Charmed Baryons and Spectroscopy at CLEO II

D.Besson University of Kansas

Tau-Charm Workshop SLAC August 15, 1994

Charmed Baryons and Spectroscopy at CLEO-II Given infinite preparation time on the part of the speaker, and infinite attention spans on the part of the audience, this talk would cover:

the second of

1. Charmed Baryon Studies at CESR (a) **Absolute decay rates** i. $\Lambda_c \rightarrow pK\pi$ (rel. to $\Lambda\ell\nu_\ell$, and from B-decay) • ii. $\equiv_c^+ \rightarrow \equiv^0 \ell\nu_\ell$ / $\underline{\equiv_c^+ \rightarrow \equiv^-\pi^+\pi^+}$, $\equiv_c^+ \rightarrow \equiv^-\pi^+$, $\equiv_c^+ \rightarrow \equiv^-\pi^+\pi^0$ iii. $\equiv_c^0 \rightarrow \equiv^-\ell\nu_\ell$, $\underline{\equiv_c^0 \rightarrow \equiv^-\pi^+}$ iv. Derived ratio of $\frac{\Gamma(\equiv_c^0)}{\Gamma(\equiv_c^+)} = \frac{\overline{\tau}_{\equiv_c^+}}{\overline{\tau}_{\equiv_c^0}}$

(b) **Inclusive Rates: $\Lambda_c \rightarrow \Lambda + X$, e.g.**

i. Charm-tagging: $\Lambda \leftarrow \rightarrow \ell$

ii. In B-decay: $\Lambda \ell$ correlations, $\Lambda_c (\rightarrow pK\pi)\ell$ correlations

. .

. . .

. ^

Figure 7. Invariant mass distribution of 2⁴5*5⁴ combinati > 0.5.

· · ·

Figure 8. Invariant mass distribution of 2"x"x" combinations a, > 0.5

(c) **Studies of exchange and W_{int} modes**

i. connection to $\tau_{\Lambda_c} \sim 0.5 \tau_{D^0} \sim \tau_{D_s}$

(d) Study of the $c \rightarrow s$ transitions in baryons

i. Determination of the form factors in $\Lambda_c \rightarrow \Lambda \ell \nu_{\ell}$. (Multidimensional Maximum Likelihood fit a la' E691 $D^0 \rightarrow K^* \ell \nu_{\ell}$).

ii. Weak Decay asymmetries

A. $\Lambda_c \rightarrow \Lambda \pi^+$ (agrees w/ low Q^2 prediction)

B. $\Lambda_c \rightarrow \Sigma^+ \pi^0$ (disagrees w/ theory)

(e) Production in e^+e^-

i. Where is compensation of baryon number?

ii. Fragmentation dynamics (f.f., e.g.)

2. **Meson spectroscopy at CLEO-II**

ζ.

2

e i sere s é

· •

۰.

(a) Precision
$$(1-/0-+)$$
 splittings
i. $D^{*0} - D^{0}, D^{*+} - D^{0}, D^{*+} - D^{+}, D^{*+}_{S} - D_{S}_{SOO ReV PRIJUON}$
(b) Studies of orbitally excited mesons
i. Mass measurements and Mass splittings
A. $D_{1}^{0} \rightarrow D^{*}\pi^{+}$
B. $D_{1}^{+} \rightarrow D^{*}\pi^{+}$
C. $D_{s1}^{+} \rightarrow D^{*}\pi^{+}$
C. $D_{s1}^{*0} \rightarrow D\pi^{+}, D_{2}^{*0} \rightarrow D^{*}\pi^{+}$
E. $D_{2}^{*+} \rightarrow D\pi^{+}, D_{2}^{*+} \rightarrow D^{*}\pi^{+} \leftarrow /S^{*}$ *High Stat. Cis.*
F. $D_{s2}^{*} \rightarrow DK$
ii. HQET tests:
A. D-wave nature of $D_{2}^{*+} \rightarrow D^{*}\pi^{+}$ decay
B. Ratios of BR's: $\frac{D_{2}^{*+} \rightarrow D\pi^{+}}{D_{2}^{*+} \rightarrow D^{*}\pi^{+}}$

3. Charmed baryon spectroscopy at CLEO-II
(a) **Masses and Widths of excitations**

i. Σ_c⁺ → Λ_cπ⁰, Σ_c⁺⁺ → Λ_cπ⁺, Σ_c⁰ → Λ_cπ⁻
ii. Λ_c^{*}(2593) → Λ_cπ⁺π⁻
A. Σ_c content
iii. Λ_c^{*}(2620) → Λ_cπ⁺π⁻

4. **Prospects for improvements**

(a) Outlook for 10 GeV e^+e^- studies of charmed baryons

uter Iron	Muon Chamber			•
Inner Iron				
Return Iron	n			
	Central Drift Chan	nber	And	netic Coil el Crystals e of Flight p Crystals ne of Flight
	PTL and VD		beam ripe	
<u></u>				

i

· · · · · · · ·

 Present running <u>V2NY AJ54</u>
 250/pb collected in Dec (~250 K BB ents.)
 Total of 2.5 M BB on tape comparable # CC, CC
 Run in <u>Y(2n)/Y(3n)</u> is precede coming shutdown Tir SVY wini, with francision it 9x3 maring

Systematics at 10 GeV

.

the second of the

Particle	CO Inclusive σ	BB Inclusive σ		
50	1.1 nb	1.20 nb		
$D^{0} + \bar{D}^{0}$	2×0.55 nb	2×0.60 nb		
$D^{+} + D^{-}$	2×0.25 nb	2×0.28 nb		
$D^* + \bar{D}^*$	2×0.40 nb	2×0.45 nb		
$D_s^+ + D_s^-$	2×0.15 nb	2×0.15 nb		
$D_s^{*+} + D_s^{*-}$	2×0.07 nb			
$D^{**0} + \bar{D}^{**0}$ (all L=1)	2×0.15 nb			
$\Lambda_c + \bar{\Lambda}_c$	2×0.10 nb	2×0.08 nb		
$\Lambda_{c}^{*}(2593) + \bar{\Lambda}_{c}^{*}(2593)$	2×0.01 nb	()		
2620 $\Xi_{c} + \Xi_{c}$	2×0.03 nb	2×0.015 nb		
$\Omega_c + \bar{\Omega}_c$	2×0.01 nb	2×0.01 nb		

B- as a source of charm has not been fully exploited. $B \rightarrow \Xi_c \Rightarrow \overline{\Xi_c}$ CLE094

Present sample~3/fb, 30/fb by 1999 (with Silicon vertexing) - 10K $\Lambda_c \rightarrow pK\pi$ at present

E-Ac, e.g. shows shong signats in Many channels

Why the Λ_c is sooooo interesting

 $c: c (S=1/2) + (ud) (S_{tot})=0$

Simplest decay picture: External W-emission, inert diquark. Expect: •

• $\Lambda_c \rightarrow \Lambda + X$ dominant

But:

- $\Lambda_c \rightarrow \Lambda + X \sim 35 \pm 11\%$ (PDG '94) (27±9% -NO B-decay, 57±12% from B-decay, 15±10% JPW thesis from continuum) (/99/)
- $\Lambda_c \rightarrow \Lambda \pi^+ \sim 0.5\%$ g: $\mathcal{D} \rightarrow \mathcal{K} \pi^* \approx 4\%$

• $\Lambda_c \rightarrow \Lambda \pi^+ \pi^0 \sim 1\%$ $\mathscr{G}: D^{\circ} \rightarrow \kappa \pi^+ \pi^{\circ} = 10\%$

•
$$\Lambda_c \rightarrow \Lambda \pi^+ \pi^- \pi^+ \sim 2\%$$
 $g: \mathcal{D} \rightarrow \mathcal{K} \pi^+ \pi^- \pi^+ \approx 10\%$

• $\tau_{\Lambda_c} \sim \tau_{D^o}/2 \implies$ large hadronic Λ_c decay + width, many modes⁶ other than simple Wext.

MORE A. JINTRIGUE! (cf. D7 KTT - 7%) · Az -> ATT~ O. 5% $\cdot \bigwedge \rightarrow \bigwedge \pi \pi \circ \sim /7$ ・人、 ラ /317~2% NJAX (MAL $\cdot \mathcal{T}_{\lambda_{c}} \sim (\mathcal{T}_{D^{o}} = \mathcal{T}_{D_{s}})/2$ More decay channels open to Λ_{c} . $pKr 3.4\% \Rightarrow int. spect. large:$ Granks Fringe Not hel. supplessed Understanding hadronic decays KEY:

Next.

FIG. 8. Projection of Dalitz plot in the previous figure onto (a) the $M^2_{\Lambda\pi^+}$ axis and (b) the $M^2_{\eta\pi^+}$ axis

- WEAR EVIDENCE FOR 280DY

FIG. 9. Invariant mass distribution for $\Lambda_c^+ \to \Sigma^+ \eta$

Λ_{c}^{+} decay mode	le Number of ever		Efficiency (%)		$\mathcal{B}/\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$	
$\frac{1}{p\bar{K}^0\eta} \qquad 53\pm10$			7.3		$0.25 \pm 0.05 \pm 0.04$	
$\wedge \eta \pi^+$ 109 ± 16		I.	8.5		$0.36 \pm 0.06 \pm 0.05$	
$\Sigma + \eta$ 25 ± 7			5.2		$0.10 \pm 0.03 \pm 0.02$	
$\wedge \bar{K}^0 K^+$	$\wedge \bar{K}^0 K^+$ 46 ± 8		7.9		0.11 ± 0.02	± 0.02
Source			Fractiona	al Error	(%)	·
		$pK_s^0\eta$	$\wedge \eta \pi^+$	$\Sigma^+\eta$	$\wedge K_s^0 K^+$	
$K_s^0, \Lambda, \text{ and } \Sigma$	+ finding	10	10	10	14	
π^0 f	inding	5	5	7		
Tracking ef	ficiency			4	4	
Proton and kaon	identification	8	2	2		
$pK^-\pi^+$ subs	tructure	7	2	2	5	
Λ^+ substru	ucture		6			
Uncertainties in σ_{+}		5	5	5	5	
Monte Carlo	statistics	3	3	3	3	
TOTA		16	14	14	16	
	$\frac{B(\wedge_c^+ - B_c)}{B(pK)}$	$\Sigma^{+}\pi^{0}$	<u>)</u> <u>B(</u> B	$\frac{\Lambda_c^+ \to \Sigma}{R(pK^-\pi)}$	$\frac{+\eta}{+)}$	
CLEO 0.20 ± 0.0 Körner and Krämer 0.1 Zenczykowski 0.1			03 0.10	± 0.03 0.05 0.08	± 0.02	

• •

L - - -

į

~

3 ΛK°K*/ΛΠ°Π+~ 16 Somsistent w/ 35
Somsistent w/ 35
(uu + dd)
Cut popping = 55 popping -= 1/3 Θ $\Xi^{\dagger}\pi^{\dagger}\pi^{\prime} > \Sigma^{\dagger}\omega > \Sigma^{\dagger}\pi^{\prime} \sim 2\Sigma^{\bullet}\phi$ ~25 m EM~ EØ =>some combinetion Wint (a 16 2770) + exchange (a lá Zø) Contributing to ETM

Point. Counter Point "Comment on B(1, -> pkm)' Previous extractions used B->ppX, e.g. to determine B(B-> baryons) -- Since b->c, assume B>baryons via: B->A.F.X. Knowing B(B=Banyons), and measuring NpkT => obtain B -> Now know (PSB) Babaryon not only Bar, pX also: Ba E. TX, Ba E. TX Readjust B. ~ 10.25%
Readjust A. JAX down!!

ANY 1, modes definitely not Wext OM $\gg \Lambda_{c} \gg M_{K}, e.g.$ → pK⁻π⁺ 1.0 B / B(∿ 0.5 Λ_c decay modes Some most likely exchange Some " " Winternal ·Others accessible through ZZ Cinterfering) diagrams ·BGW (92/9, <O mesons baryons?

Absolute BR's at 10 GeV

• $\Lambda_c \rightarrow pK\pi$

- As w/ $D_s \rightarrow \phi \pi$, relate a semileptonic to an hadronic width: $\frac{\Lambda_c \rightarrow pK\pi}{\Lambda_c \rightarrow \Lambda \ell \nu}$

- If π /electron separation is good enough, can use tags a la' $D^{*+} \rightarrow D^0 \pi^+$ and measure $\frac{\Lambda_c(2630) \rightarrow \Lambda_c \pi^-}{\Lambda_c(2630) \rightarrow \Lambda_c}$ - (Background from $D^{*0} \rightarrow D^0 \gamma / \pi 0$ with photon conversion?)

- Use $B \rightarrow baryons$: requires knowing the correct model for baryon production in B-decay.

• $\equiv_c \rightarrow \equiv \pi$ and $\equiv_c \rightarrow \equiv \pi \pi$ also possible with improved precision on rate wrt $\Xi \ell \nu$ and τ_{Ξ_c} - If model of Ξ_c production in B-decay is known, e.g. $B \to \Xi_c \overline{\Lambda} X$ can be used to tag the number of Ξ_c 's produced. (need a correlation with a lepton from the opposite B). (In progress) $\frac{\overline{z_{i}}}{\overline{z_{i}}} = 2.46 \pm 0.70 \pm 0.33$ $= \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2}$

256

FIG. I. The $(p\pi)\pi$ invariant mass for right sign and wrong sign Ξ combinations satisfying the cuts described in the text; $(a)(p\pi)\pi^-$ right sign, $(b)(p\pi)\pi^-$ wrong sign; $(c)(p\pi)\pi^0$ right sign, $(d)(p\pi)\pi^0$ wrong sign.

	mode	$\Xi_c^+ \to \Xi^0 e^+ \nu_e$	$\Xi_c^0 \to \Xi^- e^+ \nu_e$
	$N_{\Xi e^+}$ (right sign)	47±8	62 ± 9
	$N_{\Xi_{e^-}}$ (wrong sign)	6 ± 3	8 ± 4
	corrected yield	41 ± 9	54 ± 10
⇒	efficiency (%)	1.17 ± 0.02	3.80 ± 0.05
>	$\sigma \cdot B$ (pb)	$1.55 \pm 0.33 \pm 0.25$	$0.63 \pm 0.12 \pm 0.10$
	fakes (right sign)	4 ± 2	7 ± 2
	fakes (wrong sign)	4 ± 2	5 ± 2

TABLE I. Signals and backgrounds

REFERENCES

[1] Particle Data Group, Phys. Rev. Lett. 45 1 (1992).

[2] M. Bauer, B. Stech and M. Wirbel, Zeit. Phys. C 34, 103 (1987) and references therein.

[3] B. Guberina, R. Rūckl, and J. Trampetić, Zeit. Phys. C 33 297 (1986).

[4] M.B. Voloshin and M.A. Shifman, Sov. Phys. JETP 64, 698 (1986).

[5] Y. Kubota et al., Nucl. Instrum. Methods A320 66 (1992).

[6] Throughout this paper charge conjugate modes are implied.

[7] P. Avery et al., Phys. Rev. Lett. 71 2391 (1993).

[8] For example, see 'Note on Ξ resonances', Particle Data Group, Phys. Rev. Lett. 45

Comment on $\Lambda_c \rightarrow pK\pi$ from B-decay

- Previously extracted by both ARGUS and CLEO ASSUMING: $B \rightarrow \Lambda_c \bar{p} = B \rightarrow \Lambda_c \bar{n}$ $N_{\bar{p}} = 2 \times N_{\Lambda_c}$ - Number of $pK\pi$, efficiency corrected, gives desired BR $B_{pK\pi} = \frac{N_{\bar{p}} + pK\pi/E_{pK\pi}}{N_e}$
 - BUT: How valid is the input model?

CLEO94: (20 ± 13) % of \overline{p} from sources <u>NOT</u> associated up $\Lambda_c \Rightarrow$ *IEVISE* $B \Rightarrow p K \pi f$ (~20%)

FIG. 3. Projections of the data (points with error bars) and the fit (solid histogram) onto $\cos \Theta_A$ and $\cos \Theta_W$ for different *i* regions. (A) and (C) are for 0.0 < t < 0.5 and (B) and (D) are for 0.5 < t < 1.0. The dashed lines show the background distributions.

FIG. 2. Projections of the data (points with error bars) and the fit (solid histogram) for t, $\cos \Theta_A$ and $\cos \Theta_W$. The dashed lines show the background distributions.

Find: , R= -0.33 + 0.16 + 0.15 Consistent w/ Körner & Krämer form for f.P. evolution as f(q2)

Absolute BR's., cont.

Can also use continuum production

• For $D_s \rightarrow \phi \pi$, and $\Lambda_c \rightarrow p K \pi$, can also use constraint that c-quark emerges predominantly as D^+ , D^0 , D_s , Λ_c .

- If three well known, then get 4th from $\sigma_{c\bar{c}}$.

- Can get $\sigma_{c\overline{c}}$ from $\ell\overline{\ell}$ correlations on continuum.

The number of single tags N_X can be written as:

 $N_X = 2\sigma_{c\bar{c}}f_D\epsilon_X \mathcal{B}_X,$

and the number of double tags $N_{X\bar{X}}$ as:

$$N_{X\bar{X}} = \sigma_{c\bar{c}} f_D^2 \epsilon_X^2 \mathcal{B}_X^2,$$

Now consider double-tags of $\Lambda_c | \overline{\Lambda}_c, D^0 | \overline{\Lambda}_c$, and $D^0 | \overline{D^0}.$ $\Rightarrow 5 eqns.$ in Unknowns: $\sigma_{c\overline{c}}, f_{D}, f_{\Lambda_c}, B_{D}, B_{\Lambda_c}$

Spectroscopy

- Heavy-heavy systems (ψ , Υ)
 - How do we construct mass level diagrams?
 - ⊙ "Why, it's child's play, Jim" (Bones)
 - mass levels and transitions
- Heavy-light systems (D, Λ_c) and connection to HQET

- mass levels and transitions

Perturbative approach to mass levels:

(Godfrey and Isgur, e.g., PRD 32, p. 189-231 (1985))

• Requires at least one heavy-quark Q for a n.r. treatment $H=p^2 + V(\text{non-rel.}) (H_0)$ +V(spin-ind. relativistic corrections) $+V(\text{spin-spin}) (\nabla^2 V_V \mathbf{S}_1 \cdot \mathbf{S}_2)/3m^2 r)$ $-\text{splits } ^1P_1 \text{ from } ^3P_{J=0,1,2}, \Upsilon \text{ from } \eta_b$ $+V(\text{spin-orbit}) (3V'_V - V'_S)/(3m^2 r)$ $+V(\text{tensor}) (V'_V/r - V''_V)(3(\mathbf{S}_1 \cdot \mathbf{r})(\mathbf{S}_2 \cdot \mathbf{r}) - \mathbf{S}_1 \cdot \mathbf{S}_2))/2m^2 r)$ $-\text{splits states with } L > 0 \text{ by J } (\chi_b : {}^3P_{J=0,1,2})$ • where these corrections have been written as: 1. A piece which transforms as a vector (V_V) and 2. A piece which transforms as a scalar (V_S)

Theorists give different estimates for V_V , V_S ; typical corrections approx. 10 MeV. for bb. Heavy-Heavy systems - masses

- Take a simple prescription for V: - $V_0(r) = \alpha r$ (confinement) + β/r (single-gluon exchange at high q^2)
 - Use exptl. data to determine α , β and pin
- GSE. ●
- J/ψ and Υ Quarkonia (R^{2S+1}L_J) well-described by such a simple model
 Lattice Calculations Coming online like
 CLEOII (bb, e⁺e⁻) and E760 (cc, internal tart P.E. get) study heavy quarkonia
 M_{ηc} from E760 different from PDG by ~ 10⁶ MeV
 CLEO result for M_{ηc} (K⁰K⁻π⁺): Γ¹_{ηc} 5.73±(.34±(.20±16)k
 L3 contributing with γγ → cc modes M₁: G003±(S) HeV Γ¹_{ηc} = 8.0±2.3±2.4 k
 Can extract expected with using T(V): ~ 8 keV
 Anomaly 1) Υ(4S) mass low relative to predictions (-40 MeV)
 - Anomaly 2) Relative splitting of χ'_b/χ_b triplet also at variance with prediction. r(2P) < r(P)

bb spectroscopy - observed

Heavy-Light Spectroscopy in HQET

"Goo, goo, I want goo" (K. Gordon/T. Moore)

- HQET: Color sources and Brown goo.
 - static $Q_{heavy} + q_{light}$
- Just as electron determines atomic spectroscopy, light quark in HQET determines properties of heavy-light systems.
- "Light degrees of freedom decouple".

• 'Usual' picture of spectroscopy:

- For hadrons s.t. $L \neq 0$ (D^{**} , e.g.), define the quantum number J=L+S as the total angular momentum of:

(spin of the heavy quark) +

(spin of the light quark) +

 $L_{relative}$

- For D^{**} , e.g., (L=1) get a triplet with L+S=J=2, $J_z = 2, 1, 0$ and a singlet with L+S=J=0. To-tal of four states.

Recast this picture alternately:

- paga

- Rewrite the four possible states, and incorporate L into definition of light quark spin: So, for the light quark: $j_{light} = L \pm s = 1/2$ or 3/2.
- So, now two doublets corresponding to $\pm 1/2$ spin projection of heavy quark: (j_{light}, s_{heavy}) ; mass ordered, get:

J(P)	jlight	Sheavy	Decays
0+	1/2	1/2	$D\pi$ (S-Wave) $D^*\pi$ (S-Wave
1+	1/2	1/2	$D^*\pi$ (S-Wave or D-Wave)
1+ (→1-0-)	3/2	1/2	$D^*\pi$ (S-Wave or D-Wave)
2+ (→0-0-/1-1-)	3/2	1/2	$D\pi$, $D^{*}\pi$ (D-Wave)

- D- and S- wave amplitudes of 1+ can MIX
- Two 1+ states can MIX!
- Small splitting between L=1, (1/2)+ in strange sector (~20 MeV) ⇒(1/2)+ doublet degenerate in charm sector

ized 10 yrs ago (G. Garvey, *Comm. Nucl. Part. Phys. 3, 109 (1986)*)

• HQET: In limit $m_Q \rightarrow \infty$, S_Q and spin of light d.o.f. are separately conserved by S.I. (Isgur& Wise, PRL 66, 1130 (1991))

(J=1)3/2 states therefore decay D-wave! (Both)

- Exceptions: D_{s_7} close to threshold decays S-wave since D-wave is $p^{2\ell+1}$ suppressed.

Guidance from the strange sector

J(P)	jlight	s _{heavy}	
$0+(K_0(1430)/\Gamma=[287]\pm 23MeV)$	1/2	1/2	$K\pi$ (S-Wave)
$1+(K_1(1400)/\Gamma=174\pm 13 \text{MeV})$	1/2	1/2	$K^*\pi$ (S-Wav
$1+(K_1(1270)/\Gamma = 190 \pm 20 \text{MeV})$	3/2	1/2	$K\rho$ (D -Wave
$2 + (K_2^*(1430)/\Gamma = 105 \pm 5 MeV)$	3/2	1/2	$K\pi$ (50±1.2%)

Note that K_1 states are actually mixed versions of ${}^3P_1(1260)$ and ${}^1P_1(1235)$ with a mixing angle that can be derived from τ decay.

Splittings in Heavy-Light systems

Hyperfine splitting $(D^* - D, e.g.)$: $\uparrow\uparrow - \uparrow\downarrow$

• (1-)/(0-+) splitting (V/P) is hyperfine: - $\Delta E_{ij}^{dipole,dipole} \sim \frac{q_i q_j}{m_i m_j} |\Psi(0)|^2 \sigma_i \cdot \sigma_J (\uparrow \uparrow / \uparrow \downarrow)$ - Both electromagnetic as well as chromomagnetic terms $\Rightarrow \Delta_m \sim 1/m_Q$

- (With enough theoretical/experimental precision can measure $\Psi(0)$, and therefore decay constants based on hfine splittings)

• So, expect: $\frac{m_{B^*}-m_B}{m_{D^*}-m_D} \sim \frac{m_c}{m_b}$ using simple $\frac{e\hbar}{2mc}$ model

HYPERFINE SPLITTINGS File: /amd/Ins598/nfs/u1/dzb/updoc/zz/pic94.mndat iD IDB Symb Date/Time Area 2 1 34 000000/0000 520.0 R.M.S. 1.230 Mean 2.452 ¢ 93 (13 (CLE0) < 94 CLEG, CUSB, LEP (LEO) (CLEO] D, -D, (r) $D^{*0} - D^{0}$ (η^{*}) $B^*-B / B_s^*-B_s$ $D^{*+} - D^{+}$ (11) 160 ∇ ∇ ∇ 120 MASS DIFFERENCE (MeV 80 Þ ∇ 40 Consistent w/ expected scaling Pata 0

obstrution CLEO-I

FIG. 2. The $M(D^{*0}\pi^+) - M(D^{*0})$ mass-difference distribution for $|\cos \alpha| \ge 0.8$, as described in the text.

FIG. 3. The $M(D^{*0}\pi^+) - M(D^{*0})$ mass-difference distribution for $-1 \le \cos \alpha \le +1$, as described in the text.

Spectroscopy summary

· ·]. • • · 2.

÷ .

- 1. HQET picture of light-heavy systems correctly predicts widths and ratios of BR's (so far)
- 2. the known $c\bar{q}$ spectroscopy superimposes rather well on the $b\bar{b}$ spectroscopy
 - 3. Simple model of heavy-light, heavy-heavy systems well described by potential models
 - 4. Lattice Gauge calculations just coming on concur with potential calculations

Heavy-Light, L=1, new results (Charmed hadrons) • D, D, well-studied since ARGUS discovery • Good statistics observation of D**+ (CLEO-II)

• First observation of $D_s^{**}(2+)$ candidate, decaying to DK.

 D_{sJ} production · Ds, discovered by ARGUS, Ds, -> D* Ks LEO-IL observe 2t state delaying to Dokt

...

L=1 baryons, charm

•For A_c , $S_{(ud)} = 0 \Rightarrow S_{iight} + L$ • Observation of orbitally excited Λ_c states (L=1) - the baryonic analog of narrow D^{**} doublet in charmed baryon sector. (ARGUS, CLEO, E687). Expect (γ_2), $(3\gamma_2)^*$ doublet - Cho et al: $\Lambda_c(2593) \rightarrow \Sigma_c \pi^+$ (on-shell Σ_c) D-Wwe - $\Lambda_c(2630) \rightarrow \Sigma_c^* \pi^+$ (off-shell Σ_c^*) $\Rightarrow \Gamma_{\Lambda_c(2630)} < \Gamma_{\Lambda_c(2593)}$

- Results in good agreement w/ expectation that J=2(j=3/2) - J=1(j=3/2) splitting same for D, D_s , Λ_c .

- Decays very close to threshold: $\prod_{n \neq \infty} \sim (0.1) \prod_{n \neq \infty} \sim ($

- For orbitally excited states, splitting between J=2 and J=1 states scales similarly: - $\Delta M(D^{**}(2+) - M(D^{**}(1+)) =$ - $\Delta M(D_s^{**}(2+)) - M(D_s^{**}(1+)) =$ - $\Delta M(\Lambda_c^{**}(2630)) - M(\Lambda_c^{**}(2593)) =$ - $(m_b/m_c)\Delta M(B^{**}(2+) - M(B^{**}(1+)) =$
- Note that magnitude of splitting smaller here since $|\Psi(0)|^2$ smaller (P-wave) than for, e.g. D-D splitting •
- "Excitation energies" for states with different
 Q.N. of light d.o.f. should be same for both c and b:

$$-m_{B_s}-m_B\sim m_{D_s}-m_D$$

- $m_{B_1} m_B \sim m_{D_1} m_D$
- Note that recent Lattice Gauge calculations (Duncan et al, FNAL) have done mass calculations from "first principles", find:
 - $m_{\bar{Q}s} m_{\bar{Q}u} = 82 \pm 11 \pm 7$ MeV, for $m_Q \rightarrow \infty$
- GOOD agreement with $B_s B_d$ mass splitting.

Heavy-Light Transitions - Angular correlations

· · · · · · · · ·

In addition to new measurements of masses and widths of $j = 3/2 D^{**}$

• Decay angle distributions for $D^* \rightarrow D\pi$ produced in $D^{**0}(1+) \rightarrow D^*\pi$ demonstrating non-S wave nature of decay.

For helicity angle & (x(T), 1") in D' frame)

dN = {flat it 1t decay pure S-wave d(cosx) = {1+3cosx pure D-wave

Extracting S/D p.w. and ϕ_{rel}

FIG. 4. The normalized helicity angle distribution for the $D_2^*(2470)^+$, as described in the text.

FIG. 4. The normalized helicity angular distributions for (a) $D_2^*(2460)^0$ decay and (b) $D_1(2420)^0$ decay.

FIG. 5. Plot of $R = \Gamma_S/(\Gamma_S + \Gamma_D)$ versus cosine of the relative phase of S and D wave amplitudes in the $D_1(2420)^0$ decay. The shaded area represents the 90% confidence level allowed region.

 \Rightarrow Data consistent w/ $\Gamma_s = 0$

Partial Waves, cont.

Conclude that **D** decay is, in fact, dominantly Dwave!

Also: can calculate $\frac{D_J \rightarrow D \cdot \pi}{Q_f \rightarrow D \cdot \pi}$ under D-wave **condi**tion:

 $\Gamma \sim Clebsch - G \times p^{2\ell+1} \times f.f.$

(f.f. \uparrow for D^* since momentum transfer smaller).

Obtain result for ratio agreement with present data.

Eichten, Hill, $\Gamma(D^* \to D\pi)$ D_{10} (PD692: 2.4 ± 0.7 $\Gamma(D^* \to D^*\pi)$: 1.8 $\Gamma(D^* \to D^*\pi)$

Coming attractions from the Ithaca studios:

- Re-evaluate absolute exclusive and inclusive Λ_c BR's from B-decay data. (Λ_c → Λ + X ↓, Λ_c → pKπ ↑)
- Measure widths of $\Lambda_c(2593)$ ($\Sigma_c \text{ w/ SVX}$ to get improved angle msrmnt.)
- Use $\Lambda_c(2620) \rightarrow \Lambda_c \pi^+ \pi^-$ like $D^{*+} \rightarrow D^0 \pi^+$ to measure *background-limited* BR's.
- Find the elusive Ω_c lurking somewhere in CLEO data?
- Measure Λ_c → Cabibbo Suppressed
 Λ_c → Λπ: Exchange + Wint
 Λ_c → ΛK: W_{ENT} only
 Search for Σ^{*}_c, Ξ^{*}_c, Ξ[']_c → Ξ_cγ.
- Maybe, just maybe find the J=0 and J=1 ${}^{3}D_{1}$ states in exclusive B-decay if clean enough.
- + · cbary anticbary correlation studies ...

SVX spread sheet

• •

	Laver 1	laver 2	aver 3			
Padius to inner surface		32.5 mm	46 9 48 1 mm			
	65 580 mm	81 270 mm	2×65 580 mm			
Total Width	22 568 mm	30 128 mm	2×22 568 mm			
	50 535 mm	76 356 mm	2×50 535 mm			
Active Length	21 168 mm	28 980 mm	2×21 168 mm			
	21.100 1111	20.900 mm	0.02			
	300 um	300 um	300 um			
Number of DSSD detectors	16 300 μm	300 μm	500 µm			
Number of CANEY chips	10	100				
Number of CAMEA Chips	90	07				
Readout Bond Pad Pitch	97 μm	$97 \mu m$	97 µm			
Number of Active Channels	6048	8064	12090			
	Detector Outer Side $(r-\phi, \sigma=12 \mu\text{m})$					
Implant		p-type				
I Implant Width	10 µm	10 <i>µ</i> m	10 µm			
Implant Pitch	28.00 µm	28.5 µm	28.00 µm			
Number of Implants	753	1005	3012			
Readout Pitch	112 μm	115 μm	112 μm			
Readout Strips	189	252	378			
· · · · · · · · · · · · · · · · · · ·	Detector Inner Side $(r-z, \sigma=30 \mu\text{m})$					
Implant	n-type					
Implant						
Implant Width	20 µm	20 µm	20 µm			
Implant Width Implant Pitch = Readout Pitch	20 μm 105 μm	20 μm 101 μm	20 μm 105 μm			
Implant Width Implant Pitch = Readout Pitch Approximate Barrier Width	20 μm 105 μm 69 μm	20 μm 101 μm 65 μm	20 μm 105 μm 69 μm			
Implant Width Implant Pitch = Readout Pitch Approximate Barrier Width Number of Implants	20 μm 105 μm 69 μm 567	20 μm 101 μm 65 μm 756	20 μm 105 μm 69 μm 1134			

