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ABSTRACT

Coherence phenomena, the increase with energy of the coherence length, and

the nonuniversality of parton structure of the e�ective Pomeron are explained.

New hard phenomena directly calculable in QCD, such as di�ractive electro-

production of states with M2 � Q2, and the color transparency phenomenon,

as well as new options to measure the light-cone wave functions of various

hadrons, are considered. An analogue of Bjorken scaling is predicted for the

di�ractive electroproduction of � mesons at large momentum transfers, and

for the production of large rapidity gap events, as observed at HERA. A

phenomenological QCD evolution equation is suggested to calculate the ba-

sic characteristics of the large rapidity gap events. The increase of parton

densities at small x, as well as new means to disentangle experimentally soft

and hard physics, are considered. We discuss constraints on the increase of

deep inelastic amplitudes with Q2, derived from the inconsistency of QCD

predictions for inclusive and exclusive processes, and from the unitarity of the

S-matrix for collisions of wave packets. New ways to probe QCD physics of

hard processes at large longitudinal distances and to answer the long-standing

problems on the origin of the Pomeron are suggested. Unresolved problems

and perspectives of small x physics are also outlined.



1 Introduction

The aim of this report is to outline QCD predictions for color-coherence phenomena|

a result of nontrivial interplay of hard and soft QCD physics speci�c for high-energy

processes. Coherence phenomena provide an important link between the well-understood

physics of hard processes, and the physics of soft processes which at present is mostly

phenomenological. The soft/hard interplay is elaborated for the exclusive deep inelastic

processes �L + N ! a + N for M2
a � Q2, which are directly calculable in QCD. These

processes provide new methods of investigating the structure of hadrons and the origin

of the Pomeron, and allow us to search for new forms of hadronic matter in heavy ion

collisions (for a review and references, see Ref. 1). The phenomenon of coherence reveals

itself in high-energy processes through a large probability of occurrence of di�ractive

processes and through their speci�c properties. Thus, in this report, we concentrate

mostly on di�ractive processes. To explain the role of coherence in high-energy processes,

we will consider some properties of QCD which are di�cult to reconcile with intuition

based on pre-QCD ideas and on perturbative QCD (PQCD) experience with medium x

processes.

Let us outline briey the experimental results pointing to a signi�cant role of color-

coherent e�ects.

(i) Observed fast increase of parton distributions at small x and large momentum trans-

ferQ (Refs. 2 and 3) which, in the case of the ZEUSmeasurements, can be parametrized

as�

F2p(x;Q
2) = (1� x2)4

h
0:35 + 0:017x�(:35+:16log10Q

2)
i
: (1)

�This parametrization is not applicable forQ2 � 104 GeV2 where it leads to a divergence of the momentum

sum rule which is precise in QCD.



(ii) Large cross section measured for leptoproduction of vector mesons at CERN4 and

HERA,5 which increases with energy as

�(� + p! �+ p) / �2tot(
� + p) : (2)

The energy dependence obtained by the HERA data is much faster than that of cross

sections for soft two-body hadron processes like elastic pp collisions. At the same

time, this observation is in line with the QCD predictions for the electroproduction

of vector mesons and for color-transparency phenomenon which are described in

Secs. 4{6.

(iii) Large probability of occurrence of large rapidity gap events observed at HERA in the

deep inelastic regime6,7|this is more evidence for the important role of soft physics

in deep inelastic small x processes. HERA data8 support the dominance of events

with low transverse momenta kt. A signi�cant magnitude of nuclear shadowing in

nucleus structure functions observed at CERN and at FNAL is yet another piece

of evidence for the important role of soft physics in the deep inelastic processes at

small x (for a recent review of experimental data, see Ref. 9, and for a theoretical

discussion of nuclear shadowing, see Refs. 10 and 11, and references therein).

(iv) Presence of signi�cant uctuations in the strength of high{energy hadron{nucleon

interactions, as indicated by the analysis of soft di�ractive processes with protons and

nuclei. In particular, the observed cross sections for inelastic di�ractive production of

states X o� nuclei,12 h+A! X+A, increases with the atomic number A signi�cantly

faster than the expected A
1
3 if hadrons were to interact with a nucleus as with a black

body.

2 Glossary and Notation

In the course of the presentation, we will use a customary notation for variables used in

describing deep inelastic phenomena. For convenience, we de�ne them below:



� q denotes the four{momentum vector of a virtual photon

q = (q0; ~q);

and

Q2 = �q2 ;

� x is the Bjorken variable

x =
Q2

2 p � q
;

where p denotes the four{momentum vector of the target; for nuclear targets with

atomic number A, x is de�ned as

x =
A Q2

2 p � q
;

� mN stands for the mass of the nucleon;

� s denotes the square of the center-of-mass energy available in the collision of a pro-

jectile with a target.

For the sake of simplicity, we do not always explain all the variables if the notation

is self-explanatory. Thus, we use E to denote the energy of a state or a particle, M for

the mass of a state, and m for the mass of a particle. The subscripts explain further the

objects considered.

We will try to consistently denote by N a nucleon target, by A a nuclear target, and

by T any target (N or A).

In the splitting of the photon into a q�q pair, we will denote by z the fraction of the

photon momentum carried by one of the quarks of the pair, and by kt their transverse

momentum relative to the photon direction.

When we refer to the small or low x region, we have in mind x typically less than 10�2,

which corresponds roughly to the value of x where one starts observing a rise of parton

densities in the proton. Medium x refers to 10�2 < x < 10�1.



3 Increase of Coherence Length with Energy

The starting point of our discussion is the pre-QCD suggestion13 that distances along a

projectile momentum direction, lc, which contribute to high-energy processes, increase

with energy. The underlying nontrivial physical picture is that a su�ciently energetic

projectile transforms into a hadronic component at longitudinal distances lc from the

target which are large and increase with energy. In the case of deep inelastic processes,

the typical longitudinal distances, in the target rest frame, are described at small x by

the formula14

lc =
1

2mNx
: (3)

This formula can also be understood as a consequence of the uncertainty principle and

the renormalizability of QCD. The lifetime � of a virtual photon with momentum q in a

hadron con�guration jni with mass Mn is given by the uncertainty principle as

� =
1

En � q0
'

2q

(M2
n +Q2)

'
1

2mNx
: (4)

In the last step of the derivation of the above estimate, as a consequence of QCD renor-

malizability, the contribution of masses M2
n � Q2 has been neglected and M2

n has been

approximated by Q2.

In PQCD calculations of small x processes, the increase with energy of lc is a direct

consequence of gauge invariance and the renormalizability of PQCD. In the nonperturba-

tive QCD regime within the parton model, Eq. (4) follows from fast convergence of the

integrals over transverse momenta of constituents.

We now turn to di�ractive production of states X with mass MX in the reactions

a + T ! X + T , where a is a fast projectile and T the target. For the sake of the

argument, we will assume that a is a photon with virtuality Q2. The minimal momentum

transferred to the target in such a process is given by

tmin = �
(M2

X +Q2)2

s2
m2

T ; (5)



where s = (q + pT )
2 is the square of the center-of-mass energy of the �T collision. If at

su�ciently large s

�
tminr

2
T

3
� 1; (6)

the state X can be produced without disturbing the target, that is, without form factor

suppression. Here, r2T is the average quadratic radius of the target. Thus, the variety

of di�ractive processes increases with increasing s. At the same time, the number of

possible intermediate parton con�gurations in the wave function of the photon, which do

not destroy the coherence of the target in the interaction, also increases. In the calculation

of the di�ractive cross section, the contribution of all these intermediate states has to be

summed coherently.y For some hard di�ractive processes, the sum over hadron states

can be expressed through the parton distributions in the target (Secs. 3 and 4). The

Fourier transform of the forward di�ractive amplitude into coordinate space shows that the

dominant contributions come from longitudinal distances concentrated around l � 1p�tmin .

This is essentially the same result as established in Eq. (4).

From all the above considerations, one can conclude that the mechanism of coherence

is related to a large probability of coherent di�ractive processes, and that lc is a measure

of the coherence length.

The validity of the formula given by Eq. (4) has been established by B. Io�e14 in an

analysis of the Fourier transform of data on structure functions. Since the same distances

are important in vacuum and nonvacuum channels,10 more evidence for the validity of

Eq. (4) is the energy dependence and the signi�cant value of nuclear shadowing in pho-

toproduction and in deep inelastic processes at large energies (for a recent review and

references, see Refs. 10 and 11). To be more quantitative, let us consider a simple exam-

ple which will be important for further considerations in this report. In the deep inelastic

processes at HERA, for x = 10�4, the value of lc in the proton rest frame comes out to be

lc = 103 fm : (7)

yFor soft hadron processes, this is implemented in the Gribov-Reggeon calculus.15



This is a macroscopic distance on the scale of hadronic physics. In the simplest case

of a virtual photon uctuating into a pair of almost-free quarks, the pair can propagate

macroscopic distances without con�nement. At LHC energies in high pt phenomena, lc

may achieve atomic sizes|105 fm. The longitudinal size of the fast q�q state is rather small,

� 1
Q
. However, since the q�q pair is not an eigenstate of the QCD Hamiltonian, radiation

of quark and gluons will occur during the space-time evolution of the wave packet, and

its longitudinal size may reach 1 fm by the time it hits the target.

Thus, the space-time description of small x processes in the target rest frame leads

to the conclusion that the quark-gluon con�guration of the fast projectile involved in

the collision is built over macroscopic distances (on the scale of hadron physics). It

is this property of small x physics which will lead to many coherent phenomena. In

this report, we will often use the target rest frame when discussing coherence e�ects.

Since the results cannot be frame-dependent, the same e�ects are present in the more

conventional in�nite-momentum reference frame. The choice of frame is thus a matter of

convenience. We will show that in the in�nite-momentum frame, the same picture leads

to short range correlations in rapidity space for small x partons. This will be important

for the description of large rapidity gap events.

4 Interaction Cross Section for Small-Size Wave

Packets

One of the striking QCD predictions for hard processes dominated by large longitudinal

distances, is that if a hadron is found in a small-size con�guration of partons, it has a small

cross section for interacting with a target. This prediction, which follows from the factor-

ization theorem for hard processes in QCD, is in variance with many phenomenological

approaches based on pre-QCD ideas and on quark models of hadrons.

A su�ciently energetic wave packet with zero baryon and color charges, localized in a

small transverse volume in the impact parameter space, can be described by a q�q pair. This



conclusion follows from asymptotic freedom in QCD, which implies that the contribution

of other components is suppressed by a power of the strong coupling constant �s and/or

a power of Q2. A familiar example of such a wave packet is a highly virtual longitudinally

polarized � in a q�q state. Within the parton model, the cross section for the interaction

of such a photon with a target is suppressed by a power of Q2. But at the same time, the

probability for a longitudinal photon to be in a large transverse size con�guration (soft

physics = parton model contribution) is suppressed by a power of Q2. These properties

explain why reactions initiated by longitudinally polarized photons are best to search for

new QCD phenomena.

The cross section for a high-energy interaction of a small-size q�q con�guration o� any

target can be unambiguously calculated in QCD for low x processes by applying the QCD

factorization theorem. In the approximation where the leading �s ln
Q2

�2
QCD

lnx terms are

accounted for,16,17 the result is

�(b2) =
�2

3

h
b2�s(Q

2)xGT (x;Q
2)
i
x=Q2=s;Q2'9=b2 ; (8)

where b is the transverse distance between the quark q and the antiquark �q, and GT (x;Q
2)

is the gluon distribution in the target T calculated within this approximation. In this

equation, the Q2 evolution and the small x physics are properly taken into account through

the gluon distribution.

It is possible to derive a similar equation in the leading �s ln
Q2

�2
QCD

approximation;

one should account for all hard processes, including box diagrams in which (anti)quarks

exchange gluons. The �nal result has the same form as Eq. (8), but with GN (x;Q
2)

calculated in the leading �s ln
Q2

�2
QCD

approximation. It also contains a small contribution

due to sea quarks. Equation (8) accounts for the contribution of quarks, Q, whose masses

satisfy the condition: lc =
2q0
4m2

Q

� r2N . The estimate Q
2 � 9

b2
was obtained in Ref. 18 by

numerical analysis of the b-space representation of the cross section of the longitudinally

polarized photon, �L, and by requiring that GT be a conventional gluon distribution

calculated in the leading �s ln
Q2

�2
QCD

approximation.



The generalization of Eq. (8) for interactions of small-size wave packets with nonzero

baryon number is straightforward, but technically rather cumbersome.19

There is a certain similarity between Eq. (8) and the two-gluon exchange model of

F. Low20 and S. Nussinov,21 as well as the constituent quark two-gluon exchange model

of J. Gunion and D. Soper.22 The factor b2 which is present in the QCD expression (8)

for the cross section is also present in these models. The major distinction between

the results of QCD calculations and the two-gluon exchange models is the presence of

terms involving both the gluon and the sea quark distributions in Eq. (8). The latter

are particularly relevant for the fast increase of the cross section at small x, for the

seemingly slow decrease with Q2 of higher twist processes, and for the increase of nuclear

shadowing with decreasing x. All those e�ects are characteristic for QCD as a gauge

quantum �eld theory, which predicts an increase of parton densities in hadrons with 1
x
in

contrast to quantum-mechanical models of hadrons. Another salient property of QCD, as

a renormalizable quantum �eld theory, is that for hard processes, the cross sections have

to be expressed in terms of parton distributions in a target, where partons are the bare

particles of the QCDLagrangian. This is not the case in the quantummechanical models of

hadrons used in Refs. 23 and 24, where hard processes are modeled in terms of constituent

quarks interacting through the exchange of gluons with nonzero mass. The attempt to

reinterpret the gluon distribution in Eq. (8) as due to Weizs�acker-Williams gluons arising

from the color �eld of constituent quarks,24 is at variance with the QCD evolution equation

analysis of the measured structure functions.25{27 Such analysis points to an important

role of the valence sea and gluons in the nonperturbative parton distributions of a hadronic

target, even at a very low normalization point.27,28

In QCD, the inelastic cross section for the collision of a su�ciently energetic, small-size,

colorless two-gluon con�guration o� any target is

�(b2) =
3�2

4

h
b2�s(Q

2)xGT (x;Q
2)
i
x=Q2=s;Q2=�=b2

; (9)

where the parameter � is likely to be similar to the one present in the case of scattering

of a q�q pair o� a target. The di�erence, compared to Eq. (8), is in the factor 9=4 which



follows from the fact that gluons belong to the octet representation of the color group

SU(3)c, while quarks are color triplets.

5 Electroproduction of Vector Mesons in QCD

One of the examples of a new kind of hard processes calculable in QCD is the coherent

electroproduction of vector mesons o� a target T ,

� + T ! V + T ; (10)

where V denotes any vector meson (�; !; �; J=	) or its excited states.

The idea behind the calculation of hard di�ractive processes is that when lc, as given

by Eq. (3), exceeds the diameter of the target, the virtual photon transforms into a hadron

component well before reaching the target, and the �nal vector meson V is formed well

past the target. The hadronic con�guration of the �nal state is a result of a coherent

superposition of all those hadronic uctuations of the photon that satisfy Eq. (6). Thus,

as in the more familiar leading-twist deep inelastic processes, the calculation should take

into account all possible hadronic intermediate states satisfying Eq. (6). The use of a

complete sum over di�ractively produced intermediate hadronic states allows us to express

the result in terms of quarks and gluons as in the case of other hard processes. The matrix

element for electroproduction of a vector meson A can be written as a convolution of the

light cone wave function of the photon  �!jni, the scattering amplitude for the hadron

state jni, A(nT ), and the wave function of the vector meson  V

A =  � �!jni 
A(nT )
  V : (11)

In the case of a longitudinally polarized photon with high Q2, the intermediate state jni

is a q�q pair. As was mentioned in the previous chapter, it can be demonstrated by direct

calculations that the contribution of higher Fock state components and soft physics are

suppressed by a factor of 1
Q2 , and/or powers of �s. The proof of this result resembles

the calculation of the total cross section for the deep inelastic scattering in QCD. The



situation is qualitatively di�erent in the case of a transversely polarized photon, due to

the singular behavior of the vertex �T ! q�q when one of the partons carries a small

fraction of the photon momentum. In this case, soft and hard physics compete in a wide

range of Q2 (see discussion in Secs. 10 and 11).

To understand the applicability of PQCD for the process discussed above, it is conve-

nient to perform the Fourier transform of the amplitude into the impact parameter space

which leads to

A / Q

Z
b2xGT (x; b

2)K0

�
Qb
q
z(1� z)

�
 V (z; b)d

2bz(1� z)dz ; (12)

where z denotes the fraction of the photon momentum carried by one of the quarks. Here

 �
L / z(1� z)QK0

�
Qb
q
z(1� z)

�
; (13)

where K0 is the Hankel function of an imaginary argument. To estimate which values of

b dominate in the integral, we approximate  V (z; kt) by
z(1�z)

(k2t+�
2)2
, which corresponds to

 V (z; b) / z(1� z)bK1(�b). We vary hk2t i
1=2

= �p
2
between 300 and 600 MeV/c.

We �nd that in the case of �L, the average transverse size is hbi ' 0:25 fm for

Q2 = 10 GeV2, and x � 10�3, and it decreases at largerQ2, approximately as 0.3 fm 3 GeV
Q

.

It also decreases weakly with decreasing x. The increase of GT (x; b
2) in Eq. (12) with de-

creasing b substantially contributes to the decrease of hbi. In the case of a transversely

polarized �, the contribution of large b is not suppressed, since

 �
T /

@

@b�
K0

�
Qb
q
z(1� z)

�
; (14)

and therefore, the contribution of the kinematical region z ! 0 and z ! 1, where non-

perturbative QCD dominates, is not suppressed.

It is worth noting that the value of hbi contributing in the calculation of �L,D
b(Q2 = 10 GeV2)

E
�L

' 0:25 fm, is similar to that in the electroproduction of vector

mesons,
D
b
�
Q2 = 10 GeV2

�E
�
L
!�

' 0:35 fm. However, for larger Q2 the di�erence be-

tween the two values increases and reaches a factor of two for Q2 � 100 GeV2.



(q)γ

+ ∆k’

p

k’

x xi f

q + ∆

p - ∆

q - k’

Figure 1: A typical two-gluon exchange contribution to the amplitude �p! V p.

It can be shown that under certain kinematical conditions, the interaction of a q�q pair

with the target is given by Eq. (8). In the leading order in �s lnx ln
Q2

�2
QCD

, the leading

Feynman diagram for the process under consideration is a hard quark box diagram with

two gluons attached to it, convoluted with the amplitude for the gluon scattering o� a

target (see Fig. 1).

One can consider the same process in the leading �s ln
Q2

�2
QCD

approximation. In this

case, one has to include also the diagrams where one hard quark line is substituted by the

gluon line. This leads to an extra term / ST (x;Q
2) in Eq. (8), and allows us to treat the

parton distributions in Eq. (8) with �s ln
Q2

�2
QCD

accuracy, which is more precise than the

original leading �s lnx ln
Q2

�2
QCD

approximation in Eq. (8).

Since Feynman diagrams are Lorentz invariant, it is possible to calculate the box part

of the diagram in terms of the light-cone wave functions of the vector meson and the

photon, and to calculate the bottom part of the diagram in terms of the parton wave



function of the proton. This mixed representation is di�erent from the QCD-improved

parton model, which only uses the light-cone wave function of the target.

The next step is to express this amplitude through the parton distributions in the tar-

get. In the c.m. reference frame of the ep system, the target proton has large momentum

P , while the photon four-momentum is
�
��Q2

4P
; ���Q

2

4P
; qt
�
. The longitudinal momentum

transferred to the proton in this reference frame, �, is given by

�

P
�
M2

V +Q2

�
:

So the calculation of the imaginary part of the Feynman diagram of Fig. 1 shows that

the fractions of the target momentum carried by the exchanged gluons xi and xf are not

equal,

xi � xf = x; for
M2

V

Q2
� 1: (15)

We neglect terms of order O(
l2t
Q2 ) as compared to 1, with lt the transverse momentum of

the exchanged gluons. Within the QCD leading-logarithmic approximation

�s ln
1

x
� 1; (16)

when terms � �s are neglected, the di�erence between xi and xf can be neglected, and

the amplitude of the q�q interaction with a target is given by Eq. (8).16,17,29

We are now able to calculate the cross section for the production of longitudinally

polarized vector meson states when the momentum transferred to the target t tends to

zero,29 but Q2 !1z

d�L�N!V N

dt

�����
t=0

=
12�2�V!e+e�mV �

2
s(Q)�

2
V IV (Q

2)2j(xGT (x;Q
2) + i�

2
d

d lnx
xGT (x;Q)j

2

�EMQ6N2
c

:

(17)

zIn the paper of Brodsky et al.,29 the factor 4 in Eq. (17) is missing. We are indebted to Z. Khan and

A. Mueller for pointing this out.



�V!e+e� is the decay width of the vector meson into e+e�. The parameter �V is de�ned

as

�V �
1

2

R
dz

z(1�z)�V (z)R
dz�V (z)

; (18)

where �V is the light cone wave function of the vector meson. At largeQ2, Eq. (17) predicts

a Q2 dependence of the cross section which is substantially slower than 1=Q6, because the

gluon densities at small x fastly increase with Q2. Numerically, the factor �2s(Q
2)G2(x;Q2)

in Eq. (17) is / Qn with n � 1 (see Fig. 4). An additional Q2 dependence of the cross

section arises from the transverse momentum overlap integral between the light-cone wave

function of the �L and that of the vector meson,18 expressed through the ratio IV (Q
2)

IV (Q
2) =

R 1
0

dz
z(1�z)

RQ2

0 d2kt
Q4h

Q2+
k2
t
+m2

z(1�z)

i2 V (z; kt)
R 1
0

dz
z(1�z)

RQ2

0 d2kt V (z; kt)
: (19)

In Ref. 29 it was assumed that IV (Q
2) = 1; as for Q2 ! 1, the ratio IV (Q

2) tends

to 1. But for moderate Q2, this factor is signi�cantly smaller than 1. For illustration,

we estimated IV (Q
2) for the following vector meson wave function:  

(1)
V (z; k2t ) =

cz(1�z)
(k2t+�

2)2
.

The momentum dependence of this wave function corresponds to a soft dependence on

the impact parameter b, / exp(��b), in coordinate space. We choose the parameter � so

that hk2t i
1=2

2 0:3 to 0.6 GeV/c.

Our numerical studies show that the inclusion of the quark transverse momenta leads

to several e�ects:

� Di�erent kT dependence of  V leads to a somewhat di�erent Q2 dependence of

IV (Q
2). Thus, electroproduction of vector mesons may become an e�ective way

of probing kt dependence of the light-cone q�q wave function of vector mesons.

� The Q2 dependence of IV , for production of vector mesons built of light quarks u; d;

and s, should be very similar.

� For electroproduction of charmonium states where �c � �mJ	

m�
, the asymptotic for-

mula should be only valid for extremely large Q2.



The NMC data4 and the HERA data5 on di�ractive electroproduction of � mesons are

consistent with several predictions of Eq. (17):

� a fast increase with energy of the cross section for electroproduction of vector mesons,

as seen in Fig. 2 from Ref. 18 (proportional to x�0:8 for Q2 = 10 GeV2),x

� the dominance of the longitudinal polarization �L
�T
/ Q2,

� the absolute magnitude of the cross section within the uncertainties of the gluon

densities and of the kt dependence of the wave functions (Fig. 2),

� the Q2 dependence of the cross section for Q2 � 10 GeV2, which can be parametrized

as Q�n with n � 4. The di�erence of n from the asymptotic value of six is due to

the Q2 dependence of �2s(Q
2)G2

N (x;Q
2) and of I2V , which are equally important in

this Q2 range.

We discussed above (see also Sec. 8) that the perturbative regime should dominate

as well in the production of transversely polarized vector mesons, though at higher Q2.

This may manifest itself in the x dependence of the ratio �L
�T

for �xed Q2. At intermediate

Q2 � 10 GeV2, where hard physics already dominates in �L, �T may still be dominated by

soft nonperturbative contributions. For these Q2, the ratio should increase with decreasing

x � x2G2
N (x;Q2). At su�ciently large Q2, where hard physics dominates for both �L

and �T , the ratio would not depend on x.

The t dependence of the cross section is given by the square of the two-gluon form

factor of the nucleon G2g(t). Practically no t dependence should be present in the block

of � gluon interaction for �t � Q2. Thus, the t dependence should be universal

for all hard di�ractive processes. Experimentally, the data on di�ractive production

of � mesons for Q2 � 5 GeV2 (Ref. 4), on photoproduction of J=	 mesons,31 and even on

xThis fast increase with decreasing x is absent in the nonperturbative two-gluon exchange model of

Donnachie and Landsho�30 which leads to a cross section rising as � x�0:14 at t = 0 and to a much

weaker increase of the cross section integrated over t.



Figure 2: The total longitudinal cross section, �L�N!�N , calculated from Eq. (17) for
several recent parametrizations of the gluon density in comparison with experimental
data from ZEUS5 (full circles) and NMC4 (squares). Typical parameters for the �-meson

wave functions as discussed above are taken (hk2t i
1=2

= 0:45 GeV/c). We set �V = 3 and
parametrize the dependence of the di�erential cross section on the momentum transfer
in exponential form with B � 5 GeV�2. Note that a change of T 2(Q2) in the range

corresponding to hk2t i
1=2

between 0.3 GeV/c and 0.6 GeV/c introduces an extra-scale
uncertainty of 0.7 to 1.4.



neutrino production of D�
s mesons,

32 show a universal t behavior corresponding to

G2
2g(t) = exp(Bt) with B � 4 GeV�2 : (20)

A certain weak increase of B is expected with increasing incident energy, due to the so-

called Gribov di�usion,33 but this e�ect is expected to be much smaller than for soft

processes. However, in the limit Q2 = const and s!1, it is natural to expect an onset

of a soft regime, which is characterized both by a slowing down of the increase of the cross

section with increasing s, and by a faster increase of the slope B with s,

@ lnB

@ ln s js!1;Q2=const
� �0soft � 0:25 GeV�2: (21)

For further discussion, see Sec. 15.

We want to point out that for M2
X � Q2, the e�ect of QCD radiation is small.

This is because bremsstrahlung corrections due to radiation of hard quarks and gluons

are controlled by the parameter �s ln
xi
xf
, which is small because in the reaction considered

here, xi � xf . This argument can be put on a formal ground within the double logarithmic

approximation, where only terms � �s ln
1
x
ln Q2

�2
are taken into account. One can consider

a more traditional approximation, where terms ' �s ln
Q2

�2
QCD

are taken into account but

terms ' �s are neglected.

Within these approximations, it is legitimate to neglect the contribution of the longi-

tudinal momentum as compared to the transverse one. This is a special property of small

x physics. Thus, the di�erence between xi and xf leads to an insigni�cant correction.

Formula (17) correctly accounts for nonperturbative physics, and for the di�usion to

large transverse distances characteristic for Feynman diagrams, because in contrast to

the naive applications of the BFKL Pomeron, the di�usion of small-size con�gurations to

large transverse size is not neglected.

Electroproduction of J=	 mesons has been considered also in Ref. 35 within the non-

relativistic constituent quark model for J=	-meson wave function in the whole Q2 range.

In the limit, where we can justify the application of PQCD [Eq. (17)] (m2
J=	 � Q2), the

result of Ref. 35 coincides with the nonrelativistic limit of our result if IV is assumed to



be equal to 1. At the same time, the inclusion of the transverse momentum distribution

of c quarks in the J=	 wave function signi�cantly suppresses the cross section of the

di�ractive electroproduction of J=	 mesons for Q2 � m2
J=	. In particular, in the case of

photoproduction calculations in the model of Ref. 35, which take into account the Fermi

motion of quarks using realistic charmonium models, lead to a cross section smaller than

the original result by a factor of 4 to 8, depending on the model (see discussion in Ref. 18).

Remember that the transverse distances essential in the photoproduction of the J=	 me-

son are � 3
mc
, which is comparable to the average interquark distance in the J=	 wave

function. Since the energy dependence of di�ractive photoproduction of J=	 is consistent

with the PQCD prediction of Ref. 35, the disagreement with the absolute prediction may

indicate an important role for the interaction with an interquark potential.

It is worthwhile to notice the possibility of investigating the distribution of color in

vector-meson production in � collisions, in reactions like � ! V1 + V2, where V1 is

produced along � and V2 along the quasireal photon. Study of this reaction and use

of Eq. (17) would allow us to measure the gluon density at small x in various vector

mesons. It would be revealing to see how large is the di�erence between, say, G�(x;Q
2)

and G�(x;Q
2), or GJ=	(x;Q

2), and to investigate its dependence on the di�erence in radii

of these vector mesons.

Another interesting process which can be calculated using the technique discussed

above, is the production of vector mesons in the process �L + p ! V +X in the triple-

Reggeon limit where �t � few GeV2 and �t � Q2. In this kinematical domain, the

dominant contribution is due to the scattering of the two gluons o� a parton of the target:

g + g + parton ! parton. To avoid the uncertainties related to the vector-meson wave

function, it is convenient to normalize the cross section of this process to that of the

exclusive vector-meson production at t = 0 (Ref. 36)



d�
�
L
+p!V+X

dt

d�
�
L
+p!V+p

dt

����
t=0

=
9

8�
�2S

�����ln Q
2

k2

�����
2

1R
y

h
Gp(y

0; k2) + 32
81
Sp(y

0; k2)
i
dy0

[xGp(x;Q2)]2
; (22)

where Sp is the density of charged partons in the proton, � = 2mNq0, x = Q2=�, k2 = �t,

y = �t=2(q0 � pV o)mN with pV o the energy of the vector meson, and all variables are

de�ned in the nucleon rest frame.

It follows from Eq. (22) that the cross section of the process �L + p ! V + X

should decrease very weakly with t, and therefore, it is expected to be relatively large

at �t � few GeV2. Using an approach like that taken in Refs. 37 and 38, one can easily

improve Eq. (22) to account for leading �s lnx terms.

Equation (22) is a particular case of the suggestion (and of the formulae) presented

in Ref. 37, that semiexclusive large t di�ractive dissociation of a projectile accompanied

by target fragmentation can be expressed through the parton distributions of the target.

The advantage of the process considered here, as compared to the general case, is the

possibility to prove the dominance of hard PQCD physics for a longitudinally polarized

photon as projectile, and the lack of t dependence in the vertex � + g ! g + V . These

advantages allow us to calculate the cross section without free parameters.

Production of transversely polarized vector mesons by real or virtual photons in the

double-di�ractive process T +p! V +X has been calculated recently within the approx-

imation of the BFKL Pomeron in Ref. 39. The calculation was performed in the triple-

Reggeon limit for large t but s� �t. In contrast to reactions initiated by longitudinally

polarized photons, this calculation is model dependent; the end-point nonperturbative

contribution to the vertex �T + g ! g + V , and therefore, to the whole amplitude, leads

to a contribution which is not under theoretical control. This problem is related to the

theoretical discussions of the high Q2 behavior of electromagnetic form factors of hadrons.



6 Properties of the Electroweak Production of

Vector Mesons

Longitudinal vector-meson production is dominated by small interquark distances in the

vector-meson wave function. Therefore, the factorization theorem can be used to calculate

the cross section for hard di�ractive processes in QCD without model assumptions. For

M2
V � Q2, all dependence on the quark masses, and thus, on avor, is only contained

in the light cone wave functions of vector mesons and not in the scattering amplitudes.

This prediction is nontrivial since experimentally, the coherent photoproduction of mesons

containing strange or charm quarks is strongly suppressed as compared to the SU(4)

prediction for the ratio of the production cross section for various vector mesons, which is

�o : ! : � : J=	 = 9 : 1 : 2 : 8 : (23)

Experimentally, the suppression factor is � 4 for �-meson, and � 25 for J=	. Thus, QCD

predicts a dramatic increase of the �=�o and J=	=�o ratios at large Q2.

Moreover, the experience with constituent quark models suggests an additional en-

hancement of heavier avor production since for the heavy quarkonium states, the prob-

ability for q and �q to come close together is larger. In fact, Eq. (17), derived in QCD,

predicts for the ratio of production of mesons V1 and V2 at large Q
2 that

�(�L + T ! V1 + T )

�(�L + T ! V2 + T )

�����
Q2�M2

V1
;M2

V2

=
MV1�V1!e+e��

2
V1
(Q2)

MV2�V2!e+e��
2
V2
(Q2)

: (24)

Based on the measured values of �V!e+e� and estimates of �V from QCD sum rules,40 we

observe that Eq. (24) predicts a signi�cant enhancement of the � and J=	 production

�o : ! : � : J=	 = 9 : 1 : (2� 1:0) : (8� 1:5) (25)

as compared to the SU(4) prediction. This prediction is valid for Q2 � m2
V only. Pre{

asymptotic e�ects are important in the large Q2 range. They signi�cantly suppress the

cross section for production of charmonium states (see above discussion). Thus, the value



of the J=	=� ratio would be signi�cantly below the value given by Eq. (25) up to very

large Q2. For example, the suppression factor is � 1=2 for Q2 � 100 GeV2 (Ref. 18).

At the same time, it is likely to change very little the predictions for �; !; and �-meson

production, since the masses of these hadrons are quite close and their q�q components

should be very similar.

At very largeQ2, the q�q wave functions of all mesons converge to a universal asymptotic

wave function with �V = 3. In this limit, further enhancement of the heavy resonance

production is expected

�o : ! : � : J=	 = 9 : 1 : (2� 1:2) : (8� 3:4) : (26)

It is important to investigate these ratios separately for the production of longitudinally

polarized vector mesons where hard physics dominates, and for transversely polarized

vector mesons where the interplay of soft and hard physics is more important.

Equation (17) is applicable also for the production of excited vector-meson states with

masses mV satisfying the condition that m2
V � Q2. In this limit, it predicts comparable

production of excited and ground states. There are no estimates of �V for these states, but

it is generally believed that for �0, !0, and �0, it is close to the asymptotic value, and as a

rough estimate, we will assume that �V = �V 0 . Using the information on the decay widths

from the analysis by Clegg and Donnachie,41 of excited light vector meson properties, we

�nd that

�(1450) : �o � 0:45� 0:95;

!(1420) : ! � 0:46;

�(1700) : �o � 0:22� 0:05;

!(1600) : ! � 0:48;

�(1680) : � � 0:85;

	0 : J=	 � 0:5 : (27)



In view of substantial uncertainties in the experimental widths of most of the excited

states and substantial uncertainties in the values of �V 0 and the ratio IV 0

IV
, these numbers

can be considered good to about a factor of two. The case of 	0, where �V is well-known,

is less ambiguous. In this case, estimates using charmonium models indicate a signi�cant

suppression as compared to the asymptotic estimate, up to Q2 � 20 GeV2 where this

suppression is � 0:5 (Ref. 18).

In spite of these uncertainties, it is clear that a substantial production of excited

resonance states is expected at large Q2 at HERA. A measurement of these reactions

may help to understand better the dynamics of the di�ractive production as well as the

light-cone minimal Fock state wave functions of the excited states. It would also allow

us to look for the second missing excited � state which is likely to have a mass of about

1900 MeV, based on the pattern of the �; !; and J=	 families.

The relative yield of the excited states induced by virtual photons is expected to be

higher than for real photons since the Vector Dominance Model (VDM) and Eq. (17) lead

to

�( +N ! V +N)

�( +N ! V 0 +N)

�(�L +N ! V 0 +N)

�(�L +N ! V +N)

�����
Q2�M2

V 0
;M2

V
;t=0

=

=
M2

V 0

M2
V

�2V 0(Q
2)

�2V (Q
2)

�2tot(V
0N)

�2tot(V N)
�
M2

V 0

M2
V

: (28)

In the last step, we used an empirical observation that for e�ective cross sections of

V 0N and V N interactions which enter in the VDM model,{ �tot(V
0N)

�tot(V N)
� 1, and that �V

{Note that these e�ective cross sections have no direct relation to the genuine interaction cross sections.

For example, based on geometrical scaling, one expects the interaction cross section to increase with the

size of the projectile approximately as R = �tot(	
0N)=�tot(J=	N) � R2

	0=R2
J=	 � 4. However, if one

applies the equations of the VDM for the extraction of the cross sections from photoproduction of J=	

and 	0, one �nds R � 0:7 � M2
J=	=M

2
	0 . This trend seems to reect e�ects of color screening in the

production of heavy quarkonium states.42,10 Note also that photoproduction data do not resolve �(1430)

and �(1700). In the case of only photoproduction o� nuclei, similar nuclear absorption e�ects are observed

for the production of � and �0, indicating �(�0N) � �(�N). At the same time, application of the vector-



and �V 0 are close to the asymptotic values for light mesons, while for heavy quark systems,

the values of �0V are close to the static quark value of �V = 2.

Another interesting QCD e�ect is that the ratio of the cross section for the di�ractive

production of excited and ground states of vector mesons should increase with decreasing

x and Q2. This is because the energy denominator,
�
m2
q+k

2
t

z(1�z) �m2
V 0

��1
, relevant for the

transition V ! q�q (with no additional partons) should be large and positive. Thus,

the heavier the excited state, the larger its Fermi momenta should be. Thus, the gluon

distributions should enter at larger virtualities in the case of V 0 production.

Equation (17) is applicable also to vector-meson production in weak processes. Con-

sider, for example, the di�ractive production of D��
s = c�s meson in W�N scattering. To

calculate this cross section, it is su�cient to substitute in Eq. (17) the electromagnetic

coupling constant by g cos �C , where �C is the Cabibbo angle. Some enhancement of the

D�
s production is expected due to a larger value of �D�

s
originating from the asymmetry in

the x distribution of the light and heavy quark in D�
s .

To summarize, the investigation of exclusive di�ractive processes appears to be the

most e�ective method to measure the minimal Fock q�q component of the wave functions

of vector mesons and the light-cone wave functions of any small mass hadron system

having an angular momentum of one. This would be very helpful in expanding methods

of lattice QCD into the domain of high-energy processes.

dominance model for the process  p! �0p leads to �(�0N) � 0:4�(�N). The observed pattern indicates

that production of �0 is dominated by average quark-gluon con�gurations (large absorption cross section),

while the probability of these transitions is suppressed since the transition � ! V emphasizes the role

of small con�gurations.



7 Color Transparency Phenomenon

7.1 Coherent Production of Vector Mesons o� Nuclei at

Small t

The QCD analysis described in Sec. 4 con�rms the conjecture of Refs. 10 and 43 that

at large Q2, vector mesons are produced in small transverse size con�gurations (at least

for the longitudinally polarized photons), and hence, the color transparency phenomenon

(CT) is expected. In the case of coherent vector-meson production o� nuclear targets,

the QCD prediction, in the form of Eq. (17), absorbs all the dependence on the atomic

number in the gluon and sea quark distributions of the target. But it is well-known that

the evolution of parton distributions with Q2 moves the e�ect of nuclear shadowing to

smaller x. Thus, at small but �xed x and su�ciently large Q2, the cross section for hard

di�ractive processes is expected to ful�ll the following relation:

d�L�+A!X+A

dt

�����
t=0

= A2
d�L�+N!X+N

dt

�����
t=0

: (29)

This is the so-called color transparency phenomenon which leads to the validity of the im-

pulse approximation|the nucleus is transparent for the projectile and there are no �nal-

state interactions. The onset of CT should occur at moderate Q2 since gluon shadowing

disappears quickly with increasing Q2 at �xed x (Ref. 44). If the size of the con�gura-

tion is �xed (at large but �xed Q2) but the energy of the collision increases, shadowing

e�ects should become more and more important since the gluon shadowing increases with

decreasing x (Ref. 10) (see Fig. 3). Moreover, the analysis of the unitarity constraints

in Sec. 11 demonstrates that in the scattering o�, heavy nuclei screening e�ects should

lead to very substantial suppression of the coherent vector-meson production cross sec-

tion,
d�L

�+A!X+A

dt

����
t=0

, for x � 10�4 and Q2 � 10 GeV2, as compared to the expectation of

Eq. (29). We shall explain in the next section that a similar CT behavior is expected for

the production of transversely polarized vector mesons but at signi�cantly larger Q2 than

for the longitudinally polarized vector mesons.



Figure 3: The ratios RS � SA=SN , RG � GA=GN , and RV � VA=VN of sea, gluon, and

valence, distributions for A = 40 (denoted by A) and A = 2 (denoted by N) and (left)

their logarithmic derivatives, dRS(V )(x;Q
2)=d(lnQ2), as a function of x for Q2 = 4 GeV2

(full line), Q2 = 25 GeV2 (dashed line), and Q2 = 100 GeV2 (dotted line).



In contrast to the formula derived in QCD [Eq. (17)], the two-gluon exchange con-

stituent quark model22 predicts no increase of the cross section at small x. Quark models

and the Glauber approximation (used in particular in [Ref. 45]) are in variance with the

factorization theorem in QCD even if formula (8) obtained in Refs. 16 and 17 is used for

the nucleon target since they predict the disappearance of shadowing at �xed Q2 when x

decreases.

As explained above, the preliminary HERA data indicate that PQCD predictions

contained in formula (17) are applicable already for Q2 � 10 GeV2. Obviously, this is an

implicit con�rmation of the color transparency logic since it con�rms both the presence

of small transverse con�gurations in the � meson and the smallness of their interactions

with hadrons. It would be important to investigate further these e�ects more directly at

ultra-high energies. To this end, we consider briey the scattering o� the lightest nuclei.46

Note that there are discussions to accelerate deuterons at HERA and to polarize them in

order to measure the parton distributions in the neutron.

7.2 Color Transparency E�ects in �L +D(A)! VL +D(A)

The very existence of the color-coherence e�ects leads to a rather nontrivial dependence

of the cross sections of hard di�ractive processes on x and Q2. To elucidate this point, we

consider in this section di�ractive electroproduction of vector mesons o� the deuteron.

First, let us consider the leading-twist e�ect. It follows from Eq. (29) that at t = 0,

the amplitude of this process is proportional to the parton density in the deuteron. The

nuclear e�ect in the leading-twist depend on x and Q2 in a rather complicated way. At

x � 0:1 and Q2 � few GeV2, the kinematics of the HERMES facility, the gluon density

in nuclei is signi�cantly enhanced: GA(x;Q
2)

AGN (x;Q2)
> 1. This e�ect follows from the need to

reconcile the momentum and baryon sum rules with the F2A(x;Q
2)

F2N (x;Q2)
data.44 The dynamical

mechanism relevant for the gluon enhancement is not understood so far. One example

of the Feynman diagrams which may lead to such an enhancement is the propagation

of color states in nuclei and their mixing with multinucleon states via gluon exchanges.



Since the gluon exchange amplitude is real, the contribution of such diagrams corresponds

to enhancement of the gluon �eld, not the shadowing. Legitimate calculations of such a

mechanism are absent at present.

Consequently, QCD predicts an enhancement but no shadowing for the electroproduc-

tion of vector mesons at t = 0 o� the deuteron at x � 0:1. This e�ect should die out

rather rapidly with the increase of Q2 due to the QCD evolution of parton distributions

with Q2 (cf. Fig. 3 for the Q2 dependence of parton distributions).

At su�ciently small x � 10�2, the shadowing of the gluon distribution dominates. We

will restrict the discussion to the region of su�ciently large x � 10�4 where the interaction

cross section for a small q�q state with a nucleon, �q�qN (b
2; x), which is given by Eq. (8), is

small compared to the unitarity limit, and therefore, QCD evolution equations seem to be

applicable. In this kinematics, one expects a fast decrease of shadowing with an increase

of Q2.

Obviously, at t � tmin shadowing e�ects are small since internucleon distances in the

deuteron are comparatively large. To enhance these e�ects, it would be advantageous to

study experimentally the coherent electroproduction of vector mesons at jtj � 0:5 GeV2

where an interesting di�raction pattern with a secondary maximum was observed a long

time ago for photoproduction of the �-meson. This pattern at Q2 = 0 arises within the

vector-dominance model as a result of the vector-meson rescatterings. At large Q2, QCD

predicts more complicated behavior.

Let us consider �rst the rescatterings of the produced q�q pair of small size b. The

scattering amplitude is given by the sum of two terms, one given by the impulse approxi-

mation, and the other due to double scattering:k

kSince the relevant values of b are small, we neglect, in the �rst approximation, e�ects of the leading-twist

nuclear shadowing induced by the space-time evolution of the q�q pair leading to the formation of large

spatial size quark-gluon con�gurations.



d�L(
� +D ! V +D)

dt
=

1

16�

����
Z h

2SD(t)f�N!V N (x; b
2; rt)+Z

i

8�2
f�

L
N!V N (x; b;Q

2; rt=2� kt)fq�q;N (x; b; rt=2 + kt)SD(4k
2
t )

 �(z; b;Q
2) V (z; b)dzd

2kt
i
d2b
���2 ; (30)

where t = �r2t , SD(t) is the deuteron form factor, and fq�q;N (x; b; rt=2+kt) is the amplitude

for the elastic rescattering of the q�q pair. For simplicity, we ignore here the spin indices.

For the interaction of a small transverse size q�q con�guration, small values of the impact

parameters b, dominate in Eq. (30). Hence, the CT prediction of formula (8) is that at

small but �xed x with increasing Q2, the relative contribution of the second term should

be proportional to 1
Q2xGN (x;Q

2). Since at �t � �t0 � 0:5 GeV2 the elastic cross section

is dominated by the square of the second term, this mechanism leads to a cross section

which is extremely sensitive to the CT e�ects in this region. In particular, the ratio

d�
�

L
+D!V+D

dt

������t��t0 =
d�

�

L
+D!V+D

dt

������t=0 =
�����h�q�qN (b)i4�

�
1

R2

������
2
expBt

4

/
x2G2

N (x;Q
2) expBt

Q4
; (31)

where

h�q�qN (b)i =

R
d2b �

L
(b) V (b)�

2
q�qN (b)R

d2b �
L
(b) V (b)�q�qN (b)

(32)

should strongly decrease with increasing Q2, and atten for su�ciently large Q2 to a

leading-twist behavior, due to the space-time evolution of the q�q con�gurations. On the

contrary, at �xed Q2 this ratio should increase with decreasing x. Here B = B�N=2 with

B�N denoting the slope of the di�erential cross section for the elementary �+N ! V +N

reaction and
D

1
R2

E
=
R
d3rr�2 2

D(r). The large t (�t � 0:5 GeV2) dependence of the cross

section in Eq. (31), d�
dt
/ exp(B0t) with B0 � 2 GeV�2, is signi�cantly weaker than in the

Glauber model, where B0 is expected to be

B0 =
B�NBN

B�N +BN

� 3 GeV�2 : (33)



We neglected here the deuteron quadrupole form factor e�ects. They lead to a contribution

to the cross section which does not interfere with the electric transition and for which

Glauber e�ects are small. This contribution �lls the minimum due to the interference of

the impulse and double-scattering terms.47 However, this contribution to the cross section

can be signi�cantly suppressed by using a polarized deuteron target. Similar e�ects should

be present for the scattering o� heavier nuclei like 3He and 4He. The measurement of

the depth of the Glauber minimum, due to the interference of the amplitude given by

the impulse approximation with rescattering amplitudes, would allow us to check another

feature of expression (17), namely, the large value of the real part of the production

amplitude Ref=Imf � �n=2 � 0:5, where n characterizes the rate of increase of the

gluon density at small x, xGN (x;Q
2) / x�n. In this discussion, we neglected the leading-

twist mechanism of double rescattering, related to the leading-twist nuclear shadowing.

It is likely to have a similar t dependence as the term considered previously. It may

compete with the mechanism we discussed above in a certain x and Q2 range. This

question requires further studies. In any case, it is clear that in a wide kinematic range,

the relative height of the secondary maximum would be strongly suppressed as compared

to the case of vector meson production by real photons. At very small x for Q2 where

�q�qN is close to the unitarity bound, this suppression may disappear. This would establish

the x and Q2 range where color transparency should disappear.

Recent FNAL data on incoherent di�ractive electroproduction of vector mesons o� nu-

clear targets48 did �nd an increase of nuclear transparency with increasingQ2 as predicted

in Refs. 10, 43, and 45. However, in this experiment, the increase of Q2 is correlated with

the increase of the average x, and a signi�cant e�ect is reported for a Q2 range where

hxi corresponds to average longitudinal distances which are comparable with the nuclear

radius lc =
1

2mNx
� RA. It is well-known that at large x, shadowing disappears for hard

processes. Thus, it is necessary to investigate theoretically to what extent the observed



increase of transparency is explained by the e�ects of �nite longitudinal distances. The

ideas discussed in this report do not apply directly to color transparency phenomena at

moderate energies. For a recent review of this �eld, we refer the interested reader to Ref. 1.

8 Electroproduction of Photons

The di�ractive process �+ p!  + p o�ers another interesting possibility to investigate

the interplay between soft and hard physics, and to measure the gluon distribution in

the proton. We shall consider the forward scattering in which case only the transverse

polarization of the projectile photon contributes to the cross section. This follows from

helicity conservation. In this process, in contrast to reactions initiated by longitudinally

polarized highly virtual photons, soft (nonperturbative) QCD physics is not suppressed.

As a result, theoretical predictions are more limited. Within QCD, one can calculate

unambiguously only the derivative of the amplitude with respect to ln Q2

Q2
0
but not the

amplitude itself. However, for su�ciently small x and large Q2, when �s(Q
2
0) ln

Q2

Q2
0
lnx is

large, PQCD predicts the asymptotic behavior of the whole amplitude.

It is convenient to decompose the forward scattering amplitude for the process �+p!

+p into invariant structure functions in a way similar to the case of deep inelastic electron-

nucleon scattering. Introducing the invariant structure function H(x;Q2), an analogue of

F1(x;Q
2) familiar from deep inelastic electron scattering o� a proton, we have

d�

dt

�+N!+N
�����
t=0

= ��2em
H(x;Q2)2

s2
: (34)

When Q2 is su�ciently large, QCD allows us to calculate the Q2 evolution of the

amplitude in terms of the parton distributions in the target. As in the case of deep

inelastic processes, it is convenient to decompose H(x;Q2) in terms of photon scattering

o� quark avors of type i

H(x;Q2) =
X
i

e2ihi(x;Q
2) ; (35)

where the sum runs over the di�erent avors i with electric charge ei. It is easy to deduce

the di�erential equation for hi, the analogue of the evolution equation for the parton



distributions:

dhi(x;Q
2)

d lnQ2
=
�s(Q

2)

2�

Z
dz

z

�
Pqg

�
x

z

�
Gp(z;Q

2)+

Pqq

�
x

z

�
qi(z;Q

2)
� �
1 +

x

z

�
1�

x

z

��
+O(�2s) : (36)

Here, Pqq and Pqg are the splitting functions of the GLDAP evolution equation.34 The

factor 1 + x
z

�
1� x

z

�
takes into account the di�erence of the virtualities of the initial and

�nal photon. The solution of this equation is

hi(x;Q
2) = hi(x;Q

2
0) +

�s(Q
2)

2�

lnQ2Z
lnQ2

0

d lnQ2
1

1Z
x

dz

z

�
Pqg

�
x

z

�
Gp(z;Q

2
1) + Pqq

�
x

z

�
qi(z;Q

2
1)
� �
1 +

x

z

�
1�

x

z

��
+O(�2s) : (37)

Usually it is assumed that the soft components of the parton distributions increase at

small x more slowly than the hard ones. If this is the case, at su�ciently small x, in the

leading �s lnx approximation, the �rst term in Eq. (37) can be neglected. As a result, one

can obtain the asymptotic formula for the whole H(x;Q2) and not only for its derivative.

Similar to the case of electroproduction of photons, it is not di�cult to generalize

the Q2 evolution equation to the amplitude for the di�ractive production of transversely

polarized vector mesons. One of the consequences of this evolution equation is that, at

asymptotically largeQ2 and small x, the production cross section has the same dependence

on the atomic number of a target as in the case of longitudinally polarized vector mesons.

9 Coherent Pomeron

It is interesting to consider high-energy hard processes in the di�ractive regime, with the

requirement that there is a large rapidity gap between the di�ractive system containing

the high pt jets and the target, which can remain either in the ground state or convert



to a system of hadrons. In PQCD, such a process can be described as an exchange of a

hard gluon accompanied by a system of extra gluons which together form a color-neutral

state. It was predicted37 that such processes should occur in the leading twist. (Note

that in Ref. 61, it was stated that this process should be rather a higher twist e�ect. This

statement was due to some speci�c assumptions about the properties of the triple-Pomeron

vertex.)

The simplest example is the production of high pt jets in the triple-Reggeon limit, in

a process like

h+ p! jet1 + jet2 +X + p; (38)

where the �nal state proton carries practically the whole momentum of the initial proton.

The initial particle can be any particle including a virtual photon. To probe the new PQCD

hard physics, the idea37 is to select a �nal proton with a large transverse momentum kt.

One can demonstrate that this selection tends to compress initial and �nal protons in small

con�gurations at the moment of collision. In this case, the use of the PQCD two-gluon

exchange or two-gluon ladder diagrams becomes legitimate. A nontrivial property of these

processes is a strong asymmetry between the fractions of the target momentum carried

by the two gluons (the contribution of the symmetric con�gurations is a higher twist

e�ect with the scale determined by the invariant mass of the produced two jets49). Thus,

one expects gluon bremsstrahlung to play a certain role.50 However, since the proton

is in a con�guration of a size � 1
kt
, this radiation is suppressed by the small coupling

constant � �s(k
2
t ) ln(

p2t
k2t
). When kt tends to 0, this radiation may suppress signi�cantly

the probability of occurrence of events with large rapidity gaps.

The prediction is that such a process appears as a leading-twist e�ect37

d�

dp2t
�

1

p4t
: (39)

This prediction is in apparent contradiction with a naive application of the factorization

theorem in QCD, which states that the sum of the diagrams with such soft gluon exchanges

cancels in the inclusive cross section. However, in reaction (38), we selected a certain �nal



state with a white nucleon; hence, the usual proof of the factorization theorem does not

hold anymore|there is no cancellation between absorption and radiation of soft gluons.49

This conclusion was checked in a simple QED model with scalar quarks.51

It was suggested by Ingelman and Schlein52 to consider scattering o� the Pomeron as if

the Pomeron were an ordinary particle, and to de�ne parton distributions in the e�ective

Pomeron. In this language, the mechanism of hard interaction in the di�raction discussed

above would contribute to the parton distribution in the Pomeron a term proportional to

�(1� x) or
1

(1� x)
: (40)

This term corresponds to an interaction in which the Pomeron acts as a whole. Hence, the

term \coherent Pomeron." In this kinematical con�guration, the two jets carry practically

all the longitudinalmomentum of the Pomeron. The extra gluon bremsstrahlung discussed

previously renders the x dependence somewhat less singular at x! 1, but the peak should

be concentrated at large x (Refs. 49 and 50). There are no other known mechanisms

generating a peak at large x. The recent UA(8) data53 on the reaction p + �p ! jet1 +

jet2+X + p, with the proton transverse momentum in the range 2 GeV2 � k2t � 1 GeV2,

seem to indicate that a signi�cant fraction of the two-jet events corresponds to the x � 1

kinematics. It is thus possible that the coherent Pomeron contributes signi�cantly to the

observed cross section.��

The prediction is that the contribution of the coherent Pomeron to di�ractive electro-

production of dijets at p2t � Q2 should be suppressed by an additional power of Q2

d�
�+p!2jets+X+p

dp2t
�

1

p4t

1

Q2
;

as compared to
d�

�+p!2jets+X

dp2t
�

1

p4t

for other hard processes originating from the hard structure of the virtual photon.

��The coherent production of high pt jets by a real photon has been �rst discussed by Donnachie and

Landsho� 54 and then rediscussed in (Ref. 55). This process, discussed in the next section, gives a

negligible contribution in the kinematic regime characteristic for the coherent Pomeron.



The complicated nature of the e�ective Pomeron should manifest itself in several ways

in hard di�raction:37,49

(i) There should be a signi�cant suppression of the coherent Pomeron mechanism at

small t due to screening (absorptive) e�ects, since at small t the nucleon interacts in

an average con�guration. This suppression should be larger for pp scattering than

for p scattering, since absorptive corrections increase with the increase of the total

cross section (for the p interaction, the VDM e�ective total cross section at HERA

energies is � 30 mb).

(ii) Due to the contribution of soft physics, the e�ective Pomeron structure function

as determined from the low t di�ractive processes should be softer than for large t

di�raction.

Therefore, it would be very important to compare hard di�ractive processes induced by

di�erent projectiles, and to look for deviations from the predictions based on the simplest

assumption that the Pomeron has a universal parton distribution.26

10 Forward Electroproduction of Jets

Forward di�ractive photo- and electroproduction of high pt jets o� a nucleon target (in

the photon fragmentation region), �+N ! jet1+ jet2+N , is another promising process

to investigate the interplay of soft and hard physics. We shall con�ne our discussion to

the kinematical region

�hr2N i tmin

3
=

 
Q2 +M2

q�q

2q0

!2
hr2N i

3
� 1; (41)

where

M2
q�q =

(m2
q + p2t )

z(1� z)
(42)

is the square of the invariant mass of the produced q�q system, mq is the mass of quarks,

and z is the fraction of photon momentum carried by the q or �q. In this regime, the



coherence of the produced hadron states allows us to express the amplitude through the

gluon distribution in the target.

An interesting e�ect occurs in the photoproduction of high pt jets. The contribution of

a single Feynman diagram, with the two-gluon exchange in the t channel, contains terms

R1 �
pt �

p2t+M
2 and R2 �

m
p2t
. Here, m is the mass of a bare quark, and M can be calculated

through m in PQCD but, in general, it accounts for the nonperturbative physics. We

omit constants and � matrices in this dimensional estimate and restrict ourselves to the

contribution of large pt only. A cancellation occurs when the sum of diagrams is considered.

It accounts for the fact that the sum of diagrams describes the scattering of a colorless

dipole.

Naively, we should expect that after cancellation, the R1 term should become

R1 �
pt �

(p2t+M
2)2
. But in reality, it becomes R1 �

M2pt �

(p2t+M
2)3

� 1
p5t
. The R2 term after

cancellation in the sum of diagrams becomes R2 �
m
p4t
. Thus, the cross section of forward

photoproduction of the q�q pair d�=dtdp2t contains terms
m2

p8t
,55 M4

p10t
, and M2m

p9t
.

Since the mass of the light quark is small, it is reasonable to put it at zero. It is

not legitimate to put M = 0. So the expected asymptotical behavior is M4

p10t
. Thus,

photoproduction of charm should dominate hard di�ractive photoproduction processes

for pt � mc (Ref. 55).

Photoproduction of high pt jets, originating from the fragmentation of light avors, is

predominantly due to next-to-leading-order processes in �s.

The di�ractive electroproduction of dijets seems to be the dominant process in the

region of M2
q�q � Q2, while in the region M2

q�q � Q2, exclusive dijet production is one of

many competing processes contributing to the di�ractive sector, like radiation of gluons

from quark and gluon lines.

In the approximation when only leading �s lnx terms are kept, the o�-mass shell e�ects

in the amplitude for the q�q interaction with a target are unimportant. Therefore, the total

cross section of di�ractive electroproduction of jets by longitudinally polarized photons

can be calculated by applying the optical theorem for the elastic q�q scattering o� a nucleon



target, and Eq. (8) for the total cross section of q�q scattering o� a nucleon:

�(�L +N ! jet1 + jet2 +N) =
1

16�B

Z
 2
�
L
(z; b) � (�(b2))2dzd2b: (43)

Here, B is the slope of the two-gluon form factor discussed in Sec. 4, and  �
L
(z; b) is the

wave function of the longitudinally polarized photon. Essentially the same equation is

valid for the production by transversely polarized virtual photons of two jets which share

equally the momentum of the projectile photon.

In Ref. 56, it has been assumed that di�ractive production of jets o� a proton is a hard

process at each stage. The formula obtained under this assumption resembles Eq. (43),

with leading �s ln
Q2

�2
QCD

ln 1
x
and with the PQCD part of the gluon distribution in a target.

In view of the nontrivial interplay of soft and hard physics of large longitudinal distances,

this approach is questionable in QCD if x is not extremely small. It is most easily seen

when one considers the e�ect of nuclear shadowing in di�ractive electroproduction of

jets. If the assumption that hard PQCD dominates at each stage of the interaction were

correct, nuclear shadowing should be numerically small and suppressed by a power of Q2.

The discussion in Sec. 6 indicates that, on the contrary, in QCD at su�ciently small x

and �xed Q2, nuclear shadowing is expected to be substantial and universal for all hard

processes. This conclusion is supported by current data on nuclear shadowing in deep

inelastic processes.

Dijet production has been also considered in the constituent quark model of the pro-

ton.23,24 In this approach, the cross section for di�raction is expressed through a convolu-

tion of the quark distribution in the virtual photon, the distribution of constituent quarks

in the proton, and their interaction cross section. A later generalization of this model24

includes the gluon �eld of constituent quarks. In QCD though, hard processes have to be

expressed in terms of bare partons and not constituent ones. This is due to the use of

completeness of the intermediate hadronic states in hard processes.

Equation (43) implies that in this higher twist e�ect, the contribution of large b, that

is, of the nonperturbative QCD, is enhanced as compared to the large b contribution to

the total cross section. This result has been anticipated in the pre-QCD times73 and has



been con�rmed in QCD.10 A similar conclusion has been reached in the constituent quark

model24 approach, even though it ignores the increase of parton distributions at small

b characteristic for QCD (see discussion in Sec. 11). In QCD, the hard contribution is

expected to become dominant only at rather smallx and largeQ2. A similar conclusion has

been reached for the cross section of di�ractive processes, calculated in the approximation

of the BFKL Pomeron,57 and in the triple-Reggeon region, where the mass of the produced

hadronic system is su�ciently large, M2 � Q2.

Note that PQCD diagramswhich were found to dominate in the large mass di�raction57

are di�erent from those expected from the naive application of the BFKL Pomeron24;56

and lead to di�erent formulae.

To calculate this process within the more conventional leading �s lnQ
2 approximation,

it is necessary to realize that in the kinematical region where M2
q�q � Q2, the fractions of

nucleon momentum carried by the exchanged gluons are strongly di�erent, xhard ' 2x but

xsoft � x. This is qualitatively di�erent from the case of the vector-meson production

considered in Sec. 4, in which the two values of x of the gluons were comparable. This

is because, in the case of dijet production, the masses of the intermediate states are

approximately equal to the mass of the �nal state. As a result of the asymmetry of the

two x values, the overlap integral between the parton wave functions of the initial and

�nal protons cannot be expressed directly through the gluon distribution in the target.

However, at su�ciently small x and large Q2, when the parameter �s
�
lnx ln Q2

�2 � 1,

electroproduction of high pt dijets can be expressed through the gluon distribution in a

target but in a more complex way. In this particular case, the factorization theorem can

be applied after the �rst two hard rungs are attached to the photon line, which have to be

calculated exactly. The lower part of the diagram can then be expressed through the gluon

distribution in the target since the asymmetry between the gluons becomes unimportant

in the softer blob. The proof is the same as for vector-meson electroproduction.zz The

zzWe are indebted to A. Mueller for the discussion of this problem.



cross section is proportional to

d�
�+N!jet1+jet2+N

dt

�����
t=0

/ jA�+gg!jet1+jet2j
2
���~xGN (~x;Q

2)
���2 /

 
xGN (x;Q

2)

Q2

!2

; (44)

where ~x is the average x of the gluons in the � + gg ! jet1 + jet2 amplitude, ~x � x,

and A�+gg!jet1+jet2 is the hard scattering amplitude (which includes two hard rungs)

calculated in PQCD.

One of the nontrivial predictions of QCD is that the decomposition of the cross section

for a longitudinally polarized photon in powers ofQ2 becomes ine�cient at small x. This is

because additional powers of 1=Q2 are compensated to a large extent by the increase with

Q2 of [xG(x;Q2)]
2
� Q2

x
[see Fig. 4, and Eqs. (43) and (44)]. Thus, the prediction of QCD

is that electroproduction of hadron states with M2
X � Q2 by longitudinally polarized

photons, formally a higher twist e�ect, should in practice depend on Q2 rather mildly.

The contribution of such higher twist e�ects to the total cross section for di�ractive

processes may be considerable, as high as 30{40%. One of the observed channels, the

electroproduction of � mesons, constitutes probably up to 10% of the total cross section

for di�ractive processes. So far, a detailed quantitative analysis of this important issue

is missing. On the experimental side, it would be extremely important to separate the

longitudinal and transverse contributions to di�raction.

11 Limiting Behavior of Cross Sections for Hard

Processes

Both the GLDAPQCD evolution equation34 and the BFKL equation58 predict a signi�cant

increase of parton distributions at largeQ2 and smallx. This expectation is consistent with

the fast increase of parton densities with decreasing x observed at HERA. The question

then arises, whether the increase of parton distributions with increasing Q2 and 1
x
will

stop or will continue forever. The evident lack of an elastic unitarity condition for the

electromagnetic amplitude precludes the use of theoretical approaches which lead to the



Figure 4: The square of the xG(x;Q2) distribution as a function of Q2 for a �xed x = 10�4,

and as a function of x for a �xed Q2 = 10 GeV2 for the CTEQ3L parametrization.



Froissart limit for the on-mass-shell amplitude. (The elastic contribution to the unitarity

condition is suppressed by a power of the electromagnetic coupling constant.) At the same

time, it is well-known that the PQCD calculation of the two-body scattering amplitude via

the sum of the leading-logarithm terms, conicts with s-channel unitarity at su�ciently

large energies|i.e., there is a violation of the Froissart bound. How to restore unitarity

still remains an open question. Thus, the leading-logarithm approximation is expected to

be applicable only in a restricted kinematical region.

Our aim here is to estimate the kinematical region of applicability of the leading-

logarithm approximation from the requirement of self{consistency of QCD calculations of

the hard di�ractive processes discussed in Secs. 4{9. We will also consider the unitarity

condition for the scattering of colorless wave packets to deduce restrictions on the limiting

behavior of cross sections for deep inelastic processes. The idea is rather simple. In QCD,

within the leading �s lnQ
2 and/or �s lnx approximation, �totL (� + p) should increase at

small x, like xGp(x;Q
2). At the same time, the cross sections for di�ractive electropro-

duction of states with M2
X � Q2, �L(

� + p! X + p) is proportional to [xGp(x;Q
2)]2 as

discussed in Sec. 4. Thus, the requirement that �totL (� + p) � �L(
� + p ! X + p) will

lead to a restriction on the region of applicability of the leading-logarithm formulae. We

do not have as yet measurements of the total cross section for longitudinal virtual photons,

but we can estimate the range of x for which the contribution from small mass di�rac-

tive production will be comparable in size to the contribution expected from the QCD

evolution equation. For convenience, we will introduce the ratio RL de�ned as follows:

RL =
�L(

� + p! X + p)

�totL (� + p)
:

Requiring RL � 1 and assuming that for Q2 = 10 GeV2,

�totL (� + p) � 0:5�totT (� + p); (45)

the inconsistency of the leading �S lnx approximation and the evolution equation should

occur at x � 10�6. In practice, one should require a more severe limit on RL, since the

di�raction cross section is always a small part of the total cross section, especially in the



limit of black interactions. Let us take for illustration RL = 0:2 as the limit. In this case,

the slowing down of structure-function increase should occur for x � � 10�4:3.

There is a certain similarity between these estimates and the estimates exploring the

increase with 1
x
of shadowing corrections to the QCD evolution equation which were calcu-

lated within the BFKL approximation. In Ref. 59, shadowing corrections were estimated

within the constituent quark model with the radius of the constituent quark equal to

1
2:5

GeV�1. In QCD, the value of shadowing corrections calculated in Ref. 60 by iterating

the hard amplitude depends strongly on the �tting parameter|the correlation radius of

gluons in an average con�guration in the wave function of a hadron. Theoretical calcula-

tions made in Ref. 60 found that for realistic parameters, corresponding to a correlation

radius comparable to the radius of a hadron, the value of hard shadowing corrections to

parton distributions is negligible in the kinematical range of HERA. (For recent numerical

calculations, see Refs. 62 and 65). The major di�erence between our estimate and the one

implied by shadowing corrections is that we consider cross sections of coherent di�ractive

dissociation into small masses which includes the nonperturbative QCD e�ects in a dif-

ferent and rather reliable way. The derivation of the region of applicability of the leading

�s lnx approximation, and/or evolution equation for the cross section of longitudinally

polarized photons, is based on equations which use experimentally measurable quantities.

An estimate of where the consistency of QCD expectations fails can also be obtained

from the consideration of the ratio of cross sections for the di�ractive production of small

masses and for the inclusive di�ractive production �D(
� + p),

RD =
�L(

� + p! X + p)

�D(� + p)
:

The ratio RD should be smaller than one. From the discussion presented in this lecture,

we expect

RD /
[xGp(x;Q

2)]2

Q4F2p(x;Q2)
:

Assuming that RD = 0:1 at Q2 = 10 GeV2 and x = 10�3, and using the new CTEQ3L

parametrization,63 we obtain RD = 1 for x � 10�5:5 (see Fig. 5).
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If one were to use the BFKL prediction for the rise of gluons (with an intercept of

the BFKL Pomeron of 1.7 at Q2 = 10 GeV2 yy), which is faster than that of the CTEQ

parametrization, the result would be that RD = 1 at x = 10�4:4.

The value RD = 1 used to deduce this restriction is unrealistically large, since � meson

production is one of many possible channels for the fragmentation of a q�q pair. We thus

expect that the fast increase of the cross section for hard di�ractive processes should stop

at much larger x. Assuming a plausible value for RD, RD = 0:4, the slow down should

occur around x � 10�4 or even earlier. Note that in QCD, the cross sections for hard

di�ractive production of states X with M2
X � Q2 should have the same x dependence,

independent of MX.

It is also interesting to note that we overestimate the value of 1=x since we ignore other

higher twist di�ractive processes which decrease slower with Q2 (cf. discussion in Sec. 10).

The contribution of hard di�raction dissociation into large massesM2 (Q2 �M2) has also

been ignored in the above analysis. Hard di�raction dissociation into large masses has

been recently estimated in PQCD in Ref. 57 in the triple-Pomeron limit. Including this

term would lead to a more stringent restriction on the region of applicability of the QCD

evolution equation, and/or leading �s lnx approximation. Thus, our conclusion is that

violation of leading logarithm approximations is expected in a range of x which is in the

reach of accelerators such as HERA or LHC.

We shall now deduce a more stringent restriction on the increase of parton distributions

based on the interaction picture in the laboratory frame. We consider here the scattering of

a small object, a q�q pair, from a large object, a nucleon. If only hard physics was relevant

for the increase of parton distributions at small x, the radius of a nucleon should not

increase (small Gribov di�usion). Under this assumption, the unitarity limit corresponds

to a black nucleon. In this case, the inelastic cross section cannot exceed the geometrical

yyIn the expression for the intercept of the singularity corresponding to the BFKL Pomeron,

n = 1 + 12�s ln 2
�

, we chose �s(Q
2 = 10 GeV

2
) = 0:25, which leads to n(Q2 = 10 GeV

2
) = 1:7.



size of the nucleon

�(q�qN) =
�2

3
b2�s(1=b

2)xGN (x; b
2) < �r2N : (46)

To �nd the value of rN in Eq. (46), we use the optical theorem to calculate the elastic

cross section for a q�q pair scattering o� a nucleon,

�el =
�2tot
16�B

; (47)

where B is the slope of the elastic amplitude (cf. discussion in Sec. 4). To deduce

the inequality (46), we assume that the interaction of a q�q pair with a target is black,

and therefore, the elastic cross section is equal to the inelastic cross section �el � �inel.

Based on this, we �nd r2N = 4B ' 16 GeV�2 ' (0:8 fm)2 is the radius of a nucleon. It

follows from the above equations that practically the same estimate is obtained from the

assumption that �(el)

�(tot)
� (0.3{0.5).

According to our estimate (in Secs. 4 and 5) for Q2 = 10 GeV2, b = 0:3 fm at least for

higher twist e�ects. If we then determine at which x the geometrical cross section is satu-

rated, we obtain for b = 0:3 fm and �s(Q
2 = 10 GeV2) = 0:3, xGp(x;Q

2 = 10 GeV2) � 43.

If, for illustration, we use a parametrization xGp(x;Q
2) = (4=3)x�0:36 which is consistent

with the current data, we �nd that x � 6:0� 10�5. Similar consideration for the case of

scattering o� nuclei leads to

1

A
xGA(x;Q

2 = 10 GeV2) �
43

A1=3
: (48)

Restriction (48) has obvious practical implications for nucleus-nucleus collisions at LHC

energies. In particular, it strongly a�ects theoretical predictions of the cross section of

the minijet and heavy quark production, say, for Q2 = 10 GeV2 and x � 10�3.

The use of the amplitude for q�q pair scattering o� a nucleon to deduce the limit allows

us to account accurately for nonperturbative QCD e�ects through the unitarity condition

for such an amplitude. On the other hand, if the increase of parton distributions is related

to soft physics as well, then the cross section may be allowed to increase up to smaller x

values.



The black disc limit for ��N has been discussed earlier (for a review and references,

see Refs. 62 and 64). The di�erence compared to previous attempts is that we deduce the

QCD formulae for the cross section of a q�q pair scattering o� a hadron target. For this

cross section, the geometrical limit including numerical coe�cients follows unambiguously

from unitarity of the S-matrix, that is, the geometry of the collision. As a result, we obtain

an inequality which contains no free parameters. Recently, a quantitative estimate of the

saturation limit was obtained66 by considering the GLR model59,60 of nonlinear e�ects in

the parton evolution and requiring that the nonlinear term should be smaller than the

linear term. The constraint obtained for xGp(x;Q
2) is numerically much less restrictive

than our result. An even more stringent restriction for the interaction of a colorless gluon

pair o� a nucleon follows from the requirement that the inelastic cross section for the

scattering of a small-size gluon pair should not exceed the elastic one, i.e.,

�(ggN) =
3�2

4
b2�s(1=b

2)xGN (x; b
2) < �r2N : (49)

For b = 0:25 fm, the geometrical limit is achieved for x � 10�3.

We want to point out that the black disc limit implies a restriction on the limiting

behavior of the cross sections for hard processes but does not allow us to calculate it. The

dynamical mechanism responsible for slowing down of the increase of parton distributions

so that they satisfy Eqs. (46) and (49) is not clear. In particular, the triple-Pomeron

mechanism for shadowing suggested in Ref. 59 does not lead to large e�ects at HERA

energies especially if one assumes a homogeneous transverse density of gluons.64,65

The theoretical analysis performed in this section does not allow us to deduce restric-

tions on the limiting behavior of parton distributions in a hadron. Beyond the evolution

equation approximation and/or leading �s lnx approximation, the restriction on the cross

sections of deep inelastic processes cannot be simply expressed in terms of parton distri-

butions in a hadron target.

We want to draw attention to the fact that nonperturbative QCD e�ects play an

important role in the contribution of higher twist e�ects to �L(
�p). This is evident from

the impact parameter representation of the contribution to �L(
� + p) of n consecutive



rescatterings of small transverse size q�q pairs. This contribution is proportional to

Q2
Z
j �L(z; b

2)j2dzd2b
h
�s(1=b

2)b2xG(x; b)
in

:

The inspection of this integral shows that for large n � 3, the value of b which dominates

under the integral does not decrease with increasing Q2 for x � 10�3 to 10�4. We use

as an estimate xGN (x;Q
2) /

p
Q which follows from the evolution equation for small x.

(This QCD e�ect is absent in the applications24 of the constituent quark model). Thus,

if higher-twist e�ects were really important in small x physics, it would imply that the

small x physics is the outcome of an interplay of hard (small b) and soft (large b) QCD.

To illustrate this point, let us consider the cross section of di�ractive electroproduction of

hadrons with massesM2 � Q2 by transversely polarized photons. Applying the same ideas

as in the case of longitudinally polarized photons, we would obtain a similar expression

as given by Eq. 43. The important di�erence is that the wave function of a transversely

polarized photon is singular for z ! 0 or 1. As a result, the contribution of large impact

parameters b in the wave function of the photon should give the dominant contribution

to the integral in a wide kinematical range of x and Q2. This has been understood

long ago|see discussion in Secs. 13 and 14. A similar conclusion has been achieved

recently24 within the constituent quark model. (Note, however, that this model ignores

the increase of gluon distribution with Q typical for QCD, and therefore, overestimates

the nonperturbative QCD contribution.) Thus, such types of di�ractive processes should

depend on energy in a way similar to the usual soft hadron processes.

A good example of the consequences of the interplay of small b and large b physics is

that in electroproduction of small mass states, the unitarity limit may become apparent

at larger x than in the case of the total cross section of deep inelastic processes.

12 Geometrical Limit

The important role of nonperturbative QCD e�ects clearly shows that new ideas beyond

the PQCD approach are required.



The starting point of our discussion is the observation that when lc considerably exceeds

the diameter of a target which is at rest, the virtual photon transforms into hadron

components well before the target. Thus, small x physics probes the interaction of various

hadron wave packets with a target (for the sake of the argument, we will consider the

interaction with a proton target). The geometrical limit for the cross section of a virtual

photon scattering o� a nucleon target will follow from the assumption that a target is

black for the dominant hadron components in the wave function of the virtual photon. In

this approximation, the structure functions of a target can be unambiguously calculated.

A comparison with the formula deduced from the geometrical limit will imply certain

restrictions on the increase of structure functions.67

Blackness of hadron interactions at high energies has been predicted in the elastic

eikonal models with input cross sections increasing with energy (see Ref. 68 and references

therein). The assumption on the blackness of hadron-hadron interactions at high energies

is often used to deduce the Froissart limit.

Under the assumption that the interaction is black, the cross section of nondiagonal

di�ractive processes should be small, and decrease with increase of energy. This has been

understood long ago by considering the example of an energetic particle scattering o� a

black potential well (see, e.g., Ref. 69).

Within this picture, in the limit x ! 0, the deep inelastic lepton scattering o�

a nucleon can be unambiguously calculated through the cross section of the reaction

e+e� ! hadrons,70

�inel(
� + p) =

�

3�
h�i

M2
maxZ

m2
0

R(m2)
m2

(m2 +Q2)2
dm2 ; (50)

where h�i is the average interaction cross section, m denotes the mass of the state con-

tributing to the deep inelastic cross section, and at the same time, the center-of-mass

energy of the e+e� system, m2
0, is the hadronic scale � 1 GeV2; and R is de�ned by

R(m2) =
�(e+e� ! hadrons)

�(e+e� ! �+��)
: (51)



The upper limit in formula (50), M2
max � Q2( 1

mrN
� 1) with rN the radius of a nucleon,

follows from the condition that the di�ractive production of a state with mass m should

not be suppressed by the nucleon form factor. Thus,

�(� + p) = Phad h�i ; (52)

where the probability of a given con�guration Phad is expressed by

Phad =
�

3�

Z
R(m2)

m2

(m2 +Q2)2
dm2 : (53)

Since large masses dominate in the integral, it is legitimate to substitute R(m2) by its

asymptotic value. For numerical estimates, we will use R for the case of �ve avors,

R = 11
3
. Thus, in the unitarity limit

Phad =
�

3�
R

�
ln(

1

10x
)� 1

�
: (54)

In the integral over m2, we use the conventional de�nition of di�raction as leading to

hadronic �nal states with
M2
X

s
� 0:1, where di�ractive production is not suppressed by the

nucleon form factor.

The expression for F2p follows from Eqs. (52) and (53) and the relation between the

total �p cross section, and the structure function F2

F2p(x;Q
2) =

Q2 h�i

12�3
R

�
ln

1

10x
� 1

�
: (55)

For the proton target, following Ref. 67, we estimate

h�i = �pp=2 : (56)

For further estimates, we shall use a parametrization of F2p(x;Q
2) given by expression (1).

Assuming that F2p cannot exceed the unitarity limit given by Eq. (55), and taking

h�i = 40 mb, allows us to obtain some constraints on the region where parton dis-

tributions may increase with Q and 1
x
(Ref. 67). Assuming that the parametrization

given by (1) holds down to extremely low x, the geometrical limit would be exceeded at



x � 10�7; 10�8 for Q2 = 10 GeV2. This is three orders of magnitude below the present

kinematical limit at HERA. The restrictions obtained from the geometrical limit for the

cross section averaged over impact parameters are thus interesting from a purely theoret-

ical point of view but not for any practical purposes. Somewhat more useful restrictions

on the small x behavior follow from the mismatch of QCD predictions for inclusive and

exclusive processes, and from S-matrix unitarity constraints.

13 Di�raction in DIS at Intermediate Q2

It has been understood long ago that the production of almost-on-mass shell quarks by

virtual photons should give a signi�cant contribution to the total cross section for deep

inelastic scattering at small x (Ref. 71). One of the predictions of this approach (which

is essentially the parton model approximation) is a large cross section for di�ractive pro-

cesses. The QCD Q2 evolution does not radically change this physical picture. The only

expected modi�cation of the picture is the appearance of a number of hard jets in the

current fragmentation region10 typical for including �S lnQ
2 terms. It is often stated that

the dominance of the BFKL Pomeron in di�ractive processes predicts the dominance of

�nal states consisting of hard jets.56,72 However, this prediction is not robust since the

analysis of Feynman diagrams for hard processes in QCD �nds strong di�usion e�ects into

the region of small transverse momenta of partons (see Ref. 57 and references therein).

Recent HERA data8 seem to support the picture with a dominance of events with small

kt. Thus, it seems worthwhile to investigate the role of nonperturbative QCD physics in

di�ractive processes.

The interaction of a virtual photon with a target at intermediateQ2 and small x, when

gluon radiation is negligible, can be considered as a transformation of � into a q�q pair

which subsequently interacts with the target. In this case, an important role is played by

the quark con�gurations in which the virtuality of the quark interacting with the target



is small,

kqt � kt0 ; �q =
(m2

q + k2qt)

Q2
: (57)

Here, �q denotes the light-cone fraction of the photon momentum carried by the slower

quark, and kt0 is an average transverse momentum of partons in the hadron wave function,

typically kt0 � 0.3{0.4 GeV.

In the language of noncovariant perturbation theory, the q�q con�gurations described

by Eq. (57) correspond to an intermediate state of mass m2 � Q2 and of transverse

size � 1
kt0

� 0:5 fm. These con�gurations constitute a tiny fraction �
k2qt
Q2 of the phase

volume kinematically allowed for the q�q pair. However, the interaction in this case is

strong|similar to the interaction of ordinary hadrons, since the virtuality of the slower

quark is small and the transverse area occupied by color is large. The contribution of

these con�gurations leads to Bjorken scaling, since the total cross section is proportional

to 1
Q2 , and in the parton model, only these con�gurations may contribute to the cross

section. Hence, Bjorken has assumed71 that all other con�gurations are not important in

the interaction, though the underlying dynamics of such a suppression was not clear at

that time.73 Accounting for the (
k2qt
Q2 ) factor in Eq. (50) allowed him to reconcile the Gribov

dispersion representation with scaling. He suggested referring to these con�gurations as

aligned jets since both quarks have small transverse momenta relative to the photon

momentum direction. In further discussions, we will refer to this approach as that of

the Aligned Jet Model (AJM). Note that in terms of the Feynman fusion diagram, the

aligned jet contribution arises only for transversely polarized virtual photons. This is

because the vertex for the transition �T ! q�q is singular
�
� 1

z

�
when the fraction of the

photon momentum z carried by the slowest quark (antiquark) tends to zero. For the

case of a longitudinally polarized photon, the aligned jet approximation produces results

qualitatively di�erent from expectations in QCD, where the contribution of symmetric

jets dominates. This is because in QCD, the dominant contribution to the �L{nucleon

cross section arises from the region of large kqt �
Q
2
.



In QCD, the interaction of quarks with large relative transverse momenta with a target

is suppressed but not negligible. The suppression mechanism is due to color screening since

q�q con�gurations with large kt correspond, in the coordinate space, to con�gurations

of small transverse size, b � 1
kt
, for which Eq. (8) is applicable. It is easy to check

that the contribution of large kt also gives a scaling contribution to the cross section.

The practical question then is which of the two contributions dominates at intermediate

Q2 = Q2
0 � 4 GeV2, above which one can use the QCD evolution equations. To make

a numerical estimate, we assume that the q�q con�gurations with kqt � kt0, in which

color is distributed over a transverse area similar to the one occupied by color in mesons,

interact with a cross section similar to that of the pion. A comparison with experimental

data for F2p(x � 0:01; Q2
0) indicates that at least half of the cross section is due to soft,

low kt interactions.
10,37 A crucial check is provided by applying the same reasoning to

scattering o� nuclei in which the interaction of the soft component should be shadowed

with an intensity comparable to that of pion-nucleus interaction. Indeed, the current deep

inelastic data on shadowing for F2A(x;Q
2) are in reasonable agreement with calculations

based on the soft mechanism of nuclear shadowing.10,11

Similar to the case of hadron-nucleon and hadron-nucleus interactions, the interaction

of � in a soft hadron component naturally leads to di�ractive phenomena. Application of

the Gribov representation with a cuto� on the kt of the aligned jets in the integral leads

to a di�ractive mass spectrum for the transversely polarized virtual photon73

d�

dM2
/

1

(M2 +Q2)2
: (58)

The two major di�erences compared to the hadronic case are that elastic scattering is

substituted by production of states with hM2i � Q2, and that the contribution of con�g-

urations of small spatial size is larger for �L.

If the aligned jet con�gurations were dominant, the fraction of cross sections of deep

inelastic �N scattering due to single di�ractive processes would be

RAJM
single di� = �di�=�tot =

��N(el) + ��N(di�)

��N (tot)
� 0:25 : (59)



Our numerical estimates indicate that for Q2 � Q2
0 and x � 10�2, the AJM contributes

about � � 60{70% of the total cross section. So we expect that in this Q2 range, the

probability for di�raction is

Rsingle di� = �RAJM
single di� � 15%: (60)

This probability is actually related in a rather direct way to the amount of shadowing in

interactions with nuclei in the same kinematic regime, so it is quite well-determined by

the nuclear shadowing data.

To estimate the probability of events with large rapidity gaps, one has to add the

processes of di�ractive dissociation of the nucleon and double-di�raction dissociation,

leading to an estimate

Pgap = (1:3� 1:5)Rsingle di� � 0:2 : (61)

This is rather close to the observed gap survival probability for photoproduction pro-

cesses.74

The characteristic features of the AJM contribution which can be checked experimen-

tally are the charge and avor correlations between the fastest and the slowest di�ractively

produced hadrons, which should be similar to those in e+e� ! hadrons at M2 � Q2.

Another important feature of the soft contribution, which distinguishes it from the

contribution of hard processes, is the t dependence of the cross section for M2 � Q2.

Since the size of the con�gurations is comparable to that of the pion, one may expect

that the t slope of the cross section, B, should be similar to that of the pion-nucleon

interaction, i.e., B � 10 GeV�2, which is much softer than for hard processes where we

expect B � 4 GeV�2 (see discussion in Sec. 4). The large value of the slope for the soft

component is also natural in the parton-type logic where only slow partons interact. It is

easy to check that for �t � k2t0 � 0:1 GeV2, the mass of the produced hadron system is

larger than the mass of the intermediate state by a factor of
p�t
kt0

. Thus for large t, the

production of masses M � Q is suppressed. Therefore, the study of the t dependence of

di�raction can be used to disentangle the contribution of soft and hard mechanisms.



This discussion indicates also that the contribution of nondiagonal transitions

\M2"! \M 0 2" leads to a weaker decrease of the di�erential cross section with M2

than given by Eq. (58). Besides, at large M2 (of order a few times Q2), one expects an

onset of the dominance of the triple-Pomeron mechanism which corresponds to

d�

dM2
/

1

Q2M2
: (62)

14 Q2 Evolution of the Soft Contribution in

Di�raction

The major di�erence between the parton model and QCD is the existence in QCD of a

signi�cant high pt tail in the parton wave functions of the virtual photon and the proton.

This is the source of the violation of Bjorken scaling observed at small x. It is thus

necessary to modify the aligned jet model to account for the hard QCD physics.

It is, in general, di�cult to obtain with signi�cant probability a rapidity gap in hard

processes in perturbative physics. Con�nement of quarks and gluons means that a gap in

rapidity is �lled by gluon radiation in PQCD and subsequently by hadrons.75 It is possible

to produce di�raction in perturbative QCD, but the price is a suppression by powers of

the coupling constant �s and/or powers of Q
2. In the �rst approximation in calculating

di�raction in deep inelastic processes at small x, we will thus neglect di�raction in PQCD.

In the following analysis, for the description of large rapidity gap events, we shall use the

QCD modi�cation of the AJM model suggested in Ref. 10, as well as the suggestion of

Dokshitzer76 to add to the conventional evolution equation the assumption of local duality

in rapidity space between the quark-gluon and hadron degrees of freedom.

In the course of the following considerations, it will be convenient to switch to the

Breit frame. In this frame, the photon has momentum (0;�2xP ) and the initial proton

has momentum (P ,P ). Correspondingly, Q2 = 4x2P 2. The process of di�raction can be

viewed as the virtual photon scattering o� a color singlet q�q pair, with the interacting

parton carrying a light-cone fraction � and the spectator parton carrying a light-cone



fraction x1. We assume here the local correspondence in rapidity space between partons

and hadrons. The mass of the produced system M is given by

M2 = (p� + px1 + p�)
2 = P 2((� + x1)

2 � (� + x1 � 2x)2) =

Q2 + 4P 2(� + x1)x = Q2� + x1 � x

x
: (63)

In the approximation, gluon radiation is neglected (parton model), � = x, and the mass

of the di�ractively produced system M is

M2 = Q2x1=x : (64)

The di�erential cross section for production of mass M follows from Eq. (58),

d�AJM

dM2
= �

Z
dx1�(x1 �

xM2

Q2
)

1

(Q2 +M2)2
=

�

Q4

Z
dx1�(x � �)�(x1 �

xM2

Q2
)

1

(1 + x1=x)2
: (65)

Here, � is the factor which includes the density of correlated color singlet pairs and the

cross section for interaction of the photon with the parton. The total cross section for

di�ractive dissociation comes out to be proportional to 1
Q2 ,

Z
d�AJM

dM2
dM2 =

�

Q2

Z
dx1

x

1

(1 + x1=x)2
=

�

Q2
: (66)

We do not restrict the integration over x1 in Eq. (66) since the major contribution comes

from the region of x1 � x. Thus, we can formulate di�raction in the in�nite momentum

frame as a manifestation of short rapidity range color correlation between partons in the

nonperturbative parton wave function of the nucleon. To calculate the Q2 evolution in

QCD, we have to take into account that the parton with momentum fraction � has its

own structure at higher Q2 resolution, and that the � scatters o� constituents of the

\parent" parton. This is the usual evolution with Q2 which can be accounted for in the

same way as in the QCD evolution equations by the substitution

��(x� �) ! P
X
j

e2jd
pert
j (

x

�
;Q2; Q2

0);



where dpertj (x;Q2; Q2
0) are the structure functions of the parent parton. This e�ect leads

to the change of the relationship between x1 and x resulting from parton bremsstrahlung,

d�soft+QCD

dM2
=

P

Q4

Z
dx1

Z
d�

�

X
j

e2jd
pert
j (

x

�
;Q2; Q2

0)d
nonpert
j (�;Q2

0)

�(x1 + � � x�
xM2

Q2
)
1

x

1

(1 + x1=x)2
�(��

� + x1 � x

1� x
) : (67)

P denotes the probability of di�ractive scattering in a soft interaction, and dnonpertj (�;Q2
0)

is the parton distribution in the soft component producing di�raction (compare discussion

in the previous section). The � function term reects the condition that di�raction in the

nonperturbative domain is possible only for

0 �
M2

s
=
Q2(� + x1 � x)

x(� �Q2)
=
� + x1 � x

(1� x)
� � � 0:05� 0:1 : (68)

After performing the integral over x1, we can rewrite Eq. (67) in the form

d�soft+QCD

dM2
=

P

Q4

Z 1

x

d�

�

X
j

e2jd
pert
j (

x

�
;Q2; Q2

0)d
nonpert
j (�;Q2

0)

1

(2� �=x+M2=Q2)2
�

 
�(1� x)�

xM2

Q2

!
�

 
1�

�

x
+
M2

Q2

!
: (69)

After integrating Eq. (69) over the mass of the produced system, we obtain for the total

di�ractive cross section

�soft+QCD =
P

Q2

Z 1

x

d�

�

X
j

e2jd
pert
j (

x

�
;Q2; Q2

0)d
nonpert
j (�;Q2

0)

x� �+ �(1� x)

2x� � + �(1� x)
�(�(1� x)� (� � x)): (70)

14.1 Evolution Equation for Di�raction

Let us rewrite Eq. (67) in a form more convenient for the application of the evolution

equations. To this end, let us consider the ratio

R � Q2d�
soft+QCD

dM
2

Q2

;



and analyze the Q2 evolution of the di�raction cross section at �xed � = M2=Q2. Ne-

glecting the valence quark contribution, and calculating leading �s ln
Q2

Q2
0
corrections to

Eq. (70), we �nd

@

@ lnQ2
R(x;Q2) = P

Z 1

x

d�

�

D
e2j

E
�
Pqq(

x

�
;Q2)2S(�;Q2) +NfPqg(

x

�
;Q2)G(�;Q2)

�

� (�(1� x)� xk)

�

�
1�

�

x
+ k

�

f(�; �; x) ; (71)

where
D
e2j

E
is the average quadratic electric charge of partons, and

f(�; �; x) = (�+ 2� �=x)�2

for � � 2. For larger � where the triple-Pomeron contribution is important, f � ��1.

14.2 Qualitative Pattern of x and Q2 Dependence of Di�raction

It is easy to see that Eqs. (69), (70), and (71) lead to the leading-twist di�raction. To

see the pattern of the x and Q2 dependence, we can assume that dpertj (x;Q2) = d
xn
, and

dnonpertj (x;Q2
0) =

d0
xn0

. It follows from Eq. (69) that for x � �, the ratio �di�
�tot

does not

depend on x. One can also see that the characteristic gap interval is

�y = ln
s

Mmp

= ln
s

Q2
+ ln

Q2

M mp

= ln
1

x
+ ln(

Q2

M mp

) : (72)

The second term ln Q2

M mp
increases with Q2 in the parton model, while the scaling violation

tends to reduce this increase since the mean value of M2=Q2 at �xed x increases with Q2.



There are several qualitative di�erences between the QCD-improved soft di�raction

and the parton model (AJM):

(i) Due to QCD evolution, the number of di�ractively produced hard jets and the average

transverse momentum of di�ractively produced hadrons should increase with Q2.

(ii) The distribution of M2

Q2 becomes broader in QCD with increasing Q2.

(iii) While in the parton model the cross section for the interaction of the longitudinally

polarized virtual photon is a higher twist e�ect, in QCD di�raction is a leading-

twist e�ect for any polarization of the virtual photon. The �nal state in the case

of longitudinally polarized photons should contain at least three jets, two of which

should have large transverse momenta comparable with Q.

14.3 Connection with the Ingelman-Schlein Model

Ingelman and Schlein have suggested treating hard di�ractive processes using the concept

of parton distribution in the Pomeron.52 In this approach, one calculates the light-cone

fraction of the target carried by the Pomeron, xP , and light-cone fractions of the Pomeron

momentum carried by quarks and gluons, �. It is assumed that parton distributions in the

Pomeron, �qP (�;Q
2); �gP (�;Q

2), are independent of xP and the transverse momentum

of the recoil nucleon. For the process of inclusive deep inelastic di�raction, � is simply

related to the observables,

� =
Q2

Q2 +M2
X

: (73)

The Q2 evolution of the total cross section of di�raction as considered in the previous

subsections is consistent with the expectation of the Ingelman-Schlein model (though the

�nal states are not necessarily the same). The aligned jet model in this case serves as

a boundary condition de�ning parton distributions in the Pomeron at intermediate Q2
0

above which QCD evolution takes place. The aligned jet model corresponds to the quark

distribution in the Pomeron

�qP (�;Q
2
0) / �: (74)



It follows from the discussion in the end of Sec. 13 that taking into account the non-

diagonal transitions in the aligned jet model and the triple-Pomeron contribution would

make the distribution atter. A similar, rather at distribution is expected for gluons for

these Q2. This expectation of the aligned jet model is di�erent from the counting rule

anzatz of Ref. 52: �qP (�;Q
2
0) / (1� �).

15 Nonuniversality of the Pomeron in QCD

Theoretical considerations of soft di�ractive processes have demonstrated that ordinary

hadrons contain components of very di�erent interaction strength.16,77 This includes con-

�gurations which interact with cross sections much larger than the average one, and con-

�gurations which interact with very small cross sections, described by Eq. (8) for a meson

projectile. The probability distribution to �nd a pion and nucleon in con�gurations with

a given interaction cross section �, P (�), is presented in Fig. 6 from Ref. 16, which also

includes the estimate of the probability of small cross sections in the pion, which is close

in spirit to the analysis of the di�ractive � meson production described in this report.

The presence in hadrons of various con�gurations of partons having di�erent interac-

tion cross sections with a target is in evident contradiction with the idea of a universal

vacuum pole where universal factorization is expected. At the same time, it is well-known

that the Pomeron pole approximation is not self-consistent. The vacuum pole should

be accompanied by a set of Pomeron cuts.15 For the sum of the Pomeron pole and the

Pomeron cuts, no factorization is expected. Thus, the S-matrix description and the QCD

description are not in variance. We shall enumerate now where and how to search for the

nonuniversality of the e�ective Pomeron understood as the sum of the Pomeron pole and

the Pomeron cuts.
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Figure 6: Cross section probability for pions P�(�) and nucleons PN(�) as extracted from

experimental data. Here, P�(� � 0) is compared with the perturbative QCD prediction.



It is natural to distinguish two basic manifestations of the nonuniversality of the ef-

fective Pomeron trajectory, �P(t) � �0 + �0t; �rstly, a di�erent energy dependence of the

interaction cross section, characterized by a di�erent value of �0, and secondly, a di�erent

rate of Gribov di�usion, which would manifest itself in di�erent values of �0.

15.1 Nonuniversality of the Energy Dependence

To study the nonuniversality of �0, it is necessary to study the energy dependence of

the electroproduction of vector mesons as a function of Q2. Up to now, only two results

are known, �0 � 1:08 from the � meson photoproduction,78 and �0 � 1:30 as estimated

from preliminary HERA data at Q2 � 10 GeV2 (Ref. 5). The key question is at what Q2

a signi�cant rise of �0 starts|this will give direct information on the transition region

from soft to hard physics. Optimists of PQCD suggest that the rise may occur already at

Q2 � 3 GeV2. The same question applies for production of heavier � and J=	 mesons.

Since the J=	 meson is a small object, one may speculate that in this case, the rise could

start already for photoproduction (the experimental data indicate that the slope of the

J=	 exclusive photoproduction cross section is close to the value given by the two-gluon

form factor of the nucleon). The practical problem for a quantitative analysis is that no

accurate data on exclusive J=	 photoproduction at �xed-target energies are available

at the moment. Inclusive �xed-target data, where the J=	 meson carries practically the

whole momentum of the projectile photon, which are used to extract the exclusive channel,

seem to be signi�cantly contaminated by the contribution of the reaction +p! J=	+X,

which is peaked at xF (� pv=p) close to 1.

15.2 Nonuniversality of the t Dependence

The slope of the e�ective Pomeron trajectory �0 should decrease with increasing Q2.

This is because the Gribov di�usion in the impact parameter space, which leads to �nite

�0 (Ref. 33), becomes inessential in the hard regime. This is a consequence of the in-

crease with energy of the typical transverse momenta of partons. Thus, for the reactions



� +N ! V +N , the e�ective �0 should decrease with increasing Q2, while a universal

Pomeron exchange approximation predicts for the energy dependence of the slope

B(s) = B(s0) + 2�0 ln
�
s

s0

�
(75)

with �0 � 0:25 GeV�2.

It is possible to look for this e�ect by comparing the HERA and the NMC data on the

� meson production. The universal Pomeron model predicts that the slope should change

from B � 4 GeV�2 (Ref. 4) to B � 6 GeV�2 at HERA energies, while in the perturbative

domain a much weaker change of the slope is expected.

The slope of the e�ective Pomeron trajectory, �0, may depend on avor. It should

decrease with the mass of the avor. Thus, it would be very important to measure the

e�ective �0 for di�ractive photoproduction of �; �, and J=	. If PQCD is important for

J=	 photoproduction, one would expect a smaller increase of the slope with energy in

this case.

15.3 Nonuniversality of the Gap Survival Probability

The presence of con�gurations of di�erent size in hadrons (photons) should also manifest

itself in the nonuniversality of the gap survival probability in the two-jet events. Since

the probability of gap survival is determined by the intensity of the soft interaction of

the projectile with the target, the survival probability should increase with an increase

of Q2, and at �xed Q2, it should be larger for the heavy q�q components of the photon.

Also, the gap survival probability in the photon case should be substantially larger than

that observed in p�p collisions at the FNAL collider.79 This reects the di�erence be-

tween �tot(p�p) � 80 mb and the e�ective cross section for the interaction of the hadronic

components of (�) with nucleon of � 30 mb.

Observation of the nonuniversalities discussed here will shed light on the structure

of the e�ective Pomeron operating in strong interactions, and will help to address the



question about the major source of the increase of the total cross section of p�p interaction|

soft physics or hard physics of small-size con�gurations.

15.4 Nonuniversality of Di�raction Dissociation

Since the object which couples to the nucleon in the hard coherent processes is di�erent

from the soft Pomeron, one may expect a di�erence between the value of the ratio

d�

dt
(� + p! �+X)=

d�

dt
(� + p! �+ p)

�����
t=0

and a similar ratio for soft processes. Qualitatively, one may expect that, since the

coupling of e�ective Pomerons in hard processes is more local, the ratio of the di�raction

dissociation and elastic cross sections should be substantially smaller for hard processes,

at least for small excitation masses.

16 Summary

We have demonstrated that color-coherent phenomena in QCD should play a rather direct

role both in the properties of hadrons, and in high-energy collisions. It seems now that

recent experimental data con�rm some of the rather nontrivial predictions of QCD, and

help to elucidate such old problems as the origin of the Pomeron pole and the Pomeron

cuts in Reggeon calculus. Thus, we expect that the investigation of coherent hard and soft

di�ractive processes may be the key to obtaining a three-dimensional image of hadrons, in

helping to search for new forms of hadron matter at accelerators, and in understanding the

problem of internucleon forces in nuclei. Forthcoming high luminosity studies of di�raction

at HERA, which will include, among other things, the detection of the di�racting nucleon,

and �L � �T separation, would greatly help in these studies.
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