Fermilab Fixed Target Charm Program

•

-

-

John Cumalat University of Colorado

Tau-Charm Factory Workshop SLAC Stanford, California August 15, 1994

Charm Particle Yield from Fixed Target Experiments

- 1. Experiments with 10,000 Reconstructed, 10⁶ Produced
 - (a) E691-1985 photoproduction, > 10K events
 - (b) NA-32-1986 hadroproduction 3-4K range
 - (c) E687-1988, photoproduction, 10K events
 - (d) E653-1988, hadroproduction, 10K events
 - (e) E769-1988 hadroproduction -6-7K range
 - (f) WA-89-1993, Hyperon Beam 6-7K range
 - (g) WA-92-1993, hadroproduction 10K range
 - (h) E771-1992 π^- beam, limits on $D^0 \to \mu\mu$
 - (i) E789-1992 p beam two-arm spectrometer ???
- 2. Experiments with 100K Reconstructed and 10^7 Produced
 - (a) E687-1991, photoproduction
 - (b) E791, hadrons (200K evts?)
- 3. Guess at the e^+-e^- competition by end of 1995
 - (a) CLEO II $5 \times 10^6 B\bar{B}$ events
 - (b) LEP 3×10^6 Z's and $6 \times 10^5 D\bar{D}$ events
- 4. Experiments with 1,000,000 Reconstructed, 10⁸ Produced
 - (a) E831 1996-1997? photoproduction
 - (b) E781 Charm Baryons??? hadron beam

Will run m next fixed target run

- (c) CLEO III ???
- (d) B Factory ???
- (e) τ -Charm Factory

Charm Baryons from E781 (Jim Russ) Z beam, new spectrometer Goals A. Weak Decay Physics 1) Precision lifetimes, Nt, Et, De ~ 3% ii) Baryon semileptonic decays Spectroscopy В. () Comprehensive description of J^Pstructure + hyperfine splittings C. Production Mechanisms i.) Leading particle effects ii) X_F dependence ici) Elucidate role of diquarks w) ccq boryons

Negative Beam Fraction at Pt=0, z=10m

E-781 : High Momentum Hyperon Experiment

- Charm Baryon Production 0.1<×<1.0 Goals: Primakoff Studies of Hybrid Mesons (999) Hadronic Structure Studies (EMFF, Polarizabili New Feature: On-Time Charm Trigger Beam : <650 Gev Z, p=0 production Id: Beam TRD e TRD Downstream Spectrometer: RICH 8- cal n-cal (?...) Bean Momentum Definition \$P/p~1% Scattered Particle: 00 v 30 unad @ 100 Gev/c; 130 unad@ 15 Ge P v 0.05 % @ 500 GeV/c', 2℃ at 15 GeV 3 Stage Magnetic Spectrometer Soft pions from D^*, D^*_s, Λ^* Stage 1 Second Charm
 - Stage 2 Trigger Charm EMFF, Hybrid Tracking stage 3 Very High Energy A decays Forward Physics

EVENT SIMULATION :

600 GeV T- CARBON INTERACTION (FRITIOF PROGRAM)

Abb Act → pK"x" EVENT AT Kp ROMT; RESCALE BACKGROUND PE TO CONSERVE EPE: = 600 GeV.

TRACK ALL CHARGED PARTICLES; DEMAND THAT HARDWALE TRIGGER CONDITION (S SATISFIED.

WHAT IS THE PHYSICS YIELD FROM E - 781? CONSIDER THE "CLASSIC" DECAY $\Lambda_e^+ \rightarrow p K^- \pi^+$ PRESENT WORLD DATA SETS DOMINATED BY CLEO $\wedge 6000 \Lambda_e^+ \rightarrow p K^- \pi^+$ NO VTX INFO. $3/8 \stackrel{<}{\times} \frac{1}{5}$ $E687 \sim 1500 \Lambda_e^+ \rightarrow p K^- \pi^+$ LIFETIME MCADEL $5/8 \sim \frac{1}{5}$

USING MEAJURED HADRONIC CROSS SECTIONS AND SIMULATION -BASED RECONSTRUCTION EFFICIENCIES, E781 EXPECTS INCLUDES: PRIMARY VTX [100,000 Act -> pK-T+] LIFETIME MEASUREMEN SECONDARY VTX No AMBIGUOUS TRACKS S/B ~ 1/1.5

inani ing kanala ing ka

COMPARABLE GAIN IN STATISTICS.

- GOOD SEMILEPTONIC DATA
- RARE DECAY CHANNELS A P+T FOR

-i's

POLARIZATION STUDIES

FOR C-3 BARYONS, PREJENT SAMPLES ARE "A FEW HUNDAG

FROM WA B9 MEALUREMENTS IN A HYPERON BEAM, E781

EROSCIS	> 52, 000	€+ → Λ ×- π+ x+
	> 57, 000	€°→ΛΚ⁻π→
	> 5,000	$\Omega_c^{\circ} \rightarrow \Xi^{+}\kappa^{-}\pi^{+}\pi^{+}$

ALONG WITH SEMI-LEPTONIC DATA AND MANY OTHER MADES

Fermilab E687 Collaboration

•

:

÷

	1	:	P.L. Frabett	j		,	
HW	K. Cheme, J.P.	Cumalat -C Da	Bologna, Ita	lly Finkat S V	Concern NV I		N7.1
	:		Colorado	. Uilikei, 5. v.	Oreene, w.1	2. Johns, M.S.	Nehring
J.N. B	utler, S. Cihang	rir. I. Gaines. P.H	I. Garbincius.	L. Garren S	A Gouday I) Uardina D	Vacant
		A. Kre	vmer. P. Lebr	n. S. Shukla	s. Oounay, L	J. Halung, F.	. Rasper,
	i i		Fermilab	, et energe		•	
		S. Bianco,	F.L. Fabbri, S	. Sarwar. A. 2			
			Frascati, It	aly			
		R. Culbertson,	, R.W. Gardner	r, R. Greene,	J. Wiss		
		<u> </u>	s, Urbana-Cl	nampaign			
G. Alim	onti, G. Bellini,	B. Caccianiga, I	L. Cinquini, M	. Di Corato, I	A. Giammarc	hi, P. Inzani, F	Leveraro,
- 5. Maivez	zi, D. Menasce,	E. Meroni, L. N	loroni, D. Ped	rini, L. Perass	o, A. Sala, S.	. Sala, D. Torre	ta, M. Vitte
		D. Duchhala	NFN-Milano,	Italy			:
	•	D. Buchnoiz,	D. Claes, B. G	\mathbf{O}	eilly		t
I.M.I	Rishon NM Co	SOD CI Kanna	Northweste				:
	sistop, Mari, A		a Sprintek 7.	I.F. LIN, D.L. V. W.,	. Puseljic, R.	C. Ruchti, W.I	D. Shephard
	•		-Notro-Dom	1. wu			<u>.</u>
	V.Arena. (Boca. C. Cast	Notie Daliji	- i S P Patri	C Disserti) D Minuto	
· ·			Pavia, Italy	, J. F. Kalu,	C. Riccarul,		:
<u>'-</u>			A. Lonez			•	
•		Pue	rto Rico. Ma	aquez			
•		G.P. Grin	.V.S. Paoloo	C. P.M. Yager		* * 	
			UC, Davis			;	
	:		J.R. Wilson			1	•
!		S	outh Carolin	a		:	1
			P.D.Sheldon			1	i
			Vanderbilt				
			F. Davenport	· ·			•
• •		Νοπι	i Carolina, A	shville			1
		Α/	J.r. Filasetta	·			1
		G P Black	M Dichard	UCKY hu T Nordia			•
-		U.R. Dial M	-Tonnecco	y, I. riandle	[:
···· •• •		B.G.C	hean. IS Ken	KY Kim			
:		2.0.0	Korea. Kor	9, 13, 1 , Faiki 9 9	Î I		
	•			~ ~	:	•	
					:		

:

ł

E6 87-E831

A High Statistics Study of States Containing Heavy Quarks Using the Wideband Photon Beam and the E687 Multiparticle Spectrometer

G.P.Grim, V. Paolone, R.L. Lander, P.M. Yager, University of California-Davis

L. Cinquini, J.P. Cumalat, J. Ginkel, S.V. Greene, W.Johns, M.Nehring, E. Vaandering, University of Colorado, Boulder

J. Butler, H. Cheung, S. Cihangir, I. Gaines, L. Garren, P.H. Garbincius, L. Garren, S. Gourlay, D.J. Harding, P. Kasper, A. Kreymer, P. Lebrun, S. Shukla, D. Toretta, *Fermilab*

S. Bianco, F.L. Fabbri, S. Sarwar, A. Zallo, Laboratori Nazionali di Frascati dell INFN

R. Culbertson, R.W. Gardner, D. McGlaughlin, A. Rahimi, J. Wiss, University of Illinois at Urbana-Champaign

B.G. Cheon, Y.S. Chung, J.S. Kang, K.Y. Kim, K.B. Lee, Korea University

B. Govorkov, Lebedev Physical Institute

G. Alimonti, G. Bellini, M. Boschini, B. Caccinagi, P. D'Angelo, M. Di Corato, P. Inzani, F. Levararo, P.F. Manfredi, D. Menasce, L. Moroni, D. Pedrini, F. Prelz, A. Sala, S. Sala, Dip. di Fisica dell'Universita' and INFN - Milan

F. Davenport, University of North Carolina-Asheville

N. Cason, J. LoSecco, W. Shephard, University of Notre Dame

V. Arena, G. Boca, G. Bonomi, M. Cambiaghi, G. Gerard, G. Gianini, G. Introzzi, G. Liquori, S. Malvezzi, S. Ratti, C. Riccardi, R. Torre, L. Viola, P. Vitulo, Dipartmento di Fisica Nucleare e Teorica dell'Universita' and INFN - Pavia

J. Alemar, A. Lopez, L. Mendez, R. Wolfe, University of Puerto Rico at Mayaguez

D. Friddell, J. Wilson, University of South Carolina M. Purchit

G. Blackett, W.M. Bugg, G.T. Condo, K. Danyo, T. Handler, M. Pishardody, University of Tennessee

J.W. Cao, P. Sheldon, M. Webster, Vanderbilt University

M. Sheaff, University of Wisconsin, Madison

Physics of a High Statistics Charm Experiment

1. $D^0 - \overline{D^0}$ Mixing and Doubly-Suppressed Cabibbo Decays

300K

~ 6010

D°-> K-et N ~ 10k D#

 $D^{o} \rightarrow K \pi^{+}$

- (a) Classic Mechanism using the well-known box diagram predicts mixing at the 10^{-6} level, but long distance effects may be important and estimates are as large as 5×10^{-4} .
- (b) Conclusively identify several DCSD channels, D^+ is clearest with signature not confused with mixing. Sample channels are $D^+ \rightarrow K^+K^+K^-$, $D^+ \rightarrow K^+\pi^+\pi^-$, $D^+ \rightarrow K^+\rho^0$, and $D^+ \rightarrow K^+\omega$.
- 2. Absolute Branching Fractions
 - (a) CLEO value 2% Statistical and 4.4% Systematic
 - (b) Measurement of BR $(K^-\pi^+)$ to 2% or better
 - (c) Measurement of BR $(K^-\pi^+\pi^+)$ to 3% or better
- 3. Semileptonic Decays
 - (a) Measurement of $|V_{cs}|$ to 1%
 - (b) Measurement of $|V_{cd}|$ to 2% $\mathcal{D}^{\bullet} \to \pi^{-} \mu^{+} \kappa^{-} \sim ZK$
 - (c) Measurement of $|V_{cd}|/|V_{cs}|$ to 1.5%
 - (d) Measurement of vector and axial vector form factors might be used to predict the Beauty form factors

Fixed Target D^o Absolute Branching Ratios

1. Basic idea

(a) Fully reconstruct a recoil charm particle ($\overline{D}^{(r)}$)

- (b) Find $\tilde{\pi}$ from $D^{*+} \to \tilde{\pi}^+ D^o$ Decays
 - Correlate $\tilde{\pi}$ charge and P_t with $\overline{D}^{(r)}$
 - The $\overline{D}^{(r)}$ serves to "tag" the $\tilde{\pi}$
- (c) Reconstruct specific πD^o final state against $\overline{D}^{(r)}$

$$BR(K\pi) = \frac{1}{\epsilon} \frac{(K\pi)\tilde{\pi}^+}{()\tilde{\pi}^+}$$

• Statistics limited –both D and $\overline{D}^{(r)}$ reconstructed!

•. Combine several channels to improve statistics.

Expect $\pm 2.5\% \rightarrow 4\%$ fractional errors

IN E831

Rapidity difference

0

-2

2

D

Normalized DDbar Mass

Y-325.28 + 22.93

H-0.03799 + .0907

 $D^+ \to \overline{K}^{*0} \mu \nu$ Form Factors

1. As $M_{\ell} \rightarrow 0$:

H_± = α A₁ (t) ∓ β V(t)
H_o = δ A₁ (t) − ε A₂(t)
α(t, M_{Kπ}, K), β(t, M_{Kπ}, K), δ(t, M_{Kπ}, K), ε(t, M_{Kπ}, K)
α, β, δ, and ε are functions of t, M_{Kπ}, and K
2. Following E691:

$$R_V = \frac{V(0)}{A_1(0)} , \quad R_2 = \frac{A_2(0)}{A_1(0)}$$
$$F(t) = \frac{F(0)}{1 - t/M_p^2}$$

•
$$M_V = 2.1 \ M_{A_1} = 2.5 \ M_{A_2} = 2.5$$

3. Polarization:

$$\frac{dN}{d\Omega} \propto 1 + \left(\frac{2\Gamma_{\ell}}{\Gamma_t} - 1\right) \cos^2 \theta_v$$

$$\frac{\Gamma_{\ell}}{\Gamma_{t}} = \frac{\int dt \ G(t) \ |H_{o}(t)|^{2}}{\int dt \ G(t) \ (|H_{+}(t)|^{2} + |H_{-}(t)|^{2})}$$

• G(t) depends on M_{ℓ}

: •

Experiment comparisons

Comparing Experiment to Theory

A Fixed-target Average

Exp	R_2	R_v	Γ_l/Γ_t	
E687/E691/E653	.74±.14	$1.86 \pm .20$	$1.21 \pm .10$	

• The confidence level that the three experiments agree on R_2 and R_v is 60%.

• Compute confidence level (CL) of agreement between this and theory

Authors	CL(%)	R ₂	R_v	Γ_l/Γ_t
BSW ¹	1	1.31	1.44	.91
KS ¹	1	1.0	1.0	1.16
AW/GS ¹	99	.75	1.88	1.20
BBD ²	7	$1.2 \pm .2$	$2.2\pm.2$	$.86 \pm .11$
ELC ³	47	.01 ± .7	$1.63 \pm .27$	$1.84 \pm .63$
BES ³	95	$.70 \pm .16 \stackrel{+.20}{15}$	$1.99 \pm .22 \stackrel{+.31}{_{35}}$	$1.21 \pm .12 \ ^{+.15}_{13}$

¹ Quark models, ²QCD sum rules, ³Lattice

 $D_s^+ \rightarrow \phi \mu \nu$ Form Factors

All Exp:

- .

1. Reconstruct the decay as for the D^+ case

2. no WS

Exp	mode	sample	fit to	Method	
E653	μ	19	$ heta_v,\! heta_\mu,\!t$	MC wht	
E687	μ	90 ± 12	$ heta_v,\! heta_\mu,\!t,\!\chi$	MC wht bins	

• Statistically dominated

	R_v	R_2	Γ_ℓ/Γ_t
E653	$2.3 \ ^{+1.1}_{-0.9} \pm 0.4$	$2.1 \ ^{+0.6}_{-0.5} \pm 0.2$	$.54\pm.21\pm.10$
E687	$1.8\pm0.9\pm0.2$	$1.1\pm0.8\pm0.1$	$1.0\pm.5\pm.1$
E653 (D ⁺)	$2.00 \stackrel{+.34}{_{32}} \pm .16$	$.82 \stackrel{+.22}{23} \pm .11$	$1.18\pm.18\pm.08$
E687 (D^+)	$1.74 \pm 0.27 \pm 0.28$	$0.78 \pm 0.18 \pm 0.10$	$1.20\pm.13\pm.13$

• E687 consistent with $D_s^+ \approx D^+$

• E653 R_2 may disagree

E831 Extrapolations

	Now (K^*)	$K^*\mu u$	$\phi\mu u$	ρμν
		20 000	2250	500
$\sigma(R_v)$	±.20	.05	.15	.32
$\sigma(R_2)$	±.14	.04	.11	.23
$\sigma(\Gamma_{\ell}/\Gamma_t)$	±.10	.02	.06	.13
$\sigma(M_v)$	(±.10)	.16	.50	1.0
$\sigma(M_a)$.38	1.2	2.5

- Theoretical uncertainty $\approx 5\%$
- Background Systematics ≈ 10 %
 - But > statistics leads to > understanding.

Full expression for the rate $\frac{d\Gamma}{dE_{\star}} = \frac{G_F^2}{4\pi^3} |V_{cs}|^2 \left| f_+(q^2) \right|^2 P_K \left(\frac{W_0 - E_K}{F_0} \right)^2$ $\left| \frac{1}{3}m_D P_K^2 + \frac{1}{3}m_l^2 \frac{P_K^2}{F_0} \right|$ $+\frac{m_l^2}{8m_D}(m_D^2+m_K^2+2m_DE_K)$ $+\frac{1}{4}m_l^2\frac{m_D^2-m_K^2}{m_D}Re\left(rac{f_-(q^2)}{f_+(q^2)}
ight)$ $+rac{1}{4}m_l^2F_0\left|rac{f_-(q^2)}{f_+(q^2)}
ight|^2
ight|,$ $W_0 = \frac{m_D^2 + m_K^2 - m_l^2}{2m_D},$ $F_0 = W_0 - E_K + \frac{m_l^2}{m_D}$

• Must measure both muon and electron modes to get f_{-} behavior

• Other experiments M_{pole} compared to E687

Exp.	Mode	m_{pole}	
E691	$K^-e^+\nu_e$	$2.1^{+0.4}_{-0.2}\pm0.2$	
CLEO(91)	$K^-e^+\nu_e$	$2.1\substack{+0.4+0.3\\-0.2-0.2}$	
MKIII	$K^-e^+\nu_e$	$1.8\substack{+0.5+0.3\\-0.2-0.2}$	
CLEO(93)	$K^-l^+ u_l$	$2.0 \pm 0.12 \pm 0.18$	
E687	$K^-\mu^+ u_\mu$	$1.98\substack{+0.13+0.04\\-0.10-0.10}$	₩

Mpole = 1.99+.11

* Preliminary

.

• Other experiments $f_+(0)$ compared to E687				
Exp.	Mode	$ f_{+}(0) $		
E691	$K^-e^+\nu_e$	$0.79 \pm 0.05 \pm 0.06$		

CLEO(91)	$K^-e^+\nu_e$	$0.81 \pm 0.03 \pm 0.06$	
MKIII	$K^-e^+\nu_e$	$ V_{cs} (0.72 \pm 0.05 \pm 0.04)$	
CLEO(93)	$K^-l^+\nu_l$	$0.77 \pm 0.01 \pm 0.04$	
E687	$K^-\mu^+ u_\mu$	$0.730^{+0.020+0.029}_{-0.021-0.033}$	*∀
		* use Vcs =, 9743	

* preliminary

 $D^o \to K^- \ell^+ \nu$ form factor

- Find $\Gamma(K\mu\nu)$ using abs. BR, τ
- assume V_{cs}

- assume simple pole
- integrate to find: $|f_+(0)|$

Exp.	Mode	m _{pole}	<i>f</i> ₊ (0)
E691	$K^-e^+\nu_e$	$2.1^{+0.4}_{-0.2}\pm0.2$	$0.79 \pm 0.05 \pm 0.06$
CLEO(91)	$K^-e^+\nu_e$	$2.1\substack{+0.4+0.3\\-0.2-0.2}$	$0.81 \pm 0.03 \pm 0.06$
CLEO(93)	$K^-l^+\nu_l$	$2.00 \pm 0.12 \pm 0.18$	$0.77 \pm 0.01 \pm 0.04$
MKIH	$K^-e^+\nu_e$	$1.8^{+0.5+0.3}_{-0.2-0.2}$	$ V_{cs} (0.72 \pm 0.05 \pm 0.04)$
E687	$K^-\mu^+ u_\mu$	$1.98^{+0.26+?}_{-0.10-?}$	070 10.041?
		.1069	0.73 + .02 + . 02

E687 #'s are **PRELIMINARY**

$$q^{2} \text{ Dependence:} \qquad \text{All consistent with } D_{s}^{*} = 2.1 \text{GeV pole} \\ \bullet \text{ CLEO II: } f_{+}(q^{2}) = f_{+}(0)e^{\alpha q^{2}} \\ \alpha = .29 \pm .04 \pm .06 \\ f_{+}(0): \qquad \text{Agrees with predictions } (\approx .7) \\ (\underline{D}^{\circ} \rightarrow \underline{k}^{-}\underline{\mu}^{+}\underline{\mu}^{-}) = 0.86 \pm 0.028 \pm .042 \\ (\underline{D}^{\circ} \rightarrow \underline{k}^{-}\underline{\pi}^{+}) = 0.86 \pm 0.028 \pm .039 \\ \end{array}$$

1.

 $D^+ \to K^* \mu^+ \nu$ mimics $D^+ \to \rho \mu^+ \nu$ (Loose \check{C})

4. Leptonic Decays – f_D pseudoscalar decay constant

- (a) Involves observing $D^+ \to \mu \nu_{\mu}, D^{+*} \to D^+ \pi^0$
- (b) Also search for $D_s^+ \to \tau^+ \nu_{\tau}$
- 5. D_s^+ Decays
 - (a) 20,000 $D_s^+ \to K^+ K^- \pi^+$
 - (b) Study excited states

6. Λ_c^+ Decays

- (a) 20,000 pK^{- π^+}
- (b) Absolute Branching Ratio (20% or better)
- (c) Search for new modes (containing neutrons) using the Λ^{+*} tags
- 7. D^{**} States
 - (a) Look at carefully with very clean Double D samples
- 8. Charmed Baryon Spectroscopy and Lifetimes
 - (a) Demonstrated ability to form states with Λ^0 , Σ^{\pm} , Ξ^- , and Ω^-
 - (b) New ability to use Ξ^0 as a daughter decay particle
 - (c) Search for Doubly-charmed baryons
- 9. Hadronic Decays of the D^0 and D^+
 - (a) Improved Dalitz Plot Analysis
 - (b) Ability to use K_L^0 with new hadron calorimeter

- 10. Study charm production dynamics and make a detailed comparison with models
 - (a) Double charm events will be particularly useful (10K events)
- 11. Rare Decays
 - (a) Set limits for D⁰ decays to $\mu^+\mu^-$ and e^+e^-
 - (b) Set limits for $D^0 \to \rho \gamma$ and $D^0 \to K^* \gamma$
- 12. Forbidden Decays

(a) $\mu^+ e^-$

13. CP Violation Sensitivity

(a) Difference in rates between D^0 and $\overline{D^0}$ decays using the D^* as a tag

(b) Polarization tests using $D^+ \to \overline{K^{0*}}K^{+*}$

E831 should lower E687 by factors of 10-80

	SU/S CD Opper Da	Tiero	Deer	10771	1700	1701	DDC	(
Туре	Mode	E023	F081	E(()	E18A	D1AT	rug	(expt.)
FCNC	$D^0 \rightarrow e^+ e^-$						13	MK3
	$D^0 \rightarrow \mu^+ \mu^-$		2.7	1.2	3.1		1.1	E615
	$D^0 \rightarrow \rho^0 e^+ e^-$						45	CLEO
	$D^0 \rightarrow \rho^0 \mu^+ \mu^-$	24					81	CLEO
	$D^0 \rightarrow \pi^0 \mu^+ \mu^-$	17						
	$D^0 \rightarrow \overline{K}{}^0 e^+ e^-$						170	MK3
	$D^0 \rightarrow \overline{K}{}^0 \mu^+ \mu^-$	25						
	$D^+ \rightarrow \pi^+ e^+ e^-$						250	MK2
	$D^+ \rightarrow \pi^+ \mu^+ \mu^-$	22	9.7			4.6	290	CLEO
	$D^+ \rightarrow K^+ e^+ e^-$						480	MK2
	$D^+ \rightarrow K^+ \mu^+ \mu^-$	33	8.5				920	MK2
	$D^+ \rightarrow \rho^+ \mu^+ \mu^-$	58						
	$D_{\bullet}^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$	60						
	$\Lambda_c^+ \rightarrow p \mu^+ \mu^-$	33						
LFNV	$D^0 \rightarrow \mu^{\pm} e^{\mp}$						10	ARGUS
	$D^+ \rightarrow \pi^+ \mu^+ e^-$						330	MK2
	$D^+ \rightarrow \pi^+ e^+ \mu^-$						330	MK2
	$D^+ \rightarrow \pi^+ \mu^\pm e^\mp$						380	CLEO
	$D^+ \rightarrow K^+ \mu^+ e^-$					Í	340	MK2
	$D^+ \rightarrow K^+ e^+ \mu^-$						340	MK2
LNV	$D^+ \rightarrow \pi^- e^+ e^+$			-			480	MK2
	$D^+ \rightarrow \pi^- \mu^+ e^+$		ł				370	MK2
	$D^+ \rightarrow \pi^- \mu^+ \mu^+$	20	17				680	MK2
	$D^+ \rightarrow K^- e^+ e^+$						910	MK2
	$D^+ \rightarrow K^- \mu^+ e^+$				1		400	MK2
	$D^+ \rightarrow K^- \mu^+ \mu^+$	33	20				430	MK2
·	$D^+ \rightarrow \rho^- \mu^+ \mu^+$	60						
1	$D_{\bullet}^+ \rightarrow K^- \mu^+ \mu^+$	60						
	$\Lambda_c^+ \rightarrow \Sigma^- \mu^+ \mu^+$	72						
Wo	rking on	av	num	ber	for	ead	n er	stry

Using sidebands in the dimuon invariant mass spectrum to estimate the background in the D⁰ mass region, they find -4.1 ± 4.8 candidate events, and set a limit of $BR(D^0 \rightarrow \mu^+ \mu^-) < 1$ 3.1×10^{-5} (90% CL). They believe it is possible that their limit will drop below 1.0×10^{-5} when they include all of their data.

1.2.3 E771 ($D^0 \rightarrow \mu^+ \mu^-$ Search)

1.

Fermilab E771 also has a preliminary limit on $BR(D^0 \rightarrow \mu^+ \mu^-)$, from data collected during the 1990-91 fixed-target run with the 800-GeV primary proton beam (interacting in

CP A	symmetry: (Fo-Fo)/	$(\Gamma_0 + \Gamma_{\overline{o}})$
D°, K+K-	E687 <u>Measurement</u> 0,024 ± 0,084	E831 Extropolation A _{CP} ± 0.03
D ⁺ → K ⁻ K ⁺ π ⁺	-0.031=0.068	$A_{cp} \pm 0.02$
D+→ K*°K+	12 ± 0.13	A _{cp} ± 0.04
$D^{+} \rightarrow \phi \pi^{+}$	0.66620.086	Acp = 0.04
Assimo		IL T

HSSUMES NO IMPROVEMENT = in Signal to noise from E687

Plan to Increase our Charm Yield a Factor of 10

• Increase DAQ and Efficiency by a factor of two

1. Previous livetime was 60%

- 2. Improve Trigger Change Hadron Calorimeter to Scintillator
- 3. Detector Upgrades
 - (a) Faster and thinner Microstrip
- (b) Segmented Target

• Increase Beam Flux a factor of five

• Assume that we have a year run - same amount of beam as there was in 1990 and 1991 Running periods

Figure 3: Steps required to produce a bremsstrah. ang photon beam

- 350 GeV electron beam with \pm 13% momentum spread.
- 30% radiator.

Mean Energy 221 GeV

Method for Obtaining Higher Flux

 \bullet Also Use Positron Beam $\times 1.5$

• Change the Secondary Energy

• Reduce Material in Beamline

• Use More Intense Primary Proton Beam 6×10^{12}

1. Only need 4.5 $\times 10^{12}$ scaling from last run

• Coherent Bremstrahlung Beam

1. Consulted Experts From Europe (Uggerhoj)

2. Calculations underway (Bologna and Artru)

	Planned Changes	350 GeV	$250~{ m GeV}$
	Add Positrons	1.5	1.5
	Proton Energy to 900 GeV	1.88	1.68]
	Secondary Energy (includes σ_c)	1.0	(2.65) 2.0
1	Reduce Material in Beamline	1.1	1.1
-	More Intensity	1.5	1.5
	Total	2.5	5.0

[8.4]

* Actual Measurements

¥.

Straw Tubes

E831 Changes from E687

- 1. SSD
 - (a) Faster
 - (b) Thinner
- 2. MWPC
 - (a) Lower gain get more efficiency
 - (b) Deaden Central Region
 - (c) Add straw tubes in central region to keep good efficiency
- 3. New fast Hadron Calorimeter
 - (a) Tower Geometry
 - (b) Scintillating tiles
- 4. Segmented Target
 - (a) Allows for 50% of D^{0} 's to decay outside of target
- 5. Upgraded and expanded muon system
 - (a) Expect at least a factor of 20 increase in decays containing muons
 - (b) Inner muon signals should have $4 \times$ better pion misidentification
 - (c) Outer muon detector to be made faster and will further increase our muon yields

- 6. Improved Electromagnetic Calorimetry
 - (a) Change from Scintillating fiber to Lead Glass
 - (b) Outer Electromagnetic calorimeter to have better pattern recognition
- 7. New Data Acquisition System
- 8. Improved trigger
 - (a) Transverse Energy Trigger
 - (b) Zero degree blind counter
- 9. Improved Monte Carlo
 - (a) Allows for many more particles
 - (b) Ready to go from E687 Experience

Modifications to the E687 Apparatus

• Segmented Target

- 1. Segmented Target allows for better Signal to Noise
- 2. Denser Target allows for 50% of D^0 outside target
- 3. Diamond Target Could Be Instrumented (Colorado)

• Microstrip Detector (Milan Group)

- 1. Replace Preamps to shorten gate to 50ns
 - (a) Already submitted production of new monolithic preamps
- (b) New preamps have 20% reduced noise from old
 - 2. New frames, fanouts, and supports being readied
 - (a) Dissipate additional heat from new preamps
 - (b) G-10 to Alumina frames improves rigidity and reduces bowing
 - 3. Wafer thickness will be reduced
 - (a) Tests will be made on 250 micron and 140 micron thick pieces obtained from Micron Semiconductor.
 - (b) Decision on the thickness to be made in June 1994

Fig 10: Cutting downstream of the target

 $1/\sigma>10$ and $p/\sigma<3$, $z_{sec}>-.8$

Inner Muon Upgrade Progress

Overview

- 1. Augment p-tubes with scintillator arrays
- Goal 1 RF bucket timing
- 2. Two XY stations (MH1 & MH2)
 - (a) Fine pitch upstream array (MH1)
- Reduced MCS for tracking
 - (b) Coarse grain downstream array (MH2)
- Better hadron shielding
- 3. Spans $2 \text{ m} \times 3 \text{ m} (X \times Y)$
- Two 150 cm spans (X) & Two 100 cm spans (Y)
- 1 PMT per slab
- 4. Pitches
 - (a) 5 cm width MH1
 - 210 counters
 - (b) 10 16 cm width MH2
 - 64 102 counters

inches

- We need two more feet of iron!
- Will extra shield degrade track matching?

	$P imes \sigma$	
E687 system	20 mr-GeV	Exists
IE + HC	8.4 mr-GeV	
IE + HC + 60 cm Fe	10.8 mr-GeV	Planned

- About 30 % worse matching
- Still twice as good as E687! in each view!
- 2. Miscellaneous studies
 - (a) Optical simulations
 - (b) δ -ray abatement
 - (c) Overlap
 - (d) Cable choice

Conclusions

1. E831 will get to 10° or better
reconstructed charm
a) Anticipate cleaner signals in E831 than in E687
b) States containing electrons + muons chould see about ~ x20 improvement
c) Should do much better on states containing To's.
d) May be able to track several of the Dt + D's parent particles
2. E781 will produce a large sample of Charm Boryons a) 100K Nt -> pk πt
b) 50K $\Xi_{c}^{+} \rightarrow \Xi^{-}\pi^{+}\pi^{+}$
3. Very important to have different types of systematics @ limiting

types of systematics & limiting experiments as statistical errors decrease - FT, ete-, B-factory, E-Charm

4. Next step in my opinion is a very high statistics expl. at BNC or FNAL using large production o. AUG 12 '94 10:36AM

•

میں۔ پروست

Comparision lis	t of tau/charn	n measurem	ents				
topic	parameter	best	10	B	Fix	LEP	1
•	to be	measurement	factory	factory	target		
	measured	to date]
D0 abs BR							
Double Tag	kpi		-			· ·	
soft pi+	kpi	CLEO			2%		
D+ abs BR			[4
Double tag	kpipi		ļ				1
soft pi0	kpipi	CLEO			3%		1
Ds abs BR	phipi		<u> </u>		~ 5%		4
Double Tag		BES	ļ				1
D* abs BR							4
gam,pi+, pi0		CLEO					
Charm lifetimes		•]
	D0,D+,Ds	fix target			< 1%]
D semilept]
	Kenu, pienu						17 Soc attached
·····	K* e nu,rho e	nu					sheets
Ds semilept							
phi e nu		CLEO					$] \sim \phi e \sigma / \delta R \sim 2.57$
Ds leptonic							
double tag	mu nu, tau nu	BES]
mu + gamma	munu	CLEO					· ·
D+ leptonic							1
direct	mu nu tau nu	??					D*+-+ Nº D+
mu + pi0	munu	7?					La
D mixing							1
like sign mu		?					1
D*->rri+D		CLEO					1
decay len.		fix target					1
D*->pi+D							~ 5 × 10
double tag							
CP violation							1.
direct	Ds->K*K	fix target			to al		1
indirect	time integ.						
RARE charm	gamma+K*						
FAU							
mass		BES					11 xr _r
nu mass	3 gi Spi	ARGUS					I NO TS
		CLEO					
leptonic BR	enunu, mununu	CLEO					l'm.
3/5 prg BR							11 Exed
other BR							
michel param	Irho	LEP?		V			11 Targer
lifetime		LEP				-	1)
Due decavs	1						

P.2