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Abstract

High temperature superconductivity remains the central intellectual problem in con-

densed matter physics fifteen years after its discovery. Angle resolved photoemission

spectroscopy (ARPES) directly probes the electronic structure, and has played an

important role in the field of high temperature superconductors.

With the recent advances in sample growth and the photoemission technique, we

are able to study the electronic structure in great detail, and address regimes that were

previously inaccessible. This thesis work contains systematic photoemission studies

of the electronic structure of the Bi-family of high temperature superconductors,

which include the single-layer system (Bi2201), the bi-layer system (Bi2212), and the

tri-layer system (Bi2223).

We show that, unlike conventional BCS superconductors, phase coherence infor-

mation emerges in the single particle excitation spectrum of high temperature su-

perconductors as the superconducting peak in Bi2212. The universality and various

properties of this superconducting peak are studied in various systems. We argue

that the origin of the superconducting peak may provide the key to understanding

the mechanism of High-Tc superconductors.

In addition, we identified a new experimental energy scale in the bilayer material,

the anisotropic intra-bilayer coupling energy. For a long time, it was predicted that

this energy scale would cause bilayer band splitting. We observe this phenomenon, for

the first time, in heavily overdoped Bi2212. This new observation requires the revision

of the previous picture of the electronic excitation in the Brillouin zone boundary.
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As the first ARPES study of a trilayer system, various detailed electronic proper-

ties of Bi2223 are examined. We show that, comparing with Bi2212, both supercon-

ducting gap and relative superconducting peak intensity become larger in Bi2223,

however, the strength of the interlayer coupling within each unit cell is possibly

weaker. These results suggest that the large superconducting phase transition tem-

perature in a high temperature superconductor is associated with parameters that

cause both large pairing strength and strong phase coherence in the system. The

number of CuO2 layers in each unit cell is just one of the factors that affect these

parameters.
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Chapter 1

Introduction

More is different.

- Philip W. Anderson

1.1 Strongly correlated systems

The high temperature superconductors belong to a large class of materials, that

is, strongly correlated materials, which are characterized by strong interactions or

correlations between electrons.

The history of strongly correlated materials begins in the early days of modern

solid state physics. In 1930’s, Bloch[1] and Wilson[2] developed band theory, which

explained why some materials exhibit metallic behavior and others insulating behav-

ior. de Boer and Verweij[3] soon pointed out that the Bloch and Wilson picture broke

down for a large number of insulating 3d transition metal compounds, such as NiO and

CoO, which were predicted to be metals. Peierls pointed out that the large local d-d

Coulomb interaction between electrons overran the energy gained by delocalize the

electrons[4]. Mott[5] and Hubbard[6] attributed the insulating behavior to electron-

electron correlation. Nowadays, these insulators are generally called Mott-Hubbard

insulators, and the Hubbard model is frequently used to study strongly correlated

systems. In the mean time, Anderson[7] introduced super-exchange in a model with

1
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a large d-d Coulomb interaction of local 3d electrons in competition with the energy

lowered via hopping. This model is virtually identical to the Hubbard model.

Local Coulomb interaction U plays an important role in another class of phenom-

ena, the Kondo[8] and heavy Fermion[9] phenomena, where the magnetic impurities in

a metal or even a lattice of these magnetic “impurities” are considered. Anderson[10]

introduced the famous “Anderson Hamiltonian” to address these phenomena, where

the Coulomb interaction between the local d electrons or f electrons in the magnetic

impurity plays an important role and determines whether or not a local magnetic

moments exist. In the large U limit, the Anderson Hamiltonian can be transformed

to the Kondo Hamiltonian[11], where only spin degree of freedom of the impurities

are retained.

The interaction of two electrons, that is, the basic block of these models is rather

simple. However, when many of these blocks are put together, i.e., when a two-body

or three-body problem becomes a many body problem, correlation effects become

dominant and account for a vast number of complex and often surprising phenomena.

The biggest intellectual challenge in condensed matter physics is to obtain a bet-

ter understanding of the many body problem and its manifestation in large variety

of phenomena, which include: metal insulator transition, insulator-superconductor

transition, Kondo effects, heavy Fermion system, high temperature superconductors,

mixed valence systems, quantum Hall effect, colossal magneto-resistance, charge or-

dering, and so on. Some of these have been interpreted in the framework of these

theoretical models in a loose handwaving way. Only in few cases could an exact so-

lutions be achieved, e.g., one dimensional Lieb and Wu[12] solution of the Hubbard

model, and the dilute impurity limit Kondo model. Yet both solutions are so com-

plicated that even their physical consequences are a subject of intense research. As

stated by Phil Anderson, the ultimate goal of condensed matter physics is to find

out “why is more different,” that is, how the accumulation of quantitative changes in

terms of the number of interacting particles leads to such rich qualitative phenom-

ena. The meaning of the answer to this question, in my opinion, is beyond the field of

condensed matter physics, because similar questions have been asked in the fields of

nonlinear dynamics, turbulence, plasma physics, biology, ecology and even sociology
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and economics.

Due to these difficulties, the theoretical paradigm is far from being built in the field

of strongly correlated system. Unexpected new discoveries are made quite frequently,

bringing joy as well as humility to generations of scientists working in this field.

1.1.1 Approaches of the many-body problem

Although far from being solved, the strongly correlated system/many body problem

can be described and studied at different levels of understanding.

The most microscopic and radical level is the so called “theory of everything,”

that is, to solve a Hamiltonian that includes all the Coulomb interactions between all

the particles.

H =
∑

i

pi
2

2m e

+
∑
i,j

e2

|ri − rj| +
∑
m

Pm

2

2M m

+
∑
m,n

ZmZne2

|Rm − R n| +
∑
i,m

Zme2

|Rm − ri| (1.1)

where all the variables follow the common conventions, in which the upper case rep-

resents ions and the lower case represents electrons. This “theory of everything”

unfortunately is practically unfeasible considering that the size of the system is in the

order of 1023.

An alternative approach is to divide the system into small blocks, represent each

block with effective parameters, and simplify the interaction between blocks into

the effective ones. By extracting the effective major factors and summating over

the blocks, one can build up an effective, relatively simpler model, and hopefully,

still accounts for the major collective properties of the system. For example, in the

Hubbard model for high temperature superconductors, each site is represented by

one electron from the lowest binding energy band, the effective hopping or coupling

between neighboring sites, and the effective on-site Coulomb repulsion representing

the correlation effects, which will be discussed later. This second approach is widely

adapted. As a result, many models, such as Hubbard mode, t-J model, and t-t’-t”-

J model[13], are built and many useful qualitative results are obtained. Although

analytic solutions are not available, they provide the basis for a large amount of
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discussion. Particularly, these models are simulated by supercomputers. Although

limited by the computational power, only systems with about 20 sites (compare with

1023), can be computed so far, and surprisingly, the qualitative aspects of many

numerical results agree well with experiments and have helped guide the direction of

new researches. Analytically, various gauge field theories were proposed[18] to deal

with these models. Concepts like “slave boson” are introduced to account for the

correlation effects. However, they are generally abstract and mathematical.

Another different approach is based on the existing theories for weakly corre-

lated or uncorrelated systems, namely, band picture and Fermi liquid theory. The

extension of these theories, such as LDA[14, 15], LDA+U calculations, various per-

turbation theories, marginal Fermi liquid (MFL)[16], near antiferromagnetic Fermi

liquid (NAFL)[17], have been proposed to describe the strongly correlated system. In

general, these theories can account for some aspects of the qualitative physics, but

they intrinsically belong to a more phenomenological level, and fail to describe many

other aspects of the system.

The last level of approach is the experimentalist’s approach, a conceptual and

qualitative approach. The major task of a experimentalist is to discover new phe-

nomena and measure its properties. In an area as complicated as strongly correlated

systems, no paradigm is available, no theory is generally agreed upon, and new sur-

prises can appear every moment. Thus, the guide of an experimentalist are those

concepts and phenomena that have already been studied. Using these guides, an ex-

perimentalist builds simple models and conducts speculative gedanken experiments

while designing the real ones. During the experiment, he or she is aware that the

model is simply an initiative, and searchs for traces of interesting physics in every

detail of the data.

1.1.2 Theoretical models and basic concepts

The simplest model to describe the electron correlation is the one-band Hubbard model.

Its Hamiltonian is:

H =
∑
i,j,σ

tijc
+
iσcjσ + U

∑
i

ni↑ni↓ (1.2)
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Figure 1.1: (a) Cartoon picture of one dimension hydrogen chain. (b) Density of state
for half filled one band Hubbard model for U > W .

Take the example of one dimensional hydrogen chain Fig. 1.1(a), the first term reflects

the kinetic energy, where tij = 0 unless the ith and jth sites are nearest neighbors.

U is the on-site Coulomb repulsion between electrons. This model does not account

for long-range Coulomb repulsion, multi-band effects, orbital degeneracy etc., but it

does describe how a half-filled band splits into an empty upper Hubbard band (UHB)

and a filled lower Hubbard band (LHB). When the band width W is smaller than U,

the system becomes the so-called Mott insulator [Fig. 1.1(b)].

A Mott insulator is a result of the competition between localization effects (on-

site Coulomb interaction) and delocalization effects (hopping to lower the kinetic

energy). When the on-site Coulomb interaction dominates, the energy gained by the

delocalization of the electron is smaller than what is cost by double occupancy, that

is, the bandwidth W is smaller than U, the system will be insulating, and vice versa.

Localization and delocalization are two very useful concepts in many-body physics.

For example, in the case of lanthanide, 4f orbitals are very localized, which correlates

with the strong on-site Coulomb interactions in these systems. These account for

the heavy Fermion systems and Kondo effects observed in lanthanide systems. For

materials containing 3d transition metal elements, the strength of these two effects are
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comparable. Hybridazation between the 3d orbital and the ligand atoms (e.g. O) is

just as important. These gives extremely rich phenomena, such as high temperature

superconductivity and colossal magneto-resistance in these materials.

From the view of spatial scales, when the distance between sites d (determines t)

is much larger than the orbital radius R (determines U ), at sufficiently large d, each

site will be an isolated half-filled atom and, therefore, an insulator.

At the infinite U limit of the t-J model, one gets another widely used model: the

Hubbard model. The large U forbids the double occupancy and the effects of the

on-site Coulomb interaction is renormalized to J (∼ t2/U ), the magnetic exchange

coupling between spins at neighboring sites. The t-J Hamiltonian is

H =
∑
i,j

tc+i cj + JSi · Sj (1.3)

Similarly, in t−t′−t”−J model, the hopping to next and next-next nearest neighbors

are included.

Another important factor, dimensionality, plays an important role in understand-

ing the strongly correlated systems. In the t-J model, with J > 0, antiferromagnetic

ground state can be achieved in the classic limit. However, in the case of the two-

dimensional S = 1/2 system, Anderson argued that the fluctuations could destroy the

long range antiferromagnetic order, and a new type of ground state, namely the Res-

onance Valence Bond (RVB) state will appear [19]. This state has not been observed

in experiments, but the basic idea it represents is widely used [20].

We have shown that various energy and length scales are essential in construct-

ing microscopic models and understanding various complicated phenomena of the

strongly correlated systems. Similarly, for a specific problem, there are other charac-

teristic scales, such as time scales, temperature scales, momentum scales etc. These

scales define the problem at the zeroth order. Experimentally, they determine the

right technique for the specific problem. For example, nuclear magnetic resonance

(NMR) is a local probe at the atomic length scale, muon spin resonance is sensitive

to changes over 1000Å . Neutron scattering experiment and ARPES are sensitive to
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very fast fluctuations in the system because of the energy scale involved, while opti-

cal measurement and transport measurement are much slower probes. Inelastic soft

x-ray scattering may not have enough momentum transfer. Neutron scattering may

not have good enough momentum resolution. Scanning tunnelling spectroscopy (STS)

is spatial resolved, but not momentum resolved, while angle-resolved photoemission

spectroscopy (ARPES) is exactly the opposite.

1.2 High temperature superconductors

1.2.1 General picture

In the last fifteen years, following the discovery of superconductivity in La2−xBaxCuO4

by Bednorz and Müller [21], a large number of related compounds with high supercon-

ducting transition temperatures (Tc’s) have been found. The most common feature

of these high-temperature superconductors (HTSC’s) is a layered-perovskite crystal

structure containing a planar CuO2 network. It is now generally believed that the con-

duction takes place in the CuO2 planes which, therefore, are essential to HTSC’s. For

example, the first three members of the Bismuth family of HTSC (Fig. 1.2), Bi2201,

Bi2212, and Bi2223, have one, two, and three CuO2 layers respectively. The CuO2

planes extend in the a− b direction, and the electronic couplings in the interplane

(c) direction are very weak. In the Bismuth family of materials, doping could be

achieved by substituting Sr2+ ions for some impurity ions, such as La3+, or by adding

interstitial oxygen.

Now let us turn to the electronic structure of an undoped CuO2 plane. As shown

in Fig. 1.3(a), low energy physics of the CuO2 plane mainly involves the hybridization

of 3dx2−y2 orbital of Copper and 2p orbital of Oxygen. Due to the crystal field, d

and p bands are not degenerate, and they hybridize as illustrated in Fig. 1.3(b). The

resulting band structure is metallic, with the antibonding ∗ band being half filled.

However, because of the localized nature of d-orbitals, the undoped system is actually

a Mott insulator. The on-site Coulomb interaction splits the antibonding band into

an empty upper Hubbard band and a filled lower Hubbard band [Fig. 1.3(c)]. It also



CHAPTER 1. INTRODUCTION 8

������������������

��������

��������

��������

������ !"#$δ

���������������%��

������ � !�"&$δ

�������������������

������ �� !�"��$δ

��

��

 �

 !

"

�



�

Figure 1.2: Crystal structure of Bismuth family of high temperature superconductors.

has an antiferromagnetic ground state due to the superexchange interaction between

the neighboring spins 1. Because the nonbonding band, which is largely of oxygen

nature, located in between the LHB and UHB, the lowest excitation is not of the

Hubbard type but the charge transfer type[22]. The excitation is d9 → d8 for LHB

and the charge transfer excitation has additional hopping from the nonbonding band

to the LHB to lower the system energy. Thus the overall process is d9 → d9L−1, where

L−1 represents a hole in the nonbonding band. These charge transfer insulators are

very common in transition metal oxides. If the system is doped with holes, the doped

holes are believed to mainly occupy the Oxygen site. In particular, Zhang and Rice[23]

1Theantiferrom agneticsuperexchangeinteraction isoriginated from thefactthatthetwo neigh-
boring spinson Coppersitescould lowerthekineticenergy by virtually hopping to theOxygen sites
and/oroneoftheCoppersitetogether.



CHAPTER 1. INTRODUCTION 9

E

Cu O
a)

x 2 -y 2

3z 2 -r 2

xy
yz , zx

pσ

Cu O

σ* Ef

E

pπ(2)

σ

π

f)

d10d9

d8d9

LHB

UHB

U

E

c) Charge transfer insulator

ZRS

d) Zhang-Rice Singlet,

AB

E

B

NB

b) Band Picture

e) Effective one band

Hubbard or t-J model

d10d9

UHB E

d8d9

LHB

-

+

-

+

+

-

-

-
++ +-

∆

CuO

B

CT

d9L-1d9

Figure 1.3: (a) Schematic of CuO2 plane, the crucial structural subunit for high-Tc

superconductivity. Red arrows indicate a possible alignment of spins in the antiferro-
magnetic ground state. The coupling between oxygen pσ orbitals and copper dx2−y2

leads to superexchange in the insulator and carrier motion in the doped, metallic
state. ‘+’ and ‘-’ indicate the phase. (b) band picture of the hybridization of oxygen
and copper orbitals. (c) Charge transfer insulator due to the local d− d Coulomb
repulsion. (d) The formation of Zhang-Rice singlet band due to coherence superposi-
tion of the four oxygen orbitals surrounding the copper atom as illustrated in (a). The
arrows indicate the transfer of spectral weight due to doping. (e) shows the effective
one-band model based on the Zhang-Rice singlet band, which is in the circled region
of ARPES spectrum in (f).

proposed that Cu-O hybridization strongly binds a hole on each square of O atoms to

the central Cu2+ ion to form a local singlet, which is a coherent superposition of the

2pσ orbitals of the four nearest-neighbour oxygen atoms [Fig. 1.3(a)]. This so-called

Zhang-Rice singlet moves through the lattice in a similar way as a hole in the single-

band effective Hamiltonian of the strongly interacting Hubbard model. Therefore, it

is used as the building block in the construction of effective microscopic Hamiltonians
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Figure 1.4: Phase diagram of Bi2212 high temperature superconductor.

of the cuprates[Fig. 1.3(e)]. Becasuse, the low energy excitation is mainly the Zhang-

Rice-Singlet band [Fig. 1.3(d)], it is also called effective LHB in the literature, which

is the circled region of the ARPES spectrum in Fig. 1.3(f), and the main focus of this

thesis.

Upon doping, HTSC has very rich phases [Fig. 1.4]. The undoped insulator

becomes a superconductor with only 5 ∼ 6% holes. The superconducting phase

transition temperature Tc reaches a maximum at the so-called optimal doping level

opt � 0.16, which separates the superconducting phase into the underdoped regime

< opt and the overdoped regime > opt [20].

The optimally doped regime is characterized by linear temperature dependence of

the resistivity over a large temperature range. Phenomenologically, this was explained

by the Marginal Fermi liquid theory[16], where the scattering rate is a linear function
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of temperature and energy. This is recently confirmed by ARPES measurement of the

scattering rate[24]. In the superconducting state, a d-wave superconducting gap opens

in HTSC, with the gap node along the (0,0)−( , ) direction, and a gap maximum at

( ,0)[25]. In addition, a pseudogap opens up even in the normal state of underdoped

and slightly overdoped samples, which is possibly related to the proximity effect of

the antiferromagnetic insulator. The exact origin of the pseudogap has been debated

over the years[26]. This type of non-Fermi-liquid behavior is a characteristic of the

underdoped regime. On the other hand, the overdoped regime is believed to be more

Fermi-liquid-like because of better defined quasi-particles.

In the last five years, experimental advances in material preparation, neutron scat-

tering, STM, ARPES, transport etc. have begun to sketch a converging experimental

picture of the HTSC. For example, the stripe instability has been studied by various

techniques in YBCO, LSCO systems[27], and has been a very popular and controver-

sial subject in the last several years. The local inhomogeneity has been studied by

STM in many systems[28]. The universality of the superconducting peak has been

revealed by ARPES and tunnelling measurements[29]. The universality of a kink

in the low energy dispersion has been identified in ARPES, and some believe, will

have fundamental impact on the study of the mechanism of HTSC. In this context,

new theoretical models have also gradually caught up. The recent Z (2) gauge field

theory[30], SO(5) theory[31], stripe theory[32], etc. have brought fresh ideas into the

discussion.

1.2.2 Issues addressed in this thesis work

Here we briefly discuss the issues addressed in this thesis. More detailed discussions

are embedded in each individual chapters.

As we have discussed in last several sections, due to the lack of proper theory, our

approach is to study various concepts and general picture in the HTSC’s, rather than

to prove or disprove certain theories.
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Superconducting phase transition

For high temperature superconductors, there are many energy scale involved. They

are i) the effective on-site Coulomb repulsion U � 2 ∼ 3eV; ii) the hybridization

or hopping energy scale t∼ 0.5eV; iii) magnetic exchange energy scale J � 0.1eV;

iv) the superconducting gap ∆ � 4 ∼ 40m eV; and v) the superconducting phase

transition scale Tc � 1 ∼ 10m eV. It is now understood that the magnetic correlation

reduced the band width from 8t to 4J. However, it is still under debate how the J

and ∆ are related[33]. Unlike the conventional BCS superconductors, the relation

between ∆ and Tc is also not understood.

These last two energy scales directly associate with the two major ingredients of

a superconductor: pairing and phase coherence. The pairing, or the superconducting

gap has been extensively studied over the years. However, the phase coherence side

of this phenomena is not well studied, particularly if one considers that the high

temperature superconductors has very different phase coherence behavior than the

conventional superconductors such as the very short coherence length. We pointed

out that a particular feature in the ARPES spectrum, the superconducting peak,

is directly related to the phase coherence[34] (Chapter 2), and it has very different

behavior from the normal state band (Chapter 3). This feature is a very unique and

ubiquitous phenomenon of high temperature superconductors (Chapters 2 and 4). We

argue that this peak/quasiparticle is created at the superconducting phase transition,

and its exact origin may hold the key to solving the problem of the mechanism of

HTSC[33].

Interlayer coupling

One other interesting property of HTSC is the correlation between Tc and number

of CuO2 layer (n). With increased n, Tc also increases. For example, Bi2201, Bi2212

and Bi2223 (n = 1,2,and 3, respectively), have maximum T ′
cs of 34K, 90K, and

110 K respectively. Similar relations have also been found for the Hg and Tl family

of HTSC. Therefore, it is important to examine the effect of interlayer coupling on

the electronic structure.
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For Bi2212 system, intrabilayer splitting causes the bilayer splitting as predicted

by various theories, however, its absence has been reported in Bi2212. We have re-

examined this issue in detail and show that the bilayer splitting does exist [35](Chapter

3). Moreover, we show that the bilayer splitting energy scale will alter the existing

view of electronic excitation in the ( ,0) region dramatically.

Trilayer Bi2223 system

Following the above thinking, we studied the Bi2223 system (Chapter 4), which is

the first ARPES study of a trilayer system. Various details of the electronic structure

are examined. A systematic view of the interlayer coupling effect is presented.

Heavily overdoped systems

Partly because of the interesting non-Fermi-liquid behavior, most of the previous stud-

ies were focused on the underodoped/optimal doped regime. The heavily overdoped

regime was not thoroughly studied by ARPES. However, there are many interesting

physics that are not addressed in this regime. For example, is this regime really a

Fermi liquid? How strong is the correlation effects in this regime? Is there a quan-

tum critical point? etc. We studied the electronic structure of the heavily overdoped

Bi2212 (Chapter 3). We found that although the quasiparticle is much better defined

in the regime than in the underdoped regime, the correlation effects are still very

important.

1.3 Photoemission Spectroscopy

1.3.1 Historical remarks

Photoemission spectroscopy (PES) is used today for a number of experimental tech-

niques that are based on the photoelectric effect. The first observation of the pho-

toelectric effect can be traced back to 1887 when Hertz [36] discovered that a spark

between two electrodes occurs more easily with ultraviolet (UV) radiation illumi-

nating the cathode. Subsequent investigations by Thomson [37] and Lenard [38]
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identified this effect as the emission of electrons, and established the dependence of

the electron current and electron velocity on light intensity and frequency. A sat-

isfying theoretical explanation had not been achieved until Einstein described it as

a quantum phenomenon in 1905 [39]. In his quantum theory of the radiation, the

photoelectric effect is explained in terms of the simple relationship:

E kin,max = h − (1.4)

where h is the photon energy, E kin is the kinetic energy of the photoelectron, and

is the work function, which denotes the energy necessary to release the electron from

the emitter.

The practical aspects of the effect were soon recognized and exploited by means of

photocells and, later, photomultipliers [40]. The evolution of PES is intertwined with

that of many other experimental techniques, such as the improvement of ultrahigh

vacuum (UHV) techniques, the design of electron energy analyzers with high energy

and angular resolutions, and the development of synchrotron radiation. Currently, it

is a sophisticated technique in the investigation of the electronic properties of atoms,

molecules and condensed matter.

1.3.2 General principle

The photoemission spectra of a solid are often interpreted in terms of the so called

‘three-step model’ [41, 42, 43, 44]. In this model, the photoemission process is treated

as a sequence of:

step 1: the optical excitation of an electron,

step 2: the transport of the electron through the solid2,

step 3: the escape from the solid surface into the vacuum.

2In thisstep,theelectron m ay bescattered elastically orinelastically.In thelattercase,thepho-
toelectron losesenergy and excitesm oreelectrons,generating whatisknown assecondary electrons.
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For most practical purposes, photoemission spectra are interpreted within the

single-particle approximation, and the Einstein equation (1.4) can be extended to de-

scribe all electrons, not only those with the highest kinetic energy. Fig. 1.5 illustrates

energetics of the photoemission process.
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Figure 1.5: Energetics of the photoemission process.

For the optical excitation process (step 1 of the three-step model), the laws of con-

servation for energy and momentum are given by

E f − E i − h = 0 (1.5)

h̄kf − h̄ki − h̄kγ = 0 (1.6)

where E f , E i and kf , ki are the energy and wave vector of the initial state and final

state, respectively. kγ denotes the wave vector of the impinging photon. At low

photon energies, the momentum of the impinging photon is negligible compared with
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the crystal momentum of the electrons in the Brillouin zone (BZ). For example, for

the typical photon energy of 20 eV, kγ is 0.01 Å−1, which is less than 1% of the typical

BZ size of cuprates. Hence, we can use a reduced wave vector k for both initial and

final states, and the first step of the three-step model can be regarded as a vertical

transition from the initial state at E i(k) to the final state at E f (k).

For simplicity, we consider only those photoelectrons which propagate towards the

sample surface without scattering (step 2 of the three-step model). The escape from

the sample surface to the vacuum (step 3 of the three-step model) is then characterized

by the work function . The kinetic energy of the photoelectron detected by the

energy analyzer is thereby related to the binding energy inside the solid through the

following equation:

EB = h − E kin − (1.7)

We note that the wave function of the final state at E f (k) is not a single plane wave

but a Bloch wave containing components of the form exp[i(k + G) · r], with G being

any reciprocal wave vector. For each k+G component, there exists the possibility

that it can be matched to a travelling wave outside the crystal. Thus, the conservation

of the wave vector is given by

K‖ = k‖ + G‖ (1.8)

where K‖, k‖ and G‖ are components parallel to the sample surface of the external

photoelectron wave vector K, the reduced wave vector k and the reciprocal lattice

vector G, respectively. Unfortunately, the perpendicular component of the wave

vector is not conserved, since the crystal is no longer periodic along the perpendicular

direction due to the sample surface. As shown in Fig. 1.5, the kinetic energy of the

external photoelectron is defined as

E kin = h̄2(K2
‖ + K 2

⊥)/2m e

= E f (k) − E vac (1.9)
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where K ⊥ is the perpendicular component of the photoelectron wave vector and E vac

represents the vacuum level. From Eq. (1.8) and (1.9) we have, for each (k+G)

component,

K ⊥2 = 2m e[E f (k) − E vac]/̄h
2 − (k‖ + G‖)2 (1.10)

If E f (k) and E vac are known parameters, both K‖ and K ⊥ can easily be calculated

out through Eq. (1.8) and (1.10), i.e., energies and directions of the photoelectrons

generated by optical transition are completely determined.

1.3.3 Angle-resolved photoemission spectroscopy

In angle-resolved photoemission spectroscopy (ARPES), as depicted in Fig. 1.6(a),

both the kinetic energy and the direction of propagation of the external photoelec-

trons are directly measurable quantities, i.e., the momentum or wave vector K is

determined, which is given by

K x =
1

h̄

√
2m eE kin sin cos

K y =
1

h̄

√
2m eE kin sin sin (1.11)

K z =
1

h̄

√
2m eE kin cos

We would like to trace the external photoelectron back to its initial state inside

the crystal and deduce the E vs. k dispersion relations. This ambition, however,

encounters some fundamental difficulties. Although k‖ is determined by Eq. (1.8)

and (1.11), k⊥ remains indeterminate. Additional assumptions have to be made to

determine the value of k⊥. For example, by assuming a free-electron like behavior of

the final state, we have

E f (k) − E 0 = h̄2(k2
‖ + k2

⊥)/2m e

= E kin + v0 (1.12)

where E 0 denotes the minimum of the valence band and v0 is the energy difference
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Figure 1.6: (a) The experimental geometry for an angle-resolved photoemission spec-
troscopy. (b) Modern electron analyzer Scienta SES-200 collects electrons over a large
angle and energy simultaneously.

between E 0 and E vac or the so-called inner potential. From Eq. (1.8), (1.11), and

(1.12), k⊥ can be determined. However, such an assumption only holds for the pho-

toelectrons with high kinetic energy (≥ 20 eV).

There are a few special situations in which the band dispersion as a function

of k⊥ can be directly determined from experiments. For example, in angle-resolved

constant-final-state spectroscopy, the kinetic energy and the direction of the emission

are held constant, i.e., k‖ is fixed. By scanning the photon energy, we can sample the

band structure as a function of k⊥ along the chosen direction.

For layered compounds like cuprates, the dispersion along the k⊥ direction of

the energy bands is usually rather small and can be neglected. In this case, the

interpretation of an angle-resolved photoemission experiment is the simplest. The E

vs. k relationship and the Fermi surface can be mapped out by following the peak in

energy distribution curves (EDC’s) at the band energy position.

The recent advance of the electron energy analyzer makes it possible to detect

electrons with different emission angles and kinetic energy simultaneously with high

resolution[Fig. 1.6(b)]. This not only makes the data taking process much more effi-

cient, but also enable a new way of retrieving information from ARPES, namely, the
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momentum distribution curve (MDC) in addition to the previous energy distribution

curve (EDC).

1.3.4 Modelling

In a rigorous way, the photoemission process is a one-step quantum mechanical event

in which an electron, under the effect of the electromagnetic field, is removed from an

occupied state and emitted into the detector. Theoretically, it is described by the so-

called one-step model [45, 46, 47]. In this model, a Green’s function method is adopted

to take into account the multiple scattering process, correlation effects etc. A formal

diagrammatic expansion for photoemission has been put forward by Carolic et al.

[45], using the Keldysh perturbation theory for nonequilibrium many-body problems.

The advantage of the one-step model is that it includes coherence effects and that

it can be expanded systematically. However, in practice, due to the complexity in

crystal structure, correlation effects, multiple scattering etc., a comprehensive and

accurate calculation of the photoemission matrix element based on the one-step model

is not feasible. Instead, photoemission data are usually discussed within the three-step

model, as we have discussed in the last two sections. The advantage of the three-step

model is its simplicity and effectiveness. This intuitive and phenomenological model

has played an important role in the development of photoemission spectroscopy. With

reasonable assumptions, qualitative results obtained based on this model are still

widely used today to provide guidance for various experiments.

Three-Step Model

In three-step model, the intensities in the photoemission spectra can be calculated

in a straightforward approach [48, 49]. According to the three-step model, the EDC

of photoemitted electrons I(E f,h ) is a sum of a primary distribution of electrons

Ip(E f,h ) that have not suffered an inelastic collision, and a background of secondary

electrons Is(E f,h ), which have suffered an energy loss in one or more collisions.

Itotal(E f,h ) = Ip(E f,h ) + Is(E f,h ) (1.13)
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The Ip(E f,h ) in Eq. (1.13) can be factorized into a distribution of photoelectrons

I(E f,h ), a transmission function T(E f,h ), and an escape function D (E kin) [49].

For each pair of initial and final states,

Ip(k,G) = I(k,h )T(E f,h )D (E f ) (1.14)

Usually, the transmission factor T(E f,h ) is calculated in terms of the electron mean

free path e(E f ) and the photon penetration depth ph(h ) [44],

T(E f,h ) =
e(E f )/ ph(h )

1 + e(E f )/ ph(h )
(1.15)

The typical values of e(E f ) and ph(h ) are ∼ 5 − 20 Å and ∼ 100 − 200 Å, re-

spectively [49]. Therefore, T(E f,h ) can be replaced by e(E f )/ ph(h ). Under the

assumption that the inelastic scattering frequency 1/ is isotropic and only depends

on E f , the electron mean free path can be described as

e(E f ) = |∇kE f (k)| /̄h (1.16)

A classical expression for the escape factor D (E f ) is

D (E f ) =




0 : E f (k) − E vac < h̄2(k‖ + G‖)2/2m

1 : E f (k) − E vac ≥ h̄2(k‖ + G‖)2/2m
(1.17)

which simply describes the fact that the beam will be completely reflected if the

momentum component normal to the surface is insufficient to surmount the surface

barrier.

Assembling all these ingredients of the model and taking into account the conser-

vation of wave vector in Eq. (1.8), the final expression for Ip(E f,h ) is given by:

Ip(E f,h ) ∝
∫
d3k I(k‖,G‖) × (k‖ + G‖ − K‖)

· [E f (k) − E i(k) − h ] × [E f − E f (k)] (1.18)



CHAPTER 1. INTRODUCTION 21

For the first step of the three step model, a N -electron ground state ΨN
i to a final

state ΨN
f including a photoelectron. Applying the Fermi’s Golden Rule [50] to the

optical transition probability, we have:

I∝ ∑
f,i

wfi =
∑
f,i

2

h̄
|〈ΨN

f |H int|ΨN
i 〉|2 (E N

f − E N
i − h ) (1.19)

where E N
i =E N−1

i −E k
B and E N

f =E N−1
f +E kin are the initial and final-state energies

of the N -particle system (E k
B is the binding energy of the photoelectron with kinetic

energy E kin and momentum k). Ψi and Ψf denote wave-functions of the initial state

and the final state, respectively. H int describes the electron-photon interaction:

H int =
e

2m c
(A·p + p·A) =

e

m c
A·p (1.20)

where A is the vector potential, which represents the photon field, p is the electronic

momentum operator, and we made use of the commutator [p,A]= īh∇·A. With the

dipole approximation (i.e., A being a constant over atomic dimensions, which is true

in the ultraviolet regime),

wfi ∝ |〈ΨN
f |r|ΨN

i 〉|2 (E N
f − E N

i − h ) (1.21)

In the independent particle picture, ΨN
i is a product of one-particle wave functions

following the Hartree-Fock formalism. For ΨN
f , under sudden approximation, that is,

the photoelectron is assumed not to have any interaction with the system left behind

(which implies two independent wave functions), and the effective potential changes

discontinuously in time from that of the initial N -electron system to that of the final

system of (N −1)-electron plus a photohole. Note that this is not necessarily true

for low kinetic energy photoelectrons, which may need a longer time than the system

response to leave the system. In the latter case, or the so-called adiabatic limit, the

detailed screening of photoelectron and photohole have to be taken into account[51].

The sudden approximation is justified for the cuprates even at photon energies as low

as 20 eV[52], see section 1.3.4). Within these approximations, we can write ΨN
i and
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ΨN
f as:

ΨN
i = A k

i ΨN−1
i ΨN

f = A k
f ΨN−1

f (1.22)

where k
i and k

f are the wave functions of the (photo)-electron with momentum k

before and after the optical transition, ΨN−1
i and ΨN−1

f describe the remaining (N−1)-

electron system, and A is an antisymmetric operator for fermion wave functions. One

then has

〈ΨN
f |r|ΨN

i 〉=〈 k
f |r| k

i 〉〈ΨN−1
f |ΨN−1

i 〉 (1.23)

where M k
f,i ≡ 〈 k

f |H int| k
i 〉 is the one-electron dipole matrix element and the second

term is the (N −1)-electron overlap integral.

Because the remaining electrons will feel the potential of the photohole, and ΨN−1
f

will not be one of the eigenstates of the (N −1)-electron Hamiltonian. It will relax

to one of the eigenstates of the (N −1)-particle, ΨN−1
s,i , with eigen energy E N−1

s . Also

ΨN−1
i , which is not an eigenfunction of the (N −1)-particle Hamiltonian. The total

photoemission intensity measured at a fixed momentum k as a function of E kin

I(k,E kin)∝∑
f,i

wf,i ∝
∑
f,i

|M k
f,i|2

∑
s

|cs,i|2 (E kin+E N−1
s,i − E N

i −h ) (1.24)

where |cs,i|2 = |〈ΨN−1
s,f |ΨN−1

i 〉|2 is the probability that the removal of an electron from

orbital k will leave the (N −1)-particle system in the excited state s. In the strongly

correlated systems many of the |cs,i|2 will be different from zero because a large

number of eigenstate ΨN−1
s,i is participating in the final state and, as a consequence of

the (sudden) change of potential, ΨN−1
i will not be orthogonal to many of the ΨN−1

s,i .

Therefore, the ARPES spectra will not consist of single delta functions but will show

a main line and several satellites according to the number of excited states s created

in the process. For a weakly interacting system, under frozen orbital approximation,

ΨN−1
f =ΨN−1

i , one only observes the main line.
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One-particle spectral function

If we rewrite the eq. 1.24 as

I(k,E kin) ∝ ∑
f,i

|M k
f,i|2A (k, ) (1.25)

is the final state electron energy. A (k, ) ≡ ∑
s |cs,i|2 (E kin+E N−1

s,i − E N
i −h ) is

the so called one particle spectral function, which is directly related to the Green’s

function.

The propagation of a single electron in a many-body system can described by

the time-ordered one-electron Green’s function G (t,t′) that can be interpreted as

the probability amplitude that an electron added to the system in a Bloch state with

momentum k at a time zero will still be in the same state after a time |t−t′|. By taking

a Fourier transform, G (t,t′) can be expressed in energy-momentum representation

obtaining G (k, ) =G +(k, )+G −(k, ), where G +(k, ) and G −(k, ) indicate the

one-electron addition and removal Green’s function, respectively:

G ±(k, ) =
∑
s

|〈ΨN±1
s |c±k |ΨN

i 〉|2
∓ E N±1

s ± E N
i ± i

(1.26)

where is the excitation energy from the Fermi level (from here on h̄=1), the operator

c+k =c†kσ (c−k =ckσ) creates (annihilates) an electron with momentum k and spin in

the N -particle initial state ΨN
i , the summation runs over all possible (N ±1)-particle

eigenstates ΨN±1
s with eigenvalues E N±1

s , and is a small positive number needed to

perform the calculations in the complex plane.

In the limit →0, (x±i )−1 =P(1/x)∓i (x), where P denotes the principle value.

The one-particle spectral function A (k, )=A+(k, )+A−(k, )=−(1/ )ImG (k, ),

with:

A±(k, )=
∑
s

|〈ΨN±1
s |c±k |ΨN

i 〉|2 ( ∓E N±1
s ±E N

i ) (1.27)

Note that A−(k, ) and A+(k, ) define precisely the one-electron removal and addi-

tion spectra one probes with direct and inverse photoemission, respectively. Invoking
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once again the sudden approximation, the intensity measured in an ARPES experi-

ment on a 2D single-band system can now be written as:

I(k, ) ∝ ∑
f,i

|M k
f,i|2f( )A (k, ) (1.28)

where k=k‖ is the in-plane electron momentum, is the electron energy with respect

to the Fermi level. The Fermi function f( )=(eω/kBT +1)−1

With the Green’s function formalism, one can utilize the quasiparticle concept to

study many body effects in solids. This allows the definition of the electron proper

self-energy Σ(k, ) = Σ′(k, )+iΣ′′(k, ), which contains all the information on the

energy renormalization (Σ′) and lifetime (Σ′′) of an electron (with band energy k and

a momentum k) propagating in a many-body system. The spectral function A (k, )

is a continuous function that contains full information of a single electron or hole

excitation in a many-body system, and we can write:

G (k, ) =
1

− k − Σ(k, )
(1.29)

A (k, ) =
1 Σ′′(k, )

[ − k − Σ′(k, )]2 + [Σ′′(k, )]2
(1.30)

Because G (t,t′) is a linear response function to an external perturbation, the real

and imaginary part of its Fourier transform G (k, ) have to satisfy causality and,

therefore, are related by Kramers-Kronig relations. This implies that, if the full

A (k, ) =−(1/ )ImG (k, ) is available from photoemission and inverse photoemis-

sion, one can calculate ReG (k, ) and then obtain both the real and imaginary part

of the self-energy directly from Eq. 1.29. However, due to the lack of inverse photoe-

mission data, this analysis is usually performed only on the basis of ARPES spectra

under certain assumptions[53].

Spectral function of a Fermi liquid

In general, the exact calculation of Σ(k, ) and, in turn, of A (k, ) is an extremely

hard task. In reality, usually weak interactions or certain analytical properties of the
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Figure 1.7: Cartoon picture of (a) a free electron band, (b) free electron spectral
function, and (c) quasi particle spectral function of a Fermi liquid. The top of (a)
and (c) are the density of state for free electron and the Fermi liquid quasiparticle
respectively.

Green’s function are assumed. Fermi liquid theory is a successful example of this,

which could be a good starting point to discuss the data even in the presence of

strong correlation.[54].

In a non-interacting case, Σ(k, ) = 0, the independent electron dispersion is

sketched in Fig. 1.7(a). One can easily find that G ±(k, ) = 1/( − k±i ) has only

one pole for each k, and A (k, ) = ( − k) consists of single lines as shown in

Fig. 1.7(b). In this case, k is a good quantum number and, for a metallic system at

T = 0, the occupation number n̂k = 1
2

∑
σ c

†
kσckσ is characterized by a sudden drop

from 1 to 0 at k=kF [Fig. 1.7(a), top], which defines a sharp Fermi surface.

When the electron-electron correlation is turned on adiabatically, (so that the

system remains at equilibrium), any particle added into a Bloch state has a certain

probability of being scattered out of it, leaving the system in an excited state in which

additional electron-hole pairs have been created. The electron occupation number n̂k

will now show a discontinuity smaller than 1 at kF and a finite occupation probability

for k> kF even at T =0 [Fig. 1.7(c), top]. As long as n̂k shows a finite discontinuity

Zk > 0 at kF (i.e., weak enough correlations), we can describe the correlated Fermi
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sea in terms of independent quasiparticles, i.e. electrons dressed with a manifold of

excited states, which are characterized by a pole structure very close to the one of

the non-interacting system but with renormalized energy Ek and mass m ∗, and a

finite lifetime k = 1/Γk (with these renormalized parameters the properties of the

free electron gas can be readily extended to the FL of quasiparticles). As the bare-

electron character of the quasiparticle or pole strength (also called coherence factor)

is Zk < 1, and the total strength must be conserved (see below Eq. 1.33), we can

separate G (k, ) and A (k, ) into a coherent pole part and an incoherent smooth

part without poles:

G (k, ) =
Zk

− Ek − iΓk

+ G inc (1.31)

A (k, ) = Zk
Γk/

( − Ek)2 + Γ2
k

+ A inc (1.32)

where, more in detail Zk = (1− ∂Σ′
∂ω

)−1, Ek = k +Σ′, Γk = ZkΣ
′′, and the limit of

validity of the FL description is Ek−µ�Σ′′, for small −µ and k−kF . In particular,

for three dimensional FL systems Γk ∝ [( kBT)2 +E 2
k]. By comparing the electron

removal and addition spectra for a FL of quasiparticles [Fig. 1.7(c)] with those of a

free electron gas [Fig. 1.7(b)], the effect of the self energy correction becomes evident.

The quasiparticle peak has now a finite lifetime (due to Σ′′). It sharpens up rapidly,

thus emerging from the broad incoherent component, upon approaching the Fermi

level where the lifetime is infinite corresponding to a well defined quasiparticle [note

that coherent and incoherent part of A (k, ) are reminiscent of the main line and

satellite structure discussed in the previous section]. Furthermore, the peak position

is shifted with respect to the bare band energy k (due to Σ′): as the quasiparticle

mass is larger than the free-electron one because of the dressing (m ∗> m ), the total

dispersion (or bandwidth) will be smaller (|Ek|< | k|). Among the general properties

of the spectral function there are also several sum rules. A fundamental one, which

was implicitly used to state that
∫
d Aqp =Zk and

∫
d Ainc =1−Zk in discussing the

FL, reads: ∫ +∞

−∞
d A(k, ) = 1 (1.33)
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which reminds us that A (k, ) describes the probability of removing/adding an elec-

tron with momentum k and energy to a many-body system. However, as it requires

also the knowledge of the electron addition part of the spectral function, it is not so

useful in the analysis of ARPES data. A sum rule more relevant to this task is:

∫ +∞

−∞
d f( )A (k, ) = n(k) (1.34)

which relates solely the one-electron removal spectrum to the momentum distribution

function n(k), equivalent to the occupation number n̂k. When electronic correlations

become important and the electronic momentum k is no longer a good quantum

number, the discontinuity at kF is reduced (as just discussed for the FL case) but

a drop in n(k) is usually still observable (even for strong correlations[55, 56]. Note,

however, that great care is necessary in making use of Eq. 1.34 because the integral of

Eq. 1.28 does not give simply n(k) but rather I0(k, ,A)n(k). Nevertheless, by track-

ing in momentum space the loci of steepest descent of the experimentally determined

n(k) (i.e., the maxima in |∇k n(k)|). For a more extended discussion on the different

methods used to experimentally determine the Fermi surface [57, 58].

Linewidth

The energy broadening and the lineshape of the quasiparticle in ARPES is deter-

mined by two factors: the contribution of the initial state (the hole state) and the

contribution of the final state (the photoelectron state)[59]. If we assume that the

variation of ImΣ is small, and the spectral function for the photohole/photoelectron

are given by

A h(k⊥, ) ∝ Γh

[ − E h(k⊥)]2 + Γ2
h

; A e(k⊥, ) ∝ Γe

[ − E e(k⊥)]2 + Γ2
e

(1.35)

where k⊥ is conserved. Summing over initial state wave vectors, the photocurrent is

then given by

I( ) ∝
∫
dk⊥

Γh

[ − h − E h(k⊥)]2 + Γ2
h

· Γe

[ − E e(k⊥)]2 + Γ2
e

(1.36)
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Evaluating this integral we obtain a Lorentzian shape for I( ) with a width of

Γm =
Γh + Γe

∣∣∣∣v⊥
h

v⊥
e

∣∣∣∣∣∣∣∣1 − v⊥
h

v⊥
e

∣∣∣∣
(1.37)

with v⊥h and v⊥e being the group velocities for the hole and the photoelectron, respec-

tively, which are defined as v⊥h = E h/ k⊥, v⊥e = E e/ k⊥. In the limit when |v⊥h |
is much smaller than |v⊥e |, i.e., when the energy dispersion of the initial-state band

perpendicular to the sample surface is very small, Eq. (1.37) is reduced as

Γm = Γh + Γe

∣∣∣∣∣
v⊥h
v⊥e

∣∣∣∣∣ (1.38)

In the case of Bismuth family of cuprates, the system is fairly two dimensional, and

the band dispersion perpendicular to the CuO2 plane (or the cleaved surface) or v⊥h
is very small, we may identify Γm with Γh.



Chapter 2

Superconducting peak in cuprates

In this chapter1, we show that the doping and temperature dependence of photoemis-

sion spectra near the Brillouin zone boundary of Bi2Sr2CaCu2O8+δ exhibit unexpected

sensitivity to the superfluid density (or more strictly condensate fraction). In the su-

perconducting state, the photoemission peak intensity as a function of doping scales

with the superfluid density and the condensation energy. As a function of temper-

ature, the peak intensity shows an abrupt behavior near the superconducting phase

transition temperature where phase coherence sets in, rather than near the temper-

ature where the gap opens. This anomalous manifestation of collective effects in

single-particle spectroscopy raises important questions concerning the mechanism of

high-temperature superconductivity. Moreover, we show that this peak is ubiquitous

in single particle excitation spectrum measured by ARPES and or tunnelling experi-

ment for various cuprate systems, which suggest that it could be a crucial ingredient

of the high temperature superconductivity.

1The m ajorcontentofthischapterhasbeen published in D.L.Feng,et al.,Science,Vol.289,
277 (Jul.2000).

29
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2.1 Introduction

The collective nature of superconductivity manifests itself contrastingly in different

techniques. Microwave and muon spin relaxation measurements are inherently sen-

sitive to the collective motion of the condensate, whereas single-electron tunnelling

spectroscopy and photoemission mainly probe single-particle excitations of the con-

densate. Hence, these two types of spectroscopies can be used to measure two essential

but distinct ingredients of superconductivity: the superfluid density, which charac-

terizes the phase coherence of the Cooper pairs, and the superconducting energy gap,

which reflects the strength of the pairing.

For a simple metal in its normal state, as we have discussed in Chapter 1, the posi-

tion of the sharp feature measured by ARPES reflects the band dispersion [Fig. 2.1(a)].

In the superconducting state (at the same wave vector), the position of the feature

is pushed to higher binding energy, because of the opening of a superconducting gap,

and the intensity of the feature is reduced because of the particle hole mixing effects

or the Cooper pair formation. An exaggerated version of this change in the spectral

function is illustrated in [Fig. 2.1(b)]. In this conventional Bardeen-Cooper-Schrieffer

(BCS) picture, there is no direct information about the phase coherence in the single

particle excitation spectrum as measured by ARPES.

�

�A��

�

�D��

∆
�(

�

�

�� 
�

Figure 2.1: Single electron excitation spectrum for a conventional BCS superconduc-
tor in the (a) normal and (b) superconducting states.
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Figure 2.2: ARPES spectrum of optimally doped Bi2212 (Tc = 90K ) in normal and
superconducting states at ( ,0). Inset shows the Fermi surface sketch.

The situation is different for the high temperature superconductors such as Bi2212.

As shown in Fig. 2.2, instead of a shift of the the normal state feature position,

a sharp peak seems to be created upon the superconducting phase transition near

the Brillouin zone boundary ( /a,0), 2 forming the famous peak-dip-hump structure

[61, 62, 63, 64, 65, 66]. This feature has so far been discussed primarily in the context

of quasi-particle excitations coupled to many-body collective excitations[63, 67, 68].

In this chapter, we show that it indicates a pronounced departure from the above

conventional picture. Namely, the peak intensity contains information about the

phase coherence, in addition to its position corresponding to the pairing strength (or

superconducting gap).

we show that the doping dependence of the peak intensity exhibits a clear resem-

blance to the behavior exhibited by the superfluid density ns and the condensation

energy, both of which scale approximately with dopant x in the underdoped regime

and saturate or scale with A−x in the overdoped regime (where A is a constant). The

2a isthelatticeconstant,which issetto unity forconveniencein theliterature
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temperature dependence of this peak intensity also shows a resemblance to that of

the superfluid density. More important, this peak intensity shows an abrupt behavior

near Tc, where phase coherence sets in, rather than at T ∗, the temperature where

the pseudogap opens in the underdoped regime[69]. It is remarkable that the signa-

ture of these collective properties appears in a single-particle excitation spectrum at

( ,0) (the antinode region of a d-wave state with maximum gap). This anomalous

manifestation of the superfluidity as well as x dependence of many physical quanti-

ties contrasts strongly with the conventional BCS type of picture based on the Fermi

liquid. In that picture, the quasi-particle spectral weight Z depends on interactions

and the energy gap near the normal state Fermi surface whose volume scales with

1 − x (counting electrons), rather than on the superfluid density. Instead, these

observations agree well with theories that are based on the doped Mott insulator.

2.2 Experimental

We measured ARPES spectra on Bi2212 samples with various doping levels. Bi2212

samples are labelled by their Tc with the prefix UD for underdoped, OP for optimally

doped, or OD for overdoped (e.g., an underdoped Tc = 83 K sample is denoted UD83).

Samples used here include traveling-solvent floating zone-grown single crystals and

molecular beam epitaxy (MBE)-grown films. The typical transition width is less than

1 K, except for UD73, which has a transition width of 7 K. Samples with different

Tc ’s are of similar high quality, as assessed by the measured residual resistivity ratio

(RRR), the ratio between the extrapolated resistivity at T = 0 K and resistivity

at T = 300 K. The hole doping level x was determined by the empirical relation

Tc = Tc,max[1 − 82.6(x − 0.16)2][70]. Tc,max = 91 K was used for all the samples

because the chemical dopants used in this study (Dy or O) are doped out of the CuO2

plane[71], which changes the doping level but results in much weaker scattering effects

than impurities doped in the CuO2 plane (e.g., Zn). The samples measured in the

experiments as well as those cited from Ref.[66] (named in lowercase) are summarized

in Table 2.1.

The data were collected at Stanford Synchrotron Radiation Laboratory (SSRL)
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Table 2.1: Summary of the Bi2212 samples used in this chapter

Sample Chemical formula texture Tc (K) ∆Tc (K) doping
UD30 B i2Sr2Ca0.7D y0.3Cu2O 8+δ film 30 1 0.07
UD46 B i2Sr2Ca0.9D y0.1Cu2O 8+δ film 46 1 0.084
ud55 B i2Sr2CaCu2O 8+δ film 55 not available 0.09
UD73 B i2Sr2CaCu2O 8+δ crystal 73 7 0.112
ud75 B i2Sr2CaCu2O 8+δ crystal 75 not available 0.115
ud83 B i2Sr2CaCu2O 8+δ crystal 83 not available 0.127
UD83 B i2Sr2CaCu2O 8+δ crystal 83 1 0.127
ud89 B i2Sr2CaCu2O 8+δ crystal 89 not available 0.145
OP91 B i2Sr2CaCu2O 8+δ crystal 91 1 0.16
OD88 B i2Sr2CaCu2O 8+δ crystal 88 1 0.18
OD79 B i2Sr2CaCu2O 8+δ crystal 79 1 0.2
OD75 B i2Sr2CaCu2O 8+δ crystal 75 1 0.205
ud72 B i2Sr2CaCu2O 8+δ crystal 72 not available 0.21

using 22.4eV synchrotron light. The data shown in Fig. 2.3 and Fig. 2.4, (a) to (e),

were collected at beamline V-4 with an overall energy resolution of 15 meV. The data

shown in Fig. 2.5 were collected at beamline V-3 with overall energy resolutions of 30

to 50 meV and an angular resolution of ±0.045 . The chamber pressure was better

than 4 × 10−11torr during the measurements.

2.3 Results

For both the UD83 ( Fig. 2.3(a)) and the OD84 ( Fig. 2.3(b)) Bi2212 samples, the

spectra near the ( ,0) show the peak-dip-hump structure. These features are clearly

distinct below Tc and persist slightly above Tc, as shown in insets 2 and 3 of Fig. 2.3.

Moreover, a normal-state pseudogap is present in the underdoped sample but not in

the overdoped sample (at least for the 110 K spectra)[72]. The intensity of the peak

in the overdoped sample is much higher than that in the underdoped sample.

To quantify the peak intensity, we focus on the relative peak intensity normalized

by the intensity of the entire spectrum. This quantity, which we call the superconduct-

ing peak ratio (SPR), makes it possible to compare data taken on different samples
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with different dopings and under different experimental conditions. We extracted the

peak (as illustrated in Fig. 2.4(a) using the spectrum of OD84 at T = 10 K) by fitting

the broad hump of the spectra with a five-parameter phenomenological formula,

y= a1
1

e(x−a2)/a3 + 1
(1 + a4(x− a5)

2)

where the ai’s (i = 1, 2, 3, 4, 5) are the fitting parameters. This formula is simply the
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Figure 2.3: Temperature dependence of the superconducting state spectra of Bi2212
for (a) an underdoped Tc=83 K sample and (b) an overdoped Tc=84 K sample (EF ,
Fermi energy). The data are collected near ( ,0) over the shaded circular momentum
region in inset 1 to measure the overall relative change of the superconducting peak
near the ( ,0) region and to achieve the best signal-to-noise ratio for detailed com-
parison. Insets 2 and 3 are enlargements of spectra taken above Tc; the open triangle
markers show that the superconducting peak exists at temperatures slightly above
Tc.
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Figure 2.4: Various ways of extracting the superconducting peak: (a) fitting the
hump feature with Eq. 1, (b) subtracting a linear background, and (c) subtracting an
integration background for the spectrum of OD84 at T = 10 K. The same procedure
shown in (a) is also applied for (d) the spectrum of OD84 at T = 80 K, (e) the
spectrum of OD84 at T = 90 K, and (f) the spectrum of UD55 at T = 15 K [taken
from Ref.[66]]. In each panel, the lower shaded curves are the raw spectra; the upper
shaded curves are the extracted superconducting peaks, which are fitted by a Gaussian
function (dashed lines). In (a), (d), (e), and (f), both the fits for the hump feature
and the full fits are shown as solid curves.

product of the Fermi function (a3 is not the temperature) and a parabolic function,

and the fit is very robust. The remaining peak then can be fitted by a Gaussian or a

Voigt function. The SPR is defined as the ratio between the extracted peak intensity

and the total spectrum intensity integrated over [-0.5 eV, 0.1 eV], and this integration

window covers the energy scale of the dispersion. We have also used other integration

windows, which did not change the qualitative behaviors discussed here. Because

there are certain subjective factors in the fitting procedure, we have also extracted

the peak by subtracting a linear background (Fig. 2.4(b)) and an integration (Shirley)

background (Fig. 2.4(c)), which gave similar results. The SPR values obtained in

Fig. 2.4, (a) to (c), are 0.139, 0.127, and 0.142, respectively. Therefore, errors due

to possible subjective factors in the fitting procedure can be estimated to be smaller
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Figure 2.5: (a) Doping dependence of the superconducting state spectra of Bi2212
at ( ,0) taken at T 
 Tc. Data from samples marked in lowercase are taken from
[66]. (b) The doping dependence of SPR is plotted over a typical Bi2212 phase
diagram for the spectra in (a). The solid line is a guide to the eye. Horizontal error
bars denote uncertainty in determining the doping level (±0.01); vertical error bars
denote uncertainty in determining the SPR (±1.5%). AF, antiferromagnetic regime;
SC, superconducting regime.

than 0.01 to 0.02. We chose the phenomenological formula (Eq. 1) for our analysis,

because it can smoothly fit the entire hump feature, and we have estimated the errors

to be ±1.5% to reflect the subjective uncertainty. This fitting procedure also works

well in cases where the peak is small and the dip is weak (Fig. 2.4, (d) to (f). We stress

that the qualitative trends are independent of any given choice of fitting procedure

or energy integration window.

Low-temperature spectra (Fig. 2.5(a)) were collected at ( ,0) and at T = 10 to

20 K 
 Tc for different doping levels. The peak is not observed in very underdoped

samples, but starts to appear as a small bump in spectrum ud55. Upon further

increase of doping, the peak intensity increases until slightly above optimal doping
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and then decreases in the strongly overdoped regime where the dip disappears. This

systematic increase of the peak intensity in the underdoped regime is consistent with

earlier data [63, 72, 73]. The SPR is plotted against the hole doping level x in

Fig. 2.5(b); the SPR increases with doping and reaches a maximum slightly above

optimal doping as defined by Tc, then decreases in the strongly overdoped regime.

We stress here that the ratio of the two parts of the spectra–not just the absolute

peak intensity–is changing with doping. Our k-dependent data from a few doping

levels indicate that the behavior shown in Fig. 2.5(b) holds for various points in k

space near ( ,0).

Although scanning tunnelling microscopy experiments[71] have found that both

the superconducting gap size and the peak intensity are smaller near the scattering

centers (impurities or defects), we believe the systematics seen in our “spatially av-

eraged” data are mainly derived from doping for several reasons. First, we do not

see a clear correlation between the SPR and residual resistivity, which is a measure

of impurity levels. For example, the RRRs of OP91, OD79, and UD30 are ordered

as RRR(OP91) < RRR(OD79) � RRR(UD30), whereas the SPRs of these samples

are ordered as SPR(UD30) 
 SPR(OP91) < SPR(OD79) (Fig. 2.5(b)). Second, the

same behavior of the SPR is observed in samples doped by either Dy or oxygen,

which are located at different crystal sites. Third, given the narrow transition widths

of most of the samples, it is unlikely that the impurity effects are dominant. Finally,

the systematic doping behaviors of the superconducting gap and pseudogap in these

samples are consistent with many other measurements.

In comparing the doping and temperature dependence of the SPR with several

ground-state quantities related to the superfluidity (Fig. 2.6), we assume a universal-

ity of the properties of the cuprates, because not all the quantities are measured

in the Bi2212 system. Our data lend further support to the universality of the

doping-dependent behavior of many quantities observed in Bi2212, YBa2Cu3O7−y

(YBCO), and La2−xSrxCuO4+δ (LSCO); because of various experimental difficulties,

few systematic studies have been performed on Bi2212 by other techniques. As

a function of doping, we find a remarkable resemblance of the SPR (Fig. 2.6(a))

to the low-temperature superfluid density as measured by muon spin relaxation
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(µSR) (Fig. 2.6(b))[74, 75], to the condensation energy from the specific heat (Cp)

measurements[74], and to the specific heat coefficient jump [∆ c ≡ (Tc)− (120K ),
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Figure 2.6: (a to c) Low-temperature doping dependence for (a) the SPR of Bi2212
reproduced from Fig. 2.5(b); (b) the µSR relaxation rate s (proportional to superfluid
density) for YBCO [from Ref.[74]], LSCO, and Bi2212 [from Ref. [75]]; and (c) the
specific heat coefficient jump ∆ c of Bi2212 [from Ref. [76]] and the condensation
energy U of YBCO [from Ref. [74]]. The dashed line through (a), (b), and (c) is
x = 0.18, serving as a guide to the eye. (d to f) Temperature dependence of (d)
the SPR and the peak full width at half-maximum (FWHM) for OD84 data shown
in Fig. 2.3(b); (e) 2

ab(0)/ 2
ab(T) (proportional to superfluid density), where ab is the

penetration depth, measured by microwave spectroscopy for OP91 Bi2212 [from Ref.
[96]] and OP93.2 YBCO [from Ref. [97]] and by µSR for OP93.2 YBCO [from Ref.
[98]]; and (f) the neutron (p,p) resonance mode intensity [from Ref. [94]] for an OD83
Bi2212.
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where ≡ Cp/T ] (Fig. 2.6(c))[76]. In each of these cases, the physical quantity in-

creases with doping, reaching the maximum slightly above the optimal doping, and

then decreases or saturates in the strongly overdoped regime. The decrease of the SPR

in the overdoped regime has not been explicitly stated in the published literature.

Upon increasing the temperature, the SPR decreases slowly until about 0.7 Tc,

then decreases rapidly to zero at a temperature slightly above Tc (Fig. 2.6(d)). This

temperature dependence suggests that the peak is related to phase coherence and

not to the energy gap, because in the underdoped samples, the pseudogap opens well

above Tc but the sharp peak shows up only slightly above Tc. This temperature

dependence of the SPR qualitatively resembles that of ns as measured by microwave

and µSR experiments (Fig. 2.6(e)). The microwave and µSR results from the YBCO

system are very similar to those from the Bi2212 system, partially justifying our

assumption of system universality in the above discussion.

2.4 Discussion

The SPR clearly tracks the superconducting properties measured by microwave and

µSR experiments, but there are several discrepancies. First, the ns measured in

these experiments goes to zero at Tc, instead of persisting slightly above Tc. This

discrepancy may be related to the difference in the time scales of the measurements,

as photoemission is a much faster probe than microwave measurements or µSR. It has

been shown that terahertz optical experiments, a much faster probe than the usual

microwave measurements, are sensitive to short-range phase coherence above Tc [77].

Second, in the low-temperature regime, the microwave and µSR data exhibit linear

temperature dependence, whereas the SPR shows signs of saturation. This may be

attributed to the fact that the SPR is obtained from spectra near the ( ,0) region,

where the superconducting gap energy is much larger than the thermal energy. Hence,

further lowering the temperature at already low temperatures will not affect the SPR.

On the other hand, microwave and µSR experiments measure the overall superfluid

density, which is always affected by nodal quasi-particle excitations, and thus lowering

the temperature will increase the measured superfluid density by reducing the number
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of thermally excited quasi-particles. This also suggests that although the SPR is

closely related to the superfluid density, it is still different from superfluid density.

The question is: why is the intensity of the single-particle excitation near the antinode

of a d-wave superconductor related to the superfluidity?

Strictly speaking, single-particle spectroscopy should not be directly related to

a collective behavior like the superfluid density, however in the case of a supercon-

ductor, it could be sensitive to a sibling concept of the superfluid density, that is,

the condensate fraction. Condensate fraction (|Ψ|2) is defined, in a two fluid picture,

as the number of electrons that participate the pairing to form Cooper pairs. Su-

perfluid density is a transport quantity, while the condensate fraction is the order

parameter of a superconductor[78], and can be measured by one/two-particle probes.

In conventional superconductors, ns and |Ψ|2 have similar temperature dependence

behaviors. In high temperature superconductors, this relation is believed to hold at

least qualitatively3. Recently, it was shown that the neutron ( , ) resonance is actu-

ally measures the condensate fraction. This can explain the resemblance between the

ARPES superconducting peak and neutron in Fig. 2.6f), especially they both show a

saturation behavior at low temperature.

Having discussed why ARPES could be sensitive to the superfluid density through

the condensate fraction, we still need to understand the following intriguing questions:

why antinode region of a d-wave superconductor is so special, and why does the SPR

scale with x in the underdoped regime? These questions cannot be reconciled within

the theoretical framework of superconductivity involving BCS pairing (with either

s-wave or d-wave symmetry) and excitations around a large Fermi surface. The x

dependence of the SPR and other quantities requires a fundamental departure from

a band-like Fermi surface-based approach in the underdoped regime. Moreover, in a

BCS type of picture based on the Fermi liquid concept, the superconducting quasi-

particle peak intensity Z should depend on the coherence factor that is related to

the energy gap instead of the superfluid density. This theoretical picture contrasts

3In som e exotic cases,| |2 and ns could be very di erent. Forexam ple,in 2D xy m odel,when
T > 0 but below the Kosterlitz-Thouless transition tem peratureTKT,the condensate fraction is
zero,i.e. no condensate. However,superfluid density is finite,as phase ofthe system could still
resistto externaltwistsuch asm agneticfield through vortex/antivortex bounding.
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strongly with the fact that the sharp peak in the underdoped regime rises abruptly

near Tc rather than T ∗, where the pseudogap opens. A related problem is that the

gap is larger in the underdoped regime while the effect of superconductivity on the

photoemission spectra is weaker. The Fermi liquid approach has been extended by

attributing the disappearance of the sharp peak above Tc to broadening caused by

phase fluctuations [79]. However, it is inconsistent with the fact that the integrated

peak intensity changes continuously with temperature below Tc, whereas the peak

width does not change other than by simple thermal broadening over the entire 90 K

temperature range, even above Tc (Fig. 2.6(d)).

The experimental data discussed here are in agreement with the theoretical models

based on the doped Mott insulator picture. There have been two classes of theoretical

models–resonant valence bond (RVB) gauge theory and the stripe model–that predict

the existence of the coherent spectral weight in the single-particle excitation spectrum

that is proportional to x. The stripe theory envisions a microscopic phase separation

that breaks the global two-dimensional (2D) system into local 1D systems of charge

stripes and intervening “insulator domains” [32, 80]. Electronic structures calculated

on the basis of this model reproduce the “flat band” that dominates the spectral

weight near the ( ,0) region [81, 82, 83], which is also consistent with photoemission

data from the statically charge-ordered compound [84]. The stripe theory attributes

the emergence of the sharp peak below Tc to the phase coherence among the stripes

via a 1D to 2D crossover [85]. In this picture, the spectral weight of the coherent part

of the single-particle excitation spectrum is a monotonic function of the superfluid

density rather than of the energy gap [85]. This can explain the doping and temper-

ature dependencies of the data, as the number of stripes scales with doping x in the

underdoped regime. The RVB gauge theory envisions the superconductivity to be a

derived property of the doped Mott insulator, where the pairing force stems from the

magnetic interaction already strongly present in the insulator, and doping destroys

the residual long-range order and allows RVB pairs to move [19, 86, 87, 88, 89, 90, 91].

In this picture, an excitation is regarded as a composite of two particles. One of these

particles is directly related to the phase of the superconducting order parameter. Fol-

lowing this assumption, this theory naturally gives rise to a coherent quasi-particle
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whose strength scales with doping x (or phase stiffness) and vanishes above Tc. It has

also been suggested that the coherent part is most pronounced near ( ,0) because of

the decoupling of the two components of the composite particle in that region [91]. In

addition to these two classes of theories, there is another model based on the assump-

tion that a quantum critical point (QCP) exists near x = 0.19 [74, 92, 93]. It suggests

that the competing orders on both sides of this QCP cause the nonmonotonic doping

behavior of many physical quantities of high-temperature superconductors, such as

ns, ∆ c, and U [Fig. 2.6, (b-c)].

Recent STM studies of Bi2212 shed new light on the x-dependence of the super-

conducting peak[101]. It is found that the intensity of the superconducting peak has

a spatial distribution. It seems to be more intense in some regions of the sample sur-

face. The density of local peak intensity maximum correlates with the hole density

(not to confuse the hole dopant density with the impurities of a system). On the other

hand STM studies on Bi2201[100] shows the spatial distribution of the superconduct-

ing peak maximum region is much sparser than Bi2212. These phenomena indicate

that the superconducting peak or coherence peak might be some sort of bound state

between the condensate and the hole dopant. New theory is needed, but in this stage

it is clear that the theory should be still based on the doped Mott insulator picture.

Several related issues and obvious questions remain to be explored. The relation

between this ( , ) collective and the superconducting peak near ( ,0) is currently

under discussion [63, 67, 66, 68]. Because these are Fermi liquid-based phenomeno-

logical theories focused on the issue of the spectral lineshape [63, 66, 67, 68], they do

not address the key paradox in the data, namely the anomalous correlation between

the ARPES peak intensity and the condensate in the underdoped regime. Another

unresolved issue is the overdoped regime, where the SPR and other physical proper-

ties either saturate or decrease. It is still an open question whether this is because the

system switches to a “normal” Fermi liquid-like behavior in the overdoped regime, or

is due to phase separation [95] or the existence of a QCP at x near 0.19.
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2.5 Universality of the superconducting peak in

cuprate

If the superconducting peak were really caused by the high temperature supercon-

ductivity, as suggested by various theories, it should ubiquitously exist in the spectral

function of all of the high temperature superconductors. However, just one year ago,

it was only observed in Bi2212. Naturally, one would ask whether it is just a specific

phenomenon associated with Bi2212 or the bilayer structure.

Recently, with improved resolution and crystal quality, Lu et al showed that there

are two peaks in the ( ,0) ARPES spectrum of YBCO [Fig. 2.7(a)][99]. The peak

near the Fermi energy is found to be a surface state, which diminishes when the

surface is disordered at high temperatures. The peak at higher binding energy, on

the other hand, turns on a Tc and has very similar temperature dependent behavior as

the superconducting peak of Bi2212. In fact, when the surface state peak is deducted,

the resulting spectrum also has a peak-dip-hump structure, which is almost the same
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Figure 2.7: (a to d) ( ,0) ARPES spectra for (a) YBCO, (b) YBCO (surface state
peak deducted) and Bi2212, (c) Bi2223, and (d) Bi2201. (e and f) Space resolved (e)
and space averaged (f) density of state measured by STM tunnelling experiments.
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as that of Bi2212 [Fig. 2.7(b)].

We recently also found the superconducting peak in the trilayer system Bi22234.

As shown in [Fig. 2.7(c)], one can see almost the same phenomenology in Bi2223 as

that shown in Fig. 2.2 for Bi2212.

So far in ARPES experiments, the superconducting peak has been observed in

both bilayer material (YBCO, Bi2212), and trilayer systems (Bi2223). However, it

is not observed in single layer systems such as LSCO, Bi2201. [Fig. 2.7(d)] presents

our recent effort with the state-of-art apparatus and excellent quality crystal. Exper-

iments were conducted at T = 8 K on an optimally doped Bi2201 with a Tc of 34

K. The overall energy resolution is about 6 meV (10-90%), yet the superconducting

peak cannot be observed. This is probably is due to the low superfluid density in

Bi2201 and the fact that the measuring temperature (10 to 20 K) is a large fraction

of Tc in these systems. Consistently, no superconducting peak has been resolved for

Bi2212 samples with Tc < 40K in the low doping regime.

This receives further support from the recent STM data of Bi2201. Fig. 2.7(e)

shows the local density of state measured by STM tunnelling experiments at sev-

eral different locations on a Tc = 13K Bi2201 sample in the superconducting state.

Similar to the data obtained in Bi2212, STM tunnelling spectra show strong spa-

tial dependence. However, the superconducting peak is observable at some locations.

When the spectrum is averaged over the space [Fig. 2.7(f)], the superconducting peak

is emersed in the background, although a gap is still observable compared with the

high temperature data. The space averaged data are very similar to that measured

by ARPES, which suggest that the superconducting peak does exist in Bi2201 but is

too weak to be resolved by the current ARPES technique.

2.6 Summary

In summary, the doping dependence of the SPR at ( ,0) is found to scale like the

collective properties related to the superfluid, particularly the x dependence of the

SPR in the underdoped regime. This unexpected manifestation of collective effects

4Detailsarediscussed in Chapter4 ofthisthesis
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in the single-particle excitation spectra cannot be reconciled by models based on

Fermi liquid, but rather may be more naturally explained by models based on the

doped Mott insulator. Various experiments have shown that the superconducting

peak ubiquitously exists in cuprates. Therefore a thorough understanding of its origin

may be critical to understand the mechanism of high temperature superconductivity.



Chapter 3

Bilayer Band Splitting in Bi2212

In this chapter, we experimentally identify a new energy scale that plays an important

role in the physics of Bi2212. This energy scale, the intra-bilayer coupling energy,

was predicted long ago, but only discovered recently. In the first part of this chapter,

we will discuss its discovery in the heavily overdoped Bi2212; in the second part of

this chapter, we will show that this new energy scale dramatically changes our view

of the ( ,0) single particle excitation spectrum, which provides vital information for

various theories, as we have shown in last chapter. 1.

3.1 Electronic structure of heavily overdoped Bi2212:

bilayer splitting

3.1.1 Introduction

High temperature superconductors (HTSC’s), as doped Mott insulators, show strong

doping dependent behavior. The underdoped regime of the HTSC’s is characterized

by its unconventional properties, such as the pseudogap and non-Fermi liquid trans-

port behavior. On the other hand, the overdoped regime is considered to be more

“normal”, partly because of the absence of a pseudogap and more Fermi liquid-like

1Thispartofresultshasbeen published in D.L.Feng,et al.,Phys.Rev.Lett.,86,5550 (2001);
and D.L.Feng,et al. ibid. submitted (2001).
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behavior. It is very challenging and important for HTSC theories to be able to ex-

plain the phenomenology in both regimes. Angle resolved photoemission spectroscopy

(ARPES), one of the most direct probes of the electronic structure, has contributed

greatly to the understanding of the electronic structure of the HTSC’s[102]. However,

most systems studied by ARPES have either low Tc’s (below 40K for La2−xSrxCuO4+δ

(LSCO), and Bi2Sr2CuO6+δ (Bi2201)), or doping limitations (only up to slightly over-

doping for Bi2Sr2CaCu2O8+δ (Bi2212) and YBa2Cu3O7−y (YBCO)). For a complete

understanding, it is very important to study the heavily overdoped systems, especially

Bi2212, which is the most studied system by ARPES.

Recent advances in high pressure annealing techniques have made it possible

to synthesize heavily overdoped Bi2212. Here, we discuss ARPES measurements

of the electronic structure of heavily overdoped Bi2212. We show that the long-

sought bilayer band splitting exists for both normal and superconducting states

of this material over a large fraction of the Brillouin zone. Bilayer band split-

ting is caused by the coupling between the two neighboring CuO 2 planes within

one unit cell of a bilayer cuprate such as Bi2212. It has been predicted by various

calculations[103, 104, 105, 106, 107], but not observed in earlier ARPES data[108].

It was shown that the two originally degenerate bands (one for each CuO 2 plane)

split into one bonding and one antibonding band as illustrated in Fig. 3.1(a). Simi-

larly, the Fermi surface also has two pieces [Fig. 3.1(b)] as calculated by the bilayer

Hubbard model[107]. The detection of bilayer band splitting enables us to address

several important issues. First, it provides a very detailed test for the theoretical

calculations, with our experimental results favoring the bilayer Hubbard model[107]

over LDA calculations[103, 105]. Second, it shows the novel result that the bilayer

splitting energy in the superconducting state is only about 23% of the normal state

splitting. Third, it provides an explanation for the detection of a “peak-dip-hump”

structure in the normal state of heavily overdoped samples[109, 110].
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(π,0)

(π,π)

bonding band

antibonding band

splitting

(a)

without bilayer splitting with bilayer splitting
(b)

Figure 3.1: (a)Illustration of bilayer splitting of the bands (b) calculated bilayer
split Fermi surfaces taken from Ref.[107] for an overdoped sample. a and b indicate
antibonding and bonding Fermi surfaces respectively. The broadening is caused by
the finite dispersion along the c-axis.

�L
�
�
�

�L

�

&�M�#�L���

���/����!��0���

χ0
��

�
!
�

(��1�0�..1

���4L"�

Figure 3.2: Susceptibility of heavily overdoped sample ( Tc = 65 K) .

3.1.2 Experimental

Heavily overdoped Bi2212 samples (TC(onset) = 65 K, ∆TC(10% ∼ 90%) = 3 K,

denoted as OD65) were synthesized by annealing floating-zone-grown single crystals

under oxygen pressure PO2 = 300 atm at 300◦C for two weeks, and characterized

by various techniques. Magnetic susceptibility measurements [Fig. 3.2] do not show

the presence of a second phase. Laue diffraction and low energy electron diffraction

(LEED) patterns show that its superstructure and surface resemble those of optimally

doped samples, and the flatness of the cleaved sample surface is confirmed by the small

laser reflection from the sample. Angle resolved photoemission experiments were

performed at beamline V-4 of Stanford Synchrotron Radiation Laboratory (SSRL)
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Figure 3.3: (color) (a-f) false color plot of the OD65 normal state (T=75K) ARPES
spectra taken with 22.7 eV synchrotron light. Features AB, BB, and their super-
structure images AB’ and BB’ are indicated by triangles, circles, squares, diamonds
respectively. The EDC’s near the Fermi crossing in (c) (indicated by “[”) are plotted
in (g). The angular resolution is 0.3◦. The panel on the left shows the Fermi surface
sketch without considering the bilayer band splitting effects.

with a Scienta SES200 electron analyzer, which can take spectra in a narrow cut of

0.5◦ × 14◦ simultaneously in its angular mode with an angular resolution as good as

0.12◦ along the cut direction. The data were collected with polarized synchrotron light

from a normal incidence monochromator, where the intensity of the second order light

is extremely weak, as well as nonmonochromatic and unpolarized He-I light. The

intensity of other lines are fairly weak, which contributes a smooth background to the

spectra in the interested range and does not affect the conclusions drawn below. The

overall energy resolution is about 10 meV. Samples were aligned by Laue diffraction,

and cleaved in-situ at a pressure better than 5 × 10−11torr (1.3 × 10−10torrwith He

lamp turned on). Sample aging effects are negligible during the measurement.

3.1.3 Results

A typical Fermi surface (FS) sketch of the Bi2212 system without considering the

bilayer band splitting is shown in Fig. 3.3[108]. One can see the main FS, its super-

structure images due to structure modulations in the BiO layer, which are typically

about (0.21 ,0.21 ) away from the main FS2, and the shadow band FS, which is a

2The e ect ofthe superstructure on the electronic structure can be viewed,in a sim ple sense,
as the photoelectron di raction e ect. The photoelectron from the CuO2 plane is di racted by
the structure m odulations in the BiO plane,which act as an grating. The relation between the
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( , ) foldback of the main FS [111], and is very weak at 22 eV photon energy due

to matrix element effects[108]. Photoemission intensity taken in the normal state of

OD65 along the momentum cuts indicated by the green lines in the FS sketch are

shown in Fig. 3.3(a-f) as a function of momentum and binding energy. In this way,

one can clearly see the centroids of the dispersing features. For example, Fig. 3.3(a)

shows that one band disperses and crosses the Fermi energy along a momentum cut

that goes through the d-wave node region. Away from the nodal region, this seem-

ingly single feature splits evidently into two features, Features AB and BB, starting

from Fig. 3.3(c). The photoemission intensities in the bracketed region are replotted

in the form of energy distribution curves (EDC’s) in Fig. 3.3(g), where one can see two

peaks cross the Fermi level about 0.9◦ apart. This splitting increases when approach-

ing the ( ,0) region. In Fig. 3.3(f), the Features AB and BB are well-separated, and

two more weaker features (AB’ and BB’) are clearly visible as well; these are the

superstructure images of Features AB and BB. The absence of splitting in the nodal

region is checked with the best achievable angular resolution (∼ 0.12◦).

The observed Fermi crossings in Fig. 3.3(c-f) deviate from what is expected from

the FS sketch shown in Fig. 3.3, but can be naturally interpreted by the presence

of bilayer band splitting. Because the Bi2212 ARPES features are considered to

be mainly contributed by the anti-bonding x2 − y2 state in the CuO2 plane, and

Bi2212 has two CuO2 planes per unit cell, the intrabilayer coupling would cause a

splitting. As we will see later, the observed splitting agrees with what is expected

from a bilayer system[107]. This interpretation is also supported by recent studies

of heavily overdoped single-layer Bi2201, where only one band was observed[112].

Since Feature AB is always at lower binding energy than Feature BB at a given

momentum, we assign the anti-bonding band (AB) to Feature AB, and bonding band

(BB) to Feature BB.

The Fermi surfaces can be determined by determining Fermi crossings of the bands

(dispersion method), or determining the local maxima of the low energy ARPES

superstructure and the superconductivity is not clear. For exam ple,the superstructure usually is
strongerin Bi2201 than in Bi2212,buttheTc enhancem entisnotobserved afterdoping thesystem
with Pb in theBiO layerto rem ovethesuperstructure.
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spectral weight distribution (spectral weight method) [Fig. 3.4]3. One can see two

main FS’s, one for the antibonding band (AB) and the other for the bonding band

(BB), and their corresponding superstructure images (AB’ and BB’). The observed

hole-like Fermi surface topology is consistent with early findings in less overdoped

Bi2212 systems at similar photon energies. These FS’s overlap in the nodal region

and gradually depart from each other when approaching the ( ,0) region, which is

almost the same as what is predicted by the bilayer Hubbard model as shown in

Fig. 3.1(b). Fig. 3.4(b) shows EDC’s along one cut that crosses all of the four Fermi

3W enotethatat20eV photon energy,theFS’sdeterm ined bythedispersion m ethod donotagree
with those determ ined by the spectralweightm ethod. The latterisa ected by the photoem ission
m atrix elem ents:when two featuresare very close and have sim ilarintensities,the positionsofthe
localspectralweightm axim a shiftdue to the overlapping.However,com bination ofboth m ethods
can givea qualitativeand objectivem easurem entoftheFS.

Γ (π,0)

(π,π)

a)

Energy relative to EF (eV)kx

ky

In
te

n
si

ty
 (

ar
b
. 
u
n
it

s)

-0.4 -0.2 0

hν=20 eV

hν=22.7 eV
b)AB

BB

AB BB AB’BB’

AB’

BB’

Figure 3.4: (color) (a) False color plot of the spectral weight mapping near EF ([-20
meV, 10 meV]) of OD65 taken at 22.7 eV (lower right half, T=75K) and 20 eV (upper
left half, T=80K) (note they are from different experiments). The Fermi surface de-
termined by dispersion is also plotted for antibonding states (AB, triangles), bonding
states (BB, circles), superstructure images of antibonding states (AB’, squares), and
bonding states (BB’, diamonds). (b) ARPES spectra along the cut indicated by the
arrow in (a).
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surfaces. At 22.7 eV photon energy [lower right half of Fig. 3.4(a)], the AB has more

weight near EF than the BB, and this situation is reversed at 20 eV [upper left half

of Fig. 3.4(a)]. This strong photon energy dependence of the relative intensities of

the AB and BB is consistent with the bilayer band splitting, because the AB and BB

have odd and even symmetries respectively along the c-axis. By tuning the incident

photon energy, the wavevector of the final electron state along the c-axis is changed,

which changes the photoemission cross-sections between the final state and the initial

BB and AB differently due to their opposite symmetries. The fact that we see bilayer

band splitting all over the FS and in the superstructure images (AB’ and BB’) away

from the ( ,0) region rules out the possibility that the split FS’s are artifacts caused

by the superstructure. Moreover, because the intensity of BB is weaker than that of

AB in the 22.7 eV photon energy data, AB cannot be a superstructure of BB, and

vice versa for the data taken at 20 eV photon energy.

To understand the effect of the bilayer band splitting on the superconducting

state, spectra were taken in both the normal and superconducting states near the

(0, ) region (Fig. 3.5), where the splitting is greatest. It was found that in this

region, the ARPES lineshape of Bi2212 evolves dramatically across Tc from a broad

spectrum in the normal state into a well-known peak-dip-hump (PDH) structure in

the superconducting state[61].

In the normal state [Fig. 3.5(a)], the antibonding state crosses EF near n4 and

n-4, while the bonding state disperses through the Fermi energy around spectra n8

and n-8. The presence of two features in the normal state was reported earlier [109,

110], and suggested to be an anomalous normal state counterpart to the conventional

superconducting PDH[109]. Here, we show that this feature is actually due to the

bilayer splitting. In spectra n-3 through n3, the BB is at high binding energy and

thus broad, while the AB is at low binding energy and thus sharp, which conspire to

give a PDH-like structure. We stress that this is different from the PDH structure

that turns on at Tc.

In the superconducting state [Fig. 3.5(b)], the low energy part of the spectra

evolves into two sharp superconducting peaks. It appears that both the normal

state BB and AB develop their own superconducting PDH structure. BB hump
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Figure 3.5: ARPES spectra taken on OD65 with He-I light for (a) normal state,
and (b) superconducting state. The angular resolution is 0.56◦. (c) shows selected
spectra from (a) and (b). Note that the fit of s4 is not unique. The spectra are taken
along (−0.24 , ) − (0.24 , ), and labeled from -9 to 9 as shown in the inset of (c).

is observed near the normal state BB binding energy, whereas AB hump is buried

under the superconducting peaks, which presumably locates also near the normal

state AB binding energy. Similar to the superconducting peak reported before in less

overdoped samples, both BB and AB superconducting peaks lose their intensity upon

crossing the corresponding normal state BB/AB FS’s. More specifically, spectra s7
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binding energy of the BB, since the binding energy of AB is zero at its Fermi surface.
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and n7 [replotted in Fig. 3.5(c)], which consist mainly of the BB, strongly resemble the

normal and superconducting state spectra from overdoped samples with less carrier

doping[34, 113]. When the BB superconducting peak disperses to higher binding

energies, it becomes weaker and presumably contributes very little to the sharp peak

seen at s0. Therefore, the observed sharp peak at s0 can be regarded as mainly due

to the antibonding state. For spectra containing two peaks, they can be fitted by two

PDH’s, as shown in Fig. 3.5(c) for s4.

The dispersions extracted from Fig. 3.5 are summarized in Fig. 3.6(a). Because

the superconducting peak intensity of the BB is very weak near ( ,0), its position

is extrapolated and shown as the dotted line. Although the BB and AB supercon-

ducting peaks have different dispersions, their minimum binding energies near their

respective FS’s are almost the same (∼16 meV), which shows that the BB and AB
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have the same d-wave superconducting gap amplitude. The maximum energy split-

tings can be extracted from the binding energies at ( ,0). They are found to be

about 88 meV for the normal state bands, and interestingly, only about 20 meV for

the superconducting peaks. The striking difference in the splitting energies cannot

be explained conventional theories, where quasiparticles below Tc have an energy of

Ek =
√

∆2
k + 2

k, with k and ∆k being the normal state quasiparticle energy and

superconducting gap, respectively. The small splitting energy of the superconducting

peak also counters the naive expectation that global phase coherence below Tc will

enhance the c-axis coupling and thus cause larger splitting. Instead, the data suggest

that the superconducting peak is a new quasiparticle generated upon the supercon-

ducting phase transition. This is in agreement with the earlier observation that the

weight of the superconducting peak is closely related to the carrier doping level and

the condensation fraction of the system[34, 113]. We hope the new data can stimulate

more theoretical works on this issue.

3.1.4 Discussion

The nature of the normal state bilayer band splitting as a function of momentum and

energy puts strong constraints on theoretical models. A maximum momentum split-

ting near ( ,0) contradicts early LDA calculations, where the calculated BiO Fermi

surface near ( ,0) causes very a small splitting of the CuO2 bands near ( ,0)[103].

However, it does agree qualitatively with bilayer LDA calculations that only consider

bands from the two CuO2 planes[105], and the bilayer Hubbard model, which is based

on the bilayer LDA band calculations plus additional on-site Coulomb repulsion[107].

The bilayer Hubbard model predicts two AB/BB Fermi surfaces similar to the data

for similar carrier doping levels[107].

The bilayer LDA calculations [105] predicted that the normal state bilayer energy

splitting to be 2t⊥(k) = t⊥(cos(kxa) − cos(kya))2/2, where t⊥(k) is the anisotropic

intrabilayer hopping. It indicates that the maximum energy splitting is 2t⊥ at

( ,0). This agrees with the data, and one obtains the experimental intrabilayer
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hopping t⊥,exp = 44 ± 5 meV. To test this over a large momentum range, the nor-

mal state energy splitting along the AB Fermi surface [Fig. 3.6(b)] were extracted

from the data in Fig.’s 3.3 and 3.4. Indeed, the data can be fitted very well by

t⊥,exp(cos(kxa)− cos(kya))2/2, but quantitatively, the experimental maximum energy

splitting of 88 meV (2t⊥,exp), is much smaller than the 300 meV (2t⊥,LDA) splitting

predicted by the bilayer LDA calculations[105]. On the other hand, the data agree

better with the bilayer Hubbard model[107], which predicted a similar anisotropic

energy splitting with 40 meV maximum energy splitting at ( ,0) for the similar dop-

ing level. This is because unlike the bilayer LDA calculations, the bilayer Hubbard

model considers strong correlations, and strong on-site Coulomb repulsion (or corre-

lations) will substantially reduce the hopping to an occupied site thus reducing the

effective intrabilayer hopping[106]. Based on this, its small splitting energy scale (40

meV) may suggest that weaker on-site Coulomb repulsion should be adopted in the

bilayer Hubbard model (at least for the heavily overdoped case). We note that t⊥,exp

is of similar magnitude of the gap, and is a significant fraction of the in-plane ex-

change coupling J, and the bandwidth. Therefore, the intrabilayer coupling should

be considered in models describing Bi2212.

A natural question is why the bilayer band splitting is particularly prominent in

heavily overdoped materials, and not observed in previous studies on samples with

less doping. This is mainly because the more Fermi liquid-like behavior in the heavily

overdoped regime results in much better defined quasiparticles, i.e., much sharper

features. The absence of two well-defined features in the spectra of less overdoped

samples does not necessarily imply the absence of the bilayer band splitting. In fact,

with improved resolution, preliminary studies have found signatures of bilayer band

splitting in the normal state of slightly overdoped Bi2212 samples[119, 120]. As for

the optimally doped and underdoped systems, situation is more complicated, which

is the main subject of the following section.
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3.2 Nature of electronic excitation in Bi2212 near

( ,0): bilayer splitting effects

3.2.1 Introduction

ARPES data from the ( ,0) region of Bi2Sr2CaCu2O8+δ (Bi2212) have been one of the

most important sources of information about the electronic structure of the high tem-

perature superconductors [102]. The normal state spectra are very broad, with widths

much larger than those from the nodal region (near ( /2, /2)), indicating a large

anisotropy in the scattering rate along the Fermi surface[67, 114]. This anisotropy

has been considered in various theories that describe the anomalous transport and

optical properties in the cuprates[115]. In addition, the information gathered from

these spectra have helped to put additional important parameters into microscopic

models[116]. On the other hand, the superconducting state spectra contain the well

known peak-dip-hump structure[61]. The position of the dip was suggested to be

related to the neutron ( , ) resonance mode[66], resulting in modelling of the tun-

nelling and ARPES data [117]. The peak intensity in the peak-dip-hump structure

has been interpreted as being related to the condensate fraction (chap. 2) [34, 113],

as discussed by various theories[85, 90, 91]. These studies constitute a significant part

of the HTSC literature.

Bi2212 has two coupled CuO2 planes in the unit cell and therefore bilayer splitting

is naturally expected. However, it has been largely ignored in the studies mentioned

above, partly because of earlier reports of its absence in the ARPES spectra of op-

timally doped and underdoped samples[108, 118]. However, as we have discussed in

the last section, the bilayer splitting does exist in overdoped Bi2212, and the bilayer

splitting energy scale is comparable to the size of the superconducting gap and the

normal state band dispersion. As a result, the bilayer splitting causes a peak-dip-

hump structure even in the normal state of heavily overdoped Bi2212[35, 109, 121],

demonstrating that the intra-bilayer coupling plays an important role in the electronic

structure of the overdoped regime and should be seriously considered in relevant the-

ories. These results naturally raise the question of whether bilayer splitting exists in
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the optimal and under-doped regimes where most experiments and analyses were con-

ducted, and if it does, how it affects our understanding of the nature of the electronic

excitations near ( ,0).

In the following, we will show ARPES spectra from Bi2212 and Bi2201 for various

dopings and photon energies (h ). The lineshapes of Bi2201 and Bi2212 are similar

in the nodal region, but very different near ( ,0). In addition, Bi2212 spectra from

the ( ,0) region are strongly modified by h , in contrast to the weak photon energy

dependence of the Bi2201 spectra. We show that these results can be well explained

by the underlying bilayer splitting effects in under and optimally doped Bi2212 and

that the broad linewidth near ( ,0) is, in large part, due to the bilayer splitting.

These results are very different from the current, commonly-accepted picture of the

electronic excitations near ( ,0), and therefore requires the reexamination of many

existing theories, and puts strong constraints on future theoretical models and data

analysis.

3.2.2 Experimental

High quality Bi2212 and Bi2201 single crystals were grown by the floating zone tech-

nique. Bi2212 samples are labeled by the superconducting phase transition temper-

ature Tc of the sample with the prefix UD for underdoped, OP for optimally doped,

and OD for overdoped. Bi2201 samples are labeled in the same way but in lowercase.

For example, UD83 represents a Tc=83 K underdoped Bi2212 sample, while od17

represents a Tc=17 K overdoped Bi2201 sample. Samples with Pb doping are labeled

with the prefix “Pb”, except od33, which is doped with both Pb and La. The super-

conducting transition widths, ∆Tc, were less than 3K for all the samples used. Angle

resolved photoemission experiments were performed at a normal incidence monochro-

mator (NIM) beamline of the Stanford Synchrotron Radiation Laboratory, where the

intensity of the second order light is extremely weak. Data were taken with a Sci-

enta SES200 electron analyzer with the angular resolution of 0.3× 0.5 degrees unless

specified otherwise. The overall energy resolution varied from 10 meV to 18 meV

at different h ’s. This variation of the energy resolution does not affect any of our
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Figure 3.7: (a) Bilayer-split Fermi surfaces of heavily overdoped OD65; the two weaker
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sion spectra of Bi2212 taken at ( ,0) for three different doping levels. Data were taken
with h = 22.7eV photon. Bars indicate identified feature positions, and triangles
indicate possible feature positions.

conclusions since the energy scales of the discussed features are much larger. The

chamber pressure was better than 5 × 10−11torr, and sample aging effects were neg-

ligible during the measurements. Unless otherwise specified, normal state data were

taken 10∼20K above Tc.

3.2.3 Lineshape of ( ,0) spectrum: doping and system de-

pendence

The most obvious signature of the bilayer splitting is double features in the Fermi

surface and energy distribution curves (EDC), as shown in Fig. 3.7 for heavily over-

doped Bi2212 [35]. Due to the anisotropic nature of the intrabilayer coupling, the

amplitude of the bilayer splitting is also anisotropic with zero splitting in the nodal

region and maximum splitting at ( ,0) [Fig. 3.7(a)]. The normal state ( ,0) EDC
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of heavily overdoped Pb-OD65 [Fig. 3.7(b)] clearly shows two features that exhibit

a normal state peak-dip-hump structure, and are assigned to the two bilayer split

bands[35, 119, 120]. This was not observed in previous measurements on overdoped

samples, mainly due to extrinsic factors such as energy and angular resolution. With

a slight decrease of the doping (Pb-OD72), the two components of the ( ,0) spec-

trum are barely distinguishable. Compared with Pb-OD65, the two features become

broader and their intensities smaller. For OP90, the spectrum is intrinsically too

broad to distinguish the two split features, which makes the identification of the

bilayer splitting very difficult in this manner.

To clarify this further, we looked for other signs of bilayer splitting by comparing

the spectra of Bi2212 with those of single layer Bi2201 at similar doping levels. We
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chose two pairs of samples: OP90 and op33, and OD63 and od17. Based on the

empirical Tc vs. doping formula[122], they have doping levels of 0.16, 0.16, 0.22, and

0.24, respectively. For the spectra taken in the nodal region shown in Fig. 3.8(a),

Bi2201 and Bi2212 have similar lineshapes, and the linewidth varies only slightly for

different systems and experimental conditions. This holds true even for the heavily

overdoped Bi2201 sample with a Tc < 1.7K (doping level ∼ 0.28). The situation is

very different for the spectra taken in the ( ,0) region [Fig. 3.8(b)]. For OD63, the

spectrum consists of both the bonding and antibonding bands, while the spectrum

at ( ,0.2 ) mostly consists of the bonding band, because the antibonding band is

above EF [35]. We find that the Bi2212 and Bi2201 spectra match at ( ,0.2 ) almost

perfectly, while those at at ( ,0) do not because of the presence of the bonding

band at higher energies. As far as the near-EF features are concerned, the spectra

from both od17 and OD63 have very similar linewidths at similar binding energies

and momenta. This similarity between the OD63/od17 low energy spectra can be

attributed to their similar doping levels in each CuO2 plane. The OP90/op33 ( ,0)

spectra show a large mismatch similar to the OD63/od17 case, which can be naturally

attributed to the additional spectral weight from the bonding band of OP90. On the

other hand, without bilayer splitting (or intra-bilayer coupling) in OP90, properties

of the CuO2 planes of OP90 and op33 should be similar. It is then difficult to explain

why the linewidths of OP90 and op33 are so dramatically different in the ( ,0)

region, considering that Bi2201 and Bi2212 are very similar in many other aspects

such as the phase diagram, Fermi surface shapes, dispersion energy scales[123, 124],

and particularly, residual resistivity, which indicates the scattering caused by defects

and impurities. The larger linewidth of op33, compared to od17, may be attributed to

enhanced correlation effects with decreased doping, presumably ( , ) scattering due

to increased antiferromagnetic fluctuations[67, 115]. We note that these normal state

spectra were taken at different temperatures. However, the thermal broadening is

negligible compared to the peak widths, within the experimental temperature range.



CHAPTER 3. BILAYER BAND SPLITTING IN BI2212 62

+

-
initial statefinal state

antibonding

initial state

bonding

M
zα

(h
ν)

 (
ar

b
. 

u
n

it
)

32282420

hν (eV)

+
+

 antibonding

 bonding 4

3

2

1

0
16

a) b)

Figure 3.9: (a) Cartoon of the initial and final state symmetries along the c-axis
for the photoemission process with the presence of the bilayer splitting. (b) The
calculated c-axis contributions to the photoemission matrix elements for both bonding
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3.2.4 Lineshape of ( ,0) spectrum: photon energy depen-

dence

The above comparison between spectra from Bi2201 and Bi2212 suggests the possible

presence of bilayer splitting in optimally doped samples. This is further supported

by photon energy dependence studies. As depicted in Fig. 3.9(a), the antibonding

and bonding states have opposite symmetry along the c-axis with respect to the mid-

point between the two CuO 2 planes. As a consequence, their photoemission matrix

elements respond differently to various experimental parameters, including the pho-

ton energy. Upon tuning h , the spectral weight from the bonding and antibonding

states will vary differently, thus changing the overall spectral lineshapes. This can

be further illustrated by an analysis of the photoemission matrix elements. Although

comprehensive calculations of the photoemission matrix element are still not feasible

because of the complexity in the crystal structure and the photoemission process, as

well as the electron-electron correlations, with reasonable assumptions and simplifi-

cations one can still study its behavior on a qualitative level, which turns out to be

very helpful for the interpretation of the data on various occasions[125].
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Figure 3.10: (a-c) Normal state photoemission intensity as a function of momentum
and binding energy in color scale maps near the ( ,0) region (kx = ) of OD65 taken
with h = 18.4 eV, 20 eV and 32 eV respectively. The thick white lines indicate
the dispersion of the bonding (B) and antibonding (A) bands, and lines are shown in
dashed form when the feature is weak. (d-h) Normal state EDC’s taken at ( ,0) for
samples (d) OD65, (e) OP90, (f) UD83, (g) UD73, and (h) op33. at various h ’s. Bars
serve as guides for the centroids of spectral features. Note that the features indicated
by bars near EF may be Fermi cutoffs instead of real features. The separation between
bars is not necessarily the splitting energy.

We consider two 2D systems coupled via a certain bilayer interaction. The

photoemission intensity for such a system with non-interacting electrons is I ∝∑
α=a,b M

2
αAα(k, ) where k, and Aα are the momentum, energy for the final state,

and the spectral function respectively, while a and brepresent antibonding and bond-

ing bands. In the one-electron matrix element M α = 〈 f |A · p| iα〉, f and iα are
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the final state and initial state single electron wave functions, A is the vector potential

of the photon field, and p ≡ −īh∇. Assuming iα(x,y,z) = i(x,y) α(z) and a free

electron final state f (x,y,z) = eikxx+ikyy+ikzz, the matrix element can be separated

into the in-plane contribution M ‖ and the out-of-plane contribution M zα. Under the

dipole approximation,

M α ∝ M ‖ + M zα

≡ A ‖/A z〈eikxx+ikyy|r‖| i(x,y)〉 + 〈eikzz|z| α(z)〉

where kx and ky are fixed to be ( ,0) for both the initial and final states. The first

term contributes equally to both bonding and antibonding states, and the ratio of

polarization, A ‖/A z, is approximately constant in the experiment. Therefore, we can

focus on M zα as a function of h . To further simplify, we assume

α(z) = e
− (x−l0/2)2

(βl0)2 ± e
− (x+l0/2)2

(βl0)2 ,

where “-” and “+” signs are for = a and b, respectively. l0 is the intrabilayer

distance, and is an adjustable parameter reflecting how the electron wavefunction

is localized within a CuO 2 layer and is assumed to be = 1/6 in the calculation.

For the final state, the free electron approximation gives kz = [2m ∗h̄−2(h − Φ +

v0) − (k2
x + k2

y)]
− 1

2 , where we choose the photoelectron effective mass m ∗ to be the

free electron mass, the work function Φ = 4.3eV, and inner potential v0 = 7eV

in the calculation 4. M zα calculated with these parameters and simplifications is

shown for both antibonding and bonding states in Fig. 3.9(b). The M zα’s for the

bonding and antibonding state have almost opposite behaviors with h , and changes

quite dramatically in the studied h range. This causes the overall lineshape of

the Bi2212 ( ,0) spectrum to alter significantly with h as the relative weight of

bonding/antibonding states oscillates. In the case of optimally doped and underdoped

systems, the centroid of the broad feature will shift.

This is indeed observed in OD65, where the bilayer splitting has been clearly

4W e note thatthe qualitative resultsdiscussed here are independentofthe chosen param eters,
and only thequalitativeresultsshallbecom pared with thedata.
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identified[35]. Fig. 3.10(a-c) show ARPES intensity taken in the ( ,0) region at dif-

ferent h ’s as a function of momentum and binding energy. Because the NIM gives

extremely weak second-order light, it is possible to directly compare spectra taken at

different h ’s. One can see that the relative intensities of the antibonding band (A)

and bonding band (B) change with h . At some photon energies, only one feature

is prominent, while in others, both features are clearly visible. EDC’s of OD65 at

( ,0) are plotted in Fig. 3.10(d)5. While some kz dispersion may exist, the data show

strong bilayer matrix element effects. One clearly sees that the relative intensities of

the bonding and antibonding features vary drastically with h . For optimally doped

[Fig. 3.10(e)] and underdoped Bi2212 [Fig. 3.10(f-g)], one does not see two clearly

separated features. However, one can see the strong variation of the lineshape, and

changes in the centroid of the feature. Although there are some detailed variations

from sample to sample, the spectra of underdoped and optimally doped Bi2212 change

with a similar trend as the OD65. On the other hand, for the optimally doped single

layer system Bi2201 [Fig. 3.10(h)], the peak position and the overall lineshape show

virtually no photon energy dependence. The high binding energy background of op33

is a smooth function of binding energy and photon energy. These indicate that the

strong photon energy dependence of the Bi2212 spectra is due to the bilayer splitting.

3.2.5 Quantitative estimation of the bilayer splitting in op-

timally doped Bi2212

We have shown that from both photon energy dependence and the EDC line shape

comparison between Bi2212 and Bi2201, bilayer splitting exists in optimally doped

and underdoped Bi2212, and it can naturally explain the large normal state linewidth

of Bi2212 at ( ,0). From a theoretical point of view, the presence of bilayer splitting

is a model-independent universal behavior that is independent of doping. A more

important question is how the bilayer splitting amplitude evolves with doping. As

we will illustrate later, this contains direct information about the correlation effects

5Data in Fig.3.10 (d-h)were taken in the m om entum window of(0.01∼0.02)π × (0.02∼0.03)π
centered around (π,0).Dueto theweak dispersion oftheelectronicstatesnear(π,0)in Bi2212 and
Bi2201,sm allvariationsin them om entum window do nota ectthespectrallineshape.
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[106].

Since it is not feasible to separate a broad EDC into bonding and antibonding

components reliably, it is difficult to quantitatively determine the bilayer band binding

energy splitting directly from the spectra for the optimal doped and underdoped

systems. Thus we turn the momentum distribution curve (MDC) approach. The

MDC analysis has several advantages over EDC analysis. First, MDC analysis is

almost independent of the background; second, MDC has a simple Lorentzian form if

the self-energy is a weak function of the momentum; third, the MDC width gives the

direct measurement of the scattering rate when multiplied by the bare band Fermi

velocity [114, 130].

We measured the normal state MDC width along the Fermi surface similar to

the work by Valla et al.[114] for both OP90 and op33. Two examples are shown

in Fig. 3.11. ARPES spectra taken along momentum cuts #1 and #2 shown in

Fig. 3.11(a). After the spectra were normalized by the detector angular profile ob-

tained with polycrystalline gold, MDC’s at the Fermi energy of each cut were obtained

and fitted to single or multiple Lorentzians:

A (k,EF ) = a0 +
a1

(k‖ − a2)2 + a3

, k‖ is the momentum along each cut. ai’s (i= 0,1,2,3) are the fitting parameters.

2
√
a3 is the full-width-half-maximum (FWHM) of the Lorentzian, which is defined

as the MDC width. Fig. 3.11(b) shows MDC’s at EF along the (0,0) − ( , ) cut

for OP90 and op33. One can see that the op33 MDC is slightly narrower than the

OP90 MDC. Fig. 3.11(c-d) show MDC’s at EF along the cut #2 for OP90 and op33

respectively. Because cut #2 goes through regions that cross many superstructure

Fermi surfaces, the MDC’s are more complicated than that of cut #1, especially in

the ky < 0 side. Because op33 has stronger superstructure modulations than OP90,

its MDC fit requires four Lorentzians, which correspond to two main bands and two

superstructure bands as illustrated in Fig. 3.11(a). OP90 fit, on the other hand only

requires three Lorentzians, indicating intensity of one of the superstructure band is

negligible. Fortunately, we can just focus on the ky > 0 side of the spectra, which
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Figure 3.11: (a) Cartoon of the Fermi surface of Bi2201. The thick black curves
represent the main Fermi surface and dashed curves represent the Fermi surfaces due
to superstructure. Cut #1 and #2 are indicated by straight lines. (b) MDC’s at EF

taken along (b) cut 1 for OP90 and op33, (c) cut 2 for OP90, and (d) cut 2 for op33.
The solid lines are Lorentzian fits of the data. Data are taken at 110K for both OP90
and op33. The angular resolution is 0.12 degrees.

is less affected by the superstructure. One can see that the difference between MDC

width of OP90 and that of op33 is enlarged in comparison with the nodal cut.

In Fig. 3.12(a), MDC widths extracted from data taken along those cuts shown in

the inset are plotted. One can see that the MDC width is at its minimum along the
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Figure 3.12: (a) MDC width for OP90 and op33 as a function of Fermi surface angle
, which is defined in the inset, e. g. node = 0, and (π,ky) = 0. Data were taken at

the same temperature T = 110K for both Bi2212 and Bi2201 and at h = 22.7eV.
(b) MDC width for OP90 and op33 with the OP90 shifted down so that its minimum
matches that of the op33, and the splitting of bonding and antibonding Fermi surfaces
for OP90 and OD65. The OD65 momentum splitting is directly measured from EDC’s
after ref.12. Its amplitude is scaled by a factor of 1/3, and its Fermi surface angle
is based on the bonding band crossing. The OP90 momentum splitting is fitted as
described in the text. The inset of panel b illustrate fitting process for the estimation
of the splitting amplitude.

nodal cut, which assures correct sample alignment. This minimum momentum width

changes slightly from sample to sample, and has been attributed to scattering from

defects and impurities[114]. Because the bilayer splitting is absent at the d-wave node,

and the nodal EDC width is very similar for different samples [Fig. 3.8(a)], we shift

the OP90 curve down [Fig. 3.11(b)] so that its minimum matches that of the op33,

and take this as the momentum reference point in order to further the quantitative

analysis. In fact, the MDC widths at the nearby Fermi surface angles also match.

Away from the nodal region toward the ( ,0) region, one sees the MDC width of

OP90 becomes increasingly larger than that of op33.
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This is consistent with the bilayer splitting scenario. Although experimentally,

one only observes a single Lorentzian for Bi2212, this Lorentzian consists of two

sub-Lorentzians corresponding to the split bonding and antibonding bands that are

separated by certain bilayer momentum splitting, the overall MDC width should be

larger than that of op33, which corresponds to a split-free case. If we further assume

that both of these two sub-Lorentzians have the same amplitude and width as that of

op33 [as illustrated by the inset of Fig. 3.12(b)], one can fit the momentum splitting

between these two Lorentzians to reproduce the OP90 MDC. The fitted splitting

between the bonding and antibonding Fermi surfaces, are shown in the Fig. 3.12(b).

Meanwhile, we can measure the bilayer splitting of OD65 in the momentum space

directly from EDC’s based on data in ref.[35]. The fitted bilayer splitting of OP90

has similar momentum dependence as that of the OD65, but with only 1/3 of the

splitting amplitude. Assuming OP90 and OD65 have similar Fermi velocity, the

maximum energy splitting of OP90 would also be 1/3 of that of the OD65 , which is

about 88 meV[35]. Therefore, we estimate that the bilayer splitting energy in OP90 is

about 27 meV. We note that this is just a rough estimation, as our assumption is quite

simplified version of the real situation. In the case of OD65, the bonding band actually

has sharper MDC width and larger Fermi velocity than that of the antibonding band

due to strong bilayer splitting effects. Nevertheless, the symmetric shape of the OP90

MDC’s, and the relatively small splitting amplitude that we obtained are consistent

with those assumptions. Although the splitting amplitude is smaller in the optimally

doped sample, the two split bands are largely broadened, and therefore the overall

spectral lineshape could still change in a large energy range with different photon

energies.

3.2.6 Discussion

Because of the previous lack of evidence for bilayer splitting in optimally doped and

underdoped Bi2212 [108, 118], many analyses and calculations assumed its absence.

For example, the momentum distribution curves in this region were usually fitted by

one Lorentzian[114, 126], when in fact it consisted of two Lorentzians separated by the
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Figure 3.13: A cartoon to illustrate the effective bilayer band splitting is suppressed
by correlation effects, whose strength increases with underdoping. Note that the
distance between sites are not in real scale.

bilayer splitting in momentum space. Bi2212 ( ,0) spectra were discussed [67, 66],

and particularly, fitted with a one-component formula[127]. We show that even with a

two-component model, there are various uncertainties involved in fitting the spectra,

because the bonding and antibonding features are weighted by unknown factors at

certain h ’s, and generally too broad to be reliably separated. For overdoped Bi2212,

the dip position will be shifted by the overlapping of the two humps and the the

superconducting peaks.

Intra-bilayer coupling was assumed in some theories to explain the different tem-

perature dependence behavior of c-axis and in-plane transport and optical properties

of bilayer systems [128]. Our results reinforce the assumptions of these theories. On

the other hand, we find that the quasiparticle in the ( ,0) region of optimally doped

Bi2212 should be similar to that of Bi2201, and thus much better defined than pre-

viously believed from earlier Bi2212 data. The quasiparticle lifetime is more than

100% longer than obtained from previous EDC analyses, i.e., the scattering rate in

this ( ,0) “hot spot” is not as large as previously believed, although an anisotropy

of the scattering rate still exists in the optimally doped and underdoped regime, as
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is observed in Bi2201[67, 115].

Our results show that bilayer splitting becomes weaker with underdoping, suggest-

ing that the correlation effects strongly reduce the effective intrabilayer coupling. This

is illustrated in Fig. 3.13, where correlation effects, such as on-site Coulomb repulsion,

and short range anti-ferromagnetic exchange interaction, can hinder the intrabilayer

coupling. For example, when one electron hops into an occupied site in the neigh-

boring layer, the hopping process costs the on-site Coulomb repulsion energy; when

it hops into a empty site whose neighboring spins have the same orientation as the

hopping one, the hopping process costs the in-plane exchange energy J > J⊥; only

when the neighboring spins have the opposite orientation, the hopping process could

gain the energy of t⊥. With decreasing density of holes, these effects become stronger.

Exact diagonalization calculations on double layer t-J model have also shown that the

effective intrabilayer coupling strength is proportional to the in-plane quasiparticle

renormalization factor Z , and Z decrease with increased correlation[106]. Moreover,

studies on the bilayer splitting in heavily overdoped Bi2212 found that the experimen-

tal intrabilayer coupling amplitude[35] (44meV) is much weaker than that predicted

by bare LDA (150 meV) calculations[103], where correlation effects are neglected.

The excitations between two bilayer split bands are dipole-allowed and should

have contributions to the c-axis optical absorption spectra in the infrared (IR) re-

gion. However, the energy split between the bonding and antibonding bands is not

a constant but a continuous distribution from zero to about 90 meV for the heavily

overdoped sample. Therefore, it manifest itself in the IR absorption spectrum as a

broad hump not a sharp peak like the phonon contributions, considering additional

broadening from the correlation effects. In the inset of Fig. 3.14, we plotted the IR

spectra taken from Ref.[131] by Motohashi et al.. One can see that compare with the

optimally doped sample, the IR reflectivity spectrum of the heavily overdoped sample

posses a hump in the range of 400 ∼ 600cm −1, i.e., 50 ∼ 75 meV. This could be at-

tributed to the bilayer splitting effects. The split energy range in the optimally doped

samples are 0 ∼ 30 meV, which is not resolvable due to many strong phonon excita-

tions in that energy range. In general, IR spectra have many structures and contains

information about large amount of processes that can give optical excitations. It is
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Figure 3.14: (Taken from Ref.[131]). c-axis reflectivity spectra of
Bi1.6Pb0.6Sr1.8CaCu2Oy single crystal (Tc = 65 K) at various temperatures. The
inset represents the room-temperature spectra of Bi1.6Pb0.6Sr1.8CaCu2Oy and pure
Bi2212 (Tc = 90 K).

hard to separate the contributions from the bilayer splitting.

Finally, we discuss the bilayer splitting effects on the superconducting peak anal-

ysis discussed in the last chapter. To quantify the peak intensity, the “hump” of

the superconducting PDH was fitted out for Bi2212 samples with various dopings

up to the Tc = 72K overdoped sample. In these samples, the normal state spectra

are broad, and two split bands, or the normal state PDH structure as found in the

heavily overdoped samples, are not resolved; the two superconducting peak are also

not resolved. The formula used for the hump-fitting was empirical, and it was used

to simply remove the “background” and keep the superconducting peak, which is
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defined as the spectral feature that grows upon entering the superconducting state.

Therefore this fitting is feasible even the normal state spectrum and superconducting

peak contains two unresolvable components. On the other hand, as we have shown

in this chapter and in Appendix A, the normal state spectra, the hump, and the

superconducting peak all have photon energy dependence due to bilayer splitting and

other matrix elements effects. Therefore, the value of SPR depends on the incident

photon energy, and one can only compare SPR’s based on data taken at the same

photon energy, and this has been adapted in our analysis and discussions of the su-

perconducting peak in last chapter. In this regard, the qualitative statements made

in last chapter is not affected by the bilayer splitting effect.

3.3 Summary

The electronic structure of heavily overdoped Bi2Sr2CaCu2O8+δ is investigated by

angle-resolved photoemission spectroscopy. The long-sought bilayer band splitting in

this two-plane system is observed in both normal and superconducting states, which

qualitatively agrees with the bilayer Hubbard model calculations. The maximum

bilayer energy splitting is about 88 meV for the normal state feature, while it is only

about 20 meV for the superconducting peak. The different energy splitting scales

reported here provide new information for the behavior of the superconducting peak.

Based on ARPES spectra measured on different systems at different dopings, mo-

menta and photon energies, we showed that the anomalously large spectral linewidth

in the ( ,0) region of optimal doped and underdoped Bi2Sr2CaCu2O8+δ has signif-

icant contributions from the bilayer splitting, and that the scattering rate in this

region is considerably smaller than previously estimated. This new picture of the

electronic excitation near ( ,0) puts additional experimental constraints on various

microscopic theories and data analysis.

We have also tried to estimate the intrabilayer coupling under various assump-

tions. The intrabilayer coupling is reduced by a factor of three when doping is lowered

from OD65 to OP90. This is in a good agreement with resistivity and optical mea-

surements, which showed that the c-axis resistivity and penetration depth of Bi2212
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change by a factor of 3 ∼ 6 in the studied doping range[132, 133, 131].



Chapter 4

Electronic Structure of Bi2223

In this chapter, the low-energy electronic structure of the trilayer cuprate super-

conductor Bi2Sr2Ca2Cu3O10+δ near optimal doping is investigated by angle-resolved

photoemission spectroscopy. The normal state quasiparticle dispersion and Fermi

surface, and the superconducting d-wave gap and coherence peak are observed and

compared with those of single and bilayer systems. We find that both the supercon-

ducting gap magnitude and the relative coherence-peak intensity scale linearly with

Tc for various optimally doped materials. This suggests that the higher Tc of the tri-

layer system should be attributed to parameters that simultaneously enhance phase

stiffness and pairing strength.1

4.1 Introduction

The high-Tc cuprate superconductors (HTSCs), based on the number of CuO2 planes

in the characteristic multilayer blocks, can be classified into single-layer materials

[e.g., Bi2Sr2CuO6+δ (Bi2201), HgBa2CuO4+δ (Hg1201), and La2−xSrxCuO4 (LSCO)],

bilayer materials [e.g., Bi2Sr2CaCu2O8+δ (Bi2212), HgBa2CaCu2O6+δ (Hg1212) and

YBa2Cu3O7−δ (Y123)], trilayer materials [e.g., Bi2Sr2Ca2Cu3O10+δ (Bi2223), and

HgBa2Ca2Cu3O8+δ (Hg1223)], and so on. This structural characteristic has a direct

correlation with the superconducting properties: within each family of cuprates, the

1Them ajorcontentofthischapterhasbeen subm itted to Phys.Rev.Lett.(2001).
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superconducting phase transition temperature (Tc) increases with the layer number

(n) for n≤3, and then starts to decrease[134, 135]. Taking the Bi-family of HTSCs as

an example, the maximum Tc is approximately 34, 90, and 110 K for optimally doped

Bi2201 (n = 1), Bi2212 (n = 2), and Bi2223 (n = 3), respectively. Despite various

experimental and theoretical efforts, a conclusive microscopic understanding of this

evolution has not yet been reached, partly because of the lack of detailed knowledge

about the electronic structure of the trilayer systems. In particular, angle-resolved

photoemission spectroscopy (ARPES), one of the most direct probe of the electronic

structure of HTSCs [102], has so far been limited to single and bilayer compounds.

To gain further insight into the role of multiple CuO2 planes in determining the

macroscopic physical properties of the cuprates, like the value of the Tc, it is cru-

cial to extend the investigation of the electronic structure to trilayer HTSCs, and

to compare the results with those from the single and bilayer materials. Given that

the Bi-based cuprates represent the HTSC family best characterized by ARPES, the

trilayer system Bi2223 is the ideal candidate for such a comparative study.

In this chapter, we present the first ARPES study, to the best of our knowledge,

of the electronic structure of the trilayer HTSC Bi2223, for which high quality single

crystals with dimensions suitable for ARPES measurements has been recently synthe-

sized. As in the single- and bi-layer materials, at nearly optimally doped Bi2223, we

observed a large hole-like Fermi surface, a flat quasiparticle band near ( ,0), d-wave

pseudo and superconducting gaps, and a large superconducting peak (the so-called

coherence peak in the case of Bi2212). The superconducting gap magnitude and the

relative weight of the superconducting peak both increase linearly with Tc for the op-

timally doped Bi-based HTSCs. This indicates that the higher Tc of Bi2223 is caused

by the enhancement of both pairing strength and phase stiffness, consistent with the

idea that optimal doping corresponds to the intersection between phase-coherence

and pairing-strength temperature scales. Moreover, the Fermi surface, quasiparticle

dispersion, and lineshape analysis indicate a possibly weak intra-trilayer coupling (as

compared to the bilayer case of Bi2212[35, 119]), which suggests that the intra-multi-

layer coupling is not the dominant factors for the enhancement of Tc.



CHAPTER 4. ELECTRONIC STRUCTURE OF BI2223 77

4.2 Experimental

Bi2223 single crystals were grown by floating-zone technique. Nearly optimally doped

samples [Tc = 108 K, ∆Tc(10%−90%) = 2 K] were obtained by subsequently anneal-

ing the slightly underdoped as-grown Bi2223 crystals (Tc = 105 K) for three days at

400 ◦C and PO2 = 2.1 atm, and then rapidly quenching them to room temperature.

Magnetic susceptibility measurements did not detect the presence of second phases,

and X-ray diffraction showed well ordered bulk structures, with the typical superstruc-

ture seen in Bi2201 and Bi2212. Optimally doped Bi2212 (Tc = 90K) and Bi2201

(Tc = 34 K) with ∆Tc(10%−90%)=1 K were also studied for comparison. ARPES ex-

periments were performed at the Stanford Synchrotron Radiation Laboratory (SSRL)

on a beamline equipped with a Scienta SES200 electron analyzer. Multiple ARPES

spectra were acquired simultaneously in a narrow window of 0.5◦×14◦ with, unless

otherwise specified, an angular resolution of 0.3◦ (along the cut direction) and an en-

ergy resolution of 10meV. The samples were aligned by Laue diffraction, and cleaved

in-situ under a pressure better than 5×10−11 torr. Bi2223 samples #1, #3 (#2, #4)

were cleaved at T = 10K (T = 125 K). The flatness of the cleaved surfaces was con-

firmed by the small laser reflection from the samples. Data were collected within 12

hours after cleaving and aging effects were negligible.

4.3 Band dispersion, and Fermi surface

Fig. 4.1 presents the normal state ARPES spectra measured on Bi2223 along the

high symmetry directions of the first Brillouin zone (BZ). Similar to what has been

observed on optimally doped Bi2201 and Bi2212[102], the quasiparticle band is rather

flat near ( ,0) while it is quite dispersive and defines a clear Fermi crossing along

the (0,0)-( , ) direction. The umklapp bands, one of the characteristics of the Bi-

family of cuprates, are also detected. The Fermi surface (FS) can be identified by

the local maxima of the intensity map obtained by integrating the ARPES spectra

within a narrow energy window at the Fermi energy (EF ), after the spectra were

normalized with respect to the high energy spectral weight. As in the case of Bi2201
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Figure 4.1: (a-c) Normal state Bi2223 ARPES spectra along the high-symmetry lines,
as indicated in the BZ sketch (data taken at 125 K with 21.2 eV photons and angular
resolution of 0.24◦, 0.6◦, and 0.3◦, respectively). Main (umklapp) bands are marked
with bars (circles). (d) Integrated EF -intensity map (±10 meV) symmetrized with
respect to (0,0)-( , ).

and Bi2212[102], one main and two weak umklapp FSs, shifted by ±(0.21 ,0.21 )

with respect to the main FS, are clearly observed (Fig. 4.1d).

4.4 Pseudogap and superconducting gap

By tracking the energy position of the leading-edge midpoint (LEM) as a function

of temperature and momentum, one can identify an anisotropic pseudogap and a

superconducting gap (∆) consistent with a d-wave symmetry. Figs. 4.2a and 4.2b

show that at , where the FS crossing along the nodal region is found (see the BZ

sketch in Fig. 4.1), the LEMs of both normal and superconducting state spectra are

located at EF , indicating the absence of any gap. On the other hand, in the antinodal

region (i.e., at ) the LEM is always shifted below EF , corresponding to an 11 meV

pseudogap above Tc and a 33 meV superconducting gap below Tc. The momentum
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Figure 4.2: (a) Normal and (b) superconducting state Bi2223 spectra measured with
21.2 eV photons at and (see BZ sketch in Fig. 4.1). (c) Position of the leading-
edge midpoint (LEM) above and below Tc along the normal state FS. The dashed
line is a fit to the d-wave gap functional form.

dependence of both normal and superconducting state gaps along the normal state

FS is summarized in Fig. 4.2c. The superconducting gap can be fitted to the d-

wave functional form ∆=∆0| coskx−cosky|/2 (where ∆0 is the superconducting gap

amplitude), while the pseudogap vanishes in wide momentum-space regions resulting

in a partially gapped FS (or, equivalently, four disconnected FS arcs in the BZ) at

130 K. Similar phenomena have also been observed in Bi2212 [136]. Furthermore, for

the Bi2223 samples #2-4 the pseudogap at was found to vary from 6 to 9 meV at

125 K (which is possibly caused by some small variations in carrier dopings), and the

sample with larger pseudogap also has a larger superconducting gap.

Again in analogy with the case of Bi2212[137], in Fig. 4.2 one also notices that the

normal state spectrum at sharpens up upon entering the superconducting state,

but the most dramatic change in the lineshape takes place at , where the spectrum

evolves into a peak-dip-hump structure below Tc. This so-called superconducting peak,

which dominates the spectral function in the ( ,0) region, has been argued to be an
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Figure 4.3: (a) Temperature dependence of the Bi2223 ( ,0) spectra and (b) of the
LEM energy shift at ( ,0) and .

important characteristics of the HTSCs[138]. It has so far been detected by ARPES

only on Bi2212[61] and Y123[99], and the present results substantiate its existence in

the spectral function of an n=3 system. In order to gain more information, detailed

temperature dependence measurements were performed at ( ,0), and the results are

presented in Fig. 4.3a. The superconducting peak emerges slightly above Tc (i.e., at

116 K). Upon further cooling the sample below Tc, its intensity increases rapidly

before it eventually saturates at low temperatures, while the total spectral weight is

conserved (within 1-2%). At the same time, the LEM shifts to high binding energies

reflecting the opening of the superconducting gap (Fig. 4.3b). Note also that, due to

the weak quasiparticle dispersion in the flat band region, the spectra at ( ,0) and

exhibit a very similar behavior, as emphasized by Fig. 4.3b.
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4.5 Compare the normal state lineshape with Bi2201

and Bi2212

Having studied the basic normal and superconducting state spectral properties, we

now compare the normal state spectral properties of the trilayer material with those

of single and bilayer materials.

The normal state ( ,0) spectra taken with 22.7 eV photons on optimally doped

Bi2201, Bi2212 and Bi2223 are presented in Fig. 4.4. One can see interesting non-

monotonic behavior with n: the lineshape for Bi2223 is sharper than that of Bi2201,

and broader than that of Bi2212. In Chapter 3, we showed that the large linewidth of

spectra near ( ,0) in the optimally doped Bi2212 is due to the bilayer splitting[129],

which is caused by the coupling between the neighboring CuO2 layers[139]. Because of

the broad linewidth for both bonding and antibonding bands, one can only observe a

Bi2201

Bi2212

Bi2223

0-0.2-0.6
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Figure 4.4: Comparison of the normal state ( ,0) spectra of optimally doped Bi2201,
Bi2212 and Bi2223. Data were taken with 22.7 eV photons at 10 15 K above Tc for
the normal state spectra.
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broad envelope instead of two separated features as have been observed in overdoped

Bi2212, where linewidth of both bands are sharp enough to be resolved[35, 119, 120].

Similarly, one would also expect that trilayer splitting due to the intra-trilayer cou-

pling would give rise to unresolvable bonding, non-bonding, and antibonding bands.

This is consistent with the fact that only one main feature was detected in the normal

state spectra and the Fermi surface as shown in Fig. 4.1. However, the nonmonotonic

behavior of the linewidth can be naturally explained by assuming that the coupling

between neighboring layers is weaker in near optimally doped Bi2223 than that of

optimal doped Bi2212. In Fig. 4.5a-c) the normal state ( ,0) spectra from optimally

doped Bi2201, Bi2212 and Bi2223 are presented. The photon energy dependence of

Bi2201 and Bi2212 have been discussed in last chapter. The large photon energy de-

pendence of the lineshape in Bi2212 was attributed the bilayer splitting. On Bi2223,

even though multi-layer splitting is expected, the quasiparticle peak does not show as

significant changes with photon energy as on Bi2212. This is also consistent with the

weak trilayer splitting idea. We note that this message is not conclusive yet, further

investigation, such as the study of heavily overdoped Bi2223, is still needed to resolve

this issue.

This postulation of the weak intra-trilayer coupling in Bi2223 could be under-

stood by considering the differences in chemical environment among the three CuO2

planes. The two outer CuO2 layers have apical oxygens similar to the CuO2 lay-

ers in Bi2212, while the inner CuO2 layer of Bi2223 has no apical oxygen, similar

to the electron doped cuprate superconductor Nd2−xCexCuO4. It was shown both

empirically[140] and theoretically[141] that it is energetically unfavorable to hole-

dope a CuO2 plane without apical oxygen. Ionic-model calculations show that the

inner layer is underdoped[142] or even depleted of holes[134]. Nuclear magnetic reso-

nance experiments show that the Bi2223 inner layer has 15% to 25% less holes than

the outer layers [143]. Because the inner layer is underdoped, electronic correlations

are strong and will reduce the effective hopping between the outer and inner layers

[35, 106], and thus weaken the trilayer bandsplitting. This could explain the exper-

imental finding that the normal state ( ,0) spectrum in Bi2223 is sharper than in

Bi2212 but broader than in Bi2201 (Fig. 4.4).
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Figure 4.5: Photon energy dependence of the normal state ( ,0) ARPES spectra for
optimally doped: (a) Bi2201 at 40 K (Tc =33 K); (b) Bi2212 at 110 K (Tc =90 K); (c)
Bi2223 at 125 K (Tc =108 K).

4.6 Compare the superconducting state properties

for optimally doped cuprates

In Secs. 4.3 and 4.4, we have shown that various properties of Bi2223 qualitatively

resemble those of Bi2212 and/or Bi2201. In Sec. 4.5, we have also shown that

the intra-multi-layer coupling is not stronger and possibly weaker in Bi2223 than in

Bi2212. The natural question is: what part of the electronic structure of Bi2223 can

account for the highest Tc among the Bi-family of cuprates? To further investigate this

issue, we compare in Fig. 4.6a the superconducting state ( ,0) spectra from optimally

doped Bi2201 and Bi2212, and nearly optimally doped Bi2223 taken under the same

experimental conditions (except for the higher energy resolution, i.e. 6meV, used

for the Bi2201 data). The superconducting gap magnitude ∆0 can be estimated by

either the position of the superconducting peak or the LEM shift below EF in the

( ,0) spectra. We found that the average LEM (peak position) gap values are 10 (21),

24 (40), 30 (45) meV for the n=1,2,3 systems, respectively. As shown in Fig. 4.6b,

the gap value of the three different systems scales linearly with the corresponding Tc.
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Figure 4.6: (a) Superconducting state ( ,0) spectra measured at 10 K with 22.7 eV
photons on optimally doped Bi2201 and Bi2212, and nearly optimally doped Bi2223.
(b) Superconducting gap magnitude as estimated from the position of the supercon-
ducting peak (SCP) and the LEM shift (separated by the dashed line), for various
optimally doped materials, and (c) superconducting peak ratio (SPR) extracted from
the data in (a), plotted versus Tc.

In particular, the LEM gap can be well fitted by a line across the origin corresponding

to an n-independent ratio 2∆0/kBTc�5.5. Furthermore, from ARPES and tunnelling

spectroscopy results reported for other families of cuprates it is found that the values

of ∆0 for optimally doped LSCO[144], Bi2212[145], YBCO[99]2, and Hg1212[146]

follow the same gap versus Tc linear relation (see Fig. 4.6b).

2ForYBCO,becauseoftheadditionalgap anisotropy dueto thepresenceoftheCuO chains[99],
them axim um gap am plitude(i.e.,0 attheY point)isplotted in Fig.4.6b).Surfacestatepeak is
fitted outbeforeextracting theLEM gap.
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From the data presented in Fig. 4.6a, one can also extract the so-called super-

conducting peak ratio (SPR), which is defined as the ratio between the integrated

spectral weight of the superconducting peak and that of the whole spectrum (i.e.,

from−0.5 to +0.1 eV). As shown in Fig. 4.6a, for the Bi2223 sample #2, the peak

intensity is obtained by fitting the smooth “background” with a phenomenological

function and then subtracting its contribution to the total integrated weight, as dis-

cussed in detail in Chapter 2[34]. For Bi2201, the superconducting peak is not resolved

in the ARPES data and therefore its SPR is estimated to be close to zero. In re-

cent scanning tunneling spectroscopy (STS) experiments, a superconducting peak in

the density of state was observed for Bi2201. This, however, was detected only at

certain locations on the cleaved sample surface and was not resolved in the spatially

averaged STS spectra[100], consistent with what is observed by ARPES. For Bi2212

and Bi2223, the spectra in Fig. 4.6a (normalized at high binding energy to allow a

direct comparison) indicate that the superconducting peak amplitude for Bi2223 is

much larger than that of Bi2212. Overall, the SPRs of these systems scale linearly

with Tc (Fig. 4.6c)3. For Bi2212, it has been argued that the SPR is related to the

phase stiffness of the condensate or superfluid density ( s)[34, 113] (see Chapter 2 for

details). The weak superconducting peak in the (spatially averaged) ARPES spectra

from Bi2201 may then reflect a low superfluid density, and in fact the peak amplitude

is negligible also in Bi2212 samples with Tc< 50K[34]. The n-dependence of the SPR

is qualitatively consistent with the muon spin resonance (µSR) results, which show

that s for the optimally doped cuprates increases with n (for n ≤ 3), and scales

with Tc in approximately a linear fashion as in the celebrated “Uemura plot” [147].

Therefore, the ARPES results together with those from tunneling and µSR indicate

that both ∆0 and s increase with Tc for the different optimally doped cuprates.

3W e note thatBi2223 and Bi2212 have di erentstructures and thus possibly di erentphotoe-
m ission m atrix elem ents. However,the large enhancem entofthe superconducting peak in Bi2223
and thequalitativeaspectofFig.4.6c)arenotlikely justm atrix elem entartifacts.
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4.7 Discussion

Within current understanding, ∆0 and s are the two most important quantities in

characterizing the superconducting state, as they reflect the strength of the two basic

ingredients of superconductivity: pairing and phase coherence. T∆, the temperature

at which the Cooper pairs start to form, is determined by pairing strength (or ∆0);

TΣ, the temperature at which the Cooper pairs, if any, become phase coherent, is

determined by the phase stiffness (or s). The superconducting phase transition

temperature is given by Tc = m in(T∆,TΣ) [148]. For conventional superconductors,

TΣ�T∆; therefore, Tc =T∆ and phase fluctuations are not important in determining

Tc. The situation is different for the HTSCs: in order to have high Tc, it is necessary

to have both large ∆0 and s, as we have seen for nearly optimally doped Bi2223.

The reason for this is that HTSCs are doped Mott insulators with low carrier density,

for which TΣ and T∆ are comparable and proposed to have the doping dependence

sketched in Fig. 4.7 [148, 149]. The crossing of T∆(x) (x being doping) and TΣ(x)

gives T∆(xopt)=TΣ(xopt)=Tc,opt (with the subscript optreferring to optimal doping,

which is found to be approximately fixed at xopt � 0.16 for many HTSCs [150]).

The approximate linear relations ∆0,opt∝Tc,opt and s,opt∝Tc,opt observed for various

optimally doped systems lead to TΣ(xopt)∝ s,opt and T∆(xopt)∝∆opt, as theoretically

proposed[148].

We have shown that many aspects of the electronic structure of Bi2223, such as

the Fermi surface topology and flat band dispersion, resemble those of Bi2212 and

Bi2201. The above lineshape analysis suggests that the interlayer coupling between

CuO2 planes within a multilayer block is not stronger, but possibly even weaker in

Bi2223 than in Bi2212. This and the fact that Tc,opt in Hg1201 is comparable to that

of Bi2212 indicate that the interlayer coupling within a multilayer block is not the

dominant factor for the enhancement of Tc. Moreover, Tc,opt does not scale with n in

a linear way within a specific HTSC family; and for a given n, e.g. n = 1, Tc,opt varies

from 30 K to 100 K for different families of cuprates. Instead, we have shown that Tc,opt

scales approximately linearly with both s,opt and ∆0,opt. One could speculate that the

resolution of the Tc vs. n problem might be incorporated into a broader task, namely
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the search for the parameters that enhance both superconducting gap and superfluid

density, and in turn the optimal Tc. These parameters could be affected by n and other

conspiring factors, for which various candidates have already been proposed, including

superconductivity enhancement in the non-CuO2 layers[151], or as a consequence of

impurities and distortion/strain introduced into the system[152, 153]. To highlight

these unknown parameters, we add a third axis to the phase diagram of the hole-

doped HTSCs (Fig. 4.7), along which both pairing strength and phase stiffness (and

thus Tc,opt) increase with the same monotonic trend, contrary to their opposite trends

along the doping axis. In this way, the Bi-based cuprates and possibly different

families of HTSCs can be integrated into one comprehensive phase diagram.

SC

Hole doping level x

T
em

p
er

at
u

re
 (

K
) 150

100

50

0

xopt ~ 0.16

Bi2223, n=3

Bi2212, n=2

Bi2201, n=1

Pairing 
strength  Phase 

coherence

0.30.20 0.1

  U
nk

no
wn

pa
ra

m
et

er
s

T∆(x)

TΣ(x)

Tc

Tc

Figure 4.7: Qualitative phase-diagram for the Bi-based HTSCs.
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4.8 Summary

In summary, we presents the first ARPES investigation of a trilayer cuprate HTSC.

We showed that in the normal state, near optimally doped Bi2223 has a large hole-like

Fermi surface, and anisotropic pseudogap, in the superconducting state, it has a 45

meV d-wave superconducting gap and a large superconducting peak. Our results in-

dicate the universality of these features among cuprates. Moreover, our work together

with others show that both superconducting gap and phase coherence strength scale

with the optimal Tc for various systems, while the intra-multi-layer coupling does not.

To understand the enhancement of Tc in the trilayer system, one might then need to

search for other factors that can enhance both pairing strength and phase coherence

in the system.



Chapter 5

Conclusion

In this thesis we have presented angle resolved photoemission spectroscopy work on

the Bi-family of high temperature superconductors. These systems provide the ideal

experimental testing ground for various concepts and fundamental ideas in the field

of the strongly correlated system.

We show that the superconducting peak intensity is a signature of the phase

coherence in a single particle excitation spectrum, which places a strong constraint on

many theories. This, together with the universal appearance of the superconducting

peak, suggest that the origin of the superconducting peak may provide the key to

understanding its mechanism.

Moreover, we found the long-sought bilayer band splitting in Bi2212, which has

very different behavior for normal and superconducting state. We found the scattering

rate in the ( ,0) region is much smaller than previously estimated based on the pho-

toemission results. The observed strong photon energy dependence of the lineshape

also places a strong constraint on ARPES lineshape analysis of Bi2212 spectra.

For the tri-layer system, we present the first photoemission study. We showed the

ubiquitous presence of various properties, including a large hole-like Fermi surface,

a d-wave pseudogap and a superconducting gap, flat band region, etc., The intra-

tri-layer coupling is found to be fairly weak, suggesting that a stronger interlayer

coupling is not related to a higher Tc. On the other hand, we find that both the su-

perconducting gap magnitude and the relative coherence-peak intensity scale linearly

89
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with Tc for various optimally doped materials. This suggests that the higher Tc of

the trilayer system should be attributed to parameters that simultaneously enhance

phase stiffness and pairing strength.

Various issues remain to explored, such as the doping dependence behavior of the

Bi2223 electronic structure, the origin of the superconducting peak, possible quantum

critical behavior in the system, and the different energy scales of the normal and

superconducting state bilayer splitting, etc. We leave this for the future study.

Our work, together with other theoretical and experimental works, shows that

with improvements of experimental techniques and sample quality, the general picture

in the field of High temperature superconductors is converging and becoming more

clear. A more comprehensive and accurate understanding of the mechanism is on the

horizon.
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Appendix A

Intriguing data, possible new

physics

In this appendix, I present a collection of intriguing ARPES data on the the Bi-family

of cuprates as well as some from other cuprates. They are “figures in the drawer”,

i.e., the meaning of many of these data are still to be explored, and hopefully new

physics would be discovered with further experiments and analyses.

A.1 Electronic structure of heavily overdoped Bi2201

The following data were taken on heavily overdoped B i1.7Pb0.3Sr2CuO 6+δ, (Tc =5K)

at T=12K with He-I light.
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Figure A.1: (color) Fermi surface mapping by spectral weight integrated over [-20meV,
10meV], data were symmetrized along (0,0) − ( , ).
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Figure A.2: (color) Spectra along high symmetry lines for heavily overdoped Bi2201.
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Figure A.3: ( ,0) spectrum taken at T=11K in the normal state for OD5 Bi2201,
which indicates the correlation is weak and quasiparticle concept is more suitable for
this heavily overdoped system than the underdoped systems.
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Figure A.4: (color) (a) EDC, (b) MDC, and (c) photoemission intensity map for the
(0,0) − ( , ) nodal cut. The observed kink in dispersion indicates that it is not
related to gap or Neutron ( , ) resonance, and it clearly exist in the normal state.
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Figure A.5: Kink in the dispersion obtained through EDC and MDC analyses. The
inset shows that the MDC’s could be fitted by Lorentzians very well.
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A.2 Photon energy dependence of the supercon-

ducting peak

The following figures show that the superconducting peak and the hump have different

photoemission matrix elements. Its physical meaning is still to be explored.
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Figure A.8: (A) ARPES spectra at ( ,0) for Pb-Bi2212 OD82.5 (superstructure
free), taken at T=12K with different photon energies. (B) same as (A) but spectra
are stacked on each other. (C) spectra taken at 24.4 eV, 22.4 eV, 27 eV, 17.6 eV were
divided by spectrum taken at 32 eV. Labels in B and C were in the order of peak
height.
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Figure A.9: ARPES spectra at ( ,0) for pure Bi2212 OP90 taken with different
photon energies (A) at T=10K; (B) at T=100K. (C) Spectra in A and B are stacked
together. Inset in A shows superconducting peak ratio (SPR) as a function of photon
energy.
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A.3 Dispersion of the superconducting peak

The dispersion of the superconducting peak is still not understood.

-0.2 -0.1 0-0.6 -0.4 -0.2 0

In
te

n
si

ty
 (

ar
b
. 
u
n
it

s)

Energy relative to EF (eV)

k (π/a)

E
n

er
g

y
 r

el
at

iv
e 

to
 E

F
 (

eV
)

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

1.00.80.6

 hump

 peak

a)
b)

c)

Figure A.10: (color) (a) ARPES spectra along the (0,0)−( ,0) direction for optimally
doped OP90 Bi2212 in the superconducting state. (b) The dispersion of the peak and
hump extracted from (a), where the break in the superconducting peak dispersion
is due to its superstructure image. (c) Selected spectra from (a) to highlight the
superconducting peak dispersion.
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Figure A.11: (color) An intriguing (based on two assumptions) way to look at the
superconducting peak dispersion. The superconducting peak position E k is assumed

to be
√

2
k + ∆(k)2, where k is the normal state dispersion of an underlying band

(assuming it exist), and ∆ is the superconducting gap, which has the d-wave form.
By assuming the underlying band is at EF at ( ,0), k is obtained. The resulting

k’s for (a) Pb-OD83 and (b) OP90 are obtained, which can be fitted by a parabolic
function and resemble the dispersion of a free boson.



APPENDIX A. INTRIGUING DATA, POSSIBLE NEW PHYSICS 111

Energy relative to EF (eV) 

In
te

n
si

ty
 (

ar
b

. 
u

n
it

s)

-0.4 -0.2 0.0

 UD46

 UD79

 OP91

 OD88

 OD79

 OD75

 UD30

-1.0 -0.5 0

OD78

OD80

OP91

UD75

UD88

UD65

UD60

UD25

UD0

I

(a) (b)

0.0 0.5 1.0

0

200

400

H
ig

h
 E

n
er

g
y

 G
ap

 (
m

eV
)

Ca2CuO2Cl2
 35% Dy Tc=0K

 17.5% Dy Tc=25K

 10% Dy Tc=65K

|cos(kxa)-cos(kya)|/2

(c)
100

80

60

40

20

0

E
n

er
g

y
 (

m
eV

)

0.30.20.10

hole doping level x

 2.14 kBTc
(π,0) HEF/5
 SG
 SG
 NG

(d)

xopt

Figure A.12: (color) (a) The normal state ( ,0) spectra as a function of doping give
the so-called high energy feature (HEF) or high energy pseudogap, while (b) the su-
perconducting state ( ,0) spectra as a function of doping give the superconducting
gap (SG). (c) HEF has d-wave form, which smoothly evolves to the HEF of antifer-
romagnetic parent compound Ca2CuO2Cl2. The amplitudes of low energy pseudogap
(NG), SG, and HEF is summarized in (d) as a function of doping. The relation
between these energy scales is an important issue that needs to be further studied.
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A.4 Fermi surface, and spectral weight distribu-

tion of Bi2212

The topology of the Fermi surface of Bi2212 was hotly debated over the last several

years. It is still not clear whether the two Fermi surfaces observed in Bi2212 are due

to the bilayer band splitting effects or just matrix element effects or maybe both.
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Figure A.13: (color) ARPES spectral weight distribution in the momentum space
can be used to determine the Fermi surface, by identifying the local maximum of the
low energy spectral weight (left column), or the steepest decent of the total spectral
weight (right column). Here data taken from optimally doped OP90 Bi2212 are used
as an example.
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Figure A.14: (color) Two fold symmetrized spectral weight integrated over [EF -0.5
eV,EF +0.1 eV] for Bi2212 samples: (a) UD30, (b) UD60, (c) OP91, (d) OD87, and
(e) OD78. The inset shows their position on the Tc − diagram. Dashed lines show
the spectral weight is mainly confined within ± /4 region. Data were taken in the

k-space octant Γ(0,0) − M̄ ( ,0) − Y ( , ) − Γ(0,0) at a temperature of 10∼20 K
above Tc. Data were taken at SSRL Beamline V-3.
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Figure A.15: (color) Two-fold symmetrized scale plots of the optimally doped sample

(TC ∼ 90 K ) with the white crosses representing the sampled k points. (a1), (b1), and

(c1) show n(k), |∇�kn�k|, and A (k,EF ) respectively for data taken at 22.4 eV photon

energy. (a2), (b2), and (c2) show n(k), |∇�kn�k|, and A (k,EF ) respectively for data

taken at 32.3 eV photon energy. (a3) and (b3) show n(k) and |∇�kn�k| respectively for
data taken at 55 eV photon energy. The ranges of kx and ky are both from 0 to for
all eight panels. Data were taken at SSRL Beamline V-3.
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Figure A.16: (color) Eight-fold symmetrized experimental Fermi surface as derived
from the local |∇�kn�k| maxima locus in previous figure for OP90 Bi2212. The distance
between the nesting pieces is denoted as 2 .
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Figure A.17: (color) Normal state spectral weight distributions of the OP91 Bi2212
system integrated over 30 meV window near EF . Data are taken with 21.2 He-I
photon at SSRL (upper left panel), 33 eV polarized synchrotron light at ALS (upper
right panel), and 55 eV polarized synchrotron light at ALS (middle two panels).
Curves laid on top are cartoons for the different Fermi surfaces which are considered
to be the best fit of the data at certain photon energy. Dashed curves represents
the superstructure induced Fermi surface. Lower panels show the two different Fermi
surface topologies under debate. One can see that photoemission matrix element does
play an important role here.
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A.5 Fermi surface, and spectral weight distribu-

tion of Bi2201

The study of the Fermi surface of Bi2201 will benefit our understanding of that of

Bi2212. However, it is still an open question whether the two Fermi surfaces observed

in Bi2201 are real (certainly not caused by bilayer splitting) or another matrix element

induced artefact.
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Figure A.18: ARPES spectra of overdoped B i2.1Sr1.9CuO 6+y, (Tc = 8K) at (a) 22.4
eV along the Γ− M̄ −Y cut; (b) 32.3 eV along the Γ− M̄ −Y cut; (c) 22.4 eV along

the Γ − Y cut; (d) 32.3 eV along the Γ − Y cut, and (e) the spectral weight n(k)
along Γ − M̄ at 22.4 eV (circles) and 32.3 eV (squares)
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Figure A.19: (color) Two-fold symmetrized scale plots for the overdoped

B i2.1Sr1.9CuO 6+y, (Tc = 8K) with the white crosses representing the sampled k

points. (a1), (a2), and (a3) show n(k), |∇�kn�k|, and A (k,EF ) respectively for data

taken at 22.4 eV photon energy in arbitrary units. (b1), (b2), and (b3) show n(k),
|∇�kn�k|, and A (k,EF ) respectively for data taken at 32.3 eV photon energy. The color
bar on the right indicates the linear color scales of the shown quantities. The Fermi
vectors determined by the dispersion method are shown as the black solid circles; the
FS determined by the ∇n method (in a2 and b2) are shown as solid lines ( more em-
phasized piece ) and dashed lines ( less emphasized piece) ; and the FS determined by

the max-A (k,EF ) (in a3 and b3) method are shown as solid lines. These determined
FS have the error of ±0.045 in (a2) and (a3) and ±0.06 in (b2) and (b3), the error
bars are not shown to avoid blocking the data.
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Figure A.21: Near EF spectral weight for near optimally doped Bi2201 (Tc ∼ 29K)
along the (− ,− ) − ( , ) direction, which consists of several experimental cuts.
Data were taken with He-I light. It shows that the superstructure weight near (0,0)
is even stronger than the main feature, particularly considering the matrix element
usually vanishes near (0,0). This usually happens when the superstructure in Bi2201
is strong, which indicates that the photoemission process and the superstructure
effects are very complicated in Bi2201.
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A.6 Random interesting figures
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Figure A.22: (color) Comparison between the normal state spectra at ( ,0) and the
nodal Fermi crossing for three Bi2201 samples: OP33, OD17, OD0. It shows that
the ( , ) spattering is reduced with increased doping. The ( ,0) spectrum is even
sharper than the nodal spectrum for OD0 sample.
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Figure A.23: ARPES spectra at the nodal Fermi crossing of heavily overdoped OD65
Bi2212. A kink is clearly visible in the superconducting state spectrum.
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Figure A.24: A comparison of ARPES spectra along (0,0) − ( , ) directions for
various cuprates.
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ARPES spectra along (0,0)-(π,0) direction
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Figure A.25: A comparison of ARPES spectra along (0,0) − ( ,0) directions for
various cuprates.



APPENDIX A. INTRIGUING DATA, POSSIBLE NEW PHYSICS 124

Energy relative to EF (eV)

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

14

12

10

8

6

4

-1.0 -0.5 0

15

10

5

0

-0.6 -0.4 -0.2 0

12

8

4

0

-0.6 -0.4 -0.2 0

16

12

8

4

0

-0.6 -0.4 -0.2 0

16

12

8

4

0

-0.6 -0.4 -0.2 0

12

8

4

0

-0.6 -0.4 -0.2 0

30

20

10

0

-0.6 -0.4 -0.2 0

Insulator UD0

UD25 UD60 UD88 OP91 OD78

(0,0)

(π,π)

(π,0)

α

α

-1.0 -0.5 0 -1.0 -0.5 0 -1.0 -0.5 0 -1.0 -0.5 0 -1.0 -0.5 0

x=0.03 x=0.05 x=0.07 x=0.1 x=0.15

α

LSCO

Bi2212CCOC

(π,0)

(π,0)

(π,0)

α
-2.0 -1.5 -1.0 -0.5 0

Figure A.26: ARPES spectral lineshape comparison at nodal ( ) and antinodal [( ,0)]
regions for CCOC, Bi2212, and LSCO systems. CCOC data is reproduced by the
courtesy of F. Ronning, LSCO data is reproduced by the courtesy of I. Akihiro.



Appendix B

Donglai Feng’s Publication

As Primary Author

1. D. L. Feng, C. Kim, H. Eisaki, D.H. Lu, K. M. Shen, F. Ronning, N. P. Ar-

mitage, A. Damascelli, N. Kaneko, M. Greven, J.-i. Shimoyama, K. Kishio, R.

Yoshizaki, G. D. Gu and Z.-X.Shen, “Nature of the Electronic Excitations near

the Brillouin Zone Boundary of Bi2Sr2CaCu2O8+δ”, Physical Review Letters (in

review).

2. D. L. Feng , A. Damascelli, K. M. Shen, H. Eisaki, C. Kim, D. H. Lu, F.

Ronning, N. P. Armitage, Z.-X. Shen, K. Shimizu, J.-i. Shimoyama, K. Kishio,

N. Motoyama, N. Kaneko, M. Greven and G.D. Gu “ARPES study of the

trilayer cuprate superconductor Bi2Sr2Ca2Cu3O10+δ”, Physical Review Letters

(in review).

3. D. L. Feng, N. P. Armitage, D.H. Lu, C. Kim, A. Damascelli, , F. Ronning, K.

M. Shen, J.-i. Shimoyama, K. Kishio, and Z.-X.Shen, “Bilayer splitting in the

electronic structure of heavily overdoped Bi2Sr2CaCu2O8+δ”, Physical Review

Letters 86, 5550 (2001).

4. D. L. Feng, D. H. Lu, K. M. Shen, C. Kim, H. Eisaki, A. Damascelli, R.

Yoshizaki, J.-i. Shimoyama, K. Kishio, G. D. Gu, S. Oh, A. Andrus, J. O’Donnell,

125



APPENDIX B. DONGLAI FENG’S PUBLICATION 126

J. N. Eckstein, Z.-X. Shen, “Signature of Superfluid Density in the Single-

Particle Excitation Spectrum of Bi2Sr2CaCu2O8+δ ”, Science, 289, p. 277-281,

(Jul. 2000).

5. D. L. Feng, D. H. Lu, K. M. Shen, S. Oh, A.Andrus, J. O’Donnell, J. N.

Eckstein, Jun-ichi Shimoyama, Kohji Kishio, and Z. X. Shen, “On the Similarity

of the Spectral Weight Pattern of Bi2Sr2CaCu2O8+δ and La1.48Nd0.4Sr0.12CuO4”,

Physica C, 341 no. 4 p. 2097-2098 (Nov. 2000).

6. D. L. Feng, C.-X. Yu, J. L. Xie, W. X. Ding, “On-off intermittencies in gas

discharge plasma”, Physical Review E, 58, no.3, p.3678-85, (Sept. 1998).

7. D. L. Feng, “On-off intermittencies in gas-discharge plasma”, M.S. thesis,

University of Science and Technology of China, Hefei, P. R. China (1996).

8. D. L. Feng, J. Zheng, W. Huang, C.-X. Yu, W. X. Ding, “ Type-I-like inter-

mittent chaos in multicomponent plasmas with negative ions”, Physical Review

E, 54, no.3, p. 2839-43, (Sept. 1996).

As Secondary Author

9. C. Kim A. Mehta, D. L. Feng, K.M. Shen, N.P. Armitage, K. Char, Y.Y. Xie

and J. Wu, “X-ray diffraction measurements of the c-axis Debye-Waller factors

of YBa2Cu3O7 and HgBa2CaCu2O6”, Physical Review B (in review).

10. K.M. Shen, A. Damascelli, D.H. Lu, N.P. Armitage, F. Ronning, D. L. Feng,

C. Kim, Z.-X. Shen, D.J. Singh, I.I. Mazin, S. Nakatsuji, Z.Q. Mao, Y. Maeno,

T. Kimura, Y. Tokura. “Surface Electronic Structure of Sr2RuO4”. Phys. Rev.

B (Rapid Comm.), (in press) (2001).

11. N.P. Armitage, D.H. Lu, C. Kim, A. Damascelli, K.M. Shen, F. Ronning, D. L.

Feng, Z.X. Shen,Y. Onose, Y. Taguchi, Y. Tokura, “Particle-hole asymmetry

in the electronic structure of the cuprate superconductors”, Physical Review

Letters (accepted) .



APPENDIX B. DONGLAI FENG’S PUBLICATION 127

12. P.J. White, Z.-X. Shen, D. L. Feng, C. Kim, M.-Z.Hasan, J.M. Harris, A.G.

Loeser, H.Ikeda, R. Yoshizaki, G.D.Gu, N.Koshizuka, “Photoemission Studies

on Bi2Sr2Ca(Cu1−xZnx)2O8+δ: Electronic Structure Evolution and Temperature

Dependence”, Physical Review B (in review).

13. P. V. Bogdanov, A. Lanzara, X. J. Zhou, S. A. Kellar, D. L. Feng, E. D. Lu, J.

-I. Shimoyama, K. Kishio, Z. Hussain, Z. X. Shen, “ARPES study of Pb doped

Bi2Sr2CaCu2O8+δ - an unambiguous case for an electron-like Fermi surface”,

Physical Review Letters (in review).

14. A. Lanzara, P. V. Bogdanov, X. J. Zhou, S. A. Kellar, D. L. Feng, E. D.

Lu, T. Yoshida, H. Eisak, A. Fujimori, K. Kishio, J. -I. Shimoyama, T. Noda,

S.Uchida, Z. Hussain and Z.-X. Shen, “Evidence for ubiquitous strong electron-

phonon coupling in high-temperature superconductors”, Nature 412, p. 510-514

(2001).

15. C. Kim,, F. Ronning, A. Damascelli, D. L. Feng, Z.-X. Shen, B.O. Wells,

Y.J. Kim, R.J. Birgeneau, M.A. Kastner, L.L. Miller, H. Eisaki, and S. Uchida,

“Anomalous Temperature Dependence in Photoemission Spectral Function of

Cuprates”, Physical Review B (in press).

16. D. H. Lu, D. L. Feng, N. P. Armitage, K. M. Shen, A. Damascelli, C. Kim, F.

Ronning, D. A. Bonn, R. Liang, W. N. Hardy, A. I. Rykov, S. Tajima, and Z.-

X. Shen, “Superconducting Gap and Strong In-Plane Anisotropy in Untwinned

YBa2Cu3O7−y Single Crystals”, Physical Review Letter, 86, 4370 (2001).

17. N.P. Armitage, D.H. Lu, D. L. Feng, C. Kim, A. Damascelli, K.M. Shen, F.

Ronning, Y. Onose, Y. Taguchi, Y. Tokura, Z.X. Shen, “Anisotropy of the Su-

perconducting Gap in Nd1.85Ce0.15CuO4: Results from Photoemission”, Physi-

cal Review Letter, 86 no. 6 p. 1126-1129 (Feb. 2001).

18. A. Damascelli, K.M. Shen, D.H. Lu, N.P. Armitage, F. Ronning, D. L. Feng, C.

Kim, Z.-X. Shen, T. Kimura, Y. Tokura, Z.Q. Mao, Y. Maeno, “Fermi Surface



APPENDIX B. DONGLAI FENG’S PUBLICATION 128

of Sr2RuO4 from Angle Resolved Photoemission.”, J. Electron Spectr. Relat.

Phenom., 114-116, p. 641-646 (2001).

19. A. Damascelli, D.H. Lu, K.M. Shen, N.P. Armitage, F. Ronning, D. L. Feng, C.

Kim, Z.- X. Shen, T. Kimura, Y.Tokura, Z.Q. Mao, Y. Maeno, “Fermi surface,

surface states, and surface reconstruction in Sr2RuO4”, Physical Review Letter,

85 no. 24 p. 5194-5197 (Dec. 2000).

20. Z. X. Shen, D. L. Feng, “Superconducting Gap and Pseudogap by Angle

Resolved Photoemission measurement”, Chapter 8 in the book “Fundamental

Research in High Tc Superconductivity” in “Frontiers in Science Series” edited

by W. Z. Zhou and W. Y. Liang, Shanghai Sci. Tech. Publishing Co. , Shanghai

China (1999).

21. F. Ronning, C. Kim, D. L. Feng, D. S. Marshall, A. G. Loeser, L. L. Miller, J.

N. Eckstein, I. Bozovic, and Z.-X. Shen, “Photoemission Evidence for a Rem-

nant Fermi Surface and a d- Wave-Like Dispersion in Insulating Ca2CuO2Cl2”,

Science, 282, p.2067-2072, (Dec. 1998).

22. Z.-X. Shen, P. J. White; D. L. Feng, C. Kim, G. D. Gu, H. Ikeda, R. Yoshizaki,

N. Koshizuka “Temperature-induced momentum-dependent spectral weight trans-

fer in Bi2Sr2CaCu2O8+δ”, Science, 280, p. 259-62, (April 1998).

23. W. Huang, W.X. Ding, D. L. Feng, C. X. Yu, “Estimation of a Lyapunov-

exponent spectrum of plasma chaos”, Physical Review E, 50, no.2, p.1062-9,

(Aug. 1994).


