# The TAO of the $\tau$ with CLEO II

2 -

AL 1

e par la la la la

: •

•

~

D.Besson University of Kansas

Tau-Charm Workshop SLAC August 16, 1994

, °

### The TAO of the $\tau$ with CLEO-II

In a perfect world, this talk would be a complete review of present results and projections for:

- 1. Particle properties in the tauonic sector
  - (a) Measurements of the  $\tau$  mass (1777.8±0.7±1.7 MeV-CLE092)
  - (b) Limits on the  $\tau$  neutrino mass (CLEQ/ARGUS: <3! MeV)
  - (c) Measurements of the  $\tau$  lifetime (-LE094): (2.91±0.03±0.07) (1 vs.1/IP: (2.94±0.07±0.12)10<sup>-13</sup>9 /vs 3 v/z: (2.91±0.04±0.07)
- 303.3 (2.ES=0.13=0.10) 2. Leptonic Decays (a) precision tests of Standard Model -  $e\mu$  universality  $\begin{cases} z \rightarrow e\nu\nu \\ \varphi \neq e\nu\nu \\ \varphi \neq$ 

  - (b) tests of Lorentz structure: V A and weak current parameters: •
    - i. Michel parameter  $\rho$  from dN/dx
    - ii. Low energy parameter  $\eta$
    - iii. Polarization parameter  $\xi'$
    - iv. Decay asymmetry parameters  $\xi$  and  $\delta$ CLE094: USE でラボーそ い、てキラガキシ

> = hy: Find hy: -0.99 ± 0.06 ± 0.10 (Y helicity) (V-A expect 10)

· Daw tress.

-14+G1C



Tau data 1322 events  

$$\mathcal{L} = 1.1 \text{ fb}^{-1}$$
  
Tau HC 577  $\pi \cdot \pi$  88%  
58  $\pi \cdot \mu$  10%  
16  $\pi \cdot \rho$  2%  
Humung MC 2 pass, 99700 start.  $\mathcal{E} = 2 \times 10^{-5}$   
 $\sigma = 0.91 \text{ nb}$   
 $\mathcal{E}\sigma\mathcal{L} = 20 \text{ events.}$   
 $\delta\delta \rightarrow \pi^{\dagger}\pi^{-1}MC$  9 pass,  $\mathcal{I}^{\text{MC}} = 23 \text{ fb}^{-1}$   
 $9 \times \frac{1.1}{23} = 0.4 \text{ events.}$   
 $\delta\delta \rightarrow \mu^{\dagger}\mu^{-1}MC$  0 pass,  $\mathcal{I}^{\text{MC}} \simeq 170 \text{ pb}^{-1}$   
Bottom line

$$\pi - \pi \sim 85\%$$
  
 $\pi - \mu \sim 10\%$   
 $\pi - \rho \quad few\%$   
non-tau  $few\%$ 

: •

.

\_\_\_\_\_

1. 1

10. pl=1 for 2 // 12 consume (gagi)? 3" Z=3TT give sign of Lelicity



687

...

#### The $\nu_{\tau}$

• the  $\nu_{\tau}$  has yet to be directly observed!

its existence is inferred from the energy spectrum of observed charged leptons or hadrons in decay products of τ

• it is distinct from  $\nu_e$ ,  $\nu_{\mu}$ :

· · · · · ·

•  $\nu_e$ ,  $\nu_\mu$  beams are not observed to interact via charged current  $\nu_l N \rightarrow \tau^- X$  in Fermilab E531

•  $\Gamma(Z^0 \rightarrow \text{unobserved}) / \Gamma(Z^0 \rightarrow \nu \nu) = 3.00 \pm 0.05$ 

3. Semi-hadronic decays

- (a) spectral functions strange and non-strange (Eudence for 3h = (9.82 + 0.09 + 0.34)%; 3h (m) 4.25 + 0.09 + 0.26)% E-3p %; e.g.)
- (b) tests of QCD extraction of  $\alpha_s$  ( $\propto_s(M_2) = 0.14 \pm 0.003 \pm$
- (c) strange resonance dynamics production mechanism for KKX final states
  - i. Understanding  $K_1$  states (connection to HQET)
  - ii. KK $\pi$  from  $K^*K$  or  $\rho\pi; \rho \to K\bar{K}$ ? Techer of al.  $\tau \to t^*$ .
- (d) Comparison with predictions of CVC  $\uparrow$
- 4. Rare/forbidden decays
  - (a) lepton family number violation, neutrino mixing
  - (b) Second-class currents, etc., physics beyond the Standard Model! ーイングロン
- 5. Nostradamus comes to CLEO looking into the future, brightly
  - (a) Detector design of CLEO-III  $\tau$  physics into the next millenium
  - (b) What are the limiting systematics of doing tau measurements?









 $\mathbf{\hat{D}}_{3}^{\text{CLEO}} = 0.1455 \pm 0.0013 \pm 0.0059$ 

• Another important lepton family number violating decay:  $\tau \rightarrow \ell \ell \ell$ , where the final leptons are either  $e^{\pm}$  or  $\mu^{\pm}$ 

• providence •

- decays like  $\tau^- \rightarrow \mu^- e^+ e^-$  are FCNC at one vertex; decays like  $\tau^- \rightarrow \mu^+ e^- e^-$  are FCNC at two vertices!
- SINDRUM 1985:  $\mathcal{B}(\mu \rightarrow eee) < 2.4 \times 10^{-12}$
- once again, mass-dependent couplings give interesting range for tau decays:  $\mathcal{B}(\tau \rightarrow \ell \ell \ell) \lesssim 3 \times 10^{-6}$ 
  - ARGUS 1991:  $\mathcal{B}(\tau \rightarrow \ell \ell \ell) < (15 20) \times 10^{-6}$ - CLEO II 1993:  $\mathcal{B}(\tau \rightarrow \ell \ell \ell) < (3 - 8) \times 10^{-6}$ depending on mode, using 2M  $\tau^+ \tau^-$  events

## Exclusive semi-hadronic decays: $\tau \rightarrow \pi X$ and CVC

- $\tau^{\pm} \rightarrow \nu_{\tau} h^{\pm} \pi^{0}$  is the largest  $\tau$  decay mode (most expts can't distinguish  $\pi^{\pm}$  from  $K^{\pm} \Rightarrow h^{\pm}$ )  $\rightarrow \text{Normalize} \quad \tau \rightarrow \chi h^{\pm} n(\pi^{0}), nz2 \quad to \quad n=1$
- proceeds via the weak charged vector current:  $W^{\pm} \rightarrow \pi^{\pm} \pi^{0}$
- EW unification: vector part of weak charged current is related to neutral EM current via isospin rotation: CVC
  - CVC relates  $\Gamma(\tau^{\pm} \rightarrow \nu_{\tau} \pi^{\pm} \pi^{0})$  to  $\sigma(e^{+}e^{-} \rightarrow \pi^{+}\pi^{-})$  radiative corrections have been calculated

• procedure:

- 1. extract isovector part of  $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ up to  $s = m_{\tau}^2$
- 2. fit to pion form-factor  $F_{\pi}^{I=1}(q^2)$ ; compare with  $F_{\pi}^{I=1}(q^2)$  extracted from  $\tau \to \nu_{\tau} W$  charged current
- total  $\mathcal{B}(\nu_{\tau}\pi^{\pm}\pi^{0}) \propto \int dq^{2} F_{\pi}^{I=1}(q^{2})$
- Standard Model predicts:  $\mathcal{B}(\pi^{\pm}\pi^{0}\nu_{\tau})^{SM} = (24.58 \pm 0.93 \pm 0.50)$  (1st error:  $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}$  data; 2nd: 2% uncertainty in rad-corr)
- Results after subtracting off  $K^* \rightarrow K^{\pm}\pi^0$ :
- Results after subtracting off  $K^* \to K^{\pm}\pi^0$ : (World Average) in agreement with CVC (4% precision)
- Aside:  $T \rightarrow \overline{\pi}^{o} H \frac{1}{2} : \begin{bmatrix} 0.123 \pm 0.023 \pm 0.023 \end{bmatrix}$ •  $m(\pi^{\pm}\pi^{0})$  spectrum from  $\tau$  decays agrees well based
- with  $e^+e^-$  prediction; good evidence for  $\rho'(1370)$



FIG. 1. The  $M_{\gamma\gamma}$  distribution for the data (points) and the Monte Carlo (histogram), summed over all tags.



FIG. 2. The distributions of a variety of kinematical variables for the data (points) and the Monte Carlo (histogram), summed over all tags. (a) The scaled momentum of the charged particles,  $p_{\pi}/E_b$  (open circles and solid histogram), and the scaled energy of the  $\pi^0$ ,  $E_{\pi^0}/E_b$  (solid circles and dotted histogram), scaled by a factor 3 for clarity); (b) the scaled visible energy,  $E_{vis}/E_{cm}$ ; (c) the  $\pi^{\pm}\pi^{0}$  invariant mass. The accepted region is to the right of the vertical lines in (a) and (b).

- $\underline{\tau \to K^0 \mathbf{X}}$
- 1. Precise  $\mathcal{B}(\tau^- \to (\pi\pi)^- \nu_{\tau})$  and  $\mathcal{B}(\tau^- \to (K\pi)^- \nu_{\tau})$  can be used as either
  - a test of the Das-Mathur-Okubo (DMO) sum rule, or
  - a check of  $\left|\frac{V_{us}}{V_{ud}}\right|$  (expect a final  $\approx 3\%$  error).



2. Study resonant structure of vector and axial-vector  $S = \pm 1$  charged current

#### 3. Use the ratio

$$\frac{\mathcal{B}(\tau^- \to K_1^-(1270)\nu_{\tau})}{\mathcal{B}(\tau^- \to K_1^-(1400)\nu_{\tau})}$$

to study the effects of  $K_1$  mixing and  $SU_f(3)$  symmetry breaking:





FIG. 6. (a) The  $M(K_S^{\bullet}\pi^{-}\pi^{0})$  distribution for data (points) after sideband and background subtraction. The solid histogram is the result of a fit to the Monte Carlo predicted distributions for  $K_1(1270)$  and  $K_1(1400)$ , and a fixed contribution from  $K_S^{0}K^{-}\pi^{0}$  (according to the result in [8]). Their contributions are shown as hatched histograms in (b)  $(K_1(1270))$ , (c)  $(K_1(1400))$  and (d)  $(K_S^{0}K^{-}\pi^{0})$ .

#### $\nu_{\tau}$ Mass

- neutrinos are light!
- $m_{\nu_e} < 7.3 \text{ eV}/c^2$
- $m_{\nu_{\mu}} < 0.27 \text{ MeV}/c^2 (90\% \text{ CL})$
- Standard Model assumes massless neutrinos
- most extensions include neutrino mass; "seesaw model": e.g.,  $m_{\nu_{\tau}}/m_{\nu_e} = m_{\tau}^2/m_e^2$ .
- neutrino mass is very important in astrophysics! -  $m_{\nu_{\tau}} \sim 10 eV$  closes the universe

# **RECENT MEASUREMENTS**

- Statistical error  $\approx 10\%$  for  $(K\pi)^-$  mode, > 25% for  $(K\pi\pi)^-$  mode.
- Statistically limited.

and the second second

┽

| Mode                                        | Expt  | <i>B</i> (%)('94 Prelim.) |
|---------------------------------------------|-------|---------------------------|
| K*-                                         | ARGUS | $0.97 \pm 0.15 \pm 0.12$  |
| $K^0h^-$                                    | ALEPH | $1.28 \pm 0.16 \pm 0.12$  |
| $\overline{K}{}^{0}\pi^{-}$                 | ALEPH | $0.88 \pm 0.14 \pm 0.09$  |
| <i>K</i> <sup>0</sup> <i>K</i> <sup>-</sup> | ALEPH | $0.29 \pm 0.12 \pm 0.03$  |

| $\overline{K}^{0}\pi^{-}\pi^{0}$ | ALEPH | $0.33 \pm 0.14 \pm 0.07$ |
|----------------------------------|-------|--------------------------|
| $K^{0}K^{-}\pi^{0}$              | ALEPH | $0.05 \pm 0.05 \pm 0.01$ |

• TPC/2 $\gamma$  sees more  $K_1^-(1400)$  through  $K^-\pi^+\pi^-$  channel:

| au decay mode   | B(%)('93 Prelim.)              |
|-----------------|--------------------------------|
| $K_1^{-}(1400)$ | $0.74_{-0.33}^{+0.40}$         |
| $K_1^{-}(1270)$ | 0.43 <sup>+0.40</sup><br>-0.34 |

# ANALYSIS

- $K_S^0$  detected by looking at secondary vertex.
- No particle ID on  $h^-$  or  $X^+$  (=  $e^+\nu_e, \mu^+\nu_\mu, \pi^+, K^+, \rho^+$ ). Assign  $\pi^-$  mass when calculating invariant mass.
- All  $\pi^0$ 's (signal or tag side) explicitly reconstructed.

FIND: 0 (1, don.) (2 T - → Fo h- TO V = = (0.519±0.025±0.062) 70 (100 0' 1270 (1) T-→, T·K Z: (0.123 ± 0.023 ± 0.023) % VCVC τ-> FOK TOVE: (0.129±0.050±0.032)% - MKKTT CONSISTENT W/ K\*K (3) Z-> K° K°TT 2 = (C.CE3 + C.CI7 = C.OI7) & Show equal K°KTI i <u>All</u> K\*K 700



FIG. 8. The  $K, K^-\pi^{\bullet}$  invariant mass distribution for  $\tau^- \to K^{\bullet}K^-\pi^{\bullet}\nu_{\tau}$  candidates. The data points are obtained by taking 50 MeV "slices" in invariant mass and fitting the background subtracted  $\sigma_K$  distribution for those events. The solid histogram shows the invariant mass spectrum from a full Monte Carlo simulation of  $\tau^- \to e_1\nu_{\tau}$ ,  $e_1 \to K^{\bullet}K$  decays. The dashed histogram shows the mass distribution for a simulation of  $\tau^- \to e_7\nu_{\tau}$ ,  $\rho \to K^{\bullet}K^-$  decays.



N.1 .

FIG. 5. The  $K_*K^-$  invariant mass of  $\tau^- \to K^*K^-\nu_\tau$  events. The filled circles, with error bars, are for the data. The solid histogram is the result of a fit to the sum of  $\tau^- \to \rho^-\nu_\tau$ ,  $\rho \to K_*K^-$  (dashed) and  $\tau^- \to K^*K^-\nu_\tau$  phase space (dot-dashed) Monte Carlo models.

14

701

TABLES

| Decay                                            | € <b>(</b> %) | $\mathcal{B}$ (in units of $10^{-6}$ ) |               |  |  |
|--------------------------------------------------|---------------|----------------------------------------|---------------|--|--|
| channel                                          |               | Previous                               | This analysis |  |  |
| $\overline{\tau^- \rightarrow e^- e^+ e^-}$      | 20.4          | 13                                     | 3.3           |  |  |
| $\tau^- \rightarrow \mu^- e^+ e^-$               | 19.6          | 14                                     | 3.4           |  |  |
| $\tau^- \rightarrow \mu^+ e^- e^-$               | 19.9          | 14                                     | 3.4           |  |  |
| $\tau^- \rightarrow e^- \mu^+ \mu^-$             | 18.8          | 19                                     | 3.6           |  |  |
| $\tau^- \rightarrow e^+ \mu^- \mu^-$             | 19.4          | 16                                     | 3.5           |  |  |
| $\tau^- \rightarrow \mu^- \mu^+ \mu^-$           | 15.9          | 17                                     | 4.3           |  |  |
| $\tau^- \rightarrow e^- \pi^+ \pi^-$             | 15.5          | 27                                     | 4.4           |  |  |
| $\tau^- \rightarrow e^- \tau^- K^+ \qquad 14.6$  |               | 58                                     | 4.6           |  |  |
| $\tau^- \rightarrow e^- \pi^+ K^-$               | 14.9          | 29                                     | 7.7           |  |  |
| $\tau^- \rightarrow e^+ \tau^- \tau^-$           | 15.5          | 17                                     | 4.4           |  |  |
| $\tau^- \rightarrow e^+ \tau^- K^-$              | 15.1          | 20                                     | 4.5           |  |  |
| $\tau^- \rightarrow \mu^- \tau^+ \tau^-$         | 9.1           | 36                                     | 7.4           |  |  |
| $\tau^- \rightarrow \mu^- \tau^- K^+$            | 7.4           | 77                                     | 15            |  |  |
| $\tau^- \rightarrow \mu^- \overline{\tau}^+ K^-$ | 7.8           | 77                                     | 8.7           |  |  |
| $\tau^- \rightarrow u^+ \pi^- \pi^-$             | 9.8           | 39                                     | 6.9           |  |  |
| $\tau^- \rightarrow \mu^+ \pi^- K^-$             | 7.7           | 40                                     | 20            |  |  |
| $\tau^- \rightarrow e^- a^0$                     | 16.2          | 19                                     | 4.2           |  |  |
| $\tau^- \rightarrow e^- K^{*0}$                  | 10.7          | 38                                     | 6.3           |  |  |
| $\tau^- \rightarrow e^- \bar{k}^{*0}$            | 10.5          |                                        | 11            |  |  |
| $\tau^- \rightarrow \mu^- \rho^0$                | 11.9          | 29                                     | 5.7           |  |  |
| $\tau^- \rightarrow \mu^- F^{*=0}$               | 7.2           | 45                                     | 9.4           |  |  |
| $r \rightarrow \mu h$                            | 7.8           |                                        | 8.7           |  |  |

TABLE I. The detection efficiencies,  $\epsilon$ , and upper limits for the branching fractions at 90% CL. B, together with the most restrictive limits from previous experiments [1,4].

CLE094: Searches for neutrinoless T-decay => Beyond S.M. physics

| Also: | مر <del>د</del> ت<br>بر ⇒ و | r≤4<br>×<5       | .2 × 10<br>5× 10 <sup>-1</sup> | - <b>6</b> |              |    |
|-------|-----------------------------|------------------|--------------------------------|------------|--------------|----|
| 4     | ereistrina<br>Z             | models,<br>modes | E.a. giv                       | (me)       | senhancemant | g! |

#### TABLES

ς -

•

| TABLE I.      | The detection   | efficiencies,  | $\epsilon$ , and | upper  | limits  | for t | he 1 | branching   | fractions | at | 90% |
|---------------|-----------------|----------------|------------------|--------|---------|-------|------|-------------|-----------|----|-----|
| CL. B. togeth | er with the mos | st restrictive | limits           | from p | revious | expe  | erim | ents [1,4]. |           | _  |     |

| Decay                                            | . e (%) | B (in ur | $\mathcal{B}$ (in units of $10^{-6}$ ) |  |  |
|--------------------------------------------------|---------|----------|----------------------------------------|--|--|
| channel                                          |         | Previous | This analysis                          |  |  |
| $\overline{\tau^- \to e^- e^+ e^-}$              | 20.4    | 13       | 3.3                                    |  |  |
| $\tau^- \rightarrow \mu^- e^+ e^-$               | 19.6    | 14       | 3.4                                    |  |  |
| $\tau^- \rightarrow \mu^+ \epsilon^- \epsilon^-$ | 19.9    | 14       | 3.4                                    |  |  |
| $\tau^- \rightarrow \epsilon^- \mu^+ \mu^-$      | 18.8    | 19       | 3.6                                    |  |  |
| $\tau^- \rightarrow \epsilon^+ \mu^- \mu^-$      | 19.4    | 16       | 3.5                                    |  |  |
| $	au^-  ightarrow \mu^- \mu^+ \mu^-$             | 15.9    | 17       | 4.3                                    |  |  |
| $	au^-  ightarrow e^- \pi^+ \pi^-$               | 15.5    | 27       | 4.4 .                                  |  |  |
| $\tau^ \epsilon^- \pi^- K^+$                     | 14.6    | 58       | 4.6                                    |  |  |
| $\tau^ \epsilon^- \pi^+ K^-$                     | 14.9    | 29       | 7.7                                    |  |  |
| $\tau^{-}-\epsilon^{+}\pi^{-}\pi^{-}$            | 15.5    | 17       | 4.4                                    |  |  |
| $\tau^ e^+ \pi^- K^-$                            | 15.1    | 20       | 4.5                                    |  |  |
| $\tau^ \mu^- \pi^+ \pi^-$                        | 9.1     | 36       | 7.4                                    |  |  |
| $\tau^- \rightarrow \mu^- \pi^- K^+$             | 7.4     | 77       | 15                                     |  |  |
| $\tau^- \rightarrow \mu^- \pi^+ K^-$             | 7.8     | 77       | 8.7                                    |  |  |
| $\tau^ \mu^+ \pi^- \pi^-$                        | 9.8     | 39       | 6.9                                    |  |  |
| $\tau^- \rightarrow \mu^+ \pi^- K^-$             | 7.7     | 40       | 20                                     |  |  |
| $\tau^ \epsilon^- \rho^0$                        | 16.2    | 19       | 4.2                                    |  |  |
| $\tau^ \epsilon^- K^{=0}$                        | 10.7    | 38       | 6.3                                    |  |  |
| $\tau^ \epsilon^- \bar{K}^{*0}$                  | 10.5    |          | 11                                     |  |  |
| $	au^-  ightarrow \mu^-  ho^0$                   | 11.9    | 29       | 5.7                                    |  |  |
| $\tau^- \rightarrow \mu^- K^{=0}$                | 7.2     | 45       | 9.4                                    |  |  |
| $\tau^- \rightarrow \mu^- \bar{K}^{*0}$          | . 7.8   | -        | 8.7                                    |  |  |

## From CLEO-II and a half to CLEO-III

BaBar/CLEO-III detector design driven by **B-physics**, not tau-physics.

Must have:

• Particle ID:  $4\sigma$  separation  $\pi/K$  at 2.8 GeV/c for  $B \to \pi\pi/B \to K\pi \ (D \to \pi\ell\nu/D \to K\ell\nu)$ 

- CLEO-II, present: 1.8 $\sigma$  in Rel. Rise

- Lepton ID down to 400 MeV/c for electrons, 800 MeV/c for muons
  - 3-dim vertex resolution ≤ 50µ (improve S:N for charm, measure D\* widths?)
  - Momentum resolution:  $(\frac{dp}{p})^2 \le (0.0015 \ p)^2 + (0.005)^2$

- Important to know momentum resolution for measurement of  $m_{
u_{ au}}$ .

• Photon resolution and segmentation at least as good as CLEO-II ( $D^{*+} \rightarrow D^+ \pi^0$ , charm decays w/ neutrals)

- Ability to handle high rates > 10<sup>2</sup> at L2 with small dead times
- Silicon vertexing (~  $50\mu$  in two-track vertex in  $r-\phi$ )
- Hermiticity: Important for rejection of  $q\bar{q} \rightarrow \pi^{0}$ 's



\_\_\_\_\_

-





# 5/fb equivalent



#### **Determination of Systematic Errors**

"I have seen the future of  $\tau$  physics and it is *precision* physics" - D. Marsh, 1975

At CLEO,  $\epsilon_{MC}$  vs.  $\epsilon_{data}$  increasingly THE dominant error

Need to measure  $\epsilon$  as function of:

• Momentum  $(h^{\dagger},\pi^{\circ})$ 

• . . . . .

- Particle type (π<sup>+</sup>, k<sup>+</sup>, p<sup>+</sup>, e<sup>+</sup>, μ<sup>+</sup>)
- Dip angle wrt beam axis  $(h^+, \pi^{\circ})$
- Event parameters: thrust and mulitplicity (h<sup>4</sup>,π<sup>•</sup>)

# 1. Absolute charged particle reconstruction efficiency

- (a) Track-<u>finding</u> efficiency (topological BR's, e.g.)

MinIPeak in calorimeter tags charged particle, count how often one is observed

- -> with 2 independent tracking systems (Si/DR or UD/DR)
- High-energy showers in CC from Bdecay 90% from  $e^{+-}$ . count how often one is track matched.
- Multiplicity correlations data vs. MC
  - Use ratio of evts with net charge  $\pm 1$ relative to net charge = 0 in data vs. MC  $N_{\bullet} \approx N_{\bullet}(1-\epsilon)$

 $- N_{\ell vs 2}/N_{\ell vs 3}$ 

 $-\gamma\gamma \rightarrow h^+h^-$ ; count  $N_{h^+}/N_{h^+h^-}$ .

For  $\tau$  decay, quoted systematic error varies from 0.4% ( $\tau \rightarrow \rho^- \nu_\tau$ ) to 1.25% ( $\tau \rightarrow 5$ -prong)

## · Have observed E loss due to evt. multiplicity/confusion

(b) Product of track-finding and track-fitting efficiency (for finding the yield underneath  $\eta \rightarrow \pi^+\pi^-\pi^0$  peak, e.g.) Depends on modeling hit resolution function, e.g.  $D^{*+} \rightarrow D^0\pi^+; D^0 \rightarrow K^-\pi^0(\pi^+)/D^0 \rightarrow K^-\pi^0\pi^+$  using "satellite peak" (hoth  $\varepsilon_{\pi^o}, \varepsilon_{\pi^\pm})$   $K^-\pi^0\pi^+$  using "satellite peak" (hoth  $\varepsilon_{\pi^o}, \varepsilon_{\pi^\pm})$  G: How offen are even in Kin<sup>\*</sup>(n) plak fully reconstructed w/  $\pi^o$ ?  $\pi^0 \rightarrow e^+e^-\gamma$ ; use shower due to e, etrace back helical path to origin and produce a  $\pi^0$  peak. How often is track found within some window?

> Quoted systematic error varies from  $2\% (p > p_{curl}, barrel)$  to  $5\% (p < p_{curl})$ Note that efficiency outside of barrel region well-reproduced in MC (isotropy of charged tracks from B's - will this be done at  $\tau cF$  with  $D^{\circ}$  or  $D^{\dagger}$  decays at -threshold

Note: Potentially BIG TCF advantage: Nultiplicity low, particles well i.d.'d => calibrate efficiencies VERY well using min techniques as f(particle type, cons) e.g. U=K\*K\*T(TT)







2. Absolute  $\gamma$  finding efficiency

- Use  $D^{*0} \rightarrow D^0 \pi^0$ ;  $\pi^0 \rightarrow \gamma(\gamma)$  relative to case of fully reconstructed  $\pi^0$
- Use flatness of  $dN/dE_{\gamma}$  from  $\pi^{0} \rightarrow \gamma\gamma$ to extrapolate efficiency in region 30 MeV to 2 GeV. (shape of  $\mathcal{E}_{r}$  curve)
- Use flatness of  $dN/dcos\theta$  spectrum to extrapolate endcap (noise??)  $\xi$
- Quoted error of 2% per photon, includes uncertainty on photon line shape (shower containment uncertainties, e.g.)
- 3. Absolute  $\pi^0$  finding efficiency
  - $D^{*+} \rightarrow D^0 \pi^+; D^0 \rightarrow K^- \pi^+ (\pi^0) / D^0 \rightarrow K^- \pi^0 \pi^+$  using "satellite peak"
- mass recoiling against  $\pi^+\pi^-\pi^+\pi^-$  in  $\Upsilon \to \pi^+\pi^-\pi^+\pi^-\pi^0$  events vs. number of times  $\pi^0$  fully reconstructed.

•  $\eta \to \pi^0 \pi^0 \pi^0 / \eta \to \gamma \gamma$ , efficiency-corrected

BR compared with PDG value

Quoted error of 5% per  $\pi^0$ 

- 4. Ratio of  $\frac{\pi^+}{\pi^0}$  efficiencies:
  - Assume equality of cross-sections of  $\equiv$ 's:  $\equiv^- \rightarrow \Lambda \pi^- / \equiv^0 \rightarrow \Lambda \pi^0$
  - R(Ispin ratio) in *D*\*' decay:

$$R = \frac{\Gamma(D^{*+} \to D^0 \pi^+)}{\Gamma(D^{*+} \to D^+ \pi^0)} = 2.17 \pm 0.08$$

•  $\Upsilon(2S) \rightarrow \Upsilon(1S)\pi^+\pi^-: \Upsilon(2S) \rightarrow \Upsilon(1S)\pi^0\pi^0=2.0$ 

• 
$$\eta \rightarrow \pi^+ \pi^- \pi^0 / \eta \rightarrow \pi^0 \pi^0 \pi^0$$
, cf. PDG

Quoted error of 6% on ratio (8% for  $V_{cb}$  analysis)

## The World According to Dave - 10 GeV vs. $\tau cF$

2 - - - -

• . . . . . . . .

---

-

| Physics                        | τcF         | 10 GeV/Systematic                         |
|--------------------------------|-------------|-------------------------------------------|
| Tau mass                       | \$\$\$      | \$                                        |
| leptonic decays                | \$\$        | \$\$/fakes,QED                            |
| lifetime                       |             | \$\$                                      |
| Lorenz structure               | <b>\$\$</b> | \$\$                                      |
| spin structure                 | \$\$        | \$\$                                      |
| hadronic decays                | \$\$        | <b>\$ (</b> qā, γγ)                       |
| 'nclusive/exclusive BR's       | \$\$        | <b>\$</b> (q $\bar{q}$ , $\gamma\gamma$ ) |
| spectral functions/ $\alpha_s$ | \$\$        | <b>\$</b> (q $\bar{q}$ , $\gamma\gamma$ ) |
| spectral functions/ $K_1$ 's   | \$\$        | $(q\bar{q}, \gamma\gamma)$                |
| Rare decays/L-viol.            | \$\$        | \$\$                                      |
| $ u_{	au}$ mass                | \$\$        | \$\$                                      |
|                                |             |                                           |

#### **Conclusions**

the second se

 
 τ physics very active at CLEO - World- class precision for almost all measure-ments

BUT: progress requires high statistics, good control of systematics

- The era of very high data rates means that control of systematics will become increasingly important, and will require knowing, at the 0.1% level, systematics from:
  - 1. Absolute tracking efficiencies
  - Knowledge of fake rates for leptons, e.g.

3. Knowledge of backgrounds

Monte Carlo tuning will become a fulltime preoccupation!