Summary of the Marbella TCF Workshop

Jasper Kirkby SLAC TCF Workshop 16 August 1994

- Third Workshop on the Tau-Charm Factory, Marbella, Spain, 1-6 June 1993:
 - Previous workshops in this series: SLAC 89, Sevilla 91.
 - ♦ 90 physicists from 12 countries.
 - ◆ Proc. (Editions Frontières, 1994): 65 papers / 850 p.
- Aims:

- Thorough review of physics interest in light of recent theoretical and experimental progress.
- Update designs of accelerators & detectors.
- Discuss plans for realization of TCF.

Overall Marbella Conclusions

- The TCF is:
 - A vital machine to probe precision EW in τ decays.
 - The "QCD machine for the next decade".
- Physics strengths of the TCF:
 - <u>Comprehensive</u> precision study of τ and charm decays.
 - Potential exists for major discoveries.
- TCF and BF:

- Similar statistics but TCF generally has lower backgrounds and systematic errors.
- Complementary. Full exploitation of BF physics potential requires precision charm data from TCF.
- Precision measurements are difficult and need confirmation by experiments with different systematics.
- Highly-flexible TCF collider is feasible: higher L, monochromator optics, longitudinal beam polarization.
- High-resolution detector is feasible and meets physics needs.

Progress in Particle Physics

Requires parallel experiments at:

I. High-energy frontier

Search for new particles and interactions.

II. High-precision frontier

- 401
- CP violn. / precision studies of present quarks & leptons.
 - Strengthen experimental foundations underpinning SM
 - Search for rare processes / subtle deviations from SM

The SM needs both consolidation and extension.

Approved Next-Generation Accelerators (≥ 2000)

		DAΦNIA	TeV M.I.	KEK BF SLAC BI	RHIC	LHC	(TCF)		
	I. High-energy frontier								
	1) Higgs + new particles		*	-	-	**	· •		
	2) Quark-gluon plasma	-	-	•	**	**	-		
	II. High-precision frontier		<u></u>		<u> </u>		· · · ·		
4	1) CP violation: B	-	*	**	-	**	– 1		
02	D	-	-	-	-	-	*		
	K	**	**	-	-		•		
	2) Precision electroweak	2) Precision electroweak & precision QCD:							
	W,Z	-	\star	-	_ •	*	-		
	· b	-	-	**	-	-	-		
	C	-	\star	\star	-	-	**		
	τ	-	-	\star	-	-	**		
	g, u, d, s (spectr.)	-	-	-	-	-	***		
	ν	-	*	*	-	*	*		

Conclusions on Next-Generation Accelerators

• The TCF is:

- Complementary to the approved accelerators.
- An essential component of the next experimental tools required for the high-precision frontier of the SM.
- Arguably the most important accelerator still to be approved (considering the LHC as approved).
- The key question:
 - ➤ Are the presently-approved accelerators (KEK BF, SLAC BF and TeV M.I.) ★ or ★★ for the important τ and c experiments?

TCF Physics Reach vs. Luminosity (1 y data)

- 10^{32} > glueballs, hybrids, uds & cc spectroscopy
 - semi-leptonic D decays ~1% precision
 - $\succ \tau$ Br's ~0.1% precision
 - > Λ_c^{\pm} , Ξ_c , Σ_c , Ω_c Br's ~5% precision
 - > doub. Cab. sup. D^0 , D^{\pm} , D_s decays ~1% precision
 - > V-A structure in τ decays = precision in μ decay
 - ► pure leptonic D decays, f_D & f_{Ds} ~2% precision
- 10³³ > τ ->eX limit ~10⁻⁵, constraints on m(ν_{τ})<1 MeV > D⁰D⁰ mixing limit 2x10⁻⁵ (SM level?) > rare τ /D/J- ψ decays (LFV, FCNC, etc.) ~10⁻⁷-10⁻⁸

 - > direct m(v_{τ}) limit ~2 MeV
 - CP violation in D decays at SM level
 - > CP violation in Λ , Ξ decays at SM level
- $10^{34} > ??$

Interest in τ Physics

• Third generation lepton.

- Highest-mass lepton => highest sensitivity to New Physics
- Many decay channels; some can be calculated with high precision in SM.
- Only lepton heavy enough to decay to hadrons.
- Clean laboratory to test structure of the weak current.
- Properties of v_{τ} are poorly known experimentally.

Experimental Environment for \tau Physics

- Single-tagged samples (e.g. E_{miss} + e / monoch. π):
 - Reduced biases (no pre-selection of decay mode).
 - Exact flux normalization.
- Very small backgrounds (<0.1%) below c threshold.
- Backgrounds experimentally measured below τ thresh.
- Small Lorentz boost: monoch. 2-body, less overlap, etc
- [§] High statistics (similar to BF with L_{BF} = 3 x L_{TCF}):
 - 0.5 x 107 / yr at $\tau^+\tau$ threshold.
 - 2.4 x 10⁷ / yr just below ψ ' (zero charm background).
 - 10 x 10⁷ / yr at ψ (monoch. optics).
 - High-resolution detector, with novel sensitivity to v's.
 - High-rate (~1kHz) det. calibration sources: J/ψ and ψ '.

The $\tau^+\tau^-$ cross section

Expected improvements for some τ parameters.

Parameter	Present accuracy	τ cF sensitivity
$m_{ au}$	0.3 MeV	30 keV
$m_{ u_{ au}}$	< 31 MeV	2 MeV
$B_{e,\mu}$	1%	0.1%
B_{π}	3%	0.1%
B_K	34% (12%)	0.5%
$ g_{ au}/g_{\mu} $	0.6%	0.1%
$ g_{\mu}/g_{e} $	0.6%	0.1%
$ ho_{e,\mu}$	$\pm 45 \times 10^{-3}$	$\pm 2 imes 10^{-3}$
ξı	$\pm 200 \times 10^{-3}$	$\pm 35 imes 10^{-3}$
$h_{ u_{ au}}$	22%	0.3%
η_{μ}	-	$\pm 4 imes 10^{-3}$
δι	-	$\pm 28 imes 10^{-3}$
ξ'μ	-	15%
$B(au^- ightarrow \pi^- \eta u_ au)$	$< 3 \times 10^{-4}$	10 ⁻⁶
$B(\tau^- \rightarrow l^- X)$	< 2%	10^{-5}
$B(au^- ightarrow 3l^{\pm})$	< 10 ⁻⁵	10 ⁻⁷
$B(au^- ightarrow \mu^- \gamma)$	$< 4 imes 10^{-6}$	10 ⁻⁷
$a_{ au}^{\gamma}$	< 0.1	0.001
$d^\gamma_ au$	$< 6 imes 10^{-16}$ e cm	10 ^{-↓7} e cm

Michel parameters comparison: τ (τ cF) vs. μ decay [×10 ⁻³].
(W. Fetscher and A. Stahl.)

۱ . · • •

•

	$\tau^- \to e^- \bar{\nu}_e \nu_\tau$	$ au^- o \mu^- ar{ u}_\mu u_ au$	$\mu^- ightarrow e^- \bar{ u}_e u_\mu$
ρ	±2.2	± 2.3	751.8 ±2.6
η	± 620	± 3.5	-7 ± 13
ξ	± 35	± 35	1003 ± 8
δ	±27	±28	749 ±4

Precision Tau Branching Ratios

• Systematic errors are already dominating the main τ Br's, e.g. the ρv decay, Br($\tau \rightarrow h \pm \pi^0 v_{\tau}$):

	#t+t-	Acc.	Bgd	Br	σ(stat.)	σ(syst.)
CLEO II	1.4 M	10%	5%	25.87±0.12±0.42%	0.5%	1.6%
OPAL	27 k	50%	6%	26.25±0.36±0.52%	1.4%	2.0%

- TCF: estimated stat. & syst. errors ~0.1% for main τ decays:
 - ♦ Run exactly at τ+τ- threshold—3.55 GeV.
 - > Single-tag ($E_{miss} + e / monoch.\pi$):

=> No L error, no bias on τ decay mode.

- One-prong decays separated kinematically.
- High reconstruction efficiency.
- Low feed-in corrections due to pileup.
- Non-τ backgrounds measured experimentally at 3.54 GeV.
- High resolution detector.

410

• Direct, precision measurements of $\tau \rightarrow KX$ modes.

 $\tau \rightarrow$ 1-prong + 0 γ decays at a) TCF and b) BF.

Reconstruction efficiency as a function of the $\pi^0 \pi^0$ invariant mass, for $\tau^{\pm} \rightarrow \nu_{\tau} \pi^{\pm} \pi^0 \pi^0$ events in (a) an idealized LEP experiment and (b) the τcF . (F. LeDiberder)

v_{τ} Mass; Direct Measurement

(D.F Cowen, J.J. Gomez Cadenas)

- Measure end-points of $5\pi^{\pm}$, $3\pi^{\pm}2\pi^{0}$, K+K- π spectra.
- Statistical limit $\propto \sigma(5\pi) / \sqrt{N}$
 - $\sigma(5\pi) = 2 \text{ MeV (TCF)}; 3.5 \text{ MeV (BF)}.$
 - $m(v_{\tau})$ statistical limit ~ 2 MeV for both TCF and BF.
- Systematics backgrounds likely to dominate measurement:
 - Sensitive to bgd evs near end-point: lower limit / mask finite $m(v_{\tau})$.
 - ♦ Before cuts: signal/bgd ~ 10-4.
 - ♦ After cuts: signal/bgd ~ 104, i.e. ~10-8 qq rejection.
 - ♦ Reliability of M/C at 10⁻⁸ level?
- Most serious background is charm ($\sim m_{\tau}$) with missing/misid. particles.
- CLEO:

- 1.8M $\tau+\tau-$; m(v_t)<32.6 MeV based on 113 signal ev; ~1 charm bgd.
- $5\pi^{\pm}$ acceptance= 7%
- TCF:
 - Zero charm background.
 - Backgrounds measured experimentally below τ+τ- thresh

v_{τ} Mass; Indirect Measurement

(J.J. Gomez Cadenas, C. Gonzalez-Garcia)

• If $m(v_{\tau}) > 100 \text{ eV}$, v_{τ} must be unstable.

• Possible decay:

 $\succ v_{\tau} \rightarrow v_e X \implies \tau \rightarrow e X$ would also occur.

> Br($\tau \rightarrow eX$) may be in the range $\leq 10 - 4$.

414

• Experimental sensitivity:

	Br($\tau \rightarrow eX$) limit		
BF:	5 x 10 -3		
TCF: no monoch.	10 -5		
with monoch.	10 -6		

Interest in Charm Physics

- Precision quantitative tests of QCD in a unique regime at interface of perturbative & non-perturbative regions:
 - Charm is tightly constrained in SM.
 - Quantitative theoretical treatments of charm decays are now possible (QCD sum rules, HQ expansions, QCD lattice).
- Input for precision beauty (and Z, etc.) analyses:
 - Test and calibrate theoretical tools, e.g. V_{td}/V_{ts} from $B \rightarrow \rho \gamma/K^* \gamma$ needs $D \rightarrow K^* \gamma$ (Br~10-5) to measure non-penguin part.
 - Poor charm data (Br's, s.l. decay spectra,...) beginning to limit present precision LEP/CESR measurements.

• New physics discovery potential:

- ◆ D⁰D⁰ mixing*, CP violation, rare decays, etc.
- Only heavy up-type quark accessible to precision experiments.
- Rich variety of weak decays (CA,CS,DCS, 2nd-order W).

^{*} New calc: small long-dist. contr. => D⁰D⁰ mixing v.sensitive to New Physics?

Experimental Environment for Charm Physics

- Tagged samples of D⁰, D[±], D_s[±], Λ_c^{\pm} , Ξ_c , Σ_c , Ω_c :
 - Reduced biases (no pre-selection of decay mode).
 - Precise measurement of E (E_B) and \vec{p} .
 - Kinematic constraint on one missing particle (e.g. ν).
 - Reduced backgrounds:
 - + Very clean tag.
 - + Absence of additional jet particles / no combinatorial bgds).
 - Exact flux normalization (absolute Br's).
- Backgrounds experimentally measured by reducing E_B.
- High statistics: (TCF ~ 3 x BF inclusive with L_{BF}= 3 x L_{TCF}):

1-3M / y

- $D_s^{\pm}D_s^{\pm}$, $D^{\pm}D^{\pm}$, $D^0\overline{D}^0$ 10-30M / y
- $\Sigma_c \Sigma_c, \Lambda_c^{\pm} \Lambda_c^{\pm}$
- ♦ Ξ_cΞ_c

 $\Omega_{\rm c} \Omega_{\rm c}$

300k / y 30k / y

Expected improvements for some charm parameters.

Parameter	Present accuracy	aucF sensitivity
		/ 1 year's data
D^0 , D^{\pm} , D_s^{\pm} Br's	10%-30%	0.1%-0.3%
	(60%-80% observed)	($\sim 100\%$ observed)
Λ_c^{\pm} Br's	20%	1%
$\Sigma_c, \Xi_c, \Omega_c Br's$	-	3–10%
D Br's (DCS)	30% (D ⁰ → K ⁺ π [−])	1%
Semileptonic D Br's (CA)	10%–20%	0.3%
Semileptonic D Br's (CS)	15%	1%
$ V_{cd} / V_{cs} $	15%	1%
Pure leptonic Br's ($D \rightarrow \mu \nu, \tau \nu$); f_D, f_D ,	seen	2%
Rare D decay Br's	$< 10^{-5} - 10^{-4}$	< 10 ⁻⁷
$D^0 \overline{D}^0$ mixing	$< 3 \times 10^{-3}$	2×10^{-5}
Direct CP violation in D decays	-	2×10^{-3} Br asym.
		(reaches SM level)

D⁰ -> K^{*}ev form factors, at a) BF and b) TCF (P. Roudeau)

Decay channel	Experiment	Technique	No. signal evts	Background	
$D^0 o K^- \ell^+ u_\ell$	MARK III E691 E687 E653 CLEO	\overline{D}^0 tag at $\psi''(3.77)$ Secondary vertex Secondary vertex Secondary vertex D ^{*+} $\rightarrow D^0 \pi^+$ tag	55 250 1800 80 800	1 %	TIDIT PHOTO POODUCTION PHOTO PRODUCTION HADROPRODUCTION CLEO
$D^0 o \pi^- \ell^+ \nu_\ell$	MARK III	$ ilde{D}^0$ tag at $\psi''(3.77)$	7	7% A	NETT

Semileptonic D decays in different experiments.

Figure 8: Pure leptonic D^{\pm} or D_{\pm}^{\pm} decay diagram.

Figure 9: Measurement of pure leptonic D decays in the τcF detector[63]. Missing masses in single-tagged events are shown for: a) $D^+ \rightarrow \mu^+ \nu_{\mu}$ ($\simeq 1100$ events per year); b) $D^+_{\bullet} \rightarrow \mu^+ \nu_{\mu}$ ($\simeq 2000$ events per year); c) $D^+_{\bullet} \rightarrow \tau^+ \nu_{\tau}, \tau^+ \rightarrow \mu^+ \nu_{\mu} \bar{\nu_{\tau}}$ ($\simeq 2000$ events per year); and, d) $D^+_{\bullet} \rightarrow \tau^+ \nu_{\tau}, \tau^+ \rightarrow e^+ \nu_e \bar{\nu_{\tau}}$ ($\simeq 2400$ events per year). The indicated statistics correspond to 10 fb⁻¹ ($L = 10^{33}$ cm⁻²sec⁻¹) and $f_D \simeq 200$ MeV. The background events are shaded.

CP violation in D decays for 1 year's data in a τ cF. (J.R. Fry and T. Ruf)

DIRECT CP VIOLATION					
$A = \frac{N(\overline{D} \to \overline{f}) - N(D \to f)}{N(\overline{D} \to \overline{f}) + N(D \to f)}$					
	Theory*	Experiment			
cnannei	$A[10^{-3}]$	$\sigma_A[10^{-3}]$			
$D^+ \to \bar{K}^{*o}K^+$	2.8 ± 0.8	2.3			
$D^+ \rightarrow \pi^+ \eta$	-1.5 ± 0.4	2.3			
$D^0 \rightarrow K^+ K^-$	$\sim 10^{-3}$	2.5			
$D^+ o \pi^+ \pi^0$	0	2.8			
$D^+ o \phi \pi^+$	0	2.4			

* Rome-Naples (A. Pugliese et al.)

INDIRECT CP VIOLATION				
channel	Theory $A[10^{-3}]$	Experiment $\sigma_{A}[10^{-3}]$		
sum of several final states	0.10.01	2		

Interest in Charmonium

- Complete the narrow cc states below DD threshold:
 - Precision masses and widths.
 - EM couplings: γ, γγ, e+e-
 - Hadronic decays.
- Clarify cc states above DD threshold:
 - e.g. ${}^{1}D_{2}: \psi^{*} \rightarrow \gamma (2^{-+}) @ E_{cm} = 4.03 \text{ GeV} (10^{3} \text{ evs/day})$
 - Measure DD, DD*, D*D*, DD** etc. production vs. E_{cm} test HQET and find optimum operating points.
- Complete the low-mass hadron spectroscopy:
 - u,d,s hadrons.

- Glueballs and hybrids.
- Study hybrid charmonium, H_c (ccg); expect m=4.4±0.4 GeV.
 - Important test of lattice QCD, MIT bag, flux-tube models.
- J/ ψ is secondary factory of cleanly-tagged light hadrons:
 - CP violation in Λ , Ξ decays.
 - C violation in η, η' decays.
- Rare decays, e.g. $J/\psi \rightarrow D_s ev$, Br ~10⁻⁸

Experimental Environment for Charmonium

- All narrow charmonium states cleanly accessible, directly or via γ/π⁰ transitions from J/ψ, ψ'.
- Narrow resolutions (with mono.):
 - σ(m): 100 keV

425

- ♦ σ(Γ): J/ψ, ψ' 100 keV,
- $\sigma(\Gamma): \chi_c, \eta_c, h_c$ 300-700 keV (pair spectrometer).
- Huge statistics (1000 x today):
 - J/ψ 13B /y 100B /y with monoch.
 - ψ' 4B /y
 χ_c 1B /y
 η_c 100M /y

•High-res. detector for ch & neut particles / clean particle id.

Glueball and Hybrid Studies

- J/ψ is the pre-eminent tool for glueball/hybrid searches:
 - Radiative decays are the ideal source for glueballs.
 - Unique filter of (g,u,d,s) structure of light hadrons.
 - ♦ Known J^{PC} for partial wave analysis.
 - Covers mass range of interest (<3 GeV).
- χ_c states allow J^{PC} to be tuned:

• e.g. $\chi_1 \rightarrow \pi + 1^+$ (exotic \neq qq) $\rightarrow \pi + \pi f_1$

- $\gamma\gamma \rightarrow C+$ (qq only) complements C+ studies in J/ ψ decay.
- Hybrid charmonium, H_c (ccg) may be an excellent way to study gluonic matter (cc spectrum is well understood):
 - Mass>4.3 GeV: $H_c \rightarrow DD^{**}$ dominates; $\Gamma \sim 100$ MeV. For non-1⁻⁻, run @ Ecm ~ 5 GeV, e.g. $e^+e^- \rightarrow \eta H_c \rightarrow \eta \eta J/\psi$.

• Mass<4.3 GeV: narrow Γ ~10 MeV? e.g. $H_c \rightarrow \chi_c h$.

ing quark/gluon content by comparing J/ $\psi \rightarrow \gamma X / \omega X / \phi X$.

proving Single OZI J/ψ Junin f2' ū,d (mmm u,d 😗 J/ψ mm Double OZI f2' s φ (mmm) S Single OZI J/ψ Jumm mmm f2'

Accelerator Requirements

- Energy range: $J/\psi \rightarrow 5.6 \text{ GeV}$ ($>\Omega_c \overline{\Omega_c}$ threshold).
- Peak luminosity at 4 GeV.
- Flexible lattice required, with 4 operational phases:
 - Stage 1: Conservative design for 10³³
 - ➤ 10³², physics starts
 - Stage 2: Monochromator optics (σ_E=140 keV @E=2GeV)
 - ► J/ψ, ψ'

- > $\tau+\tau$ threshold: precise $\sigma(\tau+\tau-)$, m_{τ} , monoch. 2-body
- > Beam-energy-constrained masses (charm)
- Stage 3: Increased L 4 x 10³³ with crab-crossing.
- Stage 4: Longitudinally-polarized beams
 - > CP violation in hyperon decays
 - $\succ \tau$ decays

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
		Standard scheme	Monochrom. scheme	Cros. angle scheme
Beam energy, GeV	E	2.0	2.0	2.0
Luminosity, $cm^{-2}s^{-1}$	L	$1.0.10^{33}$	$1.0.10^{33}$	$3.6 \cdot 10^{33}$
C.M. energy resolution, MeV	σ_{w}	1.8	0.14	1.6
Circumference, m	С	359	359	359
Natural emittance, nm	ε_0	378	17.0	225
Vertical emittance, nm	εy	19 •	2 †	5‡
Damping partition numbers	$J_x/J_y/J_e$	0.58/1/2.42	2/1/1	0.66/1/2.34
Bending radius in arc, m	ρ	10.5	10.5	10.5
Damping times, msec	$\tau_x/\tau_y/\tau_s$	39/23/9	17/34/32	37/24/10
Momentum compaction	α	1.67.10-2	8.43·10 ⁻³	1.67·10 ⁻²
Energy spread	σ_E	6.23·10 ⁻⁴	7.31.10-4	5.59.10-4
Total current, A	I	0.564	0.537	2.0
Number of particles per bunch	Nb	1.32.1011	1.26.1011	$0.78 \cdot 10^{11}$
Number of bunches	k۵	32	32	192
RF voltage, MV	V	8	5	7
RF frequency, MHz	f _{RF}	481	481	481
Harmonic number	q	576	576	576
Energy loss per turn, kV	Uo	211	142	196
Bunch length, mm	σ_{s}	7.43	8.01	7.13
Bunch spacing, m	Sb	11.2	11.2	1.9
Required long. impedance, Ohm	$ Z_n/n $	0.24	0.19	0.31
Beta functions at I.P., m	$\beta_x^\star/\beta_y^\star$	0.20/0.01	0.01/0.15	0.50/0.01
Vertical dispersion at I.P., m	D [*] _v	0.	0.36	0.
Beam-beam parameters	£_/E_	0.04/0.04	0.04/0.03	0.04/0.04

P. BELOSMITSKY, J. LE DUFF, B. MOUTON, E. PERELSTEIN (ORSAY-DUBNA)

-

Scheme for longitudinal beam polarization (A. ZHOLENTS)

ŧ

Comparison of detector performances.

	Mark III (SPEAR)	EXACT (<i>t</i> cF)
	/ BES (BEPC)	
Charged particles:		
Momentum res.: $\sigma_p/p(\text{GeV/c})$	$1.5\% p \oplus 1.5\% / \beta$ [MkIII]	$0.4\% p \oplus 0.4\%/eta$
	$0.7\% p \oplus 1.3\%/eta$ [BES]	
Angular resolution: σ_{ϕ} (mr)	$2 \oplus 2/p\beta$	$0.5 \oplus 1.1/peta$
$p_{min}^{\pi}(\text{MeV/c})$ for efficient tracking	80	50
$\Omega(barrel) \ (imes 4\pi \ sr)$	70%	90%
Photons:		
Energy resolution: $\sigma_E/E(\text{GeV})$	$17\%/\sqrt{E}$	$2\%/E^{rac{1}{4}}\oplus 1\%$
Angular resolution: $\sigma_{\theta,\phi}$ (mr)	10 [MkIII]; 5 [BES]	$1.7 + 2/\sqrt{E}$ (at $\theta = 90^{\circ}$)
2γ angular separation: $\Delta heta_{2\gamma}$ (mr)	20	50
$E_{min}^{\gamma}(MeV)$ for efficient detection	100	10
Particle identification:		
$\pi \rightarrow K$ separation	3σ at 0.7 GeV/c	3σ at 1.0 GeV/c
		(10 ⁻⁴ inc. Cě.)
$\pi/K \rightarrow e$ separation	4% at 0.5 GeV/c	0.1% (10 ⁻⁵ inc. Cě.)
$\pi/K ightarrow \mu$ separation	5% at 1.0 GeV/c	1.5%/p(GeV/c) + (1-4)%
K_L^0 detection efficiency	60%	95%
n mean detection efficiency	-	50%
$ u$ 'detection': $p_{min}^{\perp}({ m MeV/c})$	-	100

Accelerator construction cost. ($\$1 \approx 1.5$ CHF)

Item	Green-Field	CERN ISR
Υ.	Site	Site
	[MCHF]	[MCHF]
Site & infrastructure:		
Buildings & civil engineering	76	9
Expl. zone infrastructure	12	8
Site equipment	37	0
Lab. computing & networks	15	0
Subtotal:	140	17
Accelerators:		
Collider	87	79
Booster	23	0
Linac	17	0
Transfer lines	8	6
Technical equipment	7	0
Recurrent cost	7	0
Subtotal:	149	85
Total (material):	289	102
Personnel:		
Total (personnel):	660 man-y	315 man-y

Detector construction cost. ($1 \approx 1.5$ CHF)

ltem	Cost
	[CHF]
Inner & central drift chamber	3.8
Superconducting solenoid	7.0
Cerenkov (DIRC)	2.3
Time-of-flight	1.2
Electromagnetic calorimeter [CsI(TI)]	30.7
Forward BGO calorimeter	1.2
Forward Si tracker	1.6
Hadron calorimeter/ μ detector	7.3
Trigger & data acquisition	7.9
Subtotal:	63.0
Contingency (10%):	6.3
Total:	69.3

Conclusions

- The TCF is a unique tool for probing the high-precision frontier of EW interactions and (non-) perturbative QCD in τ, charm and charmonium decays.
- The TCF has a rich physics programme, addressing fundamental aspects of the SM.
- TCF physics is complementary to other approved accelerators.
- Full exploitation of the physics potential of the BF's requires new precision charm measurements from a TCF.
- The TCF satisfies most of the requirements for approval:
 - 1. Compelling physics interest
 - 2. Technical feasibility (machine & detector)
 - ♦ 3. Reasonable cost

- ♦ 4. User community
 - > The remaining requirement is a site!