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ABSTRACT

A good case can be made for believing that there is a substantial

amount of nonbaryonic dark matter in the universe, most likely com-

posed of an as-yet-undiscovered elementary particle. The various can-

didates for this particle, both front runners and dark horses, are re-

viewed.

�Supported by NSF Grant PHY{91{16964.

c
M. Srednicki 1994



1 Introduction

Other lecturers at this school1{3 have discussed some of the many cosmological

and astrophysical issues associated with dark matter. My charge is to explain the

possible implications for particle physics.

Of course, the most exciting possible implication is that some or all of the dark

matter is composed of a species of an elementary particle which has not yet been

discovered in the laboratory. What might this particle be? What properties must

it have in order to be (some or all of) the dark matter? What implications do these

properties have for astrophysics? Cosmology? Laboratory particle physics? We

will discuss these issues, but one must keep in mind that this is a vast subject4 and

we cannot possibly cover it all. Also, since full and detailed analyses are generally

widely available already,5,6 I will concentrate on developing and explaining the

qualitative picture with easy-to-understand, \rule of thumb" estimates.

If an elementary particle is to comprise (some or all of) the dark matter, it

must have a few obvious properties. First of all, the average total mass density

must have the right value, corresponding to

0:05 <� 1�
DM � 
B ; (1)

where we have de�ned the mass density of dark matter �DM in units of the crit-

ical density 
DM = �DM=�crit and the mass density of baryons (that is, ordinary

matter) in units of the critical density 
B = �B=�crit. The critical density is given

in terms of Newton's constant and the present value of the Hubble parameter by

�crit = 3H2
0=8�G. De�ning h = H0=(100 kms�1Mpc�1), where one megaparsec is

3:086� 1019 km, we have

�crit = 1:879� 10�29h2 g cm�3

= 1:054� 10�5 h2GeVcm�3

= 2:775� 10�7 h2M� pc
�3 ; (2)

where M� = 1:116� 1057GeV is the mass of the sun. From here on, we will (usu-

ally) use the standard units of particle physics, setting c = 2:998� 1010 cm=s = 1,

�hc = 1:973 � 10�14GeV cm = 1, and kBoltzmann = 8:617� 10�5 eV=Kelvin = 1.

Newton's constant can then be expressed asG = 1=M2
Pl withMPl = 1:221� 1019GeV.

Secondly, our candidate DM particles must not be disappearing as we speak; thus



the particle's lifetime (if it is not absolutely stable) must be at least comparable

to the age of the universe.

Having made these two simple observations, we can begin to talk about the

properties of our hypothetical new elementary particle. I �nd it useful to catego-

rize candidate particles according to four dichotomies:

Hot vs. Cold

Thermal vs. Nonthermal

Easy vs. Hard to detect

Expected vs. Unexpected

Let us discuss each of these in turn.

The �rst, hot vs. cold, is an astrophysical classi�cation that has been discussed

by other lecturers.2,3 It refers to whether the dark matter particles are relativistic

(\hot") or nonrelativistic (\cold") at the time that galaxy-sized 
uctuations �rst

came within the horizon. For completeness, I will explain this brie
y here.

The size of the horizon Lhor at time t is given roughly by Lhor(t) � 1=H(t),

where H(t) is the value of the Hubble parameter at time t (see Mike Turner's

lectures3 for more details). According to Einstein's equations, if the universe is at

critical density (
 = 1), then H2(t) = 8�G�(t)=3, where � is the total mass-energy

density. For a universe whose mass-energy density is dominated by relativistic par-

ticles in thermal equilibrium, �(t) = �T 4(t), where T (t) is the temperature at time

t, and � is a constant of order one (in units with �h = c = kBoltzmann) that depends

on the number of species of particles in equilibrium. Thus, Lhor(t) � G�1=2T�2(t).

Now, if the dark matter particles are in thermal equilibrium (see the discussion

of thermal vs. nonthermal below), then they become nonrelativistic when the

temperature drops below the mass m of one dark matter particle (kBT <� mc2).

So the dark matter particles are relativistic when the horizon is smaller than

� G�1=2m�2, and nonrelativistic when the horizon is larger than � G�1=2m�2.

This is important because relativistic particles will not clump gravitationally; a

positive density 
uctuation will dissipate or \free stream" away. Also, 
uctuations

which are bigger than the horizon cannot begin to collapse, because this is for-

bidden by causality. Thus, clumps which are smaller than � G�1=2m�2 dissipate,

and only larger clumps can collapse. To see how big G�1=2m�2 is, we must �rst

remember that this is the instantaneous size of the horizon when T � m, and the



universe has grown since then by a factor of T=T0 � m=T0, where T0 = 2:75K is

the present microwave background temperature. Thus, the relevant length scale

is

L �
1

G1=2T
1=2

0 m

� (15Mpc)

�
100 eV

m

�
; (3)

where I have restored appropriate numerical factors in the last line. We see that

light neutrinos (m <� 100 eV) produce minimum 
uctuations of a size measured

in megaparsecs, much bigger than a galaxy (a few kiloparsecs). Instead, we need

a dark matter particle mass of a few keV in order to have produced galaxy-sized


uctuations. Thus, for dark matter particles which were once in thermal equilib-

rium, a mass of a few keV is the dividing line between \cold" dark matter (which

can produce galaxy-sized 
uctuations) and \hot" dark matter (which can only

produce 
uctuations much larger than galaxies).

What if the particles were not in thermal equilibrium? This brings us to the

next dichotomy, thermal vs. nonthermal. A \thermal" dark matter particle is one

which was once in thermal equilibrium with the rest of the matter and radiation

in the hot universe. Any particle which is not extremely weakly coupled will ful�ll

this condition. However, it is possible to invent particles which are su�ciently

weakly coupled to avoid it (\invisible" axions are the best-known example). In

this case, the conclusion that a dark matter particle must weigh more than a few

keV does not apply, and we must consider the detailed history of the dark matter

particles. On the other hand, for thermal dark matter, all we need to be able to

do is compute the annihilation cross section of two dark matter particles; then we

can use the Boltzmann equation to calculate their abundance today. This fact,

known and used for 30 years,7,8 is a key ingredient in understanding thermal dark

matter and constraining its properties.

The third dichotomy, easy vs. hard to detect, is one which is more sociological

than physical. We would like to discover the nature of the dark matter particles

experimentally. This may be impossible for the foreseeable future: there is no

argument against the depressing possibility that the dark matter particle's in-

teractions with ordinary matter are solely gravitational, or otherwise simply too

weak for any known or foreseeable detection methods. Alas, this is not all that

unlikely: ordinary neutrinos, endowed with small masses, make an excellent can-



didate for at least some of the dark matter, and no one has ever thought of a

way to detect these neutrinos directly. Of course, in this case, the mass of the

neutrino(s) can potentially be inferred from other experiments, solar physics, etc.,

and then (since neutrinos are thermal particles) we can compute their relic mass

density. Axions are another candidate for dark matter, and their interactions are

even weaker than neutrinos; in this case, however, clever detection schemes (which

take advantage of coherent e�ects) can be used.9 This points to the need for more

serious thought about novel detection schemes, in particular, anything which can

take advantage of purely gravitational e�ects.

More optimistically though, many proposed dark matter candidates are de-

tectable with present or foreseeable technology,10 and many experiments are al-

ready proceeding. That they may succeed is an exciting possibility. In discussing

dark matter candidates then, it is important to note whether they are \easy" to

detect (by which I really mean \possible") or \hard" to detect (by which I really

mean \impossible" by presently known methods).

This leads us to the last dichotomy, \expected" vs. \unexpected." A great

many hypothetical particles have been proposed as dark matter candidates. The

existence of some of these had already been suggested for other reasons, and this

gives them an added air of plausibility. However, we do not really know what the

underlying great principles of particle physics are. Thus, the popular dark matter

candidates re
ect current theoretical prejudice, but theoretical prejudice has been

wrong before and undoubtedly will be again at some times in the future. Is this one

of those times? Of course, this is an unanswerable question. Thus, while current

direct-search experiments concentrate primarily on the expected candidates, we

must always be on the lookout for unexpected ones. In practice, this means doing

experiments which can expand the bounds on mass and interaction cross section

(with some target material), irrespective of whether or not we have dreamed up

any particle which is within these bounds. Of course, no one is going to mount

a di�cult, expensive, time-consuming experiment for a marginal improvement on

current bounds if there is not presently a good reason for suspecting a particle

lurking just outside these bounds. What is really needed are as many ideas as

possible for novel search techniques which can expand present bounds, even if this

expansion is in a currently unfashionable direction.



2 Thermal Relics

In this section, I will review the basic formalism for calculating the mass density of

a stable particle, given its annihilation cross section. Many excellent presentations

of the details of this are already available, and therefore, I will concentrate on

qualitative features and rule-of-thumb results.

If everything was in thermal equilibrium at temperature T , the number of

type-i particles with momentum in a range of d3p about 'would be f
eq
i
(')d3p, where

f
eq
i
(') = fexp[('2 +m2

i
)1=2=T ]� "ig

�1 ; (4)

where mi is the mass of a type-i particle, and "i = +1 if type-i particles are

bosons and "i = �1 if type-i particles are fermions. Here, \type" means all

distinguishing characteristics except momentum and energy; thus, for example,

there are two types of photons (one for each helicity), four types of electrons and

positrons, and six types of neutrinos. The total mass-energy density in type-i

particles is then

�eq
i
=

Z
d3p

(2�)3
f eq(')('2 +m2

i
)1=2 : (5)

The contribution to the total entropy density of type-i particles is

seq
i
= �

Z
d3p

(2�)3
f eq(') ln f eq(') : (6)

These formulas simplify considerably in either the extreme relativistic (T � mi)

or extreme nonrelativistic (T � mi) limits. In the former case, we have

�eq
i
'
�2

30

 
1
7

8

!
T 4 for T � mi (7)

and

s
eq
i '

2�2

45

 
1
7

8

!
T 3 for T � mi ; (8)

where the upper (lower) number is for bosons (fermions), while in the latter we

get

�
eq
i ' (2�miT )

3=2 exp(�mi=T ) for T � mi (9)

and

seqi ' 0 for T � mi ; (10)

where we really mean that seqi is small enough to ignore in all cases of interest.



The total mass-energy density in all particle types is � =
P

i �i, and the total

entropy density is s =
P

i si. Entropy is conserved in all cases which will be of

interest to us; what does this mean? In a homogeneous, isotropic, expanding

universe, all lengths must be multiplied by the \scale factor" R(t). Thus, the

entropy in a particular volume V is constant, but we consider V itself to change

with time; if we use a subscript zero to denote quantities at the present time, and

take R(t0) = 1, then V (t) = R3(t)V0, and so s(t) = s0=R
3(t). Therefore, during

a time period for which there is no change in the number of relativistic particle

types (i.e., the temperature is never comparable to the mass of any particle type),

we see from Eq. (8) that T / 1=R(t). To �nd R(t), we need Einstein's equation:

( _R=R)2 = (8�=3)G� ; (11)

where the dot denotes d=dt as usual. Again, if the temperature is never near the

mass of any particle, and if the mass-energy is dominated by the contributions of

relativistic particles in thermal equilibrium (\radiation dominated"), then we can

combine T / 1=R(t) with Eq. (7) to get

( _T=T )2 = (4�3=45)NST
4=M2

Pl ; (12)

where NS = NB + 7

8
NF; NB is the number of boson particle types which are

relativistic at temperature T (e.g., NB = 2 for photons), and NF is the number

of fermion particle types which are relativistic at temperature T (e.g., NF = 4 for

electrons and positrons when T � me, NF = 6 for three families of neutrinos).

The solution to Eq. (12) is

T (t) = (45=16�3)1=4N
�1=4
S M

1=2

Pl t
�1=2 ; (13)

so the temperature drops like the inverse square root of the time.

Now we need to �nd out what happens when equilibrium conditions are not

maintained. The particles will drop out of equilibrium if the reaction rates are

not fast enough to maintain it. Thus, the actual distribution of momentum fi(')

will not be f eqi ('). In all situations which will be of interest to us though, fi(')

retains the same functional form and only changes by an overall constant. This

is because it is always the case that there are still reactions which redistribute

energy among the type-i particles, even though the reactions which change the

total number of type-i particles have become too slow to be e�ective.



This is governed by a form of the Boltzmann equation, heuristically derived

as follows. Let

ni =

Z
d3p fi(p) (14)

be the number density of type-i particles. The number of particles in an expanding

volume of size R3, where R is the time-dependent scale factor, is niR
3. If there

are no microscopic processes changing the number of type-i particles, then Ni

remains constant. However, if type-i particles can annihilate with type-j particles

(and note that we are not excluding the possibility that j = i), and we know the

cross section �ij for this process, then we can write a schematic equation

d

dt
(niR

3) = �(niR
3)
X
j

�ijFj + inverse process ; (15)

where Fj is the 
ux of type-j particles into the region of volume R3. This 
ux

is simply nivij , where vij is the velocity of the type-j particle in the frame of

the type-i particle with which it is colliding. The right-hand side of Eq. (13)

must be averaged over the momentum distribution of each of the two incoming

particles; this distribution is assumed to be thermal with temperature T . The

inverse process must also be included and must result in zero on the right-hand

side if ni = neq
i
. All of this gives us

d

dt
(niR

3) = �
X
j

h�ijvijiR
3(ninj � n

eq
i n

eq
j ) ; (16)

where h: : :iT denotes appropriate thermal averaging for temperature T .

We can now combine Eqs. (11), (16), and the constancy of the entropy in an

expanding volume, to get

d

dT

�
ni

s

�
=

MPl

(24�)1=2

 
s0

�1=2

!X
j

h�ijvijiT

 
ninj

s2
�
n
eq
i n

eq
j

s2

!
; (17)

where a prime denotes a derivative with respect to temperature: s0 = ds=dT . If

T is not near the mass of any particle, we can apply Eqs. (7){(10) to get

s0

�1=2
=

 
8�2

15

!1=2

N
1=2

S : (18)

That is, s0=�1=2 is constant when the temperature is far from any mass thresholds.



Equation (17) can be analyzed heuristically as follows. We begin at high

temperatures, assuming that ni = n
eq
i
. Then, as long as����� ddT

 
n
eq
i

s

!������ MPl

(24�)1=2

 
s0

�1=2

!X
j

h�ijvijiT
n
eq
i
n
eq
j

s2
; (19)

the di�erential equation is \sti�," and we will have ni ' n
eq
i
. Eventually, however,

the condition expressed in Eq. (19) will cease to hold, and ni will not drop as fast

as n
eq
i
. The temperature where this occurs [for some precise de�nition of \cease

to hold," such as equality of the left and right sides of Eq. (19)] is called the

freeze-out temperature. Below the freeze-out temperature, the evolution of ni is

governed approximately by Eq. (17), but with the second term on the right-hand

side dropped (since ni � neq
i
).

Let us consider Eq. (17) in a little more detail. First, consider the case where

the particle in question is relativistic at the freeze-out temperature. (This is the

case for ordinary neutrinos with masses less than a few keV.) For relativistic

bosons (fermions), we have

neq
i
'

�(3)

�2
Ni

 
1
3

4

!
T 3 ; (20)

where Ni is the number of spin states of the particle in question, and �(x) is the

Riemann zeta function. Combining this with Eq. (8), we get

n
eq
i

s
=

45�(3)

2�4
Ni

NS

 
1
3

4

!
; (21)

which is independent of T . Hence, the condition in Eq. (19) is automatically

satis�ed. Thus, we have ni = n
eq
i until we cross a mass threshold; during such a

crossing, Eq. (19) might cease to hold. Then, ni=s will not be able to follow neqi =s,

and instead will remain \stuck" at the value that neq
i
=s had before the threshold.

Let us see how this works for the case of ordinary neutrinos. For neutrinos, the

dominant processes entering Eq. (17) are the \neutral-current" processes �i��i !

e+e�, �ie
� ! �ie

�, etc. (with cross sections h�viT � G2
F
T 2, where GF is the

Fermi constant), and for electron-neutrinos only, the \charged-current" processes

�p ! e+n, etc. (with cross sections h�viT � G2
F
mpT , where mp is the proton

mass). Equation (19) fails when the temperature drops past the electron-positron

massme. Before crossing this threshold, we have NB = 2 for photons and NF = 10

for electrons, positrons, and neutrinos. For each species of neutrino, Ni = 2



in Eq. (21), and of course, we use the factor of 3

4
; this gives n�=s = 1

25:8
for

each species of neutrino. Then, after freeze-out, this number is �xed at this

value right up to the present. So, to get the present number density of each

species of neutrino, we must compute the entropy density s today. This is given

by Eq. (8), summed over particle types which are present in signi�cant numbers

today: photons and neutrinos. One complication, though, is that these no longer

have the same temperature. The entropy of neutrinos alone is conserved after

they freeze-out. Then entropy of photons, electrons, and positrons is separately

conserved, since there are no longer e�ective interactions with neutrinos. Thus,

when electrons and positrons annihilate (to photons, and not to neutrinos), the

photons get all of the entropy of the electrons and positrons. Before annihilation,

this entropy is

se+e�
 =
2�2

45

�
7

8
� 4 + 2

�
T 3
�
; (22)

where T� is the temperature of the neutrinos, the electrons and positrons, and the

photons; after annihilation, this entropy is

s
 =
2�2

45
(2)T 3



; (23)

where T
 is the new temperature of the photons. Setting se+e�
 = s
, we �nd

T�=T
 = (4=11)1=3. Now, the photon temperature is T
 = T0 = 2:73K. Thus, the

total entropy today is

s0 =
2�2

45

�
2 +

7

8
� 6 �

4

11

�
T 3



= 1:71T 3



= 2970 cm�3 : (24)

This gives us, for each species of neutrino today,

n�0 =
2970 cm�3

25:8
= 115 cm�3 : (25)

If we assume a mass m� for a particular neutrino species, this species contributes




� =
m�n�0

�crit

= 0:56
m�T

3
0

H2
0M

2
Pl

=
m�

(92 eV)h2
(26)

to the present mass density of the universe.

Let us now turn our attention to more hypothetical particles, stable (or nearly

so) particles which are nonrelativistic at the time of freeze-out. The nonrelativistic

analog of Eq. (20) for particles of mass m with Ni spin states is

n
eq
i ' Ni(mT=2�)

3=2e�m=T ; (27)

for either bosons or fermions, and so

neqi
s

=
45

2�2
1

(2�)3=2
Ni

NS

�
m

T

�
e�m=T : (28)

We assume that the only process which can change the numbers of our stable

particle is self-annihilation (and its inverse), so that j = i in Eq. (17). The freeze-

out condition [equality of the left and right sides of Eq. (19)] then gives

xfr exp(xfr) =

�
45

32�

�1=2 � Ni

NS fr

�1=2
MPlm h�vifr ; (29)

where h�vifr is the thermally averaged annihilation cross section at the freeze-out

temperature, NS fr is the number of relativistic particle types at the freeze-out

temperature (with fermions counting 7

8
), and we have de�ned

xfr =
m

Tfr
: (30)

If we now suppose that h�viT is independent of temperature (usually a good �rst

approximation for nonrelativistic particles), then the solution of Eq. (29) is

xfr = lnRfr �
1

2
ln lnRfr + : : : ; (31)

where Rfr is the right-hand side of Eq. (29). So to get an approximate solution

to Eq. (17), we assume that ni = n
eq
i until T = Tfr, and then afterward, that

Eq. (17) holds with the second term on the right-hand side set to zero (since ni is



increasingly larger than n
eq
i
). This modi�ed form of Eq. (19) can be integrated to

give �
s

ni

�
0

=

�
s

ni

�
fr

+Kfr(Tfr � T0) ; (32)

where Kfr is the coe�cient on the right-hand side of Eq. (17), evaluated at the

freeze-out temperature:

Kfr =
MPl

(24�)1=2

 
s0

�1=2

!
fr

h�vifr : (33)

In Eq. (32), T0 can be neglected compared to Tfr, and (s=ni)fr compared to (s=ni)0,

so we simply get

ni =
1

KfrTfr
s0 =

xfr

mKfr

s0 ; (34)

with xfr given by Eq. (30); xfr depends only logarithmically on the particle's

mass and annihilation cross section, and therefore, will not be very large or

very small for any reasonable ranges of these parameters. We can now compute


i = mni=�crit. Since Eq. (34) tells us that ni � 1=m, we obtain the surprising

result that 
i has no explicit dependence on the particle mass m:


i =
mni

�crit

= 54:2

 
xfr

N
1=2

S

!
T 3
0

M3
PlH

2
0 h�vifr

=

 
xfr

N
1=2

S

!
8:7� 10�11GeV�2

h�vifrh2
: (35)

Thus, we see that a particle which is nonrelativistic at its freeze-out temperature,

and has an annihilation cross section of order �v � M3
PlH

2
0=T

3
0 � 10�10GeV�2,

will contribute signi�cantly to the mass of the universe. Amazingly, this value for

�v is in the range of what we expect for particles with masses of tens to hundreds

of GeV, and couplings to ordinary particles of roughly the same size as electroweak

gauge couplings. This is either a profound clue as to the nature of dark matter or

a tantalizing false lead; time will tell.

3 Nonthermal Relics

A simple example of a nonthermal relic is an oscillating scalar �eld. In an ex-

panding universe, a spatially uniform scalar �eld obeys the equation

�'+ 3
_R

R
_'+m2' = 0 ; (36)



where a dot denotes a time derivative and m is the mass of the corresponding

scalar particles. Given an initial value 'i of ', ' remains frozen at this value until

t >� 1=m; then ' begins oscillating. The energy density stored in ' is

�' =
1

2
_'2 + 1

2
m2'2 ; (37)

and it follows from Eq. (36) that �' decreases from its initial value like 1=R3 � T 3,

so that its energy density today is

�'0 '
1

2
m2'2

i

�
T0

T1

�3
; (38)

where T1 is the temperature at the time t1 given by t1 = 1=m. Working out the

numbers and dividing by �crit gives
11


'h
2 � 0:7

�
'i

3� 108 GeV

�2 � m

100 GeV

�1=2
: (39)

This formula assumes that m is constant. A more interesting case arises if m is

temperature-dependent. At �rst glance, this does not seem possible, because if

thermal e�ects were important, we would expect them to thermalize the scalar

�eld. The axion, however, is a very special particle whose mass arises from QCD

instanton e�ects, and these are altered by �nite temperatures. Roughly,

ma(T ) � ma�
4=T 4 ; (40)

where ma is the axion mass at zero temperature, � is the QCD scale, and we have

assumed T � �. In this case, we �nd, instead of Eq. (39), the very di�erent

formula12{14


ah
2 � 0:3

�
'i

1012GeV

�2 � m

10�5 eV

�
: (41)

We will return to discuss axions more fully later.

Another nonthermal relic particle is one which is prevented from annihilating

completely by a conserved quantum number. This quantum number should cor-

respond to a global (rather than a local or gauge) symmetry. In this case, it is

possible for the universe as a whole to have a nonzero \charge." Then there would

have to be some particles around today which carry this charge. The mass density

of these particles would depend on the value of the charge of the universe. This

is the explanation for the present mass density of baryons, except that we would

like to go farther here; assume that the baryon number is not exactly conserved,



and use the precise form of its nonconservation to compute the present baryon

number density. The problem for new, hypothetical particles is that there are

too many possible models, with no good way to choose among them. Thus, it is

not possible to say anything at all about the expected value of the new quantum

number in our universe. Nevertheless, this is a real possibility which cannot be

dismissed.

4 Unexpected Dark Matter Candidates

Since an unexpected candidate is just that, they are hard to write about. Nev-

ertheless, it is important to remember that surprise has been a constant in the

history of physics, and dark matter may well provide another one.

I classify a candidate dark matter particle as unexpected if it is not predicted

by an extension of the Standard Model which seems necessary for other reasons. A

simple example is the scalar phantom of Silveira and Zee.15 They suggested that a

new real scalar �eld � be added to the Standard Model, and that a discrete global

symmetry � ! �� be imposed. In this case, the only possible renormalizable

interaction with any other �eld in the Standard Model is

Lint = ��2HyH ; (42)

where H is the usual Higgs doublet of the Standard Model. The � ! �� sym-

metry guarantees that the � particles are stable. If they are heavier than the

Higgs boson, then two �'s can annihilate into two Higgs bosons, with a cross

section given roughly by �v � �2=16�2m2
�
. We then get �v � 10�10GeV�2 if

m� � 8�TeV, which is not too unreasonable. Such a particle would be extremely

hard to detect, either in an accelerator or as dark matter, and is certainly not

ruled out experimentally. Furthermore, its existence cannot be excluded on the

basis of any theoretical principles that we presently understand.

Another unexpected dark matter candidate is a stable, electrically charged par-

ticle.16,17 Such particles would be extremely easy to detect, and their nondetection

so far could be explained only if they were extremely heavy, with a mass in excess

of 10TeV. Such particles would have a number of astrophysical consequences,

however,18,19 the most serious of which appears to be that they would congregate

in the centers of neutron stars, where they would form black holes that would



quickly destroy the neutron stars!19 Stable charged particles are not, therefore, a

currently viable candidate, but it was important to examine this possibility.

Yet another unexpected candidate is a strongly interacting particle.20 We have

seen that a heavy particle comes with about the right annihilation cross section

if its interactions are of roughly electroweak strength. However, a more strongly

interacting particle could be protected by the global-symmetry mechanism, and so

must be considered. Restrictions on the allowed regions of the candidates' mass

and scattering cross section (with di�erent types of nuclear targets, depending

mainly on whether the scattering is coherent or spin-dependent) can then be de-

duced. Here, some of the direct detection experiments were able to reduce the

allowed regions by some relatively simple recon�gurations.21 All such possibil-

ities for exploring parameter space of possible dark-matter candidates must be

explored.

5 Expected Dark Matter Candidates

A dark matter candidate must be stable or have a lifetime as long as the age

of the universe. The list of known particles meeting this requirement is short:

the photon, the graviton, the electron, and the lightest spin-1
2
particle (which is

probably, but not necessarily, one or more of the known neutrinos). They are

all absolutely stable (we believe) for very good reasons: electromagnetic gauge

invariance, general coordinate invariance, electric charge conservation, and angu-

lar momentum conservation, respectively. It is very di�cult to imagine that one

or more of these hallowed principles is in error, and that one or more of these

particles could therefore be unstable (but, of course, experimental limits must

always be improved whenever possible). The last known particle which is stable

or long-lived is the proton. There is no really good reason for this that we under-

stand at present, certainly nothing comparable to an entry on our previous list.

The best we can do for the proton is to note that, within the Standard Model, it

is impossible to write down a renormalizable interaction which would allow it to

decay. Any physics beyond the Standard Model, however, could result in proton

decay. Such new physics would appear at some mass scaleM , and we would then

expect the proton decay amplitude to be inversely proportional to some (integer)

power of M , most likely to M�1 (if proton decay is mediated by a new fermion

of mass M) or to M�2 (if proton decay is mediated by a new boson of mass M);



this leads to a decay rate proportional to m3
p
=M2 or m5

p
=M4, where the factors of

mp come from phase space integrals, and we also need some coupling constants.

Experimental limits on the proton lifetime lead to the conclusion that M must

be very large, even if the interaction is boson mediated, unless there are some big

extra suppression factors (from very small couplings, for example). The lesson I

wish to draw for hypothetical particles is that a good way to make them long-lived

is to arrange for their decay rates to be inversely proportional to some mass scale

which is much larger than the mass of the particle in question.

A good example of this is the axion. The axion is expected, nonthermal, cold,

and potentially detectable|an ideal candidate. The axion is an oscillating scalar

�eld, as discussed earlier, but its temperature-dependent mass leads to Eq. (41)

for its relic density. Furthermore, the axion �eld a actually lives on a circle, and so

must be periodically identi�ed. (This circle is the \bottom of a wine bottle" in the

potential for a complex scalar �eld.) The period of a is 2�f , where f is the \axion

decay constant." In terms of f , the mass of the axion is ma = (mumd)
1=2

mu+md

f�m�

f
,

where mu ' 4MeV and md ' 7MeV are quark masses, m� = 130MeV is the

pion mass, and f' = 93MeV is the pion decay constant. Since the axion �eld is

periodic, it is reasonable to say its initial value is ai = f�i with �� < �i < �.

Since f � 1=ma, we then see from Eq. (41) that 
ah
2 � �2

i
=ma. A re�ned estimate

is22


ah
2 ' 0:13� 10�0:4 ;

 
200MeV

�QCD

!0:7

�2
i
;

 
10�5 eV

ma

!1:18

; (43)

so that we need ma � 10�5 eV, corresponding to f � 1012GeV. This large value of

f is what we want. The axion couples to ordinary particles, but all its couplings are

suppressed by inverse powers of f . For example, the a

 interaction Lagrangian

is

La

 = ga

a~E � ~B ; (44)

in Heaviside-Lorentz units, with23,24

ga

 =
�

2�

1

f

�
E

N
� 1:92

�
; (45)

here � = 1=137 is the �ne structure constant, E=N is a number characterizing the

fermion content of the axion model, and 1.92 is a ratio of quark masses. Alas, in

any theory where all fermions come in complete multiplets of SU(5) (as they do in

the Standard Model), E=N = +8=3, and so there is an unfortunate cancellation.



Still, if they comprise the dark matter, axions with E=N = +8=3 are in principle

detectable. If we are lucky, and E=N �1:92 is bigger, they will be detected soon.9

Another expected dark matter candidate is the lightest supersymmetric par-

ticle, or LSP.25 Supersymmetry has been considered seriously for a number of

reasons. It represents a profound extension of the symmetry structure of our

fundamental theories; it helps to explain the discrepancy between the weak inter-

action scale and much higher mass scales (of grand uni�cation, quantum gravity,

etc.); and it is part of string theory, the only self-consistent quantum theory in-

corporating gravity. In supersymmetric theories, there is a new particle for every

known one. However, in a supersymmetric version of the Standard Model, it

is possible to write down renormalizable interactions which violate lepton and

baryon number conservation. These must be forbidden in some way, most simply

by imposing an extra discrete symmetry (\R-parity") which R-parity +1 to all

known particles, and �1 to all new ones. This turns out to forbid all the new

lepton and baryon number violating interactions. Of course, it also means that

the lightest particle carrying R = �1 must be stable, and hence, an excellent dark

matter candidate.

The LSP must have a mass of some tens to thousands of GeV, and so would cold

dark matter. Since it must be electrically neutral and not have strong interactions,

it must be a sneutrino (spin-0 partner of a neutrino) or a linear combination of the

four neutral spin-1
2
particles: the photino, the zino, and two higgsinos.26 Such a

particle would have been in thermal equilibrium in the early universe, with a relic

abundance that can be reliably computed (as discussed in Sec. 2). We would like

to obtain the magic number � v � 10�10GeV�2 for the annihilation cross section.

This is not too di�cult, since there are many parameters (the mass matrices for

all the superparticles!) to play with. Still, some general features emerge. First, it

is very di�cult to have a sneutrino as dark matter, though perhaps not completely

impossible.27The main problem is that the sneutrino scatters coherently o� nuclei,

and so would have appeared in direct-detection experiments unless it is very heavy

(several TeV). If it is very heavy, its annihilation cross section sinks below the

magic number. The four neutralinos can be divided into gauginos (the photino

and the zino) and higgsinos. The gauginos are better thought of as the neutral

wino and the bino (superpartners of the neutral SU(2) gauge boson W 0 and the

hypercharge gauge boson B) because the SU(2)�U(1) invariant mass terms given

to them are typically large enough (in interesting regions of parameter space) to



dwarf the e�ects of electroweak symmetry breaking, which on their own would

mix the neutral wino and bino into the photino and the zino. The LSP is more

likely to be a gaugino than a higgsino.28 This is because, when a higgsino is

the LSP, the annihilation cross section is too large. If the mass of the higgsino

is less than the mass of the Z0, the dominant process is s-channel annihilation

through the Z0 andW� with the other higgsinos (charged and neutral) which are

nearly degenerate in mass, and therefore, present with nearly the same number

density.29 If the mass of the higgsino is greater than the mass of the Z0, the

dominant process is annihilation into the gauge boson pairs Z0Z0 and W+W�.28

On the other hand, the bino does not couple to the Z0 or W� at all; if the bino

is the LSP, it annihilates primarily through t-channel exchange of squarks and

sleptons (the spin-0 partners of quarks and leptons), and so its annihilation cross

section depends crucially on the unknown masses of these new particles. This

adjustability means that there is a wide range of bino masses for which it can be

the LSP and the dark matter. The neutral wino could also be the LSP, but the

theoretical prejudice (explained below) is that the bino is lighter than the winos.

The real problem with coming to de�nite conclusions is the great number

of new particle masses and mixings one must choose. Two general approaches

have been taken. One is to try to set limits. For example, it is di�cult to

have a bino as the LSP if its mass is greater than about 350GeV; above this

mass, the annihilation cross section becomes too small, and the relic density of

binos is too big (
eBh2 > 1). But there are loopholes, for example, including CP

violating phases in the neutralino mass matrix at the maximum (experimentally

allowed) level pushes the limit up to about 650GeV (Ref. 30). Completely generic

statements, with all loopholes closed, allow LSP masses of several TeV (if the LSP

is a higgsino).

Another approach is to assume maximal symmetry of the mass matrices at

a high energy scale; this follows from grand uni�cation, for example. Then one

uses renormalization group equations to �nd the physical masses and computes

relic densities of the LSP (which always turns out to be a neutralino and never

the sneutrino) on this basis.31 The advantage of this approach is that the number

of unknown parameters is greatly reduced, and more speci�c predictions can be

made. The disadvantage is that it is not clear how reasonable these assumptions

are. They do not necessarily hold in string models, for example.



Still, the LSP is a terri�c dark matter candidate. It is predicted by a beau-

tiful general principle (supersymmetry) applied to the real world (invoking R-

parity to conserve baryon and lepton numbers), and getting the magic number

�v � 10�10GeV�2 is not at all di�cult. It provides cold dark matter, which seems

to be a necessity for galaxy formation. A search for LSP-comprised dark matter

is, therefore, extremely important.

Direct detection experiments32 are discussed in these proceedings by Sadoulet.10

These represent the best hope for demonstrating that at least some of the dark

matter is comprised of heavy elementary particles which scatter o� nuclei. Pin-

ning down the properties of this dark matter particle will undoubtedly require

accelerator-based experiments as well. Unfortunately, some accelerator experi-

ments have recently dampened the highest direct detection hopes.33 CLEO has

found a small value for the branching ratio of b! s
, precluding a light charged

Higgs boson. Direct detection experiments bene�t greatly from a light neutral

Higgs boson (as a mediator of the scattering of a dark matter particle o� a nu-

cleus). But if there is no light charged Higgs, then (in supersymmetric theories)

there is no light neutral Higgs either.

Another potential source of information arises from methods based on detec-

tion of annihilation products of the dark matter particles. Annihilation is ongoing,

and we know what the annihilation cross section must be. (Actually, we know

what it must be at the freeze-out temperature, and it could be substantially less

at the near-zero temperature which prevails today.) In order for present-day an-

nihilation to be signi�cant, an enhanced density of dark matter is required. Of

course, this is exactly what we get in galactic halos! The enhancement is about a

factor of 105 near our solar system. This is not enough to do anything dramatic,

but dark matter annihilations can produce a variety of unusual products: antipro-

tons,34 positrons,35 gamma ray lines,36 etc. None of these predictions, however,

are dramatic enough to be of immediate use.

Another source of density enhancement is trapping by the sun or earth.37 A

dark matter particle can scatter o� of a nucleus in the sun or earth, lose some

kinetic energy, and become gravitationally bound. This can yield a huge en-

hancement of the number density and hence, the annihilation rate; the observable

signature which results is a 
ux of high-energy neutrinos.38 These neutrinos can be

seen by detectors such as Kamiokande. In fact, Kamiokande has already set some



modest limits on the parameter space of the LSP,39 and large neutrino telescopes

like AMANDA and DUMAND could do much better.40

Thus, all in all, there is reason to be optimistic about eventual experimental

detection of the LSP as dark matter, assuming that this is indeed the case!

6 Some Dark Horses

Even within the context of supersymmetric theories, there are a few dark horse

candidates for the LSP and dark matter. One of these, a very heavy sneutrino,

has already been mentioned. Here, I would like to discuss two more.

One is a relatively light (�15GeV) photino, along with an only slightly heavier

\stop," the scalar partner of the top quark.41 Each quark actually has two scalar

partners, one corresponding to the left-handed quark and one corresponding to the

right-handed quark. It is easy to see why this is necessary: left- and right-handed

quarks can (and do) have di�erent gauge quantum numbers (we have left-handed

doublets under the SU(2) of weak interactions, and right-handed singlets); both

sets of quantum numbers must be represented among the superpartners. These

two scalars can mix, so that the mass eigenstates are linear combinations of the

original superpartners of the left- and right-handed pieces of the corresponding

quark. It turns out that this mixing is proportional to the mass of the quark and

so is negligibly small except for the stops. If we call the stop mixing angle �t,

then the coupling of the Z0 to the lightest of the two stop mass eigenstates is

proportional to 3 cos2 �t� 4 sin2 �w, where �w is the usual weak mixing angle. The

lighter stop, thus, does not couple to the Z0 if �t = 0:98 and would have escaped

detection so far if 0:8 < �t < 1:2, even if its mass is only 20GeV! In this case,

the LSP can be the photino, provided that its mass is no more than 5GeV less

than that of the stop. In this case, there are enough stops in thermal equilibrium

in the early universe to make it necessary to take photino-stop annihilation into

account, and this can be of the right size to produce 
 = 1 in photinos, even if

all the other squarks and sleptons weigh several hundred GeV.

Another interesting dark horse is the axino, superpartner of the axion.42,43

After all, if one believes in axions and in supersymmetry, then there must be an

axino. The axino's properties are unfortunately quite model dependent. However,

an interesting scenario43 has an axino with a mass of a few to a few hundred keV;

thermal axinos then act as cold (or warm) dark matter. However, there is another



source of axinos: decays of what would have been the LSP (e.g., the bino). This

decay rate is typically quite slow and so occurs late in the history of the universe.

Also, because the axino is so much lighter than the bino, bino decay results in

relativistic axinos which act as hot dark matter!

7 Conclusions

There are a great many candidates for nonbaryonic dark matter. Some are cold,

some are hot; some are thermal, some are nonthermal; some can be detected in

the near future, some cannot; some are expected, many are dark horses. It seems

clear that the future of this subject is experimental. We need some data to point

us in the right direction. However, it seems equally clear that a clever new idea

on how to acquire this data is not impossible to imagine and would be of immense

importance.
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