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Abstract 

We present results of a new measurement of the inclusive b quark fragmentation func- 
tion in 2’ decays using a novel kinematic B hadron energy reconstruction technique. 
The measurement is performed using 150,000 hadronic 2’ events recorded in the 
SLD experiment at SLAC between 1996 and 1997. The small and stable SLC beam 
spot and the CCD-based vertex detector are used to reconstruct topological B-decay 
vertices with high efficiency and purity, and to provide precise measurements of the 
kinematic quantities used in this technique. We measure the B energy with good 
efficiency and resolution over the full kinematic range. While comparing the scaled B 
energy distribution with predictions of several models of b quark fragmentation, we 
also test several functional forms of the B energy distribution. Several fragmentation 
models and functional forms are excluded by the data. The mean of the scaled energy 
distribution of the weakly decaying B hadron is measured to be XB = 0.714 f 0.005 
(stat) f 0.007 (syst) f 0.002 (model). 
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Chapter 1 

Introduction 

This thesis will mainly present a measurement of the bottom (b) quark fragmentation 

function in 2’ decays. The measurement is performed based on excellent tracking, 

vertexing, and a novel energy reconstruction technique. The data analyzed in this 

measurement include 150,000 hadronic 2’ decays recorded at the Stanford Linear 

Accelerator Center (SLAC) with the SLAC Large Detector (SLD) measuring electron- 

positron collisions and annihilations produced by the SLAC Linear Collider (SLC) 

during the 1996-1997 runs. 

We measure the heavy quark (b and c) fragmentation functions not only because 

we need to improve our understanding of the non-perturbative aspect of the theory 

of strong interaction, Quantum Chromodynamics (QCD), but also because heavy 

quark fragmentations are important for a number of other heavy flavor physics mea- 

surements. Heavy quark fragmentation is a sizable systematic uncertainty in several 

measurements. In addition, B mixing and B lifetime measurements can surely benefit 

from an improved B hadron energy reconstruction technique. 

Prior to this measurement, the b quark fragmentation function had recently been 

studied both at LEP at CERN and at SLD. Since LEP experiments possess a total 

of roughly 16 million hadronic 2’ decays compared to the 560 thousand events that 

SLD has, a much improved technique must be used if we intend to make this new 
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20 1. INTRODUCTION 

SLD measurement competitive or better than those at LEP experiments. 

Based on this consideration, at an early stage we focused on developing a technique 

that would reconstruct B hadron energy with good resolution and meanwhile was 

hoping to produce a much higher efficiency for selecting B hadrons than those of 

LEP measurements in order to compensate for the disparity in the number of raw 

hadronic 2’ decay events between LEP experiments and SLD. Fortunately, by taking 

full advantage of tracking and vertexing capabilities present at SLD and SLC, such 

a technique was indeed found, and subsequently developed to produce this currently 

most precise measurement of the b fragmentation function. The upgraded SLD vertex 

detector (VXD3), which provides excellent spatial resolutions, and the small SLC 

Interaction Point (IP) are central to the successful application of this technique at 

SLD. 

The thesis is organized as follows. In Chapter 2 we introduce the Standard Model 

briefly. Since this analysis is mainly concerned with the strong interaction, elec- 

troweak interactions are described in Appendix A. General aspects of the theory of 

strong interaction (QCD) are only briefly discussed. In Chapter 3, we focus on hadron 

productions in e+e- + 2’ + qij and their treatments in the context of &CD. The 

main theme of this thesis, the fragmentation function, is introduced. Some details 

are provided or discussed, including various hadronization models and heavy quark 

fragmentation functions. In Chapter 4 we introduce the experimental apparatus: the 

SLAC Linear Collider and SLAC Large Detector. In Chapter 5 we discuss SLD’s 

upgraded vertex detector (VXDS) which is inseparable from this analysis and my 

own research experience as a graduate student. Topics include the optical survey, the 

global alignment, and the performance of VXD3. Chapter 6 contains a description 

of the fairly standard SLD hadronic event selection and B tagging. In Chapter 7 

we present the new energy reconstruction technique for this analysis in detail. In 

Chapter 8 various heavy quark fragmentation models are tested using our data. In 

Chapter 9 we unfold the B energy distribution and discuss the model-dependence of 
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our method. In Chapter 10 we investigate various systematic effects. We conclude in 

Chapter 11. In Appendix B we derive the formula used in our energy reconstruction 

technique to solve for the missing longitudinal momentum. Some questions about 

this technique are raised and discussed. Appendix C gives a detailed mathematical 

account of how we have treated error propagation in the unfolding procedure. 



Chapter 2 

The Standard Model 

The goal of this thesis is to improve our understanding of a fundamental question: 

how does an energetic quark turn into a jet of hadrons? In particular, how does a 

bottom quark hadronize into a bottom hadron? 

In this chapter, we will first review some basics of the Standard Model of the 

electroweak and strong interactions. Then we will describe the fragmentation of 

quarks and gluons. 

2.1 Overview 

Tremendous progress has been made in our understanding of the universe, and in par- 

ticular, fundamental particles and their interactions. Not only has our understanding 

improved over time, the very notion of what constitutes fundamental particles has 

been also subject to change’. 

Among the four fundamental interactions in nature, gravitation remains not uni- 

fied with the other three. The electromagnetic and the weak interactions have been 

successfully unified by an effective field theory called electroweak theory. The strong 

lThe Superstring theory assumes that the most fundamental objects are not point particles, but 
very small string-like objects. 

23 



24 2. THE STANDARD MODEL 

interaction has been successfully described by Quantum Chromodynamics (QCD). 

Electroweak theory and QCD combined are called the Standard Model. 

The Standard Model is based on quantum gauge field theories in which fundamen- 

tal interactions are the consequences of the local gauge invariance principle. More 

specifically, the Standard Model is based on the SU(3),,1,,@ SU(2)L@ U(l)y gauge 

group. The SU(3),,1,, is the color gauge symmetry group which generates the strong 

interaction, the SU(2) L is the “weak isospin” gauge symmetry group, and the U(l)y 

is the “weak hypercharge” gauge symmetry group. SU(2)L@ U(l)y generates the 

unified electroweak interaction. 

The most fundamental fermions that have been discovered are divided into two 

categories: those not subject to the strong interaction which are called leptons and 

those which also interact by the strong force which are called quarks. Quarks are 

the only fundamental particles known today that interact via all four interactions. In 

the Standard Model, there are three generations of leptons and quarks, each contain- 

ing a pair of leptons and a pair of quarks. Left-handed leptons and their associated 

neutrinos (e and v,, p and uP, and r and v~) form the three lepton generations, and 

left-handed quarks (u and d, c and s, and t and b) form the three quark generations. 

Right-handed fermions are weak isospin singlets2. Quarks, but not leptons, carry 

color charge which enables them to interact via strong interaction. Each quark can 

carry one of three different color charges: blue, green, or red. Every particle has its 

own antiparticle. The fermions of the Standard Model are summarized in Table 2.1. 

The spectrum of leptons and quarks are shown in Table 2.2 and Table 2.3. 

The interactions between fundamental particles are mediated by the gauge bosons, 

the types of which depend on the type of interaction involved: the photon (y), the 

IV+, IV-, or the 2’ for the electroweak interaction and the gluon for the strong 

interaction. Table 2.4 shows the Standard Model gauge bosons. 

2Right-handed neutrinos have not been experimentally observed, nor has the third generation 
neutrino called v,. 
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eR 
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SR 

7R 

tR 

bR 

Table 2.1: Fermion constituents of the Standard Model. 

Lepton Charge (e) Mass ( MeV/c2) Lifetime (s) 
ue 0 < 0.020 > m, (eV) x 300 (s/eV) 
e -1 0.51099907 f 0.00000015 > 4.3 x 1O23 yr (68% C.L.) 
VP 0 < 0.17 > m,, (eV) x 15.4 (s/eV) 
P -1 105.658389 f 0.000034 (2.19703 f 0.00004) x 1o-6 
VT (?> 0 <l unknown 
7 -1 1777.05’;:;; (290.0 f 1.2) x lo-l5 

Table 2.2: The Standard Model spectrum of leptons. (?) indicates the discovery is 
not firmly established. 

2.2 Electroweak Interaction 

Appendix A contains a more detailed description the electroweak theory. Here we 

only briefly mention the part that is relevant to the SLD experiment and this thesis 

analysis. 

2.2.1 Weak Neutral Currents 

In e+e- -+ ff, two neutral vector gauge bosons may be exchanged: the massless 

photon and the massive 2’. The Born or tree-level Feynman diagram for these 

processes are shown in Figure 2-l. The cross-section, 0, is proportional to the modulo 

square of the sum of the matrix elements represented by the two diagrams, IM, + 
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Charge (e) 
+$ 

1 -- 
3 
1 -- 

; 
+2 

1 -- 

% 
+, ! 

Mass (GeV/c2) I(J’) 

0.0015 - 0.005 f(f’) 
0.003 - 0.009 ;cf’, 
0.060 - 0.170 (xi+) 

1.1 - 1.4 o($+) 
4.1 - 4.4 o($+) 

(173.8 f 5.2) O($+) ! bottom=-1 

Table 2.3: The Standard Model spectrum of Quarks 

Name Charge (e) Mass (GeV/c2) I(Jpc) Other 
Y 0 < 2 x 10-25 O,l(l--) Stable 
9 0 0 w-1 SU(3) color octet 
W* fl 80.41 f 0.10 J=l r = 2.06 f 0.06 GeV 
z 0 91.187 f 0.007 J=l r = 2.940 A 0.007 GeV 

Table 2.4: The Standard Model spectrum of gauge bosons 

MZCI/~. Three terms are present in the cross section: the purely electromagnetic, the 

interference, and the purely weak. The existence of the interference term has been 

demonstrated by experiments. 

One striking feature of the theory is that left-handed and right-handed fermions 

Figure 2-l: Tree level Feynman diagrams representing e+e- + ff. Vertex factors for 
ese- -+ y and ese- + 2’ are indicated. 
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have different couplings to 2’: 

gL = 213 - 2Qsin28w, 

gR = -2Qsin28w. 

Decomposing the interaction into V-A form, we have 

27 

(2.1) 

P-2) 

where the vector (V) and axial-vector (A) coupling coefficients are 

CG = (SL --k gR)/2 = 13 - 2Qsin20w, 

ci = (gL - gR)/2 = 13. (2.3) 

cv and CA for all Standard Model fermions are listed in Table 2.5. These V- and A- 

coefficients are used for determining vertex factors for Z’ff vertices (see Figure 2-l). 

Table 2.5: cv and CA for Standard Model fermions. 

2.2.2 Polarized Cross Section of e+e- -+ 2’ -+ ff 

At SLC, the polarized electron beam allows precision measurements of electroweak 

parameters by probing the characteristics of polarized ese- + 2’ production. 



28 2. THE STANDARD MODEL 

The electron polarization is defined as 

NeL - NeR 

“= Ne~+NeR’ (2.4 

where Ned and Ned are the number of left-handed and right-handed electrons, re- 

spectively. 

At the Z-pole, ignoring the y-exchange and y - 2’ interference terms and the 

transverse polarization, the polarization dependence of the differential cross-section 

is 

& 0: (1 + PeAe)(l + COS2@) - 2A,(Pe + A,)cos~, (2.5) 

where 0 is the angle of the final fermion with respect to the electron beam direction, 

and A, is the electron left-right asymmetry which, for any fermion f, is defined as 

The Ai, at the 2’ vertex is defined as 

(2.6) 

(2.7) 

In this analysis, we measure the energy spectrum of bottom (B) hadrons in 2’ 

+ bb decays3. Most relevant here is Rb, which is defined as the ratio of the cross 

section of 2’ -+ bb to the total hadronic 2’ cross-section (2” + qfj) 

Rb = (2.8) 

where qij is a quark-antiquark pair and the sum is over quark flavors. At the Z-pole, 

3The rate for gluon sp litting into bb is only about 0.3% so a very small number of bb come from 
gluon splittings. 
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five flavors, u, d, s, c, and b, are produced. The current measured value is Rb P 21.7%. 

We use the 150,000 hadronic 2’ events collected by the SLD detector during the 

1996-1997 run. The number of 2’ --+ bb events is approximately 32,500. Although 

we do not use in this analysis the fact that most b quarks produced are left-handed, 

we do plan to take advantage of this property in our future b fragmentation studies. 

2.3 Strong Interaction 

The modern theory of the strong interaction is Quantum Chromodynamics (QCD) [l], 

which is a Yang-Mills theory based on a local non-Abelian color gauge symmetry 

grow SU(3)..h- Quarks are the spin f fermions in the theory and color triplets, 

which transform as the fundamental representation of the SU(3) group. Gluons are 

the vector gauge bosons that mediate the strong force and ‘glue’ quarks and anti- 

quarks together to form mesons and baryons which form a color-anticolor octet. For 

SU(3), there are eight such gauge fields, A;(z) (a = 1,2, . . ., 8)) which transform ac- 

cording to the Adjoint representation. Because the SU(3) color symmetry is exact 

and unbroken, the gluons are massless. This seems to imply that the strong force is 

a long-range force, in analogy to QED where photon is massless and electromagnetic 

force is long-range. However, the strong force as we have observed is a short-range 

force that tightly binds colored quarks together to form color non-singlet hadrons. 

Therefore, if QCD is to be a correct theory of the strong interaction, it has to satisfy 

the requirement that it is a confining theory. So far this has not yet been proved as 

a theorem. 

The choice of the SU(3) gauge group arises from the hypothesis, based on much 

evidence, that quarks form color triplets. The SU(3) color transformations are gen- 

erated by the 3 x 3 matrices T” = x’/2, where X” are the Gell-Mann matrices [2] 

which obey the commutation relations: 

[T”, Tb] = ifUbCTC, (2.9) 
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where f abc are the structure constants of SU(3). The QCD Lagrangian can be written 

as 

& = -aF;vFp”a + q(irpDp - m)q, (2.10) 

where m is the bare mass of the quark field and Fpv is the non-Abelian field strength 

tensor, 

F;v = +A; - &A; + gf abcA;A;, (2.11) 

and D, is the covariant derivative: 

D, = ap - ig,T”AE(z), (2.12) 

where g is the bare coupling constant of the theory. 

Figure 2-2 shows the three types of interaction vertex allowed in QCD: gqq, ggg, 

and gggg. The second and third types of vertices is a consequence of the last term in 

(2.11), which implies self-interactions between the gluons. Gluons themselves carry 

color-anticolor charge (such as red-antiblue). Self-interaction between the vector 

gauge bosons is a distinct feature of non-Abelian local gauge theory. In Quantum 

Electrodynamics (QED), the local gauge symmetry group U(1) is Abelian and as a 

result the photon does not carry electric charge and there is no interactions between 

the photons. However, in the Electroweak theory, the SU(2) part of the gauge group 

is non-Abelian, which results in self-interaction between the vector gauge bosons, for 

example, W+W+ZO, W+W+Z”Zo or W+W+W-W- interactions. Self-interaction 

between gluons does not mean a red-antiblue gluon will interact with another red- 

antiblue gluon. A gluon can only interact with gluons with color-anticolor charges 

different from those carried by itself. 

Figure 2-2: Three types of interaction vertices in QCD: gqq, ggg, and gggg. 
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2.3.1 Asymptotic Freedom and Perturbative QCD 

The Running Strong Coupling Constant 

QCD has the unique characteristics of asymptotic freedom. In QED, the fermion 

loop contribution in charge renormalization causes the effective coupling constant 

cxEM(Q2) to increase with increasing Q2, the 4-momentum transfer. In the Thomson 

limit of Q2 = 0, cx EM N l/137, which is much smaller than 1 so that perturbative 

expansions work very well. Even at the 2’ mass scale, Q~M is still only - l/128. 

However, higher and higher orders in QEM must be included as Q2 increases. In 

&CD, the presence of the self-interactions between the gluons, in contrast, results 

in a negative contribution to the effective strong coupling oS(Q2). The net effect of 

these contributions to the strong coupling constant Q, = $$, at Leading Logarithm 

Approximation (LLA), is given by 

4Q2) = as CPU”> 
1 + @(llN - 2ni)log($)’ 

(2.13) 

where a,(~‘) is the “experimental” strong coupling constant at an arbitrary renor- 

malization scale /-Lo, N = 3 is th e number of colors, and nf is the number of quark 

flavors that can be produced, which includes all flavors with mass less than Q/2. For 

example, for Q2 - 1 GeV, only uds quarks can be produced so nf = 3; but at the 2’ 

mass, nf = 5 because charm and bottom but not top quarks can be produced. As 

long as nf 5 16, the aS(Q2) will decrease with increasing Q2 and will approach zero 

as Q2 + co. This property in field theory is called asymptotic freedom. 

Asymptotic freedom allows the application of perturbative techniques to calcu- 

late high energy QCD processes when a,(Q2) < 1. But even at the 2’ mass scale 

(- 91 GeV), the strong coupling constant aS(M$) N 0.12, which is still not very 

small and higher orders in the perturbative expansion series may in some instances 

have a sizable effect in the result. At next-to-leading order (O(Q~)) there is still 
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about (5 - lo)% uncertainty in the perturbative results. At the low energy scale of 

about 0.5 GeV, which is the scale of a typical hadron mass, o,(Q2) 2 1 and there- 

fore perturbative QCD is totally inapplicable. This is typically referred to as the 

non-perturbative regime. Processes such as hadron production is non-perturbative 

and has not been well-understood. This thesis will measure one aspect of hadron 

production, namely the b quark fragmentation function, in order to probe into this 

non-perturbative process. 

The Effective Perturbative QCD Parameter A&CD 

Since the renormalization scale p2 in (2.13) is arbitrary, the coupling at a differ- 

ent renormalization scale Q 2 = ji2 is related to Q,(P’), in the leading logarithm 

approximation (LLA) , 

-= (2.14) 

where PO = 11 - $f, or 

This suggests that we can define a new mass scale RQ~D, 

4lr 
lO&C~ = - PoQ,(p2) + 10dP2L 

(2.15) 

(2.16) 

which is independent of the specific choice of the renormalization scale ,LL~. Instead of 

expressing Q, (Q”) as a function of a(,~‘), ,u~, and Q2, we can express it as a function 

of only A&, and Q2, 
47r 

CLs(Q2) = ,Bolog(Q”/A&,)~ 
(2.17) 

AQcD can be regarded as the fundamental parameter of perturbative &CD, instead of 

the strong coupling constant CX’,. Generally speaking, in any renormalization scheme, 

a physical observable should be independent of the renormalization scale ,U if the 
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calculation is carried out to all orders in perturbation theory, which leads to the 

renormalization group equation [3]. 

AQcD is determined experimentally to be N 200 MeV. At a scale where Q2 >> 

A&xh the strong coupling Q, is small and perturbative calculations of observable by 

means of expansion in a series of cr, are meaningful. Thus, predictions of pertur- 

bative QCD are subject to experimental tests, sometimes even precision tests. The 

prediction that partons appear as distinct jets in the final state at high energies is 

a consequence of this high energy perturbative regime. CY’, has been measured to a 

precision of only about 5%, but its flavor-independence has been tested to a much 

higher precision of about 0.5%. 

Due to the self-interaction of the gluons, a large number of Feynman diagrams 

must be taken into account in calculations at even moderately small (third or higher) 

orders of o,. The high multiplicity of jets in the final state complicates perturbative 

calculations. These factors make perturbative QCD calculations much more difficult 

than their QED analog. In addition, higher-order calculations depend on the renor- 

malization scheme chosen, which can to some degree obscure the meaningful tests 

of perturbative QCD predictions. Nevertheless, in a variety of processes, especially 

hard processes, perturbative QCD predictions are fruitful and have been tested to 

good precision. More detailed description of perturbative QCD related to this thesis 

is covered in the next Chapter. 

2.3.2 Non-perturbative QCD and Fragmentation 

The most serious challenge to &CD, however, lies in the low energy regime where the 

strong interaction processes are essentially non-perturbative. 

It has been a well-established fact that quarks and gluons are not directly observed 

as final state particles in experimental apparatus. This characteristics of the strong 

interaction has led to the color confinement postulate 

All hadron states and physical observables must be color singlets. 
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Color non-singlet objects cannot be observables. This may be viewed from a different 

perspective: physical phenomena are invariant under the color transformation. The 

color SU(3) is therefore an exact symmetry. However, the origin of confinement itself 

is unknown and is still an open question. Confinement may eventually be found to 

be a dynamical consequence of &CD. 

A naive analysis of single gluon exchange between quarks shows that the color sin- 

glet two- or three-body states qij or qqq have negative color factors and are strongly 

attractive. This gives us a hint that color singlet states are probably the only states 

stable enough to exist. 

The fact that partons must form hadron states, as required by color confinement, 

indicate that the strong interaction between partons is very strong when hadroniza- 

tion actually occurs, presumably at a low energy scale of a few hundred MeV. Thus 

hadronization is a non-perturbative phenomenon and perturbative calculations are 

inapplicable in this regime, making hadronization probably the most uncertain part 

of the theory of strong interaction. Had it not been the case, that is, if partons can 

be observed in the final states just like electrons and photons in QED, we would not 

have had to battle this problem of hadronization. QCD predictions as well as their 

experimental tests would have been more precise, and also more transparent, than 

they are today. 

At present we really do not know the correct way to fragment a collection of 

partons into hadrons, other than the perturbative evolution of partons. An integrated 

solution to this problem requires a much improved experimental probe and theoretical 

understanding of the confinement mechanism. This is the most profound motivation 

for the analysis of this thesis. By measuring the b quark fragmentation function, 

we expect to gain a more precise knowledge of hadronization for the b. Further 

information are described in the next Chapter. 

It has been one of the key problems in theoretical physics to find a solution to 
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calculate strongly coupled, non-perturbative QCD processes4. Lattice QCD is one 

way to go. Once this problem is solved, we should be able to calculate and predict 

from first principles QCD phenomena such as hadron productions, hadron masses, 

and hadron decays. 

4Recently a conjecture was proposed [4] that compactification of M/string theory on various 
Anti-deSitte: spacetimes, which includes weakly coupled supergravity, is dual to various conformal 
field theories, including strongly coupled super-Yang-Mills theory which is intimately related to 
&CD, thereby achieving a mapping between strongly- and weakly-coupled theories. 



Chapter 3 

Hadron Production in efe- + qg 

Electron-positron annihilation provides an excellent probe of the QCD vacuum and 

allows the study of theory both in the asymptotically free regime and the non- 

perturbative regime. Lowest order perturbative QCD can be applied at early times, 

when the strong coupling is relatively small at high Q2, to calculate processes such as 

hard gluon radiation. In this high Q2 regime the evolution of the hard partons can be 

described perturbatively. Eventually the hard partons turn into jets of hadrons in a 

process called hadronization or fragmentation. This long-distance process cannot be 

described by perturbative QCD and has not been calculated precisely. Rather, many 

phenomenological models are used to describe this low Q2 process. 

Among the six quark flavors, up, down and strange (u, d, and s) quarks have a 

mass (much) smaller than A,,,. These light quarks suffer the most from the soft 

and collinear gluon radiation, which takes place at a scale where the strong coupling 

constant is of order one, eliminating the hope to apply perturbation theory to calcu- 

late light quark fragmentation functions. Only phenomenological models have been 

used to describe light quark fragmentation. Charm, bottom and top (c, b, and t) 

quarks are heavy quarks with a mass much greater than &CD. This mass difference 

between heavy and light quarks has a significant impact on their fragmentation. The 

top quark has a very large mass which would have been ideal for studying the be- 

37 
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havior of fragmentation function in the heavy quark mass limit. Unfortunately top 

quark does not fragment because it has a much larger width, I’, than the QCD scale 

A. It weakly decays before non-perturbative effects become important and therefore 

does not hadronize into a jet containing a t hadron. Charm and bottom quarks are 

the only heavy quarks that fragment into heavy hadrons. Their heavy masses allow a 

partial description of their fragmentation based purely on perturbative calculations, 

but such descriptions are not good enough. The heavier b mass allows b quark frag- 

mentation to be better described by perturbative calculations. In addition, heavy 

quark effective theory (HQET) can be applied to study heavy quark fragmentation. 

In sum, heavy quark fragmentation provides the best probes for non-perturbative 

effects in quark fragmentation and the best testing ground for predictions of both 

perturbative calculations and phenomenological models. We return to this subject in 

the heavy quark fragmentation section later. 

Let us consider the e+e- + 2’ --+ 44 process first. We learn about the original fi- 

nal state quark-antiquark pair and how they dynamically evolve and finally hadronize 

by studying the detected hadrons. The production of hadrons in e’e- -+ 2’ --+ 44, 

where the quark-antiquark pair must have opposite color charges, can be split into 

several stages (a schematic is shown in Figure 3-l): 

Stage 1 Production of a qq pair in ese- + q4 

This is a hard electroweak (EW) process in which the primary quark and antiquark 

are produced. This EW process can be calculated perturbatively to high precision. 

Stage 2 Perturbative evolution of the qij pair 

At early times and high Q2, the quark-antiquark pair interact with a small coupling 

constant CY, due to asymptotic freedom. Consequently, their evolution may be de- 

scribed perturbatively via parton Bremsstrahlung, including the following possible 

splittings: q --+ qg, a --+ gg, g -+ gg, g -+ ggg, and g + qfj. Although in a pertur- 

bative regime, the calculation is nevertheless complicated by gluon radiation, vertex 

corrections and self-energy corrections. Perturbative QCD calculations for 2, 3, 4, and 
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Figure 3-1: Schematic of hadron production in e+e- annihilation. 

even 5 parton final states have been carried out. Leading logarithm approximation 

(LLA) gives inclusive properties of multi-g “final” states. 

Stage 3 Hadronization: partons -+ final state hadrons 

These final state partons including the original quark-antiquark pair which have lost 

some energy combine with other quarks and antiquarks to form primary hadrons 

resonances. 

Stage 4 Decays of the primary resonances into ‘stable’ particles 

For example, B, Ki, 4, A, p, . . . -+ r*, K*‘,p,p, . ..(leptons) 

We first consider how stage 1 and 2 are treated in perturbative &CD. 
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3.1 Fixed Order Matrix Elements 

The Born or tree level cross section for ese- -+ qij is given by the electroweak theory. 

Equation (A.42) gives the tree level formula in the limit s = Mz where the y-exchange 

and interference terms are neglected. QCD contributes only the color factor N, = 3 

for final state qq pairs. In the three-jet process e’e- --+ qfjg, effects proportional to 

a, will appear in the cross section formula. To leading order, the cross section for 

three-jet production in the massless quark limit is given by [5]: 

da c”“c XT + x; 
~ = O”27r dxl dx2 F(l - Zi)(l -zJ (3.1) 

where (~0 is the Born cross section, CF = 4/3 is the quark color factor, and x1 and 

x2 are the scaled quark energies (zi = 2Ei/&). Th is cross section diverges in the 

collinear limit where x1 + 1 or x2 -+ 1, but in this regime three-jet final states are 

indistinguishable from two-jet states, and corresponding divergences in the one-loop 

propagator and vertex corrections cancel the collinear divergences. 

Leading order calculations have been carried out for production of up to five 

jets [5,6, 7,8,9]. Two- or three-jet cross sections have been calculated to O(o$ [8, 10, 

7, II]. Next-to-leading order [O(c$)] QCD predictions for ese- -+ 4 jets, suppressing 

13(1/N:) where N, = 3 for &CD, is also available [12]. The precision in calculations 

of matrix elements has improved, however, due to limited orders in QI, considered, one 

should not expect these predictions to be sufficient to describe the detailed structure 

of e+e- annihilations where multiple gluon emissions play an important role even up 

to orders of a,. 

3.2 Parton Shower QCD Calculations 

A practical approach to predicting the soft structure of jets, other than direct matrix 

element calculations, is the parton shower technique, which is based on the Leading 
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Logarithm Approximation (LLA) to perturbative &CD, where leading logarithmic 

term G (Q2)WYQ2/A&A are summed to all orders ni. This approach approxi- 

mates the calculation of the soft structure of jets down to scales N AQcD. Refine- 

ments that include sub-leading terms are possible. In the parton shower approach, 

individual events are generated by quarks produced in ese- -+ qij which radiate off- 

shell gluons (q -+ qg), which in turn can branch into parton pairs (g + gg and g 

-+ qq). Hence a parton shower or cascade is produced, as is shown in Figure 3-2. In 

Figure 3-2: Schematic representation of a parton shower. 

LLA, by neglecting the interference terms [13], it is possible to treat these branchings 

as classical probabilities. 

Consider the branching of a quark a turning into a quark b and a gluon c. Let z 

be the fraction of 4-momentum of the initial quark a retained by the resulting quark b 

after the branching, hence c has a momentum fraction of (1 -z). Since the probability 

for an initial quark to radiate a gluon is proportional to the strong coupling constant, 

we have P, c( a,(Q2). As a quark evolves by repeatedly splitting into a quark and 

‘Equation (2.17) indicates that as(Q2)log(Q2) N 1. 
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a gluon, its momentum Q2 decreases so that the strong coupling constant o,(Q2) 

increases. To take this change of mass scale and therefore coupling strength into 

account, we define a dimensionless parameter, r =10g(Q2/A2), commonly referred to 

as the virtuality scale. So a,(Q2) is now represented as os (T). The meaning of r is 

clearly seen as follows. r is at its maximum value initially when the quark is most 

energetic, and it decreases as Q2 decreases. When non-perturbative effects set in at 

Q2 N A2, r becomes N 0. Therefore, r can be considered as a measure of the ‘time’ 

it will take for the quark to enter the non-perturbative regime or the hadronization 

stage. 

The probability for a quark to radiate a gluon also depends on the fraction energy 

of the radiated gluon. Therefore, apart from as(r), the probability P, must also 

depend on the 4-momentum fraction, x, defined above. The specific functional form 

of this dependence of the branching probability on z is given by the process-dependent 

parton splitting function Pa+bc (z) (often denoted by Pba(z), where b is the result of 

the splitting of a). 

Since the virtually (‘time’) is measured by r, the differential probability for the 

branching of a parton, a -+ bc, to take place within a small interval dr, and within a 

given fraction-momentum interval dz, is given by [14, 151 

(3.2) 

where we sum over all parton flavors for b and c into which a is allowed to split. 

Integrating both sides of (3.2) over z, we obtain the probability for a parton a to 

branch into any flavored b and c within a small virtuality interval, and with any 

momentum fraction, 

(3.3) 
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The scale-independent (Q”- or r-independent) parton splitting function Pa+bc(z) is 

process-dependent and is given by 

%&) = Pq+g& - 4, (3.5) 

P ()=6( 
l-z 

9'99 z -+ z & + 41 - 4) 7 

Pg+*q(x) = i(z2 + (1 - z)2). 

(3.6) 

(3.7) 

Apart from the color factor $, the splitting function for q -+ qg is the same as the 

splitting function for an electron to radiate a virtual photon, derived independently 

by Weizsacker and Williams in 1934. 

The probability that a parton starting with virtuality rmaz will reach T without 

undergoing any splitting is given by the Sudakov factor S,(r) 

(3.9) 

where r. = log(Qt/h2) and Q o is a shower virtuality cutoff, zmaZ and z,in are kine- 

matic cutoffs based on the virtuality r’. The Sudakov factor can be pre-tabulated in 

Monte Carlo programs, such as the Lund algorithm. The evolution of an individual 

parton is determined by finding r such that 
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:I 

where R is a random number between 0 and 1. The main parameters of parton shower 

models are the virtuality cutoff Q. and the scale A 20 Various parton shower models 

differ in their choice of the virtuality parameter 7, in their choice of the scale Q2 for 

the running of os, and in their definition of Z, where z can be defined as the Eb/E,, 

pllb/p]la, or the light-cone variable (Eb + p(lb)/(& + ~11~). 

In general, parton shower technique gives a poor prediction for the hard three- 

jet rate, but this can be improved by matching the first stage of the parton shower 

branching with a matrix element calculation. In addition, the inclusion of sub-leading 

logarithms may modify the splitting functions to an extra order in Q, in the case 

of Next-to-Leading order Logarithm Approximation (NLLA) [16], or it may impose 

the additional constraint of angular ordering on the gluon emission in the case of 

the Modified Leading Logarithmic Approximation (MLLA) [17]. MLLA extends the 

resummation to terms of order o$ (Q2)10g2n(Q2/A2) an is only useful quantitatively d 

for calculations of the evolution of hadron multiplicities. 

Partons present at the end of parton showering stage combine to generate primary 

hadrons, a process called hadronization. Hadronization is typically characterized by 

the fragmentation functions (see Section 3.4). Let us first discuss the e’e- -+ hadron 

cross section which is closed related to the fragmentation functions. 

3.3 e+e- L Hadron Cross Section 

The naive parton model prediction for the ratio, R, of the cross section of the inclusive 

process e+e- -+ hadrons to that of the process e+e- -+ ,LL+~- is 

R= 
a(e+e- -4 hadruns) 

a(e+e- -+ p+p”-) 
= NC 5 eii, (3.11) 

i=l 

2Since the parton shower calculation is incomplete at any fixed order in (Y,, it is not possible to 
relate the parton shower scale A to the standard Am or any other AQ~D. 
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where i is the flavor index, ep; is the electric charge of the quark qi of flavor i, and 

the nf is not the total number of flavors in the theory, but the number of flavors that 

are allowed to be produced at the given center-of-mass energy of Q. N, = 3 is the 

number of colors in &CD. 

Real gluon emission (q -+ qg), virtual gluon corrections at the vertex, and quark 

self-energy in the final state modify the total hadronic cross-section by order LY,(&~) 

(to lowest order). The cross-section for real gluon emission diverges in the soft gluon 

limit, which is called infrared (IR) d ivergence, or in the limit when the q and g 

become collinear, which is referred to as the mass singularity. Virtual gluon correction 

and quark self-energy are in general both infrared and ultraviolet (UV) divergent. 

Regularization schemes were introduced to cancel these divergences [18, 19, 20, 211. 

Dimensional Regularization [20, 211 removes both IR and UV divergences. 
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Figure 3-3: The R ratio as a function of c.m. energy. The expectation for N, = 3 
is shown as a solid line, the dashed line shows the predicted value of N, = 3 when 
the effects of QCD and the Z” are included. The top axis is Q. At the Z-pole, 
R = 20.78 zt 0.03. 
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The Block-Nordsieck theorem [22], which states that transition rate summed over 

the final states is free of infrared divergence (soft), generally breaks down in &CD. 

Instead, the transition rate summed over the initial and final degenerate states is still 

free of infrared (soft and collinear) divergence at any order of perturbation theory, 

which is the KLN theorem [23]. This insures that the final result is finite. At the 

lowest order, the correction to the Born cross section is 

a(e+e- + hadrons) = 0~~~%(1+ :). (3.12) 

Shown in Figure 3-3 is a summary of measurements of R which were made up to 1988, 

as a function of c.m. energy [24]. The increase in R just above Q2 = 10 and 100 

GeV2 represent the CE and bb thresholds. Moreover, the QPM+QCD+ZO prediction 

comes very close to data if the quarks are assigned fractional charges and the number 

of colors N, = 3. 

3.4 Fragmentation Functions 

Hadronization can be characterized by the quark or gluon fragmentation function 

which is the distribution the fraction of the energy (or momentum) of the fragment- 

ing parton i carried by the produced primary hadron h. The fragmentation function 

is often written as 0:(x, p2). Here, z = Eh/Ei where Ei and Eh are the energies (or 

momenta) of the fragmenting parton i and the produced primary hadron h, respec- 

tively. p2 is an arbitrary factorization scale (see below). 

Since the number of hadrons of type h with energy fraction z = Eh/Ei per dz is 

0” (z, p2)dz, conservation of energy requires that 

(3.13) 

where zAin = 2mh/Ei is the kinematic threshold (mh is the mass of the hadron), and 

the summation is over the available hadron types h. The mean multiplicity of hadron 
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of type h emerging from a parton i is 

(3.14) 

3.4.1 Symmetries of Fragmentation Functions 

Due to CP or isospin symmetry, we expect a set of symmetry relations given below, 

for example 

Df(z, p2) = L&z, p2), (3.15) 

D,“‘(z, )LL2) = D$‘(z, p2), (3.16) 

qy(z, /..L2) = LIZ- (2, p2). (3.17) 

3.4.2 Factorization of Single Hadron Cross Section 

According to the factorization theorem, the measured fragmentation function can 

be written as a convolution of a short-distance, perturbative term (coefficient func- 

tion) and a long-distance, non-perturbative term (operator matrix element). We can 

therefore express the single hadron inclusive cross section in terms of the perturbative 

parton differential cross sections and their respective fragmentation functions. 

To produce a hadron of type h with a scaled energy z = 2Eh/Q = 2&/G, where 

Q = ,/% is the center of mass energy, we first produce a parton i with a scaled energy 

y = 2Ei/Q = 2Ei/& and th en allow this parton i to fragment into the hadron 

h. Since the energy of the parton i must be larger than that of the hadron h, we 

have y > x: In fact, using the z variable defined above, we have x = yx or z = x/y. 

Therefore the probability of producing h with an energy fraction between x and x+dx 

is 

&(x, Q2) = c s’ dydff’(Y;;2’ p2b;(z = ;, ,u2)dz, 
i z 

(3.18) 

where (dai/dy)dy is the differential probability of producing a parton i (i = q, S, or g) 
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with energy fraction between y and y + dy, and DF(z)dz is the differential probability 

that the parton i fragments into the hadron h carrying an energy fraction between 

z = Eh/Ei and z + dz. The integration over y is to sum over all possible intermediate 

parton fraction momentum y. Finally, all parton flavors that can produce h are 

summed over. The variables y and z are not experimental observables, but x = yz, 

which is Eh/(Q/2) = Eh/(fi/2), is an experimental observable. Since 0 5 .z < 1, 

we have x 5 y = X/Z 5 1. D”(Z), which does not depend on scale Q2, is the 

fragmentation function containing non-perturbative information about hadronization 

and is not calculable using perturbation methods. In the case of only one quark flavor 

(4 and 3, (3.18) can simply be written as 

dgh(x, Q2) = s,’ dydoq~;Q2b$)$ 

+ 
I 

l dydo% Q2) Dft(x) dx 
X dy qY Y 

+ I 
l dydgg(y, Q”> 

x dY 

3.4.3 Single Hadron Inclusive Cross Section 

The single hadron inclusive cross section is given by 

do 
22 e+e- -+ hX) SG $(x, Q2L 

(3.19) 

(3.20) 

where the r.h.s is given by (3.18) or (3.19). Using (3.13) and normalization properties 

of quark splitting functions Pq+qs and Fqdgq, it can be shown that the cross section 

is normalized according to 

All h o1 ;$(x, Q2)dx = oteo+te-, 
cl 

(3.21) 

e+e- where otot is the total cross section for ese- -+ hadrons [25, 261. In general the 

inclusive cross section is a function of the center of mass energy Q2. 



I 

3.4. F’RAGMIZNTATION FUNCTIONS 49 

Using the above defined fragmentation function, the distribution f”(x, Q2) of the 

scaled hadron energy z is 

f%, Q”> - 
1 da 

--(e’e- 3 hX) 
u;;~- dx 

1 
= 

e+e- cs 
l dy doiCy> Q2, ~~~~~~~ p2> (3.22) 

utot i x-i- dy zY’ ’ 

where we have used (3.18). Equation (3.22) is sometimes used to define the fragmen- 

tation function. At the lowest order (tree-level), no gluon Bremsstrahlung occurs, so 

the parton differential cross section da/dy is reduced to 

fh(x, Q”) = 
= (3.23) 

where 0: S(y - 1) is the tree-level quark differential cross section, and 

(3.24) 

is the tree level e+e- --+ @ cross section. eqi is the electric charge of the quark qi. 

N, = 3 is the number of colors. 

3.4.4 Evolution Equation for Fragmentation Function 

The fragmentation function DF(z, p2) obeys an evolution equation [26] similar to the 

parton density DGLAP evolution equation [13, 27, 141 
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where the summation over j runs over all available parton flavors, and Pi_,j is, as 

described earlier, the splitting function of parton i into j. Note that the result of the 

integration remains the same if the variables x/y and y are interchanged between the 

two functions Pi+ and Dt . 

The evolution equation (3.25) produces the scaling violation in the x-dependence 

of the inclusive cross section (3.22). For example, fh(x = 0.5, Q = 90 GeV) is 

generally not the same as fh(x = 0.5,Q = 10 GeV). Rather, experimental data 

on the hadron spectra at one center-of-mass energy scale Qf can be compared with 

the fragmentation function in (3.22), which can then be evolved to another energy 

scale Q22 using (3.25). From the viewpoint of scaling violation, the experimental 

determination of the b fragmentation function in e+e- -+ 2’ at SLD will contribute 

one data point to join other data points to demonstrate the scaling violation in 

fragmentation. Since uncertainty in the measured fragmentation function at one scale, 

when evolved to another scale, can lead to a larger uncertainty, the measurement 

precision at IU$ is likely to influence the precision of the evolved b fragmentation 

at higher Q2. Very precise measurement at the 2’ mass scale can provide solid 

predictions for jets at high energies in ese- or pj3 collisions, for example, for W*, t, 

or even the Higgs decays. 

3.4.5 Experimental Issue 

Since it is impossible to experimentally identify the individual partons that fragment, 

there is no way to directly measure the fragmentation function Dt(z, p”). Fortunately, 

the inclusive scaled-energy spectra fh(x) are experimental observables. By using 

various proposed fragmentation models, we can compare the measured hadron energy 

spectra with model predictions. Fragmentation models that describe the data well 

not only can provide insights into the underlying dynamics, but also can be very 

important for improving Monte Carlo simulations of fragmentation. 

Heavy quark tagging techniques allow high purity separation of events from light 
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quarks (uds) and those from heavy quarks (b or c). Therefore we can study fragmenta- 

tion in light quark events and heavy quark events separately. Using the polarization 

of the SLC electron beam, together with the electroweak forward-backward asym- 

metry of quarks, we can further separate quark jets from antiquark jets. This can 

provide constraints on the non-singlet fragmentation defined as 0” (x, p2) - Dt (x, p’). 

In particular, this thesis describes a new experimental measurement of the b quark 

fragmentation function, which will be described later. 

3.5 Fragment at ion Models 

In e’e- annihilation experiments, Monte Carlo simulation of the fragmentation process 

is essential. Fragmentation models, usually phenomenological, are often used in such 

simulations to allow for the study of background and efficiency in physics analyses, and 

for comparison with experimental data to test input models themselves. Improving 

fragmentation models is thus an important step toward improving the quality of 

physics analyses. Testing existing models, therefore, is the starting point. This thesis 

tests various models for b quark fragmentation using a much improved B hadron 

energy data spectrum. 

Currently, there are three major types of fragmentation models 

l The independent fragmentation model 

l The string fragmentation model 

l The cluster fragmentation model 

Note that in discussing fragmentation models, the fragmentation function is usually 

denoted as f(z) instead of the more complicated 0” (z). f(z) should not be confused 

with the inclusive hadron spectrum fh(x) mentioned earlier. 
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3.5.1 Independent Fragmentation 

In this type of Independent Fragmentation (IF) model, each energetic parton in the 

event fragments in isolation and corresponds to a well separated “jet”. An initial 

quark q with energy W pairs up with an antiquark & and forms a hadron q& carrying 

energy fraction W . ~1, leaving behind a remnant q1 with energy (1 - zi)W. This q1 

in turn produces another hadron qlq2 carrying an energy z2(1- zi)W, leaving behind 

a remnant q2. This process continues until the energy left with the quark qn is too 

low to form the lightest hadron. The fraction of energy of the parent quark shared 

by the daughter products is characterized by a fragmentation function, f(z), which 

is assumed to be the same at each step of the fragmentation process. 

One problem with the IF is that it does not conserve 4-momentum in each jet or 

flavor in each event. To fix these problems, an additional ad hoc resealing prescription 

is introduced. The IF models reproduce global properties of high energy, isolated 

jet well. They do not reproduce energy flow between jets of an event. Data from 

e+e- annihilation have excluded this fragmentation scheme. However, IF models are 

still used in pp Monte Carlo simulations, where details of the soft structure of jets are 

of little importance, but will not be considered in this thesis. 

The Field and Feynman model [28] was one of the first versions of the scheme to be 

implemented by a Monte Carlo calculation. Various other independent fragmentation 

schemes were later developed. One of the most commonly used in hadron-hadron 

collider is the ISAJET Monte Carlo [29]. 

3.5.2 String Fragmentation 

String Fragmentation: The Lund Model 

The string fragmentation scheme was first introduced in 1974 by Artru and Mennessier 

[30]. Subsequently, the Lund group developed the Lund model of string fragmenta- 

tion. Their Monte Carlo simulation, JETSET 7.4 [15], is a powerful and popular tool 
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for physics Monte Carlo simulations, and is used for the analysis in this thesis. 

The string model is motivated by the idea that the partons are connected by a 

color flux tube, or string. The transverse size of the string is small compared to its 

length, due to the couplings between gluons. The string has a constant energy density 

per unit length, or string constant, of order - 1 GeV/fm. As the partons move apart 

the energy of the string rises linearly. When the potential energy has grown high 

enough to produce a qcj pair, the string breaks to form two separate string objects. 

Figure 3-4 shows a schematic of the process. Horizontal axis x is the spatial-x 

03-97 
8290A17 

Figure 3-4: Schematic of hadronization in JETSET. 

axis, and vertical axis denotes the time. When a q&j,, pair is produced at the (x, t) 

origin (x0 = 0, to = 0), shown in the figure as the bottom tip of the large dark angle, 

the qo and I&, start moving out back-to-back in the center-of-mass frame. In the x - t 

plane, since the partons are highly relativistic, their world-lines are at an angle of 

-N 45” (or 135”) relative to the x axis. In between the qij pair there exists the color 

flux tube or string which is represented by the line that connects the pair. This line 

sweeps out a area on the IC - t plane which is the dark area. The string is stretched 

and a new pair, qlQl can be produced at a new point, (xl&), which is the point 

where white area starts to emerge at the earliest time in the figure, when the string 

breaks into two parts. Now there are two strings, one connecting q. and &, the other 
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connecting & and 41. In between Q and qr, there is no string and therefore no dark 

area. This breaking process continues. When a quark q; meets an antiquark qj, they 

form a hadron qii&. This bounded quark-antiquark pair oscillates in a “yo-yo” mode, 

which, in a highly boosted Lorenz frame, looks like a rectangle tilted by N 45” (or 

135”). The string breakup continues until there exists only hadrons in the system. 

The Lund Monte Carlo reflects the fact that all qg production vertices are causally 

disconnected and the process must be symmetric from either end of the string. This 

symmetry is implemented by breaking the string into hadrons from either end, much 

like in IF models, but using a specific probability for a quark to hadronize into a 

hadron. The Lund symmetric fragmentation function is 

f(2) = t(l - z)aexp --q , 
( ) 

where z is the fraction of the light-cone momentum, E+p~l, of a parent string taken by 

the daughter, ml = drn2 +pt, m is the quark mass, and a and b are parameters of 

the model, which must be tuned to best fit the data [31]. The symbols -L and 11 refer 

to the string axis. a and b are free parameters that may be flavor dependent. A large 

number of additional parameters are used to tune the relative production of particles 

[32]. The splitting of the string is done in such a way that energy, momentum and 

all the quantum numbers are conserved. 

Massive quarks must be produced some distance apart so that the field energy 

between them can be transformed into mass and transverse momentum. This is done 

by producing them at a point and allowing them to quantum-mechanically “tunnel” 

out to the allowed region. This tunneling process occurs with a probability 1331: 

P=exp -2 , 
( ) 

(3.27) 

where K is the string constant. The mass term in the exponent suppresses strange 

and heavy quark (c, b) production, yielding the following relative production rates for 
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quark flavors u : d : s : c N 1 . 1 * . . 0.3 : lo-ii. Heavier quarks are not produced in the 

string break up, but are allowed to be produced in the parton shower process. 

String fragmentation must be combined with some perturbative calculation of 

the underlying hard process, typically either a second-order matrix element calcula- 

tion [34] or an LLA parton shower [35]. The JETSET parton shower model has been 

tuned to reproduce well most experimental observables in e+e- data [36]. However, 

the tuning of large number of parameters make it hard to constrain the underlying 

dynamics of the model. 

String Fragmentation: The Bowler Model 

Bowler has shown [37], within the framework of the Artru-Mennessier model, that 

a massive endpoint quark with mass ~VQ leads to a modification of the symmetric 

fragmentation function, due to the fact that the string area swept out is reduced for 

massive endpoint quarks compared with massless quarks. The resulting function is 

similar to the one in the Lund model, but with a new parameter r&, which is in 

principle predicted to be one [15]: 

f(x) = Zl+T;bma (1 - da exp (-q) . (3.28) 

See (3.26) for comparison. 

String Fragmentation: The UCLA Model 

The UCLA model [38, 391 is an extension of the Lund string model with the hadron 

species parameters determined by the phase space, spin counting, and isospin count- 

ing. In the JETSET scheme, Mh and PT are chosen first, and then z is drawn from 

f(z), where S f(z)& = 1 for each hadronic species. In the UCLA model, f(z) is a 

universal function with Ch S fh(z)dz = 1. Thus a and b remain free parameters, yet 

all of the suppression of vector and strange hadrons is done through the increased 
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masses of those particles and the Clebsch-Gordon coefficients for the couplings be- 

tween neighboring spins. The UCLA model has seen remarkable success in fitting a 

wide range of data. 

3.5.3 Cluster Fragmentation 

In the cluster fragmentation model the partons present at the end of a parton shower 

are used to form colorless clusters, each is split into a 44 pair; quarks and antiquarks 

with opposite color are paired up locally to form clusters, which are the primary 

fragmentation products. Heavy clusters decay into lighter ones, and these ultimately 

decay into the final state hadrons. Figure 3-5 shows a diagram of the cluster fragmen- 

tation. The first widely successful model of this type was developed by Marchesini 

Figure 3-5: Schematic of hadronization in HERWIG. 

and Webber [40]. The present version of the program is known as HERWIG [41]. 

HERWIG does a good job of evolving the partons but the resulting cluster fragmen- 

tation does not describe data very well, which is partly because Local Parton Hadron 
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Duality (LPHD) [42] d oes not work very well for producing heavy quark energy spec- 

tra. 

3.6 Heavy Quark Fragmentation Function 

Because of the large mass of a heavy quark, the behavior of heavy quark fragmentation 

is very different from that of light quarks. Suzuki, Bjorken, and others pointed out 

long ago that heavy hadrons carry most of the energy of the fragmenting heavy 

quarks [43, 44, 45, 461. Within the parton-model, when a heavy quark with a mass 

M > 5 GeV hadronizes into a primary heavy hadron containing the heavy quark 

and a light quark, the average scaled momentum of the heavy hadron is expected to 

be [43, 441 

(z) - 1 - l/MQ, (3.29) 

where z is the scaled momentum of the heavy hadron, and MQ is the mass of the 

heavy quark (Q), expressed in GeV. For the bottom (b) quark with a mass of about 5 

GeV, (z) N 0.80. This is reasonably close to the current measured value of about 0.72. 

It turns out that this leading nature of heavy hadron can also be understood from a 

purely perturbative point of view [47]. Hard gluon radiation can only occur at very 

early times and is highly suppressed due to the small coupling CX,. Only (soft) gluons 

with an energy fraction of order & << 1 may be radiated with high probability. A 

is the effective QCD scale which determines when the non-perturbative effect takes 

over and is approximately 200 MeV. The predominant emission of soft gluons from 

heavy quarks leads to a heavy hadron energy spectrum peaked near z N 1 - A/MQ or 

1 - M4/M~ where Mq and MQ are the mass of light and heavy quarks, respectively, 

and MQ > A > Mq. 

Due to the unknown non-perturbative aspect of fragmentation, so far there has 

been no theoretical prediction of the complete fragmentation function that is derived 

from first principles and can be readily compared with experimental data. Instead, 
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non-perturbative contribution are theoretically treated in two different approaches: 

phenomenological models and perturbative QCD calculations. In both cases the non- 

perturbative parameters are to be extracted from experimental data. 

3.6.1 P henomenological Approach 

In a phenomenological approach, the fragmentation function is not derived from first 

principles or &CD, but is to a large extent based on some phenomenological as- 

sumptions. A model usually contains one or more parameters which can only be 

determined from experimental data. Models whose predictions agree with data could 

provide insights into the underlying non-perturbative dynamics and are useful for 

accurate Monte Carlo simulations. 

The Peterson Model 

The Peterson model has been widely used in e+e- annihilation Monte Carlo simu- 

lation. The model is based on the following ansatz [48]: the fragmentation function 

of a heavy quark Q is proportional to the quantum-mechanical transition probability 

(amplitude squared), in the parton-model picture, of the process Q -+ H + q, where 

H = (QQ), 
M(Q+H++&. (3.30) 

Let z be the fraction of the longitudinal momentum P of Q carried by H, then 

AE = Jm+ m,t+(1-x)2P2 

- dmQ2 + P2 (3.31) 

where the single parameter 6Q N m,:/mQ?, and rni = m2+P: is the transverse mass. 

Taking a factor of 2-l for longitudinal phase space, we arrive at the fragmentation 
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function 

DQH(z) = N 
z(1 - ; - 2)2’ 

59 

(3.32) 

where N is a normalization factor and 6Q must be determined from experiments. 

Since the Peterson model contains only one free parameter and it was consistent 

with early heavy quark fragmentation data, it has been used as the standard in Monte 

Carlo simulations of b and c fragmentation functions by many experiments, including 

both the LEP and SLD experiments. It is important to test the Peterson model at 

a higher precision. Recent measurements of the b fragmentation function suggested 

that the shape of the Peterson functional form is too wide to reproduce the data. 

Figure 3-6 shows the Peterson fragmentation function f(z) using parameters in 

the default SLD Monte Carlo simulation: ~6 = 0.006 for b quarks and E, = 0.06 for c 

quarks. The much larger value of E, compared with Eb is due to the mass-scaling of 

the EQ parameter: Ec/Eb N (mblhcl) 2. Table 3.1 lists some relevant z parameters 

1 

Figure 3-6: Peterson functions f(z) for b quark using ~b = 0.006 and for c quark using 
cc = 0.06 where z = PHll/PQ,, (Q = b or c). 

associated with the two Peterson functions for b and c quarks. 
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Quark Peak zpeak Average (z) Width AZ 
b 0.93 0.83 0.14 
C 0.78 0.67 0.18 

Table 3.1: Peak, average and width of the default SLD Peterson functions for b and 
c. 

The Kartvelishvili (or KLP) Model 
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Figure 3-7: Kartvelishvili functions f(z) for b and c quark where z = PHII/PQ,, (Q = b 
or c). 

Kartvelishvili, Likhoded, and Petrov analyzed the inclusive charm spectra in Ref. [49]. 

Assuming the validity of the reciprocity relation [50] at z N 1, 

f(4 = DfW = G(4, (3.33) 

where f(z) = II:(Z) is the c fragmentation into a charm hadron D, and F;(x) is the 

c quark density in the charm hadron II, they proposed a new charm fragmentation 
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function 

f(4 = 
r(2 + y - a, - Qq) 

r-(1 - cy,)l?(1+ y - CYqf 
--a, (1 - q-a, ) (3.34) 

Further, assuming that (3.33) holds for all z, the charm fragmentation function be- 

comes 

f(z) = 2023(1- z), (3.35) 

which peaks at z - 0.75. Generalizing this result to the case of b quark, the fragmen- 

tation function is 

f(z) = 11029(1 - z), (3.36) 

which peaks at z - 0.90. The functional forms of the two fragmentation functions 

in this model are shown in Figure 3-7. As in the Peterson model, both c and b 
fragmentation functions peak at large z, with the c fragmentation function softer than 

the b fragmentation function. Table 3.2 lists some relevant z parameters associated 

with the Kartvelishvili functions for b and c quarks. Compared with the Peterson 

b quark fragmentation function, the Kartvelishvili function is significantly narrower 

(Lz = O.lO), peaks at a lower z value, and almost vanishes for z < 0.4. For charm, 

the Kartvelishvili function is not dramatically different from the Peterson function. 

Quark Peak zpeak Average (x) Width LIZ 
b 0.90 0.89 0.10 
c 0.75 0.67 0.18 

Table 3.2: Peak, average and width of the Kartvelishvili functions for b and c. 

The Collins and Spiller Model 

Collins and Spiller pointed out [51] that the large .z behavior of the Peterson model, 

f(z) - (1 - z)~ as z+ 1, is in conflict with the dimensional counting rules [52, 531 
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and reciprocity which lead one to expect that f(z) N (1 - z) in the limit z -+ 13. 

This motivated them to propose a new heavy quark fragmentation model which is 

consistent with reciprocity, 

f(z) 21 N(e + E&)(1 + z”>(l - ; - &)-? (3.37) 

with EQ defined as 

CQ = (k;)/M; - (0.45/hfQ)2, (3.38) 

where unit is in GeV. For A& E 1.5 GeV/c2 and Mb 21 4.5 GeV/c2, we have E, N 0.09 

and Eb - 0.010. The corresponding c and b fragmentation functions are shown in 

Figure 3-8. 

1 

0.5 

0 

Figure 3-8: Collins and Spiller functions f(z) for b quark using & - 0.010 and for c 
quark using cc N 0.09 where z = PHI~/PQ,, (Q = b or c). 

Table 3.3 lists some relevant 2 parameters associated with the Collins and Spiller 

3The authors of Ref. [58] pointed out that the correct dimensional counting rules for QCD do in 
fact give a limiting behavior of (1 - z)” for the fragmentation function. The Kartvelishvili model 
discussed below also behaves like (1 - z) as z + 1. 
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functions for b and c quarks for the same values of the parameters E”b and E, mentioned 

above. The width of the z distribution for b quark, AZ = 0.18, is larger than that 

of the Peterson function used at SLD. The average z is smaller than the Peterson 

function. 

Quark Peak zpea~ Avearge (z) Width AZ 
b 0.92 0.78 0.18 
C 0.80 0.67 0.19 

Table 3.3: Peak, average and width of the Collins and Spiller functions for b and c. 

3.6.2 Perturbative QCD Approach 

As the fragmentation process is intrinsically non-perturbative, it may seem strange 

that heavy quark fragmentation function can be studied based on perturbative &CD. 

In fact, in the limit of large heavy quark mass MQ, there is a cutoff on the minimum 

allowed opening angle of gluon emission relative to the heavy quark momentum [45]. 

The opening angle, 19,, grows with the quark mass: 19, m MQ/EQ which is significantly 

larger than R/EQ. The fragmentation of a very heavy quark will therefore be cal- 

culable to arbitrary order of c~~(rnt) in perturbation theory [54]. MQ must be much 

larger than A because effects which are in powers of A/MQ are neglected altogether 

in a perturbative calculation. 

In these perturbative QCD calculations, all terms of the form [~Jog(Q2/M&)]~ 

(n = 1,2, . ...> are summed in the leading-order (LO) [45], while all Cts[Q,log(Q2/Mg)]n 

terms are summed in the next-to-leading order (NLO) [54]. In a full perturbative 

analysis, results depend on the choice of the scale AQCO, since the perturbative and 

the non-perturbative contributions do not scale with the mass in the same way. This 

is a major theoretical uncertainty that cannot be eliminated unless one were to sum 

results at all orders of as, where the result would not depend on AQc~ [55]. 
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Unfortunately, the known heavy quarks (c and b) are not heavy enough for the 

purely perturbative description to be sufficient to describe the data well, although this 

approach has helped us understand many interesting features of heavy quark produc- 

tion. In the case of large, but limited, heavy quark mass, one expects non-perturbative 

effects to be important. It was pointed out long ago that non-perturbative effects 

should obey linear scaling in the mass of the heavy quark and should not depend on 

the mass scale Q” [43, 44, 451. In addition, the distinction between perturbative and 

non-perturbative regime is no longer possible as x + 1, where x is the energy of the 

heavy hadron scaled by the beam energy. Unfortunately, these effects must be taken 

into account in order to describe the experimental data to good precision. Most phe- 

nomenological fragmentation models were built to parameterize the non-perturbative 

contributions. However, model-dependent parameterizations are only as good as their 

phenomenological assumptions. 

For a large, but limited, heavy quark mass, non-perturbative contributions effec- 

tively shift the peak of the fragmentation function f(z) to a lower z value. For the b 

quark, for example, the measured B hadron energy spectrum, fB(x) peaks near 0.82, 

but the perturbative analysis shows that z always peaks above 0.92 even when QCD 

parameters such as A QcD and the quark mass are varied in a wide range [54]. 

3.6.3 Heavy Quark Effective Theory Approach 

A model-independent analysis [56] was proposed by Jaffe and Randall, within the 

framework of heavy quark effective theory (HQET), to extract the non-perturbative 

contribution. This analysis keeps the distinction between perturbative and non- 

perturbative physics explicitly. The matrix elements of the heavy quark operators, 

where the non-perturbative features originate, is evaluated at low renormalization 

mass scale (at the MQ scale). Heavy quark symmetry is exploited to expand the mo- 

ments of the fragmentation function in powers of h/hfQ, where A is some QCD scale. 

One can then evolve these moments via perturbative QCD to the high Q2 at which 
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they are measured. The mass expansion coefficients are independent of hfQ and are 

therefore the same for both c and b quarks. This provides a test of the heavy quark 

symmetry. Randall and Rius analyzed the low moments of the c and b fragmentation 

functions [57]. In this approach, moments rather than the shape of the fragmentation 

function are of most interest, based on the understanding that the shape of the heavy 

quark energy distributions are generally less well-measured than their means. 

The advantage of this approach, as opposed to the full perturbative approach, is 

addressed in Ref. [56]. In a full perturbative calculation, it seems justified to per- 

turbatively evolve the fragmentation function between the two mass scales Mi and 

Q27 since both Q and MQ are much greater than the QCD scale A. However, this is 

not always possible. As x + 1, the QCD coupling cy, is magnified by Sudakov log- 

factors which are of order log(1 - x), making the effect essentially non-perturbative. 

Further analyses show that non-perturbative effects cannot be neglected for z such 

as (1 - x)Q2 N A2. 

In Ref. [58], the perturbative QCD fragmentation function for a heavy quark to 

fragment into heavy-light mesons are calculated explicitly within the context of HQET 

and using the heavy quark mass expansion in the heavy quark limit of MQ + 00. The 

fragmentation functions for S-wave pseudoscalar and vector mesons are calculated to 

NLO in the ~/MQ expansion. The method breaks down when 1 - z < Mt/MG. The 

problem with this model is that it becomes unphysical (negative) at z near 1 unless 

one of the phenomenological parameters C’s is set to 1, leaving this model less at- 

tractive as a phenomenological fragmentation model. In fact, when Ca = 1, there is 

essentially no need for ~/MQ expansion at all, and the model can be replaced by the 

complete perturbative QCD fragmentation functions (still in the context of HQET). 

We refer to this as the BCFY model later in this thesis. 
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3.6.4 Summary 

In sum, perturbative calculations have been successful in explaining several important 

features of heavy quark fragmentation using field-theoretic rather than phenomeno- 

logical terms. However, the heavy quark mass is not large enough and hence puts 

a limit on the kinematic range in which perturbative treatments are valid. In spite 

of our good understanding of perturbative &CD, the difficulty in carrying out higher 

order perturbative QCD calculations somewhat affects the precision of perturbative 

predictions. But this is not the greatest problem we are facing. Non-perturbative 

effects are the problem. They are not negligible. They have been parameterized, 

but not calculated, in various model-dependent or model-independent approaches. 

We simply do not know how to calculate non-perturbative contributions, but we do 

know certain features of these contributions. The success of some widely used phe- 

nomenological models indicate that there is still some distance between where we 

are now and where we hope to be: a complete field-theoretic understanding of the 

non-perturbative aspects of fragmentation, without invoking any additional, usually 

phenomenological, assumptions about the process. Until then, we probably will not 

fully understand why certain phenomenological models work well but others do not. 

In this thesis, we do not resolve any of the great problems we are facing. Instead, 

we try to make an important experimental contribution to this subject. We make a 

precise measurement of the shape of the bottom quark fragmentation function at the 

2’ mass scale and test various existing fragmentation models using our data. 



Chapter 4 

Experimental Apparatus 

The data of this analysis were collected by the SLC Large Detector (SLD) experiment 

of the Stanford Linear Collider (SLC) at the Stanford Accelerator Center (SLAC) in 

Stanford, California. The SLAC Linear Collider [59] is a unique single-pass electron- 

positron (eS -e-) collider that produces longitudinally-polarized 2”s in the collisions 

of electrons and positrons, taking advantage of SLAC’s 50 GeV electron accelerator. 

The SLC Large Detector (SLD) is a state-of-the-art full coverage multipurpose detec- 

tor placed at the interaction region. The e+e- collisions take place at the geometrical 

center of the SLD. This chapter presents an overview of the main features of the SLC 

and the SLD. 

4.1 The SLAC Linear Collider 

The SLC is the world’s only linear e+e- collider [60]. The design of the SLC is shaped 

by the physics goal to produce polarized 2’ bosons in e+e- collisions at the center of 

the SLD detector. The SLC is designed to 

l generate polarized electron beam 

l generate positron beam 
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Figure 4-1: The SLC layout. 

l focus the electron and positron bunches to small sizes 

l accelerate the electron and positron beams (up to N 50 GeV). 

l focus the electron and positron bunches to very small sizes 

l make electron and position collide 

The layout of the SLC is shown in Figure 4-1. The SLC consists mainly of the po- 

larized electron source, the damping rings, the linear accelerator (Linac), the positron 

source, the collider arcs and the final focus. 

4.1.1 The Polarized Electron Source 

The rate at which new pulses of electrons are injected into the SLC is limited to 

120 Hz because the pulses have to be stored in a damping ring for 8 msec to reduce 

their phase space volume and packing more pulses into the damping ring introduces 

bunch lengthening instabilities [61]. The electrical power required for generating the 

needed RF pulses scales linearly with the repetition rate. In typical operation of 

the SLC, two longitudinally polarized electron bunches are generated at the start of 

each of the 120 cycles, each containing as many as 6x lOi electrons. The polarized 

electron source is shown in Figure 4-2. The electron beam is generated by an electron 
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Figure 4-2: The Polarized Light Source. 

gun containing a strained-lattice gallium-arsenide (GaAs) cathode [62], which photo- 

emits longitudinally polarized electrons when illuminated by circularly polarized laser 

beam. The helicity of the photons in the circularly polarized of the laser beam is 

determined on a pulse-by-pulse basis by the sign of the voltage applied to a Pockels 

cell through which the linearly polarized beam passes. The orientation of the electron 

polarization is determined by the helicity of the incident photons, which in practice is 

selected by a pseudo-random sequence on each machine cycle in an effort to cancel out 

any periodicities in the accelerator performance between the two polarization states. 

Electron Gun and Photo Cathode 

A unique capability of SLC is to produce polarized Z” at the Interaction Point (IP). 

This is made possible by the use of Gallium-Arsenide (GaAs) photo-cathodes [62] 

in the electron gun at the electron injector. Circularly polarized laser-light (from a 

Nd:YAG-pumped Ti:sapphire laser) is used to selectively excite transitions of elec- 

trons into longitudinally-polarized states in the conduction band of the photo-cathode 
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material. An energy state diagram is shown in Figure 4-3. 

For the 1992 physics run, a bulk GaAs cathode was used. This cathode had a 

theoretical maximum polarization of SO%, and the average polarization achieved was 

about 22%. For 1993 and 1994/95 runs, a strained-lattice cathode of a thickness 

of only about 300 nm consisting of GaAs grown on a GaAsP (Gallium-Arsenide- 

Phosphide) substrate was used. The mismatch in the lattice spacings of these two 

materials puts a strain on the epitaxial GaAs. This strain serves to break the degen- 

eracy of the rnj = 3/2 and rnj = l/2 levels of the Psp valence state and theoretically 

allows for 100% polarization. For the 1993 run an average of 63% polarization was 

achieved at the IP [63]. In the 1994-95 run, an even thinner epitaxial layer of 100 nm 

was used and this boosted the delivered polarization to 77%. 

4.1.2 The Damping Rings 

The North and South damping rings (NDR and SDR) are located near the electron 

source. The electrons coming out of the electron source enter the NDR and experience 

synchrotron radiation. This dissipative process reduces the phase space (emittance) 

and the spread of the beam. The reduced spread in both momentum and position 

space allows for fewer losses during acceleration, lower backgrounds near the inter- 

action point within the SLD detector, and higher luminosity. The radiative losses 

are compensated by short accelerator sections. The particles settle in stable orbits 

determined by the damping ring parameters and the angular divergence and bunch 

length decreases. 

The electron beam could not pass through the NDR and still be longitudinally 

polarized because the energy dependent horizontal spin precession about the vertical 

axis due to the bending fields would have effectively randomized the spins [64]. In 

order to preserve the electron polarization within the damping ring, the electron spin 

vector must be pointing parallel to the direction of the magnetic field of the bending 

magnets. This is achieved by passing the beam through a solenoid field as it passes 
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Figure 4-3: The energy state diagram for bulk GaAs (top) and the changes it under- 
goes when the lattice is strained (bottom). The polarization is due to the preference 
of certain excitation modes; the relative sizes of the matrix elements are shown in the 
circles. For the bulk GaAs, the maximum theoretical polarization is 50%. For the 
strained lattice, the maximum theoretical polarization is 100%. 



72 4. EXPERIMENTAL APPARATUS 

through the Linac-To-Ring (LTR) transfer line to enter the damping ring. The spin 

vector is transformed from parallel to the direction of the motion into perpendicular 

to the plane of the damping ring by spin rotators. 

Because the positrons have a larger energy spread as they are collected from photo- 

conversion at the positron source, they must be damped in the SDR for two machine 

cycles (about 16.6 msec) while the electrons are damped for only 1 machine cycle 

(about 8.3 msec). There are no spin rotators because the positrons are unpolarized. 

A transverse polarization builds up, but due to the very small storage time compared 

with the Sokolov-Ternov polarization buildup time [65] of about 960 seconds, the 

transverse polarization of the positron is negligible. Some parameters of the damping 

ring are listed in Table 4.1. 

Energy 
Circumference 
Revolution Frequency 
RF Frequency 
Bending Radius 
Energy Loss/turn 
Damping Times r, 

Damping Times rY 

1.19 GeV 
35.270 m 

8500.411 kHz 
714.000 Mhz 

2.0372 m 
93 keV 

3.32 f 0.28 msec (e-) 
3.60 f 0.15 msec (e+) 
4.11 f 0.31 msec (e-) 
4.17 f 0.14 msec (e+) 

-3 

Table 4.1: Parameters of the SLC damping rings [66, 671. 

After existing the Damping Rings, the beams had a flat profile (E~/Q). The flat 

beam profiles produced small spot sizes at the SLC IP resulting in a significant in- 

crease in luminosity over the 1992 SLC run, which employed the round beam profiles. 

4.1.3 The Linac 

The 2-mile long Linac is a linear copper pipe divided into about 244 40-feet-long 

sections. Each section is made of 480 one-inch thick copper plates. The required 
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energy to accelerate the particles is supplied in form of microwave pulses by a 65 MW 

peak-power, 2,856 GHz klystron [68], which produces 120 5-psec-long RF pulses every 

second. The microwaves produced by the klystrons are guided by copper waveguides 

to the beampipe which is 25 feet under ground. The microwaves create an alter- 

nating field in the cavities which is in phase with the passage of the electrons and 

the positrons such that these particles always experience an accelerating field. An 

accelerating gradient of 17 MeV/m is achieved in the copper structures, providing a 

possible single beam energy of 46.5 GeV. 

4.1.4 Positron Production 

During each machine cycle, three bunches of particles are accelerated down the Linac. 

The first two bunches are the positrons and the electrons which will be brought into 

collision at the IP. The third bunch, known as the “scavenger” electron bunch, is 

kicked off the main Linac about 2/3 the way down the Linac and is diverted into 

the positron source where collisions with a Tungsten positron production target take 

place. The resulting electromagnetic showers produce both the electrons and the 

positrons. 

Positrons in the energy range of 2-20 MeV are captured and transported back 

to the front end of the Linac in a separate beam-line and injected into the South 

Damping Ring (SDR), where they are stored for 16.6 msec before the next machine 

cycle. The positron target typically yields one positron per incident electron. 

4.1.5 The Arcs 

The electrons and positrons are accelerated to an energy of about 46.5 GeV per 

particle when they reach the end of the Linac and enters the Beam Switch Yard 

(BSY), where they are diverted into two opposing arcs of 1 kilometers in length: the 

South and North collider arcs, respectively. The arcs contain a sequence of dipole and 

quadrupole magnets to keep the beam in circular orbits. The bending of the beams 
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causes an energy loss of nearly 1 GeV per particle due to synchrotron radiation before 

they enter the final focus region of the SLC. Since the arcs do, not lie in a horizontal 

plane, the beam transport is complicated by motion in both directions perpendicular 

to the arcs. 

The use of flat beams starting in 1993 disallowed the use of Linac solenoids to 

orient the spin vector at the IP. The introduction of large amplitude betatron oscil- 

lations in the North Arc (so called spin bumps) was effective to orient the spin vector 

at the IP [69]. 

4.1.6 The Final Focus 

To produce a reasonable luminosity and a stable IP the SLC must make up for low 

repetition rate of a linear collider due to its single-pass characteristics by significantly 

reducing the beam size and the overlapping cross section between the electron and 

positron beams. This is achieved by the final focus. In the final focus, the two 

beams are compressed to a transverse size of roughly 0.5 x 2.3 pm2 by a pair of 

superconducting quadrupole triplets. The longitudinal size is about 700 pm. The 

final quadrupole is 1.5 meters from the IP. The collisions take place at the center of 

the SLD detector. The length of the bunch at the IP is approximately lmm [60]. 

The small and stable IP is an important advantage of the SLC. The final focus 

was upgraded before the 1994-95 run to reduce the chromatic effects on the focal 

length [70]. 

4.1.7 The Compton Polarimeter 

The Compton polarimeter provides a precise measurement of the electron beam polar- 

ization by measuring the asymmetry in polarized Compton scattering at the Compton 

IP located approximately 30 meters downstream of the SLC IP [71]. The spin vector 

does not precess between the SLC IP and the Compton IP because there is only 

quadrupole focusing magnets and no dipole bending magnets. 
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Figure 4-4: The Compton Polarimeter. 

The layout of the Compton polarimeter is shown in Figure 4-4. The Compton po- 

larimeter has two main components: a laser and an electron spectrometer. The laser 

produces circularly polarized photons with a wavelength of 532 nm, corresponding to 

a photon energy of only 2.33 eV. The electrons Compton scatter off the photons and 

then are bent by the analyzing dipole magnets before entering the electron spectrom- 

eter, the Compton Cerenkov Detector. 

The Compton scattering between a circularly polarized photon and a polarized 

electron has a cross-section (0~) which depends on the spin-states of the electron and 

the photon. We can define an asymmetry function AC(E) such that 

dac da; 
- = -& + ~&&@‘)I, dE (44 

where daE/dE is the unpolarized Compton cross section, P, is the electron polar- 

ization, and Pr is the laser polarization. The asymmetry function Ac(E’) is only 

a function of the center-of-mass energy, E’, of the scattered electron which can be 
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calculated theoretically. The beam polarization, P,, can be extracted from 

A 
m 

= Nobs(Jz = 3/2) - Nobs(Jz = l/2) 
(4.2) 

where A, is the observed asymmetry, Nabs is the number of events observed in the 

two possible spin configurations, and ad is the analyzing power of the detector used 

to measure the scattered electron energy. This analyzing power depends on the trans- 

port optics of the electron beam from the Compton IP to the Compton polarimeter 

detectors. 

4.1.8 Energy Spectrometer 

The beam energy at SLC is measured on a pulse-by-pulse basis by a pair of wire imag- 

ing synchrotron radiation detectors (WISRD) [72]. The WISRDs are located between 

the IP and the beam dumps. The incoming beam is deflected by two horizontal bend- 

ing magnets. These magnets each produce a swath of synchrotron radiation which 

is imaged by a multi-wire proportional chamber (MWPC). The wire spacing is 100 

pm which results in an energy resolution of 22 MeV. The energy spread is measured 

less accurately (typically 50-100 MeV). It is better to estimate it from wire scans in 

high-dispersion locations in the arcs. In between the two horizontal bending magnets 

is a precisely calibrated vertical bending magnet. This vertical magnet deflects the 

beam by an angle, which is proportional to its energy and can be determined by 

the distance between the two swathes imaged on the MWPC. The average center 

of mass collision energy measured for the 1993 run was 91.26 * 0.02 GeV and the 

energy spread was 110 MeV [73]. The corresponding value for the 1994-95 run was 

91.28 f 0.02 GeV with a spread of only 60 MeV. 

During the 1997-98 SLC run, an energy scan around the Z”-pole was performed. 

It was found that the beam energy has been 46 MeV off the Z”-pole. Systematic 

corrections to measurements such as the ALR were performed. 
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4.2 The SLAC Large Detector 

The SLC Large Detector (SLD) is the only detector that takes data at SLC because 

the SLC has only one Interaction Point (IP). Proposed in 1984, SLD was designed as 

a general purpose detector with nearly complete solid angle coverage around the IP. 

A state-of-the-art high energy physics detector, SLD is a second generation detector 

at SLC following the upgraded PEP detector MARK II. Figure 4-5 and Figure 4-6 

show a cut-away and a quadrant view of SLD. The specification of the SLD detector 

is listed in Table 4.2. 

To achieve almost full solid coverage, SLD contains two main geometric sections: 

the barrel and the end caps. The barrel is a cylinder of 4.5 m in radius and 10 m in 

length. The two end caps are mounted on the two large doors which close off the two 

sides of the barrel cylinder and can be opened during down times for access. SLD 

covers 98% of the solid angle. 

SLD consists of several subsystems: a precision vertex detector (VXD) and a 

high resolution drift chamber (CDC) for tracking of charged particles, a detector 

for particle ID over a wide range of momentum (CRID), a calorimeter with hadron 

calorimetry (LAC) which provides good e/r and nKp discrimination, a 0.6 Tesla 

conventional solenoid, and an instrumented flux return for muon identification (WIC). 

All subsystems have optical fiber transmission cable connection for readout to gain 

high bandwidth, low noise transmission of data. Since the barrel region of the detector 

has been used and understood very well, we will focus on the description of the barrel 

region. 

The Standard SLD Coordinate System is defined as follows: the z-axis is along the 

positron direction (North). The x-axis is perpendicular to the incoming beams and 

lies in the horizontal plane facing West. The y-axis is in the vertical plane pointing 

upwards, and the (x, y) origin is on the beam axis. Sometimes we also refer to the 

cylindrical coordinates in which the plane perpendicular to the beam axis is called 

the r4 plane where T is the radius from the beam axis and 4 is the azimuthal angle 
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Item 
Drift Chamber System 

Spatial Resolution 
Magnetic Field 

Momentum Resolution 
0( l/p) measurement limit 

0 (p) /p Coulomb scattering limit 
Two-Track Separation 

Specification 

< lOOpurn 
0.6 Tesla 

1.3x 10d3 (GeV/c)-’ 
1 - 2 x 10-2 

lmm 
Calorimetry 

Electromagnetic 
Energy Resolution gE/ E 8%/,/m 

Segmentation N 33 mrad x 36 mrad 
Angular Resolution - 5 mrad 

Hadronic 
Energy Resolution O.E/ E 55%/dE(GeV) 

Segmentation - 66 mrad x 72 mrad 
Angular Resolution - 10 mrad 

Vertex Detector 
Segmentation 22 pm x 22 pm 

Precision Transverse to Line of Flight 4 - 20pm 
Two-Track Separation 40pm 
Particle Identification 

eh 1 x 10-a 
p/r (above 1 GeV) 2 x 10-s 

K/T (up to 30 GeV) 1 x 10-3 
K/p (up to 50 GeV) 
Solid Angle Coverage 

Tracking 

1 x 10-3 

97% 
Particle Identification 

EM Calorimeter 
Hadron Calorimeter 

97% 
2 99% 

97% 

Table 4.2: SLD specification [74]. 
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Figure 4-5: The SLD detector (isometric view). The end-caps have been removed for 
clarity. 
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Figure 4-6: The SLD detector (quadrant view). 
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Layer Number Radius (cm) from the beam line 
1 2.9625 
2 3.3625 
3 3.7625 
4 4.1625 

Table 4.3: Radial distances of each VXD2 layer from the beam line 

with respect to the z-axis; 0 is the angle with respect to the positive z-axis, 

4.2.1 The Vertex Detector: VXD2 and VXD3 

The small SLC beam pipe allows detectors to be placed within a radius of 25 mm from 

the beam axis. This unique feature offers the opportunity to detect heavy hadrons 

particles efficiently. 

Two vertex detectors have been used in data-taking at SLD: VXD2 (92-95) and 

VXD3 (96-98). Both VXD2 and VXD3 are Charged-Coupled Devices (CCD) based 

vertex detectors designed to provide the high tracking and vertexing resolutions 

needed by SLD physics analyses. An introduction to the CCD can be found in, 

for example, Ref. [75]. Based on the experience and lessons learned from VXD2, 

VXD3 is a major upgrade to match the needs of SLD physics objectives, which would 

have been out of reach just using VXD2. VXD2 is only briefly described here because 

data taken using VXD2 were not used in this analysis. VXD3 and its comparison 

with VXD2 is described in more detail in the next chapter. 

The VXD2 

The VXD2, shown in Figure 4-7, is a novel CCD vertex detector. The VXD2 is 

constructed from sixty 9.2 cm-long ladders arranged into four concentric cylinders 

which are held in place by a beryllium shell [75]. Radius of each cylinder is listed in 

Table 4.3. CCDs are used as the medium for detecting the deposition of ionization 
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Figure 4-7: The SLD VXD vertex detector. 

from charged particles passing through the devices. Eight CCDs are mounted on 

each ladder with four on each side to maintain symmetric polar angle. CCDs are 

attached to a ceramic substrate motherboard using thermoplastic adhesive. The 

overall thickness of each layer is 1.15% X0 (radiation length) ‘. Electrical contact to 

the CCDs are made by wire-bonds to the motherboard, and to the end of the ladders 

by custom made micro-connectors. 

The two inner layers are made up from 13 ladders and the two outer layers consist 

of 17 ladders. Since each layer only covers N 60% of the azimuthal angle ($), layer 

two is oriented to cover the gaps in layer one and similarly for the outer layers. Inside 

the inner-most CCD layer is the VXD cooling jacket and the thin beryllium cylinder 

which serves as the beampipe. The total radiation thickness of the material between 

the IP and the first CCD layer is .71% X0. 

I1 radiation length (XC,) is the mean distance over which a high energy electron retains only a 
fraction of l/e of its original energy by bremsstrahlung [76]. 
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Each CCD is N 1 cm square which contains 222,530 (385 x 578) 22 x 22 pm2 

square pixels. The depletion depth of each pixel is 5 pm. Charge collection occurs 

over the whole depth of the epitaxial layer (- 15 pm) which allows excellent position 

resolution even for tracks passing through the detector at large dip angles. 

VXD2 is operated at low temperature (- 190K) to suppress dark current and the 

loss of charge transfer efficiency due to radiation damage [77]. Housed in a very low 

mass cryostat, the VXD2 is cooled with nitrogen evaporated from liquid, which is 

piped to and from the detector by means of vacuum jacketed pipes. 

The vertex detector and the cryostat make up the R20 module which is clamped 

to each end of the CDC, by means of a pair of aluminum support cones. The R20 

module is shown in Figure 4-8. 

Front-End Beam- 
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Figure 4-8: The R20 Module. 

The readout rate of VXD2 is 2 MHz, the shaping time of approximately 300 ns 

giving a noise performance of < 100 e-(rms). The VXD2 analog output is read 

out on strip-lines to local electronics which transmit the data via twisted pairs to 

analog-to-digital converters on top of SLD. 

On the average, 2.3 VXD (pixel) hits are obtained for each charged track passing 
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through the detector. At least two hits are possible for any track within Icos01 < 0.75. 

Due to the poor lever-arm between measurements, the impact parameter resolution at 

the IP for a track of momentum p and polar angle 8 w.r.t. the z-axis (beam direction) 

was limited to 

avfJ = 11 $ 70/(psin3/2 @pm, 

a TZ = 38 $7O/(p sin3j2 B)/.~rn, (4.3) 

similar to that of a silicon micro-strip vertex detector at LEP [79]. 

We will discuss the upgraded VXD3 in the next Chapter. 

4.2.2 The Drift Chamber 

The SLD Drift Chamber (CDC) is designed to provide high resolution momentum 

and position measurements of charged particles [78]. It consists of one Central Drift 

Chamber (CDC) and four end-cap drift chambers (EDC). 

The Mechanical Design 

The CDC is a cylindrical annulus which occupies the volume radii from 0.2 m to 

1.0 m with a length of 2.0 m centered about the interaction point, a region where 

the magnetic field is almost uniform (0.6 Tesla), which is suitable for the tracking of 

charged particles. Two end plates are supported by the inner and outer cylindrical 

walls. The drift chamber is filled with drift gas which is a mixture of 75% CO2, 21% 

Argon, 4% Isobutane and 0.2% H20. 6500 25 pm-diameter tungsten sense and dummy 

sense wires and 31360 field and guard wires are strung between the two end-plates to 

a tension of approximately 100 g for sense wires and 400 g for field and guard wires. 

The wires are radially grouped into 10 “superlayers” of drift cells. The orientation of 

wires in the 10 superlayers alternate among axial layers (A), U-layer (U) and V-layer 

(V), resulting the following pattern AUVAUVAUVA for the ten layers (Figure 4-9). 
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Figure 4-9: SLD’s Central Drift Chamber (CDC). 

The wires in an axial layer are parallel to the beam axis, while the wires in stereo 

layers are tilted at an angle of 42 mrad and -42 mrad for U and V layers, respectively. 

The cell design is chosen to satisfy the requirement that a single track is measured 

by each sense wire to better than 100 pm. This resolution permits an overall detector 

resolution of c~~/p = 0.0015~~ (p in GeV/c) for high momentum tracks. Each cell is 

about 5 cm along the radius and 5.9 cm wide at the midpoint, and contains a set of 

8 sense wires immediately surrounded by 24 guard wires and 27 field shaping wires 

which defines the cell boundaries. Two additional guard wires (dummy sense wires) 

are placed at the top and bottom of a cell to help shape the electrostatic fields of the 

cell. The entire cell is tilted by 5” away from the radial direction. 

Voltages applied on the guard wires is approximately -3.4 kV, while those on 

the field wires may run up to -7 kV. The field wires establish precise electrostatic 

fields that cause the electrons from ionizing particles to drift onto the sense wires 

where they undergo amplification in the gas via the avalanche mechanism (Figure 4- 

10). The drift speed in COz-Isobutane is 8 pm/ns at the expected field values and 

is proportional to the field strength in the drift region. Changes in voltage or gas 
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Figure 4-10: The field map for a drift cell of the CDC. The left figure shows lines 
of constant potential (bold) and lines of constant field strength(thin) within a CDC 
cell. The right figure shows a drift path of charges caused by the passing of a charged 
track through the cell. 

density can change the drift velocity seriously degrading the position resolution. The 

transverse distance of a track from an individual sense wire is measured to an intrinsic 

resolution of 70 pm, but the uncertainties in the wire locations and changes in the 

drift speed degrade the resolution to approximately 100 pm. 

The CDC Readout 

Both ends of each sense wires are instrumented with electronics so that charge division 

can be used to measure the z coordinate of a hit. Since more than one hit can 

contribute to the total integrated charge emerging from the two ends of a wire, to 

distinguish between different hits, waveform sampler modules are used to record the 

pulse shapes at each end of the wire as a function of the time. Hits whose drift 

distances are different by more than 2 mm can be separated by the integrated charges 

alone. But for hits whose drift distance difference is less than 1 mm, the measurement 
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of the z-coordinate is degraded. 

Good z-position resolution improves the measurement of the track polar angle 

and thus improves the ability to link tracks from the drift chamber with the vertex 

detector hits. The resolution on z-position improves as the stereo angle increases, 

but the resolution on the position of the projected hit in the mid-plane of the chamber 

(the z-y plane at z = 0) becomes worse. These two criteria limit the stereo angle to 

lie between 35 and 50 mrad. The stereo angle chosen provides adequate resolution in 

the x-y plane for efficient linking. 

Pattern Recognition 

The track-finding process begins at the superlayer level. Straight lines are fit to 

drift chamber hits within a given superlayer. Hits within a superlayer which lie on a 

straight line (or an origin-constrained circle) form a track segment called vectored hit 

(VH). A minimum of 3 hits must be present in a superlayer to reconstruct a vectored 

hit. The positional accuracy in the drift direction is about 40 pm, and the pointing 

accuracy is about 3.5 mrad, both of which scale as the inverse square-root of the 

number of hits within the vectored hit. 

Charge division is used for pattern recognition only after vectored hits have been 

found and projected onto the mid-plane of the chamber. If the x-position of a hit 

is found, vectored hits from the stereo superlayers are projected onto the mid-plane 

of the chamber. These stereo vectored hits can be used along with those originating 

from the axial layers in linking these vectored hits. 

Pattern recognition then link these track-segments or vectored hits together to 

form candidate tracks. Combinations of 10 consistent axial vector hits are considered 

first. The combination with the best x2 is taken as a candidate track and all involved 

vectored hits in this combination are removed from the list of the input vectored 

hits. Then this track-finding process is repeated. Once all lo-VH combinations 

are exhausted, 9-VH combinations are considered. The number of VHs decrease by 
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one each time all tracks in the current number of VHs are exhausted. This search 

procedure continues until all tracks with at least 3 VHs are found. 

Track Fitting 

Once all tracks are found by the pattern recognition, a track-fitting procedure is ap- 

plied. Starting with the estimated track parameters from the pattern recognition, 

the track-fitter swims a helical trajectory through the detector, modifying the helical 

parameters according to the effects of multiple scattering, energy loss, and local vari- 

ations in the magnet field. A x2 is formed by comparing the proposed trajectory with 

the current parameter and their errors. The error on the helical parameters are esti- 

mated from the derivatives of the x2 with respect to each parameter. The complete 

correlation matrix (error matrix) of these parameters is formed. Local minimum x2 

is sought iteratively using these parameters, the their errors, and their correlations. 

Moment urn Resold ion 

Both the intrinsic hit resolution and multiple scattering contribute to the total mo- 

mentum resolution of the CDC, in which the two contributions are added in quadra- 

ture because they are not correlated. The momentum resolution can be estimated 

either from the resolution on the hits or from the resolution on the reconstructed 

track momentum. Since the multiple scattering term is negligible for high momen- 

tum tracks, muon tracks in Z” -+ p+p- decays can be used to determine the term 

that is due to the intrinsic hit resolution. In the absence of hard photon radiation, 

muon tracks are nearly back to back and have identical momenta of 45.6 GeV/c. In 

addition, muon tracks in the central region of the CDC ((~0~81 < 0.75) leave hits 

in essentially all layers and are expected to have better resolution than those which 

do not leave hits in all layers. A Gaussian fit to the Q/P distribution for muons, 

where Q is the charge and P is the momentum, provides the intrinsic resolution on 

the curvature measurement. 

Cosmic ray tracks with varying momenta which pass through the central part of 
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the CDC can be used to measure the multiple scattering term. The two halves of 

cosmic rays in the CDC have almost identical momenta and thus allows the measure- 

ment of the resolution as a function of the momentum of cosmic track. The measured 

CDC track resolution is 

UPL _ o.oo952 - -- 
uvPl - p”I 

1 P2, 
+ 0.00492. 

The momentum resolution on the CDC + VTX track is [BO] 

(4.4 

P-5) 

The momentum resolution used in the Monte Carlo can be cross-checked by com- 

paring the distribution of invariant mass of long-lived particles such as J$‘s for Monte 

Carlo and for the data. Any discrepancy between the widths of the mass peaks 

indicates inaccurate estimate of momentum resolution in the Monte Carlo. 

The End-cap Chambers 

The End-cap Drift Chambers (EDC) are made of two sets of end-cap detectors located 

in the forward region (0 > 45”). The SLD reconstruction code has not been tuned to 

reconstruct tracks in the EDC. 

4.2.3 The Cerenkov Ring Imaging Detector (CRID) 

Particle identification (ID) is very important for the study of heavy quark decays. 

Combined with high resolution tracking and vertexing, the particle ID further im- 

proves the capability for tagging heavy hadrons and their flavors. At SLD, this is 

achieved by the Cerenkov Ring Imaging Detector (CRID) [74, 811. The CRID pro- 

vides separations of r/e up to 6 GeV/c and r/K/p up to 30 GeV/c [82]. 

A charged particle emits cones of Cerenkov light in a medium at a specific angle 
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(Cerenkov angle) with respect to the momentum of the particle when the speed of 

the particle exceeds the speed of the light in the medium. The Cerenkov angle 8~ is 

given by COS~C = l/(,0 n ), w h ere n is the refractive index of the medium and p is the 

speed of the particle. Measurement of the Cerenkov angle determines the velocity of 

the particle and therefore the mass of the particle, using the momentum information 

provided by the CDC. The mass of the particle almost uniquely determines the type 

of the particle. Particle ID is therefore achieved. 

Barrel CRID 

The Barrel CRID is a cylindrical annulus which contain 40 modules installed az- 

imuthally around the CDC to provide complete coverage for the barrel region. Each 

module is divided into two independent longitudinal sections, each of which is readout 

at its outer end. 

Shown in Figure 4-11, a barrel CRID module consists mainly of three parts: the 

radiator, the mirrors, and the drift box. The radiator is a medium in which charged 

particles radiate Cerenkov light. A set of 400 mirrors are used to reflect and focus 

the light back onto the 40 TPCs. The drift box shown in Figure 4-12, is a quartz 

box, which contains drift gas CzHG, which provides good ultraviolet transparency, 

and 1% of a photo-sensitive medium called TMAE (Tetrakis diMethy Amino Ethy- 

lene), which provides good quantum efficiency for converting Cerenkov photons into 

photo-electrons. Under a uniform electric field of 400 V/cm, the photo-electrons are 

drifted in parallel to the magnetic field towards the multi-wire proportional chamber 

(MWPC) detectors located at the end of the drift box furthest from the IP, where 

charges are read out. The original coordinate location of a photo-electron in the 

TMAE, also called a hit, is obtained from the drift time (z), the wire address ($), 

and the charge division along the thickness dimension of the box (r). A ring is then 

fitted to the these ‘hits’. A full ring typically contains B-10 hits in the Gas or 13-16 

hits in the Liquid. In order to obtain particle ID over a wide momentum range, the 
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Figure 4-11: The Barrel CRID. 

barrel CRID has two separate radiators, a liquid radiator (C6F14 with refractive index 

of n = 1.277) and a gas radiator (C&F12 with n = 1.001725). The cones of Cerenkov 

light from the liquid radiator, which is only 1 cm in thickness, can be focused directly 

on the TMAE by proximity. However, the light from the gas radiator which is 45 

cm in thickness are reflected and focused back onto the TMAE by spherical mirrors. 

A more important distinction between the two radiators is that the thresholds for 

generating Cerenkov light are very different, owing to their very different refractive 

indices. The threshold in the gas is significantly higher than that in the liquid. For 

pions, the threshold y = 1.61 in the liquid (corresponding to a momentum of 0.23 

GeV/c), but y = 17.05 in the gas (corresponding to a momentum of 2.6 GeV/c), 

where y = P/(,&L). The choice of material for the liquid and gas are significantly 

restricted in order to close up the gap between the upper limit for the liquid and the 

threshold for the gas. 

CRID Performance 

The resolution on the measurement of the Cerenkov angle 0~ is determined by individ- 

ual contributions from five separate sources of error. Variation of index of refraction 

of the radiator causes error in the measured Cerenkov angle. For liquid, the chro- 

matic error is about &5 mrad. For the gas, it is about f0.3 mrad. Granularity of 
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Figure 4-12: A CRID Drift Box, or TPC. 

the photo-electron detector, diffusion, and non-uniformities in the detector cause the 

measurement errors to be about 3 mrad for liquid and 1.7 mrad for the gas. Multiple 

scattering leads to a momentum dependent error of 1.4/p mrad for the liquid and 

0.4/p mrad for the gas. A geometric error is caused by the aberrations of the image 

of the Cerenkov ring due to the optical focusing method: proximity or reflection. This 

error is around 7 mrad for the liquid and 0.5 mrad for the gas. Finally, momentum 

smearing due to the change in flight direction as the particle passes through the ra- 

diator volume under the influence of the magnetic field contribute an error of 0.4/p 

mrad for the thin liquid radiator and 15/p mrad for the much thicker gas radiator 

because of longer trajectory of the particle. 

The total uncertainty on angle of each photo-electron is f 10 mrad for the liquid 

radiator. Using all 14 photo-electrons, the resolution on the Cerenkov angle is about 

3 mrad. The angular resolution for the gas radiator is momentum dependent and is 

on the order of 3 mrad for a 5 GeV/c particle. The Cerenkov angle resolution for a 

track is better than 1 mrad. 
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End-cap CRID 

The end-cap CRID installed between the end-cap drift chambers were designed to 

extend the particle ID coverage in the forward region. However, the lacking of a 

forward tracking makes it impossible for the end-cap CRID to provide particle ID. 

4.2.4 The Liquid Argon Calorimeter (LAC) 

Function of Calorimetry 

The main objective of calorimetry is to detect the energy of a particle. When a 

high energy particle enters high-density medium such as lead plates, it interacts with 

the medium and generates either an electromagnetic (EM), or a hadronic (HAD) 

shower. Neutral particles, which escape the detection of the tracking system, will 

deposit energy after entering the calorimeter (except for the neutrinos), providing 

crucial measurements of their energy. For a charged particle, since the momentum 

is well measured, the measurement of its energy in the calorimeter provides little 

further energy information 2. However, due to the different showering characteristics 

(such as EM vs HAD deposition, transverse spread or longitudinal depth) the energy 

deposition in the calorimeter can be used to provide particle identification such as 

electron or muon ID. Moreover, spatial and angular information provided by the 

calorimeter, combined with energy and momentum information, is very useful for 

determining important event variables such as the thrust axis, the event-shape and the 

jet axes. Another important function of the calorimeter is to provide the measurement 

of the total (observed) event energy to help extract the missing energy such as the 

energy of the neutrino. For this reason, the calorimeter should as hermetic as possible 

to minimize leakage of particles. 

Calorimeter plays a very important role in the clean high energy ese- environment. 

21n principle, very precise measurement of a particle’s momentum and energy can provide particle 
identification, using m = dn. But achieving such a high resolution is very difficult. 
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Full knowledge of the initial state and precise measurement of the final state can be 

a powerful tool for uncovering new physics. [74]. 

SLD employs two calorimetry systems: the Liquid Argon Calorimeter (LAC), 

which is a high resolution, hermetic calorimeter, and the Warm Iron Calorimeter 

(WIC) which provides the flux return and muon ID. WIC will be described in the 

next section. The LAC is also divided into the Barrel region and the End-cap region. 

The Barrel LAC 

The barrel LAC is a 6-meter-long cylindrical annulus just outside the CRID, with 

an inner radius of 1.8 m to an outer radius of 2.9 m. The barrel LAC is the outer- 

most detector subsystem which resides inside the magnet coil. It provides continuous 

coverage between t9 = 35” and t9 = 145” with respective to the beam direction. 

The LAC is composed of long modules (Figure 4-13) which are stacked around the 

barrel CRID in the azimuthal plane ($). Th e modules themselves are made of planes 

of lead radiator separated from each other by non-conducting spacers and immersed 

in a liquid argon bath several mm in thickness. The modules are radially divided into 

four sections: two inner EM sections and two outer HAD sections. These sections 

are further segmented into readout towers that project back to the beam intersection 

point, both azimuthally (4) and along the beam axis (z). The solid angle made by 

each tower with respect to the IP is fixed. In $, the towers have a fixed angular 

width of 33 mrad and 66 mrad for the EM and HAD sections respectively. Each 

module spans 4 EM towers and 2 HAD towers in width, matching the edges of the 

EM and HAD towers. In z, the towers have a fixed angular size of 36 mrad for the 

EM section and 72 mrad for the HAD section. The actual size of the tower pads 

increases with Z. Tower sizes in the EM section were chosen to provide best efficiency 

for isolating electrons, lowest possible r/r overlap background, and good position 

resolution within economic constraints [74]. 

The LAC is a conventional lead-liquid argon sampling calorimeter. Particles 
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Figure 4-13: View of a LAC module, showing the inner EM and outer HAD sections. 

entering the LAC interact with the lead and produce a secondary shower of low 

energy particles which then ionize the argon. The lead plates are held alternately at 

ground and high voltage, producing a field to collect the liberated charge in the argon. 

Since the argon supplies no charge amplification, the charge observed is proportional 

to the energy deposited. Approximately lo-15% of the shower energy is deposited in 

the argon and half of the ionized electrons are collected by the readout electrodes [74]. 

Each tower is connected to a low-noise, charge sensitive pre-amplifier to measure the 

charge deposited. In sum, the energy deposition in the calorimeter is converted into 

an electronic signal, which is read out and converted back to units in energy. 

The two EM sections are thin and are designed primarily to measure the energy 

from EM showers due to the interaction of electrons or photons. The two outer 

HAD sections are denser in composition, and are designed to measure the energy 

in hadronic showers due to the interaction of neutral or charged hadrons. Overall, 
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there are 22 X0 of material in the EM sections of the LAC, and 2 absorption lengths3 

in the hadronic (HAD) sections. In total, there are 2.8X0 of material in the LAC. 

The segmentation of the LAC modules allows for spatial determination of the energy 

shower. The segmentation and module thicknesses were chosen to maximize the 

amount of particle energy sampled, and to be able to differentiate between EM and 

HAD particles. The energy resolution of the LAC has been shown to be - 15%/e 

GeV for EM showers and - 60%/o GeV for hadronic showers [83]. 

The End-cap LAC 

The two end-cap LAC, with sampling plates perpendicular to the beam axis, provide 

coverage between 8” and 35” with respect to the beampipe. 

4.2.5 The Warm Iron Calorimeter (WIC) 

The Warm Iron Calorimeter (WIC) is the outermost subsystem of SLD, providing 

the structural support for the rest of the detector components. Installed just outside 

the magnetic coil, the WIC uses the large iron structure needed for the flux return 

for the solenoid; As the LAC is thick enough to contain 95% of the energy from 

hadronic 2’ decays, the WIC measures the remaining 5% energy and provides muon 

identification. 

The WIC is also divided into the barrel and the end-cap regions, covering almost 

all the solid angle. 

The Barrel WIC 

The barrel is 6.8 m long and runs from 3.3 m to 4.5 m in radius. It contains eight 

long azimuthal sections (octants). Each of the octants is made of alternating layers 

of tubes and steel, as shown in Figure. 4-14. In the central and the outermost layers, 

31 absorption length (X0) is the mean distance over which a high energy hadron loses all but l/e 
of its energy due to nuclear interactions [76]. 
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Figure 4-14: Cut-away view of the WIC. 

double layers of tubes are used. Hence, there are 14 iron plates and 17 (15 + 2) 

planes of tubes. The total thickness of the iron is 71 cm at t!J = 90”, corresponding 

to about 4 absorption lengths. The active length of the tubes is 6.55 m. In order to 

avoid radial cracks in the WIC, the octants are arranged in an interlocking geometry. 

Each octant is made of two pieces, an inner and an outer one. 

The iron layers are 5 cm thick each, separated by 3.2 cm thick gaps instrumented 

with a system of plastic tubes operated in the limited streamer mode. The tubes are 

made in modules of eight. The number of eight-tube modules in each layer of the 

barrel octants varies from 31 to 42, increasing with the radius of the layer. There are 

a total of about 40,000 tubes in the barrel region. 

The tubes are filled with gas, which is a mixture of 2.5% argon, 9.5% iC4H10 and 

88% COZ. Each tube has an active section of 9 x 9 mm2. At the center of each tube is 

a 100 pm Be-Cu wire. A voltage of 4.4-4.7 kV is applied to the wire. The enclosures 

of the eight-tube modules are placed between the three Glasteel sheets, one for the 

strips, one for the pads, and one as a ground plane, as is shown in Figure 4-14. Several 

modules are glued together to form a chamber, which contains at most 14 modules 

and is about 1 to 4 pads in width. Each layer contains 3 or 4 such chambers. Since 

the tower geometry is to fix solid angle coverage relative to the beam intersection 



4.2. THE SLAC LARGE DETECTOR 97 

point, the geometry of each chamber is unique. 

The strips are made using a 1.6 mm thick Glasteel sheet laminated with 25 pm 

copper on both sides, glued under the plastic modules. On the top side, strip elec- 

trodes are made by removing copper strips 2 mm wide. At the end opposite to where 

the high voltage is supplied, each set of 8 strips is brought together to fit in an 8-pin 

connector which picks up the signal. The ground is provided by the copper on the 

bottom side of the Glasteel sheet. The strips are read out digitally. 

The pads are glued on top of the plastic module with the copper side up. The 

pad plane is divided into two parts along the beam axis. Signals are picked up at 

both ends. The pad signals from several layers are added according to the tower 

assignment. Each tower is segmented into two parts. The inner one contains the first 

seven layers which are connected together to measure the energy flux in the front 

part. The remaining seven layers are connected together to make the back tower. 

To provide muon identification, the strip signals are read out. Except for two 

special layers, all layers are instrumented with strips running parallel to the tube 

wires. This allows muon tracking the in T - (b plane in the entire barrel region. The 

central tube layer (8 and 9) and the outside layer (16 and 17) are double layers which 

are instrumented with two planes of streamer tubes, one with both longitudinal and 

perpendicular strips and the other with perpendicular strips and pads. This design 

scheme provides two space points (midpoint and outermost point). Track angles 

can be calculated for particles that penetrate all eight interaction lengths of the 

calorimeter. 

The advantage of streamer tube system is high granularity, long-term reliabil- 

ity, simplicity of construction and the low cost of the raw materials and of readout 

electronics [74]. 
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4.2.6 The Luminosity Monitor 

LUM is used primarily to detect e+e- pairs that have undergone Bhabha scattering 

at the SLC IP and measure the rate of small-angle Bhabha scattering. Since the 

cross-section for Bhabha scattering is precisely calculable in QED, and because it 

occurs much more often than 2’ production, the measurement of the rate of Bhabha 

scattering provides the most precise measurement of delivered luminosity at IP by 

the Linear Collider. 

The LAC covers almost 98% of the solid angle. However, at small angles to the 

beam axis, the luminosity calorimetry was designed to: [84] 

l provide a high precision measurement of the absolute luminosity 

l provide a measure of the luminosity difference between left- and right-handed 

polarized electron beams 

l extend the electromagnetic calorimetry coverage down to small angles 

0 tag electrons 

To achieve these goals, the two SLD Luminosity Monitor (LUM), the small angle 

calorimeters, were constructed. The LUM, shown in Figure 4-15, consists of two 

silicon-Tungsten calorimeters which are arranged in projective towers with a high 

degree of segmentation and located 1 m downstream along the beam axis from the IP. 

Each calorimeter contains two separate modules: Luminosity Monitor/Small Angle 

Tagger (LMSAT) and the Medium Angle Silicon Calorimeter (MASiC). LMSATs 

were mounted directly on the Superconducting Final Focus triplet assembly. LUM 

provides coverage between 28 and 68 mrad. MASiC mounts onto the R20 assembly, 

providing coverage from 68 mrad to 200 mrad. The total depth of the calorimeter 

is 21 X0, containing 99.5% of the 45.6 GeV electromagnetic shower. The measured 

energy resolution is 6% at 50 GeV. 
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Figure 4-15: The SLD LUM, showing the LMSAT and the MASiC. 

4.2.7 Data Acquisition 

The SLD data acquisition design takes full advantage of the relatively long time (8.3 

msec) between the SLC beam crossings. Little dedicated hardware is needed. For 

example, the entire calorimeter is read out and energy sums are calculated in software, 

all within the 8 msec time window. 

Data acquisition is done through the FASTBUS. There is a network of 18 FAST- 

BUS crates located on the top deck of the SLD. The work of assembling events is 

done in ALEPH Event Builder (AEB) modules. The AEBs pool data from various 

slave modules, whose type depends on the subsystem being read out. The calorimet- 

ric systems are processed in the Calorimeter Data Modules (CDMs), while the drift 

chamber and CRID systems in Waveform Sampling Modules (WSMs), The VXD in 

Vertex Data Acquisition (VDA) modules and the WIC Strip data in WIC Digital 

Readout Modules (DRMs). All of these slave modules contain some number of 68020 

CPUs and connected to their respective systems via fiber optics. 

Triggering is determined by a dedicated trigger AEB. Several conditions, when 

met, causes the detector to be read out. For hadronic events, three main triggers are 

used: an Energy trigger based on a sum of LAC tower response, a Track trigger based 

on some fast readout of the CDC cells and the existence of two tracks at large angles 

relative to each other, and a “hadron” trigger which combines the preceding two 

types of information, but with a lower energy threshold and only one track required. 
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A dedicated trigger is reserved for small-angle Bhabhas (e+e- -+ e+e-) in the LUM, 

and a Random Trigger is used to read out the detector every 2OhO.5 seconds. 

An average SLD events is 250-300 kilobytes in size, 25% of which coming from the 

drift chamber and VXD subsystems. Event size is strongly affected by background 

conditions, which is related to the tuning of the SLC. Typical trigger rates during 

low background running condition are N 0.2 Hz, while 2’ luminosity was typically - 

50 2’ per hour for the 1996-97 run and was 100 2’ per hour for the 1997-98 run. 

4.2.8 Detector Simulation 

Most data analysis of high energy physics experiments strongly rely on Monte Carlo 

simulation in order to interpret and unfold the raw data. The design of the detector 

relies on details detector simulations. The SLD detector simulation is based on the 

standard GEANT 3.21 package [85]. GEANT’s main function is to generate detector 

volumes and track particles through the detector materials and the magnetic field and 

simulates multiple scattering and energy loss. For showering in the calorimeters, SLD 

uses a hybrid scheme of a parameterized shower shape for the electromagnetic portion 

of the showers and the GEANT GHEISHA package for the hadronic interactions. 

To make the comparison between Monte Carlo and data collected by the SLD 

more straightforward, simulated events and the raw data are generated in same output 

format. 

To simulate the beam-induced backgrounds and noisy electronics channels, raw 

data from random triggers is overlaid with the results of the simulation. These random 

triggers are sampled in a luminosity-weighted fashion to reproduce the conditions 

corresponding to the raw data. Once the random trigger “data” is merged with 

simulated “data”, the events are processed with the standard SLD reconstruction 

package. 

One input to the simulation is one of several QCD event generators. For the 

current data set, the JETSET 7.4 parton shower model was used to supply hadronic 
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particles as input to the detector simulation. The parameters of JETSET have been 

tuned by the SLD collaboration to fit available world data, and the decays of charm 

and bottom hadrons have been parameterized with the CLEO decay package. 



Chapter 5 

The VXD3 

Advances in CCD technology permitted an upgrade vertex detector design (VXD3) 

(Figure 5-1) with the following main advantages with respect to VXD2: 

l extended polar angle coverage. 

l full azimuthal coverage in each of three barrel CCD layers, creating the possi- 

bility of VXD3 self-tracking. 

l stretched radial level-arm and reduced material in each layer for significantly 

improved impact parameter resolution. 

5.1 Design of VXD3 

Layer Number Number of CCD-ladders Radius from the beam line 
1 12 28.0 mm 
2 16 38.2 mm 
3 20 48.3 mm 

Table 5.1: Number of CCD-ladders and Radius of each CCD-layer of VXD3. 

Detailed discussion of VXD3 design can be found in Ref. [79] and Ref. [75]. Here 

we only briefly describe the features. VXD3 is made of 48 CCD-ladders which form 
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VXD2 VXD3 

Figure 5-l: VXD2 vs VXD3 

three layers of CCDs. The radius of each layer is shown in Table 5.1. Each CCD- 

CCD Fiducials Flex-Circuit 
\ Fiducials 

North End 

4-97 

South End 

8262All 

Figure 5-2: A VXD3 ladder with one CCD on each side. 

ladder contains two CCDs which are mounted on a beryllium substrate. One CCD 

is mounted on the outer side of the substrate at the North End (positive z) and the 

other CCD on the inner side of the substrate at the South End (negative z), shown in 

Figure 5-2. The ladder thickness is only 0.4% X0 in the active volume of the detector, 

which reduces multiple scattering and improves track impact parameter resolutions. 
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5.2 VXD3 Geometry 
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The VXD3 is a micron-sized CCD-pixel vertex detector which is designed to measure 

the track impact parameters and other spatial quantities down to micron precision, 

thus providing the necessary data for high quality physics analyses. In order to 

achieve this precision, several problems concerning the geometry of the VXD3 had to 

be solved. 

The basic problem can be phrased as follows: after VXD3 has been installed onto 

the beampipe, the detector doors have been closed and ese- beams are colliding, how 

much confidence do we have in the global position of each active CCD-pixel within the 

vertex detector? Here global means relative to other SLD subsystems, for example, 

the Central Drift Chamber. 

The above question can be broken down to two separate questions. One is how 

well we know the global position of the VXD3 as a rigid body, assuming VXD3 being 

rigid is not far from the truth; the other is how well we know the internal position of 

each CCD pixel. Here internal means positions relative to the rigid VXD3 coordinate 

system. 

The global location of the VXD3 can be found by applying a standard procedure 

called global alignment, which will be discussed in more detail. The internal geom- 

etry of CCDs are determined in two phases: starting from the ideal design geometry, 

we first find the ‘first-pass’ approximation to the true internal geometry by conducting 

the optical survey. This geometry must be sufficiently precise to allow reasonably 

good track-linking to VXD3 clusters, which is necessary for making improvements 

over this first-pass internal geometry by a procedure called internal alignment [86]. 

Since slight change in position or orientation of one CCD will necessarily cause 

changes in the global VXD3 position, it is clear that the rigidity of VXD3 is only an 

approximation, and internal and global alignments cannot fully decouple from each 

other. In practice, two global-internal alignment iterations are usually reasonably 

sufficient. 



106 5. THE VXD3 

We do not use the VXD3 design geometry as the first-pass geometry for track- 

linking for the following reasons. Mechanical design geometry can be relied upon only 

if all of the components are highly rigid themselves as well as with respect to each 

other, in which case the only uncertainty in the position of each component comes 

from the resolutions of manufacture and installation of parts and components. In 

many applications, very high precision can be achieved mechanically. Unfortunately, 

the CCD ladders that make up the core of VXD3 do not satisfy these criteria. The 

design of a ladder is such that the CCDs and the ladder themselves are not rigid 

and can bend to take fairly complicated shapes as well as can sag under gravity. 

Furthermore, one end of the ladder is allowed to move slightly to relieve mechanical 

strain from thermal contractions, which introduces another source of uncertainty in 

the position of the actual CCD pixels. These factors, especially the shape of the 

CCD and the gravitation sag, must be measured. From this point of view, the ideal 

design geometry in which CCDs and ladders are flat surfaces is certainly not a good 

first-pass description of the VXD3 geometry. 

5.3 Optical Survey 

5.3.1 Goal of the Survey 

An optical survey of VXD3 was performed in order to determine the internal geometry 

of the device to an accuracy sufficient for beam-related tracks to be used for final 

alignment. A secondary goal of the survey was to measure aspects of the geometry 

which would be difficult to determine accurately from tracks, such as the complex 

shape of the CCDs themselves and the gravitation sag of the ladders. These two 

aspects of the geometry were important factors in achieving the overall precision 

required. 

All ladders (48) and all layers (3) were surveyed. The ladder survey determined 

the relation of two CCDs to each other and the barrel survey fixed the position of the 
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ladders to each other. The precision requirement of the survey was to determine the 

geometry to N 20 pm (1 pixel) rms. At this level of alignment the finding of tracks 

is straightforward. However, in order to achieve the performance required for the 

physics objectives, the ultimate spatial precision must be of order 5 pm rms. Track 

alignment data was used to achieve this final level of precision. 

5.3.2 The Coordinate Measuring Machine 

The OMIS II programmable optical coordinate measuring machine (CMM) [87] was 

used for the survey. The CMM had an aperture of 12 x 6 x 7 inches, which easily 

accommodated both the ladder and barrel surveys, and had a nominal precision of a 

few microns in x and y (horizontal plane of the CMM) and approximately 15 microns 

in z (vertical coordinate of CMM). The x - y scale calibration of the CMM was 

monitored throughout the survey process by means of a precision glass scale and a 

precision stepper gauge was used for the z calibration. Both standards were NIST- 

traceable and were cross checked with other standards. 

Objects could be illuminated in the CMM by axial lighting, ring lighting, or 

back lighting. It was determined that axial lighting yielded the best results and was 

therefore used for the measurement of most features. Back lighting was used for the 

profile measurement of the ladders. A variety of survey algorithms were available to 

measure different aspect of features. For example, an area tool was used to determine 

the z-coordinate and a line-scan tool was used to precisely determine the edges of 

sharply defined features. Simple geometric constructions, such as the intersection of 

two lines and circle fitting were available. 

Programs were written to measure the ladders and the barrel. The initialization 

of each program was done on representative features requiring the most precision. In 

this way only 4 programs were needed for the ladder survey, one for each view defined 

by rotations of N7r/2 about the long axis of the ladder. Symmetry was employed in 

the barrel survey so that only 19 programs were needed for the 48 ladders. 
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5.3.3 The Ladder Survey 

Ladders were surveyed at room temperature in enclosed survey boxes which sup- 

ported them in the same manner as in the beryllium super structure. The survey 

jig was outfitted with 6 precision tooling balls which defined an internal coordinate 

system. Figure 5-3 shows the View One configuration. Four views of each ladder were 

measured. The ladder geometry was reconstructed by relating 3 of the views to the 

standard view defined by the ladder orientation where the north CCD was visible and 

approximately in the CMM x - y plane. Roughly 6 hours were needed to measure a 

ladder. 

Since the survey was performed outside a clean room the CCDs had to be protected 

by enclosing the survey jig in a high quality optical glass window which had to be 

coated to reduce reflections when the axial illumination was used. In all, 4 survey 

boxes were fabricated although only 3 were used for production surveying. 

A survey box was located on the CMM by means of 3 tooling balls mounted on 

the surface of each side of the box corresponding to each of the 4 views of the ladder 

survey. These tooling balls mated to grooves milled in an aluminum support plate 

which was rigidly attached to the x - y table of the CMM. 

A number of features were measured in the ladder survey in addition to the 6 

tooling balls used to define the ladder local coordinate system. 

CCD Fiducials: Each CCD had 186 fiducials which were quite accurately placed 

in the CCD gate structure by the same photo-etching process used in the CCD fab- 

rication. The fiducials were arranged in 6 columns every 3.000 mm along the 16 mm 

dimension of the CCD and by 31 rows every 2.500 mm along the 80 mm dimension. 

The fiducials were 60 x 60 pm2 pads 1 pm thick and located 12 pm above the mid- 

plane of the epitaxial layer. However, given the OMIS II lighting and edge finding 

tool, the edge of the polyimide layer coating of the fiducials was actually measured. 

It had a dimension of 80 x 80 pm2 but was still quite accurately determined. All of 

the columns of fiducials and every other row of fiducials were measured for a total of 
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Figure 5-3: The ladder and tooling balls in View One. Tooling balls with lower z 
coordinate are labeled in parenthesis. The z-axis is pointing out of the page. 

96 features. 

Flex-strip Fiducials: AH fiducials (3 columns x 14 rows) were measured on the 

copper-kapton flex-strips, albeit with less precision than those on the CCD surfaces. 

Physical Corners of Silicon Chip: In addition to the fiducials mentioned above, 

the physical corners of the CCDs were measured. Although less precise than the 

fiducials, the physical corners of the silicon provided helpful navigation points. 

Profiles of CCDs: Finally, the profiles of each CCD were measured with back 

lighting. These data provided useful cross checks to the face-on views and allowed 

the gravitation sag to be measured. 

5.3.4 The Barrel Survey 

After the ladders of a given barrel layer were measured they were assembled in the 

Be support structure in their final position and surveyed to determine the barrel 

geometry. A set of 32 precision tooling balls mounted on the precision Be super 

structure, 16 to an end defined the barrel survey coordinate system. ScotchLite was 
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placed under each tooling ball to allow axial lighting to illuminate the circumference 

of the tooling ball. The Be super structure was mounted kinematically on a dummy 

beam pipe which was rotated inside the barrel survey box to allow the ladders of a 

layer to be surveyed. As in the ladder survey, the barrel survey was conducted outside 

a clean room and at room temperature. The window of the barrel survey box was 

made of optical glass which was coated in order to reduce the reflections of the axial 

lighting needed for the survey. 

The outside surface of each ladder of a layer was measured with each ladder 

approximately positioned in the CMM z - y plane. There were 12, 16, and 20 

configurations measured for layers 1, 2, and 3, respectively. Associated with each 

ladder configuration was a measurement of the concomitant set of visible tooling 

balls. There were typically 4 to 6 balls on each end for each configuration, with at 

least 3 balls on each end overlapping between adjacent configurations. The barrel 

geometry was assembled by making the sets of overlapping tooling balls congruent. 

Only about 50% of the fiducials on the outside (north CCD face up) were visible in 

the barrel survey since the survey had to be conducted through the beryllium cylinder 

which holds the two ends together. Thus all visible fiducials on the CCD and flex 

strips were measured as well as one of the physical corners of the silicon which served 

as a navigational aid. Given that a smaller number of fiducials were measured than 

in the ladder survey, each z-coordinate of the visible fiducials was measured 4 times 

resulting in an improvement in the z resolution. The complete barrel survey was 

executed in 10 days (not including programming time). Figure 5-4 and Figure 5-5 

show the end and side views of the barrel survey, respectively. 

5.3.5 Survey Data Analysis 

A number of analysis steps were conducted after the geometry assemblies of the ladder 

and barrel data. 

Calibration of Optical Distortions of Ladder Survey Boxes: 
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Figure 5-4: The end view of the barrel assembly. Note the 32 tooling balls which 
define the barrel survey coordinate system. 
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Figure 5-5: The side view of the barrel assembly. Note the 32 tooling balls which 

define the barrel survey coordinate system. 
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The 3-dimensional distances of all combinations of the 6 tooling balls were used to 

determine the distortions of the ladder survey box windows in a x2 fitting procedure. 

In some cases the CMM scales had to be changed by as much as lop3 mm/mm 

although the net effect was small owing to the small distances involved. 

Calibration of Optical Distortions of Barrel Survey Boxes: 

The optical distortion of the barrel survey box was determined by measuring the glass 

scale standard and the stepper gauge through the glass window. Distortions of order 

3.5 x 10m4 mm/mm were observed. These corrections were verified in the data by 

using the well-defined fiducial separations of the CCD fiducials. 

Attaching Ladder to Barrel Data: 

Since only the outer radius surface of the ladders was measured in the barrel survey, 

the position of the south CCD had to be derived from mating the ladder data with 

the barrel data which served as the backbone. This was accomplished by making 

the common surfaces of the ladder and barrel surveys congruent. Roughly 20 to 30 

features were in common in the ladder-barrel mating. The CCD fiducials were given 

higher weight in the x2 fitting because they were much better determined than the 

flex strip fiducials. 

Determination of the Gravity Sag and Z-Constraint: 

The planes of the north and south CCDs were measured face up on the CMM. Hence 

the gravitation sags for the north and south CCDs were of opposite sign and had 

to be corrected. By comparing the profile to the end views of the CCD survey the 

gravitation sag of the ladders could be determined. It was found that average sagitta 

of the sag was roughly 30 pm but with considerable variation ladder-to-ladder. Having 

corrected for the gravitation sag the south CCD was constrained to the north by using 

the well-measured separation in the ladder profile views. Typically adjustments of 

10 to 20 pm had to be made thereby improving the precision of the x-measurements 

of the face up view. Hence, the average correction for the south CCD was 60 m 

to correct to the north CCD convention. The measured gravitation sag was then 
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projected by a cos$ factor to compute the sag of a ladder in its final configuration in 

the assembled vertex detector. 

Thermal Contraction: 

VXD3 was surveyed at room temperature, about 123 “K warmer than the operat- 

ing point. Hence the survey data had to be contracted to correspond to the lower 

operating temperature by integrating the nonlinear coefficients of thermal expansion 

(CTE) for Be and Si. A simple model of differential thermal contraction of Be (the 

ladder substrate) versus Si was used which assumed that the Si contracted uniformly 

about its geometric center with the geometric center contracting by the Be CTE. 

Overall, the beryllium contracted by a factor -7 x 10v4 mm/mm and the differential 

contraction between Si and Be was only -2Opm over the 80 mm of the CCD. 

As a check of the shape of the ladder with thermal contraction the position of the 

CCD with respect to the Be substrate was measured at Brunel University. It was 

found that the CCD does not distort under cool down and only the average distance 

of the CCD from the substrate contracts by -1Opm. 

5.3.6 CCD Shape Corrections 

The track fitting using the CCDs takes a simple model of the CCD position and 

surface which are modified by a series of corrections listed below. 

Pixel (1,l) and Average CCD Plane: The lowest order description of the location 

of a given CCD in VXD3 was determined by the position of pixel (1,l) and the 

average CCD plane. Pixel (1,l) was defined by either the north-most (south CCD) 

or south-most (north CCD) pixel on the low r$ side. The average plane of the CCD 

was computed and described by unit vectors. 

Shape of the CCDs: The shapes of the CCDs are complex. It was found that the 

short dimension (16 mm) is concave upward with a shape described by a quadratic. 

The long dimension (80 mm) is quartic. In order to describe the shapes a fit to the 

CCD surface was performed with these functional forms and all cross terms. These 
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shapes were used to compute the perturbation of the surface from the average plane. 

The CCD shape description was an important correction at small polar angle, 6, 

varying as cotan(8). 

5.3.7 Summary of VXD3 Optical Survey 

The optical survey of VXD3 established its initial geometry to an accuracy within 

roughly 1 pixel, estimated by the redundancy of the measurements. Further refine- 

ments of the geometry came from tracks. There are several known distortions beyond 

the optical survey geometry. One was the fitting of the Be halves around the SLC 

beam pipe, following the optical survey at MIT. The magnitude of the distortion was 

estimated. During the optical survey VXD3 was assembled-disassembled-reassembled 

around the dummy beam pipe and resurveyed to find distortions of order 20 to 30 pm. 

Hence it is likely that the final geometry has such distortions. These can be accom- 

modated in the data by moving the CCDs in order to minimize the track residuals 

in the internal alignment procedure. Perhaps the most important contribution of the 

survey is the determination of the gravitation sag and the CCD shapes. These effects 

would be difficult to untangle using data. 

5.4 VXD3 Global Alignment 

The VXD3 global alignment determines the relative position of the VXD3 with respect 

to the Central Drift Chamber (CDC) assuming VXD3 is a rigid body that can only 

change its position by the three translations (dz, dy, and dz) and its orientation by 

the three rotations (a, /3, and 7). A rigid internal geometry of the VXD3 is needed 

as input to the global alignment procedure. When the internal geometry is modified, 

the global alignment must in principle be repeated as well. 

To determine the global position of the detector to a precision of a few microns, we 

must make use of the precise CCD hits made by charged tracks reconstructed in the 
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CDC. First, we hypothesize that the VXD3 is at a particular global position parame- 

terized by the six variables dx, dy, and dz, and Q, ,G, and y. High quality CDC tracks 

are extrapolated inward towards the IP until they intersect with the hypothesized 

locations of CCD surfaces at all possible layers. The position of the intersecting point 

is taken as an ‘extrapolated hit’. These tracks actually make real hits on the CCDs. 

We call these the ‘actual hits’ and their locations are purely registered as local CCD 

readout coordinates. The location of the extrapolated hit, measured in CCD local 

coordinates, changes with the hypothesized VXD global position but the location of 

the actual CCD hit does not change. A hit residual is defined as the difference in 

locations measured in the local CCD coordinates between the extrapolated hit and 

the actual hit. These hit residuals are directly determined by the hypothesized global 

position of the detector. Figure 5-6 illustrates how the residuals are generated when 

a track is extrapolated to a position different from the position of the readout hit. 

When a large number of tracks are extrapolated, a large number of residuals 

can be calculated for each hypothesized VXD global position. The optimal detector 

global position is found by minimizing the x2 formed using these residuals and the hit 

resolutions. Note that the resolutions of extrapolated hits are typically substantially 

worse than the intrinsic resolutions of CCD hits. 

If the exact internal geometry and the global alignment were known, the location 

of extrapolated hit would coincide with that of the actual hit on the CCD to within 

the hit resolutions. If the internal geometry were very well known but not the global 

alignment, the residuals between the two hits would be non-vanishing. In this case, 

the detector could be precisely aligned through global movements of the detector 

(translation or rotation) until all pairs of extrapolated hit and actual hit would match 

each other to within hit resolutions. If the internal geometry were not very well known, 

there would be internal inconsistencies between hit-residuals on one CCD and those 

on another. No global movements of the detector could eliminate these inconsistencies 

altogether and therefore global alignment would not be quite optimal. In reality, it 
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Figure 5-6: Illustration of the track extrapolation to the CCD surface, generating the 
‘extrapolated hit’, which typically is at a different location from the readout hit. 
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is often the true internal geometry that is hardest to find. The precision in global 

alignment is typically sufficiently good for track-linking purposes even if it is not 

optimal. 

Specifically, the global alignment is achieved through a minimization of the x2 of 

all the hit-residuals. The total x2 can be minimized by varying the six parameters 

dx, dg, dz and cr, /3, and y. The outputs of the alignment procedure are precisely these 

three translations and three rotations of VXD3. 

The global alignment is performed for the entire data set taken during the 1997- 

1998 run in order to 1) Monitor any small changes in global positions; 2) Minimize 

the statistical uncertainty on the alignment results. Every time VXD3 is known or 

expected to have moved, for example during a controlled R20 movement, a triplet 

movement, door opening, any unexpected movements indicated by the capacitive wire 

position monitor. Even a change in the running temperature of the VXD3 may lead to 

alignment changes. We now proceed to describe briefly the specifics of the alignment 

procedure and present the alignment results for 1997-1998. For global alignment 

results for run 1996, see Ref [75]. 

5.4.1 Global Alignment: Track Selection 

The alignment procedure requires good quality tracks from the CDC which have been 

linked to clusters in the VXD3, The cuts placed on the tracks and the clusters are 

shown in Table 5.2. Figure. 5-7 shows an event, where only the clusters linked to 

tracks extrapolated from the CDC are plotted. 

Tracks with momentum below 0.5 GeV/c are rejected because these undergo signif- 

icant multiple scattering. The CDC track length and the number of hit requirements 

selects tracks that have gone through a large volume of the drift chamber, while the 

x2 requirement eliminates tracks that have been reconstructed poorly. Demanding 

that the track must come from the Interaction Point (IP) ensures that tracks similar 

to the one on the right of Fig. 5-7 are rejected. The CDC tracks are then extrapolated 
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Minimum Momentum (GeV) 
Maximum tan(X) 
Minimum CDC Track Length (cm) 
Minimum Number of CDC Hits 
Maximum CDC Track x2 
Minimum Cluster Pulse Height 
Minimum Number of Pixels per Clusters 
Minimum Number of Clusters 
Track must come from the IP 

0.5 
1.58 
50 
50 
10 
20 
1 
2 

YES 

Table 5.2: Quality track cuts. 

inwards and the point at which the track intersects the surface of a CCD is recorded. 

5.4.2 Global Alignment: Residual Calculation 

The residuals are formed by calculating the difference, in the z and z direction, 

between the track intercept point and the cluster center (Figure. 5-8). Fig. 5-9 shows 

plots of the residuals before the alignment is performed [75]. Notice the double peak 

in the Dq residuals, indicating a misalignment of the VXD3 with respect to the CDC. 

5.4.3 Global Alignment: x2 Minimization Fit 

The following function (Equation 5.1) is then calculated and fed into MINUIT [88] 

for a x2 minimization fit. 

(5.1) 

where Num is the number of hits used, Dq is the residual in r$, DZ is the residual 

in Z, 07) is the error on dq , and aZ is the error on Dz. The parameters of the fit are 

the three translations and three rotations: 
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Figure 5-7: Side view (top) and front view (bottom) of VXD3. The lines are tracks 
extrapolated from the CDC, plotted with their associated VXD3 clusters. 

l CIJ : Roll about the beam pipe (rotation about Z) 

l ,B : Horizontal yaw (rotation about y) 

l y : Vertical pitch (rotation about Z) 

l dn: : Translation in x 

l dy : Translation in y 

l dz : Translation in z 
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Figure 5-8: A CDC track extrapolated back onto the hypothesized surface of a CCD, 
plotted along with the intercept point and the residuals between that point and the 
associated VXD cluster. The residual DZ is along the CCD I register (z) and Dq is 
the residual along the CCD R register (~4). 

5.4.4 Global Alignment: Results 

A series of VXD3 running operations was performed during the 1997 run. For 

example, the VXD3 running temperature was lowered a couple of times from the 

original VXD2 running temperature of 190°K to reduce effects of radiation damage. 

Movements of the R20 module also directly affected the global position of the VXD3 

relative to the CDC. The global alignment procedure described above is applied to 

data from each run period separated by such activities. Table 5.3 lists the alignment 

results for the six parameters for each of these periods. We monitored the change in 

alignment constants over the entire run period for 1997-98. All events are used in the 
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Runs 33804-34070,131O Events, 12198 Tracks, Before Alignment 
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.6 

Figure 5-9: Residual plots for the whole detector, before the alignment is carried out. 

alignment. Figure 5-10 shows the alignment results as a function of data set for data 

reconstruction 15 (R15). After we generated the alignment constants for 1998, we 

did a cross check by performing the alignment procedure again using the aligned R16 

geometry. Except for dz translation, the other five constants are almost consistent 

with being zero, which should be the case for a well-aligned detector. The results 

are listed in Table 5.4. Since uncertainty in CDC dip angle is much larger than the 

sixty-micron shift in ..z, this poses essentially no problem for linking CDC tracks to 

VXD3. Alignment results for the latest data reconstruction (R16) are shown in 

Figure 5-11. 

Since the VXD3 global alignment procedure minimizes x2 of hit residuals cal- 

culated based on an imperfect internal geometry, the precision of alignment re- 

sults is partly limited by this internal geometry. Using track miss-distance in 2’ 

-+ pL+pu- events, the global alignment constants, especially the rotations, have been 
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dx & 
(l-4 (Pm) 
-81.8 -66.8 
-73.3 -66.1 
-74.0 -72.2 
183.3 23.7 
431.6 -211.5 

153.8 
160.4 
117.0 
173.4 
105.8 

cc P Y 
(mrad) (mrad) (mrad) 
-0.92 0.27 -0.27 
-0.88 0.25 -0.30 
-1.14 0.38 0.05 
-1.08 0.29 -0.52 
-0.97 0.40 -0.62 

Description 

T = 188 K 
T = 183 K 

Pre R20 Move 
Pre 2nd R20 Move 
Post 2nd R20 Move 

Table 5.3: Results of VXD3 global alignment for 1997 run. 

dx 5.24f0.79 Pm 

dy 1.52f0.76 Pm 
dz -64.9f5.2 Pm 
Q 0.004~0.007 mrad 

,B 0.015f0.025 mrad 

Y -0.046f0.025 mrad 

Table 5.4: VXD3 global alignment constants for 1998 run based on R16 geometry. 

slightly tuned by hand to further improve the VXD3 geometry and therefore track 

spatial resolutions. 
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98 Global Alignment Constants (41060--43631) 
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Figure 5-10: VXD3 global alignment constants vs data sets for 1998. 
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Figure 5-11: VXD3 global alignment constants vs data sets for 1998 (R16). 
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5.5 VXD3 Performance 

The doublet and triplet (see below) resolutions for R16 1998 data (the latest version of 

data reconstruction) are shown in Figure 5-12 and 5-13 [89]. These plots demonstrate 

the current spatial resolutions from hadronic event tracks. Doublets residual is one 

in which a track hitting both north and south CCDs on the same CCD-ladder. Since 

the relative positions of 2 CCDs on the same ladder is better determined than the 

ladder-ladder alignment, doublets more closely reflect the intrinsic spatial resolution. 

Triplets are track hitting 3 ladders in 3 different layers and is sensitive to the ladder- 

ladder alignment precision. The doublet/triplet residuals are calculated by fixing the 

track to 2 of the hits on the track then look at the residual of the fixed track to the 

remaining hit. The single hit spatial resolution can be derived from doublet (triplet) 

residual divided by an average lever-arm factor of fi (a). With our current R15A 

1997 alignment of Feb-03, 1998: 

l Doublet r$ single hit resolution = 5.82/d = 4.1 pm. 

l Doublet z single hit resolution = 5.88/a = 4.2 pm. 

l Triplet r$ single hit resolution = 4.68/a = 3.8 pm. 

l Triplet z single hit resolution = 5.15/a = 4.2 pm. 

where we have taken doublets for all tracks with p > 1 GeV and triplet for all track 

with p > 8 GeV and within cos(8) < 0.7. 

The impact parameter resolution of tracks in hadronic 2’ decays as well as in 

2’ + p”‘p- and 2’ -+ e’e- events are studied for individual momentum and co& 

regions [79]. The expected impact parameter resolutions based on Monte Carlo for 

tracks at cos0 = 0 with VXD3 are shown in Figure 5-14 in comparison to VXD2 Monte 

Carlo and data. The VXD2 Monte Carlo describes the data remarkably well. The 

same Monte Carlo framework applied to VXD3 results in a factor of two improvement 

from VXD2 in the entire TZ view impact parameter resolution. Improvement in the 
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Figure 5-12: VXD3 doublet resolution (R16). The derived single hit resolutions are 
4.1 pm (~4) and 4.2 pm (~2). 
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Figure 5-13: VXD3 triplet resolution (R16). The derived single hit resolutions are 
3.8 pm (~4) and 4.2 pm (TZ). 
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Figure 5-14: VXD3 impact parameter resolutions in comparison to VXD2 resolutions. 

r4 view is also a factor of two at low momentum, while somewhat less at very high 

momentum. The measured VXD3 impact parameter resolution is 

= 9cB 
33 

gdJ 
(P sin3/2 0) pm’ 

33 
u rz = 17@ 

(P sin312 0) pme (5.2) 

In the next Chapter, we will begin to describe the physics analysis of this thesis, 

which has benefited tremendously from the excellent spatial resolutions provided by 

VXDS. 



Chapter 6 

Hadronic Event Selection and B 

Tagging 

This analysis is based on roughly 150,000 hadronic events produced in ese- annihilations 

at a mean center-of-mass energy of fi = 91.28 GeV at the SLAC Linear Collider 

(SLC), and recorded in the SLC Large Detector (SLD) in 1996 and 1997. 

6.1 Hadronic Event Selection 

The data collected by the SLD detector contains hadronic events (e+e- -+ qtj) as well 

as leptonic events (e+e- -+ e+e-, e+e- -+ Z” -+ ,u+,LL- or r+‘r-). To study the B 

hadron energy distribution, the very first step is to select hadronic events (2’ decays 

into 44). 

There are several phases in selecting hadronic events. The first phase is the 

triggering of the SLD. The trigger decides whether events are to be read out to 

tapes or not. The Hadronic event filter rejects most of the background related to 

beam- beampipe interactions. The Hadronic event select.ion cuts are designed to 

select efficiently a highly pure sample of Z” -+ qij events for which the simulation and 

the data are consistent. 

129 
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6.1.1 The SLD Trigger 

The SLD triggers are described in detail in Ref. [91]. We mentioned the SLD trigger 

briefly in the description of SLD data acquisition. 

6.1.2 The Hadronic Event Filter 

The triggers are designed to reduce the acquisition rate to a manageable level. The 

thresholds are kept as low as possible so that the triggers accepted many events that 

are not 2’ events, most of which are beam-gas or beam-wall events caused by beams 

interacting with beampipe materials. 

The pass-l EIT filter is used to eliminate a large fraction of such background 

events. The filter selects events using calorimetry information only, which is processed 

much faster than tracking information. EIT pass-l cuts are based on three LAC 

quantities, whose names are simplified by the bold-font capital letters): 

l NEMHI, Number of LAC EM towers with signals above the High threshold 

of 60 ADC counts. This is equivalent to N 250 MeV from minimum ionizing 

particles (min-I). 

l EHI, the sum of the Energy deposited in all EM (HAD) towers with signals 

greater than the High thresholds of 60 (120) ADC counts. This is equivalent 

to 250 MeV (1.3 GeV) min-I. 

l ELO, the sum of Energy deposited in all EM (HAD) towers with signals greater 

than LOW thresholds of 8 (12) ADC counts. (This is equivalent to 33 MeV (130 

MeV) min-I) 

The filter requires that each event satisfy 

1. NEMHI 2 10 

2. EHI > 15 GeV min-I 

3. EL0 < 140 GeV min-I 
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4. 2 x EHI > 3x (ELO-70) 

5. NEMHI > 0 for both North and South hemispheres. 

The first and second cuts are similar to the trigger requirements. Cuts three and 

five insure that the event had not satisfied the first two cuts by depositing a large 

amount of background energy and therefore remove most beam-wall events. 

6.1.3 The Hadronic Event Selection Cuts 

Motivation 

The goal of hadronic event selection is to provide a maximal sample of hadronic events 

that are well contained within sensitive detector region. Most of the backgrounds 

should be rejected. In addition, a general requirement for hadronic event selection 

is to insure that, most, if not all, basic and well-understood distributions (such as 

event visible energy) in the data are reproduced by the Monte Carlo simulated events. 

Monte Carlo and the data are not usually consistent with each other before hadronic 

event selection. 

The determination of the SLD IP, track impact parameter resolutions, the thrust 

axis and the selection of well-measured tracks are briefly described so we can conve- 

niently discuss hadronic event selection. 

The SLD Interaction Point and Impact Parameter Resolution 

The SLD IP and the resolution of track impact parameters including the IP error 

must be determined before we apply the hadronic event selection cuts. 

The centroid of the micron-sized SLC IP is reconstructed from tracks in sets of 

approximately thirty sequential hadronic 2’ decays to a precision of a’4 21 7 f 2 pm 

(1996) and a’4 N 4 f 2 pm (1997). The IP position along the beam axis is determined 

event by event using charged tracks with a resolution of 0” 21 35 pm (1996) and 0’ 

- 30 pm (1997). - 
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Including the uncertainty on the IP position, the resolution on the charged-track 
T4 impact parameter (d) projected in the plane perpendicular to the beam-line is crd 

= 14@33/(p sin3i2 19) ,um (1996) and cri4 = 11@33/(psin3’” 0) pm (1997), and the 

resolution in the plane containing the beam axis is a$ = 27@33/(p sin3i2 0) pm (1996) 

and ai = 24@33/(p sin3j2 19) pm (1997), where 0 is the track polar angle with respect 

to the beam-line. 

The Thrust Axis 

The event thrust axis [92] is calculated using energy clusters measured in the Liquid 

Argon Calorimeter. 

“Well-measured” Charged Tracks 

This analysis is mostly based on charged tracks measured in the Central Drift Cham- 

ber (CDC) [93] d an in the upgraded Vertex Detector (VXD3) [79]. Since the CDC 

efficiency drops beyond ]cos0] = 0.87, only hadronic events in this barrel region of 

the detector are selected. Energy flow such as energy in jets should also be largely 

contained in the barrel region and not lost in the end-caps (software for end-caps are 

not reliable enough to be used in this analysis). Most of the cuts, however, are based 

on quantities related to “well-measured” charged tracks. A well-measured track must 

satisfy 

. lcosel < 0.80 (e is the polar angle of the track). This insures the track is 

contained in the barrel region of the detector. 

l Distance of closest approach (DOCA) to the interaction point (IP) in the r& 

plane, which is transverse to the beam-axis, satisfies: DOCA$ < 5 cm. 

l DOCA to the IP in the rz-plane, which is perpendicular to the beam-axis, 

satisfies: DOCAiP < 10 cm. The above two cuts insures the track does not 

originate far from the IP. 
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l Transverse momentum relative to the beam axis pl > 150 MeV/c. 

The second and third cuts insure that the track comes from 2’ decays (near the 

SLD IP), rather than from beam interactions. 

The Hadronic Event Selection Cuts 

An event is selected as a candidate hadronic event if it satisfies: 

l > 5 well-measured charged tracks. This cut is used to reject nearly all leptonic 

Z”-decay events, which have low multiplicities except for 2’ + r+r- which can 

have a maximum of 6 tracks. 

. ICoS(ethTust)l < Oe71. ethTust is the angle between the thrust axis determined 

from calorimeter clusters and the beam-axis. This rejects events in which a 

significant fraction of the energy may be lost in the end-caps, which are poorly 

instrumented. 

l Evis > 20 GeV. The visible energy, Evis, is calculated by summing the energy of 

all well-measured charged tracks, assuming each charged track has the charged 

pion mass of 139.57 MeV. This cut rejects yy events and leptonic 2’ events, 

especially 2’ -+ r+r- events. 

l VXD3 fully operational. This ensures that tracks in the selected events have 

good spatial resolutions (such as impact parameter resolutions) which are criti- 

cal for finding secondary heavy hadron decay-vertices, an important ingredient 

of this analysis. 

Performance 

Table 6.1 shows the efficiency for the different event flavors to pass all hadronic 

event selection cuts for each period of data used in this analysis. The selection 

efficiencies for uds, c, and b are almost consistent with each other within the same 
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Run Period uds Efficiency (%) c Efficiency (%) b Efficiency (%) 
1996 61.46ztO.37 61.55f0.70 62.02ztO.63 

1997 Summer 67.30f0.24 67.531t0.45 68.37f0.40 
1997 Fall 67.04f0.18 67.36xtO.35 68.26kO.31 

Table 6.1: The efficiencies for hadronic events of different primary quark flavors 
to pass the hadronic event selection cuts. All numbers are determined from the 
simulation. 

Run Period No. of events on tape No. of selected events 
1996 102,696 37,694 
1997 176,814 73,875 
Total 279,510 111,569 

Table 6.2: Number of selected hadronic events in 1996-97 data. 

period. Although the b efficiency is slightly larger, the bias is rather small. The 

efficiencies for 1997 simulations are about 6% higher than those in 1996. Table 6.2 

lists the number of selected hadronic events in 1996 and 1997 data. 

The efficiency for selecting a well-contained 2’ -+ qq(g) event is estimated to be 

above 96% and independent of quark flavor. The selected sample comprised 111,569 

events, with an estimated 0.10 f 0.05% background contribution dominated by 2’ -+ 

7-$7- events. 

Inclusive distributions of single-particle and event-topology observables in hadronic 

events are found to be well described by the simulation [go]. Uncertainties in the sim- 

ulation are taken into account in the systematic errors. Figure 6-l the transverse 

momentum and momentum distributions as well as DOCAT and DOCA,, for well- 

measured tracks in selected hadronic events. Figure 6-2 shows the distribution of 

the event variables for selected hadronic events. In all plots, data are represented by 

points and Monte Carlo by histograms. 
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Figure 6-1: Distributions of transverse momentum, momentum, DOCA+ and 
DOCA,, for well-measured charged tracks for selected hadronic events in data 
(points) and Monte Carlo (histograms). 
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Figure 6-2: Distributions of cos&hrust, the number of well-measured tracks , and 
the visible -energy for selected hadronic events in data (points) and Monte Carlo 
(histograms). 
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6.2 B Hadron Selection 

Figure 6-3 shows a typical reconstructed B hadron decay hemisphere. In the figure 

shown, the B meson decayed into a D hadron and other tracks (neutral particles do 

not appear in the diagram). The D hadron subsequently decays into three visible 

tracks and invisible neutral particles. 

Figure 6-3: Tracks in a typical B-decay hemisphere. 

6.2.1 Quality Track Selection 

In order to tag B hadrons and find the locations of their decay vertices precisely, 

we must make use of the charged tracks of good quality. However, when we select 

a hadronic event, there is no guarantee that every track in this event will be a well- 

measured track (a hadronic event only needs to have five well-measured tracks). In 

fact, the set of requirements for selecting well-measured tracks does not contain any 

item that requires the track to be of particularly good quality (the transverse mo- 

mentum cut of 150 MeV/c is very loose). To select tracks suitable for B-tagging, we 
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must apply a more stringent set of cuts to select what are commonly referred to as 

‘quality’ or ‘flavor-tagging’ tracks. A quality track satisfies the following conditions: 

l jcos0j < 0.87 (0 is the polar angle of the track), 

l at least 2 hits in VXD3 and 23 hits in the CDC, 

l a combined CDC and VXD3 track fit quality of x2/Nd0f < 8, 

l a momentum in the range 0.25 < p < 55 GeV/c, 

l an impact parameter of less than 0.3 cm in the r$ plane, and less than 1.5 cm 

along the z axis, 

l a transverse impact parameter error of less than 250 pm. 

Figure 6-4 and 6-5 show distributions for selected quality tracks. The agreement 

between data and Monte Carlo is reasonably good. We have applied a standard 

tracking efficiency correction and track impact parameter smearing. This is a com- 

mon procedure for optimizing the Monte Carlo performance in describing the data. 

Effects of these corrections will be taken into account when we study the systematic 

uncertainties of the results in a later Chapter. 

6.2.2 B Tagging 

In order to find B hadrons from 2’ + bb decaysl, we must find B decay vertices as 

well as identifying the flavor of the hadron as b, rather than uds or c. We proceed as 

follows: 

l divide each event into two hemispheres using the thrust axis. 

l select quality tracks within each hemisphere; 

lb6 from gluon splitting in Z” qtj events are very rare. 
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l search for (reconstruct) secondary decay vertices using quality tracks within 

each hemisphere. The topological vertexing algorithm [94] is employed here; 

l associate and attach quality tracks to reconstructed vertices. [94]; 

l determine whether a vertex is a B hadron decay-vertex using the mass tagging 

technique [95]. This is a procedure called B-tagging. 

Figure 6-6 shows the distribution of the number of selected quality tracks in each 

hemisphere. 

-0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 

Number of Quality Tracks Per Hemisphere 

Figure 6-6: Distribution of the number of selected quality tracks in each hemisphere 
for 1996-97 data (points) and Monte Carlo (histogram). 

Topological Vertexing Algorithm 

The B sample for this analysis is selected using a topological vertexing technique 

based on the detection and measurement of charged tracks, which is described in 

detail in Ref. [94]. 

Each hadronic event is divided into two hemispheres by a plane perpendicular to 

the thrust axis. In each hemisphere the topological vertexing algorithm is applied to 
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the set of quality tracks. By a vertex we mean a spatial point where a final state 

particle such as a B hadron has decayed. Charged tracks of daughter particles of this 

decay will appear to have originated from this vertex. By vertexing we mean to 

find all decay vertices from a set of charged tracks. Various different algorithms of 

vertexing have been used by different analyses. The topological vertexing algorithm 

finds vertices inclusively with excellent performance, having high efficiency and high 

purity. 

Here is a very brief description of the vertexing algorithm. The vertices are recon- 

structed in 3D coordinate space by defining a vertex function V(T~ at each position 

?. The helix parameters for each quality track i are used to describe the 3D track 

trajectory by a Gaussian probability tube fi(r’), where the width of the tube is the 

uncertainty2 in the measured track location close to the IP. V(F) is defined as a func- 

tion of the fi( 3 T such that it is small in regions where fewer than two tracks (required 

for a vertex) have significant fi(q, and large in regions of high track multiplicity. 

Maxima are found in V(F) and clustered into resolved spatial regions. Tracks are 

associated with these regions to form a set of topological vertices. 

The efficiency for reconstructing at least one secondary vertex in a b hemisphere is 

- 67% using VXD3. For hemispheres containing secondary vertices, the ‘seed’ vertex 

is chosen to be the one with the highest V( 3 T va ue. The reconstructed vertices are 1 

ordered according to their distance to the IP as the primary, secondary, and tertiary 

vertices. The closest is the primary vertex, which is the IP. Very rarely will there be 

four vertices in one hemisphere. 

In hemispheres containing at least one found vertex the vertex furthest from the 

IP is retained as the ‘seed’ vertex. Those events are retained which contain a seed 

vertex separated from the IP by between 0.1 cm and 2.3 cm. The lower bound 

reduces contamination from non-B-decay tracks and backgrounds from light-flavor 

2A recent improvement is introduced by parameterizing this uncertainty as a function of track 
length. 
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events, and the upper bound reduces the background from particle interactions with 

the beam pipe. 

Track Attachment to Candidate B Decay Vertices 

For each hemisphere containing an accepted seed vertex, a vertex axis is formed by 

the straight line joining the IP to the seed vertex, which is located at a distance 

D from the IP. For each quality track not directly associated with the vertex, the 

distance of closest approach to the vertex axis, T, and the distance from the IP along 

the vertex axis to the point of closest approach, L, are calculated. Tracks satisfying 

T< 1 mm and L/D> 0.3 are added to the vertex. These T and L cuts are chosen to 

minimize false track associations to the seed vertex, since typically the addition of a 

false track has a much greater kinematic effect than the omission of a genuine B-decay 

track, and hence has more effect on the reconstructed B hadron energy resolution. 

Our Monte Carlo studies show that, on average, this procedure attaches 0.85 tracks 

to each seed vertex, 91.9% of the tracks from tagged true B decays are associated 

with the resulting vertices, and 98.0% of the vertex tracks are from true B decays. 

Mass Tag of the B Hadrons 

In this analysis, we describe how the individual B hadron energies are reconstructed. 

In order to select a clean B hadron sample, we must select only secondary vertices 

found by the vertexing algorithm that are most likely B hadron decay vertices. The 

large masses of B hadrons relative to light-flavor hadrons make it possible to dis- 

tinguish B ‘hadron decay vertices from those vertices found in events of light flavors 

using the vertex invariant mass, iW. Unfortunately, a fraction of B hadrons decay 

products cannot be reconstructed as charged tracks, which include neutrinos which 

escape direct detection, and neutral decay particles that cannot be directly recon- 

structed as tracks. Because of these missing particles, M cannot be fully determined. 
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Figure 6-7: B decay kinematics: charged tracks vs missing particles 

In the rest frame of the decaying hadron, M can be written as 

where Mch and MO are the total invariant masses of the set of vertex-associated tracks 

and the set of missing particles, respectively. Pt is the total charged track momentum 

transverse to the B flight direction, which is identical to the transverse momentum 

of the set of missing particles by momentum conservation. Pchl and Pal are the 

respective momenta along the B flight direction, which is the line joining the IP and 

the B vertex. In the B rest frame, 1 Pchlj = 1 Pal 1. Using the set of vertex-associated 

charged tracks, we calculate the total momentum vector pch, the total energy Ech 

and the invariant mass Mch, assuming the charged pion mass for each track. 

Most B hadrons from 2’ decays are highly energetic and their relative long life- 

times allow them to decay significantly far away from the IP. The average B decay 

length is about 3 mm. Given this long B decay length, the very small SLC beam spot 

(0.8 pm x 1.5 pm x 700 pm in syz) and the excellent vertex resolution provided by 



6.2. B HADRON SELECTION 145 

VXD3 the vertexing algorithm provides a precise measurement of the B flight direc- 

tion (the B vertex direction relative to the IP) very well. This is one advantage SLD 

has compared with experiments at LEP. The well-measured B flight direction allows 
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Figure 6-8: Distribution of the reconstructed Pt-corrected vertex mass in the 1996-97 
data (points). Also shown is the prediction of the Monte Carlo simulation, for which 
the flavor composition is indicated. 

the precise determination of transverse momentum Pt (See Figure 6-7), which enables 

us to employ the lower bound for the mass of the decaying hadron, the ‘P,-corrected 

vertex mass’, 
MP, = {-+ IF'\, (6.2) 

as the variable for selecting B hadrons. The majority of non-B vertices have Mpt 

less than 2.0 GeV/c2. However, occasionally the measured Pt may fluctuate to a 

much larger value than the true Pt, causing some charm vertices to have a Mpt 
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larger than 2.0 GeV/c ‘. To reduce this contamination, we calculate the ‘minimum 

Pt’ by allowing the locations of the IP and the vertex to float to any pair of locations 

within the respective one sigma error-ellipsoids, We substitute the minimum Pt in 

Equation (6.2) and use the modified Mpt as the variable for selecting B hadrons [96]. 

Figure 6-8 shows the distribution of the Mpt for the 32,492 hemispheres in the data 

sample with a found secondary vertex, and the corresponding simulated distribution 

(histogram). B hadron candidates are selected by requiring Mpt > 2.0 GeV/c2 and, 

in addition, Mpt 5 2 x MC, to reduce the contamination from fake vertices in light 

quark events [96]. A total of 19,404 hemispheres are selected. Table 6.3 lists the 

number of selected B hadron candidates for 1996 and 1997 data. 

Run Period Hadronic Events B expected B selected Efficiency (%) 
1996 37,694 16,380 6,171 37.7kO.5 
1997 73,875 32,100 13,233 41.2f0.4 
Total 111,569 48,480 19,404 40.0zto.3 

Table 6.3: Number of selected B hemispheres in 1996-97 data. The selection criteria 
are: 1) delay length> 1.0 mm) 2) Mpt > 2 GeV and 3) 2Mch > Mpt. 

The estimated efficiency for selecting a true B-hadron is about 36.6% for 1996 and 

39.8% for 1997, with a sample b-purity of about 98% for both 1996 and 1997. The 

higher efficiency for 1997 data is mainly due to the improved alignment of the vertex 

detector for 1997 data. The contributions from light-flavor events in the sample, 

shown in Figure 6.4, are 0.3% for primary light flavor (uds) events and 1.5% for 

charm events. 

Table 6.5 lists the efficiency and purity estimated from Monte Carlo simulations. 

The B selection efficiencies estimated from data are slightly higher than from Monte 

Carlo. The effects of this small discrepancy on our final results can be treated as 

systematic uncertainties by comparing results obtained from Monte Carlo events in 

which track parameters are smeared with those in which no smearing is applied. 
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Run Period Probability % Fraction % 
uds 1996 0.05 0.3 

1997 0.05 0.3 
C 1996 0.8 1.7 

1997 0.8 1.5 

Table 6.4: Probability for selecting background light flavor (uds and c) events; and 
fraction of uds and c events in the selected B sample estimated using 1996-97 Monte 
Carlo. 

Table 6.5: The efficiency for selecting b hadrons and the purity for B hadrons in the 
selected B sample estimated using 1996-97 Monte Carlo. 



Chapter 7 

The B Hadron Energy Distribution 

7.1 The Missing Mass Technique 

The energy of each B hadron, E B, can be expressed as the sum of the reconstructed 

charged track energy associated with the vertex, Ech, and the energy of the missing 

particles (those particles not associated with the vertex), Eo. We can write Eo as 

As mentioned in the last Chapter, transverse momentum, Pt, is well-measured at SLD 

because of the very small SLC beam spot and the high resolution on secondary vertex 

locations. The two unknowns, the missing mass Ma and the missing longitudinal 

momentum, Pal, must be found in order to obtain I30 (see Figure 6-7). 

7.1.1 The Missing Mass Upper Bound A40maa: 

One kinematic constraint can be obtained by imposing the B hadron mass on the 

vertex 7 Mj$ = Ei - Pi, where PB = Pchl + Pal is the total momentum of the B 

hadron, and Pchl is the momentum component of the vertex-associated tracks along 

149 
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the vertex axis, i.e., the B flight direction. This constraint reduces the number of 

unknowns from two to one, i.e., Pal can be solved if the missing mass is known (see 

Appendix B for derivation of the formula). 

We try to look for further constraints on the value of missing mass MO. From 

Equation (6.1) we derive the following inequality, 

where equality holds in the limit where both Pal and Pchl vanish in the I? hadron rest 

frame. Equation (7.2) effectively sets an upper bound on MO, and a lower bound is 

given by zero: 

0 I M,2 5 M&x, (7.3) 

where 

7.1.2 The Strong Correlation between MO and Moma3: 

Since MO is bounded from both above and below, when Mimaz is small, we expect to 

obtain a good estimate of MD and a good estimate of the B hadron energy as well. 

We have used our simulation to study this issue. Assuming MB = 5.28 GeV/c2, 

the true value of MO tends to cluster near its maximum value MO,,,. Figure 7- 

1 shows the relative deviation of MO,,, from Motrue for all B hadrons. Although 

approximately 20% of the B hadrons are II: and Ab which have larger masses, the 

values of MO,,, obtained using M B = 5.28 GeV/c2 in Equation (7.4) are typically 

within about 10% of MO. The distribution of the reconstructed Mima, for vertices in 

the selected B hadron sample is shown in Figure 7-2. The simulation indicates that 

the non-b& background is concentrated at high M,fmaz; this because most of the light 

flavor vertices have a small Mp,. Due to the strong negative correlation between Mp, 

and MO,,, (Figure 7-3)) a large value of Momax corresponds to a small value of Mpt 
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and vice versa. The negative tail in Figure 7-2 is an effect of detector resolution, and 

the Monte Carlo simulation shows good agreement with the data. 
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Figure 7-l: The relative deviation of the maximum missing mass from the true miss- 
ing mass for Monte Carlo simulated B hadron decays, which is divided into three 
categories: B” and B* (open), B,O ( cross-hatched), and Ab (dark filled). 

7.1.3 Solving for P-J and Eo 
Because MO peaks near Moma%, we set M2 = M&,, if M&,, 20, and MO2 = 0 if 0 

M&,, ~0. We then calculate POT: 

pol = M; - Pf’c2h + Pt2> - (Mi + Pt2> p 
we, + w chl 

:::; 
_- 
I : = 

n/r, - Mc,, p 

M chl, (7.5) 
chl 

where i&h, = J-L---T M2 + P2 is the observable, boost-invariant transverse-mass of the 

charged tracks, and hence determine the value of I30 (Equation (7.1)). For a detailed 

derivation of equation (7.5) and a discussion of this technique, see Appendix B. We 

then divide the reconstructed B hadron energy, Eg;“” = E. + Ech, by the beam energy, 

E beam = G/2 N 45.6 GeV, to obtain the reconstructed scaled B hadron energy, 

x:‘B”~ = E;3ecI Ebeam . 
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Figure 7-2: Distribution of the reconstructed M,&, for the selected vertices in the 
1996-97 data (points). Also shown is the prediction of the Monte Carlo simulation. 
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Figure 7-3: Correlation between n/r,, and M&,, for reconstructed B hadron vertices 
in the Monte Carlo simulation. 
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7.2 The B Energy Resolution 

Figure 7-4 shows the distributions of the relative energy residuals, (~2” - x~““)/x~““, 

for the four different B flavors B*, B”, B, and B b aryons (mainly Ab) for our Monte 

Carlo. For all four flavors, we have selected only those B hadrons with small missing 

mass upper bounds (we used -1 < M&,, < 1.5 (GeV/c2)2 for illustration purpose 

only). These distributions are all rather symmetric and centered around zero, 

with a small positive shift for B* and B” hadrons. Since we have assumed the B” 

mass for each vertex which is slightly smaller than the B, and B baryon masses, the 

reconstructed energy for the B, and B baryons is hence slightly lower than those 

for B* and B” hadrons. In Chapter 10 we will study the systematic effects of the 

uncertainty on the fraction of each B flavor. 

t-” 

Figure 7-4: Distributions of relative B energy residual, (x~“-@~)/x~~~, for different 
flavored B hadrons. in our simulation. 
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Figure 7-5: Distributions of (~g” - x~““)/z~~~ for four M&,, ranges. The resolution 
is better for B hadrons with smaller IV&&,,. 

The resolution of LC~‘, or the width of the residual distribution, depends on 

Mlm,,. Figure 7-5 shows the relative residual distributions for four different &I,&,, 

ranges. The resolution is rather good only for B hadrons with small missing mass 

upper bounds. However, as itI,&2 increases, which corresponds to relaxing the kine- 

matic constraint, the resolution degrades and the energy residuals are no longer sym- 

metric and centered around zero. For B hadrons with large IvI&,~, the reconstructed 

B energy is more often larger than the true B energy. Therefore, we only select B 

hadrons with small missing mass upper bounds as our final B sample in order to 

achieve good energy resolution. 

The resolution of xF” may also depend on the true XB, xEZle. Figure 7-6 shows 

the distributions of the relative B energy residual for four true B energy ranges with 
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5<E,<15 15<E,<25 

mc trw 
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tru. 
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Figure 7-6: Distributions of (xgc - x~““)/~~~ for four different xtrUe ranges, but with 
-1 < M&z < 1.5. The resolutions are almost the same for all B energies. 

-1 < -wLzct, < 1.5. The resolutions are essentially the same for all B energies. 

Vertices in the negative tail of the M&,, distribution that have M&,, < -1.0 

(GeV/c2)2 (Figure 7-Z) are often poorly reconstructed and are not used in further 

analysis. Vertices with small values of 1 M&,, 1 are typically reconstructed with better 

resolution and an upper cut on Mima3: is hence applied. 

7.3 The Final B Sample 

7.3.1 Efficiency Consideration and M&az Cut 

For an xB-independent cut on M&,,, the efficiency for selecting B hadrons increases 

almost linearly with xgUe. In order to obtain an approximately zB-independent 

selection efficiency we choose the following empirical upper cut to select our final 
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B sample: 

Mtmaz < (1.1 + 0.006(Ebeam - E;;““) + 3.5ezp[-(flgC - 5.5)/3.5]}2, (7.6) 

where energies are measured in GeV. The two terms that depend on the reconstructed 

energy EF” increase the efficiency at lower B hadron energy. 

/ r ” I r “I”’ ‘I”’ ( I ,“‘I 

SLD preliminary 1 

+ Data 1 + Data 

0 MCb 0 MCb 

q MCc q MCc 

MC uds MC uds - 

0 -1 0 1 2 3 4 5 
Mi,,, (GeV%?) 

Figure 7-7: Distribution of the reconstructed M&,, for the final selected B sample 
(see text). Also shown is the prediction of the Monte Carlo simulation. 

7.3.2 The Non& Background 

Only about 0.7% of the selected vertices are from light-flavor events, which are con- 

centrated in the lowest energy bin. To further remove this background, a vertex is 

required to contain at least 3 quality tracks with a normalized impact parameter 

greater than 2. This eliminates almost all of the uds-event background and cuts the 

charm background by about 20% overall and 43% in the few lowest energy bins. This 

cut helps to reduce the dependence of the reconstructed B hadron energy distribution 

on the light flavor simulation in the low energy region, which is a key step towards 
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finding the correct shape of the B hadron energy distribution at low energies. 

7.3.3 The Final B Sample: Efficiency and Purity 

A total of 1920 vertices in the data for 1996-97 satisfy all these selection cuts. Figure 7- 

7 shows the distribution of &?2,,, after all these cuts; the data and Monte Carlo 

simulation are in good agreement. 

The overall efficiency for selecting B hadrons is 3.9% and the estimated B hadron 

purity is 99.5%. The efficiency as a function of xgUe is shown in Figure 7-8. The 

dependence is rather weak except for the lowest xg region; the efficiency is substantial, 

about 1.7% even just above the kinematic threshold for B energy. 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 i.9 1 

Xl- s 

Figure 7-8: The Monte Carlo simulated efficiency for selecting B hadron decay vertices 
as a function of the true scaled B hadron energy, xtrue = E~ue/Ebeam. The nearly 
energy-independent efficiency (except at very low B energy) improves the sensitivity 
of the measured xg” distribution to the true underlying B energy distribution. Note 
the kinematic threshold of xg > 0.116. 

A comparison of our efficiency with those in recent B-energy measurements at 

LEP (1995) [97] and SLD (1997) [98] is in order here. Those previous measurements 
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in which semileptonic B decays (B + Dlv + X) that are suitable for a direct B- 

energy measurementi are selected. The overall efficiency for selecting B hadrons is 

only about 0.2% (LEP) and 1.1% (SLD), d ecreasing as the B energy decreases, and 

with almost no events selected for xg < 0.3. In addition, non& backgrounds are not 

small and the systematic uncertainties resulting from the very low efficiency at low xg 

are very substantial due to the model-dependent extrapolation to low x:B. The much 

higher and nearly zB-independent B selection efficiency of this analysis represents a 

major improvement in the measurement technique. 

500 ’ 500 - 

t 

0 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.6 

Figure 7-9: Distribution of (x’g”” - x~~“)/x~~~, for Monte Carlo simulated B vertices 
passing all cuts (points). The curve represents the result of a double Gaussian fit to 
the distribution. 

I 

j 

j 
I’ I 

‘In a direct measurement [99, 97, 98, 1001, each individual B hadron energy is explicitly re- 
constructed. This is not the case for many other indirect measurements[lOl], where the average 
B energy, or even the shape of the B energy distribution, are inferred from distributions of other 
kinematic variables rather than the reconstructed B energy distribution. 
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Figure 7-10: The fitted core and tail widths of the B energy resolution as a function 
of the true scaled B hadron energy. The ratio of the amplitude of the inner Gaussian 
(core) to that of the outer Gaussian (tail) is 83:17. The dependence of the core 
resolution on the true B energy is small. The very good resolution for low energy 
B hadrons improves the sensitivity of the measured xg” distribution to the true 
underlying B energy distribution. 

7.3.4 The Final B Sample: Resolution 

We examine the B-energy resolution of our technique. The distribution of the nor- 

malized difference between the true and reconstructed B hadron energies, (xg” - 

x~yxp”, for Monte Carlo events, is fitted by a double Gaussian, resulting in a 

core width (the width of the narrower Gaussian) of 10.4% and a tail width (the width 

of the wider Gaussian) of 23.6% with a core fraction of 83% (Figure 7-9). The core 

and tail widths as a function of xTe is shown in Figure 7-10. In order to compare 

the widths from different xg bins, we fix the ratio between core and tail fractions to 

that obtained in the overall fit above. 

The relative resolution depends weakly on the true xg. However, the abso- 

lute resolution, xgc - xzUe, does depend on xsUe and is very good at low xg (Fig- 

ure 7-11). This is a crucial advantage of this energy reconstruction technique. In 
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previous measurements, the energy resolution for xB < 0.5 is poor: a(xB) > 3 

GeV/(&/2). In this analysis, the fl(xB) - 2.5 GeV/(fi/2) for xg - 0.5 and 

o(xB) - 1.0 GeV/(&/2) f or xg as low as 0.2. Figure 7-12 shows the distribution of 

7 
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t, I, 

25<E,<35 35 < E, < 45.6 

-0.5 0 0.5 1 
ret true 

‘B -‘B 

Figure 7-11: Distribution of XF - xzUe for four B energy ranges for Monte Carlo 
simulation. The core resolution, 0, is shown in each figure with core fraction fixed at 
83%. 

the reconstructed scaled B hadron energy for the data, Ddata(xzC), and for the Monte 

Carlo simulation, DMC (x’,““). The small non-b& background reduces the systematic 

dependence of this measurement on light flavors, especially charm fragmentation and 

production. The full kinematic coverage, most importantly at low xg where other 

measurements have not been able to probe, is critical for constraining the shape of 

the true underlying energy distribution. As a result of the symmetric resolution over 

the full range, there is a natural and small resolution tail at large x;‘Be” that is po- 

tentially sensitive to the xg-dependence in that region. Had we applied the beam 

energy constraint to gain in energy resolution, we would have, in the meantime, lost 
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this advantage. We chose not to apply the beam energy constraint throughout this 

analysis for this particular reason. 

t 

t 

SLD preliminary 

! 
Data 

____ Simulation I r-4 

Non-b6 Bgd. 

* 

‘0 I I 0.2 I 0.4 1 0.6 I , I / 0.8 I I I I 1 I I I I. 1.2 
ret XB 

Figure 7-12: Distribution of the reconstructed scaled B hadron energy for 1996- 
97 data (points) and the default Monte Carlo simulation (histogram). The solid 
histogram shows the non-b& background. 
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7.3.5 Summary 

We have taken the advantages present at SLC and SLD to develop a novel energy 

reconstruction technique which allows us to improve the B energy measurement sig- 

nificantly. The high B selection efficiency over the full kinematic coverage, the small 

non-b& background, and the good energy resolution are the most important charac- 

teristics of this analysis. No other analysis contains all of these features. As we will 

see in the next Chapter, these features combined give a much improved sensitivity of 

our data to the underlying true shape of the B energy distribution. 

In the next Chapter we will test various fragmentation models using our measured 

B energy distribution. An important issue arises here which we did not discuss earlier. 

The event generator used in our simulation is based on a perturbative QCD ‘parton 

shower’ for production of quarks and gluons, together with the phenomenological 

Peterson function [48] (Table 8.1) to account for t.he fragmentation of b and c quarks 

into B and D hadrons, respectively, within the iterative Lund string hadronization 

mechanism [15]; this simulation yields a ‘generator-level’ primary B hadron energy 

distribution with < xg > = 0.6932. It is apparent that this simulation does not 

reproduce the data well (Figure 7-12); the x2 for the comparison is 62 for 16 bins3. 

The distribution of the non-bb background, S(x~“), is also shown in Figure 7-12. 

The background is subtracted bin-by-bin from the reconstructed XB distribution. 

2We used a value of the Peterson function parameter q, = 0.006 [%I. 
3We exclude several bins with very few events in the comparison. For details see Section 8.1 for 

details. 



Chapter 8 

Tests of Fragmentation Models 

Given the raw reconstructed B energy distribution in the data shown in Figure 7-12, 

there are several ways of estimating the true underlying B energy distribution. Here 

we take two approaches, each described in a subsection. 

In the first part, we test several b fragmentation models, f(z, p) embedded within 

Monte Carlo generators, where z is an internal, experimentally inaccessible variable, 

corresponding roughly to the fraction of the momentum of the fragmenting b quark 

carried by the resulting B hadron, and ,@ is the set of parameters associated with the 

model in question. In the second part, we test several functional parameterizations 

for the distribution of xg itself, f( xg, A), where x represents the set of parameters 

associated with each functional form. 

8.1 Tests of b Quark Fragmentation Models f(z, p) 

We first consider testing models of b quark fragmentation. Since the fragmentation 

functions for various models are usually functions of an experimentally inaccessible 

variable (e.g. z = (E + pli)H/(E + pII)& or z = pIIH/pIIQ ), it is necessary to use a 

Monte Carlo generator to generate events according to a given input heavy quark 

fragmentation function f(~, ,8), where /3 represents the set of parameters. Figure 8-l 

163 
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I Other Hadrons 

f(z,p> iy I I =? ++ I I I I B Hadron 
: Pert. QCD : Nonpert. : xB = E$E, 
Pat-ton Shower Fragmentation 

Figure 8-1: A schematic diagram showing how the non-perturbative fragmentation 
function f(z, p) is tested. f(x, /3) is invoked after hard gluon radiation and perturba- 
tive shower evolution, which is simulated by JETSET Parton Shower Monte Carlo. 
The parameters p are varied in order to obtain different resulting B hadron energy 
distributions. 

shows a schematic illustration of the situation. We consider the phenomenological 

models of the Lund group [102], Bowler [37], Peterson et al. [48] and Kartvelishvili et 

al. [49], as well as the perturbative QCD calculations of Braaten et al. (BCFY) [58], 

and of Collins and Spiller (CS) [51]. W e use the JETSET [15] parton shower Monte 

Carlo and each fragmentation model in question to generate the simulated events 

without detector simulation. Table 8.1 is a list of the models considered. In addition, 

we test the UCLA [39] f ra g mentation model with fixed parameters. For b fragmenta- 

tion, we also test the HERWIG [41] event-generator using both possible values of the 

parameter cldir = 0 and ll. 

‘The meaning of this cl&r parameter is as follows. After the parton shower, HERWIG produces 
a leading ‘cluster’ containing the b quark and a light (u or d) quark. This may have a reasonable 
energy distribution, but it also has a random mass. So it is decayed into a B hadron and another 
hadron, &, K, p, and so on. In the old versions where cldir = 0 this decay is isotropic so that 
the B hadron acquires a rather random fraction of the energy of the leading cluster. The average 
B hadron energy is too soft on average. For cldir = 1 (default in newer versions) the B hadron is 
always produced forward along the cluster flight direction, thus getting the maximum energy it can, 
and giving a much harder spectrum. 
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Model 

BCFY 

Bowler 

cs 

Kart. 

Lund 

Peterson 

f (6 P) 
‘(’ - ‘j2 

[l - (1 - r)z] 
6 [3 + C~z,(-x)ifi(r)] 

#+& (1 - 4aew(-w14 

(iy+q?g) (1 + z2)(1 - $ - A)-’ 

z@(l - 2) 

-$(l - z)‘ezp(-bmt/z) 

$(l - p - $+jj)-2 

Reference 

WI 

PI 

WI 
PI 
W4 
I481 

Table 8.1: b quark fragmentation models used in comparison with data. For the BCFY 
model, fi(r) = 3(3-4r), fi(r) = 12-23r+26r2, fs(r) = (l-r)(9-llr+12r2), 
and f~(r) = 3(1 - r)‘(l - r + r2), where T = (mu - m~)/m~ where mH is the 
mass of the heavy hadron and mQ is the mass of the heavy quark. For a heavy-light 
meson, r can be interpreted as the ratio of the constitute mass of the light. quark to 
the meson mass. 

In order to make a consistent comparison of each model with the data we adopt 

the following procedure. For each model, starting values of the arbitrary parameters, 

,f3, are assigned and the corresponding fragmentation function f(z, p) is used along 

with the JETSET Monte Carlo to produce the scaled primary B hadron energy dis- 

tribution, DMC true (zs ) in the MC-generated b6 event sample, before simulation of the 

detector. Then each simulated B hadron is weighted according to its true B hadron 

energy, xgue; the weight is determined by the ratio of the generated B hadron energy 

distribution, DMC true (2s ), to that of our default simulation Ddefault(xzue). After sim- 

ulation of the detector, application of the analysis cuts and background subtraction, 

the resulting weighted distribution of reconstructed B hadron energies, DMC(x’,““), is 

then compared with the background-subtracted data distribution and the x2 value, 

defined as 
Nfata _ R&MC 

7 (84 
gi 
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is calculated, where N is the number of bins to be used in the comparison, NZgata 

is the number of entries in bin i in the data distribution, and NZfic is the number 

of entries in bin i in the simulated distribution2. pi is the statistical error on the 

deviation of the observed number of entries for the data from the expected number 

of entries in bin i, which can be expressed as 

(84 

where (Ji@)2 is the expected statistical variance on the observed data number 

of entries in bin i, assuming the model being tested is correct, and (RdF)’ is the 

statistical variance on the expected number of entries in bin i. Since the x2-test is 

not a statistically effective test for bins with a very small number of entries, the third, 

the fourth, and the last three bins in Figure 7-12 are excluded from the comparison. 

We vary the values of the set of parameters p and repeat the above procedure. 

The minimum x2 is found by scanning through the input parameter space, yielding 

a set of parameters which give an optimal description of the reconstructed data by 

the fragmentation model in question. Each of the nine plots in Figure 8-2 shows the 

background-subtracted distribution of reconstructed B hadron energy for the data 

(points) and the respective B energy distribution (histogram) resulting either from the 

optimized input fragmentation function f(z) embedded within the JETSET parton 

shower simulation, or from the predictions of the HERWIG event-generator and the 

UCLA fragmentation model. Data points excluded from the fit are represented in 

Figure 8-2 by open circles. 

We conclude that with our resolution and our current data sample, we are able to 

distinguish between several fragmentation models. Within the context of the JETSET 

Monte Carlo, the Lund and Bowler models are consistent with the data with x2 

2R is the factor by which the total number of entries in the simulated distribution is scaled to 
the number of entries in the data distribution; R N l/12. 
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Figure 8-2: Each figure shows the background-subtracted distribution of recon- 
structed B hadron energy for the data (points) and for the Monte Carlo (histogram) 
based on the respective optimized input fragmentation function within the JETSET 
parton shower simulation, as well as based on the HERWIG (cld = 0 and cld = 1) 
and the UCLA fragmentation models. The x2 and the number of degrees of freedom 
are indicated. 
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probability of 32% for each, the Kartvelishvili model is marginally consistent with the 

data, while the Peterson, the BCFY and the CS models are found to be inconsistent 

with the data. The UCLA model is consistent with the data to a level of 10% x2 

probability. The HERWIG model with cl&r = 0 is confirmed to be much too soft. 

Using cldir = 1 results in a substantial improvement, but it is still inconsistent with 

the data. Table 8.2 lists the results of the comparisons. 

Model X2/W Parameters c-4 

JETSET + BCFY 83116 T = (8.5 f 0.7) x 1O-2 0.694 f 0.005 

JETSET + Bowler* 17/15 a = 1.5, b = 1.5, (Tb = 1) 0.714 

JETSET + Collins and Spiller 103/16 Eb = (3.0 f 0.8) X 1o-3 0.691 f 0.005 

JETSET + Kartvelishvili* et al. 34/16 Qb = 10.4 & 0.5 0.711 zt 0.004 

JETSET + Lund* 17115 a = 2.0, b = 0.5 0.712 

JETSET + Peterson et al. 62/16 Eb = (6.01;:;) X 1o-3 0.697f0.005 

HERWIG cldir=O 460/17 - 0.632 

HERWIG cldir=l 94/17 - 0.676 

UCLA* 25117 - 0.718 

Table 8.2: Results of fragmentation model tests for JETSET + fragmentation models, 
the HERWIG model and the UCLA model. Minimum x2, number of degrees of 
freedom, corresponding parameter values, and the mean value of the corresponding 
B energy distribution are listed. * indicates models used to correct the data in 
Chapter 9. 
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8.2 Tests of Functional Forms f(xB, x> 

We now consider the more general question of what functional forms of the B energy 

distribution, f(x~, X), can be used as estimates of the true underlying B energy 

distribution. In particular, we would like to test a wide variety of functional forms 

and ask how many different forms are consistent with the data. Each consistent 

functional form will add to the list of our estimates of the true underlying B energy 

distribution. Figure 8-3 shows an illustration of how the functional forms are tested. 

b ; Other Hadrons 
I I 
I 

E, = 45.6 GeV i 
I I 

Pert. QCD Nonpert. 
Parton Shower Fragmentation 

Xg = E$E, 

> 

f(x,,h)=? 
Figure 8-3: A schematic diagram showing how B energy functional forms f(xg, X) 
are tested. f ( xg, X) treats everything from the initial b quark in 2’ to bb to the B 
hadron in one package, which includes hard gluon radiation and perturbative shower 
evolution which is simulated by JETSET Parton Shower Monte Carlo, and the non- 
perturbative fragmentation process represented by a dark blob that signifies the fact 
that it is not very well understood. The parameters X are varied in order to obtain 
different B hadron energy distributions. 

For convenience we consider the functional forms of the BCFY, Collins and Spiller, 

Kartvelishvili, Lund, and Peterson groups in the variable xg. In addition we consider 

ad hoc generalizations of the Peterson function (F), an 8th-order polynomial and a 

‘power’ function. These functions are listed in Table 8.3. Each function vanishes at 

xg = 0 and xg = 1. 
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Function f (58, x> Reference 

F,Fl (a=O), F2 (b=O) Ia + “(&- TcB)l(l - & - A)-2 PI 

8th-order Polynomial xg(l - XB)(XB - ~cOg)(l + CF=rpixk) (see text) 

Power x$(1 - XB)’ (see text) I 

Table 8.3: B energy functional forms used in comparison with the data. A polynomial 
function and a power function are included (see text for discussion). z’& is the low kinematic 
threshold for B energy. For BCFY, CS, Kartvelishvili, Lund, Peterson functional forms, 
see Table 8.1. Function Fl is obtained by setting a = 0 and F2 by setting b = 0, see text 
below. 

For each functional form, a testing procedure similar to that described in subsec- 

tion 8.1 is applied. The optimized fitting parameters X and the minimum x2 values 

are listed in Table 8.4. The corresponding DMC(xzC) are compared with the data in 

Figure 8-4. 

Two sets of optimized parameters are found for the generalized Peterson function 

F to describe the data. ‘Fl’, obtained by setting the parameter a (shown in Table 8.3) 

to zero and making b a constant normalization factor, behaves like xg as xg -+ 0 and 

(1 - zg)3 as xg -+ 1 and yields the best x2 probability of 53%; ‘F2’, obtained by 

setting b to zero and making a a constant normalization factor, has a x2 probability 

of 13%. A constrained polynomial of at least 8th-order is needed to obtain a x2 

probability greater than 0.1%. The Peterson functional form marginally reproduces 

the data with a x2 probability of about 3%. The remaining functional forms are 

found to be inconsistent with our data. The widths of the BCFY and CS functions 

are too large to describe the data; Kartvelishvili, Lund and the ‘power’ functional 

form vanish too fast as xg approaches zero. 

We conclude that, within our resolution and with our current data sample, we are 

able to distinguish between some of these functional forms. But most importantly, 

consistent functional forms will help us evaluate the uncertainty on the true B energy 

distribution. 
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Figure 8-4: Each figure shows the background-subtracted distribution of recon- 
structed B hadron energy for the data (points) and for the weighted simulation 
(histograms) based on the respective optimized input functional form for the true 
B energy distribution. The x2 and the number of degrees of freedom are indicated. 
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Function 

Fl” 

X2/dd 
14115 

F2” 21115 

BCFY 62116 

Collins and Spiller 75116 

Kartvelishvili et al. 68/16 

Lund 115115 

Peterson et al.* 28116 

Polynomial* 15112 

Power 68115 

Parameters 

c = 0.838 f 0.018 

d = 0.022 f 0.002 

c = 0.896 f 0.033 

d = 0.040 f 0.003 

T = 0.240 f 0.009 

Eb = 0.043 f 0.005 

cq = 4.16 zk 0.11 

a = 2.30 f 0.12 

brnt = 0.50 f 0.07 

E/, = 0.036 f 0.002 

p1 = -10.76 f 0.16 

p2 = 45.74 f 0.28 

p3 = -93.60 f 0.34 

p4 = 92.01 f 0.37 

p5 = -34.53 f 0.27 

a = 4.27f 0.25 

p = 1.05 5 0.10 

lxB) 
0.714f0.005 

0.717zt0.005 

0.709f0.005 

0.711f0.005 

0.72110.004 

0.7211tO.005 

0.713*0.005 

0.709f0.005 

0.720f0.005 

Table 8.4: Results of the x2 fit of fragmentation functions to the reconstructed B 
hadron energy distribution after background subtraction. The minimum x2 value, 
the number of degrees of freedom, the corresponding parameter values, and the mean 
value of the. corresponding B energy distribution are listed. Errors are statistical only. 
* indicates functions used to correct the data in Chapter 9. 



Chapter 9 

Unfolding the B Energy 

Distribution 

So far we have used the raw B energy distribution to test various models of the 

non-perturbative b quark fragmentation function and various B energy functional 

forms. However, in order to compare our results with those of other experiments and 

potential future theoretical predictions it is necessary to correct the reconstructed 

scaled B hadron energy distribution Ddata (~2’) for the effects of non-B backgrounds, 

detector acceptance, event selection and analysis bias, and initial-state radiation, as 

well as for bin-to-bin migration effects caused by the finite resolution of the detector 

and the analysis technique. 

9.1 Unfolding Met hod 

Due to the expected rapid variation of the yet-unknown true B energy distribution at 

large zs, any correction procedure will necessarily be more or less model-dependent. 

We choose a method that explicitly evaluates this model-dependence and gives a 

very good estimate of the true energy distribution using all of the above models or 

functional forms that are at least marginally consistent with the data. 
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Figure 9-1: The efficiency-resolution corrected distributions of scaled weakly-decaying 
B hadron energies for Case 1) fragmentation models of the Lund, the Bowler and 
the Kartvelishvili within the JETSET parton shower Monte Carlo as well as for the 
UCLA fragmentation model; and for Case 2) four functional forms: Fl, F2, Peterson, 
and the constrained &h-order polynomial. 

We apply a 25 x 25 matrix unfolding procedure to Ddata(xsC) to obtain an estimate 

of the true distribution Ddata(~~ue): 

Ddata(xtgrue) = E-l(xtgrue) . E(xtBT”e, xx;‘B”c) . (,dat”(x;C) _ S(x;C)), (94 

where S is a vector representing the background contribution, E is a matrix to correct 

for bin-to-bin migrations, and E is a vector representing the efficiency for selecting true 

B hadron decays for the analysis. The matrices S, E and E are calculated from our 

MC simulation; the matrix E incorporates a convolution of the input fragmentation 

function with the resolution of the detector. E(i, j) is the number of vertices with 

xgZLe in bin i and xTge in bin j, normalized by the total number of vertices with xgc 



9.2. UNFOLDED DLS’TRIB UTION 175 

in bin j. Error propagation and correlation among bins of unfolded distribution are 

discussed in detail in Appendix C. 

We evaluate the matrix E using the Monte Carlo simulation weighted according 

to an input generator-level trzle B energy distribution found to be consistent with 

the data in Chapter 8. We have seen that eight B energy distributions can repro- 

duce the data: four fragmentation models f(x) (JETSET+Lund, JETSETtBowler, 

JETSET+Kartvelishvili, and UCLA) and four B energy functional forms f(x~) 

(Peterson, Fl and F2 and the 8th-order polynomial in Table 8.3. Also see text 

on page 170). We consider in turn each of these eight consistent distributions, using 

the optimized parameters listed in Table 8.2 and 8.4. The matrix E is then evaluated 

by examining the population migrations of true B hadrons between bins of the input 

scaled B energy, xzzLe, and the reconstructed scaled B energy, xg”. 

9.2 Unfolded Distribution 

Using each D MC(xgue), the data distribution Ddata (x2”) is then unfolded according 

to Equation (9.1) to yield Ddata (x;“~), which is shown for each input fragmentation 

function in Figure 9-l. For histogram bin contents, errors, and correlation matrix, 

see Appendix C. 

It can be seen that the shapes of Ddata (xg”“) differ systematically among the input 

b quark fragmentation models and the assumed B energy functional forms. These 

differences are used to assign systematic errors. Figure 9-2 shows the final corrected 

xg distribution D(xg), which is the bin-by-bin average of the eight unfolded distri- 

butions, where the inner error bar represents the statistical error and the outer error 

bar is the sum in quadrature of the r.m.s. of the eight unfolded distributions and the 

statistical error within each bin. Since two of the eight functions (the Kartvelishvili 

model and the Peterson functional form) are only in marginal agreement with the 

data, and the 8th-order polynomial has a slightly unphysical behavior near xs = 1, 
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Figure 9-2: Distribution of the final corrected scaled B hadron energies. The central 
value is the bin-by-bin average of the eight consistent B energy distributions. In each 
bin the statistical error is indicated by the inner error bar, the sum in quadrature 
of statistical and unfolding errors from model dependence by the outer error bar. 
Systematic errors are small compared with the statistical and model dependence 
errors and are not included here. Note that the first two bins are below the kinematic 
limit for xs (no point shown). For histogram bin contents, errors, and correlation 
matrix, see Appendix C. 

this r.m.s. may be considered to be a rather reasonable envelope within which the 

true xs distribution is most likely to vary. The model dependence for this analysis is 

significantly smaller than those of previous direct B energy measurements, indicating 

the enhanced sensitivity of our data to the underlying true energy distribution. 



Chapter 10 

Systematic Studies 

We have considered sources of systematic uncertainty that potentially affect our mea- 

surement of the B hadron energy distribution. These may be divided into uncertain- 

ties in modeling the detector and uncertainties on experimental measurements serving 

as input parameters to the underlying physics modeling. For these studies our stan- 

dard simulation, employing the Peterson fragmentation function, is used. 

For each source of systematic error, the Monte Carlo distribution ,Mc(~ve) is re- 

weighted and then the resulting Monte Carlo reconstructed distribution DMC(xr) is 

compared with the data Ddata (~2”) by repeating the fitting and unfolding procedures 

described in Section 4 and 5. The differences in both the shape and the mean value 

of the xzue distribution relative to the standard procedure with nominal values of 

parameters are considered. Due to the strong dependence of our energy reconstruction 

technique on charged tracks, the dominant systematic error is due to the discrepancy 

in the charged track transverse momentum resolution between the Monte Carlo and 

the data. We evaluate this conservatively by taking the full difference between the 

nominal results and results using a resolution-corrected Monte Carlo event sample. 

The difference between the measured and simulated charged track multiplicity as a 

function of cos0 and momentum is attributed to an un-simulated tracking inefficiency 

correction. We use a random track-tossing procedure to evaluate the difference in our 
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results. A large number of measured quantities relating to the production and 

decay of charm and bottom hadrons are used as input to our simulation. In bb events 

we have considered the uncertainties on: the branching fraction for 2’ -+ bb; the rates 

of production of B*, B” and Bt mesons, and B baryons; the lifetimes of B mesons 

and baryons; and the average B hadron decay charged multiplicity. In CC events 

we have considered the uncertainties on: the branching fraction for 2’ -+ CC; the 

charmed hadron lifetimes, the charged multiplicity of charmed hadron decays, the 

production of K” from charmed hadron decays, and the fraction of charmed hadron 

decays containing no 7r”s. We have also considered the rate of production of ss in 

the jet fragmentation process, and the production of secondary bb and c? from gluon 

splitting. The world-average values [103,95] of these quantities used in our simulation, 

as well as the respective uncertainties, are listed in Table 10.1, 10.2, and 10.3. Most 

of these variations have effect on normalization, but very little on the shape or the 

mean value. In no case do we find a variation that changes our conclusion about 

which functions are consistent with the data. Systematic errors of the mean value are 

listed in Table 10.4. 

Table 10.1: Uncertainties in (zg) due to Monte Carlo statistics and detector system- 
atics. 
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Source Center Value Variation s cxd 

B” mass effect 5.280 Iko.004 fO.OOO1 

B+ lifetime 1.64 ps zko.04 ps +0.0001 

B” lifetime 1.55 ps Iko.04 ps fO.OOO1 

B, lifetime 1.57 ps f0.15 ps f0.0001 

B baryon lifetime 1.22 ps kO.11 ps &0.0001 

B+ + Do + X fraction 0.632 f0.026 <0.0001 

B” -+ Do + X fraction 0.546 f0.026 ~0.0002 

B, + D, + X fraction 0.674 10.200 1tO.0006 

B baryon -+ C baryon +X fraction 0.755 z!I0.100 fO.OOO1 

B+ production fraction 40.67 It10 ~0.0010 

B” production fraction 40.58 f10 <0.0001 

B, production fraction 11.49 k4 f0.0009 

B baryon production fraction 7.26 zt4 <0.0001 

B decay (Q) 5.3 +0.3 -0.0018 

-0.3 0.0005 

Rb 0.2170 zk0.0009 <0.0001 

Table 10.2: Uncertainties in (xg) due to uncertainties in physics modeling (part one). 
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g -+ cc 2.38 &1.2% ztO.0008 

K” production 0.658 trks ho.066 trks &IO.0009 

A production 0.124 trks kO.008 trks f0.0002 

Total Physics Modeling Syst. 0.0029 

Table 10.3: Uncertainties in (xB) due to uncertainties in physics modeling (part two). 

Source s txB> 
Monte Carlo statistics 0.0011 

Detector modeling 0.0060 

Physics modeling 0.0029 

Total Systematics ) 0.0068 1 

Table 10.4: Summary of systematics in (2~). 
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The model-dependence of the unfolding procedure is estimated by considering the 

envelope of the unfolded results illustrated in Figure 9-2. Since eight functions provide 

an acceptable x2 probability in fitting to the data, in each bin of XB we calculated the 

average value of these eight unfolded results as well as the r.m.s. deviation. In each 

bin the average value is taken as our central value and the r.m.s. value is assigned as 

the unfolding uncertainty. 

Other relevant systematic effects such as variation of the event selection cuts and 

the assumed B hadron mass are also found to be very small (Table 10.5). 

Source Center Value Variation b txB) 
Visible Energy 20 -2 -0.0007 
(GeV) 20 +2 0.0003 
Number of good tracks 5 +5 -0.0003 
cos( Qthrust) range 0.71 f0.04 0.0001 

Table 10.5: Uncertainties in (2~) due to variations in hadronic event selection criteria. 
These changes in (xg) are partly due to changes in the statistical sample. 

In selecting the final B sample we have applied the empirical cut on M,&, in 

(7.6). As a cross-check of the stability of our method, we vary the M&,, cut within 

a wide range, repeat the analysis procedure, compare the results. Specifically we 

have chosen four different cuts: -1 < n/ro2&, < 1, -1 < M&,, < default cut, 

-1 < M,&,, < 3, and -1 < A&&,, < 5. For each cut the number of selected B 

vertices and the resulting statistical errors, axg, on (XB) are listed in column 2 and 3 

of Table 10.6, respectively. 

In order to examine whether our conclusion about which functions remains valid 

and how the values of the average B energy change when we vary the M,&,, cut, 

we re-test four functions Fl, F2, Peterson and BCFY for each cut. If our technique 

is stable, functions most consistent with our data, such as Fl and F2, should still 

produce good fit results and the values of x2 should change only slightly. Functions 

that are only marginally consistent with our data, such as the Peterson function, 
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can become more consistent or less consistent with our data, since our data cannot 

yet rule out these functions. However, functions that are significantly inconsistent 

with our data, such as BCFY, are expected to produce worse fits with the data as 

we loosen the Mlma, cut. Table 10.6 lists all sixteen (xg) values. No statistically 

significant variations are observed. The average energy decreases slightly when more 

B vertices are included in the final sample. Since B vertices with large M&,, are 

known to have worse energy resolutions, the stability of our technique is remarkable. 

Table 10.7 lists the x2 of the all sixteen tests. As M&,, cut is loosened, Fl remains the 

best fit function; however, F2 becomes marginal and Peterson turns from marginally 

consistent into slightly inconsistent. BCFY, as expected, remains inconsistent and is 

worse when we enlarge the B sample. 

Table 10.6: We check the stability of our (xB> by varying the M,fma, cut used in 
selecting our final B sample with a large range. The resulting variation in (XB) is 
a result of both statistical change and systematic effects. ‘Default’ in the 2nd row 
stands for the empirical cut we have chosen in (7.6). 

( %i7L,, [ x2 1 x2 1 x2 [ x2 
Fl F2 Peterson BCFY 

1.0 13 22 31 61 
Default 16 25 32 66 

3.0 10 20 28 71 
5.0 17 32 43 100 

Table 10.7: Values of x2 for four different M&,, cut and four different functions. Our 
conclusions about whether a function is consistent essentially remain the same. 



Chapter 11 

Conclusions 

We have used the excellent tracking and vertexing capabilities of SLD to reconstruct 

the energies of B hadrons in e+e- --+ 2’ events over the full kinematic range by 

applying a new kinematic technique to an inclzlsive sample of topologically recon- 

structed B hadron decay vertices. The overall B selection efficiency of the method 

is 3.9%. We estimate the resolution on the B energy to be about 10.4% for roughly 

83% of the reconstructed decays. The energy resolution for low energy B hadrons is 

significantly better than previous measurements. The overall efficiency for selecting 

B hadrons is about 15-20 times higher than recent direct measurements at LEP. 

In order to get a good estimate of the model dependence of the unfolded distri- 

bution, the distribution of reconstructed scaled B hadron energy, Ddata(zF), is com- 

pared case 1) with predictions of either perturbative QCD and phenomenological 

b quark fragmentation models in the context of the JETSET parton shower Monte 

Carlo, OT HERWIG and UCLA fragmentation models, and case 2) with a set of 

functional forms for the B energy distribution. In case l), the Lund and the Bowler 

models are consistent with the data; the model of Kartvelishvili et al. is in marginal 

agreement with the data. The models based on the perturbative QCD calculations of 

Braaten et al., and of Collins and Spiller, and the Peterson model are disfavored by 

the data. Although both versions of the HERWIG model are excluded by the data, 

183 



184 11. CONCL USIONS 

the new version is very much improved. The UCLA model describes the data rea- 

sonably well. In case 2), four functional forms, namely the two generalized Peterson 

functions Fl and F2, the Peterson function, and a constrained 8th-order polynomial 

are found to be consistent with the data. 

The raw B energy distribution is then corrected for bin-to-bin migrations caused 

by the resolution of the method and for selection efficiency to derive the energy 

distribution of the weakly decaying B hadrons produced in Z” decays. Systematic 

uncertainties in the correction have been evaluated and are found to be significantly 

smaller than those of previous direct B energy measurements. The final corrected 

xg distribution Ddata(xgzle) is shown in Figure 9-2. The statistical and unfolding 

uncertainties are indicated separately. 

It is conventional to evaluate the mean of this B energy distribution, < xg >. 

For each of the eight functions providing a reasonable description of the data (four 

from case 1) and four from case 2)), we evaluate < xg > from the distribution that 

corresponds to the optimized parameters; these are listed in Table 8.2 and Table 8.4. 

We take the average of the eight values of < xg > as our central value, and define the 

model-dependent uncertainty to be the r.m.s. deviation within each bin. All detector 

and physics modeling systematic errors are included. We obtain 

<xB> = 0.714 f O.O05(stat.) f O.O07(syst)f O.O02(modeZ). (11.1) 

It can be seen that < xg > is relatively insensitive to the variety of allowed forms of 

the shape of the fragmentation function D(xg). 

Figure 11-1 shows the comparison of this result with other measurements at LEP 

or SLD. ’ 
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Average of <xg> Values for the 8 Best-Fit Functions 

<xg> = 0.714 + O.OO!S(stat.) + O.O07(syst.) + O.O02(model) 
(Preliminary 150k Z” 1996-97 Data) 

SLD (99) Incl. Vtx-M,,,, 

SLD (96) B+vID(X) 

ALEPH (95) B-wID(X) 

DELPHI (93) B-+vID(X) 

L3 (97) B Lifetimes 

OPAL (95) E,,, M,, 

OPAL (94) Charge Mult. 

OPAL (93) Lepton Spec. 

L3 (91) Lepton Spec. 

# no model dependence error 0.660.66 0.7 0.720.74 
l stat. and syst. combined 

<xB> 

0.714~0.005~0.0071-0.002 

0.701 ~0.011+0.009~0.019 

0.700~0.007+0.011 kO.006 

0.695+_0.015kO.O29# 

0.708+0.004#’ 

0.695f0.006+0.003+0.007 

0.693~0.003+0.030# 

0.697+0.006+0.011~ 

0.686+0.006zk0.016# 

Figure 11-l: Comparison with other results of the average B hadron energy. In a 
direct measurement each individual B hadron energy is reconstructed. In indirect 
measurements [loll, the average B hadron energy is inferred from distributions of 
other kinematic variables, such as the spectra of leptons from B semi-leptonic decays. 
Note that in several results the model-dependence on the average B energy were not 
considered. 



Appendix A 

Electroweak Interaction 

Several key ideas were crucial to the eventual formulation of the unification of elec- 

tromagnetism and the weak interaction. Local non-Abelian gauge invariance [log], 

spontaneous symmetry breaking [110], the Higgs mechanism [ill], and the demon- 

stration of the renormalizability of spontaneously broken gauge theories [112]. The 

discovery of parity violation in weak interactions [113] and other experimental obser- 

vations laid the foundation in formulating the fermion structure, the Lorentz structure 

of the interactions, and the gauge group structure. All assumptions of the theory have 

been and will continue to be subject to more and more precise experimental tests. 

Any significant deviation from predictions of the Standard Model will have to be 

explained by theories beyond the Standard Model. 

A.1 Local Gauge Theories 

Implicit in Maxwell’s unified theory of electricity and magnetism, the electromag- 

netism, is the U(1) local gauge invariance. It took almost a century to realize that 

the unification of other fundamental interactions also lay in the same direction but at 

a deeper level, namely, the local non-Abelian gauge invariance. The Standard Model 

electroweak theory was formulated based on this principle of local gauge invariance. 
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In Classical Electrodynamics, the electric field ,?? and the magnetic field 2 are 

unchanged when the 4-vector potential Ap is changed by adding the divergence of an 

arbitrary function, 

Ap = A’” - PA. (A4 

The same physics is described by an infinite number of different vector potentials. 

This is called the local gauge invariance of classical electrodynamics. 

In quantum theory, the absolute phase of a wave function cannot be measured and 

is chosen by convention. Under a global change of the phase of the wave function, 

the expectation value of an observable, 

(A4 

does not change. 

What happens if we make a Eocal change of the phase of a wave function? Under 

a local phase transformation, 

I/I(X) = eiacr)$(2), (A4 

where the phase is space-time dependent, the derivative of the wave function trans- 

forms as 

q2Jw --+ Qv(4 = eia(“@d+$ + ~(+4+$0)1, (A*5) 

which involves a translation of the original derivative. By defining a gauge-covariant 

derivative 

D z ap + ieA,, (A4 

where e is the electrical charge of the particle described by $(z) and the field A,(z) 
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transforms under equation (A.4) as 

A,(4 -+ A:,(s) - 4h-9 - WY@@>, (A? 

then 

D,$(x) + eia(“)D,$(~). (A4 

The covariant derivative of the wave function transforms just as the wave function 

itself. Note that the vector transformation of A, in equation (A.7) is in exactly the 

same form as that of equation (A.l). Moreover, the form of the covariant derivative 

suggests the form of interaction between the matter represented by charged particle 

$ and the electromagnetic field. 

As we have seen, imposing the local gauge invariance can be achieved by replacing 

the normal derivative by the gauge-covariant derivative, and shift the vector field A, 

by a divergent term. 

For Dirac particles, the free-particle Lagrangian 

becomes 

(A.lO) 

where the electromagnetic current has the form 

(A.ll) 

The vector field A, is identified as the photon. The photon must be massless because 
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a non-zero mass would destroy the local gauge invariance of the theory. 

In sum, local gauge invariance can serve as a dynamical principle which generates 

interactions between matter field and gauge field (the radiation field). The gauge 

field, generated by the local gauge invariance, must be massless to preserve the local 

gauge invariance. In a Non-Abelian gauge theory, local gauge invariance leads to 

self interacting, massless gauge fields. The non-observation of these massless gauge 

bosons historically posed a great obstacle to the successful use of non-Abelian gauge 

theory in formulating the unified electroweak theory. The solution eventually found 

lies in spontaneous symmetry breaking. 

A.2 Fermion Structure 

A theory that unifies electromagnetic and weak interactions must contain a spectrum 

of fundamental fermions which includes, for example, the electron e and the electron- 

neutrino v,. Based on experimental observations, only left-handed neutrinos ( VL) exist 

and they interact only with left-handed electrons (eL). This indicates that neutrinos 

are probably massless’. The fact that lepton numbers are conserved suggests that 

v,~ and eL belong to one “lepton multiplet”, similar to the relationship between the 

proton and the neutron from the isospin point of view. Right-handed electron (eR) 

which does not have a corresponding neutrino partner should therefore be treated 

as a singlet. For simplicity, the Standard Model employs the “weak isospin” group 

SU(2)L to describe the lepton multiplet. Left-handed lepton pairs form the weak- 

isospin doublets. For eL and v,,, for instance, we have 

Lr ue ) 
i 1 e 

(A.12) 

‘This issue is unsettled yet. 
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where weak isospin 1 = l/2 and 1s = f, -5 for V, and e, respectively. Using the 

projection operator, the left-handed leptons are 

UL = 

eL = :(I - 75)e. (A.13) 

The group of transformation generated by weak isospin 1 where I = $ is SU(2)L. The 

right-handed lepton 

R 3 eR = i(l + Y5k (A.14) 

forms a weak-isospin singlet (1 = 0). These lepton weak-isospin multiplets determine 

the weak charge currents. 

A.3 The sU(2)~8 U(l)y Gauge Theory 

In order to insure the conservation of electric charge, the unified electroweak theory 

must preserve the U( 1) EM symmetry. The electric charge operator Q, therefore, must 

keep the vacuum invariant (even after invoking the spontaneous symmetry breaking). 

The empirical Gell-Mann-Nishijima formula Q = 13 + ;Y, which should be satisfied 

by the theory, suggests the use of weak-hypercharge Y to bring the electric charge Q 

into the theory. The group generated by the hypercharge Y is U(l)y. 

The Standard Model electroweak theory is thus based on the SU(2)L@ U(l)y 

local gauge symmetry group. The SU(2) weak isospin group has three generators 

T~,T~, and 7-3, where 1i = i7-i (i = 1,2,3). The U(1) weak hypercharge group has 

only one generator Y. By construction, the commutation relation [fs, Y] = 0 is 

satisfied. The vector bosons in the theory are an isovector triplet b, = bb, bc and b:, 

corresponding to the three generators of the Sum group, and an isosinglet vector 

boson .A, corresponding to the single U(l)y generator: 

bi, bt, 6: for SU(2)L, 
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A, for U(l)y. (A.15) 

The Lagrangian term for the interaction between leptons and gauge bosons is 

c leptons =&yp(d,.+~ApY) R+&yp (tlp+$A,Y+~,.b,) L. (A.16) 

where the coupling constant associated with the SU(2)L and U(l)y group are g and g’ 

respectively. It is evident that R only interacts via U(l)y gauge boson and L interacts 

via both U(l)y and Sum gauge bosons. 

A.4 Spontaneous Symmetry Breaking and 

the Higgs Mechanism 

Given a theory which is invariant under a symmetry, if the theory contains a set of 

degenerate vacuum states, the observable properties of the system should not depend 

on any particular choice of the vacuum state because of the symmetry respected by 

the Lagrangian. However, once we choose any given vacuum state, the system will no 

longer be invariant under the symmetry respected by the Lagrangian. For instance, 

in the case of a ferromagnet, the Lagrangian respects the SO(3) symmetry and any 

direction can be a vacuum state. Once a certain direction is chosen, for instance, by 

applying a uniform magnetic field, the system is no longer invariant under SO(3), but 

only invariant under SO(2). The SO(3) y s mmetry is broken down to SO(2) symme- 

try. This is called spontaneous symmetry breaking. 

The spontaneous breaking of a continuous symmetry of the Lagrangian leads to 

massless scalar particles called the Goldstone bosons [llO]. Both the vector gauge 

bosons and the Goldstone bosons are massless particles and neither is observed in 

Nature (except for the massless photon). Therefore, in order to successfully apply 

the local gauge principle and the spontaneous symmetry breaking in formulating 
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the unified electroweak theory, this problem must be resolved. Since we have only 

observed one massless gauge boson, the photon (y), the other three gauge bosons 

(equation A.15) must acquire mass. The solution lies in the Higgs mechanism [ll l]. 

The Higgs mechanism states that if the spontaneously broken symmetry is a local 

gauge symmetry of the Lagrangian, then the vector gauge bosons can acquire mass by 

‘absorbing’ the massless Goldstone boson. After spontaneous breaking of the symme- 

try, for each symmetry group generator under the action of which the chosen vacuum 

is not invariant (a broken generator), the generator’s corresponding vector boson ac- 

quires mass. If the vacuum is still invariant under a generator, the corresponding 

vector boson will remain massless. A critical step to realize the Higgs mechanism is 

to gauge transform the fields into the so-called unitary gauge or U-gauge, in which 

the particle mass spectrum is manifest. As a result of the Higgs mechanism; 

l a Higgs scalar with a mass greater than zero is introduced into the theory; 

l the massless scalar Goldstone boson disappears; 

l the vector gauge fields become massive. 

No degrees of freedom is lost in the process: the missing Goldstone boson’s degree of 

freedom is transformed into the longitudinal degree of freedom for the vector boson 

in order for it to acquire mass. 

In the electroweak theory, the four vector bosons in equation (A.15) are all massless 

before spontaneous symmetry breaking. This is no longer a problem because of the 

Higgs mechanism. The problem is how charged fermions such as electrons acquire 

mass. A fermion mass term in the Lagrangian spoils the global SU(2) symmetry of 

the theory. Can the Higgs mechanism we discussed earlier, which allow the gauge 

bosons to acquire mass, also allows the fermions to acquire mass? 
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The solution is to introduce into the theory a complex doublet scalar fields 

(A.17) 

which transforms as an Sum doublet and has weak hypercharge of Y = 1. We add 

to the Lagrangian a term 

,c scalar = (D”$)+(Dp4) - v(4+4>, (A.18) 

where the covariant derivative, determined by the local gauge invariance, takes the 

form 

(A.19) 

and the potential is 

w+4 = Pz(4+d4 + I4(4+4”. (A.20) 

c scalar generates the interactions between the scalar fields and the vector gauge 

bosons. We also add a term 

c Yukawa = -Gf [%$+L) + (&)R] > (A.21) 

which is SU(~)L@ U(1) y invariant and generates the interactions between the scalar 

fields and the fermions f. The coupling constant is Gf. 

Spontaneous symmetry breaking is then invoked to break both Sum and U(l),. 

After the symmetry breaking, none of the four generators (71,7-z, and 3-3 from SU(2)L 

and Y from U(l),) 1 eave the vacuum invariant. However, the vacuum is still invariant 

under the combination 13+Y/2, which is precisely the charge operator Q. This implies 

that the U(~)EM symmetry is preserved and hence the electric charge is conserved. 

The sum @ U(1) y s y mmetry group has spontaneously broken down to u(l)E~. 

The vector gauge bosons corresponding to the electric charge operator Q is the photon, 
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which remains massless in the theory. The Higgs mechanism has allowed not only 

the three vector gauge bosons, but also the fermion f (leptons and quarks) to acquire 

mass; due to the existence of the Yukawa interaction term (equation A.21) between 

the fermion f and scalar fields. Assuming the vacuum expectation value of the doublet 

scalar fields is 

Expanding the Lagrangian about the minimum of the Higgs potential V, 

where 77 is a scalar field, the Yukawa term becomes 

L Yukawa = -Gf~(.fRfL. + fzf,). 

(A.22) 

(A.23) 

(A.24) 

The charged fermion f becomes massive with rnf = Gfw/fi. The Lscalar term 

becomes 

L scalar = i(Yq)(&q) - p2v2 + c[g’/bt - ibE/” + (g’& - gbt)2] + . . . (A.25) 

plus interaction terms. The scalar 77 can be identified as the physical Higgs boson 

(H) with M& = -2~’ > 0. By defining 

we obtain two charged vector gauge bosons which have acquired a mass of 

(A.26) 

w Mw& = -, 
2 

(A.27) 
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which depends only on the SU(2) coupling constant g, but not the U(1) coupling 

constant g’. We can also define 

(A.28) 

and 
A ~ PL + g’% 

p Jm’ 
(A.29) 

The photon A, remains massless, but the neutral intermediate vector bosons 2, (2”) 

has acquired a mass of 

= Mw& + g12/g2. (A.30) 

The 2’ mass depends on both g and g’, and is always larger than the W mass. So 

far the Higgs has not been discovered experimentally. 

A.5 The Electroweak Parameters 

Comparison of the resulting W*-lepton coupling with low-energy phenomenology 

allows us to relate the SU(2) coupling with the Fermi constant 

(A.31) 

Thus, the SU(2) coupling constant can be determined by measuring the mass of the 

W. The vacuum expectation value u/A is determined to be (40)o = & N 174 

GeV [114]. 

By comparing the neutral gauge boson couplings to leptons, we may identify A, 
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as the photon, if the couplings satisfy 

gg’/ Jm = e. (A.32) 

The linear combinations of SU(2)L gauge bosons with U(l)y gauge bosons suggest 

the use of a 2-dimensional rotation by the so-called electrowe& mixing angle t9w, To 

have 

A, = A,cosdw + btsin&, 

Z,, = - A,sinew + b~cosOw, 

(A.33) 

(A.34) 

where the electroweak mixing angle Bw is defined as 

sinew = J&. (A.35) 

The electron charge, e, is related to the coupling constants of the electroweak theory, 

e 
g== p,gf= -z-- 

sidw cosew . (A.36) 

The three seemingly independent coupling constants e, g, and g’ can be related by 

the electroweak mixing angle 19w, and thus achieving a partial unification2 of the 

electromagnetic and weak interactions. 

A.6 weak Neutral Currents 

The first important prediction of the electroweak theory is the existence of the neutral 

weak currents, which was confirmed by experiments. The term in the electroweak 

2A complete un ification should not be based on a product group such as SU(2)@U(l) 



198 A. ELECTROWEAK INTERACTION 

Lagrangian that is responsible for the neutral current and fermion interactions is 

1 w 

L.c.-,,- = QfrVA, - z vy”(1 - y+zp - 

fTP[2Qsin2Bw(l + 75) + 

(2Qsin2b - %)(I - ~5)]fzp, (A.37) 

where Q is the electric charge of the fermion f. The first term is the QED rff 

coupling; the second term the 2’~ coupling and the third term the Z”ff coupling. 

In e+e- -+ ff, two neutral vector gauge bosons may be exchanged: the massless 

photon and the massive 2’. The Born or tree-level Feynman diagram for these 

processes are shown in Figure A-l. The cross-section, cr, is proportional to the modulo 

square of the sum of the matrix elements represented by the two diagrams, JM, + 

MZo12. Three terms are present in the cross section: the purely electromagnetic, the 

interference, and the purely weak. The existence of the interference term has been 

demonstrated by experiments. 

e+ e+ 

>--“: 

+ 
Y z? 

e- f >--( e- f 
-ieyh ig/(4cosf&Jy~( 1 -4sin28,-y5) 

Figure A-l: Tree level Feynman diagrams representing efe- -+ f7. Vertex factors 
for ese- + y and e+e- -+ 2’ are indicated. 

One striking feature of the theory is that left-handed and right-handed fermions 
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have different couplings to Z”: 

SL = 213 - 2Qsin20w, 

gR = -2Qsin2t9w. 

Decomposing the interaction into V-A form, we have 

where the vector (V) and axial-vector (A) coupling coefficients are 

(A.38) 

(A.39) 

CG = (!lL + gR)/2 = Is - 2Qsin20w, 

ci = (gL - $&)/a = 13. (A.40) 

cv and CA for all Standard Model fermions are listed in Table A.l. These V- and A- 

Fermion Charge (e) 
ue,“v,ur 0 
e, i-4 7 -- 

u, c, t ; +- 
d, s, b s -? 

cv CA 
1 1 

Table A.l: cv and CA for Standard Model fermions. 

coefficients are used for determining vertex factors for Z’ff vertices (see Figure A-l). 

A.6.1 Polarized Cross Section of efe- -+ Z”-+ ff 

At SLC, the polarized electron beam allows precision measurements of electroweak 

parameters by probing the characteristics of polarized ese- -+ 2’ production. 
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The electron polarization is defined as 

P, = 
NeL - NeR 

NeL $- NeR ’ 
(A.41) 

where Ned and Ned are the number of left-handed and right-handed electrons, re- 

spectively. 

At the Z-pole, ignoring the y-exchange and y-2’ interference terms, the tree-level 

polarization dependent cross section for e+e- + jf at the Z-pole is given by 

da 
-(e+e- -+ ff) = 

N,fG$M;s 
dcos0 167r[(s - M;)2 + I’2,s2/M;] 

{ (1 - PZ+P;)[(C’,~ + c;“)(c;” + ci2) (1 + cosd2) - 8~“,4&~c0s~] 

(P,s - P;)[2c;ce,(C;2 + cfA2)(1 + cose2) + 4(cb2 + c~2)cfc$Zos8] 

+P,+pycos@(c~2 + c>“)(c$” + ci2)(1 - cosd2)}, (A.42) 

where N,f is the color factor (NL = 1 for leptons and N,” = 3 for quarks), P, and 

Pt are polarizations along and transverse to the momentum direction, respectively. 

Q, is defined by @ = 24 - 4- - 4+, where $ is the azimuthal angle of the outgoing 

fermion and $* the azimuthal angle of the e- and e+ transverse polarization direction, 

respectively. Ignoring transverse polarization, the polarization dependence of the 

differential cross-section is 

& m (1 + PeAe) (1 + COS2d) - 2Af(‘Pe + Ae)COd, (A.43) 

where 0 is the angle of the final fermion with respect to the electron beam direction, 

and A, is the electron left-right asymmetry which, for any fermion f, is defined as 

A _ (Cf + cf,)” - (cf, - ci)” 
f - (CC + CI,)’ + (CC - cp (A.44) 
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The AiR at the 2’ vertex is defined as 

(A.45) 

For a review of recent status of experimental tests of the Electraweak Standard Model, 

see, for example, reference [115]. 

In this analysis, we measure the energy spectrum of bottom (B) hadrons in 2’ 

+ bb decays3. 

Most relevant here is Rb, which is defined as the ratio of the cross section of 2’ 

+ bb to the total hadronic 2’ cross-section (2” -+ QQ) 

R 
b 

= a(z” -+ bb) 
c, o(ZO + 44)’ (A.46) 

where qq is a quark-antiquark pair and the sum is over quark flavors. At the Z-pole, 

five flavors, u, d, s, c, and b, are produced. The current measured value is Rb = 21.7%. 

We use the 150,000 hadronic Z” events collected by the SLD detector during the 

1996-1997 run. The number of 2’ + bb events is approximately 32,500. 

3The rate for gluon splitting into bb is only about 0.3% so a very small number of bb come from 
gluon splittings. 



Appendix B 

Solving the Longitudinal Missing 

Momentum Pal 

Here we derive the formula for solving the longitudinal momentum of the missing 

particles (equation (7.5)). 

The B energy is 

where Ech is a known, well-measured quantity. ISo is unknown. Using the B mass 

constraint, we have 

where we have used EO = dM,j + P$ + Pt 2. Now let us denote the unknown variable 

203 
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Pal as x, we have 

To simplify this quadratic equation, let us define X to be 

X = M; - E$ - Pt” - M; + P& 

= i’kf; - ( Ezh - Pt” - P,“,,) - M; - 2P,2 

= M;-M$-M;-2P; 

= M;-(11/1,2,+Pf)-(M;+P,2). 

Then equation (B.3) becomes 

which can be re-written as 

(A + 2P,h~x)~ = 4E3x2 + P,” + M;), 

or 

X2 + 4XPch1x + 4Pchlx2 = 4Ezhx2 + 4E,2,(P,2 + M;). 

This can be organized into a quadratic equation in x 

(B-4) 

(B.5) 

(B.6) 

(B.7) 

4(Ezh - P,“,,)x” - 4XPchlx + 4E3P,2 + M;) - X2 = 0. P.8) 

Pal can be solved if Mo, and therefore X, is known. There may be an ambiguity of 

two Pal solutions. To simplify this equation, let us define 



B = E:h(“t + ‘t”) - x2/4 

h’fzh + p; 

We have x2 - Ax + B = 0. The solutions of x are 

A2 - 4B 2 0 must hold in order to have any solutions. This means 
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(B.10) 

(B.11) 

(B. 12) 

Let c = ( Mzh + P:)/P& and D = 4Ezh (Mt + Pf), we have 

x2 >_ C(D - A”), (B.13) 

or 

x2 2 s = 4(M& + P,“)(M; + P,“). (B.14) 

By defining Q = Mzh + Pf and p = M,f + Pf, we can rewrite the definition of X in 

equation (B.4) as: 

XSMg-CX-p, (B.15) 

where Q! is an observable quantity and ,D depends on the missing mass MO. Therefore, 

equation (B.14) becomes 

M~-cY-/@~c@. (B.16) 

Let y = Mi - CY, then (y - /3)2 2 4a,8, SO 

y2 - 2yp + p2 - 4ap > 0. (B.17) 
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We now have a quadratic inequality in p: 

p2 - qy + 2a)P + p2 + y2 >_ 0, (B.18) 

in which p depends on MO but the coefficients are known quantities. Since the 

following, 

n = [2(y + 2a)]2 - 4y2 2 0, (B.19) 

always holds, there always exist two distinct solutions p1,2: 

,f?1,2 = (M; + Mzh + P,“) f 2Mq/Mzh + Pf. (B.20) 

In order for the inequality (B.18) to hold, ,L3 must satisfy p 2 ,& or ,0 5 p2. It is 

impossible to satisfy p > ,&, hence ,0 5 ,& leads to 

The missing mass is found to have an upper bound Momaz, where 

(B.21) 

(B.22) 

This is the same formula we derived in equation (7.4) in Chapter 7. The derivation 

in this appendix, however, is how I originally derived this formula. 

Finally we return to the question of solving the longitudinal momentum Pal for 

the missing particles. Since M. is only constrained between 0 and Momax, there is no 

unique solution of P 01. Any value of M. in its allowed range will produce two values 

(solutions) of Pal unless MO = MO,,, when there is exactly one solution. However, 

in the limit where Momax is small, any value of MO we pick is not far from the true 

missing mass MEue. Due to the fact that, in the B rest frame, the phase-space of 

having Pt > Pl is larger than the phase-space of having Pt 5 Pl, in most of the B 
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decays, the true missing mass peaks near its maximum value *Me,,,. Therefore, if we 

simply select a sample of B hadrons with small MO,,, and then assume Me = Momas, 

which is a very good estimate of Mo, we can obtain a rather good estimate of the B 

energy. 

When MO = MC,,,,, dm in equation (B.ll) vanishes. There is a unique 

solution: 

A 
PO1 = Jj- 

= 
x P 

2(Mzh + P;) chz 

= M;-iM;h+p,“)-(Mt+pt?p 
2(M2, + p;> 

chl (B.23) 

M; - ( Mzh + Pf) - (M; + M$ - 2MB dMzh + Pf + P;) 
= 

2(M:h + pt2> 
Pchl (B.24) 

-2(M, + Pf) + 2MBJ1ii53 
Z-X 

2(M,2, + pt2> 
P chl (B.25) 

(MB - Jz=F)p 

= Jm chl 
(B.26) 

= 
MB - Mchlp 

M chl. (B.27) 
chl 

where MC,. = J Mzh + P; is the observable, boost-invariant transverse-mass of the 

charged tracks. In going from equation (B.23) to (B.24) we replaced MO by Momax. 

The physical interpretation of this approximation is as follows. If the true missing 

mass is exactly equal to MO,,,, then in the B rest frame, the sum of the momenta of 

charged particles, F,h, is completely transverse to the B flight direction. This means 

if we boost the B along its flight direction into a frame in which Fch is completely 

transverse to the B flight direction, we will find the exact true B boost because this 

‘transverse frame’ we have just boosted the B into is exactly the B rest frame. This 

is the ideal situation. 

However, for the majority of B decays, MO is close, but not equal, to MO,,,. 
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This means the ‘transverse frame’ above is not the B rest frame. Fortunately, for 

a large fraction of B decays, MO N MO,,,, making the ‘transverse frame’ a good 

approximation of the true B rest frame. The closer MO is to MO,,,, the closer is this 

‘transverse frame’ boost to the true B boost. Consequently, in the limit where MO,,, 

+ 0, we have MO + Momax. Therefore, the ‘transverse frame’ approaches the true B 

rest frame. 

It is important to stress that since the manner in which a B hadron decays has 

nothing to do with the B energy in the laboratory frame, our selection of B decays 

with small MO,,,, which is a boost-invariant property of the individual B decay, 

should not bias the resulting B energy distribution. In fact, requiring a small missing 

mass MO is in effect selecting B decays with a large charged particle multiplicity and 

small neutral particle multiplicity. B-decay multiplicity is also a B decay property 

which should not bias the resulting B energy spectrum. 

In practice, however, there exist more than one species of weakly decaying B 

hadrons with slightly different masses. About 80% of all weakly decaying B hadrons 

are B* and B" with mg& -N mg0 -N 5.28 GeV/c2. Approximately 10% are Bi with 

m@ N 5.37 GeV/c2, and 10% are B baryons with mAb N 5.65 GeV/c2. In our 

analysis, when we select a B decay vertex, we do it inclusively. We do not know what 

species of B hadron it is. Therefore, to apply our missing-mass technique to solve for 

Pal, we must assume a B hadron mass. We chose the B* and B” mass of 5.28 GeV/c2 

because they constitute 80% of the B vertices in the sample. As a result, the energy 

resolution is best for B* and B” vertices and slightly worse for Bf and B baryons. 

Therefore, our final energy spectrum will depend slightly on the relative fraction of 

these different species of B hadrons. The full effect of this is taken into account by 

varying fraction of each B hadron species within its uncertainty. The corresponding 

change in the shape is found to be almost negligible, and change in the mean of the 

B hadron energy distribution is also rather small 

Another feature of this B boost reconstruction technique is that the resulting 
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energy residual is almost symmetric and centered around zero, if we assumed the 

correct B mass. This follows from the fact that, for a sample of B hadrons with small 

missing mass upper bound MO,,,, the energy residual is to first order proportional 

to the small longitudinal momentum of charged tracks in the B rest frame, which can 

be pointing either in the forward or the backward direction with eqzlal probability, 

which results in an approximately symmetric energy residual. 



Appendix C 

Unfolding and Error Propagation 

C.1 The Unfolding Technique 

The background subtracted raw B energy distribution, Ddata(zgC) -S(zF), with 

zg” ranging from 0 to 1.3158 (60 GeV/Eb,,m = 1.3158), is represented by an N-bin 

histogram, where N = 25 and S is the background. The histogram corresponds to an 

N-component vector X(N). S imilarly, the unfolded distribution, DdaCa(zgUe), is also 

represented by a vector Y(N). 

We apply a N x N matrix unfolding procedure to X to obtain an estimate of the 

true distribution Y: 

where E is a matrix to correct for bin-to-bin migrations, and E is a vector representing 

the efficiency for selecting true B hadron decays for the analysis. The N by N matrix 

E and the vector E(N) are calculated from our MC simulation. 

We consider the error propagation of this unfolding procedure. First, we need to 

get the errors and correlations of input variables correct. 

The 25 bins of the measured distribution, vector X, are not correlated unless we 

211 
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are choosing to normalize the histogram to a certain total number of events. The 

error on the value of each bin, Xj, j = 1, . . - , N, is the statistical error, given by the 

Poisson distribution: 

cT(Xj) = 4x3. (C.2) 

The errors of the matrix elements Eij are not negligible due to limited Monte 

Carlo statistics. Let us assume the number of Monte Carlo events in bin j of the 

measured raw distribution is A4j (j = 1, . - -, N). Out of these A4j events, rnij come 

from bin i of the true distribution. We have, 

Mj = cmii. 
i=l 

The matrix element Eij, defined as 

(C.3) 

hence represents the probability for a measured event in bin j of the raw distribution 

to have come from bin i of the true distribution Because of Equation (C.3), the sum of 

all elements in any given column of E is exactly one. Namely, the probability for any 

measured raw event to have come from some bin of the true B energy distribution is 

one: 
N 

c Eij = 1. (C.5) 
i=l 

Because of this normalization to 1, all elements within one column of the matrix E 

are correlated. The error of each element Eij is given by the multinomial distribution 

instead of the Poisson distribution, 

o(Eij) = (C.6) 
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The covariance of any two elements Eij and Ekl is given by 

Elements of the raw distribution, Xj, is not correlated with any of the elements of 

the matrix E. 

Now we consider the error propagation in applying the unfolding procedure of 

Equation (C.1). Let us first ignore the efficiency correction since that is straight- 

forward. We focus our attention on the matrix E multiplying the vector X. The 

problem becomes 

Y = E.X. F.8) 

The output vector Y, which is the unfolded distribution, has N bins. Each of these 

N components is calculated from the unfolding matrix E, which has N2 number of 

elements, and the raw distribution X, which has N components. In other words, each 

of the N components of Y is a function of N2 + N input variables. Even if all of 

these input N2 + N variables are statistically independent, the resulting elements of 

Y will still be correlated because they are calculated from a common set of variables. 

What makes matter more complicated is that, as we have seen above, some of these 

input variables are correlated with one another. We must take all these correlations 

into account when we propagate the errors from the input variables to the output 

vector Y. 

Because the elements of X are not correlated with elements of E, the variance- 

covariance matrix of input variables, which has dimension (N + N2) x (N + N2), can 

be written in a diagonal-block form 

M X,E = (C.9) 
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where Mx is the variance-covariance matrix for the vector X, M,JJ is the variance- 

covariance matrix for the matrix E, and 0 represents zero entries. Written in explicit 

form, MX is an N x N, or 25 x 25 matrix: 

/ \ 
va+G) COV(Xl, X,) * * * cov(X1, X,) 

cov(X2, Xl) var(X2) . . * 

Mx=< . . . )t (C.10) 

. . . 

COV(XN,Xl) *.* a** var(xN) 

where var(Xj) is the variance of the Xj and cov(Xi,Xj) is the covariance between 

Xi and Xj. ME is an N2 x N2, or 625 x 625, matrix, 

n/r, = 

~a+%) cov(h G2) . . - co+%, ENN) 
co4%2, En) v4%2) . . - cov(E12, ENN) 

. . . 

. . . 
(C.11) 

The propagation of errors to the error of the ‘th z element of the unfolded vector Yi 

is derived as follows. Using Equation (C.8), 

x = &..+&~, (C.12) 
j=l 

where ,?$ is the ith row of the matrix E. The error of Yi is a result of the errors of 

both X and IZi, SO 

SYi = I$ * ST? + SEi . 2. (C.13) 
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The covariance matrix for the output vector Y can therefore be written as 

where cross-terms vanish because the errors of X and E are not correlated. This 

allows us to write down the covariance matrix of Y in a simple form in which the 

contributions of errors of X and E are decoupled, 

My = EMxET + KMEK~, (C.15) 

where the matrix K is an N x N2 matrix defined as 

K= 

or written in explicit form, 

&x2,-*,xN 

0 XT 0 0 

. . . . . . 

0 0 . . . 2’ 

0 . . . 

0 
K= 

Xl,X2,“‘,XN 0 

. . . 0 . . . 

(C.16) 

. . . 
0 . . . 0 &,X2,-“,XN 

The elements of My are greater than they would be if errors in the elements of E were 

ignored. Because of the large number of zero elements in the matrix K, a complete 
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calculation of KMEKT is not necessary. The elements of this matrix are given by 

(KMEKT)ij = $J COV(EST, Ejl)XkXE. (C.18) 
k=l,l=l 

The diagonal elements of the resulting covariance matrix My are the standard devia- 

tions of the N components of Y. Off-diagonal elements represent correlations between 

any two different bins. 

C .2 Unfolding Results 

We used a set of eight functions (4 models and 4 functional forms) to unfold our 

uncorrected data xg distribution. Here we list results of the unfolded 5s distribution 

and uncertainty in each bin for each of the eight unfolded distributions as well as the 

average of the eight unfolded distributions. The bin-to-bin correlation matrices, dis- 

cussed in Section C.1, differ only slightly for different functions used in the unfolding. 

To save space, we only list the correlation matrix for the UCLA model as an example. 
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Bin XB 

1 0.00 < XB < 0.04 
2 0.04 < XB < 0.08 
3 0.08 < XB < 0.12 
4 0.12 < XB < 0.16 
5 0.16 < XB < 0.20 
6 0.20 < XB < 0.24 
7 0.24 < XB < 0.28 
8 0.28 < XB < 0.32 
9 0.32 < XB < 0.36 
10 0.36 < XB < 0.40 
11 0.40 < XB < 0.44 
12 0.44 < XB < 0.48 
13 0.48 < XB < 0.52 
14 0.52 < XB < 0.56 
15 0.56 < n;B < 0.60 
16 0.60 < XB < 0.64 
17 0.64 < XB < 0.68 
18 0.68 < xB < 0.72 
19 0.72 < XB < 0.76 
20 0.76 < XB < 0.80 
21 0.80 < xE < 0.84 
22 0.84 < xB < 0.88 
23 0.88 < XB < 0.92 
24 0.92 < XB < 0.96 
25 0.96 < xB < 1.00 

l/oda/dxB 
0.000 
0.000 
0.000 
0.114 
0.180 
0.198 
0.209 
0.269 
0.344 
0.392 
0.501 
0.586 
0.681 
0.807 
0.998 
1.240 
1.593 
2.046 
2.639 
3.231 
3.657 
3.255 
1.668 
0.368 
0.017 

Stat. error 
0.000 
0.000 
0.000 
0.039 
0.038 
0.034 
0.029 
0.033 
0.039 
0.039 
0.045 
0.046 
0.050 
0.053 
0.057 
0.064 
0.073 
0.086 
0.102 
0.119 
0.133 
0.126 
0.077 
0.026 
0.004 

Table C.1: The fully corrected scaled B energy distribution using Fl functional form. 
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7 Bin XB 

1 0.00 < XB < 0.04 
2 0.04 < xB < 0.08 
3 0.08 < XB < 0.12 
4 0.12 < XB < 0.16 
5 0.16 < XB < 0.20 
6 0.20 < XB < 0.24 
7 0.24 < XB < 0.28 
8 0.28 < XB < 0.32 
9 0.32 < xB < 0.36 
10 0.36 < XB < 0.40 
11 0.40 < XB < 0.44 
12 0.44 < XB < 0.48 
13 0.48 < xB < 0.52 
14 0.52 < XB < 0.56 
15 0.56 < XB < 0.60 
16 0.60 < xB < 0.64 
17 0.64 < xB < 0.68 
18 0.68 < xB < 0.72 
19 0.72 < XB < 0.76 
20 0.76 < xB < 0.80 
21 0.80 < xB < 0.84 
22 0.84 < XB < 0.88 
23 0.88 < xg < 0.92 
24 0.92 < XB < 0.96 
25 0.96 < xB < 1.00 

l/ada/dxB Stat. error 
0.000 0.000 
0.000 0.000 
0.000 0.000 
0.096 0.035 
0.162 0.036 
0.184 0.033 
0.196 0.028 
0.254 0.032 
0.329 0.038 
0.378 0.038 
0.492 0.044 
0.583 0.046 
0.686 0.050 
0.830 0.054 
1.048 0.059 
1.323 0.067 
1.715 0.077 
2.180 0.091 
2.711 0.105 
3.106 0.115 
3.258 0.120 
2.861 0.112 
1.806 0.082 
0.705 0.044 
0.091 0.013 

Table C.2: ‘The fully corrected scaled B energy distribution using F2 functional form. 

I 
.! 

I 
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Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

XB 

3.00 < XB < 0.04 
3.04 < XB < 0.08 
0.08 < XB < 0.12 
0.12 < XB < 0.16 
0.16 < XB < 0.20 
0.20 < xB < 0.24 
0.24 < XB < 0.28 
0.28 < XB < 0.32 
0.32 < XB < 0.36 
0.36 < XB < 0.40 
0.40 < XB < 0.44 
0.44 < XB < 0.48 
0.48 < 3;B < 0.52 
0.52 < XB < 0.56 
0.56 < XB < 0.60 
0.60 < XB < 0.64 
0.64 < xB < 0.68 
0.68 < XB < 0.72 
0.72 < XB < 0.76 
0.76 < XB < 0.80 
0.80 < XB < 0.84 
0.84 < XB < 0.88 
0.88 < XB < 0.92 
0.92 < XB < 0.96 
0.96 < XB < 1.00 

l/ada/dxB 
0.000 
0.000 
0.000 
0.108 
0.174 
0.194 
0.206 
0.267 
0.343 
0.394 
0.510 
0.603 
0.711 
0.852 
1.067 
1.331 
1.692 
2.100 
2.552 
2.886 
3.062 
2.840 
2.020 
0.938 
0.145 

Stat. error 
0.000 
0.000 
0.000 
0.037 
0.037 
0.034 
0.029 
0.033 
0.039 
0.039 
0.045 
0.047 
0.051 
0.055 
0.060 
0.068 
0.077 
0.089 
0.100 
0.109 
0.114 
0.111 
0.089 
0.054 
0.018 

Table C.3: The fully corrected scaled B energy distribution using Peterson functional 
form. 
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1 Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

XB 1 /ada/dxB 
0.00 < xg < 0.04 0.000 
0.04 < XB < 0.08 0.000 
0.08 < XB < 0.12 0.000 
0.12 < XB < 0.16 0.150 
0.16 < XB < 0.20 0.256 
0.20 < XB < 0.24 0.232 
0.24 < XB < 0.28 0.201 
0.28 < XB < 0.32 0.242 
0.32 < XB < 0.36 0.330 
0.36 < xB < 0.40 0.415 
0.40 < XB < 0.44 0.551 
0.44 < xB < 0.48 0.632 
0.48 < XB < 0.52 0.685 
0.52 < 17;B < 0.56 0.744 
0.56 < XB < 0.60 0.883 
0.60 < XB < 0.64 1.126 
0.64 < XB < 0.68 1.551 
0.68 < XB < 0.72 2.113 
0.72 < XB < 0.76 2.756 
0.76 < XB < 0.80 3.218 
0.80 < XB < 0.84 3.382 
0.84 < XB < 0.88 3.005 
0.88 < XB < 0.92 1.924 
0.92 < XB < 0.96 0.597 
0.96 < XB < 1.00 0.000 

/ Stat. error 
0.000 
0.000 
0.000 
0.046 
0.048 
0.038 
0.027 
0.030 
0.038 
0.040 
0.048 
0.049 
0.050 
0.049 
0.052 
0.060 
0.072 
0.089 
0.107 
0.119 
0.124 
0.116 
0.087 
0.038 
0.000 

Table C.4: The fully corrected scaled B energy distribution using polynomial func- 
tional form. 
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1 3in 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

XB l/ada/dxB 
0.00 < XB < 0.04 0.000 
0.04 < 17;B < 0.08 0.000 
0.08 < XB < 0.12 0.000 
0.12 < XB < 0.16 0.105 
0.16 < XB < 0.20 0.191 
0.20 < XB < 0.24 0.213 
0.24 < XB < 0.28 0.224 
0.28 < XB < 0.32 0.287 
0.32 < XB < 0.36 0.360 
0.36 < XB < 0.40 0.408 
0.40 < XB < 0.44 0.512 
0.44 < XB < 0.48 0.588 
0.48 < XB < 0.52 0.676 
0.52 < XB < 0.56 0.789 
0.56 < XB < 0.60 0.962 
0.60 < XB < 0.64 1.194 
0.64 < XB < 0.68 1.566 
0.68 < XB < 0.72 2.045 
0.72 < XB < 0.76 2.729 
0.76 < XB < 0.80 3.195 
0.80 < XB < 0.84 3.359 
0.84 < XB < 0.88 2.935 
0.88 < XB < 0.92 1.834 
0.92 < XB < 0.96 0.735 
0.96 < XB < 1.00 0.085 

Stat. error 
0.000 
0.000 
0.000 
0.036 
0.039 
0.036 
0.030 
0.034 
0.040 
0.040 
0.045 
0.047 
0.050 
0.052 
0.056 
0.063 
0.072 
0.087 
0.106 
0.118 
0.123 
0.114 
0.082 
0.045 
0.012 

Table C.5: The fully corrected scaled B energy distribution using JETSET parton 
shower with Bowler model. 
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; Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

XB l/ado/dxB 
0.00 < XB < 0.04 0.000 
0.04 < XB < 0.08 0.000 
0.08 < XB < 0.12 0.000 
0.12 < XB < 0.16 0.107 
0.16 < XB < 0.20 0.189 
0.20 < XB < 0.24 0.209 
0.24 < XB < 0.28 0.222 
0.28 < XB < 0.32 0.283 
0.32 < XB < 0.36 0.355 
0.36 < XB < 0.40 0.402 
0.40 < XB < 0.44 0.509 
0.44 < XB < 0.48 0.595 
0.48 < XB < 0.52 0.700 
0.52 < XB < 0.56 0.837 
0.56 < XB < 0.60 1.055 
0.60 < XB < 0.64 1.335 
0.64 < XB < 0.68 1.700 
0.68 < XB < 0.72 2.095 
0.72 < XB < 0.76 2.543 
0.76 < XB < 0.80 2.846 
0.80 < XB < 0.84 2.952 
0.84 < 3;B < 0.88 2.730 
0.88 < XB < 0.92 2.039 
0.92 < XB < 0.96 1.085 
0.96 < XB < 1.00 0.204 

Stat. error 
0.000 
0.000 
0.000 
0.036 
0.038 
0.035 
0.030 
0.034 
0.039 
0.039 
0.045 
0.047 
0.050 
0.054 
0.060 
0.068 
0.078 
0.089 
0.100 
0.108 
0.111 
0.107 
0.089 
0.061 
0.024 

Table C.6: The fully corrected scaled B energy distribution using JETSET parton 
shower with Kartvelishvili model. 
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Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

T- 
XB 

0.00 < XB < 0.04 
0.04 < XB < 0.08 
0.08 < XB < 0.12 
0.12 < XB < 0.16 
0.16 < XB < 0.20 
0.20 < xB < 0.24 
0.24 < XB < 0.28 
0.28 < XB < 0.32 
0.32 < XB < 0.36 
0.36 < XB < 0.40 
0.40 < XB < 0.44 
0.44 < xB < 0.48 
0.48 < XB < 0.52 
0.52 < XB < 0.56 
0.56 < XB < 0.60 
0.60 < XB < 0.64 
0.64 < XB < 0.68 
0.68 < XB < 0.72 
0.72 < XB < 0.76 
0.76 < XB < 0.80 
0.80 < XB < 0.84 
0.84 < XB < 0.88 
0.88 < XB < 0.92 
0.92 < XB < 0.96 
0.96 < XB < 1.00 

l/adg/dzB 
0.000 
0.000 
0.000 
0.107 
0.190 
0.214 
0.225 
0.284 
0.355 
0.406 
0.510 
0.586 
0.675 
0.792 
0.979 
1.232 
1.612 
2.081 
2.670 
3.154 
3.324 
2.963 
1.872 
0.696 
0.067 

Stat. error 
0.000 
0.000 
0.000 
0.037 
0.039 
0.036 
0.030 
0.034 
0.040 
0.040 
0.045 
0.046 
0.049 
0.052 
0.056 
0.064 
0.074 
0.088 
0.104 
0.117 
0.122 
0.115 
0.084 
0.043 
0.010 

Table C.7: The fully corrected scaled B energy distribution using JETSET parton 
shower with Lund model. 
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1 Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

T-- 

XB l/ada/dxB 
0.00 < XB < 0.04 0.000 
0.04 < XB < 0.08 0.000 
0.08 < XB < 0.12 0.000 
0.12 < XB < 0.16 0.107 
0.16 < XB < 0.20 0.192 
0.20 < XB < 0.24 0.213 
0.24 < XB < 0.28 0.226 
0.28 < XB < 0.32 0.287 
0.32 < XB < 0.36 0.357 
0.36 < XB < 0.40 0.404 
0.40 < XB < 0.44 0.509 
0.44 < 3;B < 0.48 0.587 
0.48 < XB < 0.52 0.676 
0.52 < XB < 0.56 0.790 
0.56 < 11;B < 0.60 0.964 
0.60 < XB < 0.64 1.194 
0.64 < XB < 0.68 1.561 
0.68 < XB < 0.72 2.033 
0.72 < XB < 0.76 2.638 
0.76 < XB < 0.80 3.138 
0.80 < XB < 0.84 3.296 
0.84 < XB < 0.88 2.948 
0.88 < XB < 0.92 1.934 
0.92 < XB < 0.96 0.827 
0.96 < XB < 1.00 0.112 

Stat. error 
0.000 
0.000 
0.000 
0.037 
0.039 
0.036 
0.030 
0.034 
0.040 
0.040 
0.045 
0.047 
0.050 
0.052 
0.056 
0.063 
0.072 
0.086 
0.103 
0.116 
0.121 
0.114 
0.086 
0.049 
0.015 

Table C.8: The fully corrected scaled B energy distribution using the UCLA model. 
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Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

XB 

0.00 < J;B < 0.04 
0.04 < XB < 0.08 
0.08 < XB < 0.12 
0.12 < XB < 0.16 
0.16 < XB < 0.20 
0.20 < XB < 0.24 
0.24 < XB < 0.28 
0.28 < XB < 0.32 
0.32 < XB < 0.36 
0.36 < XB < 0.40 
0.40 < XB < 0.44 
0.44 < XB < 0.48 
0.48 < XB < 0.52 
0.52 < XB < 0.56 
0.56 < XB < 0.60 
0.60 < XB < 0.64 
0.64 < XB < 0.68 
0.68 < XB < 0.72 
0.72 < XB < 0.76 
0.76 < XB < 0.80 
0.80 < XB < 0.84 
0.84 < XB < 0.88 
0.88 < XB < 0.92 

0.92 < XB < 0.96 
0.96 < XB < 1.00 

l/adc/dxB Stat. error Unfolding r.m.s 
0.000 0.000 0.000 
0.000 0.000 0.000 
0.000 0.000 0.001 
0.110 0.029 0.014 
0.188 0.035 0.025 
0.204 0.032 0.013 
0.213 0.027 0.010 
0.268 0.031 0.015 
0.340 0.036 0.011 
0.398 0.037 0.010 
0.505 0.041 0.016 
0.587 0.042 0.015 
0.677 0.044 0.011 
0.796 0.047 0.030 
0.991 0.052 0.056 
1.241 0.058 0.070 
1.622 0.068 0.062 
2.092 0.080 0.044 
2.671 0.094 0.075 
3.102 0.104 0.140 
3.290 0.111 0.201 
2.953 0.106 0.144 
1.897 0.079 0.113 
0.753 0.042 0.205 
0.090 0.011 0.061 

, Total error 
0.000 
0.000 
0.000 
0.034 
0.043 
0.035 
0.029 
0.035 
0.038 
0.039 
0.043 
0.046 
0.047 
0.056 
0.077 
0.090 
0.091 
0.092 
0.120 
0.175 
0.230 
0.179 
0.138 
0.209 
0.063 

Table C.9: The fully corrected scaled B hadron energy distribution obtained by 
averaging over all eight unfolded distributions. The statistical error of each bin is 
obtained by averaging over the eight statistical errors, but the unfolding error is 
taken as the r.m.s. of entries in each bin for the eight distributions. The total error 
is the sum in quadrature of the statistical and unfolding errors. 
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N 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

4 34.8 20.7 12.3 7.2 4.3 1.3 3.4 3.1 2.3 2.5 2.7 3.9 2.7 2.7 2.1 1.1 0.8 0.6 0.4 0.2 0.1 

5 55.3 30.0 4.4 9.2 4.3 5.2 3.1 1.9 1.9 1.9 3.6 2.7 3.2 2.0 0.9 0.6 0.4 0.2 0.1 0.0 

6 54.7 28.6 13.8 6.8 5.7 4.3 2.7 2.5 1.9 3.0 2.3 2.8 1.3 0.7 0.4 0.3 0.2 0.1 0.0 

7 55.9 32.9 17.4 10.3 7.2 4.5 4.8 4.3 4.0 3.8 3.4 1.3 0.9 0.7 0.2 0.2 0.1 0.0 

8 57.0 33.7 20.5 13.2 7.1 6.6 6.4 4.6 5.1 3.4 1.9 1.3 1.1 0.5 0.6 0.3 0.0 

9 50.4 35.0 22.5 11.1 8.8 8.0 5.0 5.0 2.6 2.1 1.2 0.9 0.6 0.6 0.4 0.0 

10 57.5 41.9 22.7 16.2 11.9 7.2 5.8 3.8 3.3 2.1 1.4 1.2 1.1 0.7 0.1 

11 57.4 38.7 28.2 18.0 11.0 7.1 4.5 3.3 2.3 1.8 1.4 1.1 0.5 0.1 

12 53.8 44.0 29.6 18.7 12.2 7.6 5.2 3.7 2.8 2.3 1.4 0.6 0.1 

13 57.9 43.9 29.8 19.9 12.4 8.5 5.9 4.0 3.2 1.7 0.8 0.1 

14 54.2 41.3 28.9 19.3 13.6 9.2 5.9 4.3 2.2 1.1 0.2 

15 54.1 42.5 31.9 23.6 16.2 10.4 7.1 3.8 2.3 0.6 

16 53.7 45.6 35.4 25.5 16.7 10.7 5.6 3.4 0.8 

17 57.5 49.3 38.6 27.3 18.0 10.1 6.0 1.6 

18 59.2 50.6 38.8 27.4 16.7 10.0 3.1 

19 62.2 53.1 40.8 27.4 16.8 6.0 

20 65.1 54.7 40.2 26.2 10.2 

21 66.5 55.0 38.8 16.5 

22 67.3 53.6 26.9 

23 62.1 32.9 

124 33.5 

Table C.10: The complete correlation matrix for the UCLA model, a 25 by 25 matrix, 
with each element corresponding to the correlation coefficient, written in percentage, 
between one bin and another. For example, the correlation coefficient between bin 8 
and bin 14 is 0.066 or 6.6%. Note that the first 3 rows and columns of the matrix are 
omitted because these bins (0 < xg < 0.12) are almost entirely below the B mass- 
threshold of xg = 0.116. Because the correlation matrix is symmetric, elements in 
the lower-left half of the matrix can be found in the upper-right half and is therefore 
omitted. The correlation coefficient of any bin with itself is 100% and is therefore 
omitted as well. Column 4 and Row 25 are omitted for the same reason. 
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