Workshop on the Tau-Charm Factory in the Era of B-Factories and CESR August 15, 1994

Mixing-Induced CP Violation in the $D^0 \overline{D}^0$ System

Joseph M. Izen University of Texas at Dallas

Motivation

- Previous $\mathcal{T}CF$ estimate for $e^+e^- \rightarrow \gamma D^0 \overline{D}^0$
- Choice of \sqrt{s} : 4.03 GeV vs 4.14 GeV
- $e^+e^- \rightarrow \gamma D^0 \overline{D}^0$ $\rightarrow \gamma$ (shared f.s.)(semileptonic decay)
- $e^+e^- \rightarrow \gamma D^0 \overline{D}^0$ $\rightarrow \gamma$ (shared f.s.)(hadronic decay)

•
$$e^+e^- \rightarrow \gamma D^0 \overline{D}^0$$

 $\rightarrow \gamma$ (shared f.s.)(inclusive K or lepton)

$$\underbrace{\text{Mixing-Induced } \underbrace{P}_{(\text{following Bigi, SLAC Report 343)}}_{(\text{following Bigi, SLAC Report 343)}} \circ For \underline{shared final \underline{s}tates}(sfs) of D^0 and \overline{D}^0
 $e.g. K^+K^-, \pi^+\pi^-$ (assuming $y << x << 1$)
 $rate(D^0 \rightarrow sfs) \cong e^{-\Gamma t} \widehat{T}_{PP}(1 - \sqrt{2r_D} \frac{t}{\tau_D} A_{PP})$
 $\circ \text{Study } e^+e^- \rightarrow D^0 \overline{D}^0 + \dots \rightarrow \text{sfs} + hadronic + \dots$
 $\rightarrow \text{sfs} + semileptonic + \dots$
 $\rightarrow \text{sfs} + l^{\pm}X + \dots$
 $\rightarrow \text{sfs} + K^{\pm}X + \dots$$$

• Quantum coherence:

Reaction	<cp asym="">_{time}</cp>	$C[D^0\overline{D}^0]$
$e^+e^- \rightarrow D^0 \overline{D}^0$	0	-
$e^+e^- \rightarrow D^0 \overline{D}^0 \gamma + \text{c.c.}$	$2\sqrt{2r_D}A_{PP}$	+
$e^+e^- \rightarrow D^0 \overline{D}^0 \pi^0 + \text{c.c.}$	0	_

 $A_{CP} = \langle CP Asym \rangle_{time} \equiv \frac{N[(l^{-}X)(sfs)] - N[(l^{+}X)(sfs)]}{N[(l^{-}X)(sfs)] + N[(l^{+}X)(sfs)]}$

- Current mixing limits permit $A_{CP} \sim \text{few \%}$ Standard Model $A_{CP} \sim 10^{-5}$
- An oscillation-induced asymmetry sensitivity of $O(10^{-3})$ would probe physics beyond the Standard Model.

Previous Mixing-Induced CP Study (U. Karshon, SLAC Report 343)

Reconstruct $e^+e^- \rightarrow D^0 \overline{D}^0 \gamma$ \rightarrow (CP eigenstate)(Kev, Kµv, πev , $\pi \mu v$) γ

$$\sqrt{s} = 4.14 \text{ GeV}$$

 $\sigma(e^+e^- \rightarrow D^0 \overline{D}^{*0} + c.c.) = 0.9 \text{ nb}$
 $B(D^{*0} \rightarrow \gamma D^0) = 0.37$
One 5000 hour year
 $L = 10^{33}$

Channel	Br	efficiency	$\gamma D^0 \overline{D}^0$ Events
$K_{\rm s}\rho^0$	0.0027	0.42	460
$K_{\rm s}\eta$	0.006	0.12	290
K _s φ	0.0029	0.05	60
$K_{\rm s}\pi^0$	0.0073	0.26	770
K _s ω	0.013	0.06	320
$ ho^0 \pi^0$	$h_{\rm ad}$ 0.011	0.7	3140
ππ	0.0014	0.8	460
KK	0.0051	0.5	1040
K _s K _s	0.0003	0.26	30
SUM			6600

 $\Delta(A_{CP}) = 1.2 \times 10^{-2}$

7.14

CM Energy: 4.03 vs. 4.14 GeV

- BES measurment at $\sqrt{s} = 4.03$ GeV: $\sigma(e^+e^- \rightarrow D^0 \overline{D}^{*0} + c.c.) = (2.55 \pm 0.12 \pm 0.25)$ nb
- Prediction: $\sigma(e^+e^- \rightarrow D^0 \overline{D}^{*0} + c.c.)$ maximum at 4.03:

• 4.14 GeV: $D^*\overline{D}^* p_{D^0} < 0.620$, $D\overline{D}^* p_{D^0} > 0.530$ p_{D^0} from $D\overline{D}^*$ and $D^*\overline{D}^*$ overlaps at $\sqrt{s} = 4.14$ GeV. **Tagging Summary**

Channel	PDG'94 Br	Br error	efficiency	Br * efficiency
$K_{\rm s}\pi^0$	0.0103	0.0013	0.26	0.0027
$K_{\rm s}\rho^0$	0.0055	0.0009	0.42	0.0023
KK	0.0045	0.0003	0.50	0.0023
ππ	0.0016	0.0001	0.80	0.0013
Ksω	0.0100	0.0020	0.13	0.0013
$ ho\pi^0$	0.0020	←est.	0.38	0.0008
$K_{\rm s}\eta$	0.0034	0.0006	0.12	0.0004
Ksφ	0.0043	0.0006	0.05	0.0002
K _s K _s	0.0003	0.0001	0.26	0.0001
SUM				0.0114

• Final states shared by D^0 and \overline{D}^0 .

1

• Flavor-tagging D^0 hadronic decays

Channel	PDG'94 Br	Br error	efficiency	Br * efficiency
Κπ	0.0410	0.0014	0.64	0.0264
$K\pi\pi^0$	0.1380	0.0100	0.23	0.0318
Κπππ	0.0810	0.0050	0.36	0.0294
$K\pi\pi^0\pi^0$	0.1500	0.0500	0.08	0.0121
SUM				0.0997

• Flavor-tagging D^0 semileptonic decays

Y ¥				
Channel	PDG'94 Br	Br error	efficiency	Br * efficiency
Kev	\0.0368	0.0021	0.71	0.0261
Κμν	0.0368	0.0021	0.57	0.0210
πεν	0.0039	0.0016	0.71	0.0028
πμν	0.0039	0.0016	0.57	· 0.0022
SUM				0.0521

Semileptonic Flavor Tagging

• $e^+e^- \rightarrow D^0 \overline{D}^0 \gamma \rightarrow (sfs)(semileptonic)\gamma$ at 4.03 GeV

- Reconstruct γ . Photons from both $D^{*0} \rightarrow D^{0} \gamma$ (0.10 GeV $< p_{\gamma} < 0.18$ GeV) and $D^{*0} \rightarrow D^{0} \pi^{0} \rightarrow D^{0} \gamma \gamma$ (0.04 GeV $< p_{\gamma} < 0.12$ GeV) are easily seen by CsI calorimeter. (*efficiency* ~ 0.7)
- Require missing mass ~ 0, *i.e.* consistent with a v.
- Require: 1 'monochromatic D' plus 1 D consistent with $D^{*0} \rightarrow D^0 \gamma$
- $N_{\text{events}}[e^+e^- \rightarrow D^0 \overline{D}^0 \gamma \rightarrow (\text{sfs})(\text{semileptonic})\gamma]$ = $13 \times 10^3/\text{yr}$
- $\Delta(A_{CP}) = 8.6 \times 10^{-3}$

Hadronic Flavor Tagging

• $e^+e^- \rightarrow D^0 \overline{D}^0 \gamma \rightarrow (sfs)(hadronic)\gamma$

• At 4.03 GeV, can distinguish $e^+e^- \rightarrow D^{*0}\overline{D}^0 \rightarrow D^0\overline{D}^0\gamma$ and reject $e^+e^- \rightarrow D^{*0}\overline{D}^0 \rightarrow D^0\overline{D}^0\pi^0$ kinematically! (*efficiency* ~ 0.74)

- Require: 1 'monochromatic D' plus

 D having p inconsistent with D^{*0} → D⁰π⁰

 Alternatively, reconstruct γ with efficiency ~0.7.
- $N_{events}[e^+e^- \rightarrow D^0 \overline{D}^0 \gamma \rightarrow (sfs)(hadronic)\gamma] = 27 \times 10^3/yr$ • $\Delta(A_{CP}) = 6.1 \times 10^{-3}$

Inclusive Flavor Tagging?

- Use same list of shared final states (sfs) for D^0 and \overline{D}^0 .
- Inclusive D^0 flavor tags

Inclusive	PDG'94 Br	efficiency	Br * efficiency
Channel			
Kright sign	0.5300		
Kwrong sign	0.0340		
Kright - wrong	0.4960	0.80	0.40
lepton	0.1620	0.75	0.12
Correlated			0.47
Sum			

- Reconstruct transition γ from $e^+e^- \rightarrow D^{*0}\overline{D}^0 \rightarrow D^0\overline{D}^0\gamma$ γ reconstruction efficiency ~ 0.7
- Require:

- $N_{\text{events}}[e^+e^- \rightarrow D^0\overline{D}^0\gamma \rightarrow (\text{sfs})(K^{\pm}X, l^{\pm}X)\gamma] = 120 \times 10^3/\text{yr}$
- $\Delta(A_{CP}) = 2.9 \times 10^{-3}$
- A serious background study is required before this method can be taken seriously!

Conclusions

- A $\mathcal{T}CF$ can measure a time-integrated, mixing-induced, CP asymmetry in the process $\sigma(e^+e^- \to D^0\overline{D}^{*0} + c.c. \to D^0\overline{D}^0\gamma.$
- The preferred \sqrt{s} for this measurement is 4.03 GeV.

In one
$$\mathcal{T}CF$$
 year (200 day year at $L=10^{33}$):

$$N_{\text{events}}[e^+e^- \rightarrow D^0 \overline{D}^0 \gamma \rightarrow (\text{sfs})(\text{semileptonic})\gamma]$$

$$= 13 \times 10^3/\text{yr}$$

$$N_{\text{events}}[e^+e^- \rightarrow D^0 \overline{D}^0 \gamma \rightarrow (\text{sfs})(\text{hadronic})\gamma]$$

$$= 27 \times 10^3/\text{yr}$$

- Both samples combined: $\Delta(A_{CP}) = 5.0 \times 10^{-3}$.
- "Interesting" sensitivity for new physics beyond the Standard Model.