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ABSTRACT 

A 27 kt water volume is investigated as a target for a long baseline 
neutrino beam from CERN to Gran Sasso. Charged secondaries from the 
neutrtno interactions produce Cherenkov photons in water which are 
imaged as rings by a spherical mirror. 

The photon detector elements are 14 400 photomultipliers (PM’s) of 
127 mm diameter or 3600 HPlYs of 250 mm diameter with single photon 
sensitivity. A coincidence signal of about 300 pixel elements in time with 
the SPS beam burst starts readout in bins of 1 ns over a period of 128 11s. 

Momentum, direction, and velocity of hadrons and muons are determined 
from the width, center, and radius of the rings, respectively. Momentum 
is measured if multiple scattering dominates the ring width, as is the 
case for most of the particles of interest. 

Momentum resolutions of l-10%, mass resolutions of 5-50 MeV, and 
direction resolutions of < 1 mrad are achievable. Thresholds in water for 
muons, pions, kaons, and protons are 0.12, 0.16, 0.55, and 1.05 GeV/c, 
respectively. 

Electrons and gammas can be measured with energy resolution c&E = 
85%/dE(GeV) and with direction resolution = 1 mrad. 

The detector can be sited either inside a Gran Sasso tunnel or above 
ground because it is directional and the SPS beam is pulsed; thus the 
rejection of cosmic ray background is excellent. 
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1. Introduction 
3600 twds 

The lectures covered our recent work on TEA-Fast RICH counters 

[l], on C&Fast RICH counters [2], and new results on HPD 

photodetectors for RICH [3]. Since these works are now published, we 

refer the interested reader to the above references and concentrate here 

I on the final seminar on long baseline RICH (LBL-RICH) [4]. 

1.1 Long Baseline RICH 

The question of neutrino masses and mixing remains one of the 

most important unsolved problems of particle physics. Experiments in 

this field use either accelerator neutrinos, solar neutrinos, or 

atmospheric neutrinos, each sensitive to a different range of neutrino 

masses and mixing angles. Italy and CERN are now considering a 

neutrino beam traversing 732 km of earth to arrive at the Laboratorio 

Nazionale Gran Sasso (LNGS), where long baseline experiments will 

be installed. The possibility for such experiments was already among 

the physics goals of the Gran Sasso Project and special care was taken to 

build the experimental halls aligned towards CERN [5]. The advantage 

of long baseline neutrino experiments is, of course, their increased 

sensitivity to small mass differences. 

For this purpose, the large water radiator and RICH detector, 

shown schematically in Fig. 1, was proposed as an experiment at the 

Gran Sasso laboratory [6]. The water is cheap and safe, and serves both 

Fig. 1. The layout of the 27 kt water target and radiator between z = 0 to 
z = 30 m with x = rt15 m, and y = f15 m. A mirror of curvature rm = 
30 m is at position z = 30 m. 
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as the neutrino target and the radiating medium. Cherenkov photons, 

produced by charged particles from neutrino interactions in the water, 

are detected with visible light photomultipliers (I’M’s). All hardware 

elements of this experiment (i.e., clean water, PM’s, mirrors, and a 

swimming pool of Olympic volume) are completely proven and do 

not require additional R&D. 

Of course, most of these elements were (are) present in the 

pioneering IMB, Kamiokande (and the new 50 kt Super-Kamiokande) 

detectors which investigate(d) solar neutrinos, atmospheric neutrino 

interactions, and proton decay. 

Our technique, however, differs in one essential aspect, namely, its 

use of a mirror to give focused images which allow momentum, 

velocity, and mass determination from Cherenkov rings which are 

multiple scattering dominated (MSD). Without the mirror, the ring 

width is determined by track length, which itself is of little direct 

physical interest but prohibits the observation of multiple scattering 

which can determine momentum. 

1.2 Some Basic Cherenkov Relations 

The Cherenkov emission angle I3 relative to the particle direction 

is given by Cherenkov’s equation 

cod= 1 / 43’ (1) 

where n is the radiator refractive index and $ the particle velocity. The 

number of detected photoelectrons N is given by the integral of the 

Frank-Tamm relation 

N = NoZ2Lsin2 0, (2) 

where L is the particle pathlength in the medium, Ze the particle 

charge, and No is the detector response parameter defined as 

No =(a/Ac)I(QTR)dE = (370 aV-‘cm-l) TRqiat, (3) 

and a is the fiie structure constant, E the photon energy, qht = ]QdE 

the energy integral of quantum efficiency, T the radiator transmission, 

and R the mirror reflectivity. A glass window, visible light PM has Q 

varying from 4 to 28% for E from 2 to 3.5 eV. Integration gives qht = 

0.32 eV and for R = 0.95 and T = 1, we fiid No = 112/cm for full PM 

coverage and No = 22/cm for 20% coverage. Thus, in water, we expect 

one detected photoelectron per mm of pathlength [from Eq. (2) for n = 

1.34, Z = g = 1, sin29 = 0.44, thus N/L = 1 /mm]. 

1.3 Momentum from RICH 

It is well-known that a ring image determines particle direction 

(i.e., the polar and azimuthal angles BP, op) from the ring center and 
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particle velocity p from the ring radius [7]. Using p = rnPr as the 

defining relation for momentum, we obtain the error 

$= j(Jg+p$ (4) 

where m is assumed to be measured with error om. The velocity 

resolution obtainable from RICH is op/p = taneog/&J with 8 the image 

radius and 00 the image width (per photon) [7], thus 

Obviously, m  must be measured in order to determine p; moreover, 

Eq. (5) shows that the error from 0 (the second term) degrades as y thus 

is rapidly limited at high momenta. Neither p or o,/p can be found 

without m; however, to measure m, we must use the same 

relation m = p/By and by the same argument obtain Eq. 

different form, i.e., 

3p)‘+(Y2ye,’ . 

defining 

(5) in a 

(6) 

Clearly, we need an independent measure of p along with p from 

RICH. 

1.4 Multiple Scattering Dominance 

When multiple scattering is the dominant angular error (MSD 

limit), then momentum can be determined from the ring image width 

[8]. Since this method is new (or sufficiently old that it has been 

forgotten), we review the technique and its capabilities. 

Historically, some early measurements of pion and muon masses 

in nuclear emulsions were based on this effect. In the experiment of 

Goldschmidt-Clermont et al. [9], secondary particles produced by 

primary cosmic-ray protons in emulsion were tracked (by human 

scanners looking through microscopes) and range was measured to 

find the particle kinetic energy via the Bethe-Bloch relation. They also 

measured the rms angular deflection of the track to obtain the 

momentum. Similar results were obtained by Camerini et al. [lo] from 

multiple scattering and grain counting (recall that dE/dx=l/p2 at low 

energies). 

If the angular width of the ring is multiple scattering (ms) 

dominated, the quadratic y dependence of Eqs. (5) and (6) is reduced to 

first order since 

oe=oe(m )=yp&, (7) ” 

where kms = (13.6/@ MeV = 9.6 MeV and & is the radiation length of 

the radiator medium [6]. Note that be is proportional to l/p; formally, 

- 230 - 



this is similar to particle bending in a magnetic field where the bending 

angle = l/p. The strict similarity disappears when we insert the 8 

dependence of B and the (8, N) dependence of L. 

Combining Eqs. (2), (5), and (7), we obtain the momentum error of 

an MSD-RICH due to the 8 error [i.e., the second term of Eq. (5)] 

t 1 
(Tp nKcos2e 
P t3=rnJm ’ 

(8) 

pixel (xyz), emission point (h), and impact parameter (ve, w,) errors 

but not multiple scattering (ms) or slowing (~1). 

Here K’ is required to be a known quantity; thus L must be known 

(or measured). This is the case for most RICH detectors where L is 

known from external tracking detectors, but for the LBL-RICH, L is not 

(and cannot be) directly measured. This case is treated in Sec. 1.6. 

The mass defining kinematical relation m = p/By may now be 

written in terms of the measured variables (8, oe) as 

where cosf& = l/n and K = nk,a/m Thus, for MSD and m 

known, Eq. (8) gives the momentum error due to the B error. 
m  = nK’cos0 

i 

sin* en -sin* e 

082 - c+ 
(10) 

1.5 Momentum (without a Magnet) from Ring Radius and 

Width if L Is Known 

In general, momentum is determined from multiple scattering by 

solving Eq. (7) for p = [kms/80e(ms)]~Expressed in terms of the 

measured variables (0, oe), we find 

K’cose 
p=JlpJ&y’ 

(9) 

where K’ = nk,,m) and we have deduced oe(ms) = e), 

since oe is the total measured ring width and oe, is the width from all 

momentum-independent sources. These include chromatic (E), 

From Eqs. (9) and (lo), we evaluate the momentum and mass errors as 

0.. /$+(tme0e)2 
l= 

1 
L 

P N ‘ (11) 

/ 
E2 

Orn - 
1+ I( y* +l)tan&re 1 2 

-- 
N I (12) m 

where E = oe*/(o&aeo*). Note that E = 1 for MSD while E >> 1 for non- 

MSD. These derivations use the estimate of the width error [ll], i.e., 

(13) 
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1.6 Momentum (without a Magnet) from Ring Radius and 

Width if N (not L) Is Known 

Here, we consider the LBL-RICH case when L is not measured but 

only inferred from Eq. (2) as L = N/(e++Nosin*8), where Ed is the 

geometrical efficiency for imaging the photons and ~a is the absorption 

loss (see Sec. 3.5). The momentum defining relation, Eq. (7), may now 

be written in terms of the measured variables (8, oe, N) as 

p=EdJ~~ (14) 

where again K = nk,,/m). The mass equation m = p / 87 now 

expressed in terms of the same variables (8, oe, N) is 

m=(s)jm; (15) 

thus from Eqs. (14) and (15), we obtain for the momentum and mass 

errors 

(17) 

where negligible errors are assumed for eg and ea (see Sec. 3.5). Note 

that the resolutions of Eqs. (11) and (12) are only marginally better than 

Eqs. (16) and (17); thus, little is lost by not having tracking detectors 

inside the water. In fact, we have not found a reasonable way to 

implement a tracker without seriously compromising the RICH 

imagery. Luckily, Eqs. (16) and (17) show that the impossible is also 

unnecessary. Note that for MSD, the first two terms in the numerator 

of Eq. (16) are 3/4 and the third term is negligible, so that op/p = 

0.87/a With N = 850 image points (or even half that many), the 

l/G term is small, i.e., 3-5%, thus indicating that good momentum 

resolution is possible, in principle. 

2. Experimental Layout 

The layout of Fig. 1 shows the radiator, mirror, and detector array. 

The mirror center of curvature C fixes the origin (0, 0, 0) of the Z>(Y 

coordinate system. The water volume starts at z = 0 and extends to 

z = 30 m and transversely to x = f15 m, and y = f15 m. A spherical 

mirror of curvature r, = 30 m is placed at the far end of the cube, i.e., at 

z=30m. 
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The optimal detector sphere for tracks uniformly distributed in the 

water volume (0 I z I rm) is at z = (rm/2)d[1+(3sin28/4)] = 17.3 m; thus 

the PM’s could be arrayed on a spherical surface 17.3 m  into the water 

target, hence 12.7 m  upstream of the mirror. In fact, the PM’s will be 

arrayed on a flat plane at z = 17.3 m  because, in the case of a spherical 

array, too many photons are lost to the side walls. The PM’s should 

cover 20% of the 30 x 30 m* surface, i.e., 180 m* with a pixel size of 

125 mm, i.e., 14 400 PM’s on a grid of 250 mm pitch. A coincidence of 

t 100 PM hits in a 128 ns gate during the 6 l.ts SPS burst window 

’ (see Sec. 5.1) will signal an interesting event and start readout. The 

PM’s will be read out with seven-bit TDC’s or FADC’s for a period of 

128 ns in bins of 1 ns, thus increasing the detector granularity to 

1.8 Mpixels, quite enough to image events of maximum size N I 

2 x 104. 

In order to reduce the cost and increase the number of pixels, we 

are designing 254 mm diameter HPD’s [12,13], each with 36 pads of size 

36 x 36 mm* at the photocathode surface (and 9 x 9 mm* at the silicon 

wafer plane). A total of 3600 of these HPD’s will be needed containing 

129 600 pixels. Experiments have shown that I 1 ns timing can be 

obtained from HPD’s if the pad signals are independently brought out 

of the vacuum envelope and treated by conventional fast 

electronics [ 141. 

The mirror radius is chosen relatively small (rm = 30 m, f = rm/2 = 

15 m) so that the image radius [rimage = f8 - (15 m) (0.72) = 10.8 m] is 

mostly contained (with geometric efficiency E.& inside the k15 m PM (or 

HPD) array. Because the detector array is 80% transparent, the water 

volume can be extended into the good optics region 17.3 m  upstream of 

the detector surface. Photons from this region will be detected with 

16% effective coverage rather than 20%. 

A hadron track of pathlength lh (one absorption length in water is 

850 mm) will make an image with N = 850~8s~ hit points. The latter 

factor e, = e+ is the efficiency for photon transmission in pathlength 

! of water (<!> = 30 m in the LBL-RICH). Water transparency with l.t-1 

> 100 m has been attained for 3.9 eV photons [15], whereas the LBL- 

RICH photon detection range is only from 2.5 to 3.5 eV. 

The momentum range for MSD extends up to about 4.5 GeV/c. 

This range includes almost all hadrons produced by 1 to 20 GeV 

neutrinos via quasi-elastic (QEL) and deep inelastic scattering (DIS) via 

charged and neutral current interactions. The threshold momentum 

for Cherenkov radiation in water is p = 1.12m, hence 0.12, 0.16, 0.55, 

and 1.05 GeV/c for muons, pions, kaons, and protons, respectively. 

About 25% of the protons from quasi-elastic interactions are above the 

proton threshold. Generally, all above threshold hadrons will have 

their direction, momentum, velocity, mass, and (Ze)2 measured in the 

LBL-RICH. 

Electrons and gammas can also be measured because EM shower 

electrons in water (Xe = 36 cm) radiate if p > 0.57 MeV/c. A Cherenkov 

sensitive shower is therefore somewhat shorter than a dE/dx sensitive 

shower and is less affected by low-energy fluctuations. Since it is fully 

contained in about 5 m, we take 25 m as the fiducial target length thus 
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defining the LBL-RICH fiducial mass as 22.5 kt. The shower produces a 

more diffuse, but still identifiable, ring (oe = 50 mrad) than a hadron 

ring (oe < 15 mrad) but with many more points, 

i.e., N  = 3000 &+Ee (GeV). The water acts as the showering medium 

and radiator of a homogeneous Cherenkov calorimeter with 

resolution oEe/Ee ii- 8.5%/a (GeV). The direction of the particle 

initiating the EM shower is accurately determined by the ring center to 

better than 1 mrad. 

Muon identification is obtained for p I 1.5 GeV/c by direct 

measurement of 8 and p (from MSD) which determines m with error 

om from 3 to 6 MeV, sufficient to distinguish muons and pions. Above 

1.5 GeV/c, om becomes larger than 10 MeV, and muon identification by 

this method is not possible, but then the muon range is so long that 

the image “lights up like a muon sign.” For example, a 1.1 GeV/c 

muon with 5 m  range in water will make a ring with 5000 egea image 

points compared to 800 egea for a lk pathlength pion. The 

measurement of p for muons is also good, i.e., oP/p < 6% for 

p < 4.5 GeV/c. It becomes limited by emission point errors’oe(z,) due to 

the long muon pathlength in water. Extension to higher momentum 

(i.e., OF/P = 10% for p = 15 GeV/c) can be attained by time slicing the 

track into a series of shorter segments. 

The capability of the LBL-RICH is such that it can explore values 

of L/E” between 50 and 700 km/GeV with a broad band neutrino beam 

of energy Ev between 1 and 15 GeV at Gran Sasso (L = 732 km). In 

neutrino disappearance (p + r) and neutrino appearance (u + e) 

experiments with broad band beams, it is essential to accurately 

determine Ev. This is possible in LBL-RICH because the direction and 

energy of muons and electrons are well-measured as, indeed, are the 

hadrons. 

2.1 Particle Momentum Resolution 

The contributions to the angular error oe vs impact parameter pe 

(relative to C) for a 1 GeV/c pion with an 850 mm pathlength in water 

are shown in Fig. 2 for the detector layout of Fig. 1. Note that the 

dominant contribution is from multiple scattering oe(ms) = 15 mrad, 

while chromatic oe(E) = 3.6 mrad, pixel oe(xyz) = 1.9 mrad, and slowing 

os(s1) = 0.4 mrad are less important. Only the impact parameter errors 

oe(ve), oe(we), and emission point error oe(ue) vary with pe = 

m, but they are not significant even for pe as large as 15 m. 

We have evaluated the resolutions o,/p and om for et-, = 0 tracks 

and pixel sizes Ax = Ay = 125 mm, AZ = 1 mm, Aue = 850 mm, Ave = 

Awe = 100 mm, and At+, = Aop = 1 mrad. The refractive index and 

dispersion n(E) of water were obtained from Ref. [16]. 

Figure 3 shows the resolution a,/p vs p for 15 m pathlength 

muons or for 0.85 m pathlength hadrons (x, K, P). The solid curves are 

from multiple scattering [Eq. (16)] while the dot-dash curves are from 

velocity 8 when m is known [(Eq. (S)]. Note that the solid curves are 

everywhere excellent, i.e., 1 < op/p < 6% for p I 5 GeV/c. For K’s and 

P’s, the dot-dash curves are everywhere < 1% and better than the solid 
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0 2 4 6 0 10 12 14 

x* 0-d 

Fig. 2. The Cherenkov angle width vs impact parameter pe for a 
1 GeV/c pion track 85 cm long in water. The contributions shown are 
oe(ms) from multiple scattering, o@(E) chromatic, oe(xyz) from pixel 
size, oe(s1) from energy loss, os(z,) from tracklength, and oe(x,) from 
impact parameter. 

10-l ,,,,‘,,,,‘l,,,‘,,,,‘,,,l’,.,,‘,,,,’,,,,’,,,.’.,, 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 

P ( GeV/c ) 

Fig. 3. The resolution op/p vs p for (f~, R, K, P) in water and the 
geometry of Fig. 1. The solid curves are from multiple scattering 
[Eq. (16)], whereas the dot-dash curves are from the p measurement 
[Eq. (S)] assuming mass is known. 
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curves, whereas for 7~‘s and p’s, they are only better for p < 1.3 and 

0.5 GeV/c, respectively. 

Figure 4 shows the mass resolution o,/m from combined as and 

p measurements, i.e., Eq. (17). For p S 1.25 GeV/c, the resolution 

om = 5-7 MeV is sufficient for p/x identification. Above 1 GeV/c, the 

muon pathlength becomes so long that the muon is identified by its 

large N (i.e., N  > 5000 &$a). The K mass resolution, om = 20-30 MeV for 

p < 5 GeV/c, is sufficient for x/K identification and the P mass 

resolution, om = 50-60 MeV for p < 5 GeV/c, is also sufficient for K/P 

identification. Therefore, the combined og and g measurements 

determine the identification of all stable particles and allows us to 

choose the best resolution curves of Fig. 3 (solid or dot-dash). 

, 

2.2 Particle Direction Determination 

The polar angles (t$,, $F) of a particle producing a ring image are 

determined with high precision from the ring center, i.e., osP = crop = 

oe/fi For a 1 GeV/c pion track in water with Cherenkov pathlength 

of 85 cm, we have og = 15 mrad and for N = 400, then osP = O,Q, = 

0.75 mrad. The direction error for electrons, gammas, and muons 

should be at least as good because N is considerably larger. 

k 

1 Lo,,,,',,,.',,,.',,','.,,.",,.'....'..., 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

P ( GWc > 

Fig. 4. The mass resolution om vs p for (p, K, K, P) in water and 
geometry of Fig. 1. The solid curves [Eq. (17)] are from combined 
measurements of multiple scattering and p. 
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2.3 Quasi-Elastic Neutrino Interactions 

Here, we show events due to 12 GeV/c neutrinos interacting quasi- 

elastically to produce leptons (!) via the process (ve+NdZ-+P) at 

random points in the water volume (see Fig. 1). The events were 

obtained from a PYTHIA 5.7 simulation with all fast decays allowed. 

They were subsequently introduced into GEANT to simulate the tracks 

with multiple scattering, energy loss, secondary interactions, and 
\ Cherenkov light emission. The PM hit points are labeled as muons, 

electrons (or gammas), protons, and pions. All images contain only 

10% of the expected photoelectron hit points because of computer 

memory limitations. 

l In Figs. 5-7, we show three successive events of the type vp + N + 

j.l- + P. 

l Figures 8-10 show three successive events of the type ve + N + 

e -+ P. The electrons were allowed to interact; thus the images 

shown are due to showers. 

l Figures 11-14 show four successive events of the type vr + N -j z- 

+ P. The Z’S were allowed to decay naturally via the dominant e-, 

p-, p-, or rr- branching modes. 

1500 

1000 

500 

0 

-500 

-1000 

-1500 

I I I I I I I I 
-1500 -1000 -500 0 500 1000 1500 

YPH VS XPH 

Fig. 5. A Monte Carlo simulation of a quasi-elastic event (#31) v,, + N 
+lr-+PforEvp= 12 GeV. It has two proton rings (black triangles) (the 
smaller one is due to a scatter) and one very dense muon ring (open 
diamonds). Muon identification here is obvious. The diffuseness of the 
image is due to the long muon pathlength; thus emission point errors 
dominate. This effect can be removed by time slicing the image (thus 
breaking the track up into a series of shorter segments) and 
reconstructing each segment. 
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event 32 

1500 

1000 

500 

0 

-500 

-1000 

f -1 . se . 1 4 
;\ . 
8% =‘. . 30 A 
3, - $+Qj;\ 

b -8 & 
I ‘ I I I I I I 

-1000 -500 500 1000 1500 0 

YPH VS XPH 
.- 

Fig. 6. A Monte Carlo simulation of a quasi-elastic event (#32) vlr + N 
+ p- + P for Ev, = 12GeV. It shows one proton ring (black triangles) 
with a hint of a second (it is evident if all N  hits are plotted) along with 
a self-evident muon ring (open diamonds). 

event 33 

b . 
. 

I I I I I I 
-1500 -1000 -500 0 500 1000 1500 

YPH VS XPH 

Fig. 7. A Monte Carlo simulation of a quasi-elastic event (#33) v,, + N 
+ p- + P for E,, = 12 GeV. It shows one proton ring (black triangles) 
with some extra hits (a second proton ring due to a scatter) and one 
muon ring (open diamonds). The rings are reasonably easy to identify 
(by eye) and so the pattern recognition algorithm will surely work. 
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event 12 

1500 Cl 
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0  

-1500 

I I I I I I J 
-1500 -1000 -500 0  500 1000 1500 

YPH VS XPH 

Fig. 8. A Monte Carlo simulation of a  quasi-elastic event (#12) ve + N Fig. 9. A Monte Carlo simulation of a  quasi-elastic event (#13) v, +  P 
+ e- +  P with Eve = 12  GeV. It has one  proton ring (black triangles) 
(plus a  scatter which may be  resolvable) and  one  dense electron ring 

+ e- +  A++ and  A++ + P + rr+ for Eve = 12  GeV. It shows two proton 

(open diamonds).  Electron identification and  energy measurement  
rings (black triangles) and  one  electron ring (open diamonds).  There is 

should be  good.  
a  hint of a  pion ring (open squares) which is evident if all N hits are 
plotted. 
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event 13 
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event 15 
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Fig. 10. A Monte Carlo simulation of a quasi-elastic event (#15) ve + N 
+ e- + P for Eve = 12 GeV. It has three proton rings (black triangles) 
(the smaller ones are due to scatterings) and one electron ring (open 
diamonds). 
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Fig. 11. A Monte Carlo simulation of a quasi-elastic event (#l) vz + N 
+ z + P for EvT = 12 GeV. It shows two proton rings (black triangles) 
and one electron ring (black circles), and one or two pion rings (black 
squares). Clearly, this event would be challenging. 
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Fig. 14. A Monte Carlo simulation of a quasi-elastic event (#4) vr + N 
+ T + P for Evr = 12 GeV. It shows two proton rings (black triangles) 
and two electron rings (black circles), and one pion ring (black squares). 
Clearly, this event would be challenging. 

3. Properties of Ring Images 

Every charged particle above Cherenkov threshold makes a ring 

image. Neutrals which decay into charged pairs also form images. 

Electrons and gammas will shower and produce somewhat more 

diffuse images. 

Because Cherenkov light rays form parallel bundles in all planes 

containing the track and because spherical mirrors focus parallel 

bundles to a point on the focal surface, hence the contributions from 

all planes combine to form a ring. This means that parallel tracks form 

the same ring and that the ring center determines the particle direction 

@ ,,vp) 171. 

3.1 Parameters of the Image 

The ring image is characterized by nine parameters: three detected 

photon coordinates (z, x, y); and five track parameters, i.e., the photon 

emission point (u,, ve, we) and the particle direction (e,, cpP), and a 

single parameter for photon energy E. The photon emission point u, is 

measured along the particle track, and the impact parameter pe = 

e). h is t e perpendicular distance to the track from the mirror 

center of curvature C. 

We define two different coordinate systems (see appendix Fig. Al), 

the ZXY system, fixed relative to the mirror and the water tank (Fig. l), 

with unit vectors (k,i,j) and the PQR system, fixed to each track and 
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defined from C such that P is parallel, Q  and R are normal to the track, 

with unit vectors $,$,& ( 1. The photon emission point is (z,, xe, ye) 

in the ZXY system and (u,, ve, w,) in the PQR system. The photon 

detection point is (z, x, y) in the ZXY system and (u, v, w) in the PQR 

system. A particle tracker, if available, would measure (u,, ve., we), 

whereas the photon detector will measure (z, x, y). Note that (z, x, y) 

and (ze, x+., ye) are independent of (e,, (pP) while (u, v, w) and (ue, ve, 

we) depend on (9,, ‘pp). 

Seven of the nine variables, i.e., & = (z, x, y, v,, we, 8,, cpP), can be 

determined with arbitrary precision. The group (z, x, y) depend on the 

accuracy of the photon detector while (v,, we, BP, cpP) depend on the 

accuracy of the presumed tracker. In case of the LBL-RICH, these are 

found by the procedure developed below. The error in 8, due to errors 

in the variables t, may be expressed as 

%(t)= $ 
( h 

5,~ 
f 

(18) 

where &3/d& is calculated from the reconstruction relation 8 = B(ct). 

Analytic forms for oe(<i) evaluated from fl = O(<l) may be found in 

Ref. [7] and more generally in Appendix A. 

In contrast, the photon emission point ue along the track has an 

intrinsic error 

(19) 

limited by the radiator pathlength Au,; however, in a focused system 

&/au, = 0 (or is small even for large values of pe); thus oe(uJ is never 

dominant. Similarly, the photon energy error for a square detector 

response is 

(20) 

which can be reduced only by reducing the detector energy bandwidth 

AE. The corresponding Cherenkov angle error is 

oe(E)= 2 f oE, 
( I( 1 

(21) 

where n(E) is the radiator dispersion function. These errors define the 

limits of the RICH resolution. 

An important advantage of RICH is that the Cherenkov angle 

distributions are Gaussian, without the Landau tail which characterizes 

dE/dx (energy loss) detectors. 

3.2 Impact Parameter, Vertex, and Emission Point Vectors 

and Cherenkov Angle 

The unit vector BP along the track, parallel to P (see Fig. Al), has 

ZXY components 
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Zp = apzk + apx] + apyj, 

apz = cOsep, 
aPx = sine, cOsqp, 
a py = sinepsh~p. 

The unit vector bp along Q has components in ZXY 

bp = bPzi; + bPxi + bpy;, 

bpz = -apx, 

bpx = sin2 0, + cosep cos2 $P = E,, 

bpy = (cOsep - l)cos$p sing P 3 n. 

(22) 

(23) 

The unit vector ~?,=Fi,xb, along R is normal to Fip and bp with ZXY 

components 

S, = cpzk + c,xi + cpyj, 

cpz = -spy , 

cpx = 11, 

C py = ~0s~ qtp + cos ep sin2 $p i Ed, 

(24) 

Thus, (k,i,j) and (zp,bp,Cp) are the unit vectors of the ZXY and PQR 

coordinate systems, respectively. The specific choice of QR axes is made 

such that Fip + k, bp + i, S, + 1 as Bp+O. 

The particle production (neutrino interaction) vertex TiV has ZXY 

components (zv, xv, yv) and PQR components (uva, v,, w,), where 
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i” = Z”E + X”i + y,; = UvaIp +‘veGp + weep, 

U”, =i,.ii,, 

ve=iv.Gp, 

We=F”.zp. 

(25) 

The impact parameter iip is that vector normal to zp which when 

added to a vector proportional to HP gives the vertex vector iv; thus 

t&l =i!"- &.gp 
( 1 Gp =VeSp+WeEp =ZipE+Xipi+yipTJ 

zip = sinep[zvsi”ep -(x,cos~~~ +yvsinep)cOsep]; 

xip = -z" sinepcOsep ~0s~~ +x,(~-s~II~~~cos~~~)- y,~in~e~~in~~~~~~~; 

yip =-z,Sinep cOsep shjp -xv sin2 ep SKIING COS+~ + yv(i- sin2 ep sin2 +p). 

(26) 

where the second equality of the top equation of Eq. (25) identifies Ve 

and we as impact parameters. In Ref. [7], +P was explicitly set to zero by a 

rotation, and only ve was considered (they are called xe). This is 

equivalent to setting yv = 0 as is shown by considering the ZXY 

components of iip in the limit $p-+O, i.e., zip+Asinep, xip+-Acost3p 

(here A = z,sinClp - x,cosep), and yip + yv; thus yip = 0 only if yv = 0 . \ 

Therefore, the geometry of Ref. [7] is not completely general 

because it implicitly assumes yv = 0 and uses only one impact 

parameter ve; whereas in general, yv # 0 and two impact parameters ve 

and we are required. The formulation and reconstruction method 

given below is, however, quite general. The derivatives found in 



Ref. [7] apply only for yv = 0 and should be replaced by the more general 

ones given in Appendix A. 

In ZXY, the photon emission point is (z,, xe, ye); thus 

Fe = z,k + x,T + yej with r, = J(z,2 + %@2 + y,2). In PQR, the emission 

point is at distance uve along ip from i,, i.e., 

ie=Fv+~&ip=~$ip+ vebp+weSp (27) 

with r, = d(ue2+ve2+we2) and the second equality stemming from 

Eq. (25) with ue c ~"a + Uve. Since the (ze, G, ye) coordinates are defined 

in ZXY, they are obviously independent of (e,, $p). The PQR 
\ components (ue, ve, we), expressed in terms of (ze, Q, ye) and (e,, op), 

are 

and 

(28) 

(2% 

Ue=Zeapz+Xeap~+YeapyI 
ve = zebpz + xebpx + yebpy 1 

we = ZeCpz + XeCpx + Yecpy’ 

z, = ueapz + vebpz + wecpz, 

x, = ueapx + vebpx + wecpx, 

Ye = Ueapy + vebpy + weepy . 

In matrix notation, u, = Az, and z, = Bu, where ue and ze are column 

vectors (ue, ve, w,)T, (z,, q, y,)T. Here A is the matrix with all = apz, 

a12 = apx, a13 = spy, a21 = b,,, az = bpx, az = bpy, ax = cpzl a32 = cpx, a33 = 

cpy, and B is the matrix with bll = apz, br2 = b,,, b13 = cpz, b21= apx, b22 = 

b,,, b23 = cpx, b31= spy, b32 = b,,, b33 = cpy; thus AB = 1, hence B = A-1. 

Note also that B = AT, where T indicates transpose, i.e., (AT)11 = aii. 

The detection point vector i = rii has components (z, x, y) in ZXY 

which are independent of (e,, ep) while (u, v, w) in the PQR system 

depend on (O,, $p) as 

i=zi;+xi+yj=uHp+vGp+WSp (30) 

with r = d(z2+x2+y7-) = $u2+v2+w2). The matrix relations between the 

column vectors u = (u, v, w)T and z = (z, x, y)T are u = AZ and z = Bu. 

Finally, the photon direction unit vector 5, defined by the 

Cherenkov polar and azimuthal angles (tl, @) in PQR, has its emission 

components (ae = cos8, be = sinecos+, and ce = sin&in+) independent of 

(e,, $p), while its ZXY components (a,, a,, ay) depend on (e,, $p) as 

I = aezp + bebp + cezp = a,k + axi + ayS . (31) 

The matrix relations between the column vectors a = (a,, a,, ay)T and 

a, = (+, be, c,)T are a, = Aa and a = Ba, with a2 = a$ = 1. 

Because the emitted photon plane (containing ii, and ?i) also 

contains C and because the mirror normal (at the reflection point) is in 

this same plane, therefore the reflected photon will also be in this 

plane. This is expressed by the vector equation 

ii=piie+vLi (32) 
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with t.t and v to be determined. We define the angles (Q, Re, a’), shown 

in Fig. Al, by the dot products: 

l=i.ii, = cosR; 
a.ii, = cosR,; 
I.ii = COSCY. 

Taking the dot product of Eq. (32) with each of (z,iie,ii) and solving the 

first two resultant equations for p and v gives 

Sini 
P= 

SillR, ’ 

Sk-IQ 
v=-. 

SiIlR, 

(33) 

The third equation is satisfied if Q’ = a,-Q; however, this is always true 

since the three vectors form a closed triangle. Note that L2 is found 

directly from experiment as the dot product of the emission. point and 

detection point unit vectors, i.e., 

cosfi=fi.f ie=ZZe+~+YYe; 
e 

(34) 

thus, R does not depend on (e,, Qp) because both (z, x, y) and (ze, Q, ye) 

are measured in ZXY. From the geometry of Fig. Al, we find 0 = Re + 

A-2&,, which, with the sine law relations resinRe = rmsin&,, = rsinh, 

becomes 

Q=Qe+arcsm(y)-2arcsin(~]. (35) 

Thus, we obtain Re (and R’ = Qe-R) from R by numerical inversion of 

Eq. (35) and find p and v from Eq. (33). 

An equivalent and computationally faster way of obtaining Re has 

been recently developed [17]. Consider the two triangles of Fig. Al 

containing the Ra = Re-en, and Rb = A-&,. Straightforward geometry 

allows us to obtain a quartic equation in s = sinRa, i.e., 

s4 + a3s3 + a2s2 + als + au = 0, (36) 

where ag = -2r@nQ, a2 = n(an-2p), al = n(2rt-pcosfi), and a0 = (1-4p?-&/4 

with rt = r,/2r, p = r/re, and a I 1 + p2 + 2pcosR. Solution of the quartic 

equation gives two real and two complex roots. Of the two real roots, 

we choose the root which has a mirror hit point z, > 0. The other real 

root has zr,, < 0 corresponding to a light ray reflected from the spherical 

mirror surface upstream of C (where, in fact, no mirror physically 

exists). From the two triangles, we find the additional relations 

tar&, = A, 
WP-c 

t2, =f2,+e,, 

tala, = +. 
c-- 

2rlP 

(37) 
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where c = cos!&. Equations (36) and (37) are equivalent to Eq. (35) but 

are computationally faster. 

We then proceed to solve Eq. (31) for H as 

Clearly, the solution for z2, (and A and 0,) is independent of (8,, 

I$~), since physically, it represents a light ray propagating from f, to F. 

Similarly, the timing equation (Sec. 3.4) is also independent of (8,, $p). 

This completes the summary of the Cherenkov angle 

reconstruction method [7]. 

P=(;)fi-($fie=(~)fi-[sh&n)~e. (38) 

3.3 Approximate Determination of Particle Direction 

Since the components of I along (Zp,bp,Zp) are (a, = case, be = 

\ sint!tcos~, and ce = sin&in@), we find for the Cherenkov emission 

angles (8, $), the explicit relations 

(39) 

Thus, 8 and 0 are obtained from (Q, a,), (%, v,, we), and (u, v, w). The 

(e,, $I~) dependence enters through (u,, ve, we) and (u, v, w), i.e., via 

the matrix A of Eq. (28). This reconstruction is quite general (it works 

for any detector surface, e.g., flat) and removes all but intrinsic 

aberrations of the image. 

The geometry of the LBL-RICH makes it difficult (or impossible) to 

implement a tracker inside the water volume; however, (8,, qP) can be 

found in good approximation from the center of the ring image. Since 

the ring images can be identified (see Figs. 7-14), we assume that an 

array of image points (zi, xt, yi) and arrival times tt are known (i = 1 to 

N). From these points, we can approximately determine the particle 

direction (even if ?e is not known) by assuming that the array (zb xi, yi) 

satisfies the equation of a circle on a sphere. Intersection of a cone (cone 

angle 8, cone direction BP, bp) with a sphere of radius r gives the 

equation of a circle on a sphere as 

Zi+tXi+Wi-Xr=O, 

5 = tartOp coscpp, 

v = tanep sincpp, 

h = c0s e/cOsep. 

w 
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Minimizing the function 

the unknown coefficients 

x2 = Cr(zi + bt + Wi - Xr)2 with respect to 

(t,~,h) leads to the equations 

5 = oxY"Yz - o="YY , 

=xx=yy - =xy=xy 

w= 
~xy%z - ~yz%x 

, (41) 
%x~yy - oxyoxy 

hr=(z)+W+v(y). 

where (x) = icxi, etc., (XY) = +Cxiyi, etc., oxy = (xY)-(X)(Y), etc. 

Thus, 

coseP = *n 
cos$p = $-J 

(42) 

This zero impact parameter (II, = v, = 0), spherical detector surface 

approximation provides an initial estimate of (eP, cpP) but not of 8; 

however, this is not a problem because the reconstruction algorithm 

[Eq. (39)] gives a precise estimate for (e, 4). 

3.4 Timing Measurements and Determination of the 

Track Parameters 

The track parameters ze, xe, and ye can be determined from the 

measurement of time. The ring image pattern defines an array (zt, xi, 

yi) of image points (i = 1 to N) and an associated photon arrival time ti 

+ ot at the PM. The photon pathlengths are I, from the emission point 

i, to the mirror hit point F,, and P, from i&, to the photon detection 

point i. These are found from Fig. Al, using the sine law relations 

r,sinQ, = r,sine, = rsinA I ra, as 

e,=r,cose,-~c0d2,; 

e2 = r, case, - rcos A. (43) 

The total pathlength P = PI + P2 is obtained from the detection point 

r = d(z2+x2+y2) and the assumed emission point r, = d(z,2+xe2+ye2) as 

where Re is from Eq. (35) [or Eqs. (36) and (37)], rt, I r,cos&, and t = ne/c 

is the time from photon emission to detection. As expected, Eq. (44) is 

independent of particle direction (OP. oP). 
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3.5 Reconstruction of (0, $) and Determination of 
Track Parameters (ze, xe, Ye, 0p, $p) 

The reconstruction and track finding strategy can now be stated: 

(1) 

(2) 

\ 
(3) 

(4) 

(5) 

(6) 

(7) 

an image is visually identified with measured hit points 

and time (zt, xi, yt, tf); 

the initial emission point and emission time (z,, Q, ye, te) 

are chosen randomly in the water volume and during the 

beam spill; 

CI is calculated from Eq. (34); 

R, is determined by numerically inverting Eq. (35) or 

solving Eqs. (36) and (37); 

an initial estimate of particle direction (e,, $p) is found 

from Eq. (42); 

values for (0, @) are then determined from Eq. (39) using 

Eqs. (28) and (29); 

the time-detector x2 = Xtd2 function is constructed from 

measured ti and tit”’ from Eq. (44) as 

(45) 

and minimized by varying (z,, xe, ye, k). Since absolute time of 

the primary interaction cannot be determined (or known from 

the beam spill because 20 beam bunches will be inside the 

water radiator at any given time), the emission time te may be 

determined from the ring. However, because xt$ depends only 

on time differences, these can be referenced to any convenient 

zero which in our case is the onset of the SPS beam spill cycle. 

We have shown for the geometry of Fig. 1 with 1 ns time bins, 

125 mm x, y pixels (and with lh emission point variation, 

chromatic, multiple scattering, and energy loss aberrations) 

that the Xtd2 function near its minimum varies by about a 

factor of two for variations of 100 mm of the average emission 

point. The problem of finding a good starting point (ze, Q, ye, 

te) within the large radiator volume is considered in Sec. 4. 

(8) A finer determination of the track parameters (G, G, ye, BP, tjp) 

and (e,@) is obtained by minimizing the width of the 

8 distribution, i.e., 

I 1 
2 

oe2=$~ei2- SJf.ji , 
1 1 

w 

by varying the track parameters near the minimum of the xtd2 

function [Eq. (45)]. 
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3.6 Vertex Point Determination 

The distance along the track from vertex to emission point uve 

varies from photon to photon with <uv+ = 1/Z = 425 mm for the 

average hadron. A better estimate is obtained from the number of 

imaged points N, i.e., 

N 
Uve = 

E~&~No sin2 0 
(47) 

corrected for geometrical efficiency eg, i.e., the fraction of photons 

which hit the mirror and are imaged (without hitting the side walls). 

This is obtained by simulation from the assumed emission point (ze, 

x,, ye). In this simulation, (8,, eP) and 8 are needed and Q is varied to 

find the efficiency. The absorption term E, = e-M is evaluated from 4 

[Eq. (44)] using the measured water absorption coefficient u = u(E) 

(Ref. [ 151). 

If two ring images (1 and 2) are fit by the preceding algorithm 

(Sec. 3.4) and if their emission points Fe1 and Fe2 are near each other 

(i.e., Arlz = 1 ?,I- fez I = k), then they are candidates to have a common 

vertex. The vector equation for the vertex point is 

Fv = uvalzpl +velbpl + welFp1 = uva2ap2 + ve2bp2 + we2Sp2, (48) 

where uval = uel+uvel and uva2 = u&uve2 [uvel and uve2 are found 

from Eq. (47)]. Both signs are negative for a primary vertex, whereas 

one sign is negative and the other positive for a scatter or decay vertex. 

The three components of Eq. (48) used in a ~2 minimization will 

strongly limit the vertex point with C = 3M constraints (M is the 

number of charged vertex tracks). Thus, even a two track vertex will 

provide six equations on the vertex point. We estimate that the vertex 

point can be found with cm-like accuracy although this has not yet 

been verified by simulation. 

4. Photon Detection with PM’s at the Mirror Surface 

It is essential to find the photon emission point four-vector (Te,te) 

in order that the Cherenkov angle reconstruction can be implemented 

(step 2 of Sec. 3.5). We have shown that random start points converge 

to the correct minimum if the point is within a 3 m radius four sphere 

about the true emission point. To explore the space inside a (30 m)s 

volume would require choosing 103 random start points. In the time 

coordinate, the radiator is 1350 m long (i.e., a 6 us beam spill with c/n = 

0.225 m/ns), hence 450 segments of f 1.5 m length. Combining these 

450 points with the 1000 volume start points implies about 450 k 

random start points, which appear excessive. 

For this reason, we have investigated the effect of replacing 4% of 

the reflecting mirror surface area, i.e., 36 m2 with 2880 PM’s of 127 mm 

diameter so as to directly detect Cherenkov photons (a la IMB, 
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Kamiokande, and Super-Kamiokande). This will result in a substantial 

sample of mirror PM (mPM) hits, since the mPM cover is l/5 of the 

detector PM (dPM) cover, and thus, provides 160 mPM hits compared 

with 800 dPM hits. 

4.1 Determination of the Photon Emission Point and Time 

We use a four-vector formulation of the problem due to 

G. Fiorentini [18] and denote by co 3 (i,ct/n) the four-vector 

, components of the ith, mPM hit (subscripts i and m are dropped). 

Denoting the emission point vector components va I (T.,,cte / n), then 

the equation for the photon vector components is just the difference 

between hit and emission points, i.e., a, = gtr-r+ra. We define the 

coordinate vector no= co - <co> so that its average over the i hits is 

zero (i.e., <n,+ = 0) and the vector &a 3 va -<co>, thus ao=n,+&. The 

condition for ao to be a photon four vector is then 

aoao = (lk~ - &r)2 = no9o - 2tlogo + So& = 0; (49) 

averaging over the i photon hits and recalling that <rb-+ = 0 gives 

(q&J = (2) = -6,6, = -s,2; 

(2) = (z2)+(x2)+(y2)-(f2); (50) 

se 2,22 e +xe2 + Ye2 - te27 

where (z, x, y, t) are the hit mPM coordinates with time converted to 

space by the velocity factor c/n. Equation (50) thus gives a quadratic 

constraint on the unknowns (ze, Q, ye, LJ in the form se2 = -<s%, i.e., as 

averages over known mirror hit points <s2>. This relation constrains 

but does determine (ze, Q, ye, Q. For this purpose, we multiply Eq. (50) 

by np and again average over hit points to obtain 

(r12q3)-%(wlp)=o; 
SoTus = VP; 

Tap = (wp); 
(51) 

y3 = (l12q3)/2, 

where the third term of Eq. (49) drops out because <na> = 0. This gives a 

set of four linear equations for & = (ze, G, ye, t+.) in terms of the tensor 

Top and the vector VP. These are respectively, quadratic and cubic 

moments averaged over hit points, i.e., T11 = <z2>, T12 = <zx>, T13 = 

<zy>, T14 = - <zt>, T2l = <zx>, Tu = <x2>, TB = <xY>, T24 = - <xt>, T31= 

<zy>, T32 = <xy>, T33 = <y%, T34 = - <yt>, T41= <zt> , TQ = <xt>, T43 = 

<yt>, TM = - <t2,, and 2V1= <zs% = <z3> + <zx% + <zy2> - <zt2>, 2V2 = 

<xs%, 2~3 = <ys2>, 2V4 = <ts2>. In order to obtain stable and accurate 

(meaningful) solutions to these linear equations, it was necessary to 

use the method of Gaussian elimination with partial pivoting [19]. 

Unfortunately, the constraint [Eq. (50)] is not contained in the linear 

relations for &of Eq. (51). We have simulated many random events 

with full errors and aberrations and plotted the distance between the 
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solution values (zes, xes, yes, t& to input values (ze, G, ye, b) in the 

form of the four-radius r4 = J[(ze,-ze)‘+(x,,-x,)‘+(ye~-ye)‘+(t,,-t,)2] 

versus C = [se2+<s2>]/<s2>; the normalized constraint. It was found 

that for -1 < C < 1, the four radius is within 3 m  of the true emission 

point; hence, it is sufficient to guarantee that the Xtd2 algorithm of Sec. 

3.4 converges to the correct minima. Moreover, we found that about 

90% of the random events have K] < 1. 

The above results may be compared to the standard ~2 formulation of 

i the problem. Since the ith hit point is caused by a photon, it obeys the 

spherical wave relation 

fi=(Zi-Ze)2+(Xi-Xe)2+(yi-ye)2-(ti-te)2=0. (52) 

Requiring &2/aze = 0, &z/axe = 0, &‘/aye = 0, &z/ate = 0 results in the 

same formulas as Eq. (51) except the diagonal elements Tli have the 

additional term E, i.e., Tn = <z2> + E, Tz = <x2> + E, T33 = <y2> + E, TM = 

-<t2> + E (where 2~ = C<s2> = <s2> + ze2 + x,2 +y.&te2); thus the 

equations are no longer linear (i.e., cubic) in (ze, Q, ye, and fe) unless 

the constraint C = 0 is satisfied. An attempt to find an iterative solution 

(the diagonal elements were increased by the E found in the preceeding 

iteration) failed since the solution did not converge. Possibly, this 

constraint may be imposed by the method of Lagrangian multipliers. 

In general, and for any start point, the xswm2 function must be 

minimized to find the best emission point vector (G, Q, ye, and te). 

Averaging over the i hits gives 
4.2 Determination of the Particle Direction 

(f) = (z)2 +(x)2 + (y)2 - (t)2 + Ze2 + Xe2 + ye2 - t,2 = (s)2 + Se2 = 0; (53) 

thus, we recover the constraint of Eq. (50). Here we have used, as 

before, the hit points with their average subtracted so that <z> = <x> = 

<y> = <t> = 0. We now define the spherical wave to mirror ~2 as 

X .,*2=F 
L I 

$ 2f 
I 

Ofi = 2 (Zi -Ze)20,2 +(Xi -xe)20x2 +(yi -ye) 20y2 + (ti - te)20t2. 

(54) 

An approximate algorithm to determine particle direction using 

dPM hits has already been given in Sec. 3.3, but a more precise 

algorithm using mPM hits would be advantageous for choosing a 

better start point for the ~2 minimizations (Step 2 of Sec. 3.5). 

We present here an algorithm due to G. Fiorentini [19] using again 

the notation of the preceeding section. The three-vector ni represents 

the kth mirror hit point (average subtracted, subscripts k and m 

dropped), thus the average over the k hits qi> = 0. The emission point 

vector in the same coordinate system is 61, hence the photon vector (of 
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length p) is pr = pai = Br-& and its dot product with particle direction is 

pa+ = pCOS0 = (?ji-&)a@. The length p is simply the time difference n4- 

84, and hence the basic equation is (vi-&)si = (n4-84) in the variables sl = 

aPi/cos0. Averaging over hits gives the constraint Nisi = 84. Multiplying 

the basic equation by nm and averaging gives a set of linear equations 

Tmlsl= Vm, where the tensor T,i = <B,,-,B,> and the vector V, = 

<nmn4>. Expressed in terms of the hit points (z, x, y, t), we get the same 

tensor as given in Sec. 4.1 (i.e., T11= <z%-, T12 = <zx>, . . . ) whereas the 

vector components are Vi= <tz>, V2 = <tx>, VJ = <ty>. Note that the 

three solutions si just suffice to determine 8, BP, and $P. Written out in 

full, the constraint has the form ~sl+ +sp + yes3 = b where (ze, G, ye, 

te) are found from Eq. (51). 

The problem then is to solve a set of three linear equations with a 

linear constraint. The solution of the linear equations by Gaussian 

elimination with partial pivoting [19] is straightforward, but we have 

not yet been able to include the constraint. The solutions with 

emission point, pixel, and timing errors included are excellent if the 

hit (data) points are generated without chromatic aberrations, multiple 

scattering, or energy loss; however, once these are included, the 

solutions become unstable and useless. For this reason, we looked for 

another less elegant algorithm which can provide some sensitivity to 

particle direction from mirror hit points. 

The vector equation of the photon hit point i = Fe +p5, where 

again p is the distance between the emission and hit points, and Z the 

photon direction unit vector [Eq. (31)]. In the PQR coordinate system, 

the components are ui - uet = picose, vi-v, = pisinOcos$, and wi - we = 

pisinOsin$ where pi is the distance between ith emission and hit 

points. Recall that impact parameter coordinates (ve and we) do not 

depend on i because they are constant anywhere along the track, 

whereas ue varies with the point of emission along the track. 

Eliminating pi and $, we obtain the equation of a cone gl = 0 and then 

solve for Ll&, i.e., 

gi = (Vi -VJ2 + (Wi - we)2 - tan2fl(ui - uei)’ = 0, 

J[(vi-ve)2+(Wi-we]2] (55) 
U,ai = Ui - 

tan0 

The emission point uei along the track is determined if 8, BP, oP are 

assumed and the impact parameters ve and we are known. For this 

purpose, we use the solution of Eq. (51) which gives (z,, G, ye, fe) from 

the mirror hit points (zi, xi, yl, tl). The assumed (OP, $+,) direction 

defines the matrices A and B; thus u, = AZ, can be calculated and 

impact parameters v, and we extracted. Since these are constant along 

the track, we use these in Eq. (55) 1 a on with the transformed hit point g 

ul= Azi to find the column vector uei = (uei, ve, we)*. Transforming 

back via zei = Buei gives a column vector (zei, xel, yei) for each hit point 

which inserted into Eq. (52) gives the cone-spherical wave-mirror 

(cswm) direction dependent constraint 
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be equal to the generated values thus allowing velocity determination 

and, in addition, momentum and mass determination over the range 

of MSD. 
l I 

2 

Xcswm2 = F E I &  
ogi = 2 (zo,)2 + (xo,)2 + (YcfJ2 I 

z = (V - ve)bpz + (W - we)+ - tan2 e(u - uei)apz# 

x = (V - ve)bpx + (w - we)cpx - tan2 $u - uei)apxJ 

Y =(v- ve)bpy +(w-w,)cpy-tan2e(u-u,i)apy. 

(56) 

In summary, we now have three ~2 functions to minimize xtd2 

2 Fq. (4511 and xswm [Eq. (54)], which depend only on the emission point 

vector and the xcswm 2 function [Eq. (56)] which depends both on 

emission point and particle direction (t+,, $P). In addition, the width oe 

of the reconstructed Cherenkov angle [Eq. (46)] depends both on 

emission point and particle direction. 

We calculated the values of Xtd2, xswm2, xcswm2, 8, and oe vs A(t, ,ze, 

xe, ye, 8, BP, +) for representative events with realistic errors (A here 

indicates the difference between the true value of the variable and its 

assumed value). Each event was generated at a random point and time 

in the water volume (z,, xe, ye, &J with a random direction (e,, $,), 

random pathlength (e), and an emission point random between (0 < u, 

< e). The ring images included chromatic aberrations, multiple 

scattering, and energy loss appropriate to the water radiating medium. 

The results showed that track variables (te, ze, Q, ye) were determined 

to about 100 mm while the particle direction (t3,, QP) was found within 

5 mrad. More important, the values of fl and os were found always to 

5. Beams and Sites 

5.1 The CERN-SPS Extracted Beam 

The CERN-SPS beam operates at 200 MHz, thus with a 5 ns 

periodicity. This means that succeeding RF bunches are separated in 

the water target by only 1.5 m; hence absolute timing cannot determine 

the interaction vertex point (this would be possible if the RF bunches 

were separated by > 100 ns). In other words, at any given time within 

an SPS burst, there will be 20 RF bunches inside the water target. 

One, two, or three SPS beam bursts can be extracted every SPS cycle 

of 14 sec. If one burst is extracted, it will be 23 us long and contain 1.3 x 

1013 p. If two bursts are extracted, they will be 10 PLS long separated by 

50 ms each with 1.3 x 1013 p giving 2.6 x 1013 p/cycle. If three bursts are 

extracted, they will be 6 us long separated by 50 ms, hence 3.9 x 

1013 p/cycle. For a 44% SPS duty factor, there will be 106 cycles/y and so 

= 4 x 1019 p/y (Ref. [20]). 
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5.2 Neutrino Beam and Event Rates 

The designed broad band neutrino beam (1 < Ev < 20 GeV) has a 

flux of 500 events/kt-1019 p; thus for 4 x 1019 p/y, the rate will be 

2000 events/kt-y (Ref. [21]). Since the LBL-RICH contains 22.5 fiducial kt 

of water, it should amass up to 45 kevents/y (for no oscillations, i.e., 

Am2 = 0). 

5.3 Where to Site the LBL-RICH 

5.3.1 Outside the Gran Sasso Tunnel 

As is clear from Fig. 1, the Gran Sasso tunnel would have to be 

43 m in diameter to contain a (30 m)3 cube. This is twice the diameter 

of the present and future Gran Sasso tunnels, so we have investigated 

operation of the LBL-RICH above ground. The possibility is to use an 

existing Gran Sasso tunnel of about 19 m diameter, but extending the 

length of the radiator to 100 m will be considered in the next section. 

We assume the full unshielded cosmic ray flux of 180/m2-s 

(Ref. [22]). For the 900 m2 surface area of LBL-RICH, the rate will be 

0.16 MHz; thus, during a beam burst of 6 us, we expect one muon to 

traverse the LBL-RICH. Since 3 x 106 SPS bursts result in 45 k events, 

the specific event rate is 0.015 events/burst or one signal event (S) per 

67 bursts. During this particular burst, we expect one background muon 

(B), thus S/B = 1. The other 66 bursts will contain only an obvious 

B event which cannot be confused with S because it lies in another 

burst. At least four methods are available to reduce B to a negligible 

level. They are: 

(1) By optically shielding the PM’s so they only view the 

mirrors. 

(2) By timing. Recall that the PM hits are binned in buckets of 

1 ns width over a period of 128 ns. The B event will arrive 

randomly over the 6 us burst gate since, because of its 

directionality, it cannot initiate the 100 PM trigger. The 

true S event arrives (during the 6 us burst) with I 128 ns 

dispersion relative to the 100 PM trigger signal, thus 

allowing a B reduction factor of 6000/128 = 47. 

(3) By pattern. Since the B events are mostly vertical, they do 

not form good images, whereas the S events are mostly 

longitudinal and do form good images. 

(4) By massive shielding. Even though the LBL-RICH will be 

above ground, it should be placed behind a mountain 

(when viewed from CERN), thus screening out the more 

horizontal muon tracks. 

The cost estimate with mHPD’s and dHPD’s is 25 MSF. 
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5.3.2 Inside a Gran Sasso Tunnel 

A possible layout of the LBL-RICH inside a Gran Sasso tunnel of 

19 m diameter is shown in Fig. 15. Using five sections of 20 m length 

and 18.6 m diameter, we can obtain the same 27 kt water mass. The 

HPD image plane is located at 11.5 m from the mirror’s center of 

curvature, and the image radius is about 8.4 m. 

This solution has several advantages; namely, it is shielded both 

from cosmic rays and from ecologists. Another advantage is that the 

muons will be extremely well measured in several of the five sections. 

The device becomes a Cherenkov total energy calorimeter with 

1000 pe/m = 625 pe/GeV. 

The disadvantages are that it has a smaller electron shower fiducial 

mass since the last 5 m of each section is needed to contain the shower 

(20 kt compared to 22.5 kt) and requires more HPD surface area [1360 

compared to 900 m*, thus 5 x 1100 = 5500 HE’D’s of 250 mm in diameter 

compared to 3600 for the (30 m)3 radiator]. 

The total cost estimate here is 40.6 MSF compared to the outside 

option of 25 MSF; hence costs scale for the same water mass 

approximately as the inverse ratio of mirror focal length (i.e., 

30/20 = 1.5, whereas the inside option is actually 1.62 times more 

expensive). 

1100 HP& 1lW HPds 1100 HP& 1100 HPDk 1100 HPr.k 

I 
” r b 

ll.Sm 1 

4 I 
- - -,- - - .,& 

r,=20m 
I\ 
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II 

iam 
* h 

lmm 

Fig. 15. The layout of the 27 kt water target and radiator filling a Gran 
Sasso tunnel of 18.6 m diameter. Five equivalent sections of 20 m 
length have reflecting mirrors of 20 m curvature placed at the end of 
each section. The detector HPD plane array (20% coverage) is placed 
11.5 m downstream from the mirror center of curvature. 

- 256 - 



6. The LBL-RICH Physics Reach 

The maximal mixing model of Harrison et al. [23] (which fits all 

existing neutrino data) predicts a large muon disappearance effect 

(44%) and a large electron appearance effect (22%) in the region 50 < 

L/E” < 700, thus for 1 < Ev < 15 at L = 732 km. This region is easily 

accessable with the broad band beam in the LBL-RICH. The muon rate 

will be large without (and measurably less with) oscillations, whereas 

the electron rate will be small without (and measurably more with) 

oscillations. Since the LBL-RICH has good energy resolution for 

muons, electrons, and hadrons, it can fine-bin the muon or electron 

type events vs L/E” so as to observe the maximum oscillation swings. 

In the two-neutrino mixing analysis, we expect to reach Am2 = 9.2 x 

104 eV2/sin(2@ for vP+ vr oscillations via the reaction vr + n + r- + p 

with decay r- + e-+ ve + v* by cuts on pt and Ee. Neutrino interactions 

in this low-energy, wide-band beam (1 < Ev < 20 GeV) are = 95% deep 

inelastic (DIS) (67% CC, 33% NC) and = 5% quasi-elastic (QEL). The 

beam flux is 2000 events/kt-y, hence the LBL-RICH (22.5 kt fiducial) 

will detect 2.3 x 105 events in five years. The number of vP quasi-elastic 

events is Nu(QEL) = 1.2 x 104 with a v, quasi-elastic background of 

Ne(QEL) = 60 (since ve/vP = 0.5%) but is reduced to 0.4 by the 

kinematical cuts (6 x 10-S) (Ref. [24]). The number of NC-DIS events is 

much larger (7.7 x 104) but drops to 15 by the same kinematical cuts 

(2 x 10-h) (Ref. [24]). Further purification must be obtained from the ring 

patterns. If no ‘T + e candidates are observed in this event sample 

(Nze = 2.3 at the 90% confidence level), we obtain the oscillation 

probability 

’ = (N.,.R;:f )[ z) 

2.3 
= (l.2x104)(0.18)(0.21)(0.7) = oJJ072 ’ (57) 

where BR is the r + ew branching ratio, eff = signal efficiency = 0.21 

(0.23 for p above threshold, 0.9 for pt > 0.3 GeV), and 0.7 is the ratio of 

the vr and vp cross sections. However, for small oscillations, we can 

write 

fi = sin(28) 1.27Eh2L = 0.085 ; 
” 

(58) 

hence for Gran Sasso at L = 732 km and with neutrino beam energy 

Ev = 10 GeV, we find 

h-&g. (59) 

7. Summary 

We have shown how a RICH counter can measure momentum 

and have applied this method to investigate long baseline neutrino 

oscillation experiments. This method allows large mass targets, but 

with measurement of momentum, direction, velocity, mass, and 

absolute charge for hadrons and muons. In addition, electrons and 

gammas can be measured by calorimetry in water with good energy 

and excellent direction resolution. 
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Appendix A 

We consider the more general geometry of a ring image. We 

define two different coordinate systems as shown in Fig. Al, the ZXY 

system, fixed relative to the mirror, with unit vectors (k,;,:) and the 

PQR system, fixed to each track and defined from C such that P is 

parallel to the track and Q and R are normal to the track with unit 

vectors (IiP,bP,$). The photon emission point is (z,, G, ye) in the ZXY 

system and (u,, v,, w,) in the PQR system. The photon detection point 
\ is (z, x, y) in the ZXY system and (u, v, w) in the PQR system. 

An external particle tracker would directly measure (a, v,, w,) and 

the photon detector measures (z, x, y). The other coordinates (ze, +, ye) 

and (u, v, w) must then be determined from knowledge of (8P, +) via 

Eqs. (29) and (30). 

In the LBL-RICH case, the mirror tracker measures (z,, G, ye, te) 

and the photon detector (z, x, y). Thus, (G, v,, w,) and (u, v, w) are 

functions of (0,, cpp) via Eqs. (28) and (30). 

The emission point vector i,, the photon vector H, and the mirror 

hit vector f, define one triangle with included angles n-R,, em, and 

sla as shown in Fig. Al. The mirror hit vector rrn with the reflected 

photon vector ?ir and the detected point vector i define a second 

triangle with angles err,, +A, and &,; hence since n = R, + S&, = Re + A - 

29m and r,sinR, = r,,,sin8, = rsinA (= ra), then Eq. (35) is proven. 

RADIATOR 

r 

q 

-2 R 
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Fig. Al. The geometry of a mirror-focused ring image defined by the 
mirror center of curvature C, the Z axis along the neutrino beam, the X 
axis horizontal, and the Y axis vertical. The PQR axes, centered on C, 
are defined so that P is parallel to the particle direction ?ip and Q and R 

are normal to ap (i.e., parallel to bp,cp). The emission point 
coordinates in the PQR system are ue along and ve and we normal to 
the track. 



Table Al 

Three relations are needed to allow calculation of the derivatives 

a@/& for use in evaluation of the errors in Eq. (18); they are Eqs. (34), 

(35), and (39) (the first). Given these relations, it is straightforward to 
& FKi +GLi + Mi where obtain the relation ayi = 

sine 

Ki =p$($f)rJra(%); 

1 aln(rI;!) 1 Liz-- - [ 1 (Al) -- tan!2 ah qzze + me + we); rq sini a<i 
Mi = E&[?)-%&(r): 

with 

F= rue cossr-Ill, COSR, 
rrasinR(l+Jn,) ‘ 

G=F+ e%[z.yq; 
(Jv 

these are explicitly evaluated in Table Al for both mirror and normal 

trackers. 

The coefficients $, L+ Mi (versus Q) which determine si&(&l/a@ = FKi + GLi + Mi 
[see Eqs. (Al) and (A2)] with ra = resinQe = rmsin0, = rsinA, and rb = recosQe. The 
primes in rows Q = 8 
Quantities found in k 

or w, indicate a partial derivative with respect to this variable. 
t ese rows (mirror tracker) are defined as sz = mesin& - zq,, sx = 

mesin!2 - XQ, Sy = ‘y&illQ - yrb: 

Z 

X 

Y 

Mirror tracker 
Ze 

Xe 

/ YE 

OP 

‘pp 
Normal tracker 
ue 

Ve 

WE 

BP 

‘PP 

4 L. -1 

Zr a zrb - rz, 
r3cosA r2re sinQ 

X% xrb -rxe 
r3 cosA r2re sins); 
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r3 cos A r2re sir-62 

- Jze sina, 

re 

-Jxe sinRe 
‘e 

-Jye sin Qe 
r e 

0 

rz, cos!2 - zre 
rre2 sinR 

rx,cosn-XI-, 
ITe2Silli2 
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rre2 SinR 
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0 0 

- Ju, SinLIe 
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-Jv~ Sh Cl, 
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