
change in the long-wavelength (k-independent) terms, the effect of wall
resistance is considered to be ignorable-in the present context, and it
is permissible, if desired, to evaluate the fields in the quasi-static
limit (k - O, so that the perturbation fields have essentially an elec-
trostatic and magnetostatic transverse distribution, albeit with ac
boundary conditions applied to the latter). In the work reported here
we present (i) the effective perturbation field in the case that the en-
tire pipe is filled with a homogeneous dielectric medium (with wall re-
sistance ignored, but without msking the long-wavelength approximation)
and {ii) the result for two separately-homogeneous media symmetrically
disposed about the median plane (for the limit k — 0). By setting the
permittivity of one or the other of these two layers equal to unity in
this last result, one obtains expressions applicable to a centered plasma
layer or to the case of a dielectric coating on the upper and lower

boundary surfaces.

B. Notation

We consider the pipe to be of height h and width w. The particle
beam (sPeed B c)} is taken to have a small vertical thickness T, with
a uniform (constant) particle density transversely within this interval,

and its center is assumed to oscillate with the waveform

yC £ exp [- 1 (am - kz))

]

£ exp [- ik (ﬁwct -z)] .
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The surface density of charge in the other trensverse direction is

represented by

2A n
o (x) = = E: gn COs - X,
n

with the coordinate x measured from the left-hand wall. We introduce

the notation

_nx
Pn T W

and also, in the first example, require the quantity

o[22 LB (L a2
M _\/;J.n + k (l €3W) .

C. Results

1. Dielectric Material Throughout the Pipe

We consider here the case in which material of dielectric constant
€ fills the pipe. The effective perturbation field, evaluated in the

median plane (y = 0) for use in a dispersion analysis, is found to be

. b 2
ORLEBIE an
n

. %(%4;)*»[;;;(% - B:) &%(g" _ 5p)’]cuth u:%l; exp_l-l(ult - kz) 1. (l )

In the limit that k becomes zero, this clearly reduces to

@y + BPHX>= -L%-?‘-(:z;- - B;) Z gi (- -i— By coth %) ¢ expl-i(wt - kz)].(:’)

n

It is noted that the first of these results agrees with Eq. (2.17b)
of Ref. 1, if one sets 7? = 0 1in the latter equation, save that the factor

2 _ .
1/7 =4 - B; in the k~independent terms has now been replaced by % - B;.

(3)

For brevity, the subscript on Hy is omitted in the arguments of
the hyperbolic functions in this equation and in those that follow,

- 54 -



2. Dielectric Strip (e, of Thickness A) Centered About the Median
Plane and Remainder of Pipe Filled With €y

We consider here two dielectric media, in layers symmetrically‘ dis-
posed about the median plane:
h

€q for 1y|<% and €y for % <,y,< 5 -

In this case the effective perturbation field is found to be, in the

limit that k becomes zero,

a nd A ha
cosh 4 = cosh u + sinh u = siph o
<g +B ED:R:A Y & -g(L-sz)”in 1 % z hT-A & i hi_sa Cm‘u%lx Y expiest ders)d (2)
¥y ¥ & s P ‘BUvaf.nhLI;COlhuTi’%COBhpEllnhuT P ’

It is seen that, if € = GB or if A = h, this result becomes identical
with the simple equation presented in Section B.1 for the k — 0O limit
(with e = eg). We now indicate certain specialized forms of the result

Just presented.

a. €_=1
W
—_——
B A h-a
bk 2L e poommge (e - 1) eimnu g eiah 257 h .
E +BR =—Zgz--—-ﬁ)0-u L - 8% coth u B} x [« tlet - x2)i.
<’ prov £ “3 "("s P/ 'n %liﬂu%*(&n-llcwhp%unﬁuh—zﬁ ) -1 Rl B CaE (3)

- 1 sinh u (h-a)

& oy 2T al 3E ) oy -5 - B T e e s e (1)
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If A 1is small also,

<s *B;'>=£:AZ i{,%(%_%),%[éﬁ-p:-.z%-:(l-unﬁenthuh)' euﬂugaleqf-i(u-n)] (5)
y "y . ‘

.,71..{ 2 {1 1 - -] - -
rézér?h_@‘%gwgﬂh% numnrmuﬂunqm X)L

this latter form being identicgl through first-order terms in (EB - 1)

to that just preceding.

(2) For A small ,

- o 21 1 sl a2 B a. Al e v 11
+BEY &2 -2 _-sf)ﬂ,{ [1+(gn-l]—(hnhu§-—ccﬁu§)]-9 }muzlxem[i(m xz)]; (6)
<x, P:'v‘Z‘:[ 1-(:3 2] e E i Gy P )

Ir €g - 1 1s small also,

G ooy 27 2| HE %) [—%—-a:»u;ta-namm]ww%{mt-ftu-nn (1)

when terms of second and higher order in eB - 1 are ignored.

b. EB = 1

Y =t A 2 LTy
Cr 2085 w Ecosn v g~ v §L5E W F siah w -
.y x

2| " .
- — —— e - 5% qath ;;—]sx oaxp [-iimt - owzll
s‘;sinhugccsh.;Tveosr...ysimu-?-

chz ke - 1) zost ¢ cosh o (5 - T)
‘i?—f;-éfl.sz)-.. cosk & x (eg - 1) uZ cos (f‘ _;;';cs:h;g}lx%e-ﬂ’ fai(en - k2)D (8)
o : :t T B slnhu;-t(e"-l)cosh»'zsinhﬂ(E-T) ’
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where T = 2 5 2 denotes the thickness of the individual dielectric
layers at the top and bottom surfaces of the rectangular pipe. [It is
noted that if EW -~ o, the first term in the square bracket epproaches
Just coth u (reduced semi-aperture)} as it should.

(1) For T small (uT <<1) ;

CO»‘.:‘..;;-){E axp [-A{w - kz)) (9)

N . N 2 2 ‘w‘lﬁ_..,h+m B
<;y‘-5:__’.‘.x>=-;—_—£ g:}-;(l-ip)’.\n [l-ﬁ:*.un?A(-Gm.a:-,az-_-u:)

’ £ =1 .
-2 gf{.iu-sz)-ur[ —si,z,a-‘ci-rcm,nlzm,gggExp [-t{er - &) .
7 -3 3 2 - T

D. Conclusion

It is seen from the results presented that a dielectric medium can
influence materially the effective perturbation field experienced by =
transversely oscillating beam. Specifically, the image terms in the
quasi-static effective field no longer contain precisely the 1 - Be
cancellation factor, and, if the medium fills the region traversed gy
the beam, this cancellation is also modified in the direct - 2/T tern.
The formulas that have been presented here also permit evaluation of the
contribution that a small but non-vanishing loss angle will make to the
imaginary part of the effective field. For this purpose, loss in the
dielectric material, if characterized by a conductivity o, may be re-

presented by a complex dielectric constant

c = e hnic
~— Real w
byig

u

€Real TkB ¢ °
W
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In particular, with this substitution, the factor % - ﬁ; becomes

1 R hro
-p% Al e,
€Real p €Real w

N " . "
if the phase angle hﬂd/eRealm is small ("relaxation time, eReal/hﬂG ,

small compared to 1/w), and the factor ig - B; similarly beccmes
[

1 2 8no
-p% - — .
2 p 3
eReal eReal @

The quantities U and V employed in the dispersion analysis of
Ref. 1 are given by
< >
1 Ey + 5EHX
2Vw

U+ iV =

S1{®

o™t exp [-1i (wt - kz)]

where. V 1is the number of betatron oscillations per circumference,
w, = Bp ¢/R (R veing the orbit radius), X = Ne/EnR, m = ym_ denctes
the (relativistic) mass of the particle, and e is the particle charge.
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Report 9

MEDIA EFFECTS ON THE ELECTROMAGNETIC FIELDS
OF A COASTING BEAM IN A STRAIGHT PIPE
QOF CIRCULAR CROSS SECTION

R. Briggs, V. K. Neil and A. M. Sessler
Lawrence Radiation Laboratory, University of California
Berkeley and Livermore, California

The fields of an oscillating beam of particles are calculated exactly
as in LNSleection I1B, for a pipe of circular cross section containing
& beam of radius a, and dielectric media characterized by ¢, between b

and d. The walls of the pipe (at r = d) are taken to be perfectly con-
ducting, with the result:

- 21 B\ & 2
5, - (g
2 2
- b (32;)(% [({%9 - 1] 2NE T, (2
E, - + [(E) - 1]

where the notation is that of Ref. 1.
Letting € =€ - 1, this yields F = e(E, - BBy) as

F = 1~ —

2 .

4 —

- 21 A et [ a® ] Mg e (1 + b7/a%)(a® - vP) a®/a®

2 2 2
a® ¥

d na be[l +e'f2 (1 + bz/dg)]

where the second term clearly vanishes when € — 1 and the first term

is as in LNS.

'L.S. Laslett, V.K. Neil, and A.M. Sessler, Rev. Sci. Instr. |
36, 436 (1965). : ‘
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Making the replacement € —+¢ = o ! and assuming LI_’:_TU_g_ <1,

we can obtain convenient formulss for U and V, nemely:

" -1
-3 a®\1  ¢'a® ¥\ A% p® €' b= ]
U= -—F=--=l\1l+= X | L+={1+— ’3
2nQ w_ Ra2m0 a®/y® 2@ a®/ \ b 2 a=

and

eNo b2\ fa®-p? ¢’ p2\ |72
n - Q«y Ru_ a a® b2 2 a2
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Report 10

THEORY OF COHERENT BUNCH MOTION IN ELECTRON-POSITRON STORAGE RINGS

C. Pellegrini
Laboratori Nazionali d&i Frascati, Roma, Italy

and
A, M. Sessler

Lawrence Radiation Laboratory, University of California, Berkeley, California

A. Introduction

A general theory is developed to describe the coherent motion of
bunches of particles in electron-positron storage rings. The bunches
are taken to be internally rigid, and to interact with each other through
direct fields as well as through fields associated with resistive vacuum
tank walls; thus each bunch is affected by its own local fields (includ-
ing images), its own wake field as encountered on subsequent traversals,
the wave fields of other bunches in the same beam, and by the bunches of
the other beam through direct fields encountered at crossing as well as
wake fields. It is assumed that the storage ring is so designed and
operated that each bunch of one beam encounters — under similar conditions —
all bunches of the other beam; in fact, one bunch collides with a given

bunch of the other beam twice per revolution.

B. Basic Equations

We consider coherent motion only in the vertical direction: Let
zi (t) be the vertical coordinate of the i-th buneh of the plus or minus
beam, let N be the number of particles in one bunch of the plus or
minus beam (we assume that all the bunches of one beam are of equal
intensity, but that the et current can be different from the e

current),’ and let Ny, be the nuwber of bunches in each beam.

1This assumption, as well as the assumption of the previous paragraph
concerning operating conditions, can easily be either changed (cor
removed) to develop a more general theory. The present theory appears
general encugh to describe all presently contemplated designs.
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The equation of motion for the £-th bunch may be written in the form:

(t) +af o (t) = T o+d_, (1)

'z

=

where J, represents the Influence of bunches in the same beam, J,

represents the influence of bunches in the other beam, and wy 1is the
betatron oscillation frequency (inb) for a particle in the beamn.

The terms Jl and Jz are

+ +
+ S. S
O O W AEE o
J1=N ZZ Z t+——T-nTJdAF(A)e
i n (2)
3
+ + SE -8
e < s, - S S iA+ p- + nT
J =nt Zz t I -nTJd?\G(?x)e ,
2 i v
in

where the longitudinal motion of the 4-th bunch has been described by
s oy +
8, = % t + Gi (3)

The phases oi characterize the spacing of bunches. The summation over
1 1is a sum over contributions froam previous turngs; T is the period of
the motion end T = 2r/w, = 2xR/v. From the analysis of fields® we know
that the functions G(A) and F(A) are analytic in the complex A-plane,
except for a branch point at the origin and a consequent cut which we
take along the negative imaginary axis. We shall not need to specify
Gand F in any further detail in order to arrive at the results of this
paper; subsequent mumerical studies, for a particular ring, will in

general require more detailed information about F and G.

2See Reports 3, 4, and 5.
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C. Solutiocn of the Equations of Motion

The solution of Egq. (1) is — in view of the periodic nature of the

equations — of the form

s . it(2ow -0)
z;(t)=§jz A;ael ° (%)

*
where the coefficients Am and the camon frequency & are yet to be
determined. Imserting this form into Jl ,» and employing the analytic
properties of F(A), it is easy to show thet only n larger than the

smallest integer ng such that

T (5)

contribute to the sum. The sum over n 1is trivial; after this the
integral over A can be performed, for Imé > 0, by closing the contour
in the upper half plane and picking up contributicns at the poles

N = Q + k o, assoclated with integer values of k. One is left with
the summations over m and k, namely:

+

o, -0
i

=+

N i(emmo-sz)t ii(Enwo+ka> )( N
I = Z Z A e e © F(o + ko )
n k

(6)

The same result may also be obtained for the case ImQ2<0; while the

term J2 can — by similar menipulations — be brought into the form

+

£
. -16(0-2m0 ) 41 = (2msk)on
g = wOZ Z AT, e e G(o+kw ). (7)
mn k

<

Introducing the notation
+

D; = a§ - (emmb - )2, (8)
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and changing dummy summation variables, we arrive at the form

+ %

O'i'-O"a
+ + 4 T ox o+ Hieme =TS
gﬂ A D =N %Z L Ey A e F(Q-l-kwo)
ik
s 3
g _01
T = ¥ ;ikwb v o
+oN Z & A e G(Q—'a:muo—uluno) . (9)
i

The self-field terms are, of course, only a small influence on the
motion of bunches. When this small effect turns stable motion into
unstable motion it is of great concern, but in terms of the analysis the

right-hand side of Eq. {9) is a small perturbation, so that to zero-
order

+
A =g

m om0

- . (zero-order) (10)
Q% = Wy .

We now solve Eq. {9) through second-order by inserting the zero-order
solution on the right-hand side and solving for A;(mio) to first-
order. Evaluating Eq. (10) for m = 0, snd inserting the first-order
solution on the right yields the set of equations:

+

SR £ i I
§£ DO =N mozz gi Pi-ﬂ + N wozz gi G(o)
i i

+ @ (N;)Ezi E:&i B (second~order)
o R B
i
+B N NN Z'gi R, (11)
b 3 3-8 ’
J
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where the coefficients P, R, T are defined by:

(Ui Oi) + o+
- i- .ﬂ - U,Z-Ui) ~
+ T +ikw — Fiko ( G(Q-kw )=
- e o\ v /= N o\ v o
L Le F( a4k ), Rig=/ © —
k kfo k
-
) cr;-c"i') ~
o Re Fikw o G(ﬂ-kwb)
-1/, ¢ —x (12)

k#o , Dy

and depend only on the difference 1 - 4.

Because of the cyclic nature of Eq. (11), it is easy to obtain the
complete set of eigenmodes (with associated eigenvalues) to the system
of equations. If we have no coupling between the beams (G = 0), the
normal modes of the problem are”

iz2nfs

gj(s) = e T s 8 =1, ..., I\Tb s (13)

where the index s labels the various modes. We find solutions to
Eg. (11) by expanding in the normel modes of the uncoupled problem;
namely, by letting

iznis

+ N
£ =Z B, e . (1)
s

+

With some manipulation, and cobserving that only the s = O mode has net

center-of-mass motion — which concept is equivalent to the formula
ians]

e "
¢ - Nb 5s,o (25)

J

“This is established in Report 6. ‘
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we can obtain & coupled set of eguations fgr the B: . It suffices, now,
to neglect second-order contributions in F and G to the eigenvalue Q,
since the radistion damping will in all e - et rings easily daminate
such terms. If, furthermore, the rings are designed4 50 that DE is
not small of order F for k;éO, then the equations for B: take the

form

ienss i sk

Z s Ty ) iz & P NNt &(o)p* 6
B, e D, - N e e 0= O ( o (16)

s k

The solutions to Eq. (16) now follow immedistely. There are 2(Nb—l)
solutions (identified by mode number n) of the form

B =58 nzl, se ey N-l (17)

each having an eigenvalue 2(n) obtained by solving the corresponding

equation:
iznnk
t _ 5 > + N, +
Do=a>i-9(n)=woN e B o,n=1, oo, -1 . (18)

k

The remaining two modes of the ccmplete problem result fram coupling
among the 8 = 0 modes of the uncoupled problem; the eigenvalues are
given by the two solutions of the determinantal equation:

+ +N\ o -
DO~mONLPk - w N c{a)
k
=0 (19)
|
+ - =N - 1
- o ¥ (0) DO_wONZPk
- ,

“This criterion, for small F and E, simply means [see Eq. (8)] that
s
Q, must be taken non-integral, a condition easily met in practice.
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D. Discussicn of the Solution
1. It has been shown that to first-order in % and 6 the two beams

couple only through the s = O normal modes of the uncoupled problem.
Thus the eigenvalues for the modes n =1, ..., Nb - 1 are exactly
those of the uncoupled problem: If these modes are stable for single-
beam operation (for example, by means of feedback or sufficient Landau
damping), they will remain stable under two-beam operation.

2. We have obtained an explicit form for the modified & = 0 eigen-

values; namely, the solution of Eq. (19), which may be written in the

form:
1
_ _ 2 2
20% = wi + wf - (af +a7) + {[(wf -a’) - (aﬁ - Qﬁ)] + hpt B'}
(20)
where
+ £\ _*
o = mo N 24 Pk R
k
(21)
+ +
g = @ N Ga(q) .

Case 2a: (of - aﬁ)e > 4 g* B~ . Here we only have a second-order
contribution to & , and consequent stable operation in view of the
radiation damping. This criterion on @-splitting must be evaluated
mmerically for any particular design. It is surely overly conservative,

as we have ilgncred Landau damping, which is & stabilizing influence.

Case 2b: (uf - aﬁ)a << b B+ B~ . In this case we obtain first-order
terms in {, which is a potentially serious situation. We must be sure
that the Im & < 0, for stability; fortunately, this criterion can be
easily satisfied in practice. For example, if Nt = N, then

of =a” =0 and BT =B =B, and if © = =Qw_, then Fy. (20)

has the two solutions

2 2
w
Q A

Q=Qwo[l-aiBJ. (22)
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Stability will be attained if ¢ daminates B; namely, if the single
beam is made strongly stable. This could be accamplished by feedback,
or by choice of Q wvalue in accord with the rules cf Report 6.5 It is
probably not possible to satisfy this condition if the single beem is
intrinsically unstable but stabilized by Landeu demping, because the
two-beam interaction will produce a large freguency shift and cause the
single beam to become unstable. Such considerations — involving Lendau
damping — are not yet incorporated into the theory, although such an-
extension is expected to be very straightforward. Clearly, Case 2b is
the one requiring most detailed examinaticn and probably, in practice,
numerical studies.

3. Finally, it should be noted that enalysis of same storage rings
might require extenéions or modifications of the theory outlined here.
For example, if the number of bunches were small and the vacuum tank
loaded, then it might be advantegeous to operate with the number of
particles in different bunches unequal and Q just above an integer. We

believe such extensions of the theory to be very easy.

SAlthough @ and B are both first-order terms, ome can expect O to be
larger than P sincg F is evaluated near its peak (for some value of k
in the sum) while G is evaluated at the large frequemcy 2 ~Q & .
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IONGITUDINAL RESISTIVE INSTABILITY FOR AN AZIMUTHALLY BUNCHED BEAM
K. W. Robinson

Cambridge Electron Accelerator
Harvard University, Cambridge, Messachusetis

The residual electromagnetic fields asssociated with the passage of
a bunch of particles down a resistive vacuum chamber may affect sub-
sequent bunches 'in such a way as to produce an unstable mode of oscilla-
tion of the bunches. This coherent synchrotron instability growth rate
is evaluated by first obtaining the variation in the electric field as-

sociated with the variation in the relative phase position of a bunch.
One finds |

_2g .25 X
B =%F ~=2FE

where

Q

E =
© P ¢ 172 0B M2 p3/2
o

where g is the charge of a bunch and b is the radius of the vacuum
chamber whose walls have conductivity o . If the phase shift of the

coherent synchrotron oscillations between adjacent bunches is g , and
the maximum amplitude is B¢ , then the residusl electric field acting

on a bunch teo antidamp the oscillation is given by

= sin(ne)
BE = 2 E 5 zz
n=1

2 "o 2n n3/2




The relationship between the maximum energy aﬂd phase variation of a

synchrotron oscillation is glven by

%
UO CPO

from which it now follows that the antidamping rate is

BecelE _ Peek 0, Z; sin(n@)

50 8, L n3/2

As a numerical example we take the parameters of the 3-GeV electron-
positron storage ring, with a current of one ampere. Thus & = /b,
q =2 % 10™° coulomb, ¢ = 10° mho/meter, b = 2 X 107 meter, t = 2 X 107~
sec, and o =6 X 10%, from which one finds B =5.6% 1077 volt/meter

and 1/t = 4.3 X 10™® sec™™ . This is a very slow growth rate; the

radiation damping rate is zbout 3 X 10% sec . If the energy is re-~
duced, the radiation damping rate becomes equal to the instability

growth rate at an energy of approximately 300 MeV,
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INCOHERENT BEAM BLOW-UP IN COLLIDING BEAMS
BE. Keil

CERN, Geneva, Switzerland

Computations using Courant's program* were performed for choices
of parameters particularly interesting for the CERN intersecting stor-
age rings (ISR).E The strength of the interaction is defined by the
interaction parameter &, which is related in first approximation to

AVV, the linear Vv shift in the vertical plane by

AVV=-E8T-E-. (1)

According to the Amman-Ritson ’cheory,3 the linear stability limits

are, for Vv = 1.09,

- 6.88 <3 <0.58. (2)

This Vv value was chosen because it is approximately the number
of betatron wavelengths between two interaction regions of the ISR.
Because V¥ 1is so near to 1, the linear stability limit and the Courant
limit Av= 0.1 are very close together.

The absence of radiation damping in proton storage rings reguires
that much smaller limits on the rate of amplitude growth be imposed.

We have followed the trajectories of particles for 1P revolutions,

1. D. Courant, BNL Report AADD-69, Brookhaven National Laboratory,
New York {March 1965).

ZCERY Internal Report AR/Int. SG/6L-9, CERN, Geneva Switzerland (1964).

F. Amman and D. Ritson, Proc. Brogkhaven Conf. on High-Energy Accel-
erators, Brookhaven National Laboratory, New York (1961).
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starting at an amplitude of two half beam heights énd for various
values of 8. The trajectories show an irregular amplitude inecrease of
up to sbout 50% for 0.2 <5 < 0.9 and no such increase for smaller
values of 5. This observation is confirmed by studying the amplitude
increase for a large number of particles with different initial con-

" ditions as a function of ©. The amplitudes grow for values of &
greater than about 0.19.

Most of the amplitude growth can be attributed to coupling between
horizontal and vertical betatron motions provided by the interactions,
as indicated by two observaticns:

(1) If the coupling is suppressed, most of the amplitude growth disap-
pears.

(2) The build-up depends on the difference of the horizontal and ver-
tical v wvalues.

The behavior of the beam is much more simply interpreted if one
considers particles inside the beam, e.g., with an initial amplitude
of 1/2 the beam half-height, although the finite horizontal width of
the beam and/or the nonlinear distribution of particles in a gaussian
beam still provide a nonlinear force. From a study of the maximum
amplitude as a function of &, one can conclude that the particle motion
is stable for all B's inside the linear stability limits, Eq. (2},
provided that the effective v values (including the y shifts due
to the interaction forces) are sufficiently different. If the v
values are equal or nearly equal, & nonlinear coupling resonance occurs.
Then the slow beating of the betatron osclllations can produce excur-
sions outside the beam where the nonlinearity can shift the phase of
the;osciilations. In the cases investigated (B = 0.1, horizontal
amplitude = two half beam heights, beam half width ~ five half beam
heights) the width of the resonance is always much smaller than the v
shift given by Eq. (1). Because Av, << AV, making two linear machine
v's equal is always a safe choice under these conditions.

For initial amplitudes equal to the half beam height (peak amp-
litude at the edge of the beam), roughly the same things happen as

inside the beam.
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In the model for the beam-beam interaction used in the computa-
tions there is no mechanism which drives the particles from inside the
beam to the outside atmosphere inside the linear stability limits
unless the v values are in resonance, a condition which can easily
be avoided. The observed growth outside the beam is less than 5 x 10 -
in 1£F interactions for 8 < 0.15. Assuming an amplitude increase
proportional to the square root of time, this corresponds to about 25%
blow-up in approximately one hour. Since the acﬁual interaction par-
ameter in the ISR 1s about an order of magnitude smaller than the
threshold given above, it is very likely that the orbits are stable
against the beam-beam interactions investigated here even for fairly

long pericds of time.
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ONE-DIMENSIONAL COMPUTATIONS
OF PARTICLE TRAJECTCRIES IN COLLIDING BEAMS

M. Hine

CERN, Geneva, Switzerland

The incoherent instabilities in electron storage rings, which have
been studied on computers by Courant and Keil, seem due in great part
to the two-dimensional nature of the perturbing kick which'each beam
gives to the particles in the other when head-on collisions occur in
the interaction region. 1In the CERN ISR the beams will intersect in
the horizontal plane at an angle of 150. In this case all the force
components apart from that normal to the beam plane {i.e., the ver-
tical kick) cancel in the approximation that the interaction length
is very short. The vertical kick on a proton in beam 1 is then pro-
portional only to the charge in beam 2 between the orbit of that proton
and the median plane of beam 2.

To take advantage of these simplifying factors, a Fortran IV
computing program called RINGS has been written at CERN for use on the
CERN CDC-6600 computer. This program allows computation of trajec-
tories of protons in a linear ring with appropriate kicks from a pre-.
scribed charge distribution in the other beam in the interaction region.
The program was designed to run rapidly, because the object of the
studies was to find under what conditions a slow "stochastic" build-
up might occur which could have escaped notice in calculations on
electron rings, in which radiation damping can be assumed to take care
of any very slowly growing instability. About 10° resolutions per
minute can be computed on the CDC-6600.

The first results of this program have been: ;
(a) Surveys of phase trajectories, for a wide range of v values
and oscillation amplitudes, of single protons crossing an intense §

second beam with either a parabolic or rectangular current distributicn
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in the vertical direction.

(b) Computations of the long-term stability of an ensemble of particles
initially lying close to one of the invariant curves found in (a). The

particular curves were chosen because they appeared to be close to sep-

aratrices, or might otherwise be potentially unstable.

The kick size used (i.e., the strength of the perturbing beam) was
larger by at least a factor of 10 than what will occur in the ISR. For
particles outside the beam, the surveys in (a) showed up many cases of
the "islands” or "strings of pearls" which have been found in earlier
work. The long runs in (b), in which up to 5 X 1P particles times
resolutions were computed, showed no significant or systematic build-
up of amplitudes of oscillation, beyond the limits of about cne part
per thousand, which were set by the method of summarizing the (much
more accurately calculated) oscillation amplitudes of the individual
particles in the ensembles considered.

Since any "stochastic” build-up must be much slower for the smaller
kick sizes to be expected in the actual ISR, there seems reasonable
confirmation already from these preliminary results that proton life-
times of hundreds of seconds at least can be expected. This is in
agreement with recent developments in the analytic theory reported by
Schoch.

However, Schoch's theory indicates that there may be different
pehavior if the spatial distribution of the perturbing kick does not
have forward and backward symmetry in the machine, or, for example,
if two different kicks were made at different places on its circumfer-
ence. This case, which might (but will not necessarily) occur in the
ISR, can be studied by a small medification of the program, and will

be taken up in the near future.

- 75 -



