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ABSTRACT

Many future linear collider designs call for electron and positron beams with

normalized rms horizontal and vertical emittances of ye= = 3 x 10V6 m-rad and ye9 =

3 x 10h8 m-rad; these are a factor of 10 to 100 below those observed in the Stanford

Linear Collider. In this dissertation, we examine the feasibility of achieving beams

with these very small vertical emittances. We examine the limitations encountered

during both the generation and the subsequent acceleration of such low emittance

beams. We consider collective limitations, such as wakefields, space charge effects,

scattering processes, and ion trapping; and also low intensity limitations, such as

anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general,

the minimum emittance in both the generation and the acceleration stages is limited

by the transverse misalignments of the accelerator components. We describe a few

techniques of correcting the effect of these errors, thereby easing the alignment

tolerances by over an order of magnitude. Finally, we also calculate “fundamental”

limitations on the minimum vertical emittance; these do not constrain the current

designs but may prove important in the future.
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Chapter 1.1

CHAPTER 1

THE GENERATION AND ACCELERATION  OF LOW

EMITTANCE FLAT BEAMS

In this dissertation, we will examine the generation and subsequent acceleration

of electron and positron beams with very small vertical emittances. Currently,

many groups around the world are designing the “next generation” of e’/e-  linear

colliders; the first generation is the Stanford Linear Collider (SLC) at SLAC. The

future accelerators are designed to have center-of-mass energies of 3 to 2 TeV.

To perform useful measurements, these accelerators need to have very high lu-

minosities; the luminosity multiplied by the cross section of interest specifies the

experimental event rate. The linear colliders are being designed for luminosities of

1O33 to 1O34 cmW2 set-‘.  This is one-to-two orders of magnitude higher than that

currently achieved in colliding beam machines, and many orders of magnitude higher

than that achieved by the SLC.

The luminosity depends upon the density of the colliding beams and the degree

of overlap. Assuming that the beams fully overlap, the luminosity can be written:

(1.1.1)

where we have assumed that the beams have gaussian transverse distributions with

rms dimensions of crz and cry. In addition, N- and N+ are the number of electrons

and positrons per bunch, nb is the number of bunches per batch, frep is the batch

repetition rate, and HD is the pinch enhancement factor.

To achieve the required luminosity, many future linear colliders designs are striv-

ing for very small spot sizes at th:interaction  point (IP); parameters of a number

of the designs are listed in Table 1. The spot size is described by two parameters:

the beam emittance,  which is a measure of the beam’s phase space volume, and

* The parameters are in a state of flux and, in addition,  many laboratories  have multiple  sets of
parameters.  Thus,  we have chosen a representative,  but not necessarily current  or exhaustive,
set.

t There  are two designs  (not listed) that have much larger  spot  sizes: the superconducting
TESLA design  and the high current  DESY  design. These machines  achieve  the necessary
luminosity  by having many bunches.

1



Table 1. Parameters of linear collider designs.

C-O-M Energy [TeV] 0.1 1.0 1.0 2.0 0.5

Luminosity [ 1O33 cme2  set-l] 0.006 10 6 12 4.1

e-‘-/e-  per bunch [lO’“] 5.0 2.0 1.0 0.5 0.7

Number bunches 1 10 10 11 172

Repetition rate [Hz] 180 180 200 1700 50

IP beam size: 0, b-4 1600 220 200 60 169

QY b-4 1600 2.5 1.7 12 5.5

0.7 b-4 1000 100 76 200 200

Emittance: ycZ [10B6 m-rad] 16 3 3 3 4

~6~ [10v6 m-rad] 16 0.03 0.03 1 0.04

the beta function which depends upon the focusing structure of the accelerator. In

particular, the spot size can be written:

ux,y = JGG , (1.1.2)

where ,8x,y is the beta function and ex,y is the projected emittance. To reduce the

spot size, we need to reduce both the beta function and the beam emittance at the

IP; this is the driving force behind small emittance beams.

To get a small emittance beam at the IP, the beam is created at low energy and

then (very carefully) accelerated to the final energy; Figure 1 shows a schematic of

the proposed linear collider. The main components are: damping rings to generate

the very low emittance electron and positron beams, bunch compressors to decrease

the length of the particle bunches, linear accelerators to accelerate the beams, and

final focus regions to demagnify the beams to very small sizes.

In this dissertation, we will examine the limitations and the tolerances associ-

ated with both the generation and the subsequent acceleration of beams with very

small vertical emittances;  we will not consider problems encountered in the bunch

compressors or the final focus and we neglect all of the issues associated with hav-

ing multiple closely spaced bunches. Although much of the physics is the same in

both the damping rings and the linear accelerators, the relative importance differs;

2



Chapter 1.1

2 GeV ?ampin\g Rings

e- Inject0
13

2nd Bunch
Compressor Prelim. Linac

Main Linacs

Beam Dumps

Fig. 1. Schematic of the NLC, a future linear collider.

the primary sources of dilution in the damping rings are non-conservative processes

while in the linacs the main dilutions are due to conservative dilutions and pulse-to-

pulse jitter. Thus, we will consider each region separately, breaking this dissertation

into two main sections.

Specifically, in Section 2, we will discuss determination of the vertical emittance

in the damping rings. Here, we will calculate the emittance dilutions due to:

N Opening angle of radiation l Vertical dispersion

l Betatron coupling l Synchro-betatron coupling

l Jntrabeam scattering l Ion trapping

l Space charge field l Wakefields

a Beam-gas scattering 0 Lifetime limits

l Ground motion 0 Power supply fluctuations

l High frequency jitter 0 Injection matching.

And, in Section 3, we will discuss the vertical emittance dilutions in the linear

accelerators, calculating the dilutions due to:

l Matching and filamentation l Vertical dispersion

l Transverse wakefields l RF deflections

l Betatron coupling l Space charge field

l Synchrotron  radiation l Beam-gas scattering

3



l Ground motion 0 pulse-to-pulse jitter.

We have attempted to make a complete analysis of the effects that determine the

vertical emittance in the damping rings and the effects that can dilute the emittance

during the subsequent acceleration. Much of this work is analysis of well known

phenomena, in a new regime. However, some of it is actually new analysis, while

the remainder is a compilation of others work, sometimes with minor corrections or

extensions. We attempt to clarify this with extensive references.

Finally, it is worth making two remarks to prevent potential confusion: first,

the references are organized in alphabetical order and thus the reference numbers

do not appear sequentially. Second, most equations are written in a form that does

not depend upon the explicit system of units, but, whenever the choice of units is

important, the MKS system is used.
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Chapter 2.1

CHAPTER 2

GENERATION OF SMALL VERTICAL  EMITTANCE  BEAMS

In this chapter, we will discuss the generation of e+/e- beams with the very

small vertical emittances required by many future linear collider designs; parameters

are listed in Table 1. Many designs have specified normalized vertical emittances

of roughly 3 x 10S8  m-rad. This is over one order of magnitude smaller than that

specified in any of the current colliding beam storage rings or synchrotron light

sources.

In general, the electron beam originates at an “injector” while the positron beam

is created by colliding an electron beam with a target; the positrons are collected

from the resulting electron-positron pairs. At this time, electron injectors are not

able to generate beams with the necessary emittances and currents. Currently, ad-

vanced injectors, using RF guns with photo-cathodes, are able to generate beams

with 7~1 X 10D5
[118,131]m-rad at currents of 2 x lOroe- per pulse. Theoretical con-

siderations suggest that an order of magnitude improvement is possible, but not the

two-to-three orders of magnitude that are required. Furthermore, although some

new techniques have been suggestedtl’l’ there are no known techniques of producing

positrons with comparable emittances; usually conventional positron systems gener-

ate beams with emittances of YEI N 10e2 - loo3 m-rad. Thus, the beam emittances

must be damped to decrease the six-dimensional emittance  after the beams have

been created.

Liouville’s theorem can be used to show that the phase space density of an infi-

nite number of particles is conserved in the absence of inter-particle and dissipative

forces. This does not leave many avenues to damp the beam. Currently, three tech-

niques have been developed to damp high energy charged particle beams: stochastic

cooling, electron cooling, and radiation damping. The first two techniques are typ-

ically used on protons and ions where the radiation damping is ineffective. Both

processes are much too slow to be useful for a future linear collider.

The other technique, radiation damping, damps the beam by causing the par-

ticles to radiate. The phase space density is damped because the radiation acts as

a dissipative force. Usually, one uses synchrotron radiation to perform the damp-

ing, although any form of incoherent radiation, such as Cherenkov and transition

radiation, will also damp the beam.
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It is important to realize that the radiation must be incoherent to damp the

beam; each particle must radiate independently. If one were to write a Hamiltonian

for the system, the coordinates and momenta of each photon need to be included;

the phase space density of the beam is damped at the expense of the photon phase

space. In contrast, if there is coherent or stimulated radiation, there is a definite

phase relationship between the photons. In this case, one can describe the radiation

as an interaction with an external field and the phase space density of the beam is

conserved.

Explicitly, stimulated devices such as Free Electron Lasers (FELs), klystrons,

gyrotrons, etc., do not damp the beam. FELs and klystrons bunch the beam longitu-

dinally, but they increase the energy spread within the bunches. Similarly, gyrotrons

bunch the beam in transverse position (phase) but this is done at the expense of the

transverse momenta. This is also true of the Cyclotron Maser Cooling technique

suggested in Ref. 59. This device may generate substantial radiation, but it will not

damp the beam; the author has confused radiation power with damping and he did

not examine the effect on the beam phase space.

2.1.1 Damping Rings

Although the radiation damping process is faster than other techniques, it is still

relatively slow. Thus, the beams are damped while they are stored in a damping

ring. As the highly relativistic particles are directed around the circumference of the

ring, they emit synchrotron radiation. This incoherent radiation has two competing

effects; it is a source of damping and a source of excitation.

The damping occurs because the synchrotron radiation acts as a frictional force,

decreasing the particle’s momentum deviation from the design momentum, while

the excitation occurs because of the quantum nature of the radiation. Specifically,

the radiation of a photon changes the particle’s energy and gives a small transverse

kick that depends upon the opening angle of the radiation. The transverse kicks

due to the opening angle directly change the amplitude of the particle’s betatron

motion, and thereby the bunch’s emittance,  while the change in energy, due to the

radiation, has a more subtle effect. The particle executes betatron oscillations about

a closed orbit in the ring. Since this closed orbit depends upon the particle energy,

the radiation of a photon increases the rms amplitude of the betatron motion by

displacing the closed orbit relative to the particle’s position!“”
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Table 2. Damping ring parameters!13*’

I SLC
[92,122] c~1@3”1 1 JLcI”Ql  1 NLCIQ”l 1 ,,ESY’221

Current/bunch [lOl’e+/e-1  1 5

Number of bunches

Injected YE=,~ [10m3 m-rad]

2

10

2.0 1.54 1.8 3.15

162+ins. 180 155 650

22 x 10 8 x 10 I10 x 10 ( 172

Extracted ycZ [10m6 m-rad] 1 16 3 3 3 4.1

Coupling cZ /cy I 1 I 3 1 100 I 100 1 100

In a storage ring these two competing effects lead to an equilibrium beam size

and emittance. When designing a damping ring, one strives to maximize the damp-

ing while keeping the equilibrium emittance small. A review of the basic dynamics

in an e+/e- ring is presented in Appendix A along with a more detailed discussion

of damping rings and the basic scaling of damping ring parameters.

2.1.2 Current Designs

The main parameters of four damping ring designs for high energy linear colliders

are compared with the SLC damping rings in Table 2; the NLC design is described

in greater detail in Appendix B. Although these rings are each optimized for the

respective linear colliders, there are two primary differences between the future

designs and the SLC damping rings: first, the future rings are striving for very small

emittances, especially the JLC, NLC, and DESY designs which call for extracted

vertical emittances of ycy = 3 N 4 x 10e8 m-rad; this is a factor of 500 smaller than

the SLC design.

Second, the future designs plan to provide much more damping than the SLC

damping rings. For example, in the NLC design, the injected vertical emittance is

damped twice as much as in the SLC rings while operating at a faster repetition rate.

To achieve the necessary damping, the rings ha.ve larger circumferences, allowing

multiple batches of bunches to be damped at once. In addition, the rings operate at

slightly higher energies and use smaller angle bends to further increase the damping
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while maintaining small equilibrium emittances. Finally, some of the designs plan

to supplement the damping with damping wigglers.

2.1.3 Limitations

As mentioned, there are two primary differences between the SLC damping rings

and the future designs: the damping requirements and the emittances. In principal,

the damping requirement is not really a limitation; one can always cascade multiple

rings to decrease the requirements. The difficulty, of course, is in arriving at an

elegant solution.

In contrast, the very small vertical emittance, that many designs require, may

prove more difficult to achieve; we will examine the feasibility of this requirement.

In the next sections, we will analyze the limitations on the vertical emittance and

the aspect ratio E,/Q. In Section 2.2, we discuss the single particle limitations;

these are primarily due to transverse betatron coupling and the vertical dispersion.

Next, in Section 2.3, we examine the collective limitations: intrabeam scattering,

ion trapping, direct space charge effects, and wakefields. In addition, we will discuss

limitations due to beam-gas scattering and the beam lifetimes. In Sections 2.4

and 2.5, we calculate the effect of jitter sources and the required injection matching;

matching the extracted beam is discussed in Section 3.3.2. Finally, in Section 2.6,

we summarize our results.

Of course, the vertical emittance is not the only limitation facing these future

damping rings and, for completeness, we briefly describe a few of the other problems

in Appendix B.
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CHAPTER 2.2

SINGLE PARTICLE LIMITATIONS

2.2.1 Introduction

In this chapter, we discuss low current effects that contribute to both the ver-

tical emittance and the vertical beam size in e+/e- storage rings; we differentiate

between the two because it is possible to increase the beam size without increasing

the emittance. Most of this discussion is taken directly from Ref. 84. A section

discussing the synchrotron motion and a section applying the results to the NLC

damping ring has been added. The discussion is very general and is applicable

to synchrotron radiation sources as well as damping rings; synchrotron radiation

sources strive for small emittances  to increase the spatial coherence of the photon

beams.

We consider contributions from the opening angle of the synchrotron radiation,

the vertical dispersion, and the betatron and synchro-betatron couplings; we neglect

all current dependent phenomena which also constrain the ring performance, these

are discussed in Section 2.3. The goal in performing this study is to illustrate

how these effects contribute to the vertical emittance and beam size, and thereby

determine the limitations that they impose on future designs. In particular, we will

discuss alignment tolerances needed to limit the vertical emittance and beam size

that are consistent with the inclusion of realistic correction techniques.

As discussed in Appendix A, the low current equilibrium emittance and beam

size in an e+/e- storage ring is determined by two competing processes: quantum

excitation and damping, both of which result from the synchrotron radiation emitted

by the particles in the ring. The quantum excitation is due to the discrete nature of

the radiation whereas the damping is a result of the mere existence of the incoherent

synchrotron radiation.

The radiation of a photon changes the particle’s energy and gives a small trans-

verse kick that depends upon the opening angle of the radiation. The transverse

deflections due to the opening angle directly change the amplitude of the particles

betatron motion, and thereby the bunch’s emittance, while the change in energy due

to the radiation has a more subtle effect. The particle executes betatron oscillations

about a closed orbit in the ring. Since this closed orbit depends upon the particle

energy, the radiation of a photon increases the rms amplitude of the betatron motion
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by displacing the closed orbit relative to the particle’s position. In the horizontal

plane, the increase in emittance due to this second effect is typically much larger

than the increase due to the opening angle of the radia.tion.  However, ideally, in the

vertical plane, there is no dispersion and thus the opening angle should determine

the vertical emittance.

In practice, this is not the ca.se. First, vertical dipole errors and a non-zero

vertical closed orbit in the quadrupole magnets will directly introduce vertical dis-

persion. Second, a non-zero vertica,l  closed orbit through the sextupole magnets,

vertical sextupole misalignments, or rotat.ional  misalignments of the quadrupoles

couple the horizontal and vertical planes. This coupling has two effects, both of

which increase the vertical emittance. It couples the horizontal dispersion to the

vertical, increasing the vertical, and it couples the z and y betatron motion so that

energy is transferred between the two planes. Finally, misalignments of the RF

cavities or vertical dispersion in the RF cavities can couple the transverse and the

longitudinal planes.

In this chapter, the effects of t11c  coupling on the vertical emittance are analyzed

perturbatively, assuming la.rge aspect ratios cZ/er, and cZ/ey. In the next section,

the relevant equations of motion are introduced and we discuss the closed orbit and

the closed orbit correlation function which will be needed to calculate the effects of a

closed orbit. Then, in Section 2.2.3, we calculate the emittance due to the opening

angle of the radiation. This is rougllly  estimated in Ref. 104; the more detailed

calculation in Section 2.23 yields a result a fafa.ctor  of two smaller.

In Section 2.2.4, we calculat,e  the vertical emittance and beam size due to the

vertical dispersion caused by ra.ndom  errors aud a non-zero closed orbit. In previous

work, the corrected closed orbit has been treated either as a series of uncorrelat,ed

offsets in the magnets [27,82] or the same as an uncorrected closed orbit?4’1121  Typically,

the first procedure will overestima.te  the effect of the closed orbit and the second

will underestimate the contribution.

Next, in Sections 2.2.5 a.nd 22.G, we use analogy with the vertical dispersion to

discuss the betatron and syncllro-l,ctat,roll  coupling. As stated, in an e-+/e-  ring,

the betatron and synchro-betatron couplings cause both a local beam size increase

and a fundamental dilution of the vcrtic.al  phase space; the local bea.m size increase

arises because the horizontal arltl  longi~.r~clina.l  emitta.nces a.re projected into the

vertical plane. The bet.a.tron  co\ipliug  has been t.rea.ted  bot,h  exa.ctly’2S’6Q’1251  a.nd when
(26.4i.4&]

close to the coupling resonances. Lil;&se, the synchro-betatron coupling ha.s
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been treated exactly”l’lsl
[5.80.113]

and when close to resonance. Unfortunately, the

first provides a formalism that is complex and does not lend itself to a simple

understanding of the problem, a.nd the second approach is not sufficient in e+/e-

rings. In particular, such an analysis of the betatron coupling suggests that the

coupling can be fully corrected with a few (2-4) skew quadrupoles. This is not

correct; one must fix the coupling at every bending magnet to fully cancel the

coupling contribution to the emittance.

In Section 2.2.7, we estimate the effectiveness of various techniques in reducing

the vertical emittance and beam size, and we compare these analytic results with the

results of simulations. Next, in Section 2.2.8,  we discuss the calculation of tolerances,

consistent with the correction techniques, to limit the vertic.al  emittance and beam

size in future storage ring designs. The results of both Sections 2.2.7 and 2.2.8

are important when determining tolerances to limit the vertical emittance with a

specified degree of confidence. Then, in Sections 2.2.9 and 2.2.10, we summarize our

results and apply them to ca.lculate t,olerances  for the NLC damping ring.

Finally, it should be noted tha.t  many of the results in Sections 2.2.4 and 2.2.5,

in particular, the effect of random errors, have been derived repeatedly over the

last thirty years; references to the ea.rlier  sources are provided. The new contri-

butions in these sections a.re:  the effects of a corrected closed orbit are calculated

more precisely, the distinct ion between the projected emittance and the emitta.nce  is

emphasized, and a, simple form for the emittance due to betatron coupling is found

which is analogous to the emittance due to the vertical dispersion. This later result

is important for determining the effectiveness of the coupling correction which is

discussed in Section 2.2.7. In a.cldition,  the distinction between the beam size and

the emittance was obviously realized by Piwinski in Ref. 82, but it seems to have

been neglected in much of the literature. Since this is relevant in damping rings, it

is important to emphasize the cl

2.2.2 Preliniinaries

A particle bea.m c0nsist.s of 1

fference.

art,icles  distributed in six-dimensiona. phase space.

When the beam is uncoupled, t,he rms vertical emittance of a. matched beam is

simply given by:

cy=J~+ . (2.2.1)
Y

But, when the 1~ea.m is coupled t11e normal modes of oscilla.tion  rot&e from the
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horizontal, vertical, and longitudinal planes. In weakly coupled e-+/e- rings, this

coupling has two effects: it increases the projected vertical emittance, the larger

horizontal and longitudinal emitta,nces are projected into the vertical phase space,

and it couples the “vertical” normal mode emittance to the synchrotron  radiation

noise, leading to an increase in the normal mode emittance; in a weakly coupled

ring, we can discuss the “vertical” normal mode emittance since the normal modes

are not rotated far from the uncoupled orientations.

The projected emittance depends upon the coupling and can fluctuate from

point-to-point around the ring while the equilibrium normal mode emittance is in-

variant. Thus, in this chapter, we will refer to the vertical normal mode emittance

as the “vertical emittance” and t,he projected emittance as the local beam size:

We are interested in calculating both tile vertical beam size and the “vertical”

normal mode emittance; the bca,m  size is the releva.nt quantity in some situations

while the emittance is in others. As mentionecl.  we need to diRerentia.te  between the

two because the vertical beam size is the projection of the beam’s six-dimensional

emittance onto the vertical plane. Thus, in a.ddition to depending on the vertical

emittance, the vertical beam size is also a function of the local coupling between

the vertical plane and the horizontal and longitudinal planes. An example, is

coupling due to vertical dispersion: in this ca.se, the beam size depends on both

vertical emittance and the energy spread, through the vertical dispersion.

In the limit of weak coupling, this relation can be expressed a.s

the

the

(2.2.2)

where by local includes the effects of the local coupling and eY is the “vertical” normal

mode emittance. Notice that the local coupling contribution to ai/py is a function

of the azimuthal position in the ring s, while the contribution from the emittance

is (approximately) invariant. This occurs beca.use the emittance represents a fun-

damental measure of the vertical pha.se space while olOCal  is due to a coupling that

can change from point-to-point.

At this point, we ca.n furt,her subdivide t.he cont,ributions to the vertical beam

size. As mentioned in the int,rocluction,  iye consider four effects t.hat contribute to the

low current beam size: (1) the moment urn dependance  of the vertical closed orbit,
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i.e., the vertical dispersion, (2) the coupling of the betatron motion, (3) the synchro-

betatron coupling, and (4) the opening angle of the radiation. These effects have

contributions that are statistica,lly  independent which is discussed in Appendix C.l.

Thus, the vertical beam size can be written as the sum of the contributions:

a;(s) 2. +  O$coupling +
2

cbpersion Osynchro-/3  coupling

pyo= PY &I @?I
+  copening  a n g .  * (2.2.3)

Here, the first three contributions ha.ve both a local coupling contribution and an

emittance  contribution while the opening angle only contributes to the vertical emit-

tance.

2.2.2.1 E Q U A T I O N S  O F  M O T I O N

To calculate the contributions to the beam size, we will need equations for the

vertical dispersion, the bet.atron  motion, and the synchrotron mot,ion. Strictly, the

transverse and the longitudinal motion should be treated together in a complete

description of the coupled six-dimensiona. motion. Fortunately, in a strong-focusing

storage ring, the synchrotron frequency is much lower than the betatron frequencies,

and thus it is usua.lly  valid to assume t,hat the synchrotron motion only causes

an adiabatic modulation of the behtron motion; we examine the effects of the

synchrotron motion and the synchro-betatron resonances in Section 2.2.6.

The equations of motion for a particle in a storage ring are discussed in Ap-

pendix A. Neglecting the effects of synchrotron ra.diation  and a.cceleration, the trans-

verse equations can be writ,t.cn Il@Ol

5” + (1 - A)
1
(K* + G’)X + El,!, + J+2 - y2)

3
= AG + (1 - A)G,,

[ 3

(2.2.4)
y” - (1 - A) 1$/ - K1x + KZzy = (1 - A)G,, ,

where the primes denote derivatives with respect to s, the azimuthal coordinate, and

A is the relative energy deviat,ion:  A z (p--po)/p w lere p is the particle momentum1
and po is the design momentum; t.o first-order A equals the more common parameter

6 3 (p-po)/po.  In a.ddition, G is the rnain horizontal guide field which is the inverse

of the local bending radius:

(2.2.5)

GZc and G,, are the in\:erse lxncling radii of additional corrector or error dipole
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fields, and ICI, El, and I<2 are the normalized quadrupole, skew quadrupole, and

sextupole fields:

j&(S) - edB,
PO dx

(2.2.6)

With these definitions, positive Gec,yc causes a deflection in the positive x or y

direction and positive Ii’1  corresponds to focusing in the horizontal plane.

Now, with complete generality, we can separate the solutions into: (1) the on-

energy (A = 0) inhomogeneous solution, referred to as the closed orbit, (2) the first-

order energy dependence of this closed orbit, referred to as the dispersion function,

and (3) the homogeneous solution which is referred to as the betatron.  motion. Thus,

x = xc + 6qz + xcp where xc is the closed orbit, vr is the dispersion function, and xp

is the betatron motion. Using this expansion in Eq. (2.2.4),  we find equations for

the closed orbit

(2.2.7)

Next, linear equations for the dispersion function and the on-energy betatron

motion can be found by expanding about,  the closed orbit:

-G,, - IilyC+  1712, - K25,yC

and

x; + (Ii1 + G”).q + Ii1 yB + Ii~(x,xg - ycyp) = 0

y; - b-l?& + z1xg - Ii2(xpyc + x,yg) = 0
(2.2.9)

.

These equations for the transverse motion a.re complicated. Although, we could

solve for the coupled motion and beam sizes exa~ctlyf28’47’ss”z51  these exact solutions

do not provide simple insight into t.he weakly coupled (flat beam) case. Thus, we

will proceed by further a.pproximating  these equa.tions  of motion.
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Table 3. Effects of rotational [O] and vertical [y,] misalignments.

Misalignment Effect

Vert. BPhf Yc R5 Ym

Result

non-zero closed orbit

Vert.  Quad. AG, = -K,ym

Vert. Sext. A& = K2ym

dipole kick

coupling

dipole kick

I R o t .  Q u a d .  Akl =I 21&O 1 coupling I

2.2.2.2 PERTURBATIVE APPROXIMATION

In the limit of flat beams, one can solve the equations for the dispersion function

and the betatron motion perturbatively. For the be.am  to be flat, the horizontal

dispersion must be, on alTerage, much larger than the vertical q2 >> qY and the

horizontal betatron amplit,ude  must be much larger than the vertical xcp >> yp.

Furthermore, without a loss in generality, we can assume that the horizontal closed

orbit is zero; the effect of a non-zero horizontal closed orbit can be included by

considering small changes of the focusing function K1 due to the sextupoles.

Now, with these approximat,ions, the equations for the dispersion and the beta-

tron motion are

x;+(Iil +G’)xy=O

y;; - Ii1yp = -i&xg + K2ycxp )
(2.2.10)

and

~2 + (Ii1 + G2)qr = G

11:: - Iipjy = I,
-G,c - hy, - Iuqz + Iiiycqz

(2.2.11)
.

These equations are no longer coupled, the vertical motion is simply driven by the

horizontal, and thus they are simple to solve.

2.2.2.3 ERRORS

As has been menlioned,  escluding  t,he opening angle contribut,ion,  the low cur-

rent vertical bea.m size is clct,ermincd by errors in an uncoupled storage ring. In

this chapter, we consider the effect of random vertica.l misalignments of the quad-

rupoles, sestupoles, and the Beam Posit.ion hlonitors  (BPhls). In addiCon, we will
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also consider the effect of random rot,ational  errors of the quadrupoles and the bend-

ing dipoles. The effect of these errors is summarized in Table 3 where ym and 0

are the vertical and rotational misalignment~s. As one ca.n see from Eqs. (2.2.10)

and (2.2.11),  vertical dipole errors, due to rotations of the bends, vertical mis-

alignments of the quadrupoles, or non-zero closed orbits in the quadrupoles directly

introduce vertical dispersion. In addition, these same dipole errors create a non-zero

vertical closed orbit which couples the z and y planes in the sextupoles. Finally,

quadrupole rotations and sextupole misalignments will also couple the two trans-

verse planes. We will discuss these effects in detail in Sections 2.2.4 and 2.2.5 after

discussing the opening angle contribution to the emittance.

2.2.2.4 CLOSED ORBIT

Here, we calculate the closed orbit and the closed orbit correlation function re-

sulting from the misalignments. The correlation function will be needed, in Sec.tions

2.2.4 and 2.2.5, to calculate the beam sizes resulting from the vertical dispersion and

the betatron coupling. Although we are primarily concerned with the effects of cor-

rected orbits, we will derive expressions for both corrected and uncorrected orbits

for comparison.

The vertical close orbit is described by Eq. (2.2.7). -4ssuming that the skew

quadrupole terms are small, i.e., the weal;  coupling limit, Eq. (2.2.7) is ea.siIy solved

with the periodic Greens function for the ring:

cos(I,$,&) - $Jr,y(S’)I - w,y) , (2.2.12)

where @’ is the beta function, v is the tune. and I/) is the phase advance: $ = Jds/P.

Using this, we find a. solution for the vertical closed orbit~41

where G(s) = G,, + GOB + Ii1 ym.

Now, we can calcula.te the expected rms magnitude of the closed orbit given an

ensemble of random dipole errors, wit,h Gaussian distributions. One finds the well
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known result 13*’

(2.2.14)

where the beta function at ea.ch  kick is approximated by the average beta function

within that magnet and the angle brackets are used to denote the expected value

which is found by averaging over the gaussian distribution of errors.

Next, to calculate the vertical dispersion and the coupling introduced by the

errors, we need the correlation function for the closed orbit, (yc(s’)yc(s)).  Using

Eq. (2.2.13), this can be expressed as a double integral

m s'+cc~-' s+c&&@i(G(z')G(~) cos' ~0s)(Yc(S')Yc(S)) = 4sin' =u
s J- , (2.2.15)

where p’ = /?(t’), cos = cos($(s)  - q!)(z) + TU), and cos’ = cos(lc,(s’) - $(z’) + TV).

To eva1uat.e  (G(z’)G(z)) tlvz int.egrals must be over the same portion of the ring.

Assume initially t1-la.t  s’ > s, then

.  ..+ s~cdz’jdz-j , (2.2.16)

ssc s

where . . - is used to represent the integrands and we have used the fact that the

errors G are uncorrela.ted  t,o simplify the expression.

As before, the double integrals collapse to single sums over the deflections, but

the second double integral has different limits and thus a,n additional factor of 27ru

must be a.dded  to the phase ,$(z’).  We a.vera.ge  over the high frequency terms and,

in the case of an uncorrected closed orbit, we are left with

q?%mm
S-I-C

(Y&‘)YC(S))  = 8 si,l2 my ~0s A+ c P,i(G~L~)
Y i=s

+ cos( j4Jq - 27ruy) - COS A$
>
2 B,i(GjL:)]
i=s

(2.2.17)

where A$ = &,(s’) - .4?/(s) and the absolute values signs were used to include the

case s’ < s. Note t,ha.t krms of order  1/4~irr/~  ha.ve been dropped from Eq. (2.2.17);

these will be small correct,ious  in high tune, low emit,tance rings.
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We consider two c.ases:  a.n uncorrected orbit and the orbit after substantial

correction. Since the correlation function is periodic in As, we can express it as

a Fourier series, Furthermore, since the m dependence has been removed, the

correlation function must be an even function of As and thus the Fourier series only

contains cosine terms:

(Yc(S’)Yc(S)) = de? [: + g cn COS T]
n=l

(2.2.18)

To calculate the coefficients c, for an uncorrected orbit, we make a smooth approx-

imation

(2.2.19)

where AlC, = I,!J(s’) - Ij,(s). The coefiicients  are then

Gl =
(73 + l$)(l - cos 27rvy)

T2(1,.? - $j2 . (2.2.20)

Here, only the two harmonics cn on either side of the tune, n = Ivy J , [vYf, will

be large, and thus, we can approsima.te the uncorrected orbit with just these two

terms.

When the closed orbit is corrected its Fourier spectrum tends towards that of

white noise. There are two rea.sons  for this: first, most orbit correction techniques

tend to reduce the dominant harmonics on either side of the tune while increasing

the other modes. The second, and more fundamental, reason is that the BPMs are

misaligned relative to the ring centerline. Thus, even with perfect orbit correction,

where the measured orbit is zeroed at a.11 of the position monitors, the actuaE  closed

orbit will have a white noise spcct.rum.

We can approximate this by a.ssuming tha.t  the correctors “randomize” the or-

bit, and thus points on either side of a corrector are uncorrelated. Furthermore,

assuming that many correctors a.re used to correct the orbit, we can approximate

the correlation function between correctors with just the first term of Eq. (2.2.17).

Thus,

cos A$, No correctors
between s a.nd s’

0, 0 the&se

(22.21)

Here, the term (yz)//3,  is not equal  t.o EC]. ( 2.2.14); it is the square of the residual
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orbit after correction. In particular, for an orbit that is fully corrected, one can

approximate (3,‘) with the estimated vertical misalignments of the BPhk (y&). We

will use this correlation function in Sections 2.2.4 and 2.2.5 after calculating the

effect of the opening angle of the radiation.

2.2.3 Opening Angle Ehittance

In this section, we derive the emittance contribution due to the opening angle of

the synchrotron  radiation. Photons are radiated with an rms angle of l/y relative

to the particle trajectory, thereby changing both the longitudinal and transverse

momentum of the particle. In an ideal storage ring built in the horizontal plane, the

vertical closed orbit does not depend upon the longitudinal momentum and thus

the radiation opening angle should determine the vertical emittance. In practice,

errors in the machine will genera.te vertical dispersion and couple the horizontal and

vertical betatron motion. These effects will then determine the vertical emittance.

Still, the emittance due to the opening angle is useful since it specifies a lower bound

on the vertical emittance, a. lower bound tl1a.t will be approached by future machines.

The emittance contribution clue to the opening angle is estimated in Ref. 104

by ignoring the correlation between the energy and angle of the radiated photons.

In this approximation, one finds

(2.2.22)

where C, = 3.84 x lo-l3 met,ers. Our derivation will parallel that of Ref. 104, except

that the correla,tion  between the energy and angle of the photon will be included.

The high energy photons should be radiated at smaller angles than the low energy

photons and thus the correct result will be smaller tha.n Eq. (2.2.22).

When a particle radiates a photon of energy u, the transverse angle changes

Ay’ = and Ay=O . (2.2.23)

where 0, is the angle of inclinat,ion  between the pa.rticle  trajectory and the path of

the photon. The cha.nge  in y’ cha.nges  the particle’s transverse invariant Jy:

AJY = (a 2141,’ + &y’Ay’ + h(Ay’j2)Y t 2 9 (2.2.24)

where Jy is defined in Eq. (A.2.21).
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Now, the beam emittance is calcula.ted  from Jy by avera.ging over the beam.

Since changes in y’ are statistically independent, the change in the emittance is

found from the average of AJ,. Furthermore. the averages of y and y’ are zero, and

thus, if we assume that the probability of radiation is uncorrelated with the particle

position and transverse momentum, the change in the emittance between position

s and s + cls is

de(s) = $v(Ayr2(s))$ (2 .2 .25)

where the angle brackets are used to denote an average over the particles in the

beam and

h’(Ay’“(s))  = / $$,(u,  Q, s)&dR . (2.2.26)
0

Here, R(U, R, s)dudfl is the expeckd number of photons radiated per unit time at

position s with an energy between u and u + du and a solid angle of R to Sz + dQ.

By assuming that (yAy’)  = (y)(Ay’)  = 0, as we did in Eq. (2.2.25), we are

ignoring the effect of gradients in the magnets. When the magnetic field has a

gradient, the probability of radiation depends upon the particle position. But.,

the magnetic field variation a.cross a beam is typically very small a.nd thus we can

ignore it. For example, a, damping ring design for the NLC’“”  has gradients of 300

KG/meter in the 13.1 KG bending ma.gnets while the beam sigma is 4 microns.

Thus, the field varies by on13 2 Gauss a.cross the beam.

Now, to find the change in the emitt,ance over one turn, we integrate dc over the

ring

A(E= . (2 .2 .27)

The equilibrium emittance is t.hen calculated by setting the change due to quantum

excitation equal to the change due to cla.mping.  Thus

(2.2.28)

where 7Y is the vertical damping t,ime and 7’0 is the revolution period of the ring.

Note that the vertical emifdnnce  rla.mping  rat,e is 3-l~~.
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Thus, we need to evaluat’e the integral in Eq. (2.2.28) over u and R. The rate

of photons emitted with energy between u and u + du multiplied by the energy u is

equal to the power radiated with a. frequency between w = u/ti and (u + du)/h.

un(u, R, s)dudR = d’P(u/h, ‘7 ‘) &dQ
l3Wdi-l

(2.2.29)

The classical relation for the differential power radiated by an ultra-relativistic

electron in instantaneous circular motion was calculated by Schwinger 11091

d2P(w, G, s)
dwd$, I@)1 (2.2.30)

where

(2.2.31)

Here, $ is the angle of inclination above the orbital plane; thus, +!J is equivalent

to 0, of Eq. (2.2.23). In addition, p(s) is the instantaneous radius of curvature,

and Ii’l and K; are modified Bessel functions. Notice that the azimuthal angle has

been il;tegrated  out of Eq. (’2.2.30); it would be needed if we wanted to calculate

the opening angle contribution to the horizontal emittance, but, as was mentioned

earlier, the horizontal emittance is dominated by the dispersive effects.

Thus, the equilibrium emittance is

where w has been written in terms of 5. Furthermore, since the integrand is very

small for II, m r/2 >> l/7,, and decreases ra.pidly  with $, we can extend the limits

of integration from &n/2 to &lx,
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where

The integral In(v) is equal to””

where l?(z) is the gamma function. Specifically,

13(v) = -;g+4 *

(2.2.34)

(2.2.35)

(2.2.36)

Next, the integral over $ is performed using the algebra.ic  integral””

: co
I x2*(/x (2??7 - 1)!!(2?2. - 2772 - 3)!!x

(x” + qi = 2(912 _ 2)!!p-*-l& ’ (2.2.37)

0

Finally, substituting for ~yf”” we find for the opening angle contribution to the

emit tance,

(2.2.38)

This is a factor of 2.1 times smaller than the estimate in Eq. (2.2.22). This expression

can be further simplified by using t.he average va.lue  of &, and the rms energy spread

(Eq. (A.5.6)). We find

yr, z 0.24&$ , (2.2.39)

where ye is the normalized emittnnce and Jc and CT, are the longitudinal da.mping

partition number and the rms energy spread.

To estimate the importance of this effect, we note that opening angle emittance

is roughly a factor of lo5 smaller t,han the SLC da.mping .ring design emittance,

a factor of lo3 smaller than the Advanced Light Source ‘12g1 (ALS) design vertical

emittance (ct/cY = lo), aad a. factor of 45 smaller than the NLC damping ring

design vertical emittance.



Chapter 2.2.4.1

2.2.4 Vertical Dispersion

The vertical dispersion increases the beam size in two ways: first, the vertical

dispersion is a coupling between the longitudinal energy deviation and the vertical

position. Since the beam contains a finite energy spread, the vertical dispersion

directly contributes to the vertical beam size. This will be referred to as the “local”

contribution since the bea,m  size increase only depends upon the local value of the

vertical dispersion; the energy spread in the beam does not vary significantly around

the ring.

Second, the vertical dispersion couples the “noise” due to the synchrotron ra-

diation from the longitudinal plane to the vertical plane. Since the photons are

uncorrelated, the radiation causes an increase in the rms amplitude of the betatron

oscillation. This effect will be referred to as the “global” contribution of the vertical

dispersion since the effect. depends upon the value of the dispersion in all of the

bending magnets.

Although, both the 1oca.l and the global contributions from the vertical disper-

sion increase the vertical beam size, t,here  is a fundamental difference between the

two. The local effect is simply clue t,o a coupling between the longitudinal and ver-

tical planes; it does not actually change the beam’s six-dimensional emittance. In

contrast, the global effect of the dispersion does cause an increase in the beam emit-

tance. In a synchrotron light source, the distinction between the local and global

effects is irrelevant; one is only interested in projected beam size. But, in a damp-

ing ring, the distinction is important since one is interested in the extracted beam

emittance; in theory, any residua,l  coupling can be removed.

To calculate these two effects, we will first derive expressions for the dispersion

arising from random errors and a non-zero closed orbit. Then, we will calculate the

contributions to the vertical bca111 size and the emitta.nce. Finally, the calculations

will be compared with the results of simulations.

2.2.4.1 VERTICAL DISPERSION

To find the vertical beam size contribut.ion due to dispersion, we need to first

solve for the vertical dispersion and the deriva.tive.  In the limit of flat beams, the

vertical dispersion is given by:

(2.2.11)



I

These equations are solved in the sa.me manner a.s the equation for the closed orbit,

namely, by using the periodic Greens fun&on for the focusing field of the ring,

Eq. (2.2.12). The solutions are13”

d%&os(hc(s) - A(-?) + nu,)G(z)dz

my sj&os(&/(.) - q+/(t) + 7w,)F(z)dzrl~(S> = 2 sin *u 3
(2.2.40)

where G(s) is the main bending function and F(s) = (A’2vz - Kl)y, - klqz - G,,.

Now, the derivative of 11~ with respect t,o s can be found directly from Eq.

(2.2.40). U f tn or unately, this is complicated by the beta function which is also a

function of s. Instead, the function II,*, which is a function of vY and its derivative,

is introduced:[621

This function is convenient since it. 1)ot.h simplifies the expression for the vertical

emittance  and has a solution that can be esprcssed in a form similar to (2.2.40):

q;(s) = -2zy Tdzsin($y(s) - G,(z) + nv,)F(z)dz  . (2.2.42)
3

Because the two equations have similar forms, the calculation of ql? will parallel

that of 77;. In particular, we will see tha.t  for random errors the expected values of

77; and vi3 are equal.

2.2.4.2 RANDOM E R R O R S

To estimate the beam size contribution, we need to calcula.te the expec.ted  values

of $/pY and qj2/&,  for tlle various error distributions. The square of the vertical

dispersion, Eq. (2.2.40),  is a double  int,egral

(7;) 1
s+c

-=
Al 4 sin’ 7ruY JJ

dX1~’  &q cos cos’ F2( 3,z’)) (2.2.43)
3

where p’, cos, and cos’ are defined as they were in Eq. (2.2.15). In addition, since the

errors considered (qua.drupole  rotations, sextupole  misalignments, aad dipole errors)
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are all assumed to be statistically independent, the function F2(z,z’)  contains five

terms
(I-qz,;‘)) = 4K~?),K;7~:(cm’)  + K?T),K;7j:(y,y~)

+ (G,G’,) - 2f’(G,d) + ff bed)
(2.2.44)

7

where the primes are used t.o denote functions of .z’ instead of z and f(z) is pro-

portional to the local chromnticity,  f(z) = J<27, - K1; the chromaticity is given

by 13’]

(A.2.17)

where we have neglected t,he term from combined function magnets. It is impor-

tant to notice that the vertical clispersion  due to a closed orbit can be reduced by

using Zoca2 chroma.tic  correct,ion  which reduces f(z); this will be discussed further

subsequently.

Since the errors are uncorrelated,  the first three terms of Eq. (2.2.43) are calcu-

lated in the same manner as (Y:)//?~,  Eq. (2.2.14), yielding the results[341

(2.2.45)

(2.2.46)

All of the above equations are a.pplicable  for both corrected or uncorrected orbits.

The first two do not depend upon the closed orbit and the term (yz)/@, in the third

equation is equal to Eq. (-.-.3 3 14) for an uncorrected orbit or the square of the residual

for a corrected orbit. Notice tl1a.t  this third term is not a result of a non-zero closed

orbit; it results from the errors and correctors tha.t  create the non-zero closed orbit.

Fina.lly,  note that we ha.ve calcula.t.ed  the expected value of ($)/&,  but to

calculate the emittance  we will also need to calculate (pi?)/&,.  As mentioned, this

quantity is ca.lcula.t.ed  in a.11  analogous manner; it differs from (~,~)/&, in that cos

and cos’ become sin and sin’, Ililt wit,11 the sa.me approximations, the results are

identical.
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uncorrected case depends on the average values off&,  and f&,ei2$.  In general, these

will be small; the former, the chroma.ticity, is usually small by design while the la.ter

tends to be small because of the oscillating term ei2g.  In contrast, the corrected

case depends on what we refer to as the 10~1  chromaticity and the local A. Both of

these will typically be much larger than the average values. The local chromaticity

is usually positive in regions of dispersion to compensate the negative values in the

dispersion free regions. While the avera.ge  ma.y be zero, the local values are not. In

addition, the local value of A will tend to be much larger than the average since the

oscillating term does not vary significantly over a short region.

Of course, despite the larger values of [local and AloCal, the dispersion of the

corrected orbit will usually be smaller than that of an uncorrected orbit; orbit

correction reduces the residual orbit (~:)/,8.  Furthermore, if the closed orbit is

comparable in magnitude to the misalignments yC z pm, the contribution to the

vertical dispersion from the closed orbit will usually be much less than that from

the misalignments. This occurs because the orbit, even after correction, is still

correlated for short segments and some of the quadrupole and sextupole deflections

cancel.

2.2.4.4 BEAM SIZE

At this point, we can solve for the beam size increase due to the vertical disper-

sion. As mentioned, the vertical dispersion 1la.s  two effec.ts:  (1) it directly increases

the beam size by coupling a particle’s energy deviation to the vertical position, and

(2) it causes the vertical emittance  to increase. The first effect is simple; it causes

a local contribution to the expected beam size of

(2.2.56)

where cre is the rms energy deviat,ion in t,he beam.

To calculate the second effect., t.he emitta.nce increase, we use the dispersion

invariant 3-1,  which is analogous to ‘&, defined in Eq. (A.5.9). Thus, ?fH, can be

expressed

3-t,(s) = $,: + $7 ) (2.2.57)

where we have used the function 77; introduced in Eq. (2.241).  The contribution to
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the emittance from the vertical dispersion is”“’

$ _ cd I IG3(41%(4ds
& $ G2(s)ds

(2.2.58)

where Cq = 55fi/(32&zc)  =  3.S4 x  lo-l3meter and &, is the vertical damping

partition. For a ring in the horizontal plane Jr, = 1; in the limit of weak coupling,

the change in JY due to errors is negligible.

Since the expected values of ($)/& and (Yang)/&,  are equal and are independent

of s, the expected value of the emittance can be written

(2.2.59)

where, the relative energy spread (Eq. (A.5.6)) has been used to simplify the ex-

pression and Jc is the longitudinal da.mping partition. Since Jc is typically between

1 and 2, one can see tl1a.t  the cmittance generally has a larger contribution to the

beam size than the coupling increase of Eq. (2.2.56).

At this point, we will again emphasize the distinction between these two effects.

As mentioned, the first effect, Eq. ( 2.2.56),  is due to a coupling between the energy

deviation and the vertical position; it does not change the beam’s six-dimensional

emittance. In contrast, the second effect, Eq. (2.2.55), causes a fundamental increase

in the phase space volume occupied by the beam. In a synchrotron light source this

distinction is irrelevant, but in a damping ring it is important because, unlike the

first effect, the emittance increase cannot be corrected once the beam has been

extracted from the ring. Of course, both effects can be corrected by correcting the

vertical dispersion in the ring; this is the subject of Section 2.2.7.

2.2.4.5 SIMULATIONS

To verify these results, the comput8er  program CEIVHT’~~~ has been used to sim-

ulate various errors in the SLC! Korth  Da.mping R.ing (NDR);f122”Z81 the CEMIT

program calculates the closctl  orbit and dispersion and then finds the equilibrium

emittance by calculating generalized synchrotron  integrals. The NDR is designed

to operate on the coupling difference resonance, but for these simulations the tunes

were shifted t,o vZ = S.375 and I+ = 3.275; this lattice will be referred to as the
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Table 4. e.y from vertical dispersion due to misalignments in the NDRl.

Misalignment Calc. E@ [ m-rad] Simulated cy [ m-rad

Random quad. 0 = 0.5 mrad 1.91 x 10-12 1.83 f 0.05 x 10-l”

Random sext. yn = 150pm 6.51 x lo--l2 6.42 f 0.16 x lo--l2

Corrected closed orbit due to random
quad. y, = 150bm and BPM yrn = 150lrm 1.32 x lo-l2 1.1 f 0.2 x 10-12

NDRl.  Finally, in this compa.rison,  we will only discuss the increase in the vertical

emittance  due to the vertical dispersion.

The results of simulating rota.t.iona.l  misalignments in the quadrupoles and ver-

tical misalignments in the sextupoles a.re listed in Table 4. The misalignments were

generated from gaussian distributions with rms widths of 0.5 mrad and 150pm,  re-

spectively. The calculated values are found using Eqs. (2.2.45) and (2.2.59), while

the simulated values are found by a.vera.ging  the results from 1000 different random

error distributions. Finally, the simulated errors are the standa,rd  errors of the av-

eraged values. In both cases, one can see t1la.t the approximate formula agree well

with the simulations.

In addition, Table 4 lists results from simulating the effects of a corrected closed

orbit. Here, the results are the a.verage  of twenty simulations. The simulations

included vertical quadrupole misalignlnents  with an rms of 150 /lrn  and vertical BPM

misalignments, also, with a.n rms of 150 /rm. The resulting orbit was corrected using

the twenty vertical dipole correctors in the NDR to minimize the rms of the simulated

orbit. Before correction, the rms magnitude of the actual orbit was roughly 1.5mm;

the correction reduced this to 140 /fm,  roughly the accuracy of the BPM alignment.

In this case, the calculated result was found from Eqs. (2.2.46), (2.2.50), (2.2.55),

and (2.2.59), although the domina.nt. contribution comes from Eq. (2.2.55). Again,

the calculated estimate a,grees well with the average of the simulations. Finally,

notice that the contribution from t.hc corrected orbit is less tha,n the contribution

due to similar misalignments in the soxtjupoles;  as mentioned, this occurs since the

orbit is still correlated over short, segments.

To further study the effect of a. corrected  closed orbit, the avera.ge  (IIz)/By has

been plotted versus the chroma.ticity of the ring. In Figure 2, the closed orbit was not

corrected while in Figure 3 the orbit. was corrected with twenty correctors. Again,

the data and errors were found from the results of twenty simulations. The lines
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10-3

- 7 . 5 - 5 - 2 . 5 0 2.5
Vertical Chromaticity

Fig. 2. VerticAl  dispersion versus Jy for an uncorrected closed orbit.

Vertical Chromaticity
2.5

Fig. 3. Vertica.1  dispersion ~rsus & for a closed orbit corrected with 20
correc.tors.
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2.2.5 Betatron  Coupling

In a conservative system, such as a prot,on  storage ring, betatron coupling leads

to “beats” where energy is transferred between the two transverse planes, An e+/e-

storage ring is not a conservative system; the synchrotron  radiation provides both a

source of noise and damping. Neglecting the vertical dispersion, only the horizontal

plane is coupled to the noise source, while both planes are damped. Thus, in an

uncoupled ring, only the horizontal emittance is driven. Unfortunately, in the pres-

ence of coupling, the eigenvectors of the betatron motion rotate from the x and y

axes so that both eigenmodes couple to the noise in the horizontal plane. Thus, in

the case of weak betatron coupling, the vertical beam size is determined by both the

projection of the “horizontal” emittance in the vertical plane and the contribution

to the “vertical” emittance from the noise in the horizontal plane.

Much like the beam size due to t.he vertical dispersion, we can separate this

increase into two contributions, one due t,o a coupling which increases the projec-

tion of the six-dimensional emittance into the vertica.1  plane, and another due to

a fundamental increase in the vertical czlnitt.auce.  As before, the former effect will

be referred to as the “local” conkibution  since it depends upon the local value of

the coupling. In principal, this local coupling can be corrected at one location in

the ring with four independent skew quadrupoles; the four magnets can be used

to uncouple the one-turn transport matrix at a specified location. Unfortunately,

this does not remove the second effect which arises from the “global” coupling; the

coupling would need to be corrected at every bending magnet to fully remove this

emittance contribution.

In this section, we will calculate the beam size increase due to both the local

and the global coupling. Paralleling the discussion of the vertical dispersion, we will

first calculate the effects of random errors a.nd a non-zero closed orbit. Then, these

analytic results will be compared with the results of simulations.

2.2.5.1 VERTICAL BEAhr SIZE

To calculate the rms equilibrium vertical beam size due to the linear betatron

coupling, we will stast from the equations of motion for a single pa.rticle, calculate

the rms betatron motion, and finally? a.\.erage over the ensemble of particles to find

the rms beam size. Alternately: one could use the Fokker-Plan&  equa.t.iony’  but in

3-1



Chapter 2.2.5.1

many ways the more intuitive a.pproach is appealing since it allows one to explicitly

see the cause of the various contributions.

We will analyze the motion assuming that the coupling is weak and the vertical

motion is much smaller than the horizontal. Thus, we can use the unperturbed

horizontal motion to calcu1at.e  the vertical. The equation for the vertical betatron

motion was calculated, for the weal; coupling limit, in Section 2.2.2:

(2.2.10)

where the effects of the synchrotron radia.tion  have been neglected.

We want to calculate the change in yp. Treating the magnets as delta-functions,

the coupling adds a deflection A;sl’ = ZCB(IL’~Y~  - r?-1)A.s to the vertical motion which

is then exponentially damped by the radiation damping process. Thus, we can

express the vertical motion a.s a sum over the deflections Ay’

Here, i is the coupling cocflicient.  ,&( 2) = (1<~ yc - El), cuY is the vertical damping

rate, and c is the speed of light. In addition, the function enclosed in the brackets

is the sta.nda,rd RI? betatron m&ix element which transforms a deflection Ay’ at

z to a position Ay at s.

At this point we need an esprcssion for the z betatron motion. The horizontal

betatron motion is driven by energy fluctuations due to the synchrotron ra.diation;

these are coupled to the horizontal plane through the dispersion. When a photon of

energy u is radiat.ed,  2~ and .rb cha.nge  by Aza = qtu/Eo  and ATE = r&u/&.  For

brevity, we will let II:, a.nd t.hus A$, equal zero in the next two equations, but this

assumption will be removed thereafter. In this case, the horizontal betatron motion

is just a sum of disp1acement.s .il.z.fi which are exponentially damped:

A$x i- ax(z;)  sin A+X)] .
k-03

{photons}

(2.2.61)

Here, ui is a stochastic variable equal to t.he energy of a photon radiated at zi. In

addition, A$, = $lZ(s) - GX(:;) and t.1le function in brackets is tllc R11 betatron
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matrix element which transforms a change in position AX at zi to a Ax at s. Finally,

we have assumed that the particle has been in the ring for infinite time and thus it

has no memory of the initial amplitude and phase.

Now, we can use Eq. (-.-.3 3 61) to express Eq. (2.2.60) as a sum over photons fi,

3
S

Y/3(4 = c
%7)z(Zi) he

J

(r~-i)a~~c~~~ %(zi, *)e(Z-S)av'Ck(Z)R12  y(Z, S) e

i=-00
{photons}

ti

(2.2.62)

The vertical beam size is now found by averaging the equihbrium value of y$/,&

over an ensemble of particles. The calculation simplifies since the radiation is a

stochastic process, (uillj) = (IL?)6ij. I n addition, when performing the ensemble

average, we can express the sum over photons as the integral of a rate of emission.

Thus,

2 {IL:) 3 j ?N(U’(Zi)) ,
i=-00

{phoions}
-CO

(2.2.63)

where this second moment of the photon distribution is given by Eq. (A-5.2). This

yields a beam size of

77z(zi)  (CO, A&T -I- az(;;) sill AY:r) + ~~(~;)~~sinAli,, )I
2

,

(2.2.64)

where All,%  = $,(z)-+z(zi)  and A$, = ~$J~(s)-$~(z). Notice that we have included

the contributions from both 7~~ and &.

At this point, we assume that the tunes a.re far from the coupling resonances,

vz f vy = n, and damping per turn is small compared to the tunes, ~A(v~ f zjY)  >>

crZT~,cyyTo.  After some algebra, that is explicitly displayed in Appendix C.2, we

find contributions to the vertical beam size and emittance  from both the sum and

:3G
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difference resonances of

a; (s)local fx Q+(s)Q*_(s)=-P,(s) 16
c IQd412
f sin’) ~Auf

,,Re--I
sin nAu+ sin WAV- 1

(2.2.65)

where

s+C

94s) = / d&z) Jp&i [(w)*tl’v(4 - (~,(z)rt~,(z))+*(“=*“,,] . (2.2.66)

9

Here, k = (K?y - kl) and the sum over f denotes a sum over both the + term

(sum resonance) and the - term (difference resonance) while AI/+ = I/~ + vy and

Av- = ux - uy. In addiCon, the * is used to represent t,he complex conjugate and

the operator “Re” yields the real portion of the expression.

Equation (2.2.65) explicitly displays the physics described in the beginning of

this section. The first expression represents the projection of the ‘Lhorizontal”  emit-

tance into the vertical plane and the second expressions describes the contribution

to the “vertical” emjttance  from the horizontal dispersion. This is analogous to the

situation with the vertical dispersion where the projected vertical emittance is in-

creased by the local value of the dispersion while the vertical emittance is increased

by the average value of the dispersion.

This analogy can be taken further hy noticing that the real part of Q*:/ sin wAv*

is analogous to the vertical tlispersiorl  with a phase advance of & f +Y instead of

&,. Tn addition, the imagjrlary portion of Q*(s)/ sin nAv* is analogous to 7$(s),

Eq. (2.2.41). Thus, IQ*(s)1’/  sin’ 7rA r/k is completely a.na.logous to 3iZ,y(s).  This

analogy will be used in Sect ion 2.2.7 when we discuss correction of the coupling.

At this point, we should compare our result with the resu1t.s  of others. Equa-

tion (2.2.65) is simi1a.r  t.o the result found in Ref. 26 where the expression was

derived by solving the Fokker-Plan&  equation when close to the difference coupling

resonance. The results differ in t.ha.t  (1) the effect of the sum resonance and the

cross terms between the sum and difference resonances have been included, (2) the

contribution to the vertical emit.tance involves the az~clge  of the coupling coefficient

3-i



around the ring while the contribut,ion to the local beam size (projected emittance)

just depends upon the local value of the coupling, and (3) the explicit form of

the coupling coefficients differ slightly. In many references, including Refs. ‘26, 27,

46, and 47, the coupling coefficient, is found by Fourier analyzing the coupling and

choosing only the coefficient closest, to the difference resonance. This is not valid in

our case since we have assumed that the ring is far from both coupling resonances.

2 . 2 . 5 . 2  R A N D O M  E R R O R S

Now we evaluate Eq. ( 2.2.65) for specific errors. The quadrupole rotational

errors, sextupole misalignments, and the closed orbit are all independent. Thus, the

square of the coupling function k is

(+p+‘)) = 41<~(*)K+‘)(@O’)  + K?(+-?(&((Y*YI,)  -t (YCY:)) (2.2.67)

where primes have been used to inc1ica.t.e  functions of t’ rather than z. In the case of

uncorrected coupling, we can quickly evaluate Eq. (2.2.65) to find the contribution

from random quadrupole rotations and random sextupole misalignments. Specifi-

cally, we find

(4b.l = ‘z (1 - cos f2Kh 03s 2TQ) c (Ii’lL)“4(02)p  ,@
BY 4 (cos 2KU, - cos %?rv,)” * Y

guud
(2.2.65)

and

(2.2.69)
E* J* (1 - cos 27rY, cos 2wy)- -

ky) =  4  Jy (cos27rv,  - cos,27r1/y)~ sertp~?mY,?,)PxPy

Here, the sum of l/ sin2 r( V, f v,) has bce~~ written in terms of cos %rrjZ  and cos ~.Ru,

and we have simplified expression Eq. ( 2.2.69) with the equilibrium  horizontal emit-

tance; these expressions are ident.ical t,o those quoted in Ref. S2.
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In addition, notice tha.t  the cross terms have been not included in Eq. (2.2.65).

These terms add contributions of

Since these contributions are at least 1/27ru,,, smaller than the contributions from

the individual resonances, they will be neglected in all future calculations.

2 .2 .5 .3  ORBIT ERRORS

To calculate the effect of a closed orbit, we use Eq. (2.2.21) or Eqs. (2.2.1s)

and (2.2.20) for the correlation function of a corrected or uncorrected orbit. For an

uncorrected orbit, we find

,
5

(2.2.71)

where the contribution to cy is similar, but it has as additional coefficient of Jx/Jy

and must be averaged around the ring. In addition, the sum over AZ+ and $n is

a sum over four terms: the t,wo values of Au* = u, f uy and the two values of tin

associat,ed  with ea.ch value for Av*. The values of $J~. are

+n =  lc’x t
(1 t $j$, and (1 - k)$,, ALQ = ux -t uy

-(I t  zb& and - ( 1  - ;)$,, A u ,  =  ux - uy *
( 2 . 2 . 7 2 )

In the case of a. correct,ecl  orbit, we find a form similar to Eq. (2.2.71), except

that the integral is broken int,o segments by the correctors

where, a.ga.in, the cant ribution to Ed is simi1a.r. Here, t.he sum over Au* a.nd 4 is
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Table 5. cY from betatron coupling due to misalignments in the NDRl.

Corrected closed orbit due to random
2.6 f 0.3 x lo--l2

the same as in the uncorrected case except $J is now

lc, _ & + 2&, and Gz, if Au* = vz + vY
-

’t/L - 2&, and $z, if Au, = vz - vY
(2.2.74)

The integrals in Eq. (2 .2.73)  are the same integrals one finds when using time

dependant perturbation theory to calculate the effect of sextupoles on the betatron

motion. The similarity arises because. over a. short segment, the closed orbit oscil-

lates like a free betatron oscillation. It is import,ant  to emphasize that Eq. (2.2.73)

describes an effect due to linear coupling - notice the resonant denominator in

Eq: (2.2.73); ti is not an effect of the third order resonances. Specifically, Eq. (2.2.73)

is only valid when the closed orbit is broken into short segments (by correctors). No-

tice that if the orbit is broken at every sextupole, Eq. (2.2.73) reduces to Eq. (2.2.69)

which estimates the effect of random sestupole misalignments. Thus, for compara-

ble orbits and misalignments yc x yin, the contribution to the beam size from the

orbit will usually be Eess than the contribution from the misa.lignments  since the

orbit is typically correlated across many sestupoles.

Typically, when correcting the dynamic aperture, one a,djust,s the sextupole

strength and placement so that the first, order aberrat.ions  will cancel over the ring,

For example, in the NDR, the cell plla,se advances a.re v,,,u M 0.37 and ~1~~~11  NN 0.12.

This ca.uses  the first order geometric a.berr;lt.ions  due to the sextupoles to cancel over

an arc of roughly 8.5 cells. Unfort,unately.  when correcting the orbit, we break this

cancellation scheme, and thus ~7;//3, normalized by the square of the closed orbit

tends to grow.

2.2.5.4 SIMULATIONS

To verify the analytic results, t.he bctatron couplkg  contributions to the vertical

emittance  were determined from simulations of ra,ndom  alignment errors. Again, we
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used the program CEhlIT, which calculates generalized synchrotron  integrals, and,

again, we used the NDRl la.ttice; this is a lattice of the SLC NDR where the tunes

have been changed to vz = 8.375 and vy = 3.275. Table 5 lists the results of

simulating rotational misa.lignments  in quadrupoles and vertical misalignments in

sextupoles in the NDRl lattice. As before, the misalignments are generated from

a gaussian distribution with an rms of 0.5 mrad and 150 pm respectively. The

calculated values are found using Eq. ( 2.2.69). The simulated values are found by

averaging the result of 1000 different random error distributions and the errors listed

are the standard error of the average of the 1000 simulations; again, there is good

agreement between the estima.tes and the simulation results.

In addition, Table 5 also lists results from simulating the effects of a corrected

closed orbit where the results are found from twenty simulations. Here, the sim-

ulations included vertical quadrupole misalignments with an rms of 150pm and

vertical BPM misalignments, also, with an rms of 150pm. The resulting orbit was

corrected using the twenty vertical dipole correctors in the NDR to minimize the

rms of the simulated orbit. Before correction, the rms magnitude of the actual orbit

was roughly 1.5mm; the correction  reduced this to 140~m. In this case, the cal-

culated result was found from Eq. ( 2.2.73). Again, the calculated estimate agrees

well with the average of the simulations. Finally, notice that the contribution from

the corrected orbit is less t,han the cont,ribution  due to similar misalignments in the

sextupoles; as mentioned, this occurs because the orbit is still correlated over short

segments.

Finally, in Figures 6 and 7, the betatron coupling contribution to the vertical

emittance,  normalized by the square of the closed orbit, is plotted versus the number

of orbit correctors used. The points plotted are generated by simulating random

quadrupole and BPh{ misalignments in the NDR and the ALS as was done in

Figures 4 and 5. The line is a.11  a.pproxima.tion  of Eq. (2.2.73) which we evaluated by

assuming tha.t  correctors were evcnl~. dist.ributed in the ring. Notice that initially the

normalized contribution illcreases roughly linearly with the number of correctors.

As mentioned, this occurs since the cancellation is broken by the correctors. Of

course, since the residual orbit is decreased by the correction, the actual beam size

contribution tends to decrease a.s the orbit is correckd.
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Fig. 7. Q, due to lineal coupling versus Aicorr  in the ALS.
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Chapter 2.2.6.1

2.2.5.5 NON-LINEAR COUPLING EFFECTS

We can also estimate t,he effects of the higher order coupling resonances. In this

case, the equation for the vertica.1  betatron motion is

(2.2.75)

where p = m + n. Using perturba.tion theory, we would find a similar form for the

increase in the vertical emittance except that the increase would depend upon higher

powers of eZ and the unperturbed vertical emittance. Because E= and Q, are small,

these effects will be negligible unless one is very close to the non-linear coupling

resonances. A detailed a.naIysis  of -these  higher order coupling resonances can be

found in Ref. 46.

Actually, there is one case where this higher order coupling could be significant.

This occurs if the beam is very’  la,rgc when it is injected into the ring. Because of the

large beam sizes, the widths of these higher order coupling resonances are larger.

In simulations of a future damping ring lattice~gol coupling has been observed after

injecting the beam into the ring which was operating close to the sextupole  difference

resonance, uZ - 2v, x 0.03. This is actually advantageous in this design since the

vertical emittance damps faster when the beams are coupled; this occurs because

gZ = 1.6 while JY = 1.0 a.nd tllus t,here  is more damping in the horizontal plane. Of

course, one has to be sure t1la.t  the Ijean becomes uncoupled before the horizontal

emittance reaches its equilibrium value or the vertical emittance will never damp

beyond this point.

2.2.6 Syncluotron  Motion

So far, we have neglected the effects of the incoherent synchrotron motion; the

basic synchrotron motion is discussed in Appendix A.3. In this section, we will

discuss three effects tl1a.t  couple the transverse planes to the longitudinal. First,

we will treat a direct synchro-bet,a.tron  coupling contribution that is completely

analogous to the transverse bet at.ron coupling discussed previously. Then, we will

discuss the effect of the bctat,ron  tune modulation due the synchrotron motion.

Finally, we calcula.te  the change of the damping partitions during a synchrotron

oscillation and the effect, on the ernikta.nces and da.mping times. Although all these

effects a.re ma.nifestations of the synchrotron motion, they have different mechanisms,

and thus we trea.t  them sepxately.
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2.2.6.1 SYNCHRO-BETATROM COUPLING

The direct synchro-betatron coupling is a coupling of the transverse and the

longjtudinal  phase spaces through the longitudinal position z in the bunch. The

theory of the coupling was first developed in Ref. 80. Since then there have been

numerous refinements and generalizations; a good review can be found in Ref. 114.

Unfortunately, most of these theories use a symplectic approach that is suitable for

strong coupling but is unnecessarily complex for weak coupling and flat beams.

The synchro-betatron coupling is completely analogous to the transverse beta-

tron coupling described in Section 2.2.5. In a proton ring, the coupling will leads

to “beats” where the transverse planes and the longitudinal pla.ne exchange en-

ergy. Again, the situation is slightly different in a.n electron ring because of the

synchrotron  radiation. Thus, there are t,wo contributions: one due to the projection

of the longitudinal emittanc.e in the vert.ical plane, a.nd a,nother  due to a fundamen-

tal increase in the vertica,l  emittance.  III theory, the former can be corrected, even

after the beam has been extra.cted from the storage ring. In contrast, the emittance

contribution must be corrected by correcting the coupling sources in the ring.

At low currents, the synchro-betatron coupling is induced in the RF cavities.

The primary causes are either dispersion in the cavities, an angular misalignment

between the RF accelerating field and the closed orbit, or RF deflecting fields. In

addition, the coupling can be caused by transverse wakefields due to a non-zero

closed orbit or longitudinal wakefields in regions of dispersion. Here, we will only

treat the effects of dispersion in the RF cavities and a.ngular  misalignments of the

cavities although the expressions a.re trivial to generalize; the wakefield effects are

calculated in Section 2.3.4.

To estimate these synchro-betatron contributions, we will derive an expression

for the coupling due to a sinusoidal RF volta.ge  when off resonance. The derivation

will parallel that of the transverse betatron coupling, allowing us to use results

directly from Section 2.2.5.1. As before, WC will analyze the motion assuming that

the coupling is weak and the vertical motion is much smaller than the longitudinal;

this is equivalent to the condition cY < ~,a,‘~~~’ and is satisfied in most storage

rings.

Paralleling Section 2.2.5.1, we start by calculating the change in yp on passing

through a cavity, where yg is the betatron  component of the vertical motion. The

energy gain in a cavity is a function of :, the longitudinal position in the bunch.
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Thus, if there is vertical dispersion or the accelerating field is not aligned to the

trajectory, there will be a change in yp that depends upon z. Treating the cavities

as delta-functions, we find

Ayp = %
SERF

E. and AERF~)
AYb = (71: +@) E. 7 (2.2.76)

where 0 is the angular misa.lignment  of the cavity fields with respect to the closed

orbit and AERF is the diflel*e,Ice  between the energy gain of a particle at longi-

tudinal position z and the energy gain of the synchronous particle. Note that the

synchronous energy gain does not directly affect the beam size or the emittance;  it

sirnply replaces the average energy lost to radiation.

If we assume a RF sinusoidal volta.ge, AERF is

AERF(~)
Eo

= %(sin(rkRF + $S) - sin 4S) , (2.2.77)

where, ~RF is the wavenumber for the accelerating field ~RF = 27r/x~~, $S is the

synchronous phase, and \/RF is the a.ccelera,ting  voltage. This expression can be

expanded as a power series in z, ?:ielcling

Ayp = 2 fnznLca\ an cl AYE = 5 gn~“Lav ,
n=l n=l

where L,, is the length of the RF cavities and

(-l)(“-‘)I”  COS $$, if ll iS odd,

b-1)n/3-1 sin da, if n is even,

(2.2.78)

(2.2.79)

and g,, is similar except it ha.s  a coefficient of 77; + 0 instead of vy.

Now, we can express the vertical motion as a sum over the changes Ayp and

Ayb in an equation analogous to Eq. (2.2.60):

yp(s) = 2 j ~S~e(a’--sb,lc2~~ (3’) .fnRy  11 (s’, S) + gnRy12(s’,  3)[ , (2.2.80)
n=l-, 1

where R, 11 and R., 12 a.re the standard betat.ron  transport matrix elements that ma.p

a position offset or a. deflect.ion  at location s’ to a position offset Ay at location s.

45



I

Next, we need an expression, analogous to Eq. (-.-.o 3 61), for the longitudinal po-

sition Z, which is driven by the energy fluctuations due to the synchrotron radiation.

In the smooth approximation of Eq. (A.3.9), this can be written

s
z(s) = c a77hc e(a,-s)cxe/cui

EO 2rUa
(2.2.81)

k-00
{photons}

where, u; is a stochastic variable equal to the energy of a photon radiated at si, crE is

the longitudinal damping rate, o,,, and v$ are the momentum compaction factor and

the synchrotron tune, and C is the ring circumference. Note that we have neglected

the nonlinearity of the synchrotron motion. Strictly, this should be included in

Eq. (2.2.81) bu we will neglect it. In general, the nonlinearity of the synchrotront

motion will reduce the importance of the nonlinear resonances (vy is smaller).

At this point, we can calculate the vertical beam size and the emittance  dilution

by following the procedure described in Section 2.2.5.1. The only difference is that

now we need to include the nonlinearity in Z. This is easily handled with the identity

j dS’f(S’)( / dSiU(Si))n  = 72 j dSjU(Sj)(  j: dS~U(S:))n-l  j dS’f(S’) (2.2.S2)

-CCJ -CO -X -CC $i

which can be verified by integrat.ing  by parts. In addition, when calculating the

ensemble average of $/&,,  one finds higher moments of the photon distribution.

Since many photons are emitted, we can use the Central Limit Theorem to express

(( j: ds:u(s:)f(s~))2n-2)  = 97q-“‘i,, ( j; ds~(u~(s:))fys~))n-* , (2.2.83)

--oo --03

where f is the integrand and we have a.ssumed  a. gaussian distribution suitable for

low beam intensity.

Thus, assuming that one is far from resonance, we find the results

+)local nu,2”(2n - 2)!

P?/(s) = qn+l(n  - l)! I

c IS:“‘(s)I’
* sin’ 7r( 71.Va  f VY)

(2.2.S4)

S!“‘(s)S!+(s)- 2Re
sin 7r(ny, + vY) sin 7r(72va  - vy) 1
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and

c
na32n - 2)! 72Je ds

” = 4%+l(n - l)! Jv s [c
IS!“)(s)  I2

0
C * sin2 7r(nvs f vy)

+ 2Re
S!“‘(s)S!qs)

sin x(nu, + Vy) sin 7r(nvs - z+) 3 ’
(2.235)

where

a+C
S$qs) =

J (
&’ @y + ;)

fl .fn + J&Jn
Y >

s
(2.236)

x ei[?*tlu,(a-s’)/c~(~,(a)-uiv(a’))+rr(nv.~uy)]  ,

and the coefficients fn and grL are defined in Eq. (2.2.78). Note tha.t  we have ne-

glected the cross terms between resonance orders. Although this is not valid when

there are many contributions of equal ma,gnitude,  usually the nonlinear contribu-

tions are only significant when very close to the nonlinear resonances; we will discuss

this shortly. Finally, notice that in Eq. ( 2.2.S5) we have assumed that the photons

are radiated uniformly around t,he ring. This is acceptable because the emittance

contribution, Eq. (2.2.S5),  is small.

Unlike the situation for the tmnsverse  betatron coupling, the cross term in

Eq. (2.2S5) is important; it will tend to cancel the two main terms, reducing the

emittance contribution. This occurs because the synchrotron tune is small. The

cross term in Eq. (2.2.SS) depends upon the average of an oscillating term ei4*u~alC.

Since us is small, the oscillating term is nearly constant and the cross term is large.

In fact, in an isochronous ring, where the synchrotron tune equals zero and the

longitudinal distribution in z is frozen, Eq. ( 2.2.S5) predicts zero emittance dilution;

the cross term exa.ctly  cancels the main terms. This differs from the transverse case

where the cross term is small since it depends on the average of I?~*‘=~/‘,  which

oscillates rapidly.

At this point, we need to discuss the effect of the nonlinearities. First.. the

nonlinearities a.re (usually) ~cal;er t~han the 1inea.r contribution and thus arc 011  I!,

important when on resonance. To analyze these effects correctly, we should TJlow

the procedure of Refs. SO and 113, where the coupling is a.nalyzed  on resonance.
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Table 6. Longitudinal para.meters  for the SLC NDR and the ALS.

SLC NDR ALS
b

fRF 714 hlHz 500 h4Hz

VRF, Eo 1 MV, 1.2 GeV 1.5 MV, 1.5 GeV

1 u,, py 1 5mm,2 m 1 4 mm,5 m 1

Instead, we will simply note that these nonlinear resonances are usually very narrow

and, provided that the resonance is high order, we can neglect them. This occurs

because damping rings and synchrotron light sources tend to have bunches short

compared to the RF wavelength, and thus the nonlinear dependence of the forces

on 2 is small.

Finally, we will illustrate t,he importance of these effects by estimating their

magnitude in the SLC NDR. and ALS storage rings. Table 6 lists the relevant, equi-

librium longitudinal parameters for both rings. Using these values and Eq. (2.2.S4),

we find a contribution from the 1inea.r coupling due to 7: or a.n angular misalignment

Of:

g ,s 5 x 1o-y7jI, + 0)” , (2.2.S7)
Y

for both the SLC NDR and the ALS. This is a very loose tolerance, much looser

than the effect of random dispersion in the bending magnets. Furthermore, because

the synchrotron tunes are so small, the nonlinear resonances can be safely ignored;

the resonances would be extremely high order (X, 20th order).

2.2.6.2 TUNE MODULATION

The synchrotron motion also modulates t.he beta.tron  tunes. This is due to both

the chromatic dependance of the bctat,ron  tunes and the effect of the spa.ce charge

tune shift; the space charge tune shift depends upon the local bunch density which

is a function of the longitudinal position t, see Section 2.3.3. The chromaticity

modulates the betatron tunes at the synchrotron frequency while the space charge

modulates the tunes a.t twice this ra.te.

This slow mod&tion  will generate sidebands separated by v$ or 2u, a.round

the betatron tunes. These sidebands can then overlap nearby resona.nces,  increasing
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the beam size and emittance.  We can estimate the importance of this nonlinear

coupling from the magnitude of the sidebands. Initially, we will only consider the

effect of the chromaticitiy.  In the smooth approsimation, the equation for a betatron

oscillation can be written

d3y
d8” + h + &/so cc+,6 + 6#y = 0 ) (2.2.88)

where 60 is the amplitude of the energy synchrotron oscillation and 60 is the initial

phase.

Since vs is much less than vY, the solution for the vertical motion can be found

using the WKB approximation. This can be expressed in terms of the frequency

components

, (2.2.89)

where Jk are Bessel functions of integral order and yo is the initial amplitude. One

can estimate the magnitude of these sidebands using an asymptotic expansion of

the Bessel functions for large orders:

(2.2.90)

This shows that the Bessel functions decrease rapidly for orders b ;3 2 and thus it

confirms the intuitively obvious fact that sidebands, separated from the betatron

tune by more than the tune shift, are small.

Now, we ca.n calcula.te  the coupling due to the sidebands by replacing I+, in

Eqs. (2.2X5),  (2.2.84), and (2.2.S.5) with vY f Ev, and multiplying the result by the

square of the Bessel funct.ion coefficient in Eq. (2.2.89). Since the chromaticity is
usually corrected to the order of unity while the energy spread is the order of 10e3,

this effect tends to be negligible.

At this point, we can follow the same procedure to calculate the effect of the

space charge tune shift. In contrast to the effect of the chromaticity, this effect

may become significant in fut,ure  rings since the tune modulation increases as the

vertical bea,m  size decreases. Assuming a, ga,ussian  longitudinal distribution and

1inea.r  synchrotron oscilla.tions, t,he equation for a betatron okillation, in the smooth
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approximation, is:

i

d’y
3 + (+ + ake-20’ cos2(u,e+qfxl)/20~ 2qY=o , (2.2.91)

where Av,, is the space charge tune shift at the center of the bunch, .zo is the

amplitude of the synchrotron oscillation, and 40 is the initial phase.

Again, using the WKB approximation, the solution for the vertical motion can

be written

y(O) = Re

where Yy is the average tune which now depends upon the synchrotron amplitude:

Vy= q, + Avsce (2.2.93)

Obviously, this is much more complicated than the tune modulation due to the

chromaticity, although in genera.1,  the same conclusion applies: the sidebands are

small when greater than the amplitude of modulation. However, now there is one

important difference: the space charge moclula,tion causes a tune spread, as specified

by Eq. (2.2.93), in addition to the sidebands. This will further reduce the available

non-resonant tune spa.ce.

2.2.6.3 MODULATION OF THE DA~IPING PARTITIONS

During the synchrotron oscillakion, the particle energy changes, changing the

damping times and the quantum excitai.ion;‘3g’1211 this then causes the expected

single particle amplitude to oscillate. Usually, the strongest energy dependence is

due to the energy dependence of the damping pa.rtitions. For example, at injection

in the SLC NDR, a particle with an energy E = Eo + oc, where tag is the rms

energy spread of l%, will have a. horizonta.1  damping ra.te  that is 16% slower  than a

particle with the design energy; clJX/clE is negative. Of course, since the synchrotron

oscillation frequency is much la.rger  than the damping ra.tes, the average damping

rate is unchanged, but the fluctuating single particle amplitude could change the

equilibrium beam emittance.
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In Ref. 121, an expression is derived for the equilibrium single particle invariant

as a function of the synchrotron phase a.nd amplitude:

J = Joexp
d,? cos fit + do

-24E-
dE 752 >

, (2.2.94)

where Jo is unperturbed equilibrium invariant, 3 is the damping partition, R is the

synchrotron frequency, and T is the synchrotron radiation damping time.

Now, to determine the rms emittance increase in the beam, we need to integrate

this expression over the beam distribution of synchrotron phase and amplitude.

The expression within the brackets is usually small and thus we can expand the

exponential. After integrating over the distribution, we find

c= ra[l +  ($%)?+...I  . (2.2.95)

There is no linear contribution to the beam emittance and the second order contri-

bution tends to be small. In both the SLC NDR and the ALS, the relative emittance

increase due to this effect is the order of 10B8.

2.2.7 Correction

In this section, we will discuss reduction and correction of the vertical dispersion

and the betatron coupling. The simplest way to reduce these effects is to decrease

the sensitivity of the ring to the errors. The most obvious method of doing this is

to reduce the resonant denominators l/ sin2 rz+, or l/ sin2 ~Av,t which appear in all

the dispersion and coupling formulas.

In addition to decreasing the sensitivity to the errors, one can correct these

effects directly. Specifically, we will first calculate the amount one can correct the

vertical dispersion with a. pa.ir of correctors, typically skew quadrupoles, separated

by ninety degrees in phase. Then, using the analogy between the vertical dispersion

and the coupling functions tha.t  was noted in Section 2.2.5.1, we will apply our

results to the correction of the betatron coupling. Fina.lly,  we will compare these

analytic estimates with the result,s  of simula.tions.

Notice tha.t  we ha.ve not mentioned correcting the synchro-betatron coupling.

This is corrected by correcting the orbit or the dispersion at the cavities and thus falls

under the vertical dispersion discussion, but, since the synchro-betatron coupling is

small, as calculated in Eq. ( 2.2.S7), we will not discuss it directly.
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2.2.7.1 VERTICAL DISPERSION

As mentioned, one can correct t.he vertical dispersion directly with either skew

quadrupoles in regions of horizontal dispersion or orbit bumps in the quadrupoles!331

Unfortunately, this is complicated beca.use the skew quadrupoles and orbit bumps

in the sextupoles also contribut,e  to t,he beta.tron  coupling. Thus, one has to either

compensate the betatron coupling or use orbit bumps in regions without sextupoles;

this will effectively limit the number of correctors one can use.

Regardless, the correction of the dispersion itself is relatively simple; the dis-

persion generated by random errors, much like a closed orbit, will primarily have

harmonics near the vertical betatron tune. Thus, as when correcting a close orbit,

only a few dispersion correctors are needed to cancel these dominant components,

thereby significantly reducing the dispersion. We will consider two cases: (1) correct-

ing the vertical emitta.nce, i.e., the global effect of the dispersion, and (2) correcting

the local dispersion at one location.

Global Correction - Emittance  correction

The vertical emit,tsnce  due to the dispersion is proportional to the average of

1-1, in the bend magnets. For this estimate we will assume that this is equal to

the average of G around the ring. Using a few trigonometric identities, along with

Eqs. (2.2.40), (2.2.42), and (2.2.57), we can express ?fFI, as the squared absolute

value of an int,egral over a complex exponent,ial;  this is very similar to the coupling

coefficients \Q-J-\~/ sin2 ~LLZQ. Thus, the a.vcrage  of ‘$, in a ring with two correctors

can be written

where the bar is used to denote an average around the ring and a and b are the

strengths of the two correctors \vhich arc separa.ted by r/2 in phase and a.re arbi-

trarily assumed to be located at. L’p = 0 and ‘((1  = --r/2.
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To minimize ?&, and thereby the emittance, we solve for the a and b which zero

the first derivatives of Eq. (2.2.96).  The solutions are

and these yield a residual dispersion of

(2.2.97)

q = 4si,,‘2  *l,y [ 1 j(-&+‘~~z)F(i)dz~  - u2 - b2] . (2.2.98)

J

Now, we can solve for tile expected value due to a. distribution of random er-

rors. Assuming that the errors I;I are uniformly distributed in the ring, we find an

expected value of

(2.2.99)

where L; is the length of the element at position i. This result should be compared

with the uncorrected expect,ed  values, Eqs. (2.2.45) and (2.2.57). We see that using

two correctors reduces the residual dispersion K by a factor of 2/3 sin2 ruY.

Strictly, this result is only valid for the vertical dispersion due to uncorrelated

errors, but because orbit correction effectively randomizes the orbit, we can also

apply the result to the dispersion due to a corrected orbit. Thus global dispersion

correction, will reduce the espected values of the beam size and the emittance as

where the subscript 0 is used to denote the va.iues before correction.

Notice that the correction cancels the resonant denominator. We will also find

this cancellation when we estimate the effect of local correction. The resonant

denominator occurs because the vertical dispersion is a periodic function that must

close upon itself. When the dispersion is corrected, the bounda.ry conditions are

satisfied by the correctors; thus, the resonant denominator no longer a.ppears.  This

is analogous to correcting the closed orbit or the coupling functions Q+ and Q-,

which are also periodic funct,ions.
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Local Correction

Here, we use the two correctors to zero Q,(S) and $,(s) at one location in the

ring; this is equivalent to zeroing ~-I,(S). From Eqs. (2.2.40), (2.2.41), and (2.2.42),

we find the required corrector strengths

(2.2.101)

where s is the point that Q and $, a.re to be corrected to zero. Notice that these

solutions are similar to the corrector solutions for global correction; they differ in

that the solution for global correction is averaged while this is not.

Now, we need to know how this correction affects the global contribution, i.e.,

K. Here, we use Eq. ( 2.2.96) with t,he corrector strengths just calculated. Assuming

random errors, we find

)JpL)fPy  i 9 (2.2.102)
i

which differs from the uncorrected rkult by a fa.ctor of 2f,,, sin” 7rvY.  Here, fcor is

a function that depends upon the location of the correctors relative to the location

that Q, and $, are corrected. In particular,

(2.2.103)

and A$ is the phase difference from the correctors to the correction. This function

varies between one a.nd l/2, halying a. minimum when the correctors are separated

from the correction point by ha.lf the ring and having a maximum when the correctors

are immediately adjacent to the correction.

Applying this result, we see that at most positions around the ring,

(Ey) = 2fcor sin” 7rVy(Ey)0 , (2.2.103)

while at position s: (a~(s))l,,~//3Y - 0. Finally, notice tha.t  a.fter  local correction

the emittance  is between one and a half to three times larger than a.fter  global
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:

correction, Eq. (2.2.99); in the worst case, local correction actually increases the

global contribution if the fractional tune is greater than 0.25.

Measurement

Of course, to correct the vertical dispersion, one needs to measure it. If the

BPMs are sufficiently a.ccurat,e,  one can measure the vertical dispersion directly by

changing the beam energy. Alt,ernately, if the BPMs are not sufficiently accurate,

one can observe the effects of the vertical dispersion in the beam size. In this case,

the vertical emittance is simply minimized with the correction elements. There are

two problems with this approach: first, it is hard to decouple the local effect of

the dispersion from the increase in the emittance, and second, the finite resolution

of the beam size measurement will limit the convergence of the minimization; this

will effectively limit the number of correctors that can be used in the minimization

procedure.

2 . 2 . 7 . 2  BETATRON COUPLIIXG

In this section, we will estimate the amount one can reduce the betatron coupling

by directly correcting it with sl<e\v quadrupoles or orbit bumps in the sextupoles. In

Section 2.2.7, we calculated the reduction in T after both global and local correction

using just two correctors. The situation for the betatron coupling is similar, except

we need four independent correctors to correct both Q+ and Q-.

To perform the calculation correctly, we would need to solve four coupled equa-

tions for the skew quadrupole st*rengths. Instead, we will make use of the analogy,

noted in Section 2.2.5.1, between Qk and the vertical dispersion. This will al-

low us to use the results of the previous section. Of course, in treating the sum

and difference resonance separately, we will neglect the effect of the cross term in

Eq. (2.2.65). This is valid since, as was noted in Section 2.2.5, the cross term will

tend to be small beca.use of the rapidly oscillating phase. Furthermore, by treating

Q+ and Q- separately we assume that the correctors for Q+ do not affect Q- and

vise-versa, Obviously, this is not true of the individua,l  skew quadrupoles, but linear

combinations of the four skew  quatlrupoles can have this property.

Global Correct,ion  - Emit t,ance  Correction

To estimate the global correct,ion  one can perform with four skew quadrupoles,

we use the global  coupling result. of Section 2.2.7. Thus, global correction will
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cancel the resonant denominators, reducing the expected values of the emittance

and the beam size by 2/3 sin2 7rAvk:. Specifically, if four skew quadrupoles are used

to correct the global coupling contribution, we use Eqs. (2.2.68) and (2.2.69) to find

an expected residual due to uncorrelated errors of

(2.2.105)

and we use Eq. (2.2.73) to find the residual due to a corrected closed orbit of

where As is the distance between correctors and the values of 2c, are given by

Eq. (2.2.74).

Local Correction

To estimate the effect of local correction at position s, we could use the results

derived in Section 2.2.7 as we did for the global correction. Alternately, we can

observe the effect of local correction by examining Eq. (C.2.4). V:hen the local

coupling is corrected at location s, the first integra.1 over qk is zero; this integral

is equal to Q*(s). Tl ,ie remaining term in Eq. (C.2.4) will cause an emittance

contribution of

(2.2.107)

where s is the point of correction. Here, we have neglected the cross coupling terms.

In addition, we have ignored the contribution from the correctors themselves. This

is equivalent to assuming that the correctors a.re loca.ted just after point s and thus

they do not contribute to the int.egral. To include the correctors, we only need

include the factor fcor that was found in Eq. (2.2.102).

56



Chapter 2.2.7.2

Now, we use Eq. (2.2.107) to find the emittance  after correction of the local

coupling with four skew quadrupoles. For random errors, we find

sezt

where fcor is given by Eq. (-.-.3 ‘7 103). Notice that this result is equal to the estimate

of local correction found in Eq. ( 2.2.102),  namely, the correction changes the global

coupling by 2fcor sin’ JAVA. Also notice that this is a factor of three larger than

the result after global correction.

Finally, we estimate the effect of a corrected orbit after the local coupling has

been corrected. Using Eqs. (2.2.107) and (2.2.73), we find

(2.2.109)

where AS is the dist,ance  bet\veen  correctors and the values of II, are given above by

Eq. (2.2.74).

Mexxrement

Finally, to perform these corrections, one needs to measure the coupling. Unfor-

tunately, when operating a ring far from the coupling resonances, one cannot rely

upon the standard t,ecl:nique  of putting the ring on the difference resonance and

then adjusting skew quadrupoles to make the two mea.sured tunes equal. First, this

technique does not correct, the coupling due to the sum resonance. Second, the ring

is perturbed when making t lie mc~asurements  and thus even the difference resonance

will not be fully correct.cd  W~ICII  t$he  ring is brought back to its nominal tunes.

Instead, the coupling can be measured by analyzing the coherent motion of a

kicked beam!7”51 This measurement is convenient since one can measure the local

value of the coupling a.11 around the ring. Fina.lly,  as in the measurement of the

dispersion, additional information can be obtained from measurements of the beam

size at synchrotron light monitors or, in a. damping ring, from the extracted beam.
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Table 7. cY from globally corrected vertical dispersion in the NDRl.

Table 8. ey from locally corrected coupling due to misalignments in the NDRl.

Misalignment Calc. Q,, [ m-rad] Simulated ey [ m-rad]

Random quad. 0 = 0.5 mrad 1.52 x 10-l” 1.69 f 0.03 x 10-l”

Random sext. grn = 150/m

Corrected closed orbit due to random

3.36 f 0.06 x 10-l”

2.2.7.3  SIMULATIONS

Simulations of the correction W.XC  performed in the NDR to verify these ana-

lytic estimates. First, the effect of correcting the global dispersion was simulated in

the NDRl ring. The correction was performed with two orbit bumps separated by

roughly ninety degrees. The bumps were located in regions without sextupoles so

there was no contribution to the lxtatron coupling. The results are listed in Table 7.

Again, 1000 simulations were used to ca.lculate  the effect of the random misalign-

ments and twenty simulations of a. corrected closed orbit. Here, the estimates are

found from Eq. (2.2.100) a.long with Eq. ( 2.2.59) and the equations for random er-

rors Eq. (22.45) or the equations for a corrected closed orbit, Eqs. (2.2.46), (2.2.50),

and (2.2.55). N to ice, by comparing with Table 4, that the vertical emittance  was

decreased by roughly a factor of three. This is in excellent a,greement  with our

estimate.

Next, the effect of correcting the local coupling was simulated. Four skew quad-

rupoles were used to completely uncouple t,lie beam a.t the extraction point of the

damping ring; two skew qua.ds wcrc located immediately a.djacent  to the extraction

point while the other two were loca.tcd on the opposite side of the ring. The results

are listed in Table 8. Again, 1000 simulations were used to calculate the effect of the
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Table 9. cy from globally corrected coupling due to misalignments in the NDRl.

I Misalignment 1 Calc. Q, [ m-rad]l Simulated cY [ m-rad]l

Random quad. 0 = 0.5 mrad 0.68 x 10-l” 0.71 f 0.0s x lo-r2

Random sext. grn = 150/m 1.33 x lo-l2 1.55 f 0.09 x 10-12

I Corrected closed orbit due to random
quad. yrn = 150 pm and BPM ym = 150jlm I 0.44 x 10-l” 0.7 f 0.1 x lo-‘2 I

random misalignments and twenty simulations of a corrected closed orbit. In this

case, the calculated values are found using Eqs. (2.2.10s) and (2.2.109)  with a value

fCO1 = 0.75 since two correct,ors  are adjacent to the point of correction (fcor = 1.0)

and two are halfway a.round to ring from the point of correction (fcor = 0.5). Notice

that the vertical emittance due to the errors is roughly a fa.ctor of four smaller than

before the correction. Again, the simulat~ed  results agree well with the calculated

values .

Finally, the effect of correcting the global coupling was simulated. This time the

four skew quadrupoles wwc usctl  to minimize the vertical emittance at the extraction

point of the damping ring. The results are listed in Table 9. Here, only 100 sim-

ulations were used to calculate the effect of the random misalignments and twenty

simulations of a corrected closed orbit; the global correction simulations are compu-

tation intensive. In this ca.se, the calculated values are found using Eqs. (2.2.105)

and (2.2.106). Notice, by comparing lvith Table 5, that now the vertical emittance

due to the errors is roughly a. factor of nine smaller than before the correction and,

again, the calculated estimates agree well with results of the simulations.

In Sections 2.2.4, 2.2.5, 2.2.6, and 2.2.7, we have calculated the expected  values

of the vertical emittance and the beam size. Naively, one could simply invert these

equa.tions  to solve for alignment tolera.nces. But, when specifying tolerances, one

should include a “confidence level” (CL); this is the probability tha.t,  given the spec-

ified tolerances, any specific machine will be less than the design limit. Typically,

one wants to specify a la.rge  CL so tl1a.t  there is a small probability of exceeding

the design limit. In this section. we will calculate the location of the 95% CL as a

function of the expected values calculated previously.
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Second, third, a.nd fourth normalized moments of the distribution
for cy from dispersion due to random errors versus the fra.ctional  tune; the
second moment is the largest and t,he fourth moment is the smallest. The
data points are found from simula.tions.

Calculating the CL requires a de&led 1;now:ledge of the distribution of the values

of the emittance and the beam size iu an ensemble of machines. It has been shown

that the mean square amplitude of the normalized orbit due to random errors with

gaussian distributions should have an exponential distribution function!711  Since the

equations for the closed orbit are similar to those of the dispersion function and the

betatron coupling, the same result applies t,o the amplitudes of N,(s) and IQj-(s)j2.

Here, we will consider the effect of averaging XHy(s) and I&-J-(s)/~ over s; the

vertical emittance is equal  to the average of these functions in the bending magnets.

We will first discuss the distribution of the values of the emittance arising from

vertical dispersion and betat’ron  coupling due to ra,ndom  errors. Then, we will

discuss the distribution of the values of the local cont,ribution to the vertical beam

size. Finally, note that, although the discussion is limited to the effect of random

misalignment errors, the effect of a correct,ed  closed orbit is similar.

2.2.8.1 EMITTANCE DUE TO L’ERTICAL DISPERSION

The distribution function for the va.lnes  of the vertical emittance due to random
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errors is a very complica.ted  function. Thus, we will derive an approximate form that

can be integrated to solve for the location of the 95% CL. We do this by solving for

the moments of the distribution of emittances.  The vertical emittance is given by

Eq. (2.2.58). Assuming identical bending magnets, we can express this in the same

form as Eq. (2.2.96):

( 2 . 2 . 1 1 0 )

where F is defined in Eq. (2.2.40).

‘Now, we solve for the moments assuming random errors with gaussian distribu-

tions. This yields

k!J = P

(6;) = 2/P (1 - f Sill2 Xl/g
>

(6;) = 6~’ 1 - f
2

sin’ 7rvY + - sin4 xvY
>

(2.2.111)
45

(t”,)  x 24~~~ 1 - sin’ ruy + % sin4 7ruy 2
- - sin6 7rvY

15 >
7

where p is the expected value of the emittance calcula.ted  in Section 2.2.4. The first

three moments were calculated frown  &. (2.2.110), while the fourth moment was fit
to data from simulations. These are shown in Figure S where the second, third, and

fourth moments, normalized by n!/lR, are plotted.

Notice that the moments only depend upon the first moment p and the fractional

vertical tune. When the vertical tune is close to an integer, the moments have the

form pn = Il./L .1 n These are t.he moments of a.n exponential distribution as noted in

Ref. 71. As the fractional tune increa.ses,  the moments decrease, implying that the

probability of large emittance values is decreased.

We could attempt to construct a distribution directly from these moments, but,

instead, we simply notice that, t’hese moments are close to those of a modified x-

squared distribution where the number of degrees of freedom is a function of sin’ rt+,.

In particular, the distribution density can be approsima.ted by

(2.2.112)

where p is the expect,ed  value of t,he emittance and n is the number of degrees of
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freedom which depends upon sin” ~1)~:

n 1- -
2 - 1 - ij sin2 nvY

(2.2.113)

With these definitions, this distribution has the same first and second moments

as the value of the vertical emittance, Eq. (2.2.111).  Furthermore, when the tune is

integral, Eq. (2.2.112) is correctly equal to the density of an exponential distribution,

and, when the fractional tune increases to 0.5, the third and fourth moments of

Eq. (2.2.112) are within 2% and S% of the moments of the value of the vertical

emittance.

These distributions are illustrated in Figure 9 where the distribution density

of the vertical emittance, arising from random errors, has been plotted for three

different tunes. All of the histograms are generated from 1000 simulations of 150 pm

vertical sextupole misalignments in the NDR. In Figure 9(a), the tune is vY = 3.07,

while in Figures 9(b) and 9(c) the tunes are vy = 3.275 and z+, = 3.43. In addition,

the approximate distribution density of Eq. ( 2.2.112) is plotted for each of these three

cases. One can see that there is fairly good agreement between the simulations and

the approximation.

Now, we need to calculate the distribut,ion  after correction of the vertical dis-

persion. After global correction, t.he expected value of the emittance is given by

Eq. (2.2.100). In addition, the second moment of the distribution can be found

from Eq. (2.2.96). It is

(2) = ‘31-1’) (g) . (2.2.114)

Notice that this second moment is independent of the tune. Thus, we would expect

the 95% CL to only be weakly dependent upon the fractional tune. To approximate

this distribution, we simply choose 77. to equate the second moment of Eq. (2.2.112)

with this second moment; this occws when 72, = 5.0.

The distribution density of the value of the irertical emittance after global cor-

rection is illustrated in Figure 9(d). The data was found from 1000 simulations of

random sextupole misalignments in the NDRl  and the approximate distribution is

found from Eq. (2.2.112) hw ere 12 = 5.0. Here, our approximation does not accu-

rately reproduce the distribution density for emittance values less tha.n 2(~), but

it does describe the ta.il  of the dist.ribution well; this is ultimately what we need to

know to calculate the location of the 9.5% CL.
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Fig. 9. Events verslls  cy due to the vertical  dispersion in the NDRl lat-
tice. Histogra.ms  are calculakd  from 1000 simulations of random vertical
sextupole misalignments \vit.ll ring tunes of: (a) vy = 3.07, (b) vy = 3.275,

(4 VY = 3.43, and (d) I/~ = 3.275 after global correction. The curves a.re
calculated from Eq. (2.2112).
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Fig. 10. 95% confidence level for cy due to dispersion versus the fractional
tune.

At this point, we can calcula,te  the location of the 95% CL for the distributions.

This found by integrating the distribution density

ICL((Y)

J

y(cy  )dcy =  0 . 9 5 , (22.115)

0

where fc~ is the location of the 9.5’%  CL in units of the expected vertical emittance.

The results are plotted in Figure 10 a.s a function of the fractional vertical tune

Avy. The solid curve is calcula.ted  from Eq. ( 2.2.112),  while the simulation results

are plotted as crosses. One can see that there is very close agreement between the

simulation and the approximation results.

In addition, the value of fc~ after global correction of the dispersion has also

been plotted in Figure 10. The simulakd  data is plotted as diamonds while the

dashed line is our approximation. X1 t bough the approximation for the correction

does not a.gree well with the simulated results, a,s expected, fc~ is only weakly

dependent upon the fractional tune and it is usually much less tha.n the fc~ of the

uncorrected cases.

Finally, it is important to note the following: first, the curves for fc~ are univer-

sal. The only dependence comes from the fractional vertical tune. The value of fc~

6-l;
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is independent of the type of errors. the lattice type, and the integral portion of the

tune. The data in Figure 10 1la.s been compared with simulations run on the ALS:

a Triple Bend Achromat latt,ice with an integral tune of 8, and a future damping

ring design: “” a FODO latt,ice  with an integral tune of 11. In both cases, excellent

agreement was found with the curve in Figure 10.

Second, our calculations have assumed that the errors are random with gaussian

distributions. A more realistic error distribution is a gaussian distribution where

the tails are cutoff at f2a; it is doubtful that large alignment errors, values that are

ma.ny CJ, would go undetected. This will reduce fc~ even further, making Figure 10

a conservative estimate of fc~.

And lastly, notice that there are two advantages of increasing the fractional

tune towards a half-integer: the espected value of the emittance decreases, and the

probability of large deviat,ions  above this expected value also decreases.

2.2.S.2 EMITTANCE DUE TO B~ETATRON COUPLING

Now, we can use the results of’ the previous section to calculate the distribution

of the va.lue of the vertical elnit.tance  a.rising  from hetatron coupling. Ignoring the

cross term in Eq. ( 2.2.65), t.he emitta.nce is the sum of the two quantities IQ*12.

As noted earlier, these two values hsve the same form as 31, and thus they should

ea.ch have approximate distributions given by Eq. (2.2.112). Furthermore, if ]&+I2

and IQ-l2 are mutually independent, then the distribution of their sum is just the

convolution of the two individual distributions.

Since we have assumed that the errors have gaussian distributions, Q+ and Q-

will be independent if’13”

(22.116)

where k = IC,y - El, Both of these conditions will be (approximately) sat,isfied  if

there are many errors in a betatron period, N >> v%,~,  and if the tunes are large,

uz,y >> 1; this is typical of high t,une (low emittance) rings.



Convolving the two individual distributions for m and 1&-1”, we find a.n

approximate distribution for the value of the vertical emittance:

(2.2.117)

where n+ and n- are

w 1
“1=1-z. 23 s11-1  nAuf ’

(2.2.118)

and p* are the expected values of the contributions from the sum and difference

resonances; these were found in Section 2.2.5. Although the integral in Eq. (2.2.117)

can be expressed in terms of the degenerate hypergeometric  function, sometimes

called Kummer’s  function, there is no simple evaluation and is thus left as is.

The distribution of the emittances is illustrated in Figure 11 where the distribu-

tion density is plotted for two sets of tunes. In Figure 11(a) the tunes are vz = 8.375

and vy = 3.275 so that Av+ = 0.35 and Au- = 0.10, while in Figure 11(b)  the tunes

are vz = 8.425 and z+, = 2.925 so that Av+ = 0.35 and Av- = 0.50. As before

the histograms are found from 1000 simula.tions  of random sextupole errors and

the curves are calculated from Eq. ( 2.2.117). Again, there is very good agreement

between the simulations and the approsimation.

Now, we can calculate the location of the 9.5% CL which, in the case of the

betatron coupling, is a function of both Av+ and Av-. This is illustrated in Fig-

ure 12 where fc~ is plotted as a function of AY-, for AU+ = 0.35. The crosses

are the results of simulations and the solid line is calculated from Eq. (2.2.117). In

addition, the fc~, found from 100 simulat.ions  of global correction, is plotted for

three different tunes; this data is plotkcl as dia.monds while the estimated value,

found using the approximation of Ey. ( 2.2.114),  is plotted a.s a dashed line.

One can see that there is very good agreement between the simulated results

and the approximation when Av- is sma.ll?  but there is a significant discrepancy as

Av- increases. In particula.r, as Av- increa.ses towa,rd the half-integer, the va.lue  of

fc~ appears to depend upon the horizontal and vertical tunes in a.ddition to Av+

and Av-. For example, when the tunes are rjX = 8.575 a.nd vy = 3.075 (Av+ = 0.35

GG
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Fig. 11. Events versus cy due t,o the linear coupling in the NDRl lattice.
Histograms are calculated from 1000 simulations of random vertical sex-
tupole  misalignments for tunes of: (a) Av+ = 0.35 a.nd Av- = 0.10, and (b)
Av+ = 0.35 and Av- = 0.50. The curves a,re calculated with Eq. (2.2.117).
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Fig. 12. 9570 confidence level  for Q, due to betatron coupling versus the
distance from the difference coupling resona.nce  for AU+ = .35.

67



I

and Av- = 0.50),  fc~ equals 2.05. In contrast, when the tunes are I/, = S.425

and z+, = 2,925 (Av+ = 0.35 and Au- = 0.50), fc~ equals 1.86 Thus, there is a

substantial difference in fc~ even though AU& are the same in the two cases. This

difference could be explained by the cross term in Eqs. (2.2.65) and (2.270) which

depends upon sin 27ruz along with sin ~Avk.

Finally, again notice the following: (1) the curves in Figure 12 are universal

in that all rings will have similar values of fc~, (2) the values of fc~ in Figure 12

are conservative since the actual disiributions of errors will probably not have large

value tails, and (3) there are two a.dvantages of keeping Av- and Av+ large: the

expected value of the emittance  decreases and the probability of large deviations

above this expected value also decreases.

2.2.8.3 LOCAL BEAhf SIZE

Now, we can calculate the distribution of the value of the beam size arising

from the local coupling effects. These are simpler than the distributions of the

emittances  since the contribution depends upon the local value, not the average

value, of the coupling. In the case of the dispersion, the beam size a;/&, depends

upon $(s)/&.  As stated, this will have an esponential dist,ribution similar to the

closed orbit !‘I1 Thus, the value of the projected emitta,nce increase due to dispersion

will have an exponential distribution with a 95% CL located at 3.00(~$)/&,; this is

equal to the distribution of Eq. ( 2.2112) where 71, = 2 instead of the value specified

in Eq. (2.2.113).

Similarly, the beam size due to local effect of the betatron coupling depends

u p o n  b o t h  /Q?(s)1  a n d  IQ$(s)l 11 ’ 1  17 111 UC 1 a so lave exponential distributions. Thus,

the resulting distribution can be found from Eq. (2.2.117) where n.h = 2 instead of

the values specified in Eq. ( 2.2.118). In this case, we can evaluate the integral in

Eq. (2.2.117), finding

(2.2.119)

where ph are the expected contributions for the sum and difference resonances,

found in Section 22.5. Now, the loca.tion of the 95% CL ca.n be calculated directly

from this “bi-exponential” distribution. It ranges from fc~ = 3.00, when p+ >> ,u-

or + >> p+, to fc~ = 2.37, when IL+ = /1-.
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2.2.8.4 TOLERANCES

Finally, one can use the results of this section to calculate tolerances. We have

found that the 95% CL occurs at a value between roughly two and three times the

expected emittance. To calculate alignment tolerances with a 95% CL, we simply

solve for tolerances that yield expected values tha.t  are a factor fc~ smaller than the

design values.

For example, if we wish to limit the vertical emittance due to sextupole mis-

alignments, we can use Eqs. ( 2.2.45) and (2.2.69) along with the appropriate values

of j’c~ to solve for the 95% CL emittance:

(2.2.120)

where .fc~~, can be found from Figure 10 and fc~p can be found from Figure 12.

It is trivial to invert this to solve for the desired alignment tolerance.

Actually, the fa.ctors fc~ were calculated for the dispersive contribution and

coupling contribution individua.lly.  Strictly, to calculate the JCL for the sum of the

two contributions requires convolving both distributions. Fortunately, one usually

finds that either the dispersive or the coupling contribution dominates and thus the

separate values fcr, can be used a.ccurately.  However, if both contributions are of

equal magnitude, this method will result in tolerances that are slightly too severe.

2.2.9 Summary

In this chapter, Section 2.2, we have discussed the dominant low current contri-

butions to the vertical emitt~ance  and bea.m size in e+/e- stora.ge  rings, na.mely,  the

vertical dispersion and the betatron coupling. In a.ddition,  we have calculated the

synchro-betatron coupling and presented a c.orrected  derivation for the emittance

contribution from the opening angle of the synchrotron  radiation. These are negli-

gible contributions in the current designs, although, the later effect does specify a

lower bound on the vert.ical emit,tance and may be an important limit.ation in the

future.
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The vertical dispersion and the betatron coupling are generated by both magnet

alignment errors and a non-zero beam trajectory. We have calculated the expected

contributions to the vertical emittance and the vertical beam size due to random

misalignments of the magnets and a corrected closed orbit. In addition, we have care-

fully separated the contributions to the vertical emittance and the beam size since

local coupling effects can increase the beam size without increasing the emittance.

This is important since the emittance is the relevant quantity in some instances

while the beam size is in others.

We have also estimated the effectiveness of simple correction techniques in re-

ducing both the vertical emittance a.nd the beam size. In particular, we used one

pair of correctors to reduce the vertical dispersion and four skew quadrupoles to

reduce the betatron coupling. In general, the correctors reduce the emittance by

cancelling the resonant denominators found in the espressions for t,he emittance due

to dispersion or betatron coupling. Of course, two dispersion correctors or four skew

quadrupoles cannot be used to zero the respective emittance contributions anymore

than two dipole correctors can be used to zero the closed orbit at all locations around

a ring.

Finally, we have calculated alignment t,olerances  to limit the vertical emittance

and beam size from the vertical dispersion and the betatron coupling. In particular,

we have caiculated a.pproximate  distribution functions for the values of the emittance

and beam size in an ensemble of machines. From these distributions, we found

tolerances that limit the vertical emitt,ance and beam size with a 95% confidence

level. In general, these are a factor of & to fi more severe than tolerances simply

calculated from the expected values of the emittance and beam size. It is thought

that this analysis could greatly simplify the calculation of alignment tolerances to

limit the vertical emittance and bea.m  size, thereby reducing the need for extensive

simulation.

2.2.10 Application to NLC Damping R.ing

At this point, we can apply the results of this se&ion to the NLC damping ring

design. Of course, the NLC ring design is not finalized and thus these will be prelimi-

nary tolerances. The ring consists of t,wo  families of sextupoles and twelve families of

qua.drupoles  (including the combined function bending magnets). The effect of ran-

dom sextupole misalignments and quadrupole rota.tions  is listed in Table 10 where

we have calculated the normalized emitlt.ancc in m-rad as a function of the error
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Table 10. a’ertical emitlance budget for NLC damping ring.

QF (wigglers)

Table 11. Tolerallces for the NLC damping ring.

strength assuming global correction of both the dispersion and the coupling; ym 1s

the rms vertical alignment in meters and 0, is the rms rota.tional alignment in radi-

ans. The contribut,ions are divided into dispersive and coupling effects due to both

the bending magnets and the wigglers. Finally, the table also lists the maximum

emittance,  with a 95% confidence lr~~3,  due to both the dispersion and the betatron

coupling; we used .fc~,~,  = 4.2 alid JCL/J = 1.8.

Notice that, after correction, the dispersive contributions are larger than the

betatron coupling contributions. Furthermore, the effect of vertical dispersion in

the wigglers is severe; the coupling in the wigglers is small because the horizontal

dispersion is small. We will estimate tolerances assuming that the dispersion is

locally corrected in the wigglers to 1 mm rms. In addition, we assume that the rms

BPM and quadrupole misa.lignments  arc comparable to the sextupole alignment and

thus the effects of the closed  orbit are small.

The resulting tolerances are listed in Ta.ble 11. ObviousIy, the sextupole align-
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ment tolerances are the most severe at 75 em. The sum of the emittance contribu-

tions is TQ, 5 2.5 x lo-' m-rad with a confidence level of 95%. The expected value

of the vertical emittance is roughly a fa.ctor of two smaller.
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CHAPTER 2.3

COLLECTIVE LIMITATIONS

In this chapter, we will discuss current dependent phenomena that could limit

the vertical emittance. The primary issues are: intrabeam scattering, ion trapping,

direct effects of the beam’s space charge field, and the interaction of the space

charge field with the environment, namely, the vacuum pipe. This last category will

be separated into both static effects and instabilities. Finally, we will also discuss

the effect of beam-gas scattering and lifetime limitations.

2.3.1 Intrabeam Scattering

Intrabeam scattering is the result of multiple small angle Coulomb collisions

between particles in the beam leading to diffusion. In addition, there are relatively

infrequent large angle Coulomb collisions where a particle can gain momenta that

exceed the machine aperture. This causes particle loss and is referred to as the

Touschek effect; it will be discussed in Section 2.3.7.

In e+/e- storage rings, intrabeam scattering increases the equilibrium emit-

tances  until the additional diffusion is countered by the radiation damping. Detailed

theories of intrabeam scattering have been developed in Refs. 17, 72, and 79. These

theories are complex and, in general, require numerical evaluation. Here, we will

describe the basic physics in e-‘-t/e-  rings using some analytic results from Ref. 79.

Then, we discuss the limitations that intrabeam scattering imposes on the vertical

emittance and it’s effect on the vertical damping rate. Finally, we discuss the scaling

of the intrabeam phenomena with the storage ring energy.

2.3.1.1 THEORY

I&abeam  scattering will redistribute the beam momenta in an approach to

“thermal” equilibrium. In a. reference frame co-moving with the particle beam,

the beam usually has an anisotropic momentum distribution. Assuming an ultra-

relativistic beam, the beam frame momentum spreads are given by

(P3 = (y2(T>’  ,

(2.3.1)

where yz,Y are the beam ellipse parameters and the primes are used to denote quan-

tities in the beam frame. The longitudinal momentum tends to be much smaller
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than the horizontal or vertical because of the l/y factor; for example, in the NLC

damping ring, the ratio of the momenta is: (p’,‘)  : (pb’) : (pk’) = 7000 : 35 : 1.

Actually, in e+/e- storage rings, the opening angle of the synchrotron radi-

ation, see Section 2.2.3, imposes a lower bound on the transverse momenta such

that ~~~~~~~~  X 472. Thus, the transverse momenta are always greater than or

comparable to the longitudinal (p:,y2) X (I):‘). S ince the longitudinal direction is

“cooler” than the transverse, one would expect the longitudinal momentum spread

to increase at the expense of the transverse momenta. Unfortunately, this simple

picture is complicated by the dispersion, which couples a change in the longitudinal

momentum to the transverse planes. Thus, a scattering event that transfers trans-

verse momentum to the longitudinal plane has bot,h a cooling and a heating effect

on the transverse phase spa.ce.  The cooling is due to the direct exchange of momenta

and the heating is due to the dispersion; it is important t.o realize that this heating

is completely analogous to the heating clue to synchrotron radiation.

We can see this behavior in an estimate of the diffusion rates. Assuming that

the two transverse momenta are comparable and they are both much greater than

the longitudinal, the diffusion rates are approximat,ely’6’1

(2.3.2)

where the diffusion rates are those of the rms values: l/~~,~,~ s l/~,,~,~ da,,g,,/dt,

7-i z,Y is a function of the dispersion, Eq. (A.5.(3),  a.nd the values 72 and p are averaged

around the ring.

In an e+/e- stora.ge  ring, we can furt,her simplify the expression for the trans-

verse rates by realizing that t’he emittances a.re functions of the dispersion. In

particular, the emittances can be tspressctl  as

(23.3)

where Jz,Y,E are the damping part,itions  a.nd &,,d is avera.ged  over the bcilding
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magnets. Now, the transverse diffusion rates can be written:

Typically, the da.mping partitions are in the range of one to two. Furthermore,

in the vertical plane, the ratio g/G will be close to one since the vertical

dispersion is due to errors. In contrast, the ratio is usually greater than one in the

horizontal plane since the dispersion function is minimized in the bends.

Thus, Eq. (2.3.4) hs ows that the diffusion rates are comparable in all three

planes. We can understand this simply by realizing that when (~:,~~j >> (pL2)

the intrabeam scattering heating is a.nalogous  to the heating due to synchrotron

radiation, except the scattering occurs everywhere around the ring and not just in

the bending magnets. Since the low current equilibrium emittances are determined

by the synchroiron  radiation, the relnfive increase of the three emittances due to

the intrabeam scattering musty be comparable, AcZ/ez:s~ N AQ/E~SR  m A~,/~,sR;

this must be true whether t,he vertical emittance.is due to vertical dispersion or due

to betatron coupling.

Finally, we should note that the current theories of intrabeam scattering may

over-estimate the real emitta.nce growth. These t,heories estimate the rms emittance,

but, with scattering, the 1~ea.m distribution becomes non-gaussian and thus the rms

emittance does not chara.cterize  the beam emittance well. This occurs because the

infrequent hard scatterings can heavily bias the rms emittance and yet they only

cause a halo of large amplit,ucle pa.rticles;  the hard scatterings do not affect the

core emittance. A similar effect occurs with beam-gas scattering and is described in

greater detail there (Sect,ion  2.3.6).

2.3.1.2 SMALL VERTICAL EhiITTANcEs

Now, we will discuss modifications to this theory as the vertical emittance de-

creases. As the vertical emittance gets smaller, the vertical diffusion rate must

increase relative to the horizont’a.1.  If the vertical emitta.nce  is comparable to the

opening angle limit while the 1lorizonta.l  emittance is much larger, then there are

two changes to the scattering ra.tes of Eq. (2.3.2): first, sinc.e the vertical and lon-

gitudinal momenta are t.Ileu comparable, the vertical plane is not cooled by the

longitudinal. Second, sinc.e the \.crt,icaI  momentum distributibn is much cooler than
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Emittance ratio: cX SR / ey SR

Fig. 13. Emitta,nce  increase due to IBS vs. cr/cy. The solid, dashed, and
dotted lines are the horizontal, vertical, and longitudinal emittances  in units
of the equilibrium emittance wit.llout.  IBS.

the horizontal, there is additional heating of the vertical from the horizontal plane.

These simple arguments suggest that the diffusion rates can be written:

1 a;31, 1-~--
7x IBS 6X Tc IBS

(2.3.5)

,
where we have used the fact that the diffusion from the horizontal to the vertical is

equal to the diffusion from the horizontal to the longitudinal when eyyx,y  N oz/r2.

These equations show that as cV decreases, the vertical rate should increase rela-

tive to the horizontal. At the limit imposed by the opening angle of the synchrotron

radiation, the vertical sca.ttering rat.e,  and t.herefore,  the increase of the vertical

emittance, is roughly twice that, of the horizontal.
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This is illustrated in Fig. 13 where we have used the theory of Ref. 17 to cal-
culate the equilibrium emit,tances as a function of the aspect ratio ez&rys~.  The

equilibrium emittance values are plotted in units of the equilibrium emittance due

to synchrotron radiation e SR. The ennttance  6s~ only includes contributions from

the dispersion; the opening angle contribution has been neglected. Finally, we have

used parameters of the IVLC damping ring, in particular, N = 2 x 10” particles,

7f-z = 3 x 10e6 mrad, and y = 3522.

One can see in Fig. 13 that when the aspect ratio is less than 1000, the relative

emittance increase due to intrabeam scattering is comparable in all three planes; it

increases slowly from a few percent to roughly 100%. As the aspect ratio increases

beyond 1000, the vertical emittance starts to increase more rapidly than the hor-

izontal and longitudinal. At the opening angle limit, which occurs at an aspect

ratio of 5000, the vertical emittance has been increased by roughly 120% while the

horizontal has increased only 80%. At a.spect  ratios greater than 5000, the vertical

emittance rapidly increases while the horizontal and longitudinal emittances  remain

roughly constant; of COLIIZ, this regjme is not actually accessible since the opening

angle limits the vertical emit~tance.

Thus, in e+/e- storage rings, intrabeam scattering is roughly as important in the

vertical as in the horizontal. While intrabeam scattering becomes more important as

the vertical emittance decreases, the.scattering  does not become significantly more

detrimental in the vertical plane than in the horizontal. This occurs because, in

e+/e- rings, the vertical  emitta.nce cannot be decreased beyond the limit due to the

opening angle of the synclirotron radiation.

2.3.1.3 DAhlPING RATES

Here, we will briefly discuss the effect of intra.beam scattering on the damp-

ing. Since intrabea.m  scakterjng causes a. diffusion that counters the synchrotron

radiation damping, it is rea.sonable  to a.ssume  that it might slow the a.pproach to

equilibrium, in addition to incrca.sing  the equilibrium value. We start with the

differential equation for the emitt,ance which ca.n be written

A( t ) s(t) 2e(t) 2~SR-=--
dt

+ t-
TSR '-IBSkx,~y,~z) TSR *

(2.3.6)

Here, the first term is clue to 1.1~ synchrotron ra.diation  damping while second and

third terms are due to t,he int,rabea.m  sca.ttering  diffusion and the synchrotron radia-
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0 2 4 6 0
Time [TV]

Fig. 14. Emittance  vs. stora.ge  time in the NLC damping ring with 4 x 1012
e+/e-. The solid, dashed, and dot.ted  lines are YES, ye,, and cz, respectively.

tion (quantum) diffusion; in the last tcrrn, E SR is a constant equal to the equilibrium

emittance due to the synchrotron radiation.

The intrabeam scattering diffusion rate is inversely proportional to the emit-

tances. If we assume that all three emittances a.pproach equilibrium at the same
time, then the intrabeam scattering ra.te increases as 1/e3.  Thus, the emittance

approaches the equilibrium value faster  than it does when intrabeam scattering is

negligible; of course, the equilibrium emittance is larger with intrabeam scattering

than without intrabea.m sca.ttering.

If the horizontal and longitudinal emittance reach equilibrium before the vertical,

as is the case in the NLC damping ring, then the horizontal and vertical emittance

will be increased as the vertical da.mps to its equilibrium. This occurs because the

intrabeam scattering becomes more important as the vertical continues to damp.

Thus, using the argument above, one would expect the damping rate to be decreased

as the vertical emittance approaches equilibrium.

Actually, in calculations using the theory of Ref. 17, we find that the vertical

damps faster with intrabeam scattering t1~a.n  \vithout.  An example is illustrated in

Fig. 14 where we ha.ve plotted 7cr, ycy, and ozg7f a.s a function of time in the NLC
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damping ring. To exaggerate the effect of the intrabeam scattering, we have used

a current of 4 x 1012 +e /e- per bunch and thus the horizontal and longitudinal

emittance increase noticeably as the vertical emittance damps.

In Fig. 14, the vertical emitta.nce damps faster with intrabeam scattering t.han

without because the intrabeam scattering provides additional damping in the verti-

cal plane when the vertical emittance is larger than the horizontal and longitudinal

emittances. For example, after five damping times, the vertical emittance is 96% of

the value it would be without the intrabeam scattering. Of course, this is a small

effect and at lower currents, intrabeam scattering has no noticeable effect on the

damping rates.

2.3.1.4 SCALING WITH ENERGY

Finally, we will examine the dependence of the intrabeam scattering on the ring

energy. The diffusion rates are given by Eqs. (2.3.2) or (2.3.5). Since these expres-

sions depend inversely upon 3 3, it is standard to state that intrabeam scattering

becomes insignificant as the beam energy increases. But, in a damping ring, we are

interested in the normalized  emittances: +y~~,~  and yazor. Expressing Eq. (2.3.2) in

terms of these values, we find

1 N

Gi cx fi~r(Yuzac)(Ye2)3/2
111
0

(2.3.7)

In terms of these norma.lizcd  clllant,ities,  the sca.ttering ra.tes  are only weakly depen-

dent on t,he energy.

Of course, we are actually interested in the effect of intrabeam scattering on

the emitta.nces.  This depends on t,he ratios of the intrabeam diffusion rates to

the synchrotron  ra.dia.tion  da.mping  rates. If we naively assume a scaling such that

the important parameters of the ring, namely the normalized emittances and the

eflectl.ve  damping ra.tes, remain co&a.nt,  see Eqs. (A.6.6) and (A.6.7),  we find that

3-1, also remains constant while t,hc bending radius and the damping times increase

with y3. This implies that. the cflect of t,he intrabea.m  sca.ttering increases as y3 and

thus lower energies a.re better!
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Obviously, one can be far more clever in the scaling, but it is important to realize

that, when designing a ring with specified normalized emittances, simply increasing

the beam energy does not imply that the intrabeam scattering can be neglected.

Although, initially this result may seem counter-intuitive, one has to remember

that the scattering is inversely dependent on the normalized six-dimensional phase

space volume of the beam. If this is held constant, then the effect of the scattering

will only depend upon the synchrotron radiation damping rates.

2.3.2 Ion Trapping

The particle beam will ionize the residual ga.s in the vacuum chamber. In the

case of an electron beam, these ions can be trapped in the negative potential well

created by the circulating electron bea.m. The trapped ions will then cause large

tune shifts in the stored beam, possibly leading t,o beam loss. In addition, the ion

potential is highly nonlinear and thus it can drive high order resonances. Finally,

the ions can also drive collective insta.bilities of the electron beam. In all cases, the

net effect is to limit the beam current and increase the beam emittances.

We can estimate the stability of t(he ions by assuming that the circulating elec-

tron bunches act like thin-lense focusing quadrupoles. Then, the problem becomes

that of analyzing betatron stability where the focusing is due to the space charge field

of the electrons. To obtain an initial est,imate, we assume equally spa,ced  bunches

with equal charge and dimensions. In this ca.se, one finds that, for stability, the ions

must have atomic weights grea.ter than ICI

A$) c
A=-

nb 4‘7&72  + c$) ’
(2.3.S)

where nb is the number of bunches, rp is the proton classical radius, and C is the ring

circumference. Notice that the minimum stable ion mass is inversely proportional

to the vertical beam size; this is probably the only detrimental effect that actually

eases as the beam size decrea.ses.

Equation (2.3.8) hs ows that the minimum a.tomic weight is inversely propor-

tional to the vertical beam size. Thus, we can estimate the worst case for the NLC

damping ring by calculating the minimum atomic weight of ions that are trapped

when a batch of electrons is injected into the ring. A batch contains ten closely

spaced bunches of 2 x 10” elect,rons:  in this simple estima.te we will trea.t this as a
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Bands of stability

Unstable ions

2 4 6 0 10
Charge per Bunch [l.e09]

Fig. 15. Bands of stable ion masses in the NLC damping ring as a function
of the charge per bunch assuming ten batches of ten bunches.

single bunch of 2 x 10 l1 electrons. With these values, Eq. (2.3.S) specifies a mini-

mum atomic weight of ten. In a typical vacuum system, one finds ions with atomic

masses ranging from 1 to 44. Obviously, this indicates that ions might be a problem

before the beam damps.

Of course, in operation the NLC damping ring will contain ten batches of

bunches with bea,m sizes ranging from that of a fully damped beam to that of an

injected beam. Equation (2.3.S) cannot be used in this case, but one can calculate

the linear stability in the same fasllion. Although the theory is simple, the compu-

tation is complex and one cannot express the result in a simple formula. Despite

this, the scaling of the result is the same as given by Eq. (2.3.8). Thus, lowering the

bunch population decreases the t.hreshold for tra.pping while decreasing the number

of batches and decreeing beam sizes increases t.he threshold for trapping.

Calculating with ten batches of ten bunches of 2 x 1O1* electrons, we find stable

bands of ions with masses greater than 440; obviousIy,  this is not a problem. But,

if the bunch population is decreased, as it undoubtedly will when commissioning

the ring, the minimum stable ion lnass also dec.reases.  In Fig. 15, we have plotted

the regions of sta.bility  as a fllnct.ion of the current per bunch for the NLC damping
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ring, assuming ten batches of ten bunches. When the current is decreased to 1 x 10’

electrons per bunch, one finds stable regions where the ions typically found in storage

rings could be trapped. Fortunately, these bands of stability are narrow. Since the

bunches in the ring are continuously damping, the regions of stability change. Thus,

this linear theory indicates that it is unlikely that significant accumulation could

occur, even at very low currents.

Of course, we should note that we ha,ve assumed a linear restoring force while

the actual space charge force is highly nonlinear, dropping to zero at large distances.

Although, the nonlinearity could generat,e large amplitude stable islands, even when

the linear motion is unstable, nonlinear simulations are in extremely good agreement

‘18’61’831with the linear theory, indica.t.ing  that, the linear theory is sufficient,

Finally, wigglers in the ring can act like magnetic bottles, t,hereby increasing the

trapping. These effects can be ana.lyzecl  with detailed computer progra.ms. However,

in the case of the NLC damping ring, ions are unlikely to be a problem since, at the

design current, the ions are very far from linear stability.

2.3.3 Space Charge

In this section, we will discuss incoherent effects due to the electromagnetic

field of the beam. We will treat the beam a.s if it were in free space, neglecting

the modification of the fields by the vacuum chamber; these will be treated in

Sections 2.3.4 and 2.3.5. The prima.ry effect of the space charge field is to cause

an amplitude dependent tune shift.. We will calculate this and estimate its effects.

In addition, we will estimate the beta.tron  coupling introduced by the space charge

field; this could be relevant for flat. beams.

2.3.3.1 SPACE CHARGE FIELD

The space charge field will modify t,he forces felt by the particles. Like the beam-

beam force, the force particles experience when two colliding beams pass through

each other, the space charge force is highly nonlinear. Unlike the bea.m-beam force

which is discrete, the spac.e cha.rge  force is continuous and thus it will not tend to

drive high-order resonances.

The space cha.rge  field for a gaussian  bunch, whose tra,nsverse  dimensions are

small compared to the longitudinal, is given in Ref. 12. This is illustrated in Fig. 16,

where we have plotted the vertical eleclric field versus the vertical position for a
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Fig. 16.  Space charge field for ~~~~~ = 10 : 1.

bunch with an aspec.t ra.tio 0,./u,,, of 1O:l. Obviously, the space charge field is highly

nonlinear. The field cha.nges  rapid12  as one passes through the center of the bunch

and then decays slowly at amplitudes grea.ter  than roughly &2a,.

We can expand the Lorentz for& in a. power series in z and y. In a gaussian

bunch, the vertical force is

where ymc2 is the electron energy.  : is the longitudina.1 position within the bunch,

and the first couple of coeflicieut  s Fyij a.re

F
A’?*0 (0% + 2+) .

l/03  = - 3&7Zy3  up7, + uy)” ’

(2.3.10)

with similar expressions for t.he horizontal plane.
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These coefficient F’,ij are analogous to the magnetic field coefficients II’, that

are used to specify the magnetic multipole strengths. The first term F,sr causes a

linear tune shift similar to a quadrupole magnet while the second and third terms

cause an amplitude dependent beta.tron coupling and an amplitude dependent tune

shift having effects simiIar to those of an octupole magnet.

2.3.3.2 INCOHERENT TUNE SHIFT

We can estimate the magnitude of the space charge force with the linear tune

shift; this is usually referred to as the direct incoherent Laslett tune shift!‘] Assum-

ing gaussian bunches, the maximum tune shift occurs

is given byt3”

G

at the center of the bunch: it

with a similar expression for the horizontal. This yields tunes shifts of

Avzry = -
’

(2.3.11)

(2.3.12)

where R is the average radius of the ring: R = C/2x. Notice that it is inversely pro-

portional to the beam dimensions and thus Av, becomes important as the vertical

beam size shrinks. In addition, notice that t,he tune shift is amplitude dependent. It

strongly depends upon the amplitude of the longitudinal and horizontal motion and,

in the flat beam case, is more weakly dependent on the amplitude of the vertical

motion. The transverse a.mplitude  dependence stabilizes the beam to high order

resonances while the longitudinal amplitude dependence causes the tune shift to be

modulated by the synchrotron  motjon;  this is discussed in Section 2.2.6.

In the NLC damping ring, we find a. vertical tune shift of Auy = -0.015 while

the horizontal tune shift is an order of ma.gnitude  smaller. Although this is much

larger than is typical in electron storage rings, it should not present a problem.

Proton rings frequently run with space charge tune shifts that are larger by more

than an order of magnitude. The primary effect. of this tune shift is to move particles

onto resonances, see Section 2.2.6. Thus, provided that, the tunes are far from the

low-order resonances, the spa.ce charge t,une shift should be a negligible effect.
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Finally, we should note tha.t the space charge does not affect rigid dipole oscil-

lations of the beam11021 since the beam dra.gs  it’s self-field with it. Thus, the space

charge induced tune sprea.d  will not ca.use a coherent betatron  oscillation to deco-

here. This is important when discussing filamentation and the effect of coherent

jitter.

2.3.3.3 BETATRON COUPLING

The space charge field of any non-uniform bunch has skew components that

could drive betatron coupling resonances. Obviously, this could be important when

striving for very dense asymmetric beams. This coupling was first calculated in

Ref. 75 with reference to low energy proton beams. There, the smooth approxi-

mation was used to calculate the single particle behavior including all components

of the space charge potential through fourth order. Unfortunately, this analysis

is rather complex and does not lend itself to a simple estimate of when the effect

becomes important for fla.t beams.

Here, we will estimate the magnitude of the space charge coupling in the flat

beam limit where the vertica,l  motion does not affect the horizontal. We will use

the smooth a,pproximation a.nd consider only the effect of the lowest order coupling

resonance; in a ga.ussian  beam this is the 2v, f 2vy resonance. To estimate the

emittance  dilution, we assume that the ring is far from the coupling resonances and

we use first order perturbation theory, neglecting all de-tuning effects; obviously,

such an analysis is only valid when the space charge forces are weak. The other

limit, where one is close to t,he c.oupling  resonance, is analyzed in Section 3.9.1, with

reference to transport in linacs.

In a gaussian bea.m, t.hc \.ertical  spa.ce charge force is given by Eq. (2.3.9). In

the smooth approximation, t.his yields a differential equation for y as a function of

8, the azimuthal position around t,he ring:

c&J
w 'r Y~Y = CR'J'yijx'yj ,

i,j
(2.3.13)

where z+, is the vertical tune and the first couple of coefficients FYij are given in

Eq. (2.3.10); tlle 1 owest order coupling resonance is driven by the FY21 term.

Now, we use firsts order perturba.tion t,heory  to solve for the increa.sed beam size

due to the coupling. The vert.ical position is y = y(O) + y(l) where y(O) and X(O)

S5
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describe the unperturbed motion. These are

z(O) = JW cos( u,B + 42) and y(O) = ~z7&os(uy~  + fjy) ) (2.3.14)

where Jz,ar are the single particle a.ctions,  Ey. (A.2.21),  $Z,Y are the conjugate phases,

and, in the smooth approxima,tion, @X,a,  = H/v,,,. The equation for the lowest order

coupling contribution is

&,(‘)

d6’
+ u;y(‘)  = R’F,2p(o)2y(o) . (2.3.15)

Provided that v%, z+,, IvZ f. ~~1 > Au, we can neglect the tune shifts and the inho-

mogeneous solution is

(2.3.16)

Notice that the solution depends upon the full tunes, not just the fractional portions.

This occurs because the force was assumed to be constant around the ring and thus

only the zeroth harmonic is driven.

At this point, we can find the emittance increase by avera.ging y2/&, over the

phases $Z,y. Assuming a gaussian beam distribution, this yields

2

’
(2.3.17)

where we have used the linear tune shift, Eq. (2.3.12),  to simplify the expression.

This clearly shows that this effect is only significant when the tune difference V, - vY

is comparable to the linea,r  space cha.rge  tune shift. In the NLC damping ring, the

tune difference is roughly thirteen while the lklett tune shift is 0.02; thus the

emittance increase is negligible.

Finally, we can generalize this result to include the variation of the space charge

force around the ring. We express the force in a Fourier series

ccl
&/21(a) = c-f

ikl9
#ke , (2.3.1s)

k--W

where the magnitudes of the coefficients I.fiI must be less than or equal to t11~ d.c.

term Ifol, since Fy21  does not change sign. This a.llows  us to express the elIlit I :lnce
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increase due to the kth harmonic as

&x*2( A%% 2

eY 4(h- f 2Vz)(k + 2V, f 23/,) > *
(2.3.19)

Again, this will be a negligible cont.ribution, although it does suggest against tunes

such that 2~~ f 25, M n.p, where 11 is an integer and p is the periodicity of the ring.

2.3.4 Wakefields: Stat,ic Effects

Wakefields and image forces arise from the electromagnetic interaction between

the beam and the externa,l  environment. They occur when the direct space charge

field is modified to meet, the boundary conditions imposed by the vacuum cham-

ber, In this section, we will only treat the static effects of the wakefields where

the wakefield distorts the equilibrium beam distribution; we discuss the dynamical

effects, which can lead to coherent instabilities, in the next section. In both sections,

we will only treat a few issues which are pertinent to the vertical emittance. The

beam-environment interaction is a very rich topic and we certainly make no attempt

to cover it in detail.

As was mentioned in Section 2.2.6, the longitudinal wakefield in the presence

of dispersion and the transverse dipole wakefield due to a non-zero closed orbit can

cause synchro-beta.tron  coupling in a single bunch; this occurs because the wakefield

deflection is a function of the longitudinal position 2 within the bunch. In addition,

the transverse yuadrupole wakefield  can contain skew quadrupole components that

induce transverse betatron coupling. Finally, there are higher order wakefield contri-

butions. However, provided that the orbit offsets are small compared to the vacuum

chamber radius, these will be mucil  smaller.

We will estimate these effects after describing the origin of the wakefields in a bit

more detail. We will only consider the effects in a. single bunch, assuming that the

wake is damped between bunches. Of course, there are multi-bunch analogs to each

of these effects. For exa,mple,  the longitudinal wakefield, in regions of dispersion,

or the dipole transverse wakefield  ca.n increase the effective emittance of a train of

bunches, since ea.& bunch will receive a different deflection and thus the closed orbit

of each bunch will differ.
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2 .3.4.1 WAKEFIELDS

In free space, the electromagnetic field of an ultra-relativistic particle is Lorentz

contracted into a thin disk perpendicular to the particle motion. Similarly, if the

particle is propagating inside a perfectly conducting vacuum chamber, the elec-

tromagnetic field is still Lorentz contracted into a thin disk, although now, the

transverse field is modified to meet the boundary conditions at the chamber wall.

These modifications are due to image currents that flow on the inside surface of the

vacuum chamber.

This changes if the vacuum chamber has finite conductivity or if the chamber

changes cross section. In this case, the electromagnetic field acquires a longitudinal

component; it trails the generating charge. This is called a wakefield and is im-

portant because it provides a mechanism for a particle to affect both other trailing

particles and itself on subsequent revolutions.

The wakefield is typically described in either the time domain with the wake

function W or in the frequency domain with the impedance 2; the impedance is

simply the Fourier transform of the wake  function. The wake function is proportional

to the Lorentz force experienced by a. test charge a distance AZ from the point

charge generating the field. Obviously, causality requires that the wakefield of an

ultra-relativistic particle must. be zero when  AZ > 0.

We will consider both the wakefield  clue to the finite conductivity of the vacuum

chamber and the wakefield due to RF cavities. For values of AZ = z’ - z in the

range:

(2.3.20)

the wake force due to the resistive ~a.11 of a cylindi*ical  vacuum chamber ca.n be

expressed in a simple analytic form WI

- -

(2.3.21)

We have listed the monopole longitudinal, t.he vertical  dipole, and the skew quadru-
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pole wakefield forces scaled by mc’. Here, b is the vacuum chamber ra.dius,  c is the

conductivity, ZO is the impedance of free-space, and the primed coordinates denote

the position of the genera.ting  charge while the un-primed coordinates denote the

position of the test charge.

Unfortunately, one cannot find a similar simple expression for the wakefields

due to a cavity. Here, one typically uses a computer program to find the modes of

oscillation for the cavity and then the wake function can be written as a sum over

these modes. An example is illustrated in Fig. 51 (Appendix D), where we have

plotted the longitudinal and the transverse dipole wake functions for the 11.4 GHz

NLC accelerator structure!l”

2.3.4.2 LONGITUDINAL  AND TRANSVERSE DIPOLE WAKEFIELDS

As discussed, the trans\serse  dipole wa.kefield  and the longitudinal wakefield in

regions of dispersion will cause synchro-beta.tron coupling. When the synchrotron

tune is very small, this coupling simply ca.uses  the beam to tilt in the y-z and y’-z

planes; the particles have different closed orbit depending upon their longitudinal

position z in the bunch. Here, we will estimate the effect of the transverse dipole

wakefield, due to both the vacuum chamber resistance and the RF cavities, using

the results of Section 2.2.6.1; these two sources should provide a good (factor of

two) estima,te of t.he transverse \vakefield. Effects of the longitudinal wakefield can

be estimated in a similar manner.

R.esist,ive  Wall

To use the results of Section 2.2.6.1, we need to express the deflection due to

the wakefields as a function of the longitudinal position in the bunch. This is found

by integrating the \~akeficltl  o\:cr tile bunch distribution:

(2.3.22)

where p is the particle distribution in 3. To perform this integration for the resistive

wall wakefield, we need to kno\\l  the wa.kefield  from z = 0 to z = 00. Fortunately,

simply integrating the approsimat.ion in Eq. (2.3.21) will yield negligible errorrgl

provided that cri > (G’/aZo) ‘I3 In a. copper vacuum cha.mber  with a 1 cm radius,.

this requires that gz >> 17~1n;  this is cert,ainly  sa.tisfied in the NLC damping ring

where the rms bunch length is rouglll?;  5 null.



Thus, assuming a gaussian longitudinal distribution, we find a deflecting force:

m=
ds2

(2.3.23)

Now, to obtain the coefficients gn needed in Eq. (2.2.S4),  we can expand in a Taylor

series about z = 0:

where we have replaced y’ with yc, the closed orbit offset. This yields the coefficients:

(2.3.25)

r(Q) nrroy, s
g3 = 2(2035/4  -)Tb”u, i-g ’d-

where I? is the gamma function and I’(d) = 1.22 * * -.

Now, to calculate the coupling coefficient Sk (Eq. (2.2.%)),  we need the closed

orbit. We shall approximate this assuming t.hat the orbit is corrected to a ran-

dom offset at each of the focusing yua.clrupoles.  In this case, the value of IS*]’  is

approximately:

(2.3.26)

where C is the ring circumference, ~czllls is the rms of the closed orbit, and NQF is

the number of focusing quadrupoles in the ring.

Finally, we can estimate the projected cmittance.  We will only estimate t,he

lowest order coefficient since the higher-order contributions tend to be small unless

they are on resonance. In the NIX, t’hese  resonances a.re very high-order (- 20t,h)
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and thus they will be very na.rrow. The NLC design calls for 2 x 10” particles

per bunch with a 5mm rms bunch length at 1.S GeV. Assuming a copper vacuum

chamber (a = 5.8 x 10’ mhos/m) with a 1 cm radius and a 100 pm rms orbit with

75 QFs, we find:

IS~‘j’ X 5 x lo-l3  m-l . (2.3.27)

Now, using Eq. (2.2.S4), we find an increase in the projected vertical emittance of:

(Y2)
Ty

5 x lo-l8 m-rad . (2.3.28)

This is six orders of magnitude smaller than the beam emittance and is thus negli-

gible.

R.F Cavities

At this point, we can perform a similar analysis to estimate the effect of wake-

fields in the RF cavities. The NLC damping ring will need roughly one to two meters

of 1.4 GHz RF cavity to provide sufficient longitudinal a.cceleration and bunching.

To estimate the transverse wakefield,  we could simply scale the 11.4 GHz NLC linac

wakefield, plotted in Fig. 51, to this lower frequency, but this yields a wakefield that

is small since the irises in the 11.4 GHz NLC structure are relatively large.

Instead, we will use the tmnsverse  wakefield of the RF cavities in the PEP
I1151storage ring, scaled to the 1.4 GHz frequency. Over the range of interest, we can

approximate this dipole wakefield  as a linearly increasing function of AZ:

TV~1  (AZ) = AZ 0.12 V/pC/cm3 . (2.3.29)

Now, we follow the proc.edure outlined in the previous section: we find the deflection

by convolving the wake function over the bunch distribution and then we expand

in a Taylor series a.bout. z = 0 t,o find the coeffic.ients  gn. Assuming a gaussian

distribution, this yields

Ney, M/ig/1  = - - -
Eo[eV] 2

(2.3.30)

93=0 )

where Eo is the ring energy in c\’ and 117; is the slope of the wakefield in V/C/m3;
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for the scaled PEP cavity: M/i = 0.12 x lOls V/C/m3.

Finally, we can calculate the increase in the projected vertical emittance using

Eqs. (2.2.S4)  and (2.2.S6). For a worst case estimate, we will assume that all of the

cavities are lumped together with the same trajectory offset. In this case,

(2.3.31)

where L,, is the total length of the RF cavities. In the NLC damping ring, with

2 x lOlo particle per bunch, a 100pm orbit offset, and 2 meters of cavity, we find:

(y?)-
6

G x  10-l’ m-rad . (2.3.32)

While this is much larger than the effect of the resistive wall wakefield, it is still

three orders of magnitude smaller than the vertical emittance and is thus negligible.

2.3.4.3 TRANSVERSE QUADRUPOLE WAKEFIELD

The wakefields also have quadrupole and skew quadrupole gradients. But, the

quadrupole wakefield tends to be much smaller than the dipole wakefield. One can

estimate the importance of this wakefield  since the effect of the transverse wakefield

roughly scales as (r/ b)n, where r is the ofi’set,  b is the chamber radius, and n is the

field harmonic. Thus, provided that the beam is much smaller than the vacuum

chamber radius, the higher-order wakefields  will be much smaller than the dipole

wakefield.

2.3.4.4 %JMhlARY

In this section, we have calcula.ted  the increase in the projec.ted vertical emit-

tance  due to transverse wakefields. In the NLC damping ring, the effect of the

low-order coupling on a damped beam is small and the effect of the higher-order

coupling should be even smaller. \Ye ha,ve not estimated the effect of the longitudi-

nal wakefields nor have we considered all sources of the transverse wakefield; even

though our initial estimates indica.te  that the wakefields will not present a limita-

tion, these calculations should be performed. In addition, we have neglected all of

the multi-bunch ana.Iogs  of the single bunch dilutions; in the NLC damping ring,

these also need to be estima.ted.
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2.3.5 Wakefields: Dynamical Effects

The wakefields can also lead to dynamical instability. These are usually referred

to as coherent instabilities!g1 In general, the instability thresholds do not depend

upon the magnitude of the vertical emittance. Instead, the thresholds depend upon

the beam current, the impedance of the ring, and the tune spreads. Thus, these

effects do not directly limit the vertical emittance.

However, the wakefields do change the beam response function. We will mention

two important effects: first, in a ring with positive chromaticity, the rigid dipole

oscillations can be damped; this is referred to as the head-tail damping and can

be an important source of damping for coherent oscillations. Second, even though

the beam may be stable, interference between the normal modes of oscillation can
tl161cause a transient growth in a beam or, more importantly, in a train of bunches.

This later effect is important because it will amplify the effect of noise that drives

coherent oscillations of the beam; we will discuss these effects further in Section 2.4.

2.3.6 Beam-Gas Scatt,ering

In this section, we will clet.ermine  limitations on the vertical emittance due to

beam-gas scattering. Beam-gas scattering occurs when particles in the beam scatter,

elastically or inelastically, with the residual gas in the vacuum chamber. In an e+/e-

storage ring, the background gas is primarily due to gas desorption occurring when

the synchrotron  photons hit the vacuum chamber wall. Typically, the residual gas

is composed of light molecules such as hydrogen, methane, water vapor and carbon

monoxide and dioxide. In addition to the effect on the vertical emittance, beam-gas

scattering causes particle losses, a.nd it will ionize the gas which can then cause

beam instabilities; we discuss these effects in Sections 2.3.7 and 2.3.2.

We can divide the beam-gas scaktering into three processes: elastic scattering

with the nuclei, ela.stic  scattering with the atomic electrons, and inelastic scattering

with both the nuclei a.nd the a.tomic electrons. Elastic scattering with a nucleus

will deflect the incident pa,rticle  without significantly changing the particle’s energy.

In contrast, elastic scattering with the atomic electrons both deflects the incident

particle and reduces the particle’s energy. Finally, the inelastic scattering, namely

bremsstrahlung, causes the circulating particle to lose energy; we can neglect the

opening angle of the radiation.
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All of these processes are analogous to the quantum excitation due to syn-

chrotron radiation; they ca.use a discrete change in the particle’s betatron oscilla-

tion amplitude. The. processes differ from the synchrotron radiation effects in that

the beam-gas scattering events occur very infrequently, but the expected amplitude

change due to a beam-gas scattering event is much greater than that resulting from

the emission of a synchrotron photon. Thus, we will find tha.t  for reasonable vacuum

pressures, the beam-gas scattering does not affect the core emittance; only a few

particles are scattered to significant amplitudes. Instead, the beam-gas scattering

will cause a halo of large amplitude particles around the core of the beam.

2.3.6.1 ELASTIC - NUCLEI

We are interested in scattering with small momentum transfers; large momentum

transfers will cause the particle to be lost. In this regime, the screening effects of

the atomic electrons are important,; the screening will reduce the number of very

small angle collisions. The Born approsimation  with the Fermi-Thomas model for

atomic potential yields a differential cross section of160’C51

da
-73
di2

(2.3.33)

Here, ro is the classical electron radius, 2 is the atomic number, and Omin is a

function of the screening: 8r11in NN fi./pc~ wllere  p is the incident particle momentum

and a is the atomic ra.dius:  a M l.41iZ/n2cl%  1’ 3. We can integrate this to find the

total cross section

(2.3.34)

At this point, we can solve for the contribut,ion  to the rms equilibrium emittance

in the same manner that we ca.lculat,ed  t,he emittance contribution from the open-

ing angle of the synchrotron radia.tion,  Section 2.2.3. The normalized equilibrium

emittance is

(2.3.35)

where (O’-)  is the expected value of 0’. ,I’ ’IS the rate of scatt,ering, and the bar
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denotes the average around the ring. In particular,

emrx

N-p;,  = c72ga
J

(2.3.36)

0

where c is the speed of light, 0 nlax is the maximum scattering angle, this is usually

determined by the aperture of the machine, and ngas is the atomic density of the

gas; numerically, ngas is equal t.0: ngas = 3.21 x 10z2mol./Torrm3  at a temperature

of 300’ K.

This yields an equilibrium emittance of

(2.3.37)

In the NLC damping ring, Ey. (2.13.37)  predicts an emittance equal to the design

emittance of ycY = 3 X low8 m-rad at a pressure of roughly 10e7 Torr, assuming

2 = 7.3 and two atoms per molecule: this approximates air. For comparison, typical

vacuum pressures are roughly 10-s to lo-” Torr.

Next, we need to examine the particle distribution due to this scattering. We

will describe the distribution in terms of the single particle action J which is a

quadratic function of the tra.nsverse  position and momentum and, when averaged

over the beam, J is equal to the beam emittance. Synchrotron  radia.tion  generates

an exponential distribution

e- JlQ
l&(J)  = - .

eY
(2.3.38)

This occurs since many photons a.re radiated within a damping time. Thus, using

the Central Limit Theorem. the distribution should be gaussian in position and

momentum a.nd exponential in J. In contrast, the expected number of elastic beam-

gas collisions is typically very small. For example, at a pressure of 10S8  Torr,

we expect roughly ten ela.stic collisions per second; the damping time in the NLC

damping ring is 4 ms. Obviously, the central limit theorem does not apply in this

case and thus we ca.nnot expect an exponential distribution in J.

Instead, the distribution is domina.ted  by single scattering events. Examining

Eq. (2.3.33), we would expect, the distribution density in J to depend upon J-’ at
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large amplitudes, We can approximate this with a distribution density of the form

J .
P ( J )  = ( J,,,i,:‘y J)2 for J < Jmax , (2.3.39)

where Jmax , like emax, is determined by the machine aperture and Jmin  is determined

from the requirement that the expected value of 3 equal the equilibrium emittance

due to beam gas scattering, Eq. (2.3.37).  Thus,

Jmin * 14 Jn::x,cy ) ’
(2.3.40)

where we have assumed that Jmax > Jnlill, Q.

This distribution due to bea.m  gas scattering decreases relatively slowly with

amplitude. Thus, the scattering causes a ha.lo  of large a.mplitude  particles which will

increase the rms emitta.nce even though the core of the beam is relatively unaffected.

For example, in the NLC damping ring, a vacuum pressure of low7 Torr will double

the rms equilibrium emitta.nce. But., if one neglects the outer 3’?40  of the beam, one

finds that the emittance increase due to the scattering is only 10%. Of course, in a

linear collider, these large amplitude particles must be collimated or they will cause

large background signals at the detector.

This is illustrated in Fig. 17. The solid line is the calculated distribution P( Jy),

due to both synchrotron radiation and beam-gas scattering, when the background

pressure is 10-7 Torr. In such a case, the expected value (Jy)  is twice that due to

the synchrotron radiation alone. The dashed line is the distribution PsR(J,).  One

can see that the two distributions are extremely similar for values Jy S 6( JSR) and,

although they differ significant,ly  for larger values of J,, there are very few particles

in these large amplitude tails.

2.3.6.2 ELASTIC - ELECTRONS

Now, we can consider elastic sca.ttering  with the atomic electrons. In contrast to

elastic scattering with a nucleus, ela.stic scattering events with the atomic electrons

cause both an angular deflection and an energy transfer. Again, we are only inter-

ested in small momentum transfers since ha.rd  scatterings will ca.use particle losses.
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Fig. 17. The effect of beam-gas scattering on the beam distribution in the
NLC damping ring with a background pressure of 10V7 Torr;  the solid line is
the distribution with beam-ga.s scattering while the dashed line only includes
the effect of the synchrotron radktion.
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Fig. 17. The effect of beam-gas scattering on the beam distribution in the
NLC damping ring with a background pressure of 10V7 Torr;  the solid line is
the distribution with beam-ga.s scattering while the dashed line only includes
the effect of the synchrotron radktion.

In this regime, the differential cross section is’lsl

(2.3.41)

where S is the relative energy loss: 6 = AC\E/E. Alternately, we could express this in

terms of the scattering angle 0 = dm. In tllis case, we would find a cross section

equal to Eq. (2.3.33) with the substitution 2 + 1.

Now, we ca.n calcula.te the resulting equilibrium emittance. The energy loss

is coupled to the betatron amplitude via the dispersion function: Ayp = qy& and

AY; = ?I(,& while the angu1a.r  kick directly changes yb. Thus, these two effects

are uncorrelated and we can simply add the emittance contributions. Since the

angular deflection by the electron is similar to that given by a nucleus, the emittance

contribution is given by Eq. (2.3.37) with the substitution 2” + 2. In addition,

the amplitude limit 0l,,aX is now t,he lesser of the limit due to the angular deflection

or the limit imposed by the energy change. For typical damping ring parhmeters,

these two limits are comparable a.nd thus we will neglect this distinction. Thus, we
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find an emittance contribution due the a.ngular  kicks of

(2.3.42)

In air this contribution is roughly 15% of the contribution from the elastic scattering

with the nuclei.

Next, calculating the emittance contribution from the energy change is com-

pletely analogous to calculating the equilibrium emittance due to synchrotron  radi-

ation. Here, the emittance contribution is

(2.3.43)

where 31, is a function of the dispersion and it’s derivative, Eq. (A.5.9). The value

of N(S2) is found from the cross section Eq. (2.3.41):

(2.3.44)

where 6,,, is determined by the aperture of the storage ring; typically, this is limited

to a few percent. We find an emittance contribution of

(2.3.45)

In the NLC damping ring, this contribution is much smaller than the contribution

from the angular deflection, Eq. (2.3.42),  a.nd thus we will neglect it.

2.3.6.3 INELASTIC SCATTERING

Finally, we consider the inelastic sca.ttering of the beam pa.rticles  with the resid-

ual gas. In this case, bremsstrahlung photons are emitted causing the incident

particle to lose energy. We are only interested in small energy changes, less than

a few percent of the incident part,icle  energy. In this regime, the differential cross
* wsection for scattering with both the nucleus and the atomic electrons IS

da 16 Z(Z + 1.35)-z--
d6 3 137

(2.3.46)

Now, we can calculake the equilibrium emittance due to these bremsstrahlung
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photons using Eq. (2.3.43). Tllis iey Ids an equilibrium emittance of

2c’ry  Z(Z + 1.35)# 1837$/ = 7-3 137 0 max ln ( 21/3 > ~Fly%= * (2.3.47)

In the NLC damping ring with a pressure of 10m8 Torr, the bremsstrahlung induced

emittance is many orders of magnit,ude  less than the elastic scattering contribution,

and thus we can ignore it.

2.3.6.4 %JMhfARY

In the low energy damping rings, we have found that the most important beam

gas contribution comes from the ela.stic  scattering with the gas nuclei. In the NLC

damping ring, a pressure of 10-’ Torr will ca.use a 10% vertical rms emittance

increase. But, it is important to realize that this emittance increase is dominated

by a few large scattering events; the core of the beam is virtua.lly  unaffected while

population of the tails of the beam distribution is increased slightly. Thus, we

conclude that the beam gas scattering is not a significant limitation, even at much

2.3.7 Lifetimes

In a damping ring, it is unlilielj t.1~a.t  the beam lifetimes could limit the operation

of the ring sinc.e the bea.ms  are stored for a very short time. But, poor beam
lifetimes could make commissioning and studying the ring difficult. The primary

beam lifetime limitations a.re exessively  small aperture, beam-gas scattering, and

the Touschek effect; the later refers to large angle collisions between particles within

the beam that 1ea.d  to pa.rticle  loss.

higher vacuum pressures.

With a.dequate  design and tolerances, one should be a.ble  to avoid the first
limitation. In addition, with rea.sonable  vacuum pressures, the lifetime due to beam-

gas scattering should not be significant. Formulas for the bea.m  gas lifetimes are
listed in Ref. GS. Assuming a. pressure of 10 -8 Torr in the NLC damping ring, the

lifetime due to beam gas scattering is roughly four hours; this is more than sufficient.

In contrast,, the Touschek lifetime will tend to be more severe since it depends

inversely upon the particle densit.y  in the beam. In the limit of non-relativistic
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Fig. 1S. The function D(P,).

transverse momenta, the Touschel; lifetime is given by’24’4g’1241

(2.3.48)

where P, = ~~axP2/2~2~z  and Np,) is plotted in Fig. 1s; for typical parameters

D(P,) is between 0.1 and 0.3. In the NLC damping ring, the Touschek lifetime is

roughly two minutes. While this is long compared to the operating beam storage

time of 28 ms, it may be too short to study the properties of a stored beam. In this

case, we can increase the vertical beam size or decrease the number of particles per

bunch, thereby decreasing the beam density and increasing the lifetime.
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CHAPTER 2.4

JITTER AND NOISE EFFECTS

In this chapter, we will discuss the effect of slow and fast jitter processes that

can increase the effective emittance  of the beam. The sources can be divided into

low frequency contributions, such as ground motion and power supply fluctuations,

where the jitter adiabatically changes the ring orbit and high frequency effects which

drive coherent oscillations. We will estimate the magnitude of these effects and then

briefly mention some of the feedback techniques that will almost certainly be needed

for compensation.

2.4.1 Ground Motion

The ground has many frequencies of movement with periods ranging from years

to fractions of a second. Here, we will discuss the “fast” motion where the ground

vibrates at the micron level with frequencies between 0.1 Hz 5 f ;5 100 Hz;“”  the

high frequency end of this spectrum is primarily due to cultural noise, i.e., man-

made noise, while the low frequency vibrations are primarily nature.

This ground motion moves the quadrupole magnets which then deflect the closed

orbit. In general, the vibration has a small effect, unless the wavelength is smaller

than or comparable to the betatron-wavelength in the ringfl””  Thus, the ground

motion tends to be less of a problem in small strong focusing rings than in the large

rings such as LEP, HERA, and the SSC.

At the SLAC and DESY sites, the measured ground motion near the surface

has a phase velocity of 250 N 300 m/s and, during the day, the rms amplitude is

roughly 0.2 pm; ‘42’g51 during the night, the amplitude is much less. Finally, the noise

has a power spectrum that tends to decay as l/f2. Note that the phase velocity

of these high frequency ground waves is roughly an order of magnitude slower than

that of the long wavelength motion measured during seismic events. The longer
I431wavelengths sample deeper and denser material and thus have faster velocities.

In the NLC damping ring, the average vertical betatron wavelength is roughly

c/u, = 14 m. Using the results of Refs. 4 and 94, the first resonant frequency occurs

at approximately 20 Hz. Although this is at the high frequency end of the power

spectrum, it still suggests that the ground motion might be a problem in the NLC

ring; a more detailed ana.lysis,  including the actual ring optics and the response of

the ma.gnet supports, is needed to determine the real magnitude of the problem.
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If indeed the ground motion is a problem, there are three solutions: (1) choosing

a site with reduced noise, much of the high frequency noise is caused by motor vehicle

traffic, (2) use isolation supports to damp the noise, and (3) use low frequency

feedback systems to stabilize the closed orbit; this will be discussed later.

2.4.2 Power Supply Fluctuations

In general, the magnet fluctuations due to power supply fluctuations are low

frequency f s 1 KHz in comparison t,o the beam revolution frequency; higher fre-

quency fluctuations are attenuated by the vacuum chamber. Thus, the fluctuations

cause adiabatic changes. Fluctuations of the correctors change the closed orbit and

fluctuations of the quadrupoles change both the betatron tunes and the closed orbit.

In addition, fluctuations of the bending magnets cause the ring energy to change;

this occurs because, in an e+/e- storage ring, the RF fixes the revolution period.

Correctors

The dipole correctors usually have independent power supplies and we assume

that the fluctuations are independent. Thus, using Eq. (2.2.13),  we find a tolerance

A0 5
0,2&I sin 7rvYl

y rms
dKi& ’

(2.4.1)

where Ncorr is the number of correctors a.nd ,8, is the vertical beta function at the

correctors.

In the NLC damping ring design, this yields a tolerance of Aeyrms  ;5 O.OSprad

to limit the jitter to one quarter of the vertical bea,m  size. We can estimate the

maximum required corrector strength from the alignment tolerances and the magnet

strengths; a maximum deflection of 1 mrad should be more than sufficient. This

yields a relative tolerance on t,he correct.or  power supplies of Al/l,,,, 5 S x 10m5.

This is a fairly tight tolerance, but it could be ea.sed  by reducing the maximum

corrector strengths.

Main Bending Ma.gnets

We will assume tha.t  all of the bending dipoles are powered by the same supply.

In this case, slow fluctuations of the dipoles will change the 1~ea.m  energy; as men-

tioned, this occurs because the revolut,ion period is fixed by the RF in an e+/e-

ring. In terms of t,he closed orbit and the betatron tunes, slowly changing the ma.in
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bends is equivalent. to changing the correctors and the quadrupoles in the opposite

direction. Thus, in the vertical plane, the closed orbit change due to the fluctuation

can be written
A B

AYC = %(+--B *
(2.4.2)

This can be further simplified since, in Section 2.2.4, we saw that by rv 277+7,.

Thus, to limit the orbit variation to one quarter of the vertical beam size, we find a

tolerance
A B-p$ . (2.4.3)

In the NLC damping ring this tolerance is roughly 5 x 10e4.

In addition to the closed orbit, the betatron tunes will vary as the bends change.

As mentioned, changing the bends is equivalent to changing the quadrupoles in the

opposite direction. Thus, the tune shift is

(2.4.4)

where  tuncor is the unco~~~~ccicd  chromaticity. Notice that the sextupoles do not

compensate this “chromatic” tune Uuctua.tion. This occurs because the horizontal

orbit change is not proportional to the horizontal dispersion since the revolution

period is fixed. In the NLC damping ring, the uncorrected chromaticity is roughly

-25. Thus, to limit the tune fluctua.tion  to 0.01, we find a tolerance of

LAB
B s4 x  1o-4 . (2.4.5)

This is comparable to the tolerance on the closed orbit fluctuations and should not

be difficult to achieve; commercial power supplies are available with regulation of

10-4 N 10-5.

Quadrupoles

In this case, we will assume that all of the focusing quadrupole magnets are

powered by a, single supply, while all of the defocusing quadrupoles a.re powered by

a.nother  supply. First, we ca.n solve for the vertica.1  orbit change with Eq. (2.2.13).

Here, the deflection of the closed orbit depends upon the qua.drupole  field and the

closed orbit offset. Although Ihe strength va.ria.tion  is correlated bet,ween  magnets,
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the orbit offsets of a corrected orbit a.re not. Thus, we find a result analogous to

Eq. (2.4.1):

(2.4.6)

where Lqud is the length of the quadrupole, yc is the rms magnitude of the closed

orbit, and AI<1 is the rms error in the normalized quadrupole gradient.

Finally, we can estimate the tune variation due to the quadrupole fluctuations.

If we wish to limit this to Au 5 0.01, we find a tolerance

AI\ll 0.01
Il.1

s----
t ’11 ncor

(2.4.7)

where Lcor is the uncorrected chromaticity.

In the NLC damping ring design, the c.losed orbit constraint imposes power

supply tolerances of Al/1 N 2 x 10e4 to limit the jitter to one quarter of the

beam size. Here, we have assumed 100 qua.dr.upoles  with IC = 20me2,  L = 0.2m,

and yC = 100/1m;  these values should overestimate the severity of the tolerance.

Similarly, the tune variation imposes a compa.rable  tolerance of Al/1 5 4 x 10W4.  In

both cases, commercially available supplies should be able to meet these tolerances.

2.4.3 High Frequency Jitter

The primary sources of high frequency noise are the RF system, the high fre-

quency feedback systems that would likely be needed to damp coherent oscillations,

and the injection/extraction kickers. The noise will drive coherent oscillations of

the beam. Longitudinal noise, such as tl1a.t  from the RF system, will drive coher-

ent synchrotron oscillations t.hat, in the presence of synchro-betatron coupling, will

cause coherent betatron oscilla.tions.  Transverse noise will directly drive coherent

transverse 0scilIations.

A coherent betatron oscillation ca.n be damped by the head-tail damping process,

synchrotron radiation da,mping, and feedback systems. In addition, if there is a

large spread in the oscilla.tion  tune, the coherent oscilla.tion  ca.n filament before it

is damped coherently; the oscillation decoheres  and the beam size increases. After

this filamentation, the fast hea.cl-tail process and feedback cannot damp the bea.m.

Thus, the filamented beam damps at. the (slower) synchrotron ra.diation  damping

rate.
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We can estimate a tolera.nce  on the RF noise in the same manner that we calcu-

late the equilibrium emittance. Assume that the noise causes a discrete transverse

deflection 6’ that is uncorrelated between revolutions. Then, the change per turn of

the single particle invariant t1la.t  describes the coherent oscillation is 2AJ = po2.

By equating this with the damping rate, we find the expected value of (J):

( J )  = P(e2) 7-

4 To ’
(2.4.8)

where 7 is the damping time and To is the period of revolution.

To prevent dilution of the effective emittance, we require (J) < c For a worst

case estimate, we can assume tha.t  the bea.m  damps at the synchrotron  radiation

damping rate. Thus, in the NLC tla.mping  ring design, we find a tolerance on the

vertical deflecting voltage

1’~  rms 6 20 Volts ) (2.4.9)

to limit the jitter to one fourth the beam size. This can be translated into a tolerance

on the phase stability of the main accelerating RF:

(2.4.10)

In the NLC damping ring design, assuming a 1 R’IV RF system with 1 mm of

vertical dispersion in the cavit’ies,  t.his implies a phase stability of &,, N 2’ which

is a relatively loose tolerance.

Finally, we should note that a more severe tolerance on the RF phase is due

to the phase stability required of t’he extracted beam. Phase jitter of the extracted

beam is transla.ted  into energy jitter at the beginning of the bunch compressor;

a correlated energy sprea.d is added to the bunch at the beginning of the bunch

compressor using an acceleration section, pha.sed  to give the nominal center of the

bunch zero energy gain. This energy jitt,er is then translated back into phase jitter

during the compression, since low and high energy particles have different path

lengths. Fina.lly,  the phase jit.tcar  is t.ra.nslat.ed  int.o an energy jitter in the linac.  This

effect ha.s been obser\.ed  ill the SLC’  but. we will not calculate tolera.nces  here since

it requires detailed knowledge of the bunch compressors.
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2.4.4 Feedback

Stabilization of the closed orbit is very important in synchrotron  light sources.

Currently, many of the synchrokon light sources stabilize the closed orbit at the

level of a few micronsf54’03’76’1261 The primary limitation of these feedback systems is

the measurement of the beam position. This is a problem that needs to be resolved

throughout the linear collider complex; one needs to accurately measure the beam

position at the level of the beam size. But, assuming that the required measurement

accuracy can be achieved, stabilktion of the closed orbit should be straight-forward.

In addition, to slow feedback for the closed orbit, fast feedback can be used

to damp coherent oscillations of the beam. Wide band bunch-to-bunch feedback

systems are used to stabilize the beam in PETRA and HER.4’4”52’  and are planned

for in the LBL-LLNL-SLAC B-Fa.ct.ory design!2”‘321  In the NLC damping ring, one

may not be able to feedback on each bunch, this requires a l-2 GHz feedback system,

but it should be relatively simple to feedba.cl~  on the batches of ten bunches; this

only requires a 20 h4Hz system which is comparable to the PETRA feedback system.

Of course, again, any feedback system will be limited by the resolution of the beam

measurement.
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CHAPTER  2.5

INJECTION  MATCHING

In a damping ring, it is important to match the injected beam to the ring. In

the transverse case, the beam must be injected onto the closed orbit, and the beta

functions and the dispersion must be matched correctly. If there is a mismatch,

the beam will filament; the beam is large at injection and thus nonlinear fields

cause a significant tune spread. The filamentation of the mismatch will increase the

beam size and thereby increase the storage time needed to damp the beam to the

equilibrium value.

The emittance  dilution due to filamentation of a beta mismatch can be writ-

ten: 13’1

(2.5.1)

where cy and p are the machine parameters and LY* and p+ are the beam parameters.

Similarly, the dilution due to a filamented dispersion mismatch is[731

3-102AC= 2
2 ’

(2.5.2)

where Pt is the dispersion function defined in Eq. (A.5.9). Finally, the dilution due

to a orbit mismatch is’11o1

AQ, = ;(yyy,” + 20,~~:  + By~b~) 9 (2.5.3)

where yo and yb are the difference between the closed orbit and the injected trajec-

tory.

In addition to the transverse matching, the beam must be matched longitudi-

nally to prevent coherent synchrotron oscillations. The synchro-betatron coupling

could couple the synchrotron oscillations to the transverse planes as discussed in

section 2.2.6. This increases the beam size when the oscillations filament. The

nonlinear synchro-betakon  coupling is more important at injection since the beam

occupies a large portion of the accelerating RF and thus experiences the sinusoidal

variation of the fields. Furthermore, since the bunch is usually longer, the transverse

wakefields, which a.re an import,ant  source of coupling, are much stronger. These

effects can be estimated from the results of Sections 2.2.6 and 2.3.4, although a

deta.iled analysis has not yet been performed for the NLC damping ring.
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Actually, in the NLC damping ring design, the tolerances on the injection mis-

match are very loose. This occurs because the beam is over-damped to ease toler-

ances on the vertical equilibrium emittance. The horizontal and longitudinal emit-

tances are damped to their equilibrium values after roughly half the damping cycle

and thus injection errors will have negligible effect on the extracted emittances.

Even the vertical emittance, which requires the most damping, is dominated by

the equilibrium value at the end of the damping cycle. The injected emittance

o f  7q/ = 3 x 10m3  m-rad contributes roughly 10% of the extracted emittance of

y$/ = 3 x lo-* m-rad. Thus, even if the injected beam filaments to twice its size,

the extracted emittance will only increase by 10%.
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CHAPTER 2.6

GENERATION SUMMARY

In this chapter, we have discussed effects that can limit the vertical emittance

in future damping rings, In particular, we have calculated limitations due to single

particle effects, collective effects, and pulse-to-pulse jitter sources. We then applied

these results to the current design of the NLC damping ring which calls for a very

low vertical emittance of yey = 3 x low8 m-rad with an aspect ratio (ez/ey)  of 100.

The single particle limitations are primarily due to vertical dispersion and be-

tatron coupling; the more fundamental limitation, due to the opening angle of the

synchrotron radiation, is a factor of 45 smaller than the design vertical emittance.

The vertical dispersion and the betatron coupling impose alignment tolerances on

the ring components. In the NLC damping ring, we have calculated that ver-

tical alignment tolerances of roughly 100pm will limit the vertical emittance to

ycy < 2.5 x 10-* m-rad with a 95% confidence level; these results are summarize in

Table 11.

Next, the most important collective effects are intrabeam scattering and the

space charge tune shift. The space charge tune shift reduces the working area in

tune space. In the current design, the space charge tune shift is Avy = -0.015.

While this is not thought to pose a problem, a larger value might cause the induced

synchrotron sidebands to overlap a strong resonance, leading to emittance growth.

Of course, for given normalized emittances, the space charge tune shift depends

inversely upon y” and thus it decreases rapidly as the ring energy is increased.

In contrast, for given normalized emittances, intrabeam scattering does not

necessarily decrease rapidly with the ring energy. But, in the current NLC design,

intrabeam scattering only increases the rms vertical emittance by 20%; this only

increases to a 120% dilution as the vertical emittance is decreased to the limit

imposed by the opening angle of the synchrotron radiation (a factor of 45). Thus,

the intrabeam scattering is “annoying”, but it does not present a severe limitation.

Furthermore, the current theories of intrabeam scattering may over-estimate

the real emittance growth. These theories estimate the rms emittance, but, with

scattering, the distribut,ion becomes non-gaussian and thus the rms emittance does

not characterize the beam emittance well. The emittance growth due to beam-

gas scattering is an example of this. In the NLC damping ring, a background gas

pressure of 10v7 Torr will cause the rms vertical emitta.nce to double. But, the
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actual effect on the beam is small; the scattering generates a halo of large amplitude

particles without significantly diluting the core of the beam.

Finally, we have also estimated tolerances on the sources of pulse-to-pulse jitter.

In the current design, the tolerances on the power supplies, which limit the beam

jitter to 25% of the rms beam size, are reasonable (Al/1 S 10m4).  But, tolerances

on the ground motion may be more severe; the ring will be resonant to ground

motion with frequencies above approximately 20 Hz. Fortunately, in a storage ring,

it is relatively simple to stabilize the beam with feedback, easing both the power

supply tolerances and the ground motion tolerances.

Thus, to conclude, there does not appear to be any significant limitation in

achieving the design vertical emitta.nce of ye, = 3 x 10V8 m-rad in the NLC damping

ring. In fact, it seems quite possible that one might be able to reduce this an

order of magnitude to 3 x lo-’ m-ra.d.  This would require reducing the alignment

tolerances by roughly a factor of four, a.ad, perhaps, increasing the damping ring

energy to reduce the space cha.rge  tune shift and the opening angle contribution

to the emittance. Furthermore, one would need beam position monitors with sub-

micron accuracy for the feedback systems.

Of course, we must qualify these statements by noting that we have neglected

two important effects: first, the effect, on the emittance, of multiple closely spaced

bunches needs to be considered. The intra-bunch wakefields could cause the bunches

in a train to have different trajectories, increasing the effective emittance of the

bunch train. Second, effects tha.t  occur at injection, before the beam damps should

also be considered. Here, the bunch length and the energy spread are much larger

and the nonlinear synchro-bet&on resonances might enlarge the initial injected

beam; fortunately, as mentioned, this would not be extremely significant in the

NLC damping rings since the vertical emittance is over-damped.
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CHAPTER 3
ACCELERATION  OF BEAMS WITH SMALL

VERTICAL  EMITTANCES

After the beams are generated in the damping rings, they need to be accelerated

to the desired final energy while preserving the small beam emittances.  In many

current designs, as schematically illustrated in Fig. 1, the beams are extracted from

the rings into a bunch compression and matching region, Then, the beams are

accelerated, in a preliminary linac, to an intermediate energy where they undergo a

second bunch compression. Finally, the beams are accelerated in the main linac to

the desired energy.

In this chapter, we will discuss effects that can dilute the vertical emittance

during the acceleration. We will limit the discussion to the linacs and neglect dilu-

tions that occur in the bunch compressors and other sections of the linear collider.

Throughout, we will calculate with parameters of the NLC designs described in Ap-

pendix D; note that the linac parameters are still in a state of flux, but those Iisted

in Appendix D provide a representative set.

There are three forms of emittance dilution that can increase the effective ver-

tical emittance in the linacs: conservative dilutions where the six-dimensional emit-

tance is conserved but the projected emittance is increased, pulse-to-pulse jitter

where the beam emittance is not necessarily increased, but the e$ective beam size

is enlarged, and finally, non-conservative dilutions, such as scattering and radiation,

that directly increase the beam emittance.

The conservative dilutions are similar to those that lead to a local beam size

increase in the damping ring; this was discussed in Section 2.2. These dilutions only

increase the projected emittance beam, and, in theory, the effects can be removed.

Unfortunately, in a linac, the dilutions “filament” because the beam has a finite

energy spread and the phase advance is energy dependent. Thus, after propagating

through the linac for a short distance, the dilutions become very difficult to remove

and effectively become an emittance increase.

We discuss the equations of motion in a linac and the filamentation process in

Sections 3.2 and 3.3. Then, in Section 3.4, we calculate the primary conservative

dilutions which are due to dispersive errors, transverse wakefields,  and RF deflec-

tions; these are analogous to the local dispersive and synchro-betatron coupling in

the damping ring. In Sections 3.5 and 3.6, we discuss methods of easing some of
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the tolerances that these dilutions impose, and finally, in Section 3.7, we calculate

the effect of magnetic field errors which cause betatron mismatches and transverse

bet,atron  coupling.

Next, in Section 3.8, we discuss the effect and sources of pulse-to-pulse jitter;

these effects are important in future linear colliders because the beam sizes are

very small. Finally, in Section 3.9, we discuss a few additional dilutions, including

the beam space charge and the non-conservative dilutions. The non-conservative

dilutions are similar to those that determine t,he beam emittance  in the damping

rings, but in a linac,  these effects are very small.

Throughout this chapter, we will calculate tolerances to limit the vertical emit-

tance dilution to roughly 6%; this causes a 3% reduction in the luminosity. We

choose to limit the individual dilutions to t,his small value because there are many

independent sources of dilution, all of which a,dd to the final result.
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CHAPTER  3.2

EQUATIONS  OF MOTION AND PROJECTED  EMITTANCES

3.2.1 Equations of Motion

In a high energy linear accelerator, the longitudinal motion is effectively in-

dependent of the transverse motion. There are sources of coupling between the

longitudinal and transverse planes, but the longitudinal emittance is much greater

than the transverse emittance (between four and six orders of magnitude greater in

the NLC linacs)  and thus we can neglect the perturbations to the longitudinal plane

from the transverse motion.

Furthermore, in a high energy linear accelerator, the longitudinal position is

essentially fixed; as discussed in Appendix A, it is independent of the energy devia-

tion as well as the transverse motion. For example, in the NLC main linac, particles

within 3a of the design energy and beam divergence shift longitudinal position by

much less that 1 pm; in contrast, the bunch length is roughly 100 pm.

Since the transverse motion does not affect the longitudinal, we can parameterize

the transverse motion with the longitudinal coordinates. The dominant effects in

a linear accelerator are due to the focusing and deflecting magnetic fields and the

wakefields. Thus, the transverse equations of motion can be written:

-$&s&s;  z,q - (1 - wy!/(s;  z,q - Yql = (1 - WY

+ Cl- 6jNro md*’ O”
7(s) J J

cR’p(z’, S’)W*&; 2’ - z)[y(s; 2’,6’) - ya] )
(3.2.1)

% --CO

where the only difference between this equation and that for the motion in a storage

ring is the dependence on y(s) which leads to the adiabatic damping.

Specifically, s and z are the longitudinal position in the accelerator and in the

bunch, and 6 is the relative energy deviation which is also a function of s and

Z. Next, K1 and G are the normalized focusing and bending functions, and W_L~

is the transverse dipole wakefield  which depends upon the dipole moment of the

bunch; wakefields are inkoduced in Section 2.3.4 and the wakefields  in the NLC are

plotted in Appendix D. In addition, N and TO a,re the number of particles and the

classical electron radius, p is the longitudinal distribution function for the particle
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bunch, and, ys and ya are the misalignments of the quadrupoles and the accelerator

structures. Finally, we have neglected skew quadrupole and higher-order multipole

fields and the higher-order wakefields; these are discussed in Sections 3.7 and 3.4.2,

respectively.

Now, we need the longitudinal equations of motion. As mentioned, the longi-

tudinal position z is fixed; this leaves the relative energy deviation S. The energy

spread consists of two components: an uncorrelated energy spread which comes from

the finite longitudinal emittance  a.nd an energy spread that is correlated with z; this

correlated energy spread is due to incomplete bunch compression, the longitudinal

wakefields, and the accelerating RF volta.ge. Neglecting any initial correlation, we

can express this as

96(s) = &,~~ +
7(s) J ds’e.AERF(s’;  2) + s j ds’ p14’lio(s’:  2 - 2) ,  (3.2.2)

0 0 I

where yo is the initial energy, 6,, is the initial uncorrelated energy spread, and Wllo

is the lowest order longitudinal wakefield.  Assuming a sinusoidal RF accelerating

field,

AERF = ERF(s)[sin(zX.RF  + 4,) - sin( . (3.2.3)

Here, LRF is the wavenumber of the RF a.nd +s is the RF phase which is 90’ for

maximum acceleration of electrons.

Finally, we will calculate the motion of the bunch centroid. This is important

because the centroid, and thus the transport ma.trices  for the central  trajectory,

depends upon the bunch intensity and the correla.ted  energy spread!” The equation

for the centroid is found by integrating Eq. (3.2.1) over the particle distribution

in 6 and z. In general, this is complicated, but if we assume that the transverse

trajectory offsets are large compared to the dilutions and we assume that the bunch

has a gaussian distribution in z, we find

-&-$‘~~~~~~(s)  - (1 - &v)Iil[?/c(s)  - yq] = (1 - S,,)G,
(3.2.4)

+(1-&d ,

where 6, is the avera.ge  bea.m  energy and we ha.ve approximated the transverse

wakefield as Ill/lr(s;  z’ - z) = (z’ - z)l\.‘i,(s).
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Notice that the dipole wakefield acts like a defocusing term in that it increases

the wavelength of a coherent oscilla,tion; of course, the dipole wakefield does not

actually have a gradient and thus it does not change the focusing seen by particles

within the bunch, i.e., the beta functions are unchanged.

Strictly, we need to include this effect whenever we calculate the bunch trajec-

tory, but, in the NLC main linacs, the wakefield effects are relatively weak. The

relative decrease in the phase advance is roughly &V/V c -0.002 and thus we will

neglect the effect. However, in the SLC linac, this effect is much more important.

3.2.2 Projected Emittance

In a conservative system, which a. linear accelerator approximates, the normal-

ized six-dimensional emittance is conserved. Furthermore, in a conservative system

with linear forces, the rms six-dimensional emittance is conserved. But, in a linear

collider, the luminosity is strongly dependent upon the projection of this emittance

into the transverse planes.

As discussed in Appendix A, the six-dimensiona. rms emittance can be calcu-

lated from the beam mat.& Q which consists of the second moments of the beam

distribution:

E; = det 0 where bi,j = (ZiXj) , (3.2.5)

the angle brackets denote the average over all beam particles, and 2; are the com-

ponents of the vector: (~8, z;, yp, yb, z, 6). Similarly, the two-dimensional projected

emittances  are just calculated from the 2 x 2 sub-matrices along the dia.gonal  of the

full beam matrix. Specifically,

(3.2.6)

At this point, we should note a very useful method of visualizing the beam.

The transverse projected emittance is not conserved because it is coupled to the

longitudinal plane. But, since the longitudinal position is fixed, we can divide the

beam longitudinally into slices of constant Z. Each slice has a specified correlated

energy deviation which is determined from the bunch compression, the longit.udinal

wakefields, and the RF a.cceleration. Finally, we further subdivide each slice into

slices of constant 6,,, the uncorrelated energy deviation.

115



Now, as the beam travels down the lina.c, the bunch is deformed by the wake-

fields and the chromatic and dispersive effects. The wakefields depend upon the

longitudinal position z while the chromatic and dispersive effects depend upon the

energy deviation. Since z and 6 are pa,rameters  in the equations of motion, the area

of any given slice remains constant, but the centroids of the slices are shifted by

dipole wakefields and dispersive errors while the shapes of the slices are changed by

chromatic errors and quadrupole wakefields.

So we visualize the beam as being composed of all these slices which have dif-

ferent shapes and centroids. The projected emittance is found by summing over all

of the slices. Specifically,

(3.2.7)

where we have neglected the possibility of transverse coupling. Now, using Schwarz’s

inequality and the positive definite na.ture of the beam matrix, it is easy to show

that any source of correlation with z or 6 increases this projected emittance:

det
2

dbp(z,  6)o(z, 6) d6p(z, S)&qqqq , (3.2,s)

where the equality occurs if and only if the beam matrix does not depend upon

either z or 6.

Inequality (3.2.S) is a specific case of a more general result which states that,

assuming the beams are initially uncoupled, any source of coupling always increases

the smaller of the emittances.  In the case of inequality Eq. (3.2.S), the longitudinal

emittance has been implicitly a.ssumed  to be much much greater than the transverse

since the transverse motion does not affect the longitudinal, but a similar result holds

for the transverse coupling in the NLC, where the vertica.1  emittance is much smaller

than the horizontal; any betatron coupling lea.ds to an increase in the projected

vertical emittance.
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CHAPTER  3.3

FILAMENTATION AND TRANSVERSE  MATCHING

In this chapter, we will discuss filamentation and the transverse matching of

the beam. The beam extracted from the damping rings has a well defined beam

ellipse. This needs to be matched to the machine ellipses of the linacs and the bunch

compressors to prevent dilution of the projected transverse emittances.  We will first

describe the reasons for this requirement and then estimate the effect of mismatches.

Most of these effects have been studied by people working on the SLC at SLAC and

many of the results are described in Refs. 70, 2, 35, and 73.

3.3.1 Filamentation and Natural p Functions

Filamentation occurs when particles in the beam have different frequencies of

oscillation. The frequency dependence can be due to the energy dependence of

the phase advance, i.e., the chromaticity, or nonlinear fields which cause the phase

advance to be amplitude dependent. The effect of the filamentation is to cause a

phase mixing which makes it difficult to correct dilutions of the projected emittance;

once a dilution filaments, it is, for practical purposes, unrecoverable.

Filamentation is important when describing the transient response of the beam,

i.e., in linacs or transport lines, or at injection in a storage ring. It is not important

when considering the periodic behavior of a beam in a storage ring. Thus, the

filamentation is not important when correcting the local (projected) beam size in

the damping rings (see Section 2.2) provided that the dilution is corrected in the

ring or promptly after the beam is extracted.

The reason for this distinction between the transient and periodic behaviors

can be understood by examining the behavior of two harmonic oscillators that have

slightly different resonant frequencies; this models the transverse motion of two

particles with slightly different energies. If the oscillators are driven off-resonance

by the same periodic force, the motion of the oscillators will be similar in both

amplitude and phase. In contrast, if both oscillators receive a transient deflection,

the amplitude of the resulting oscillations will be similar, but they will have a

steadily increasing difference in phase.

We will divide the energy dependent filamentation into two catagories:  disper-

sive and chromatic filamentation, the former applying to filamentation of an oscil-

lation and the la.ter  referring to the filamentation of the beam ellipse. Dispersive
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Machine Ellipse

Fig. 19. Dispersive filamentation of a coherent betatron oscillation.

filamentation occurs when the beam performs a coherent oscillation. Here, the cen-

troid of the lower energy particles oscillates at a higher frequency than that of the

higher energy particles. The situation in 9-y’ phase space is illustrated schemati-

cally in Fig. 19. As the beam filaments, it will fill the a.nnular  region in the machine

ellipse and the amplitude of the initial coherent oscillation decays.

Chromatic filamentation occurs when the beam is not matched to the focusing

structure of the machine; this is il1ustra.W  in Fig. 20. Here, the bea.m  ellipse of the

low energy particles rotates within the machine ellipse more quickly tha.n  that of

the higher energy particles. In this case, the beam will filament to fill the machine

ellipse at twice the rate of the dispersive filamentation.

In both cases, the projected emittance  increa.ses a.s the beam filaments to occupy

the machine ellipse. The machine ellipse is defined by the beta functions which, as

discussed in Appendix A, a.re a cha.ra.cterist,ic  of the focusing structure, not of the

beam. In a storage ring, t’he beta functions are chosen to be periodic, but, in a

transport line, the choice is not a.s obvious; one needs to determine the boundary

conditions. In this section, we will show tl1a.t  there are “natural” beta functions

which are determined by the perioclicity of the system. This is well known in storage

rings and is intuitively obvious in a long t,ransport  line, but it is worth demonstrating

explicitly.
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Machine Ellipse I

Fig. 20. Chroma.tic filament&ion  of a mismatched beam.

To examine the effect of the filament.ation, we will consider the transport of the

beam matrix a through a periodic, lattice. The two-dimensional beam matrix equals

(3.3.1)

where we have used the beam parameters introduced in Eq. (A.2.20) in Appendix A.

The transport of a monochromat.ic beam ca.n be described with the linear trans-

port matrix R.

o(h:s)= R(c5;O,s)a(~;O)fi(~;O,s)  , (3.3.2)

where 6 is the relative energy deviation of the beam and the transport matrix R

is also introduced in Appendix A. Specifically, the transport matrix for n periodic

cells can be written

R ( 6 ) =
cos 12gyJ(S) PO(~) sill ntio(S>

-& sin 7z$o(b) cos nTjo(6) >
7 (3.3.3)

where the subscript 0 is used to denote the periodic la.ttice parameters which are

functions of the energy cle\Gat,ion  and we have a.ssumed  that we are starting from



a symmetry point so cyg = 0. Notice that the determinant of the transport matrix

is unity; the transverse rms emitta.nce of a monochromatic beam is not changed by

transport through a linear lattice.

Now, we are in a position to demonstrate the existence of the natural lattice

functions. Assume that the initial beam is independent of 6 but it has a finite

energy spread and an initial emittance 6. The inequality Eq. (3.2.8) shows that the

projected emittance will increase if CT depends upon 6. Assuming that the energy

spread is small, we only need consider the first few derivatives of the beam matrix

Eq. (3.3.2):

doll
I-=

d6
-~T.&(~cx*/& cos(272~0)  + (,B* - y*@) sin(2?2$0))

da2- = c~(?cr*@o  sin(
dS

212gQ)  - (/3* - +ytj!?;, cos(2n~o))
0

d2m
F= 6272’$&“(2a*40 sin(272&) - (p* - y’&) c0s(212?/0))

(3.3.4)

,

where $’ = d$/db and we have assumed that n >> 1; there are also terms that

depend upon dp/ds and da/ds but we have only kept terms of highest order in n.

The derivatives of the other element,s of the beam matrix a.re 1inea.r  combinations of

these.

To prevent dilution of the projected emittance, these derivatives should be zero.

One can immediately see that,  both the first and second derivatives will be zero

provided that
*-0 - 0 * cl* = cl0

p* -7*/t?; = 0 P*=Po ,
(3.3.5)

*

i.e., the beam should be malched  to the periodic latt,ice parameters. A mismatched

beam will filament, with corresponding emittance growth, until it is matched to these

natural lattice functions. This is illustrated in Figs . 21 and 22 which a.re generated

by tracking the beam ellipses of forty,  macro-particles distributed between 6 = $30,

and 6 = -3a,. In Fig. 21, we have plotted the projected emittance versus initial

beta mismatch for a beam, with a, 1% rms energy spread, that has traversed sixty

90’ FODO cells. The dilution of the projected emittance has a minimum when the

beam is matched to the periodic 1at.t  ice fuilctions.
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11 1 ’ ’ ” 1 ” “1 ’ ““A
0.5 1 1.5 2

Beta mismatch: /3* / (30

Fig. 21. Simulation of chroma.tic  filamentation in a FODO lattice with 90’
cells and a 1% rms energy spread vs. the magnitude of the beta mismatch:

P*IPO*

5 1.20
3
3

rJ:Q 1 .15
aI
z2 1.10

.v+ i 1.05

1 .00 0
0 10 20 30 40 50 60

C e l l  n u m b e r

Fig. 22. Simulation of chromatic filamentation in a FODO la.ttice with 90”
cells and a 1% rms energy spread; the solid line is the emittance in units of
the initial emittance and the dashed line is the measured beta function /3*.
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In Fig. 22, we have plotted the rms emittance and the measured beta function

of the same beam versus cell number. Here, the initial beta mismatch is @*/PO =

0.5. The rms emittance increases towards an asymptotic dilution of 25% while the

measured beta function oscillates about the natural beta function, decaying to the

natural value as the beam fila.ments  and the projected emittance grows.

Finally, we need to discuss the degree of filamentation in a linac. This can

be estimated from the chromatic phase advance for particles with the rms energy

deviation:
L

1
6u = -

4n s
6Ii’l  p&i . (3.3.6)

0

We will evaluate this using the NLC scaling for a FODO lattice described in

Appendix D. Here, the normalized quadrupole strength decreases inversely with the

beam energy while the beta functions a.nd t’he yuadrupole and drift lengths increase

with the square root of the beam energy. Assuming that the energy spread decreases

inversely with the beam energy, we find

(3.3.7)

where (K1L,)a is the initial integrated quadrupole strength, ,& and PO are the initial

maximum and minimum beta functions given by Eq. (D.l.l),  and 60 is the initial

energy spread. Now, using the relation Eq. (D.1.7) for yn, we find

(3.3.8)

where $,c is the phase advance per cell and we have simplified the expression with

Eq. (D.1.3). In the 500 GeV NLC linac, we find 6v E 0.22 and thus we conclude that
the NLC linac is in the partial filamentation regime; an initial mismatch filaments,

but most subsequent dilutions do not.
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3.3.2 Matching Tolerances

At this point, we can discuss the required tolerances on matching into the linac.

We will consider the effec.t  of beta mismatches, dispersion misma.tches, and higher-

order contributions. In all cases, we will assume that the mismatch fully filaments.

This will over-estimate the severity of the tolerances in the NLC Iinacs where the

beam does not fully filament. Finally, trajectory mismatches, which lead to disper-

sive filamentation, are discussed in Section 3.4.1.

Lattice Functions

The emittance dilution due to filamentation of a beta mismatch can be writ-

ten: 1351

~=S(~+S)+~(**~--~)z-I  , (3.3.9)

where cy and p are the machine parameters and cu* and /3* are the beam parameters.

At a symrnetry point where Q.* is mat,ched,  i.e., a* = Q = 0, this yields the emittance

dilution seen in Fig. I31. Not.ice  that the effect.  of the beta mismatch is multiplicative.

Thus, the tolerances do not decrease as the emittance decreases and the tolerances

in the NLC for 6% emittance dilution a.re simi1a.r  to those in the SLC.

Specifically, to limit the vertical emittance dilution to less than 6%, we need to

match the beam parameters and the lattice functions to roughly

Icrf 1 s 0.20 (3.3.10)

where we have assumed that we are matching to a symmetry point in the lattice.

Beta matching at this level is frequently achieved in the SLC despite the non-optimal
[351matching a.rrangement.

Dispersion

Unlike the beta mat,ching,  a dispersion misma.tch  is an additive increase to the

emittance. Thus, the to1era.nc.e  on t.he vertical dispersion will be much tighter than

in the SLC. Assuming full filamenta.tion, the emittance dilution due to residua,l

dispersion at the beginning of the linac is:IT3’

xya;AC= -
2 , (:3.3.11)

where EFI, is the dispersion function defined in Eq. (A.5.9) and in the NLC linacs,
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this implies a tolerance of

(3.3.12)

at injection to limit the dilution to 6Yo.

Nonlinearity

In the SLC, it has been found that it is extremely important to match the

higher-order dispersion and chromaticities at the beginning of the linac!’  These

higher-order terms are supposed to cancel in the bunch compressors, but errors

in the lattice reduce the cancellations. Furthermore, these effects were not easy

to correct because the lattice had few independent “knobs” with which one could

modify the optics; the problem has been eased with the addition of independent

power supplies. We could list tolerances on these higher-order contributions, but,

instead, we simply note that the bunch compressors must be designed to facilitate

correction of the inevitable errors.
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CHAPTER 3.4

PRIMARY  SOURCES OF DILUTION

In this chapter, we will discuss the primary sources of coupling that increase

the projected emittance. These are dispersive errors, transverse wakefields, and RF

deflections. In the first two cases, we will consider the effect of a coherent betatron

oscillation and a trajectory which is corrected to zero the Beam Position Monitors

(BPMs) measurements. In the case of the RF errors, we will only estimate the effect

of random errors. Finally, in analogy with Section 2.2.8, we will comment on the

distribution of the emittance from these errors and the additional tolerance needed

to limit the emittance with a 95% confidence level. In general, the tolerances found

in this section are severe; we will discuss techniques of easing them in Section 3.5.

To estimate these dilutions, we will use two particle models. Here, we repre-

sent the beam with two macro-particles separated in 6 or z and then estimate the

emittance dilution assuming that the coupling is a linear function of the separa-

tion. Instead, one could calculate the dilution as a function of 6 or z and then

integrate over the distribution to find the dilution; this approach is taken in Ref. 31.

We choose the two particle model since it provides a fairly accurate estimate of

the dilution while also providing a simple picture for understanding the correction

techniques discussed in Section 3.5.

Finally, throughout this section, we will compare our estimates with the results

of computer simulations. These involved tracking the centroids and beam ellipses

of 55 macro-particles distributed in the longitudinal phase space in the NLC linac.

The simulations included the effect of wakefields and/or dispersive errors as noted

in the text.

3.4.1 Dispersive Errors

We differentiate between two types of energy dependent errors: dispersive and

chromatic. Dispersive errors arise from a correlation between the centroid of the

constant energy slices of the beam and the energy deviation while the chromatic

errors a,re due to a correlation between the second moments of the slices and the

energy deviation, i.e., chromatic errors distort the shape of the beam ellipses. The

chromatic error was discussed in Section 3.3 as a source of filamentation. If the

beam is matched to the lattice, the chromatic error is small.
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The energy deviation includes both an uncorrelated contribution and a contri-

bution correlated with the longitudinal position Z. The dispersive error due to the

correlated energy deviation is used to (partially) cancel the effect of the dipole wake-

fields; this is BNS damping PI and will be discussed in the next section. Thus, we

categorize this correlated dispersive error with the wakefields and, in these calcula-

tions, only consider the dispersive errors due to the uncorrelated energy deviation.

To estimate the effect of the dispersive error, we use a two particle model where

one macro-particle has the design energy and one has an energy deviation 6,,. Then,

the difference between these two macro-particles Ayd = yC - ya,, is found from the

equation of motion Eq. (3.2.1). This yields

where x is the correlated energy spread and 1(1(x) = (1 - T8)Kr. In addition, we

have neglected the dispersive effects of the wakefields,  this is valid if the wakefield

is weak compared to the ext,ernal  focusing as it is in the NLC.

The solution to this equation can be expressed in terms of the RI:! transport

matrix element. The Rrz transport element (see Appendix A) describes the position

offset resulting from a deflection; it can be thought of as the Greens function for the

accelerator lattice. This yields

Ayd(s)  = jd.‘a,,,(s’)(G, - IbYq)&(b’,S)
0

(3.42)

where S = S,, + s.

Note that we have separated the solution into two contributions. If we ne-

glect the slow va,ria.tion of b,,,, the first contribution is simply proportional to the

trajectory at s and c.an 1~ neglected. The second contrihut,ion  depends upon the

trajectory offsets in all of the quaclrupoles  along the linac. It is this term that can

grow to become a significant emit,tance dilution.
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At this point, we need to calculate the effect of the dispersion on the projected

emittance. If the dispersion is linear in the energy deviation, valid for small 6,,,

then the resulting projected emittance can be expressed as’s51

Q=tol/~ ) (3.4.3)

where EO is the undiluted emittance and 3 is analogous to the singIe  particle invari-

ant:

23 = yrIAy2  + 2ayAyAy’  + &Ay12 . (3.4.4)

To limit the luminosity reduction to 3%, we want to limit the emittance dilution

to 6%. In this case, the tolerance on 3 is 3 s 0.06~  and tolerance on the expected

value of Ay2 can be expressed as

(3.4.5)

We will consider the dilution due to two types of trajectories: a coherent betatron

oscillation and a trajectory corrected to zero the Beam Position Monitors (BPMs).

3.4.1.1 COHERENT BETATRON OSCILLATION

If the beam performs a. betatron oscillation down the linac, it will begin to

filament because of the chromatic pha.se advance. This was referred to as dispersive

filamentation in Section 3.3 and is schematically illustrated in Fig. 19 where we

have plotted a low-energy, an on-energy, and a high-energy beam ellipse of a beam

starting to filament. If the bea.m fully filaments, the emittance dilution is found

from Eq. (A.5.10) to be

YyYi + %/YOYlb + P,Yi12) , (3.4.6)

where yo and yh are the initial amplitudes of the betatron oscillation. For 6%

emittance dilution, this sets a tolerance on the maximum injection jitter of

yo 2 0.35ay , (3.4.7)

which corresponds to a tolerance of roughly 0.7 /lm in the NLC ma.ill linacs.
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Equation (X4.6) specifies the mazl:mu,rn  dilution due to beam jitter, but if the

beam does not filament significantly, the dilution is smaller and thus the tolerance

is looser. To calculate this, we use Eq. (3.4.2) and an expression for a coherent

betatron oscillation. Using the R11 matrix element, a betatron oscillation can be

written:

Ye(S) = Yo~y~cos(w - $0) ) (3.4.8)

where we have assumed the oscilktes  starts from a symmetry point where cry = 0.

Now, we use the NLC scaling described in Appendix D. In particular, ICr is

assumed to decreases inversely with the beam energy while the beta functions and

the lengths increase with the square root of the beam energy. This yields a sum over

quadrupoles that depends upon the beam energy at the magnets. Using Eq. (D.1.7)

and expressing the sum as an integral, we find

(3.4.9)

where Nceu is the number of FODO cells in the linac, So is the initial uncorrelated

energy spread, +c is the phase advance per cell, and the expression was simplified

with Eq. (D.1.3).

In the 500 GeV NLC linac, Eq. (3.4.9) incorrectly yields a tolerance that is

tighter than that of Eq. (3.4.6). T llis occurs because, as described in Section 3.3,

the beam partially filaments in the NLC linacs. The dispersive emittance dilution

due to a coherent betatron oscillation in the NLC 500 GeV ma.in linac is plotted in

Fig. 23; the dilution due to the wakefields  is not included. The maximum amplitude

of the oscillation is equal to the beam size and thus Eq. (3.4.6) predicts a. maximum

emittance dilution of 50%. In Fig. 23, the dilution approaches this maximum,

reaching 44% at the end of the linac.

3.4.1.2 CORRECTED TRAJECTORY

We will consider the dispersion due to a corrected trajectory essentially following

the procedure out,lined in Ref. 99. We assume tha.t  the trajectory is corrected

to zero the BPh1  measurements as is usually the ca.se. Unfortunately, the BPhls

are misaligned, both mechanically a.nd electronically, and thus, t,he actual orbit is

deflected from side-to-side following the misalignments.
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S (meters)

Fig. 23. Simulation of dispersive filamentation of a betatron oscillation in
the 500 GeV NLC main linac; the initial oscillation amplitude is equal to
the initial beam size.

We will calculate the dispersive error assuming that the BPM misalignments are

random and that the trajectory correction only uses correctors and BPMs located

at the focusing quadrupoles; we refer to this as “one-to-one” tra.jectory  correction.

To begin, we need to demonstra.te  that we can neglect the first term of Eq.

(3.4.2); then, we can calculate the expected dispersive error. Consider a single mis-

aligned BPM as is illustrated in Fig. 24. Using Eq. (3.4.2), the resulting dispersive

error is

(3.4.10)

where, for simplicity, we have assumed 90’ pha.se advance per cell and we have

neglected the defocusing quadrupoles. Since the final trajectory is zero, the deflec-

tions must cancel: 01 fi = 03 & = * cy/ ,&. We can neglect the first term if it’s

magnitude is much less tl1a.n t#ha.t  of the second, i.e., if

A

(61 - 63);  < 62(K-lL&? . (3.4.11)
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Fig. 24. S hc ematic of one-to-one trajectory correction; the trajectory is
corrected to the BPhls (diamonds) which are misaligned in the quadrupoles
which are also misaligned relative to the centerline.

Using the NLC scaling, Eq. (D.l.‘i), and expressing the integrated quadrupole

strength in terms of the beta functions, this condition can be expressed as

2 Tf- -=
N d-

2A7
cell 70 -F1 y

(3.4.12)

where Ay is the energy gain over one cell. This is certainly satisfied in the NLC

linacs and thus we will neglect the first term of Eq. (3.4.2).

Now, from the second term of Eq. (:3.4.2), we find an expected error

(3.4.13)

where we have used the NLC scaling described in Appendix D. In addition, to

simplify the result, we have neglectsed  the defocusing quadrupoles and thus our result

will slightly overestimate the error; the contribut,ion  from the defocusing quadrupoles

will reduce this result by a fackor of b/a which is about 15% in a lattice with a 90’

phase advance per cell.
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Finally, using Eq. (D.1.7) for yT1  and expressing the sum as an integral, we find

(a~:) x b,?(y;) 4tan2&/2
P jr

(3.4.14)

where we have used Eq. (D.1.3) to express the result in terms of the phase advance

per cell.

In the 500 GeV NLC linac, this yields a tolerance on the actual trajectory of

Ycrms 5 4 pm , (3.4.15)

for 6% emittance dilution. This is a tolerance on the alignment of the BPMs and it

is severe. To verify this result, we ha.ve simula.ted 1Opm BPM errors in the NLC 500

GeV linac. The final dilution, found by averaging the results of 20 different random

error distributions, is AE~ = 37%; this agrees well with the prediction Eq. (3.4.14).

Of course, this tolerance assumes that the trajectory follows the random BPM

alignment errors. In Section 3.5, we will discuss alternate techniques of correcting

the trajectory that could ease this tolerance by over an order of ma.gnitude.

3.4.2 Transverse Wakefields

As described in Section 2.3.4, wakefields arise from the electromagnetic interac-

tion between the beam and the external environment. They cause forces that are

functions of the longitudinal position with the bunch z, and thus, the wakes will

dilute the transverse projected emittance. In this section, we will discuss the effect

of the wakefields in the linacs. We will only consider a single bunch of pa.rticles,

neglecting the multi-bunch effects; these are discussed in Ref. 117.

The wakefield force can be sepamted into multipole components much like the

magnetic fields. In a cylindrically symmetric structure WI

F&z) = Ne2((y)M7&) - 2(z2 - y2)rvL2(~)y  + 4(zy)~&)~ + - - -) , (3.4.16)

where the angle brackets denote an average over t,he bea.m  particles and Iv,, and

Wl, are the dipole a.nd quadrupole ivakefields.  In general, the ma.gnitude  of the

higher-order wa.kefield  multipoles decrea.ses  inversely with the square of the iris ra-

d i u s :  Wl, 0: l/u .2n Thus provided that the beam size and the trajectory offsets,

are small compared to the iris radius, me only need consider the first few multipoles.

131



Here, we will first consider the effect of the dipole wakefield due to a coherent

betatron oscillation, a corrected trajectory, and random misalignments of the ac-

celerator sections. Then, we will briefly discuss the quadrupole wakefield; it has a

small effect. To calculate the effect of the dipole wakefield, we start from the two

particle model where one particle is located at the head of the bunch z = +a, and

the other particle is at the tail z = -oz. Now, half of the difference between these

two particles 2Ay, = y(z = +g,) - y(z = -a,) is found from the equation of

motion Eq. (3.2.1). Specifically,

(3.4.17)

where WL~( 20,) is the transverse wakefield  a.t -20,  and g is half of the coherent
-

energy difference between z = +o, and t = -oZ: 26 = S(Z = -a,) - S(z = +a,).

Again, the solution for Ayu, can be written in terms of the Rr2 transport matrix

elements in a form similar to Eq. (3.4.2). In addition, the resulting dilution can be

found from Eq. (3.4.3), where 3 is now a function of AyW.  To limit the luminosity

reduction to 3%, we need to limit AyW to Ayu, 5 0.25~~~  or Ay;/&, 5 O.OGQ,.

3.4.2.1 COHERENT OSCILLATIONS AND BNS DAhmNG

A betatron oscillation can be written in the form of Eq. (3.4.8) and the solution

can be found from Eq. (3.4.17) using the Rr2 matrix elements. If the correlated

energy spread is zero 2 = 0, the tail particle is driven on resonance by the wakefield

of the head particle. Using the NLC scaling and noting that the energy increases

linearly with position down a lina.c,  we can express the solution as

(3.4.18)

where g is the acceleration gradient, in AT per meter and p is calculated in Ap-

pendix D.

In most cases, this will result. in severe  t,olerances.  In the NLC 500 GeV linac,

132



Chapter 3.4.2.1

this yields a tolerance on the initial amplitude of the coherent oscillation of

y o  2 0.4pm , (3.4.19)

for 3% luminosity reduction a.nd,  in the lower gradient 250 GeV linac, this tolerance

is a factor of two more severe.

To ease this tolerance, we can add a correlated energy spread s!“’ This correlated

energy spread can have three effects: first, the head and the tail particle have

different betatron frequencies because of the chromatic phase advance and thus

the resonant growth is reduced; the dilution “beats” rather than growing linearly.

Second, the dispersive factor XA’r can be used to directly cancel the wakefield driving

term and thereby the growth and, third, the energy spread can cause an apparent

damping of an oscillation in the transverse phase space. These techniques a.re all

referred to as BNS damping 161 but we will denote the first two cases as the “beating”

and “autophasing” regimes of weak BNS damping and the third as strong BNS

damping. Since the NLC is in the weak BNS damping regime, we will only discuss

the first two effects.

Weak BNS Damping: Beating

In this regime, the cancellation is a global correction. It depends upon the

chromatic phase advance and thus the correction is averaged over many cells. In

this case, we can calculate the dilution using a smooth approximation. Explicitly,

we assume that the

the chromaticity; in

tail macro-particle has a phase advance of $ + 4rta where [ is

a FODO cell the chroma.tic.ity  per cell is approximately”201

tan $,/2
l$=- .

?r
(3.4.20)

Now, if we calculate the effect of a coherent betatron oscillation, neglecting the

dispersive contribution, we find

AY; x & Nr0Wd26) 2 y0

Pf PO
4 ) G( &)‘( Sin z;r;cc’)2 . (3.4.21)

This shows that the dilution beats as the beam propagates down the l&c, increasing

and decreasing depending upon the relative phase between the head and the tail.
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Ideally, one can minimize the dilution by choosing

(3.4.22)

where n = fl, f2,. . . . Of course, when the dispersive effects of the XIi’l term are

included, one finds that a negative 3 is much more effective than a positive x. In

the 500 GeV NLC linac, Eq. (3.4.22) y ieId s a minimum energy spread of

TBNS = -4 x 1o-3 . (3.4.23)

Weak BNS Damping: Autophasing

Next, in the autophasing regime, the dispersive term ‘BK1  is used to cancel the

wakefield. In the smooth approximation, where li’l and l/V,, are smooth functions

of s, one can solve for a z such that the cancellation always occurs. Unfortunately,

this local cancellation is not possible in the alternating-gradient focusing structures

used in high-energy machines. While the wakefield  I+‘11  has a constant sign, an

alternating-gradient focusing structure usually contains a periodic array of discrete

focusing magnets with both positive and negative K1 values. Since the energy

spread 6 cannot be changed rapidly with s, at best one can adjust correlated energy

deviation to cancel the integral of the wakefield over a cell of the focusing structure.

To calculate the BNS damping condit,ion,  we start with the betatron oscillation

of Eq. (3.4.8) and use the RI? ma,trix  element to solve Eq. (3.4.17). Since the

autophasing cancellation is quasi-local, we can neglect the chromatic phase advance

which is only significant after ma.ny cells. Thus, we find the expression:

(hwL - P) sin((2n + 1)2clc - 4f))

- Nro~~lO(L,,,)nW(sin $f - sin((h + l)& - $I) cos &/2)] ,
n

(3.4.24)

where L,,, is the length of accelerator section between two quadrupoles,  i.e., nearly

the ha,lf of the cel1 length in our model.
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Fig. 25. Simulated emittance dilution due to wakefields with and without
BNS damping in the 500 GeV NLC linac; initial amplitude of the betatron
oscillation equals the beam size: 2 /lrn.

If we neglect the quickly varying terms, which will average to zero, we find the

autophasing condition:

(3.4.25)

Here, the NLC scaling is convenient since the required x is independent of y. In the

500 GeV NLC linac, we find

T;BNS = - 1 . 7  x  1o-3 . (3.4.26)

In the NLC, the correla.ted  energy spread for autophasing is less than that required

for the beating BNS damping. In the SLC, the situation is reversed; the energy

spread for autophasing is much greater than that for t,he beating BNS da.mping.

Of course, in practice it is difficult to achieve the BNS damping conditions for the

entire bunch. Thus, even when close to the BNS damping conditions, there is still a

small growth of the projected emittance. In Fig. 25 we have plotted the emittance

dilution due to wakefields of a beam with and without the optima.1 autophasing

energy sprea.d in the 500 GeV NLC linac; the initial amplitude of the betatron
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oscillation is equal to the beam size: yo = 2pm. Without BNS damping, the

emittance  doubles, while with BNS damping, the dilution is only 8%; this implies a

tolerance on an oscillation of roughly 2 pm with BNS damping and thus the tolerance

on the amplitude of the oscillation is determined by the dispersive dilution and not

the wakefields.

3.4.2.2 CORRECTED TRAJECTORY

At this point, we need to consider the effect of the wakefields due to a corrected

trajectory  where we assume that the trajectory is corrected to zero the BPMs at

the focusing quadrupoles. Thus, this dilution will be very similar to the dispersive

error due to a corrected tra,jectory.

As discussed in Section 3.4.1.2, we can neglect the first term: (GY - Kly,),

in Eq. (3.4.17) which gives rise to the non-zero trajectory. This leaves the term

proportional to the trajectory. In this estimate, we will assume that the autophasing

condition is exactly satisfied. Unfortunately, this does not cancel the wakefields due

to a corrected orbit. In particular, the cancellation depends upon the position z

in the quadrupoles and the accelerator sections and thus exact cancellation is only

possible if Z(S) is correlated from point-to-point. This is the case for a coherent

betatron oscillation, but it is not true if the particle is steered or deflected by random

errors as is the case for a corrected trajectory. Thus, while the BNS technique can

cancel the wakefield effects due to a coherent betatron oscillation, it may reduce,

but cannot cancel, the effects of wakefields due to a corrected trajectory.

We can estimate the residual dilution using the model illustrated in Fig. 26. We

assume that the trajectory is corrected to the (misaligned) BPh+s at the focusing

quadrupoles and we ignore any misalignments of the defocusing quadrupoles. In

this case, the trajectory at the defocusing quadrupoles can be written in terms of

the trajectory at the two adjacent focusing quadrupoles:

Y-d = (yo + y-1)u’j sin $jC j2
-;
P sin tic

Y-M = (YO + Y+d
J

fi sin $,/2
-/3 sin+, ’

(3.4.27)

where we have used the nota,tion  of Fig. 26 for the positions at the quadrupoles.

Furthermore, the position at the cent,ers  of t,he accelera.tor  sections is just the average

of the position in the a.djacent  focusing and defocusing quadrupoles.
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Vertical trajectory at elements:

Y - d YO Y + d

” Y-,+y-, - y-d+& ” yO+y+d - y+,+y+1 ”

2 2 2 2

Fig. 26. S hc ematic of the model used to calculate the wakefield dilution
of a corrected orbit; not&ion  denotes the trajectory at the center of the
elements.

Now, the dilution can he found using Eq. (3.4.17). Assuming that the trajectory

offsets, i.e., the BPM misalignments, a.re uncorrelated, we find

(3.4.28)

-
where cos $ is calculated in Appendix D. we have expressed the wakefield in terms

of the BNS da,mping condition Eq. (3.4.25).

Finally, using the NLC scaling and Eys. (D.1.7) a.nd (D.1.3),  we find

AY; -2

- = 4(Yhhd
SBKS  tan’ $jc/2 1 sin Gc/2-

Pf flf 2
3 2iv

cell * (3.4.29)

In the 500 GeV NLC main linac,  this yields a tolerance on the BPM alignment of

(3.4.30)

to limit the emittance  dilution to 6%.
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Fig. 27. Simulated wakefield dilution in the 500 GeV NLC linac due to a
corrected trajectory with 10 pm BPM random alignment errors; the optimal
BNS damping is included.

To verify this result, we have simulated the effect of 10 pm BPM alignment errors

in the 500 GeV NLC linac; the emittance  dilution for a typical case is illustrated

in Fig. 27. The final dilution, found by averaging the results of 20 different error

distributions, is Ac,=14%; this implies a tolerance of roughly 6pm, slightly tighter

that the Sprn calculated above. Again, this is a severe alignment tolerance, but it

can be eased with special correction techniques discussed in Section 3.5.

Finally, it is useful to compa.re the dispersive error due to a corrected trajectory

with the wakefield dilution. In general, t,he dispersive dilution decreases as the focus-

ing decreases while the wakefield dilut.ion increa.ses;  &NS, in Eq. (3.4.25), decreases

with increasing phase advance per cell. This is illustrated in Fig. 28, where we have

plotted the dilution arising from a trajectory corrected to BPMs with 10pm  rms

alignment errors versus the phase advance per cell in the 500 GeV NLC main linac.

The solid line is the total dilution while the dashed and dotted lines are the disper-

sive and wakefield contributions, respect,ively;  the total dilution is not necessarily

the sum of the two individual contributions since caacellations and additive effects

occur. Notice that, in the NLC linac, the minimum dilution occurs at roughly 70”

per cell. Although one could conclude that t,his lower phase advance per ccl1 would
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6 0 8 0 1 0 0
Phase Advance per FODO Cell

120

Fig. 28. Simulated emittance dilution in the 500 GeV NLC linac due to
a corrected tra.jectory  with lO/lrn BPM random alignment errors and BNS
damping; the solid line is the total dilution while the dashed and dotted
lines are the dispersive and wakefield  contributions.

be better than the 90’ per cell currently suggested, we need to remember that the

effect of the accelerator section misalignments has not been included; these are eased

with stronger focusing.

3.4.2.3 ACCELERATOR SECTION MISALIGNMENTS

Finally, we can calculate the effect of random accelerator section misalign-

ments. In this ca.se, the BIYS damping does not reduce the dilution. Starting

from Eq. (3.4.17) and using the NLC scaling, we find

?(AYZJ x
(Y )(

~~~0%1P4

>

2& 1

Pf
a 4 2Ncell  G2 '

(3.4.31)

where 6 is the accelerating gradient in AT/meter.

In the 500 GeV NLC linac, this yields a tolera.nce  on the alignment of the

accelerator sections of

Ynrms 2 4.2 pm , (3.4.32)

to limit the emittance dilution to 6%. \q?e will discuss techniques of easing this
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tolerance in Section 3.6.

3.4.2.4 QUADRUPOLE WAKEFIELD

As expressed in Eq. (3.4.16),  the quadrupole wakefield is proportional to the

second moments (x2 - y2) and (xy) of tlle b earn. It generates a quadrupole or skew

quadrupole force that varies along the length of the beam. Thus, the wakefield

causes a z dependent betatron mismatch or a z dependent betatron coupling; both

effects increase the vertical emittance of a flat beam. Furthermore, in an alternating

gradient lattice, the second moments of the beam are usually non-zero, even if

the trajectory is corrected perfectly. Thus, the wakefield causes a “fundamental”

dilution of the vertical emittance of an intense beam; these effects were first analyzed

in Ref. 30.

In the NLC linacs,  this fundamental dilution is insignificant because the beam

size is tiny compared to the iris radius of the accelerating structures. Instead, the

quadrupole wakefield may prove important because it can couple large horizontal

trajectory offsets into the vertical plane. We can estimate the effect of the quad-

rupole wakefield using the two particle model for Ayw described earlier. Using the

force in Eq. (3.4.16), we find a solution for Ayw  similar to Eq. (3.4.2):

Ayw = -
J

Nr0
ds’- ,

Y
11/1?(2o,)z;y,Rls(2&  s’, s) (3.4.33)

0

where x, is the horizontal beam trajectory.

We consider the effect of coherent betatron oscillations in both planes; the os-

cillations are given by Eq. (3.4.S). In this case, we use Eq. (3.4.33) to find

where x0 and ys are the initial a.mplitudes  of the betatron oscillations and E is the

acceleration gradient. Here, we have assumed that the horizontal and vertical phase

advance per cell are separated; the result should be doubled for the case of equal

phase advances per cell.

To use this equation, we need the qua.clrupole  wakefield at 2a,. W’e will estima.te

this by simply scaling the dipole wakcfield.  In general, the quadrupole wakefield is
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a factor of (1 /a)2 smaller that the dipole wakefield;L2s1 a is the accelerator structure

iris radius which is a zs 4 mm in the NLC main linacs (11.4 GHz) and a z 1.5 cm in

the preliminary linacs (2.8 GHz).

Thus, in the 500 GeV NLC linac, we find W_~2(20~)  N 1Orr  m-’ for a bunch

length of 100 pm. Now, Eq. (3.4.34) predicts an emittance  dilution of less than lo-*

assuming a 100 pm horizontal betatron oscillation and a 10 pm vertical oscillation.

Thus, this is an insignificant effect even though we have assumed extremely large

amplitudes for the initial betatron oscillations.

3.4.3 RF Deflections

RF deflections occur if the accelerating field is not oriented in the direction of

the beam propagation. This can be due to misalignments of the RF structures,

errors with the RF structures such as tilted irises, or an angular trajectory through

the structure.

Assuming a sinusoidal RF field, the deflection can be written [I 081

AYRFAy’ = y-y sill(lhW + 40) , (3.4.35)

where A~RF is the acceleration from the structure, ~RF is the RF wavenumber, and

40 is the phase of the deflection relative to the bunch; this is not necessarily equal to

the phase of the accelerating field. Finally, y is the longitudinal-transverse coupling.

This can be due to misaligned section, a non-zero trajectory through the section,

input/output coupler asymetries, and construction errors in the sections. In these

case, g is:

0,,,/2 for mkaligned sections

for trajectory error . (3.4.36)

for systematic tilted irises

The factor of $ appearing in the first. two expressions arises from the radial focusing

at the ends of the structure while the effect of tilted irises is much more complex

since the cavity fields a.re perturbed; using simple ana.lysis,  one estimates g to be

between @iris and @i,is/2.

The deflections have two effects: they deflect the beam centroicl and they cause

a deflection tha.t  is correla.ted  with the longitudinal position within the bunch z. The
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former effect is simply corrected with dipole correctors, but the later effect dilutes

the projected emittance in a manner similar to the dilution due to the transverse

wakefields.

We can estimate the dilution in the same manner that we calculated the effect

of the wakefields. Assuming uncorrelated errors with random phases 40 and using

the NLC scaling, we find

(3.4.37)

where 2Ayn~ = y(z = i-a,) - y(z = -a,) and Nacc is the number of accelerator

sections. Fjnally, we express the sum as an integral and note that y increases linearly

with the number of accelerator sections, finding

In the 500 Gev NLC linac, Eq. (3.4.3s) yields a tolerance of

(3.4.33)

for 6% emittance dilution. This is not a severe tolerance on the trajectory or the

alignment; at the beginning of the linac, it corresponds to a 120 fern orbit tolerance

in the focusing quadrupoles and a SO/ml  tolerance on aligning the ends of each

structure. But, it is a severe construction tolerance on the systematic alignment

of the irises in the accelerator sections. Furthermore, despite the lower gradient,

the tolerance is comparable in the preliminary linac since it is much lower energy.

Specifically, in the weak focusing preliminary linac, we find

for 6% emittance dilution; the stronger focusing version has a looser tolerance.

For comparison, the measured value in the SLC accelerator sections is grms N

200 prad!‘07’

Finally, we note two points: first, these effects can also be very severe in the

bunch compressors since the bunch is long in what is usually a very high gradient

structure!1o81  Second, since the effect of these RF kicks is similar to that of the

transverse dipole wakefield, we can correct, t.he effect of the RF deflections with the

wakefields. This will be discussed further in Section 3.6.
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3.4.4 Distributiolls

Throughout this section, we have calculated the expected  dilution from random

errors. Of course, the dilution has a distribution and when specifying a tolerance,

we need to include the confidence that, given the tolerance, the dilution will be less

than the desired limit. This issue has been discussed in Section 2.2.8 with respect

to emittance dilutions in storage rings.

In a linac, we can quickly conclude that the dilution function 3 will have

an exponential distribution if the alignment errors have gaussian distributions.

Thus, small emittance dilutions should also have exponential distributions; using

Eq. (3.4.3), the emittance dilution can be written

AE 3-M--
60 co '

(3.4.41)

if the dilution is small.

Unfortunately, as noted in Section 2.2.S, an exponential distribution has a 95%

confidence level at three times the expected value. Thus, if one wants to specify

tolerances that will limit the emitt.ance dilution for 95Yo of the possible arrangements

of errors, the tolerances given in this section need to be divided by a factor of

&. Fortunately, unlike a storage ring, in a linac we are specifying many unrelated

tolerances that all limit the respective dilutions to 6%. Thus, we do not need to

specify each individual tolerance with a 95Yo CL to limit the sum of all of the

independent effects with a 95Yo confidence level. The final distribution is found by

convolving all of the individual exponential distributions and will have the form

of a x-squared distribution with 2N degrees of freedom, where N is the number

of individual tolerances. This distribution becomes narrowly centered about the

expected value as N increa.ses  and t,hus the value of fc~ needed to scale from the

expected value to the 95% confidence value will be much less than three.
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TRAJECTORY CORRECTION

3.5.1 Introduction

As discussed in Sections 3.4.1.2 and 3.4.2.2, standard trajectory correction tech-

niques steer the beam to zero the BPM measurements; we generically refer to these

techniques as “one-to-one” correction since typically a single upstream corrector is

used to zero a single downstream BPM. The problem with this approach is that

the BPMs are typically misaligned, both electronically and mechanically. Thus, the

corrected trajectory is kicked from side to side, following the BPM misalignments.

In such a case, we found that the dilutions due to the dispersive errors and the wake-

fields tend to grow with the square root of the number of BPMs. In the 500 GeV

NLC linac, we found tolerances on the BPM alignment of roughly CQPM 2 4 pm for

6% emittance  dilution. This is over one order of magnitude better alignment than

can be achieved with techniques now in practice.

To avoid this situation, we need to either find and correct the BPM misalign-

ments or develop an algorithm which does not depend upon the BPM alignment

errors. A method of using the beam to do the former has been developed for the

S L C  linac!‘671  T h i s “beam-based” alignment technique uses trajectory informa-

tion from two or more different focusing configurations to solve for the individual

misalignments of the quadrupoles and the BPMs; the focusing configuration of the

machine is varied by tuning the quadrupole magnets which focus the beam through-

out the linac. This method has been used very successfully to find most of the large

alignment errors in the SLC linac with an accuracy of roughly lOO,~m!3]

In this section, we discuss the other a.pproach, namely, the use of correction

algorithms that are less dependent on the BPM alignment errors. Specifically, we

will discuss two methods referred to as “Dispersion-Free” (DF) correction[s5’861  and

“Wake-Free” (WF) correction;‘87‘*81 the DF technique reduces the dispersive dilution

due to a corrected trajectory while the WF method reduces both the dispersive and

the wakefield dilution arising from a corrected beam trajectory.

Our basic approach is similar to that of the beam-based alignment of Refs. 3

and 67 in that we use information from two or more different focusing configurations.

Specifically, we measure trajectories where the focusing structure is changed between

measurements. By subtracting these tra.jectories,  the resulting difference orbits are
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independent of the BPhl alignment errors. In theory, the quadrupole misalignments

could now be found. Unfortunately, the difference orbits still have errors due to

beam jitter, finite BPM precision, and additional unknown deflections. Rather than

trying to solve for the individual misalignments, we simply correct the trajectory to

minimize these difference orbits; this will then minimize the dispersive error and/or

the wakefield dilution.

In the next sections, we will first describe the DF correction algorithm. We

present the basic algorithm and then perform a detailed error analysis to determine

the limitations of the technique. Finally, we verify the performance of the technique

with simulations on the NLC linac. Next, we introduce the WF technique. This is a

simple extension of the DF algorithm. Again, we present the results of simulations

illustrating the effectiveness of the correction algorithm. Finally, we describe some

extensions to these techniques and we discuss the relative merits of these tra.jec-

tory correction algorithms and the beam-based alignment technique. R’Iuch of the

material in these sections is taken directly from Refs. 85 and 87.

3.52 DF Correction

The DF correction technique is quite intuitive. To correct the dispersive emit-

tance dilution, we simply correct the energy dependence of the beam trajectory.

This can done by varying the eflective  beam energy and then correcting the differ-

ence between the resulting orbit and the original trajectory; in a linac, the effective

beam energy can be varied by either changing the actual beam energy or, equiva-

lently, changing the magnet strengths. Physically, it is easiest to understand this

algorithm in terms of the dispersive error expressed in Eqs. (3.4.1) and (3.4.2) of

Section 3.4.1. In essence, the DF algorithm finds a trajectory y,(s) such that over

any short region of the accelerator t.he integrals in expression Eq. (3.4.2) are small.

We should note that the technique is very similar to the dispersion correction

used in storage rings. Actually, the process is simpler in a linac than in a storage

ring since one can ma.ke larger effective energy changes, increasing the measurement

precision, and there are no nonlinear sextupole magnets which can confuse the

measurement,

To correct the difference orbit resulting from changing the effective beam energy,

we need t,o measure the beam t,rajectories.  If we only consider tra.nsverse  deflections



due to quadrupole misalignments and dipole correctors, the it11 BPhl will measure

m; = xi(tl) - 6; + ZoRll(so, si) + sbRlZ(sO,  Si) + C 6jR12(Sj, Si) 7 (3-5.1)

j

where x is a stochastic variable representing the BPhl precision error, i.e., the

reading-to-reading jitter of the BPM measurement, 8 is the integrated deflection of

the dipole correctors and the quadrupole misalignments, and b is the BPM misalign-

ment relative to the linac centerline. Finally, the matrix coefficients R11 and R12

describe the motion of the beam centroid and thus they implicitly include the effect

of the wakefields and filamentation.

In a similar manner, we can calcu1at.e  the mea,sured trajectory after the effective

beam energy is changed by 6(s). The difference orbit that we will correct is found

by subtracting this new trajectory from the original measured tra.jectory:

Ami = (xi(tl) - Xi(t?))  + ~oRI~(J; so, si) + zbJG(6; ~0, s;)

+ pj fi12(Sj,Si) _ R12(S;sj+d
1+s

.

j=l

(3.5.2)

Here, E(S) EE R - R(6) and R(6) is the coefficient R calc.ulated for the modified

optics due to the change in energy. It. is important to notice that the difference

orbit is independent of the BP11 misalignments. We should also note that we have

not included additional unknown errors such a.s RF deflections or magnetic strength

errors; these and other errors will be discussed in Section 3.5.3.

In principle, using (Ns + 2) BPhls, we could solve for the N, quadrupole mis-

alignments and the initial conditions exactly, provided that the BPhJ precision errors

and any unknown deflections are negligible. In such a case, we could fix the injection

and the quadrupole errors; the trajectory would then follow the linac centerline and

the dispersive error would be zero.

Obviously, this is not realistic. When the a.dditional  errors are included, the

difference orbit is not a function of just (AT,  + 2) unknowns. Thus, we cannot

calculate the individwl quadrupole misalignments and the init,ia.l  conditions exactly.

The error in each calculated value will increa.se  with the number of misalignments

being estimated sinc,e each calcula.tion  depends upon the accuracy of the preceding

calculations. Of course, while the error of ea.4 individual calculation may be la.rge,

the global solution could be used to reduce the difference orbit to the level of the

BPh4  precision errors.



Chapter 3.5.3

Unfortunately, if we use this global solution to correct the difference orbit, and

thereby the dispersive error, we would find that the trajectory diverges from the

linac centerline. This occurs because the difference orbit is not referenced to the

linac centerline and small errors add. Thus, we need to include some information

about the real trajectory while correcting the difference orbit.

We have found that the best approach is to perform a least squares solution for

the unknowns, using both the original trajectory and the difference orbit weighted

with the absolute accuracy with which these trajectories are known. Thus, we solve

for the dipole corrector strengths which minimize the sum

c (mj + X;)'

jE{BPAi) girec + 4PM

+ (Amj + AXj)’

2~;rec
7 (3.5.3)

where crnrec is the rms of the BPRI precision errors and (TBPM is the rms of the

BPM misalignments relative to the linac centerline. In addition, Xj is the predicted

trajectory at the jth BPM as a function of the dipole corrector strengths and AXj

is the predicted difference orbit. W?e will subsequently refer to this algorithm as

Dispersion-Free (DF) correction.

3.5.3 DF Error Analysis

In this section, we analyze the effect of various errors on the performance of

the DF correction algorithm. In a Iinac, there are many additional errors that were

not included in the initia.1  formulation of the DF algorithm. Thus, to understand

the utility of the algorithm, we have to det,ermine  its sensitivity to these additional

errors.

The DF algorithm corrects the dispersive error by correcting a measured dif-

ference orbit which is created by changing the effective beam energy. ‘Thus, the

algorithm relies upon the resemblance between this measured difference orbit and

the actual dispersive error. We ca.n divide any errors into two catagories:  errors

which cause the measured difference orbit to diifer from the actual difference orbit

(measurement errors) and errors which cause the difference orbit to differ from the

dispersive error of a part,icle  within the beam.

Errors in neither category will not degrade the correction of the chromatic di-

lution and thus can be ignored. This is an import,ant  a.spect of the algorithm.

The algorithm does not, attempt to extract specific information from noisy data; it

147



I

minimizes a measured  quantity. Thus, if errors reduce the convergence of the mini-

mization, one can simply iterate the correction procedure. Examples of such errors

are BPM and corrector calibration errors, absolute beam energy errors, and errors

in the transport coefficients Rr2 used to calcula.te  the corrections. These errors will

only slow the convergence of the algorithms. Rather than requiring one iteration,

perhaps two or even three iterations will be required to achieve a good solution.

In contrast, errors in the first two catagories will cause the algorithm to converge

to an incorrect solution. BPM precision and beam jitter errors are examples of errors

from the first category. hlagnet  scaling errors, RF deflections, and effects due to

the nonlinearity of the dispersion are examples of errors in the second category. We

will first discuss effects due to the nonlinearity of the dispersive error and then we

will discuss each of the other effects in turn. We proceed in this order since the

nonlinearity is important for determining the full effect of the BPht precision and

beam jitter errors.

3.5.3.1 NONLINEARITY

The goal of our correction algorithm is to improve the transverse emittance

dilution due to the dispersive error; we want to correct the dispersive error arising

from the energy variation within the particle bunch. The dispersion is a nonlinear

function of the energy devia.tion and thus, ideally, we would like to measure the

difference orbit by making an eflect.ive  energy change comparable to the bunch

energy spread. Unfortunately, this tends to be small, the order of 1% or less, and we

will see that a small effective energy cha.nge  can 1ea.d  to large errors in the corrected

solution. Therefore, we need to determine the effect of correcting a difference orbit

created by an energy change tha.t  is substantially different from the beam energy

spread.

The equation for the difference orbit Ay6 = yC- ya, due to an energy difference of

6, is equal to the equa.tion  for the dispersive error Eq. (3.4.1), found in Section 3.4.1.

Neglecting the a.diabatic da.mping, this can be written:

(3.5.4)

where yp’ and yC are the qua.drupole misalignment and the on-energy trajectory

and, here, we have used the nota.tion  49n instead of Ayd; the subscript 6 refers to

the magnitude of the energy cha.nge  which created the difference orbit. M’e  solve
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this equation perturhatively, treating all elements as infinitely thin in length, i.e.,

delta-functions in s. To second order, this yields

AYb(S)  = AYE” + C Gi(lilLu)iAyl;“(si)Rl~(~,  s;) , (3.5.5)
i

where the first order term is

AY:‘)(s) = c s; ((CL); - (Yci - Yqi)(IclLq)i R13(S, Si) .
i >

(3.5.6)

Here, yci and yqi are the on-energy trajectory and misalignment at the ith quadru-

pole, and GL and KlL, are the integrated deflection due to a dipole field and the

integrated quadrupole strength, respectively.

Equation (3.5.5) illustrates a. potenti probIem  of using an energy change 6 that

is substantially larger than the beam energy spread a(s). Because the dispersive

error is a nonlinear function of the energy deviation, if 6 is relatively large, it is

possible to correct the resulting difference orbit Ayh to a small value while having

a large first order conkibution  Ayb(l); the second order contribution can be used to

cancel the first order term. [Jnfortunately,  this cancellation does not work within

the beam since the beam energy spread is small. Thus, one can correct Ay6 while

actually increasing the dispersive dilution of the beam. In the subsequent sections,

we will use Eqs. (3.5.5) and (3.5.6) to determine the effect of errors on the DF

correction algorithm.

3.5.3.2 BPM PRECISION

The BPhii precision errors will limit the accuracy with which we can correct the

difference orbit. Assuming that the BPMs have random precision errors with an

rms Of oprec, the measured difference orbit will differ from t,he actual difference orbit

by an rms error of fioprec. We can estimate the residual dispersive error, after

correcting this measured difference orbit, by considering a simplified example where

one zeros the measured difierence orbit at each of the BPh4s. After correction, the

actual difference orbit Ayb would be equal to the negative of the BPhl precision

errors.

Given this residual difference orbit Ayb, we want to solve for the difference orbit

Aya crea.ted by an energy change of O(S), where o is the rms energy spread. This
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will allow us to determine the emittance  dilution due to the BPhf precision errors

using Eqs. (3.4.3) and (3.4.4). First, we use Eq. (3.5.5), with the change 6 -+ ~7,  to

express Aya,

Ayb =  Ay:) , (3.5.7)

where we have only included the first order term since u is assumed small. Next,

we invert Eq. (3.5.5) to solve for Ayi’) from the residual difference orbit Ayb

AYES' = AYb(s) - C si(~~lLq)iAy6(Si)Rl2(s,  si) . (3.5.8)
i

Now, we need to relate Ay$‘) to Ay6(l). The difference orbit Ayb is equal to the

negative of the random BPhl precision errors; it is constructed from sums of “de-

flections” and coefficients I?12 which oscillate, Eqs. (3.5.5) and (3.5.6). Thus, there

are three length scales we need to consider: the length between “deflections” Lo,

the betatron oscillation period Lp, and the length over which a(s) changes L,.

Provided that LD, Lp < L,, we can treat (T and 6 as constant over the correlated

“deflections”. This allows us, using Eq. (3.5.6) and performing ensemble averages

over the random deflections, to find the rela.tion:

3
(

(1)2 _ Q-’
Az/u ) - z (AyilJ2)  , (3.5.9)

where 2 is the average of a’(s) over s. Now, using this result and Eqs. (3.5.7)

and (3.5.8), we find that after DF correction the BPM precision errors cause an rms

residual dispersive error of

To evaluate the sum in the second term in Eq. (3.5.10), we need to assume a

model linac. We use the NLC model described Appendix D, where the phase advance

per cell is constant while the beta’  functions and the ~11 lengths increa.se  with the

square root of the beam energy. In a.dclition,  WC a.ssume that the uncorrelated energy

spread of the beam decreases inversely with the beam energy. Using this model, we
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can evaluate the sum in Eq. (3.5.10) by approximating it with an integral. In this

manner, we find an expected dispersive error due to the BPM precision errors of

(3.5.11)

Here, PO, (I(r and ~0 are the average beta function, the integrated quadrupole

strength, and the energy spread at the beginning of the linac.

Finally, we can use Eqs. (3.4.3) and (3.4.4) to solve for the dispersive emittance

dilution due to this error. We will not perform the explicit substitutions here, but we

will instead discuss a few implications of Eq. (3.5.11). First, Eq. (3.5.11) indicates

that there will be a minimum dispersive error, due to the BPM precision errors,

for some value of 6. The first term of Eq. (3.5.11) decreases rapidly with 6 while

the second term remains constant; if we had included higher orders of 6, we would

find terms that increase with 5. Secondly, notice that both terms in Eq. (3.5.11)

can be reduced by decreasing gprec,  i.e., the measurement error; the rms of the

BPM precision errors will tend to decrease with the square root of the number of

measurements when the separate measurements are averaged together. We will see

this behavior in the results of simulations discussed in Section 3.5.4.

3.5.3.3 BEAM JITTER

In a linac there are many sources of jitter which cause the beam position to

fluctuate. For example, injection jitter, ground motion, and power supply Auctu-

ations all have this effect. To prevent these from degrading the performance of a

linear collider, this beam jitter must be constrained to be much less than the beam

size; the beam jitter will directly increase the time avera.ge  of the emittance since

the beam cha.nges  position with time, thereby, increasing the effective phase-space

volume occupied. In this section, we will estimate a secondary effect of the beam

jitter, namely, its effect on the performance of the DF correction algorithm.

The beam is most sensitive to dispersive errors when the beam energy spread

is large and thus we will only consider jitter of the injected beam; the beam energy

spread is typically largest a.t inject,ion. Of course, if desired, our result could ea.sily

be generalized by summing over all the sources of the jitter. In fact, this will be

done when analyzing the effect of ma.gnct.  sca.ling errors which are treated in an

analogous ma,nner to the beam jitkr errors.
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In the case of injection jitter, the measured difference orbit will differ from the

actual difference orbit by a betatron osc.illation  caused by the jitter in initial condi-

tions. After correcting the measured difference orbit to zero, the actual difference

orbit Ayh will be the negative of this betatron oscillation. To estimate the magni-

tude of Ay,, we use Eqs. (3.5.7) and (3.5.8) derived in the previous section on the

BPM precision errors. This case differs from the case of the BPM precision errors in

that the deflections that create the difference orbit, i.e., the summand of Eq. (3.5.6),

are only non-zero near the beginning of the linac. Thus, instead of Eq. (3.5.9), we

have the relation

AyOu = yAyil) (3.5.12)

where 00 is the rms energy spread at the beginning of the linac. Using this and

Eqs. (3.5.7) and (3.5.8), we find a.n expected dispersive error due to the beam jitter

of

(Aybj?,t(Sf)) = 20;t$ c ~OWl~g)i~12(Sf,  Si> [YORll(Si, so)
i

2

+ Y6R11(6;  si, s0)]
>>

7

(3.5.13)

where cjij;t is the rms jitter measured a.t the beginning of the linac and the factor of

two appears in the first term since two tra.jectories  must be measured to calculate

a difference orbit. The angle brackets denote an ensemble average over the jitter.

This is represented by yo for jitter of the on-energy trajectory and y6 for jitter of

the trajectory after making the energy change of 6; note that for simplicity we have

only included position jitter in these terms.

The expression in Eq. (3.5.13) differs from the expression found for the BPM

precision errors, Eq. (3.5.10). The BPM precision errors are uncorrelated and thus

the error ( Ayg2)  depends upon NBphl. In contrast, beam jitter lea.ds to a difference

orbit that oscillates like a betatron oscillation. Thus, the error due to the nonlin-

earity, the second term of Ey. (3.5.13), will be correla.ted  with the betatron phase

advance and (A yc”) will depend upon the square of Arq.

When performing the sums in Eq. (3.5.13):  we treat jitter of the on-energy

trajectory and the off-energy tra.jectory  sepa,rately  because the induced betatron os-

cillations will have different phase advances; the pha.se advance is energy dependent.

In particula.r,  after changing the effective beam energy, the different phase advance
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!.l

will cause the correlation between the injection error and the dispersive error to

breakdown. Thus, we would find tha.t  jitter of the off-energy trajectory contributes

far less than jitter of the on-energy trajectory; for this reason, we will only estimate

the on-energy jitter.

Using the NLC model linac, we can evaluate the sums in Eq. (3.5.13) by approx-

imating them with integrals. After DF correction, we find an expected dispersive

error due to beam jitter of

(3.5.14)

where we have simplified the expression with Eq. (D.1.3).

Again, one can solve for the dispersive emittance  dilution due to this error using

Eqs. (3.4.3) and (3.4.4). A s in the discussion of the BPh/I  precision errors, we will

not perform the explicit substitutions here, but instead we will discuss Eq. (3.5.14).

Similar to the error due to the BPhI precision errors, the first term of Eq. (3.5.14)

decreases rapidly with 6 while the second does not, indicating that the residual

error due to the beam jitter will have a minimurn  as a function of 6. Also notice

that, like the error due to the BPh4  prec.ision errors, this contribution depends

upon the measurement errors, and thus it can be reduced by averaging multiple

measurements of the trajectory. We will estimate the effects of the beam jitter at

the end of Section 3.5.4, after discussing results from the simulations.

3.5.3.4 MAGNETIC SCALING ERRORS

Magnetic scaling errors occur when one changes the effective beam energy by

scaling the magnetic fields. The errors arise because different magnets will scale

slightly differently with the power supplies and beca,use the power supplies have

finite precision. Thus, one cannot reduce all of the magnetic fields by exactly the

same percentage. Typica.lly,  it is possible to specify the magnetic field strength with

an accuracy of roughly 10w3.

The effect of these sca.ling  errors is ana.logous  to the effect of beam jitter. When

measuring a difference orbit crea.ted  by scaling the magnetic fields, one changes the

fields, measures the off-energy tra.j&ory,  resets the magnets and measures the on-

energy trajectory. We trea.t the final ma.gnet va,lues as the reference values and thus

the scaling errors only cause errors when measuring the off-energy trajectory. We
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should emphasize that the order in which one measures the trajectories is important.

If we measure the on-energy trajectory before the off-energy trajectory, the scaling

errors would cause errors in both measurements.

If a magnet deflects the central trajectory by an angle 8 and its magnetic field

can be specified with an rms accuracy of A, the off-energy trajectory will have an

rms deflection error of (1 - 6)AO. These deflections will drive betatron oscillations

which will add to the measured difference orbit just as beam jitter does. After

correction with the DF algorithm, the a.ctual  difference orbit will be corrected to

the negative of this (off-energy) betatron oscillation. Thus,

AYE = - C AieiR12(6;  3, si) 7 (3.5.15)
i

where we have neglected the factor (1 - 6). Now, since the deflections AQ are

random, we can use Eqs. (3.5.7),  (3..5.8), and (3.5.9) to find Aya. Using the NLC

model linac, we find a residual dispersive error of

Here, N is the number of magnets a,nd 00 is the deflection due to the magnets at

the beginning of the linac. In addition, we have assumed that the deflection errors

8 are random and that they decrease in strength inversely with the square root of

the beam energy; this models quadrupole scaling errors in our example linac. In

the case of quadrupole errors, 8 is proportional to the int,egrated  strength of the

quadrupole and the distance of the t.rajectory from the ma.gnetic  center. Thus,

(3.5.17)

where ym and yc a.re the rms values of the quadrupole misalignments and the beam

trajectory. Alternately, for dipole correctors, 0 ca.n be estimated by a.ssuming a

uniform distribution of kicks. Thus, (oi) is equal to one-third of the initial pea.k

deflection.
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It is important to note that as described the magnet scaling errors only con-

tribute to the error of the off-energy trajectory. The nonlinear term, i.e., the second

term of Eq. (3.5.16), will be small because the off-energy phase advance differs from

the on-energy phase advance and thus we can neglect it. A similar situation occurs

in the case of beam jitter errors as discussed in the previous section. Of course, if

the difference orbit is not measured using the procedure described at the beginning

of this section, the magnet scaling errors could also affect the on-energy trajectory.

In this case, Eq. (3.5.16) would have a term proportional to N x NzUad;  obviously

this should be avoided.

Finally, we should note that the effect of the magnetic scaling errors does not

depend upon measurement errors which can be reduced. Thus, these errors could

limit the performance of our correction algorithm. In Section 3.5.4, we will use

Eq. (3.5.16) along with Eqs. (3.4.3) and (3.4.4) to estimate the magnitude of the

errors; fortunately, they cause only a small error.

3.5.3.5 RF DEFLECTIONS

The RF is provided to accelerate the particles longitudinally. As discussed in

Section 3.4.3, there is typically a small coupling between the accelerating field and

the transverse planes. The RF deflections present a problem for our algorithm

because, unlike magnetic deflections, the RF deflections remain constant as the

effective beam energy is changed. Thus, they cause the measured difference orbit to

differ from the actual dispersive error.

As expressed in Section 3.4.3, the RF deflections are a sinusoidal function of the

RF phase, typically offset in pha,se relative to the longitudinal acceleration:

ORF  = gyRr  Sin(zkRF  + $0)
Y(S)

. (3.5.18)

Here, g is the longitudinal-transverse coupling of the a.ccelerating structure, YRF is

the energy ga.in from the structure, and y(s) is the bea.m  energy, In addition, $0 is

the phase of the deflection relative to the bunch.

There are two methods of changing the effective beam energy when measuring

the difference orbit: one can either cha.nge  the magnet strengths or the a.ctual beam

energy. For either method to work properly, all of the deflections should scale with

the cha.nge  in effective energy. I!nfortuna.tely,  if one changes the magnet strengths,
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the RF deflections are not affected. Likewise, if one scales the RF to change the

beam energy, the RF deflections also scale and the effect on the beam does not

change.

Since the RF deflections do not cha.nge  when varying the effective beam energy,

the measured difference orbit will be independent of the RF deflections. The dis-

persive error in the beam resulting from the RF deflections and the beam energy

spread can be directly calculated from Eq. (3.5.5) with the substitution 6 -+ a(s).

Assuming that the RF errors are random and using the same model iinac described

earlier, we find a residual dispersive error of

(A&F(sf)) = . (3.5.19)

Here, IVRF is the number of accelerator sections.

Notice that the RF errors do not depend upon the effective energy change 6

used to create the difference orbit. Furthermore, this effect cannot be reduced by

making multiple measurements of the trajectory. Thus, the RF errors could provide

a serious limitation on the performance of the correction algorithm. We will use

Eq. (3.5.19) along with Eqs. (3.4.3) and (3.4.4) to estimate the importance of these

errors in both the SLC and NLC lina.cs after describing the results of the simulations

in Section 3.5.4.

3.5.4 DF Simulations

A computer program was written to test the DF correction technique against

the one-to-one correction algorithm. The program simulates random transverse

misalignments of the quadrupoles and BPhJs, random quadrupole strength errors,

and BPM precision errors. The effects of RF deflections and beam jitter have not

been directly included; these are discussed at the end of this section using the results

of Section 3.5.3. Finally, the effect of the wakefields are neglected; these are discussed

in the section describing the M’F technique.

All of the simulations were performed on the 250 GeV NLC linac described in

Appendix D. To simula.te  correcting t.he orbit in the NLC, we use twenty different

sets of random errors. The errors are found from ga.ussian  distributions which ha.d

been cutoff at two sigma.. The qua.drupoIes are misa.ligned  70ilm rms relative to
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the linac centerline and the BPh/ls are misaligned 70pm  rms relative to the quad-

rupoles; thus, the BPMs are misaligned with an rms of roughly 100 pm relative to

the linac centerline. Furthermore, BPhl precision errors of 2pm are assumed since

a measurement precision the order of the beam size will need to be achieved in the

NLC. Finally, 0.1% rms quadrupole strength errors are also included, simulating

calibration errors; the errors do not change from measurement to measurement as

power supply fluctuations would.

In the NLC, the trajectory is assumed to be corrected by moving the quadru-

poles horizontally or vertically to a.chieve  the desired deflection. Both the focusing

and defocusing quadrupoles are used for correction. When correcting with the DF

algorithm, the linac is divided into eleven sections, each containing twenty cells.

The algorithm is then used to correct each section instead of correcting the entire

linac at once. While correcting the linac in sections will not minimize the dispersion

as well as correcting the entire linac at once, this procedure reduces the sensitivity

to discrepancies between the machine and the model one uses for correction. In all

cases, the solutions are calculated with a single iteration of the DF algorithm.

Table 12. R.esults  of DF simulations in the 250 GeV NLC linac.

Results from correcting the twenty sets of errors with the two correction schemes

are listed in Table 12; the error on the data is equal to one standard error. The Orbit

rms data is the rms of the tra.jectory  relative to the linac centerline, while the BPh1

rms data is the rms of the BPhI measurements. Notice that the one-to-one algorithm

zeros the BPM rea.dings  (wit,hin  the BPh1  precision) while the actual trajectory is

relatively large. In contrast,, our method corrects both the actual trajectory and the

measured BPM readings. In fact, the DF correction algorithm does better correcting

the actual tra.jectory  than does the one-to-one method.

Of course, we are interested in more than just correction of the trajectory. The

dilution of the vertic.al  emitta.nce due to the dispersive errors is listed in the bottom

row of Table 12; the dilution of the horiz0nta.I  emitta.nce will be much smaller than
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Fig. 29 Actual trajectory in the NLC after (a) DF correction and (b) l-to-l
correction.
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BPM measurements in the NLC a.fter  (a) DF correction and (b)
l-to-l correction.
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Fig. 31 Difference orbit in the NLC after (a) DF correction and (b) l-to-l
correction.

the vertical since the initial emittance is one hundred times larger. Obviously,

the one-to-one correction technique leads to a large (factor of six) increase in the

vertical emittance. Furthermore, this emittance will continue to filament and thus

the effective emittance growth may be much larger. In contrast, the new technique

performs very well, virtually elimina.ting  the dispersive dilution.

The difference in correction techniques is illustrated in Figs. 29-33. Figure 29

compares the trajectory after DF correction (upper plot) with the result of one-to-

one correction (lower plot) and Fig. 30 compares the BPM readings in the same

manner. One can see that the one-to-one method zeroes the BP&, but does not

correct the actual trajectory as well as the DF method. Finally, Fig. 31 shows the dif-

ference  between the trajectory of an on-energy particle and a. particle whose energy

differs  from the design, the energy difference being equal to the rms uncorrelated

energy spread which is 1% a.t injection and decays inversely with energy. Obviously,

the dispersive error, i.e., this’ difference orbit, and therefore the dispersive dilution,

is much smaller in the case of the DF correction.

Figure 32 is a plot of the y-y’ pha.se-spa.ce  at the end of the NLC 1ina.c after

correction with the one-to-one algorithm. The curve plots the endpoints of pa.rticle

trajectories having energies between +a, a.nd -0,. Also, for reference, the RMS
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Fig. 32 y-y’ phase-space at the end of the 250 GeV NLC linac after one-to-
one correction; the points are the centroids of the beam slices with 6 = +a,
to -err and the beam ellipse for 6 = 0 is plotted for reference.
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Fig. 33 y-p, pha.se-space  a.t the end of the 250 GeV NLC linac a.ft.er  DF
correction; the points a,re the centroids of the beam slices with S = +a, to
-UC.
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beam size, excluding the chromatic errors, is plotted about the design energy tra-

jectory. Obviously, there is a large dispersive dilution in Fig. 32; the emittance

dilution is roughly eight times the initial emittance. For comparison, we plot, in

Fig. 33, the y-y’ phase-space at the end of the NLC after DF correction. This is the

same phase-space, although with different scales, as Fig. 32. After DF correction,

the emittance dilution is quite small, roughly 1% in this case.

It is evident from Table 12 and Figs . 29-33 that the DF correction technique per-

forms substantially better that the one-to-one method. In all of the data shown, the

effective energy change used by the DF algorithm was AE/E = +lO%. Changing

the beam energy, or equivalently changing the ma.gnet strengths, is not necessarily

easy and can in itself introduce errors. For this reason, we wish to limit the energy

change used by the correction a.lgorithm.  Unfortuna,tely, as the energy difference is

decreased, the measurement of the difference orbit, used by the DF algorithm, will

be lost in the noise of the BPRI precision errors. Thus the correction technique will

not perform as well.

In Fig. 34, we plot results of the DF correction technique, again found from

the correction of twenty sets of random errors, versus the change in effective energy

AE/.E. There a.re three curves: the dotted is the emittance magnification which

has a scale on the right, the solid is the rms of the actual trajectory, and the dashed

curve is the rms of the BPM measurement of the trajectory. Notice that both the

emittance ma.gnification  and the rms of the trajectory have broad minimums. The

increase which occurs as AE/E increases is due to the nonlinearity of the dispersion.

In contrast, as AE/E decreases, the BPM precision errors reduce the effectiveness

of the algorithm. Our estima.te  Eq. (3.5.11) is in good agreement with both the

behavior and the magnitude of this residual error. Finally, notice that the minimum

in the residual emittance will shift towards larger AZ/E when one includes other

errors since the mea.surement  resolution increases as AE/E increases.

Finally, in Fig. 35, we compare the result of the DF correction technique versus

the magnitude of the BPRI precision errors; the errors are varied from 2 /lrn to 40 pm.

As before, the data was found from t.he correction of twenty sets of random errors.

As in Fig. 34, the three curves: solid. da.shed,  and dotted, are the a.ctua.l  trajectory

rms, the measured traject,ory  rms, and the vertical  emitta.nce dilution; the first two

curves have scales on the left. and the emittance dilution has a scale on the right

side of the plot. Notice t,hat t.he emittance dilution is still less than 2570 when the

BPM precision errors have been increased to Spm, which is roughly eight times the
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Chapter 3.5.4.1

vertical beam size. Also notice that the rms of actual trajectory decreases rapidly

as the magnitude of the BPM precision errors is decreased. In fact, the decrease in

the trajectory rms, which is important for controlling wakefield effects, may be the

most significant gain from decreasing the BPM precision errors.

3.5.4.1 ERRORS

In this section we estimate the effects of errors not included in the simulations.

Specifically, we discuss the effect of beam jitter, RF deflections and magnetic scaling

errors. In the NLC, we estimate the effect of the RF deflections using the same

transverse-longitudinal coupling g that was measured in the SLC:“081g  = 4 x 10T4.

We further assume tha,t  the xcelerator sections in the NLC are one meter in length

and each gives an energy gain of 100 MeV. In this ca.se, Eq. (3.5.19) yields an

estimate of

AYORF 25 0.3 C&m ( N L C )  . (3.520)

This residual dispersive error is compara,ble  to the NLC vertica.1  beam size. Using

Eqs. (3.4.3) and (3.4.41, we find that it would lead to an emittance  increase of

roughly 5%. Of course, as discussed in Section 3.4.3, the actual tolerances on the

RF accelerator sections in the NLC need to be much tighter than those in the

SLC. If the tolerance on the transverse-longitudinal coupling were reduced from

g = 4 x 10v4, this error should not be significant; the residual dilution scales with

the square of g.

We also estimate the effect of the magnetic scaling errors using random 1%

absolute errors of the magnetic field skengths  after scaling the magnet,s by 10%.

Using Eq. (3.5.16),  we find

Ayalnagnet x 0.5 pm . (3.521)

This causes a 13% emitt,ance dilution. Of course, again, we believe that we have

overestimated the error. In principle, one could reduce the absolute scaling error to

0.1% by cycling the magnets on a. specified pakh  through their hysteresis curves. In

this case the dispersive dilution would be negligible.

Next, we consider the effect, of beam jitter. Here, we estimate the effect of
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injection jitter that is 25% of the vertical beam size. Using Eq. (3.5.14),  we find

A Yujitter x 0.3 pm WC) , (3.5.22)

when using an effective energy change of 10%. This error causes an emittance

dilution of 4%.

Finally, to verify our estimates, we simulated both random magnetic scaling

errors and jitter of the injected beam. Random 1% absolute errors were added

to the magnetic fields strengths when scaling the magnets by 10%. We found an

emittance dilution of 10.0&2.7% due to the scaling errors; this is in fairly good

agreement with our estimate of 13%.

The injection jitter was simula.ted by adding a random initial position offset to

the trajectories used to measure the difference orbit; the position offsets have an rms

equal to 25% of the initial beam size. In this case, we found a.n emittance dilution

of 3.1 f0.6% when making an effective energy change of 10%. Again, this is in good

agreement with our estimate of 4%.

3.5.5 WF Correction and Sindstions

Given the performance of the DF algorithm, we have extended its use to also

correct wakefield dilutions that result from the corrected trajectory. In this section,

we will describe the 1;C’F algorithm and then present the results of simulations.

Because the WF technique is a simple extension of the DF method, this discussion

will be brief. In particular, we will not reiterate the error analysis of Section 3.5.3;

the analysis for the WF algorithm is very similar.

3.5.5.1 WF ALGORITHM

The goal is to find a new trajectory along which both the wakefield and the

dispersive effects cancel. The wa.kefields  a.re caused by trajectory offsets in the

accelerator sections which are due to both misalignments of the accelerator sections

and a non-zero trajectory. If we ignore the accelerator misalignments, the effective

offset in a section is just the average of the position in the two adjacent quadrupoles.

By varying the quadrupole strengt.hs  in a. specified ma.nner,  one can mea.sure a

difference orbit where the orbit in t,he quadrupoles will mimic the effects of the

wakefields due to bhe trajectory.
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We can understand this by examining Eq. (3.4.17), derived in Section 3.4.2. Both

the quadrupoles and the dipole wakefields cause a deflection that is proportional to

the trajectory offset in the respective elements. But, the wakefield always deflects

away from the structure centerline while the quadrupole deflection depends upon

the sign of KI . Assuming periodic FODO cells with accelerator sections centered

between the quadrupoles, we find that, to mimic the wakefield effect, the quadrupole

strengths must be varied as

(3.5.23)

where p and BP are the beta functions at the middle of the accelerator sections

and the adjacent quadrupoles and A$ is the betatron phase advance between the

two. In addition, L,,, and L, are the lengths of the accelerator sections and the

quadrupoles, Finally, note that because the correction is local, this condition can

fluctuate slowly with s.

Condition (3.5.23) specifies that the quadrupole strength variation 6 has oppo-

site signs at focusing (QFs and defocusing qua,drupoles  (QDs). In contrast, when)

creating the difference orbit to measure the dispersive error, 6 has the same sign

at both the QFs and the QDs. To correct both the wakefields and the dispersive

errors one minimizes both of these difference orbits along with the actual trajectory.

Unfortunately, it is not necessarily possible to increa.se some magnets while decreas-

ing others since the quadrupoles are usually run close to their maximum strength.

Thus, one can use an equivalent procedure where one minimizes a difference orbit

created by varying only the QFs and a difference orbit created by varying only the

QD magnets. In addition to being feasible, this later procedure also benefits from

being simpler.

Strictly, by exa.mining  Eq. (3.4.17), we can see that minimizing these two dif-

ference orbits will reduce the wakefields  if the accelera.tor  sections are aligned to

the centers of the quadrupoles, not the machine centerline. This can be remedied

by varying the dipole correctors when varying the quadrupoles. Thus, the dipole

correctors (partially) cancel the effect of the qua.drupole  misalignments; they must

or the trajectory would tend to grow. In pra.ctice,  the correction technique works

best when the a.ccelerator  struct,ures  are a.ligned to the quadrupoles, but, a.s will be

demonstrated, it still works very well when the accelera.tor  sections a.re aligned to

the ideal centerline.
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Table 13. Results of WF simulations in the 250 GeV NLC linac.

To recapitulate, the correction algorithm is: (1) measure a difference orbit

az~~(.s) created by varying the QFs and the associated dipole correctors, (2) mea-

sure the difference orbit AxQ~(s) created by varying the QDs and the associated

dipole correctors, (3) measure the a.ctual  trajectory Z(S), and finally, (4) one mini-

mizes all three of these orbits. 1l’hen  developing t.he DF algorithm, it wa.s found that

a weighted least-squares is the best minimization procedure. Thus, in this variation,

one minimizes the sum:

where each t,erm is weighted by the accuracy of the respect,ive  measurement: ogp~,~

is the estimated rms of the BPM misalignments and gprec is the rms precision

(reading-to-reading jitter) of the l3Phl measurements. Although it does not correct

the wakefields due to the accelerator section misalignments, this technique will be

referred to as Wake-Free (WF) correction because the corrected trajectory does not

cause wakefield or dispersive dilutions.

3.5.5.2 SIMULATIONS

In Table 13, the performance of the DF and WF techniques is compared against

the one-to-one algorithm in the 250 GeV NLC linac. The one-to-one algorithm

adjusts the trajectory to zero the BPM measurements using only the BP?& and

correctors located near the focusing quadrupoles. The results in Table 13 are the

avera,ge  of correcting 20 sets of ra.ndom error distributions and the errors are the

standard error on the results. In all cases, the trajectory is corrected a.t low intensity

and then the intensity is increased t.o the design value.

The misalignment error distributions are the same a.s those used in the DF

simulations described in Section 3.5.4, namely, 70/m rms vertical quadrupole  and
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BPM misalignments, and 2pm rms BPM precision errors; the accelerator sections

were aligned to the ideal machine centerline. In addition, the wakefields have been

included and the optimal BNS energy spread has been added to the beam in all

three cases. Finally, the initial conditions (30, $,) were optimized’311  after one-to-one

correction to further reduce the dilution; while this procedure reduces the dilution

from nearly 50 Q,O when using the one-to-one algorithm, it yields little improvement

when using DF or WF correction. The WF technique performs extremely well; it

virtually eliminates all of the dispersive and wakefield emittance dilution and it does

a better job correcting the actual tra.jectory  than the other two methods.

Figures 36 and 37 illustrate the differences between the one-to-one correction

technique and the WF method for one of the twenty cases used to calculate Table 13.

Figure 36 compares the trajectory a.fter  WF correction (upper plot) with the tra-

jectory after one-to-one correction (lower plot). Likewise, Fig. 37 compares the

emittance dilution after WF correction (upper plot) with the dilution after one-to-

one correction (lower plot). One can see that, after WF, the trajectory has a smaller

rms and is “smoother” than after one-to-one correction and, more importantly, the

emittance dilution after WF is much smaller than after one-to-one correction.

In the DF/WF  techniques, the emittance dilution is “measured” by va.rying  the

quadrupole magnets. This measurement is then corrected to the level of the BPM

precision. Thus, provided t,hat the measurement resembles the emittance dilution,

the dilution is constrained to the level of the BPM precision errors and does not

increase along the length of the linac. This is illustrated in Fig. 37; the large spikes

that occur in the emittance dilution arise because linac is corrected in sections and

there is insufficient resolution at the beginning of each section to adequately correct

the dilution.

Finally, Fig. 3s shows plots of the beam distribution after (a) one-to-one, (b)

DF, and (c) WF correction for one of the twenty cases in Table 13. The scatter-

plots on the left are the projections of the beam distributions in the y-y’ phase space

while the right-hand plots are projections onto the y-z plane; in both cases, we have

represented the beam wit.11 1000 ma,cro-particles. One can immediately see that the

beam emittance is seriously diluted after one-to-one correction; this is primarily due

to dispersive errors. Next, after DF correction, the dispersive errors are corrected,

but the distribution displays the tails characteristic of transverse wakefields;  these

arise from the random trajectory. Finally, a.fter  WF correction, one ca.n see that the

dilution due to both the dispersive errors and the wakefields  is negligible.
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Obviously, the WF technique reduces the emittance dilution due to misaligned

BPMs, quadrupoles, and a non-zero trajectory extremely well. Since the technique

is very similar to the DF method, we know that it is a robust algorithm and it is

not sensitive to effects such as jitter and calibration errors.

3.5.6 Further Extensions

The WF correction technique does not correct the effect of misaligned accelerator

sections. In fact, the WF method never actually measures the wakefields; it simply

adjusts the trajectory such that any wakefield effects cancel. But, as noted in

Eq. (3.5.23), the wakefields will shift the bunch centroid and thus it should be

possible to measure the effects on the tra.jectory  directly.

In theory, this could be performed by measuring a difference orbit where the

bunch length, bunch intensity, or beam energy and magnets are changed. TJnfortu-

nately, this becomes complicated because the beam loading changes the beam energy

and energy spread, and thus, it is difficult to unravel the wakefield effects from the

dispersive effects. Furthermore, the effect of the wakefields on the bunch centroid is

much smaller than the effect on the beam tail where most of the emittance dilution

occurs. Thus, it is difficult to make significant measurements.

We have performed some initial simulations of this tecl~nique;‘871  more work is

still needed to determine the feasibility of the a.pproach.

3.5.7 Tolerances with DF/‘iYF

The scaling of the emittance dilution with the misalignments can be found

from the emittance dilution Eqs. (3.4.3) and (3.4.4). Furthermore, in Sections 3.4.1

and 3.4.2, we found that, when correcting the trajectory with the one-to-one tech-

nique, the dispersive and wakefield errors: Agd a.nd AyU,,  depend linearly upon the

magnitude of the misalignments. Thus, the emi t.tance  dilution depends quadrati-

cally upon the magnitude of the misalignments when the dilution is small, less than

lOO%, and the emitta,nce dilution a. linear fun&ion of the misa.lignment  magnitude

as the dilution increases.

In contrast, the dilution when correcting with the DF/WF techniques is roughly

independent of the misalignment magnitude. We have removed this dependence by

scaling the trajectory measurement,s  in Eqs. (3.5.3) and (3.5.24) by the estimated

rms of the misalignmenk. Thus, the emit,tance dilution should only depend upon
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Fig. 39 One-to-one and DF correction versus the rms misalignment mag-
nitude.

the other errors, namely, BPAI precision, beam jitter, magnet scaling errors, and

the RF deflections; these effects were discussed in Section 3.5.3.

The dependence of the trajectory correction techniques on the misalignment

amplitude is illustrated in Fig. 39. Here, we have varied the rms magnitude of the

vertical BPM and quadrupole misalignments from 7pm to 35011m;  note that all of

the axes in Fig. 39 have loga.rithmic  scales. The points plotted were found from

the avera.ge  of correcting twenty sets of random errors. The solid and dashed lines,

at the top of the plot, are the rms values of the actual tra.jectory  after correction

with the one-to-one and DF techniques, respectively; these curves have scales on the

left side of the figure. The DF technique is slightly better at correcting the actual

trajectory, but the two curves are similar; in both cases the rms of the trajectory is

roughIy  proportional to the rms of the misalignments.

The two other curves, the dotted and the dot-dash lines, are the emittances

after correction with the one-to-one and DF techniques. The dilution after one-

to-one correction is strongly dependent upon the misalignment magnitude. Here,

the dilution varies from roughly 25% to over 3-10070  as the misalignments increase.

In contrast, the dilution a.ft,er  DF correction is only weakly dependent upon the

misalignment ma.gnitude;  it increases slowly from roughly 1% to 6% of the initial
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emittance as the misalignments become larger.

Thus, when using the DF/WF correction techniques, the emittance dilution is

effectively uncoupled from the magnitude of the transverse magnet misalignments.

Instead, the DF/WF  correction techniques impose relatively straight-forward toler-

ances on the BPM precision, beam jitter, RF deflections, and magnet scaling.

3.5.8 Discussion

In this section, we have described two trajectory correction algorithms that

can significantly reduce the emittance dilution due to a corrected trajectory. To

fully determine the utility of these correction techniques, they need to be compared

against the various alignment techniques. We will not perform such an analysis

since it requires detailed knowledge of the sources of error and is machine specific.

Instead, we will describe the difference between the DF/\YF approach and that of

the beam-based alignment of R&s. 3 and 67.

The DF/WF  technique is similar to the beam-based alignment of Refs. 3 and 67

in that the alignment errors are detected by varying the effective beam energy,

but, the approaches differ in the analysis of the data. The beam-based alignment

technique uses the data to determine the individual BPhl and quadrupole misalign-

ments. Because the data has errors, these misalignments can only be determined

with finite precision. Thus, large effective energy changes a.re used to increase the

sensitivity to the individual misalignment errors. But, because the effective energy

change is large, the beam-based technique is not especially sensitive to errors at the

betatron frequency; this is the component that drives the wakefield and dispersive

dilutions.

In contrast, the DF/WF  technique finds a global solution to constrain the emit-

tance dilution. Small effective energy cha.nges  are used so that the measured dif-

ference orbit resembles the actual emittance dilution. Thus, although the DF/WF

is less sensitive to the individual misalignments, it is very sensitive to errors at the

betatron frequency which ca.use the emitt.ance dilution. This is illustrated in Fig. 40

where we have plotted the frequency spectrum of the trajectory after (a) WF correc-

tion and (b) one-to-one correction; t,he respect.ive  trajectory rms’s are ycrms = 51 pm

and ycrms = 94pm.  Notice that, although the WF t.echnique  only reduced the tra-

jectory rms by a factor of two, the component at the beta.tron  frequency is reduced

by roughly a factor of ten. Of course, using a smaller effective energy cha.nge  may
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Fig. 40 The frequency spectrum of the trajectory after (a) WF and (b)
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frequency; the trajectory rms’s are ycrms = 51 pm and ycrms = 94 pm after
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make the DF/WF  algorithm more sensitive to additional sources of error. Thus,

the utility of the technique needs to he verified experimentally. Ultimately, it is

likely to be found that the two techniques, the DF/WF  trajectory correction and

the beam-based alignment, a.re complementary.
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CHAPTER 3.6

ADDITIONAL CORRECTION METHODS

In this section, we will discuss two additional techniques of correcting the emit-

tance dilution due to transverse wakefields and RF deflections. Specifically, we

will describe the use of RF deflecting cavities and then we will describe the use of

trajectory bumps.

3.6.1 RF Deflecting Cavities

We can use an RF deflecting cavity to correct the emittance dilutions due to

both the RF deflections from accelerator sections and the transverse wakefields; an

R.F deflecting cavity, like the transverse wakefield or an RF deflection, provides a

transverse deflection that is a function of t, the longitudinal coordinate in the bunch.

To correct the dilutions, we use the RF cavities to remove any correlation belween

the transverse planes and z. This is simple, when correcting the RF deflections,

since the time structure of the correcting fields can be adjusted to be similar to

that of the RF deflections, but, it becomes more complicated when correcting the

transverse wakefields; the wakefield deflecting forces are highly nonlinear functions

of z. Thus, to fully correct these dilutions, the deflecting cavity fields need to be

shaped appropriately.

In the NLC, the wakefields appear to be a more serious limitation than the RF

deflections, and thus, we will not discuss this technique further except to note that

the correction cavities need to be distributed along the linac. The correction needs to

be applied quasi-locally or the dilution will start to filament and thus becomes much

harder to remove; this issue is illustrated when discussing the trajectory bumps in

the next section.

3.6.2 Trajectory Bumps

The idea of using the beam trajectory to correct the wakefield dilutions was

first suggested in Ref. 31. There, the authors calculate the effect of inducing a

coherent betatron oscillation to reduce the emittance dilution due to misalignments;

the wakefields due to t.he betatron oscillation are used to cancel, on average, the

wakefields due to the misalignments.
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Unfortunately, this a.pproach  does not work well in the NLC linacs since (1)

BNS damping reduces the wakefields generated by the coherent oscillation and (2)

the dilution partially filaments and thus needs to be corrected quasi-locally. The

solution is to use multiple “non-dispersive” (ND) bumps to cancel the dilutions due

to wakefields and RF deflections. In addition, dispersive bumps, i.e., closed betatron

oscillations, can be used to cancel the dispersive emittance dilutions if desired.

The ND bumps can be created by deflecting the beam so that there are large

offsets in the defocusing quadrupoles and smaller offsets in the focusing quadrupoles

while the period of oscillation is equal to that of a betatron oscillation. In this way,

the dispersive and BNS effects are cancelled while, the wakefield deflections add. We

can find an equation for the detailed trajectory using the equations for the dispersive

error, Eqs. (3.4.1) and (3.4.2). A ssurning that the energy spread is small so that we

can neglect the chromatic phase a.dvance, we have the condition

3

0 =
J

s ds'G(G, - K&)RI:!(S', s) +
J

ds'SKly,Rlz(s',  s )  , (3.6.1)

0 0

where s is usually c.hosen to be equal to the betatron wave length.

An example of an ND bump in the 250 GeV NLC linac is shown in Fig. 41. The

bump consists of five oscillations so tha.t  it will have a strong effect on the wakefield

dilutions. Although the bump is not perfectly closed, the dispersive emittance dilu-

tion is less than 1% while the wakefield  effects are large; they increase the emittance

of an undiluted beam by a factor of 3.6. In Fig. 42, a single oscillation of this bump

is compared with a betatron oscilla.tion;  the ND bump is the solid line while the

betatron oscillation is plotted a.s a. dashed line. Although, the period of oscillation

is the same, the trajectories in the quadrupoles is quite different; the ND bump is

created with dipole correctors at both the focusing and defocusing quadrupoles.

We have simulated the use of ND bumps in reducing the emittance dilution due

to misaligned accelerator sections in the 250 GeV NLC linac. The averages of twenty

simulations with 70 /ml rms a.ccelerator  section misalignments are listed in Table 14;

the errors listed are the sta.nclard  error. Without any correction, the emittance is

increased by over a fa,ct,or of 11. Optimizing the la.unch  conditions (yo,  yb), to induce

a coherent beta.tron  oscilla.tion,  yields little improvement. As cliscussed, this occurs

because the BNS damping reduces the wakefield dilution due to the oscillation but

not the dispersive dilution.

17.5



I

-

S [meters]

Fig. 41. Trajectory of a “non-dispersive” bump in the 250 GeV NLC linac;
the bump is slightly mismatched and does close perfectly. The lower window
shows the locat,ions  of the yusdrupoles.

I I ! I 1 I t 1 I I I I I 1 I / ! 1 1-
n n n l-l

u LJ u u tl
I I I I I I I t 1 ! I I I I , I I t I.

2260 2280 2300 2320 2340
S [meters]

Fig. 42. Blow-up of Fig. 41 comparing the ND bump (solid line) with a
betatron oscillation (dashed line); the vertically focusing magnets are plot-
ted in the lower window as negative bars while the defocusing ma.gnets  are
positive bars.

lit?



I

Cha.pter  3.6.2

Table 14. Simulations of ND bumps in the NLC linac.

In contrast, the ND bumps are very effective at cancelling the dilution. Just two

bumps, located near the beginning of the linac where the wakefields are the most

severe, reduces the emittance to 2.6~~0  from 11.7~0; the two bumps are separated

90’ in phase to provide orthogonal controls. Of course, because of the filamentation,

bumps near the front of the linac are not very effective at correcting the dilution

originating at the end of the 1ina.c. Thus, we find improvement when we add another

pair slightly further back, and even more improvement when we add a final pair at

the end of the linac.

Finally, we need to discuss the algorithm used to optimize the emittance. In

the simulations, we calculate the ND bump corrections by optimizing the emittance

at the end of the linac with the bumps. This is a time intensive procedure, and,

in a real linac, it would likely be impossible. Instead, one should break the linac

into sections and use two orthogonal bumps to optimize each section. Although this

requires multiple emittance nxa.surements  along the length of the linac, the final

solution will be found much more quickly and accurately.

Thus, to summarize, these ND bumps can be used to effectively correct the

wakefield dilutions; t,hese dilutions ma.y he due to misa.ligned  accelerator sections or

a corrected trajectory. Furthermore, the ND bumps can also be used to partially

correct the dilutions due to RF deflect~ions. Finally, although multiple bumps are

needed to correct the dilutions before they begin to filament, these ND bumps would

likely be easier (and chea.per) to implement than having independent movers on all

of the accelerator sections as suggested in Ref. 106.
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CHAPTER 3.7
MAGNETIC FIELD TOLERANCES

In this section, we will calcula.te  the effect of sta.tic  magnetic field errors in the

linacs. We assume that only the quadrupole magnets have field errors. These errors

have three effects: (1) there are betatron mismatches due to the quadrupole errors,

(2) there is transverse coupling due to the skew quadrupole fields, and (3) there is

rms emittance  dilution due to strong nonlinear fields.

The equation for the vertical motion for generalized transverse magnetic fields

can be written:

( 3 . 7 4

where K, and Ik,, are the normal and skew field components analogous to K1 and

El, and 5 and y include both the betatron motion, zcp and yg, and the central

trajectory. In the NLC, where the closed orbit is much greater than the betatron

amplitude, the quadrupole field, found by expanding the higher order multipole

fields about the central trajectory, usually has a more significant effect than the

actual nonlinear fields; in essence, the beams are so small that the fields alwa,ys

appear linear. This is one of the problems in a.ttempting nonlinex collimation; I741

the nonlinear fields must be extremely large to have any n,onlinear  effect. For this

reason, we will only consider the effect of the quadrupole and skew quadrupole field

errors.

Finally, we should note that in making our estimates, we will neglect filamen-

tation. Filamentation will make these effects worse and thereby force tighter toler-

ances. The reason for this is tha.t  once the beam fila.ments,  the dilution is effectively

not recoverable. Fortunately, the NLC linacs are in the pa.rtial  filamentation regime

and thus our estimates should be accurate.
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Chapter 3.7.1

3.7.1 Quadrupole Tolerances

Quadrupole errors introduce beta mismatch errors. These are given by:[341

W(s) ’- =
JP(s) o

ds’AKPsin2(4(s) - $(s’)) . (3.7.2)

where AK is the quadrupole error: AK = AK1 +21r’22,+2.K2yc  +. . . . In addition,

there are higher-order contributionsj1231 but these will be negligible in a linac where

the design dispersion functions are zero.

Ra,ndom  Errors

Random quadrupole errors will cause a beta mismatch of:

t(y)‘) = 1 ds’(AK2)/?2 sin2 2(+(s) - $(s’)) ,
0

(3.7.3)

where in a FODO cell the minimum and maximum beta functions are given by

Eq. (D.1.1). Now, the integral can be expressed as a sum over the FODO cells. In the

NLC linac, Ii’lL,/? is consta,nt;  the integrated quadrupole strength decreases as 7-h

while the beta function increases wit,11  the square root of the energy. Furthermore,

with this scaling, the phase adva.nce  per cell remains constant. Thus, the sum

becomes

Nceii -1
((y)2) = ((+$)2)cos2~,c,2  C [(l +sin~~c/2)2sil12.2(~(s)-n~,)

?f=O
+ (1 - sin $,/a)” sin” 2(G(s) - ndjc - $,/2)] .

(3.7.4)

For reasonable phase a.dvances, i. e., between 60’ and 120’  per cell, we can

express this as

(3.7.5)

For the NLC main linac, a. 1% tolera.nce  on the quadrupole field yields an rms beta

error of roughly 10%; this is a. rela.tilrely  loose tolerance.
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Systematic Errors

The systematic quadrupole errors have a small effect unless the phase advance

per cell approaches 180”. For cells with a phase advance of 90”, the systematic

tolerance is roughly a factor of K looser than the random tolerance and thus

we will neglect it.

3.7.2 Skew Quadrupole Tolerances

In the case of skew quadrupole errors, we solve the equation for the vertical

motion using the Rr2 matrix element and the horizontal betatron motion. This

yields

(3.7.6)

X sin(h&‘) - ho) sin(+,(s)  - &(s’)) ,

where =yo is the initial relativistic factor, JZo is the initial horizontal single particle
- -

invariant, C&O is the initial horizontal phase, and K = I<r - 2Kayc + . . . .

Random Errors

To calculate the effect of random errors, we square Eq. (3.7.6) and calculate

the expected skew quadrupole strengt.hs.  Thus, the double integral condenses to a

single sum. Next, we perform an ensemble a,verage  over the beam particles, yielding

y(s) (y2(s))
N,-1

=
4

72 C K-%)%Wy sin’(&(s)  - &(s,)) . (3.7.7)
n=O

At this point, we use the expression for the beta functions in a FODO lattice,

Eq. (D.l.l); note that the horizontal and vertical beta functions are 180’ out of

phase, when one is maximum the other is minimum. Then, we calculate the sum,

finding

(3.7.8)

Finally, if the skew quadrupole component is due to small rotations of the quad-

rupoles, where K = 20,1<1, we find a. toleraace  to limit the vertical emitta.nce

180



Chapter 3.7.2

increase to 6% in the NLC main 1ina.c of

0 qrms 5 0.3mrad ; (3.7.9)

this yields a 3% luminosity reduction and is a fairly loose tolerance. Furthermore,

notice that we have expressed the beam size increase in terms of an emittance

increase. Actually, the coupling does not cause a real emittance increase; it increases

the projected emittance. Thus, if the beam does not filament, the coupling can be

corrected with four independent skew quadrupoles.

Systematic Errors

To estimate the effect of systematic errors, we start from Eq. (3.7.6) again,

but now, we calculate the integral over the errors before squaring the expression.

Assuming that the horizontal and vertical phase advances are similar and are not

close to 180’) we find

(3.7.10)

Now, we calculate the sum and average the square over the beam distribution.

This yields an emittance increase

where A& = Gzc - V& and I~QD and I?QF are the skew quadrupole fields at the

focusing and defocusing quadrupoles.

Notice that this expression depends upon the sum of the skew quadrupole fields

at the focusing and the defocusing quadrupoles. Thus, if the quadrupoles have the

same error, i.e., the same rota.tion  or the same pole error, the emittance dilution

will be small because the errors cancel. But, also notice that this expression goes

as N,2ell when A$,, =5 2/Ar,,11. Thus, it is desirable to separate the horizontal and

vertical phase advances. In the NLC linacs, we are separating the phase advances

by roughly six degrees per cell and thus this systema,tic tolerance is sma.ller  than

the random tolerance.
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CHAPTER 3.8

PULSE-TO-PULSE JITTER

In this section, we will calculate the pulse-to-pulse jitter which could be a severe

limitation for future linear colliders since the vertical beam sizes are very small. This

discussion will be similar to discussions found in Refs. 53, 97, 98, and 99. We have

improved the accuracy of the estimates by using the correct scaling as is discussed

in Appendix D; in general, this leads to tolerances that are less than a factor of

fi tighter. In addition, we have improved the estimate of the jitter due to ground

motion finding that it is almost as severe as the effect of purely random jitter.

When discussing the jitter, we need to consider two regimes: rapid filamentation

and no filamentation. In the case of rapid filamentat,ion, the beam rapidly loses it’s

“memory” of the deflection and thus the kicks from different, sources of jitter add

linearly, In the other case, that without filamentation, the random sources of jitter

cause the beam to perform a random walk and thus they add in quadrature, i.e., as

the square root of the number of sources. The beam will only partially filament, in

the NLC linacs and thus we neglect the filamentation when calculating tolerances.

In the cas_e  of weak filamentation, the jitter shifts the beams centroids and thus

the colliding beams do not fully overlap at the IP. In the limit of small beam currents,

the luminosity reduction is given by

C = e- A2/4g;co , ( 3 . 8 4

where A is the vertical offset between the two beams and fZo is the full luminosity.

As the beam charge increases, the luminosity reduction decreases; this occurs be-
[32,103]cause the two oppositely charged beams attract each other. For our purposes

in the NLC, we will neglect the beam disruption and use Eq. (3.8.1) to estimate the

reduction. Specifically, we will calculate tolerances to limit the jitter of each beam

to less than 0.25~~; this corresponds to 3% luminosity reduction which is consistent

with our other tolerances.

There are three primary sources of jitter: injection jitter, where the injected

beam varies from pulse-to-pulse, trajectory changes due to movement of the quadru-

pole magnets, and trajectory changes due to power supply fluctuations. In addition,

there are also effects that can a.rise from movement of the accelerator sections or

variations of the RF power.
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Chapter 3.5.2

We will start by estimating tolerances on the injection jitter. Then, we calculate

the effect of random movement of the quadrupoles and the accelerator sections. This

will lead to extremely tight tolerances. Fortunately, most sources of vibration lead

to correlated motion of the ma.gnets and accelerator sections and thus we discuss

these effects next; unfortunately, these tolerances are similar. Finally, we calculate

the effect of power supply fluctuations and then we discuss some of the feedback

methods that may be used in the linac. Throughout, we only discuss the direct

effect of the jitter, namely, the centroid shift.

3.8.1 Injection Jitter

If the beam does not filament, injection jitter directly causes position jitter at

the II’. Since the jitter is demagnified along with the beam, the injection jitter

tolerance, in unit,s of the beam size, is the same as the IP jitter tolerance:

Yj/j;t 5 0.25&a,  , (3.S.2)

where, since we do not know the phase of the jitter relative to the IP, we included a

factor of fi. Tllis imposes stability tolerances on the damping rings and the bunch

compressors. In the NLC ma.in linac, we find a tolerance on the initial jitter of

yj/jit S 0.7pm. N o ice that this is the same as the tolerance due to the dispersivet

filamentation.

3.8.2 Random Jitt.er

Magnets

Here, we will consider the effects of uncorrelated motion of the quadrupoles and

the accelera.tor sections. Transverse movement of the quadrupoles will deflect the

beam trajectory. Assuming tha.t. there is negligible filamentation, these deflections

simply add:

N,-1

Yc = c ~~l~qYjitRI:!(sn,Sf)  7 (3.8.3)
71=0

where gjit(??)  is the movement. of t,he n.th quadrupole,  L, is the length of the magnet,

and Iv* is the number of quadrupolc magnets.
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Assuming random jitter and using the NLC scaling, where the quadrupole

strength decreases inversely with the beam energy while the length of the quad-

rupoles and the beta functions increase with the square root of the beam energy, we

find

n=O

(3.8.4)

where the subscripts 0 and f are used to denote the value at the beginning and end

of the ljnac, and fro and ,& are the initial vertical beta functions at the focusing and

defocusing quadrupoles.

Finally, using the relation between 7 and the quadrupole number, Eq. (D.1.7),

we can evaluate the sum, finding

(3.8.5)

where Gc is the phase advance per cell and we have used Eq. (D.1.3) to simplify the

result.

Using parameters for the NLC 500 GeV linac, we find that a random magnet

jitter of 5nm leads to a trajectory jitter equal to one quarter the beam size; this is

a tight tolerance. Of course, only a small portion of the magnet jitter is actually

uncorrelated; most of the jitter is due to ground motion which we discuss next.

But, turbulence in the magnet cooling xvater  or other local sources of noise can

cause uncorrelated vibrations and thus these effects need to be examined in detail.

Accelera.tor Sect.ions

If the jitter moves the ends of the accelerator sections so that the section is tilted,

the beam will be deflected. We can estimate a tolerance following the procedure of

the previous section. To limit the jitter to a quarter of the rms beam size, we find

a tolerance of 250 nm on the random jitter of the ends of the sections, assuming a

gradient of 100 MeV/m in the 500 GeV NLC linac; this is negligible.
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3.8.3 Ground Motion

As discussed in Section 2.4.1, the ground moves at the micron level at frequencies

between roughly 0.1 HZ a.nd 100 Hz;[*” the high frequency components of the motion

are primarily due to cultural noise. Motion of the ground will cause correlated

motion of the quadrupoles magnets which then deflect the beam trajectory. The

effect of this ground motion has been estima,ted  using the smooth WIapproximation.

Unfortunately, the smooth approximation can only estimate the lowest frequency

resonance; it neglects the effect of the higher frequency resonances which are actually

stronger. In general, resonances occur whenever I*,941

where I;,, is the wavenumber of the ground motion, $, is the phase advance per cell,

and L, is the length of the cell.

We neglected the higher frequency resonances in the damping ring since they are

far too high to be relevant,; the power spectrum of the ground motion decays as l/f2.

But, in the NLC linacs,  the bctat.ron  wavelength varies from 20 m to roughly 120 m.

Assuming a phase velocity of 300 m/s, which is similar to the values measured at the

‘42’es1SLAC and DESY sites, the lowest resonance occurs at frequencies above 2.5 Hz

while the next two resonances occur at frequencies above roughly SHz and 14Hz,

assuming a 90” phase advance per cell; these are still low enough to be important.

The motion of the quadrupoles in the three lowest frequency resonances is shown

schematically in Fig. 43 where t,he lattice has a pha.se adva.nce  of 90’ per cell. Since

the strengths of the focusing and defocusing quadrupoles are of opposite signs, it

is apparent that the higher frequency resonances ha.ve a greater effect than the

lowest resonance; in the higher frc~quency  resonances the kicks from the focusing

and defocusing-quadrupolcs a.dd while in the lowest resonance the kicks subtract.

We will estimate the effect of the ground motion by considering the response to

a plane wa.ve  tra.veling  at an angle to the linac

&y(S) = ygr cos kgrS cos Q, + $
( >

) (3.8.7)

where s is the dist.ance  along t,he a.ccelera.tor,  Q is the angle between the ground

wave and the linac, and C; is the \r;\l-e phase.
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Lowest:
kg,=A/Lc

Second:
kgr=@wk)/Lc

Third:
kgr=(2-rr++,,)/L

Fig. 43. The quadrupole motion in the three lowest frequency ground mo-
tion resonances where the phase advance per cell is 90”.

The response of the central tra,jectory  is found from

L

YCW  =
J

~~G(S)?lgr(4~12(%  q *

0

(3.82)

Assuming the NLC scaling, where 11’1 decreases inversely with the beam energy

while p and the length of the drifts and magnets increa.se  with the square root the

energy, this can be written

Yc = (~L&)OYgr#G~(~)“‘cos(k,,,.,cosm + 4) (3 s g>
. .

X fisin($f - ngc/3)fi
Ial ’

where sn and “in are the position and energy a.t, t,he nth quadrupole a.nd Ii’l/lli’rI

changes sign between focusing a.ntl defocusing qua.drupoles.  Using simple trigono-
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metric relations, we can express the t.ime averaged value of yz as

(3.8.10)

where $0 and bo are the initial maximum and minimum beta functions, Nceu is the

number of cells, L, is the length of the 71th cell: and the sum over f is a sum over

both the sum phase and the difference phase.

In general, a sum of this form will exhibit resonances when E,, cos <pL,  zk $, =

27rp, where p is an integer. In the NLC, the cell length scales with the square root of

the beam energy and thus the resonance only occurs over a short distance. One can

express the exact solution to this problem in terms of the Jacobi Theta functions;

unfortunately, these are no simpler to evaluate. Thus, to evaluate the sum, we will

use the method of stationary phase. In general, the method of stationary phase can

be applied to an integral of the form 1141

I =
J

dsf(s)eig(“)  3 (3.5.11)

where f(s) is “slowlyf’  varying and IS(S)] is large. The method approximates the in-

tegral assurning tha.t the only significant contribution comes when g(s) is stationary

and yields a result

(3.S.12)

where so is the point at which the first derivative of g goes to zero and we have

assumed that g”(so)  # 0.

To apply this method in our case, we simply note that the phase is stationary

whenever

kg, L, f ljjc = 2np ( p  =  0,1,2,*.*)  . (3.S.13)

Now, using the NLC scaling, Ey. (D. 1.7), and treating all of the resonances sepa-
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rately,  we find a tolerance

TN, tan tic/2 70(Y3 = 2Lo” ,( ,,.~L)’

X pxP f &)(Jx - Fl)p&n)2 ,

(3.S.14)

res

where Lo is the initial cell length and the sum only includes the resonances encoun-

tered for a given wavelength.

Equation (3.8.14) hs ows that the long wavelength ground motion, which is res-

onant at the high energy end of the linac, is the most severe; the effect of any single

resonance decays inversely with the frequency. There are two reasons for this: first,

the adiabatic damping reduces the effect at the beginning of the linac, and second,

when the resonance occurs at the end of the linsc, the resonance condition includes

more cells than when resonance occurs a.t the front of the linac.

At this point, we need to exa.mine  the sca.ling  of our result. Eq. (3.S.14) explicitly

depends inversely upon the cell length Li, implying that longer cells greatly reduce

the response to the ground motion. This is misleading. Using the relat,ions

we find that the response scales as

(3.S.15)

(3.S.16)

Although, the effect of the ground mot,ion  is still eased by using longer cells and

weaker focusing (larger beta functions), the dependa.nce  is seen to be much weaker.

Furthermore, the effect depends inversely upon the accelerating gradient.

Now, we can use Eq. (3.5.14) to calculate tolera,nces.  Assuming a worst case

situation where the waves are parallel to tile Ijnac,  i.e., cos @ = 1, the first resonance

in the 500 GeV NLC linac occurs at roughly 2.5I-f~.  To limit the closed orbit jitter

to 25% of the beam size, we find a. t.olerance  on this component of the ground motion

of 6nm. This is comparable to the effect of random jitter.

This tolera.nce  will decay inversely \vjt,h frequency until we encounter the next

resonance at SHz. At this point,, the first la.ttice  resonance must be included and
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Fig. 44. Response function R = Iyjit/Ypr  1 for ground motion in the 500 GeV
NLC linac.

we find a tolerance for jitter of 7 nm at 8 Hz. Finally, this will also decay until we

find the next resonance at roughly 14 Hz. Here, we find a. tolerance of 5 nm for jitter

equal to 25% of the beam size. These tolerances are roughly a factor of twenty

tighter than the estimates found in Refs. 97, 98, and 99.

To verify these results, we have simulated ground motion in the 500 GeV NLC

linac. The response of the trajectory to the ground motion is plotted in Fig. 44,

where the response is defined as n = ~~~~~~~~~~~~~ Notice that, as predicted, there

is an obvious resonance near 2 Hz, another at SHz and another at 14 Hz. Above

roughly 20 Hz, many resona.nces  int.erfere  and the higher frequency resonances are

not distinct. In the NLC linac, the final beam size is roughly 0.8pm  and thus the

tolerances found from Fig. 44 are very close to our estimates from Ey. (3.8.14).

To calculate a tolerance on t,he ground motion, we need to multiply the response

function with the power spectrum for the ground motion. Instead, we simply note

that the response is roughly 40 for frequencies above 8 Hz. This implies a tolerance

of 5nm for all ground motion with frequency above 8Hz and suggests that the

ground motion will be a severe limitation in the future linear colliders.

Of course, we should note that our model for the magnet motion is rather

simplistic: we ha.ve neglected the response of the magnet supports and we have
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treated the ground as an ideal material, without attenuation or inhomogeneities.

In addition, we have assumed the worst case, where the ground motion is collinear

with the linac. These effects should be included in future calculations; some will

ease the tolerances and some will make them tighter.

Finally, there are a few methods of reducing the tolerances. One is to use

feedback; we will discuss this in Section 3.S.5. In addition, one obviously wants to

strive for a low noise site; most of the high frequency ground motion is cultural

(man-made), and thus, it is highly site dependent. Furthermore, one wants to

choose a site where the phase velocity of the ground waves is large; although this

does not decrease the response, it shifts the resonances to higher frequencies where

the a.mplitude  of the ground motion is sma,ller.  Lastly, if the ground motion has a

distinct source, one can build the linacs perpendicular to the ground waves so that

cos @ R5 0.

3.8.4 Power Supply Fluctuations

Magnets

We will estimate three effects of power supply fluctuations: random variation of

individual quadrupole power supplies, variation of a string of quadrupoles, assuming

multiple quadrupoles per power supply, and finally, random variation of the dipole

corrector power supplies. In all cases, we will only be concerned with the orbit offset

caused by the fluctuation and we neglect the effect of the filamentation.

In the first case, the equation for the orbit offset is

(3.S.17)

where yocset is the orbit offset in the yuadrupole. This equation is virtually identical

to Eq. (3.S.3). Thus, for the NLC scaling, we find

(3.5.18)

In the 500 GeV NLC linac, a,n rms power supply fluctuation of AK,/K, = 10s4

leads to an orbit jitter of one qua.rter  the vert.ica.1 beam size, assuming 50pm  orbit

offsets and individua.l power supplies for each quadrupole.
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This tolerance can be eased by connecting multiple quadrupoles to a power sup-

ply. In this case, we start from an equation similar to Eq. (3.S.17) except that AK1

does not vary between quadrupoles. If the trajectory were purely random, this tol-

erance would be identical to the previous one. But, as discussed in Section 2.2.4, a

purely random trajectory in the qua.drupoles will create a huge dispersion. Fortu-

nately, the orbit correction that reduces the dispersion will also reduce the effect of

the power supply fluctuations.

Finally, we need to consider the effect of fluctuations in the dipole corrector

power supplies. As mentioned in Appendix D, there are two possible configura-

tions for the dipole correctors: we could physically move the quadrupole magnets

or we could use electromagnets. Although, moving the magnets sounds more com-

plex, there are disadvantages to the electromagnetic correctors; the power supply

tolerances are one of them.

We will estimate a tolerance assuming that every qua.drupole  has an associated

vertical dipole corrector which is individually powered. In this case, the tolerance is

(y?) z 4 h83 .

( >~09 +,,/2 8”
(3.S.19)

where we have assumed that the strength of the correctors decreases with the square

root of the beam energy as does the integrated quadrupole strength.

In the 500 GeV NLC lina.c, assuming that maximum corrector strength must be

at least 2y,ff,,.Iill L,, we find a tolerance of At9/0  = 5 x lo-’ to limit the jit.ter to

one quarter of the beam size.

Accelera.tor Sections

Unlike the magnet power supplies, it is much harder to regulate the RF power

to the structures. Since, a.s described in Section 3.4.3, the RF sections deflect the

beam, RF power jitter ca.n 1ea.d  to vertical beam jitter.

The RF deflections can be expressed as in Eq. (3.4.35) and the effect of jitter in

the RF power c.an be written:

(3.S.20)

where A~RF is t,he energy ga.in per accelera.t,or  section, g is the longitudinal-trans-

verse coupling in the structure, a.nd we have assumed the NLC scaling. At this
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point, we calculate the sum noting that y increases linearly with the number of

accelerator sections. This yields a tolerance

(3.8.21)

where & is the initial average beta function in the accelerator sections; see Ap-

pendix D.

In the 500 GeV NLC linac, we find a tolerance on the jitter of the accelerating

voltage of AV/V 5 3% to limit the jitter to one quarter of the beam size, assum-

ing that grms = 31 prad which is the tolerance determined in Section 3.4.3. This

tolerance on the RF power jitter should be rela.tively  easy to achieve.

3.8.5 Feedback

Obviously, these jitter tolerances are severe. One solution is to use feedback sys-

tems. Unfortunately, beam-based feedback in a linac is limited because the sampling

rate, which is determined by the repetition rate, is usually low. In general, a broad-

band feedback syst’em  is only effective at frequencies much less tha.n f =j frep/6. For

example, numerous beam-based feedback systems have been implemented in the

SLC.[““’ Here, the systems have been optimized to respond to a transient. A typical

frequency and transient response are shown in Figs. 45 and 46 where the sampling

rate is 60 Hz. In this case, the crossover point, where the system response is 0 DB,

occurs at 2Hz; this is at freP/30.

If this is extrapolated to the NLC, with a repetition rate of l.SOHz, we find a

crossover point of 6Hz. This will not be sufficient to damp much of the ground

motion. Fortunately, in any portion of the linac, the ground motion response is

only resonant at a few narrow frequency bands. Thus, it may be possible to de-

sign narrow-band beam-based feedback systems that are effective at damping much

higher frequencies than the broa.d-ba,nd  systems; in theory, one should be able to

damp frequencies approa.ching  the Nyquist frequency with a narrow-band system.

Alternately, one can design an a.ctive damping system for each of the compo-

nents. Here, the sampling ra.te is det.ermined  by the component position detectors

and not the beam repetition ra.te. Alt.hough, such systems are currently available,

they tend to be expensive and complicated; developing syst.ems suitable for a linear

collider is a current topic of research.
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Hertz

Fig. 45. Frequency response for SLC feedback system: frep = 60 Hz; from
R,ef. 55.
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Fig. 46. Transient’ response for SLC feedback system: frep = 60Hz; from
Ref. 55.
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CHAPTER 3.9

ADDITIONAL EFFECTS

In this chapter, we will discuss some additional sources of emittance dilution

that have been neglected. Specifically, we will calculate the effect of the direct space

charge field, synchrotron  radiation, and scattering processes. In the NLC design,

these all have negligible effect on the beam emittance.

3.9.1 Space Charge

As discussed in Section 2.3.3, the direct space charge field contains a factor of

I/r3 and thus the effects should decrease rapidly as the beam is accelerated. But,

the space charge field also depends upon the bunch density. This is increased by

the bunch compressions and by the adiabatic damping that occurs as the beam is

accelerated. Thus, the effect of the space charge field actually only decreases as

l/r2 and because of the bunch compressions, the space charge field is roughly ten

times more intense at the beginning of both the low and the high energy linacs  than

in the damping ring.

Fortunately, these forces are still weak compared to the external transverse

focusing. Specifically, in the NLC damping ring, the space charge force caused

a relative  tune shift of A+/+ = -0.001. At the beginning of the 1.0~ energy

linac, the space charge phase shift is AvY/vY = -0.013 and at the beginning of the

high energy linac we find Auy/var  = -0.007; this is comparable to the effect of the

incoherent energy spread and should not pose a problem.

In Section 2.3.3, we also estimated the effect of the space charge driven betatron

coupling resonances 2v, f 2vY when far from resonance. In a linear accelerator, the

horizontal and vertical phase advances are usually similar. Thus, in this section, we

will re-analyze the coupling assuming that we are near resonance. In the smooth

approximation without acceleration, the equation for the vertical motion can be

written

d2Y
~+k;~=F,oly+F~zx~y , (3.9.1)

where k, = l/& and the coefficients Fyij a.re defined in Eq. (2.3.10).
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In the fiat beam limit, where the horizontal motion is not perturbed, we can

express Eq. (3.9.1) as

d2y
z + k; - F,ol - 421 J&z - Fal 21 JzPz co+& + 2&) y = 03 , (3.9.2)

where J, is the single particle invariant, Oz is the initial phase, and k, = I//&. This

is an example of Mathieu’s equation, also referred to as a parametric oscillator, and

it has a resonance when k, = k,, i.e., equal horizontal and vertical phase advances.

When close to the k, = k, resonance, the solution to Mathieu’s equation can be

written[l*’

y = uesK cos(sk,  + 0,) + be-” cos(sk,  + 82) , (3.9.3)

where a and b are constants of the vertical motion, 81 and 82 depend upon n, 8,,

and the space charge force, and

Here, A equals F,21 Jz,& and ‘“.G’ includes all of the constant terms with the square

bracket of Eq. (3.9.2).

The vertical motion is unstable if K is real; one term grows exponentially. We

can express this stability condition as

where Avsc is the shift in the phase advance due to the space charge and Aq,, =

vy -Y, is the difference between the vertical and the horizontal phase advances. This

stability condition implies that it is desirable to have the vertical phase a.dvance

greater than the horizontal by an amount in excess of the space charge tune shift.

By making the vertical phase advance greater than the horizontal, particles never

encounter resonance, even as J, increases; this condition is also noted in Ref. 7.5

where the problem is solved including the perturba.tion to the horizontal plane.

Now, to determine the selyerity  t,he coupling, we need to calcula.te  the growth

rate when on resonance. This is simply found from Eq. (3.9.4) and is given by
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K = A/4X-, which is:

Nro 1 JdL
K = 4&G&y’  gywq 02 ’

(3.9.6)

To find the expected growth, we need to integrate K over the length of the linac,

i.e., we replace esK  in Eq. (3.9.3) with e Jdsrc  This integral can be written.

YI

J
3,
G where G = Yf - 70

L ’
YO

(3.9.7)

and L is the length of the linac.

In the NLC low energy linac, we find a maximum growth in amplitude of 30%

for a particle with Jzpz  = a:; the increase in Jy of particles with larger amplitudes

J, is greater. This is significant growth and indicates that we should sta.y far from

the resonance. In the NLC linacs, a difference in phase advances of 6’ per 90’ cell

should be sufficient to remove all growth.

Finally, we note that since this coupling is a potential limitation, at least in

higher current linacs such as the VLEPP design, the problem should be solved

properly. This could be done by solving the Vlasov equation and examining the

transient solution.

3.9.2 Radiation

Synchrotron  radiation is emitted whenever the beam is deflected. Since the

synchrotron radiation is a source of stochastic noise and can lead to emittance

growth, the radiation could impose a tolerance on the trajectory offsets in the linear

accelerator. In this section, we will calculate the vertic.al  emittance dilution due

to the opening angle of the radiation and the presence of vertical dispersion. In

addition, we will calculate the inc.rease in energy spread due to the radiation. In all

cases, we will neglect the effect of the damping that is also due to the ra.diation;  in

general, this will be small provided that the radiation comprises a small percentage

of the beam energy.

The effect of synchrotron ra.diation  in a. transport line is discussed in Refs. 69

and 105.  We will use the results of Ref. 10.5 to ca.lculate the emittance dilution due

to the residual dispersion. In t,his ca.se, the cha.nge  in the vertical beam size is given
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A@- = C2 Ldsh’5,G3,7&,  cos2 ip
44 J

,
0

(3.9.8)

where Cz; = 4.13 x lo-l1 m2/GeV5  and the phase advance is @ = q!+,(L)  - q!+,(s) -

tan-l  (ay + &771/h  1. 1 n our treatment, we will average over @ assuming that the

radiation is emitted uniformly. Thus, we find an emittance  dilution

(3.9.9)

Now, we need to find expressions for G and E in the linac. We assume that the

trajectory is randomly offset in every quadrupole. Furthermore, we assume that the

dipole correctors are located at the quadrupoles. In this case, the angular deflection

at each quadrupole is given by

7-2 - r:

Ldrift 1 ? (3.9.10)

where Adrift  is the distance between qua.drupoles  and r; is the ra.dial position at three

sequential quadrupoles. This yields an rms value for the inverse bending radius G,,,

of

CTrms = w?iimz
LqLdrift ’

where L, is the length of the quadrupoles.

Next, we use the sca.ling  for the lengths and the beta functions

Appendix D; in the NLC 1ina.c  they both scale with the squa.re  root

energy. Thus, we can express the int.egra.1  as a sum over qua.drupoles

AQ = sC2 2 +) E:E2F’t=3 .+ Yr2ms)3’2
7

n=l q0 drlfto

(3.9.11)

discussed in

of the beam

(3.9.12)

where we have assumed tha.t  the dispersion is random and has a constant amplitude

down the Iinac and the subscript 0 denotes values at the beginning of the linac.
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Finally, we use Eq. (D.1.7) to express the energy as a function of the quadrupole

number and we assume IV4 >> 1 so tha.t  we can replace the sum with an integral

over the quadrupole number. This yields

(3.9.13)

In the 500 GeV NLC linac, we find that an rms vertical dispersion of 3 mm with

100 pm orbit offsets increases the vertical emittance by only 1%. This is a loose

tolerance; we need to keep the vertical dispersion below a few hundred microns for
312other reasons. Furthermore, the relative emittance dilution only increases as Ef

and thus it should not become a significant limitation even at a much higher final

energy.

Next, we can estimate the emittance contribution from the opening angle. Using

the results of Section 2.2.3, we can express the emittance dilution as

L
13c2

AC, = - 57%
220 J

cLsIG”IE  - .
Y2

(3.9.14)

0

Following the procedure used to calculate the dispersive dilution and using the NLC

scaling, we find

AQ = (3.9.15)

In the 500 GeV NLC linac, the opening a.ngle  contributes a relative emittance dilu-

tion of 10 -6 for 100 ym orbit offsets; this is a negligible effect.

Finally, we can calculate the expeckd increase in the energy spread:

L
c3

Aa,? = --$
JEi o

dsjG31E7 .

With the NLC parameters, we find

( 2 + Yins)3’2Ag; = ;C2iVqE~Ef  X179 L3 .
$I drift0

(3.9.16)

(3.9.17)

In the 500 GeV NLC linac, this predicts an increa.se in the relative energy spread of

10v5 which, a.gajn,  is negligible.
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3.9.3 Scattering

So far we have neglected all of the scattering effects such as intrabeam and

Touschek sca.ttering, ion trapping, and beam-gas scattering. These phenomena are

discussed in reference to the damping ring in Sections 2.3.1, 2.3.2, and 2.3.6. In

general, the cross sections of these effects are too small to be relevant for emittance

dilution in a linac and thus it is valid to ignore them.

As an example, we will estimate the transverse emittance growth due to elastic

beam-gas scattering. We start from Eq. (2.3.36) to calculate the rate the rms angle

is increased by the scattering. This yields

(3.9.18)

Strictly, 8,,, and 6min are functions of y, but the dependence is weak and thus

we simply estimate the factor within the square brackets as 20. Furthermore, both p

and y are functions of s. In the NLC linac, the beta function grows with the square

root of the beam energy and thus the integrand decreases as 7-4. We assume that

yf >> yo and find

AYQ = lGOnLn.,,Z(Z  + POl)+--
fl’

(3.9.S9)

Assuming 5000 meters of linac starting at a an energy of 2 GeV and having a

residual gas of carbon monoxide with a pressure of 10e7 Torr, we find an emittance

dilution of roughly 1%. Furthermore, we need to remember that it is dominated

by the large angle scattering events; see the discussion in Section 2.3.6. This may

have implications for the collimation that will be needed, but it does not represent

a dilut,ion of the core emittance.
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ACCELERATION SUMMARY

In this chapter, we have discussed and evaluated most of the effects that can

dilute the vertical emittance during acceleration in a linac. The primary sources of

dilution are conservative dilutions and pulse-to-pulse beam jitter. The conservative

dilutions increase the projected vertical emittance by coupling the vertical phase

space to the longitudinal and horizontal emittances. This coupling does not actually

increase the beam emittance; in theory, it is always correctable. Unfortunately, in a

linac the dilution filaments, becoming extremely difficult to correct and effectively

equivalent to an emittance increase.

These conservative dilutions impose tolerances on the magnitude of coherent

betatron oscillations and the transverse alignment of the magnets, BPMs, and accel-

era,ting st.ructures. We have derived analytic expressions to estimate the t,olerances,

assuming tha.t the linac is composed of FODO focusing cells that are scaled with

the square root of the beam energy and neglecting the filamentation; this is valid for

designs in the partial filamentation regime but will under-estimate the tolerances

for machines wit.h strong filamentation. These derived expressions were used to

calculate tolerances for the NLC linacs and they were confirmed with simulations.

Tolerances for the 500 GeV NLC main linac are listed in Table 15. The tolerance

on a coherent oscillation specifies a tolerance on the BPM precision; currently, BPMs

with sub-micron precision are being developed. In addition, the dispersive dilutions

and wakefields set the alignment tolerances; without any form of special. correction,

these are only a few microns. The beam-based a,lignment  techniques may be able

to achieve such tolerances. Alternately, the emittance dilutions can be corrected,

provided that the correction is performed before the dilution filaments. We have de-

scribed two styles of correction: DF/WF  trajectory correction and non-local bumps.

One can see, in Table 15, that these techniques can substantially ease the required

alignment tolerances. Of course, these tolerances are not final; detailed simulations

need to be performed including all of the error effects. But, the implication is that,

in a machine with weak fdamentation,  we can use correction techniques to ease the

alignment tolerances by roughly one order of magnitude.

The other important source of dilution is pulse-to-pulse jitter, which affects

both the beam centroid and beam size. We have estimated the centroid jitter, again

neglecting the filamentation; the beam size jitter is primarily due to filamentakion
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Table 15. Summary of conservative  dilut,ions and tolerances in the
500 GeV NLC main linac.

Source I Tolerance

Injected betakon oscilla.t.ion yo 6 0.7pm
with BNS damping

BPM a,nd quad. misalignments yrn ;5 4pm
with l-to-l traj. correction

BPhl and quad. misalignments ynl ,$ 50pm
with specia.l  correction

Act.  section misalignments :Y7n  5 4pm
without correction

Act.  section misalignment~s
with ND bumps

Quadrupole rot,at.ions I 0 ,$ 0.3mrad

D i l u t i o n  AtyII
Dispersive 6%

Wakef ie ld  0%

Dispersive 6%

Wakef ie ld  3%

p coupling 6%

Table 16. Summar).  of jit,ter !.olerances  in the 500 GeV NLC main linac.

Unc.orrela.ted  qua.cl. movement

I frequencies j R. 8 Hz I ( wars case) 1

of t,he centroid  jitter. Toierarlces arc lisicd i n ‘Table 16; they correspond to 3%

luminosity reduction. which is similar t,o a 6% emittance  increa.se.  The toleranc.es

on the power supplies are not severe,  but the tolerances on the quadrupole vibration

are tight and may be difhcult.  to achieve. One may be able to use feedback to ease

the tolerances. I!nfort,unalel?:, beam-ba.scd  feedba.ck  will be diEicu!t  at the relati\.cly

high frequencies, a.nd thus, \ve may need to develop act:ive and passive damping

systems for the indi\:idual  quad~upole  supports.



Thus, to conclude, we no1.e t.hat t.he fundamental emittance  dilutions are very

small. Instead, the primary sources of emit.tance dilution depend upon the alignment

tolerances and the pulse-to-pulse stabilit): Furthermore, in a machine with weak

filamentation,  correction techniques ca.n be used to substantially ease the alignment

tolerances.
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CHAPTER 4

CONCLUDING REMARKS

Maay future linear colliders are calling for normalized vertical emittances of

YQ/ = 3 x 10e8 m-rad with aspect ratios ez/ey  of 100. In this dissertation, we

have investigated the tolerances and fundamental limitations on generating and

preserving these very small vertical emittances; the results are then applied to the

NLC linear collider design.

We have considered sources of emittance dilution in only two of the major sub-

systems of the linear collider, namely, the damping rings and the linear accelerators;

we have neglected dilutions that can occur in the bunch compressors and the colli-

mation/final focus regions. Furthermore, we have neglected all multi-bunch issues;

the NLC design calls for ten closely spaced bunches and thus multi-bunch effects

are potentially very importa,nt  and need to be examined.

We have treated these two subsystems, the damping rings and linacs, separately,

dividing this dissertation into two major sections. Although the driving physics is

the same in both regions, the sources of dilution differ in importance. Specifically,

in the damping rings, the main sources of emittance dilution are non-conservative

processes while, in the linacs, the primary limitations are due to conservative dilu-

tions and pulse-to-pulse jitter; detailed discussions can be found in the respective

summaries.

To conclude, we address the question: is it possible to generate and accelerate

bunches with vertical emittances of 79, = 3 x lo-’ m-rad? The answer is certainly,

yes; in the NLC design, the fundamental limitations are much smaller. But, the more

important question, is it practical? The answer here depends upon the state of the

hardware. But, it does seem practical, although some advances in hardware will

be needed. In particular, to correct the emittance dilutions due to misalignments,

we will need BPMs that have micron precision (rea.ding-to-reading jitter) and we

will need the ability to measure these beam emittances. In addition, we will need

to develop a (cost-effective) method of reducing the pulse-to-pulse jitter; this will

likely include feedback on the beam and the individual components.

Finally, we again note that dilutions in either the bunch compressors or the final

focus regions were not considered. Furthermore, we have not examined the limita-

tions due to multiple bunches and we have only considered the weak filament&on
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regime. All of these effects will increase the emittance  dilution and need to be in-

cluded in future work. In addition, many calculations throughout the dissertation

were made using simple models which could be improved. This includes: the effect

of ground motion in both the linacs a.nd the damping rings, the wakefields in the

damping ring, effects on the injected beam in the damping rings, the space charge

coupling in the linacs, and finally, detailed simulations of the correction techniques,

including “all” sources of error.
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Appendix A

BEAM DYNAMICS: SURVEY

In this appendix, we will briefly review the dynamics in an e-+/e-  accelerator.

Detailed derivations of the equations and discussions of the part.icle  motion can be

found in any textbook on charged particle optics. Here, we will describe the salient

physics and provide the necessary definitions so that one can follow the body of this

dissertation. In particular, we will discuss the linear transverse and longitudinal

motion and then we will consider the effects of the synchrotron  radiation. Finally,

we will discuss some of the issues pertinent to damping rings. The first portion

of this appendix, Sections A.l-A.5,  is a summary of Refs. 23, 62, and 104 while

Section A.6 is mostly taken from Ref. 90.

A.1 COORDINATE SYSTEM

We will use a right-handed coordinate system: (x:, y, s), where s is the distance

along the accelerator and 2 and y are the horizontal and vertical coordinates. We

always chose y in the upward direction and s in the direction of propagation; these

then determine the 2 direction. In addition, we will use the coordinate z to describe

the longitudinal position of particles within a bunch; z has the same orientation as

s, but it is referenced t,o the center of the bunch.

A.2 TRANSVERSE MOTION

In this section, we will describe the transverse motion of the particles in a

storage ring or transport line. We start by introducing the equations of motion

and separating them into a closed orbit, the first order energy dependence, and the

betatron motion about the central trajectory. Then we introduce the beta function,

the phase advance, and the single particle invariant. Finally, we describe the beam

ellipse which parameterizes a particle beam.

Equations of Motion

In a high energy accelerator, transverse magnetic fields are used to control the

charged particle bea,m. The primary components are dipole, quadrupole, and sex-

tupole ma.gnets;  pole a.nd field profiles for these magnets are illustrated in Fig. 47.

Dipole magnets have a uniform field and are used to direct the beam trajectory

while quadrupole magnets have fields that increase linearly with distance from the
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Fig. 47. Accelerator magnets.

magnetic center and thus they provide linear focusing. Finally, sextupole magnets

and higher multipole magnets a.re used to c0rrec.t  nonlinear dependencies. In partic-

ular, sextupole ma.gnets are used to correct the energy dependence of the focusing

due to the quadrupoles.

In an accelerator, the longitudinal motion within the beam, referred to as the

synchrotron motion, is usually much slower than the transverse. Thus, we can solve

the transverse equations while holding the longitudinal motion fixed; the compli-

cations neglected in this approximation are discussed in Section 2.2.6. With this

approximation and in the absence of synchrotron radiation and longitudinal accel-

eration, the equations of motion for a single particle can be written Pool

(I<, (5) + Gi(+ + *(x2 - y') 1 =

AG(s) + (1 - A&(s) (A.2.1)

Y” - (1 - A) h(s)y + li’z(s)zy
I

= (1 - A)Gy,(s) ,

where the primes denote derivatives with respect to s, the azimuthal coordinate, and

A is the relative energy deviation: A z (p-po)/p  where p is the particle momentum
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and ~0 is the design momentum; to first-order A equals the more common parameter

6 = (p-PO)/PO. 1n addition, G is the main horizontal guide field which is the inverse

of the local bending radius, G,, and G,, are the inverse bending radii of additional

corrector or error dipole fields, a,nd Kr and I<2 are the normalized quadrupole and

sextupole fields:

G(s) FE -?- = eB,
P(S) PO

(A.2.2)

With these definitions, positive Gzc,yc causes a deflection in the positive z or y

direction and positive Kr corresponds to focusing in the horizontal plane.

At this point, we can separate the solutions into: (1) the on-energy (A = 0)

inhomogeneous solution, referred to as the central trajectory, (2) the first-order

energy dependence of the central trajectory, referred to as the dispersion function,

and (3) the homogeneous solut,ion  which is referred to as the betatrolz  motion. Thus,

J:= xc+6qz +xp where xC is the centra.1  trajectory, ~1~ is the dispersion function, and

xb is the betatron motion, and the vertica,l  motion is similar. With this substitution,

the equations for the central trajectory are:

xc',' + (ICI + G")xc + $(x; - y,") = G,,
(A.2.3)

y; - 1<1~c - Ii-2xcyc = G,c .

Next, linear equations for the dispersion function and the betatron motion can

be found by expanding about the central trajectory:

and

x; + (1

G - G,, + (ICI + G?)x,  + Lg(x: - y,‘)

$ - ~i’~r/~ - &(xcqy + ycqa) = -G,c - Ibyc - 1(2xcyc .

(A.2.4)

- A) (Kl + G”)q + Ik&r,xp - ycyp)
I

+ AIc2(7wp  - VYY,T) = 0

F 1

y;; - (1 - A) IiTl yp + &(ycxg  + xccyp)
L

- AI-2(rlyq3  + rlzyp) = 0 ,

(11.2.5)
In this appendix, we will neglect the complications due to the sextupdes;  these

effects are discussed in Sect,ion 2.2.

207



Betatron h/fotion

If we neglect the sextupole terms, the equations for the betatron motion are

similar to those of one-dimensional harmonic oscillators and can be expressed in an

analogous form:

Here,  Jxly and &,v are constants of the motion, ,&,Y(s) are the beta functions, and

T+!J~,~(s)  are the phase advances given by:

(A.2.7)

In a storage ring, the beta function is chosen to be periodic but in a transport

line there is room for ambiguity since one needs to define initial values or boundary

conditions; we will discuss this further in Section 3.3.1.

Similarly, a storage ring has a well defined tune; the tune equals the phase

advance around the ring divided by 2n:

ul: y - dkY(C> - 1cl&Y(O), 2?r 7 (A.2.8)

where C is the ring circumference. The tunes are very important in a storage ring

since they locate the proximity of destructive resona.nces.  In general, there is a

resonance whenever kv, + IV, t mvs = ?1., where I;, 1, m, and n are integers and us is

the tune of the longitudinal motion.

In addition to the beta function and t,he phase advance, there are two other

parameters that are used to describe a focusing lattice. For systems without accel-

eration, these are:

QX,Y
1 4LyE - - - 1 + a”z,y
2 ds

and Yx,y =
P -Z,Y

(A.2.9)

Note that one needs be careful since t,he symbols used to denote these functions

also refer to the transverse damping rates and the relativistic factor 7; the context

should clarify the meaning.
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Finally, we can also describe the linear betatron motion in terms of transport

matrices R:

44 RlI(O, 4 &2(0,4 x(O)-
(I(x’(s) - Rx (0, s) f&2(07 4 )( )x’(0) - (A.2.10)

This form is useful because the individual transport matrices can be constructed

directly from the linear la.ttice elements: drifts, dipoles, and quadrupoles,  and then

multiplied together to form the transport matrix for the structure. We will fre-

quently refer to the R11 and RI,9 matrix elements which, in terms of the lattice

parameters, are

&1(s1, s2) =
Js

f T(cosAG+alsinA$~)
1 2

(A.2.11)

Here, the relativistic fa,ctor 7 has been used to include the adiabatic damping that

occurs as the beam is accelerated. Adiaba.tic  damping occurs because as the beam

is accelerated ~0 increases while the transverse momenta remain constant. Thus, in

LX---r’ and y-y’ phase spaces there is damping since z’ - (1 + Gz)p,/po  decreases. In

this case, the betatron motion is still described by Eq. (A-2.6), but the definition of

Q: must be changed to

1 db, Y + Px,y CEYQx,y  E --- --
2 ds zy ds ’

(A.2.12)

and the single particle inva.riant decreases inversely with the beam energy.

Central Trajectory and Energy Dependence

At this point, we can find the central trajectory about which the particles per-

form betatron oscillations. In a storage ring, the central tra.jectory  is periodic and

is referred to as the closed orbit. In an e+/e- ring, the particles damp towards this

closed orbit. Neglecting t.he sextupoles, the periodic solution for xc is

xc(S) = 2 sin mum ~c-h%%+‘x(S) - &(s’) + wx)G,,(s’)ds’ ,  ( A . 2 . 1 3 )
x

S

with an analogous result. for the vertical plane. In a transport line, the central

trajectory depends upon the initial conditions (20, zb). Typically, these are chosen
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to be zero, in which case the central trajectory is

G(S) = J’ dm sin(~,+) - ~(s’))Gc(s’)ds’ ; (A.2.14)

0

the trajectory is the integral of the R12 matrix element and the deflections G,,ds.

Now, we can calculate the dispersion function Q,~. This is the first-order change

of the central trajectory with A (or S). In a storage ring, we have the periodic

solution

77&s) _ m s+c-

2 sin 7ruZ J l4zFbs(~$z(s) - W’) + w)s (A.2.15)

x [G-G,, + (& + G”)s,] ds’ .

while in a transport line we have

- $(s’)) [G - G,, + (I(1 + G2)xc]ds’ ,

(A.2.16)

where we have assumed that the initial values (q,o,qko) are zero. Again, there are

analogous results for the vertical plane.

Finally, we calculate the variation of the phase advance with energy; this is

referred to as the chromaticity. As the particle energy increases above the design

energy, the focusing, and thus the phase advance, becomes weaker. In a storage

ring, the uncoupled chromaticity is

(A.2.17)

where the integral is calculated around the ring and the (-) sign applies to &

and the (+) sign applies to JY. Without the sextupoles, a stora.ge  ring naturally

has a negative chromaticity. This can lead to coherent instabilities and thus the

chromaticity is corrected to be zero or slightly positive with the sextupole ma.gnets

located in regions of horizontal dispersion.
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Emittance, Beam Ellipse, and h4a.chine Ellipse

So far we have only discussed the trajectory of a single particle. Actually, we

have a beam of particles which all have different amplitudes and phases. We quantify

the phase space volume occupied by the beam in terms of the normalized emittance

7~.  The normalized emittance is a useful quantity because in a conservative system,

which a linear accelerator approximates, the six-dimensional phase space volume

(z, pZ, y, p,, z, AE) enclosing the beam is invariant. Furthermore, if the three degrees

of freedom are uncoupled, then the phase space area of each degree of freedom is

also conserved.

Throughout this dissertation, we will refer to the rms emittance. This is a

parameterization  of the phase space volume using the second moments of the beam

distribution. If the forces are linear, the six-dimensional rms emittance is conserved

and, if the planes are uncoupled, each two-dimensional rms emittance is conserved.

In the transverse planes, the two-dimensional normalized rms emittance is equal to

(A.2.18)

where the angle brackets denote an avera.ge  over the beam particles. More generally,

the rms emittance can be expressed a.s the determinant of the beam matrix cr:

7~ = ydeta Uij = (XiXj) , (A.2.19)

where xi are components of the vector: (up, $, yp, ~b, z, 6).

The moments of the beam distribution, (x$), (xb2), and (xpxb),  define the beam

ellipse in the x-x’ phase space that can be used to further parameterize the beam. In

particular, the area of the beam ellipse is related to the rms emittance as Area = ~6.

Furthermore, e-+/e- beams usually have ga.ussian  transverse dist,ributions  in which

case the beam ellipse describes a contour of constant density that encloses 39% of

the beam.

In general, we can express these moments in terms of the beam parameters a*,

P*, and y*:

(xi) = PZ*ex (xS2) = 7lc*Q (XbX)j) = -&x , (A.2.20)

where the beam parameters a.re similar, but not necessarily equal, to the lattice

parameters; the lattice parameters describe the focusing lattice while the beam

paramet,ers  describe the hea.m.
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Fig. 48. Beam and machine ellipses for an unmatched beam.
I

At this point, we introduce the machine ellipse. The single particle invariant,

introduced in Eq. (A.2.6), can be expressed in terms of x:p and Z$ the lattice pa-

rameters:

) (A.2.21)

and Jy is similar. Thus, particles with constant Jx,y are distributed on an ellipse

in x-x’ phase space which is defined by the single particle invariant and the lattice

parameters; this is referred to as the machine ellipse.

In general, the beam ellipse is inscribed in the machine ellipse. If the beam is

matched to the focusing lattice, then the beam and the machine ellipses are equal.

In this case, the beam parameters a.re equal to the lattice parameters and we can

express the emittance in terms of the single particle invariant: cr,y = (Jx,y).

This parameterizat,ion is not valid if the beam is not matched to the structure.

In such a case, the beam ellipse is inscribed in the machine ellipse; this is illustrated

in Fig. 48. If all particles in the beam have the same phase advance, then the

beam ellipse rotates coherently within the machine ellipse, but if there is a spread

in the phase advance, the beam will j?lanrenf  and fill al1 of the machine e1lipse  and

there is a corresponding rms emittance growth; fila.mentation is discussed further in

Section 3.3.1.
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Finally, it is important to realize that the rms normalized emittance is not nec-

essarily conserved; filamentation is one illustra.tion of this. In particular, nonlinear

fields or coupling can distort the beam ellipse so that the second moments do not

accurately reflect the phase space volume. Regardless, accelerators are fairly lin-

ear machines and the rms ernittance provides a useful measure of the actual beam

emittance.

A.3 LONGITUDINAL  MOTION

Now, we need to discuss the longitudinal motion. There are two ways for the

particles to change their relative longitudinal positions: velocity differences and path

differences. The velocity difference between two ultra-relativistic particles leads to

a longitudinal position change of

where 6 is the relative energy difference, 7 is the relativistic factor, and s is the

distance traveled. When 7 is large: this tends to be a negligible effect.

The path length for a particle can be written

L~J(1+~)[l+($)2+($$]id~ ’ (A.3.2)

where we have assumed that the only significant bending occurs in the horizontal

plane. To first-order, only the curvature term is important and thus the path length

difference is

AZ = J AS
-ds ,
PC4

(A.3.3)

where Ax can be due to a betatron oscillation or the dispersion. Notice that AZ

depends upon the bending radius and thus the longitudinal position is essentially

fixed in a linear accelerator where p + oo.

The dependence of AZ on the beta.tron  a.mplitucle couples the longitudinal plane

to the transverse. This will be discussed further in Section 2.2.6, but, on average,

the effect of a betatron oscilla,t.ion  is small; the betat.ron  oscillation has a different

phase every turn and thus t.he eflect,  avera.ges to zero. This leaves the effect of
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the dispersion  which can be written: AZ = &cY,~,  where CY,,, is the momentum

compaction factor:
c

dC/C 1(y,------=-
J

Eds .
ddm C o P

(A.3.4)

At this point, we need to discuss the radio-frequency (RF) acceleration system.

The RF system provides longitudinal electric fields that can accelerate or decelerate

the particles. In an e+/e- ring, the RF system is needed to replace the energy

emitted as synchrotron  radiation while in a linac the RF is used to accelerate the

beam. Usually, the system consists of resonant RF cavities that are powered by

microwave sources. Assuming a sinusoidal RF, the accelerating voltage across a

cavity can be written

VRF = I,‘0 sin URFt , (-4.3.5)

where WRF is the RF frequency.

In a high energy linac, the longitudinal positions of the part;icles  do not change

since there is no bending. Thus, the particle energy depends upon the longitudinal

position and the phase of the RF voltage seen by the beam; usually the beam is

being accelerated and it is placed near the crest of the R.F voltage. We can express

the voltage as

T/kF = If0 sin(+F + &) , (A.3.G)

where ~RF is the RF wavenumber and &s is the synchronous phase: #9 = ;lr/2 for

maximum acceleration.

In a storage ring, the situation is different. Here, WRF is chosen to be an integral

multiple of the revolution frequency. Thus, we can express the volta,ge  seen by a

circulating particle as 170 sin(z(tn)kRF  + 4,) where t, is time at which the pa.rticle

passes the cavity on turn ~2. Thus, the change in z depends upon the energy and

the change in energy depends upon z. Since the changes per turn are very small,

we can write a differential equation for the longitudinal motion:

cy, ebb

“’ + C E.
Qm A-Gad--sin(kRFZ + f&) = ~7 ,

0

which we can express as

(A.3.7)

Qm eVo
~-&RFc“Sds (A.3.S)
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Here, A,!?& is the average energy lost on one turn.

The r.h.s. of Eq. (A.3.8) determines the synchronous phase while the 1.h.s. de-

termines the synchrotron motion. If we linearize this and make a smooth approxi-

mation, which is valid because the synchrotron motion is slow, we can express the

synchrotron motion as

S(S) = ,,,os(2Tvs~ + m,>
(A.3.9)

where 60 and $0 are the constants of the motion and vS is the synchrotron tune:

eVo
1
2

--&RF COS ($8 . (A.3.10)

A.4 RADIATION DAhlPING'1041

When an ultra-relativistic particle is accelerated, it emits synchrotron radiation.

The emission of the radiation is intrinsically a quantum mechanical phenomena and

the time of emission and the energy of the emitted photon are random. However,

provided that the expected energy of the photons is small compared to the particle

energy, the photon distribution ca.n be accurately calculated using classical electro-

magnetic theory. In this section, we will only consider effects of the average power

radiated. Thus, we neglect the discrete nature of the photons and treat the radiation

as a classical field that is emitted continuously; the quantum nature of the radiation

is discussed in the next section.

As the particles orbit the ring, they are deflected by the dipole magnets and

they radiate. The average power radia.ted around the ring c can be expressed

(A.4.1)

2 ’where m is the electron mass, E is the particle energy, and B 1s the avera.ge  value

of the magnitude of the transverse magnetic field squared.
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In general, particles with higher energies radiate more than particles with lower

energies. This leads to an exponential damping of the longitudinal phase space. The

longitudinal damping rate is

1 dAE ldq=--=-- .
a’ - A E  d t 2 dE

(A.4.2)

When evaluating the derivative of q we have to include three effects: the

dependence on the energy of the particle, the dependence on the revolution time

which varies with energy, and the dependence on the ma.gnetic  field which varies with

the orbit which is also a function of the energy. When all the terms are included

correctly, we find

(A.4.3)

where C, = 8.85 x 10T5  m-&2\‘- 3, To is the revolution time, and gC is the longitu-

dinal damping partition number:

~
c
= 2 + $qxG(@ + 2Kl)ds

$G”ds ’
(A.4.4)

Note that CQ is the damping ra.te of z or 6; the longitudinal emittance  damps at. a

rate of 2a,.

In the transverse planes, the ra.diation  decreases the transverse momenta p, and

p, and again leads to an exponential da.mping. In this case, the damping rates are

(A.4.5)

where Jx,y are the transverse damping partition numbers which, if the ring is built

in the horizontal plane, are

Jx=l-
j 77x~(~? + 2hr1 )ds

f G”ds
a.nd Jy=l . (A.4.6)

Notice that the sum of the damping partitions is a. consta,nt:  J-c + Jx + Jy = 4.

This is a statement of the Robinson t.heorem Ig3’ and is valid whenever a negligible

quantity of synchrotron radiation is emitted in regions where the external fields are

time dependent, i.e., the RF cavit,ies!21
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A.5 QUANTUM EXCITATION[~'~]

The synchrotron radiation is actually emitted as a series of photons which change

the particle’s energy in discrete steps; the emission can be considered instantaneous

in comparison to the particle motion. Since the emission of a photon is a stochastic

process, the radiation will introduce noise which leads to diffusion. This causes the

beam emittances  to grow until the diffusion is balanced by the radiation damping.

As discussed, the radiation damping is due to the mean synchrotron radiation

power emitted. In contrast, the quantum excitation is due to higher moments of the

photon distribution. We can express the synchrotron radiation power as the rate of

emission multiplied by the expected photon energy:

NW = WJ) 7 (,4.5.1)

where N is the rate of emission, u is the photon energy, and PY is given by

Eq. (A.4.1). To calculate the diffusion effects, we will need the second moment

(u2) which is

(A.5.2)

In the 1ongitudina.l  plane, these fluctuations directly increase the energy spread.

The particles are performing synchrotron oscillations, obeying Eq. (A.3.9),  and if a

particle emits a photon, the oscillation changes to

and the amplitude of the oscillation becomes: 6’ = 6: -I- 6,‘,d $260&d  cos( 40 - f&d).

Since the time of emission is not correlated with the synchrotron phase 40, the

expected amplitude grows at a rate

d(S3) A+“)

-=3-- *dt
(A.5.4)

Now, we can find the equilibrium amplitude by equating the expected growth with

the radiation damping:

d(6”) N(u”)
dt

= 2p2)Q, = - .
Eo2

(A.5.5)

Finally, we average around the ring a,nd we find the rms energy spread by aver-

aging over all of the part.icles.  This inkoduces a factor of one half, yielding an rms
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energy spread and an rms bunch length of:

(A.5.6)

where C, is nearly equal to the Compton wavelength of the electron: C, = 3.84 x

lo-r3  meters.

In the transverse planes, there are two effects: (1) the transverse planes are

coupled to the longitudinal through the dispersion function and (2) the radiation

has a finite opening angle that gives the particle small transverse kicks. Here, we

will only discuss the horizontal plane; the vertical plane is discussed in Section 2.2.

In the horizontal plane, the effect of the radiation opening angle is insignificant

compared to the coupling due to the horizontal dispersion. When a particle radia.tes

a photon, it’s energy changes. Since the periodic trajectory around the ring is energy

dependent, this implies that the particle oscillates about a new central trajectory.

Furthermore, since the particle’s physical transverse position does not change, the

amplitude of the betatron oscillation must change. Specifically, if a photon of energy

u is radiated, the change in the bet.atron  mot,ion  is:

Azg = -$ Ax; =  -$; . (A.5.7)

At this point, we find the change in the single particle invariant Jz. Since the

photon emission is not correlated with the betatron phase, we find an expected

change

(A.5.S)

where

Now, the procedure is identical to that used in the longitudinal plane; we find the

equilibrium value by equating the damping with the diffusion and then average over

all the particles to find the rms value. This yields

Finally, we need to discuss the equilibrium particle distribution resulting from

the synchrotron  radiation. Rlany  photons a,re radiated within a. damping time;
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roughly y/100 photons are radiated per radian of curvature while the damping times

are usually many hundreds of turns. Thus, using the Central Limit Theorem and

assuming linear forces, we find that the equilibrium beam distribution is ga.ussian

in each of the six coordinates: (up, z$, yp, $, z, S). Alternately, this can expressed

in terms of the single particle invariants which have exponential distributions:

hR(&,,)  =

e- JWl c=&
(A.5.11)

%Y

A.6 DAMPING RING PARAMETERS

At this point, we will specialize to the case of damping rings. The two main

parameters of a damping ring are the equilibrium emittance and the damping times.

These determine the emittance of the extracted beam:

E(t) = fie-2t’r  + (1 - e-2t’r)~0 , (A.6.1)

where ci is the emittance of the injected beam and ~0 is the equilibrium ring emit-

tance. Here, T is the horizontal or vertical damping time, and t is the time the

particle bunch is in the ring.

To illustrate the determina.tion  of these parameters, we wiI1 use numbers from

the NLC design described in Appendix B. The design requires that the extracted

beam have normalized emittances  of ycZ 5 3 x 10e6 and rcy 5 3 x 10W8.  Here,

we assume an injected beam emittance of yei = 3 x 10S3, which is realistic for a

positron beam and over an order of magnitude too large for an electron beam. Thus

the vertical emittance needs to be decrea.sed by five orders of magnitude. Damping

the bunch for seven vertical damping times will reduce the first term of Eq. (A.6.1)

by six orders of magnitude; we damp excessively to ease the tolerances on the

equilibrium vertical emittance. The limit on the vertical equilibrium emittance of

the ring is then

7~~0 < 2 .7  x  lo-‘m-rad . (A.6.2)

In a stora.ge  ring built in t,he horizontal plane the vertical emittance is mainly deter-

mined by the coupling bet,ween  the horizontal and vertical planes. The tolera.nces

necessary to achieve this limit are discussed in Cha.pter  II.
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The damping times required in the ring are determined from the desired repe-

tition rate (360 Hz), the number of damping times per bunch (7), and the number

of batches of bunches stored in the ring at once (Nb):

1 Nb
‘2’ ‘Y ’ frep # of damping  times = Nb”.3g7  ms ’ (A.6.3)

The maximum number of batches stored in the ring is limited by the kickers needed

for injection/extraction. We assume that the time for the kickers to turn on, ex-

tract/inject a batch, and turn off is less than 100 ns!” Thus the batches must be

separated by at least 50 ns. Since the number of batches is roughIy  proportional to

the size of the ring we can define an eflective  damping time as

Treff f 72% 2 0.397ms  ,
To

(A.6.4)

where To is the revolution time of the ring and Tsep is the separation of the batches.

In general, the horizontal damping time is less than or equal to the vertical,

gZ >_ 1. Thus, only the vertical damping time is limited by Eq. (A.6.3) and the

horizontal emittance of the ext,ra.cted  beam is very nearly equal to the horizontal

emittance of the ring:

YE,O < 3 x 10V6 m-rad . (A.6.5)

Equations (A.6.4) and (A.6.5) determine the basic parameters. Initially, to study

these parameters, we ignore the option of damping wigglers and reversed bending

magnets and we ignore the effect of intrabeam  scattering. In this case, we can write

simple expressions for 7~~0 and 7yecr  the two quantities we want to minimize:

T 3 88 x
~~~~ = 1.69 x 1014--=-  = -’

1012T=P

y3Gs Bo [KG]y"

YE& = 3.84 x 10-13$KGB =
65Ts,, K- -  .

z Tyeff Jz

(A.6.6)

(A.6.7)

Here, GB is the inverse bending radius of t,he bend magnets, 3-1, is the avera.ge  of

‘FI, over the bending ma.gnets,  Bo is the magnetic field in kilo-gauss, and we have

assumed that Jy = 1. Finally, Tsep is t,he bat,& sepa.ra.tion  which is determined by

the fast injection/extraction kickers.
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Equations (A.6.6) and (A.6.7) 1s low that the emittanceof a ring can be decreased

by reducing the dispersion in the bend magnets, reducing the strength of the bends,

or decreasing the energy of the ring. Unfortunately, the damping times are increased

by reducing the bend magnet strength or decreasing the energy of the ring. This

implies that the dispersion in the bends is the only free parameter. Unfortunately,

as we will see, it is also constrained.

At this point, we need to discuss three additional parameters which constrain

the design: (1) collective limitations, (2) the energy of the ring, and (3) the dynamic

aperture. In general, the collective limitations are eased when the momentum com-

paction factor am is large. For example, the threshold for the longitudinal microwave

instability, also called turbulent bunch lengthening, occurs at a bunch intensity

Arthresh  M
( 27r)3/’  EO&,cxm

e2c(Z/7z),ft- > (A.64

where (Z/T~)~K  is the effective longitudinal impedance. To maximize the charge per

bunch, one wants to reduce the impedance and increase the longitudinal emittance,

the beam energy, and the momentum compaction factor. Of course, the longitudinal

emittance is constrained by the linear collider requirements, and, as we will discuss,

the energy is also. Thus, this only leaves the momentum compaction factor which

needs to be maximized.

Next, we would prefer to have the ring energy low. There are several reasons

for this: (1) it keeps the ring cost lower, (2) it keeps the normalized longitudinal

emittance small, and (3) ti makes bunch compression easier. The NLC requires that

the damping ring bunch be compressed longitudinally by, roughly, a factor of 100.

Since one does not want an uncorrelated energy spread much greater than 1% in the

linac, we need to perform a.t lea.st a portion of the bunch compression at an energy

10 times that of the damping ring. Unfortunately, at higher energies it becomes

more difficult to perform the compression without degrading the beam emittances.

Finally, we need to mention the dynamic aperture. The dynamic aperture of

the ring is a function of the sextupoles needed to correct the chromaticity. To

prevent particle .losses the dynamic aperture should be many times the ifzjected

beam size. Unfort,unately,  rings with small emit.tances tend to ha.ve high tunes and

large uncorrected chromaticit.ies. This makes the desired dynamic aperture difficult

to achieve, and we would like to choose a focusing Ia.ttice  which naturally has a large

dynamic aperture.
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Obviously, these constraints are not necessarily consistent with achieving the

required emittances  and damping rates. For example, in the NLC design, the ring

energy must be greater than 2.,3 GeV to achieve the damping, assuming iron magnets

(non-superconducting) with saturated magnetic fields of 20 KG; this is higher than

the desired energy. Fortuna.tely, the damping requirements can be eased by using

damping wigglers, reverse bending magnets, or a pre-damping ring to reduce the

incoming emittance. In addition, it is common practice to use combined function

bending magnets to increase gz at the expense of JE; this decreases the horizontal

emittance. Detailed discussions of these choices in damping ring designs can be

found in Refs. 13, 22, 36, 37, 90, 119, and 130.
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Appendix B

NLC DAMPING RING DESIGN

Details of the current NLC damping ring design are described in Refs. 90 and

91. In addition, Ref. 90 also discusses the considerations that led to the design.

Here, we will summarize the current state of the design. To do so, we first list the

original design goals and then we briefly describe the current lattice. Finally, we

will comment on a few of the potential limitations of the design.

B.1 ORIGINAL DESIGN GOALS

l 7~~ 2 3 x 10V6 mrad and -rcy s 3 x lo-’ mrad.

l Operation at 360 Hz.

l 7~; = 3 x low3 mrad @ injection - this necessitates damping for E 7 vertical

damping times.

o Separate batches by 2 50ns for the injection/extraction kickers.

e Minimize wigglers due to cost and non-linearity.

l Leave more space between magnets than in the SLC damping rings.

l Achieve a conservative design.

Some of these goals are summarized in Table 17, which compares the goals of the

NLC damping ring with the SLC positron damping ring design. The primary dif-

ference between the two rings is that the NLC ring needs to achieve a vertical

emittance almost three orders of magnitude smaller than the SLC ring at twice the

repetition rate. To achieve this damping rate, the ring needs to damp many batches

of bunches at the same time. A single batch of 10 bunches is extracted on one

kicker pulse while the remaining batches continue damping and an additional batch

is injected to replace the extracted one.

The other main difference between the SLC and NLC damping rings is the very

small vertical emittance specified for the NLC ring. This small vertical emittance

sets limits on the alignment tolerances of the damping ring. While these tolerances

are small (50 - 100 pm vertical alignment), they are not thought to present a. serious

limitation.
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Table 17. Basic parameters of the SLC and NLC damping rings.

NLC SLC

Energy l- 2 GeV 1.15 Gev

r--- ~~Repetition rate I 360 Hz I 180 Hz I

1~ Bunch length I 4-5 mm I 5 m m I

B.2 CURRENT DESIGN

The basic layout of our current damping ring design is shown in Fig. 49. Notice

that there are several insertions which contain wigglers. In order to obtain the

high repetition ra.te,  we increased the damping rate with the addition of wigglers in

straight sections.

Injection/Extraction
Insertions

--/ 

Wiggler
Insertions I \

Q

50 Meters
Fig. 49. Schematic of the NLC damping ring

The basic parameters for the ring a.re listed in Tables 18, 19, and 20. The

la,ttice is a. FODO lattice with combined function bends which &ange  t.he damping
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partitions, increasing the horizontal damping rate at the expense of longitudinal

damping. The RF frequency is 1.4 GHz since the bunch spacing in this example

is about 20 cm. To meet the repetition rate requirements, ten batches of bunches

must be damped at the same time. Unfortunately, this leaves only 45 ns between

the batches for the injection/extraction kickers to turn on or off.

Table 1s. NLC damping ring parameters.

Energy Eo = 1.S GeV

Length L = 155.1 meters

Lattice FODO with CF bends and

22 meters of wiggler

Tunes VX = 24.37, vy = 11.27

Momentum compaction a = 0.00120

Design . 10 batches of 10 bunches

I Current, of 2 x lO”e+/e-

Tables 19 and 20 list the transverse and longitudinal ring parameters when

the damping wigglers are both on and off. The wigglers do not strongly effect the

emittances  of the ring; they are primarily used to decrease the damping times. Thus,

the ring can operate without the wigglers at a reduced repetition rate.

Table 20. NLC damping ring longitudinal parameters.

Bunch length, oZ 5.1 mm 4.6 mm

RF Frequency 1.4 GHz 1.4 GHz

RF Vol ta,ge .75 MV .75 MV

Synch. tune, I/, 0.0075 0.006s

C-w? Lff 0.3Z-I 0.2OQ
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Table 19. NLC damping ring transverse parameters.

The threshold impedance ( Z/72)e~ is that for the microwave instability at the

design current. It is quite small due to the small momentum compaction factor, but

is only about a factor of 4-5 below tha.t  obtained in the SLC damping rings.

The magnet parameters are listed in Table 21. The bending magnets have a

length of 20 cm and a bending field of 13.1 KG with a horizonta,lly  defocusing gra-

dient of 300 KG/ m. Preliminary POISSON calculations indicate that the gradient

and bending field are achievable, but the short lengt’h  of the magnets may make

end-effects a serious difficulty!”

For this reason we have re-designed the basic cell. The original cell wa.s a FODO

cell with small defocusing qua.drupoles;  much of the vertical focusing was done in the

bends. In the new cell, the defocusing quadrupole is removed and the two bends are

joined. Thus, the bending magnet now is 40 cm long - a more reasonable length.

In addition, we elongated the cell and inserted two extra small quadrupoles. These

(optional) additional qua.drupoles provide another degree of freedom for control of

the tunes. The parameters of the two cells are compared in Table 22.

For our design, we chose a wiggler with a peak field of 24 KG, a 50% filling

factor, and a period of 20 cm. This is within 15%‘5’1  of the limits for Nd-Fe-B

hybrid wigglers as specified in Ref. 50. If such high peak wiggler fields are not

possible, the required peak field can be drol>ped to 21 KG by increasing the ring
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Table 21. NLC magnet and wiggler parameters.

Bends B. = 13.1 KG

B1 = 300 KG/m

Quadrupoles B1 < 942 KG/m

pole tip field 11.3 KG

Sextupoles SF J Bzds = -3120 KG/m2

SD s Bads = 4125 KG/m2

Wigglers Length Ltotd = 22 m

Period X = 20 cm

Gap g=2cm

Field Bpeak = 24 KG

Ta.ble  22. Comparison of basic cells.

I I -Y&Z: 1 Jx 1 Leu 1 am for ring 1

briginal FODO ( 2.5 x 10e6 m-rad 12.4 1 1.2 ( 1.2 x 10m3  1

I Modified 12.5 x lop6 m-rad Il.9 I 1.5 ( 0.3 x 10-3 1

energy to 1.9 GeV. Although it would be possible to achieve much higher peak fields

with superconducting wigglers, it appears that the non-linear effects increase with

the cube of the magnetic field strengtl?’

Finally, the chromaticity is corrected with only two fa.milies of sextupoles. The

sextupoles are assumed to be constructed with permanent magnets and have lengths

of 4 cm, keeping the fields similar to the SLC damping ring sextupoles. After

chromatic correction, the dynamic aperture of the perfect machine is just outside

the beam pipe. Errors and wiggler non-linearities will reduce the aperture, but

hopefully, it can be recovered with a more sophisticated chromaticity correction

scheme. Obviously, extensive tracking is needed to determine the dynamic aperture

with errors and deta.iled comparisons with other lattices should be performed to

search for superior dynamic aperture characteristics.
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B.3 FUTURE MODIFICATIONS

The primary modifications to the ring arise from changes in the desired parame-

ters: first, the desired repetition rate has decreased a factor of two to 180 Hz because

of limitations on the position target, and second, more realistic initial emittances

should be used: yce- N 3 x 10W5 m-rad and rc,t - 10m2  m-rad. The electron ini-

tial emittance is comparable to that achieved in the current generation of electron

injectors while the increase in the initial positron emittance was suggested to ease

the requirements on the positron creation system!“’

The current design without the wigglers will easily achieve the necessary damp-

ing for the electron beam. In fact, one might want to decrease the damping rate

by decreasing the main bending field while decreasing the number of cells to keep

the emittance constant; this will reduce the size, cost, and complexity of the design.

But, the wigglers will be needed if a single ring is to achieve the positron require-

ments. The alternate, and more desirable solution, is to use a pre-damping ring to

rapidly damp the positrons to an emittance comparable to that of the initial elec-

tron emittance. Then, both the electron and positron main damping rings would

be similar. This is the solution currently being employed in the JLC designfllgl

B.4 LIMITATIONS

The iimitations on achieving the vertical emittance in the damping rings is the

subject of Section II of this dissertation. Here, we will briefly list a few of the other

potential problems that will

Dynamic Aperture

To achieve the required

ikely be encountered when designing these future rings.

horizontal emittances, the damping rings have strong

focusing and strong sextupoles to correct the chromaticity. Unfortunately, these

sextupoles limit the effective aperture of the ring; particles with large amplitudes

are lost due to the nonlinear fields. There are two solutions to t,his problem: (1)

design a ring with large dynamic aperture, and (2) re uce the aperture requirementsd

of the incoming beam.

Increasing the dynamic a,perture  is currently a topic of considerable research. It

is an issue in most of the synchrotron light sources as well a.s ma.ny of the larger

colliding bea.m  rings. It is suggested in Refs. 22 and 40, that substa.ntia.1  gains in the

dynamic aperture can be realized by using a discrete sextupole a,rra.ngement ra.ther
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Appendix B.4

than the distributed arrangement tha,t  is common. This technique may prove to be

important for these future rings.

While increasing the dynamic aperture is desirable regardless, the second solu-

tion also has many attractive features. The large aperture requirement is dictated

by the incoming positron beam which has an initial emittance  one-to-two orders of

magnitude larger than the electron beam. It was suggested that a pre-damping ring
j58,119]

could ease some the damping ring requirements. This has been incorporated

into the JLC design, where it is shown that, in addition to easing the dynamic a.per-

ture and the damping requirements, a pre-damping ring also eases the tolerances on

the extraction kicker magnet.

Single Bunch Instabilities

The single bunch currents in the damping rings are not very large, but because

of the small momentum compaction fa.ctor and the small synchrotron  tunes, single

bunch instabilities could present a problem. The longitudinal microwave insta.bility,

which is discussed in Appendix A.6, usually has the lowest threshold current. To

avoid this benign instability, the rings must have longitudinal impeda,nces  (Zln),~  w

0.20-0.50.  This is well over a factor of two smaller than that measured in the SLC

ring and requires a very ca.reful  vacuum chamber design.

Multi-Bunch Instabilities

In addition to the single bunch instabilities, there are multi-bunch instabilities

that may be severe since many of the designs call for many closely spaced bunches.

For example, there are ten batches of ten bunches in the NLC design. The batches

are separated by roughly 50 ns but the bunches within a batch are only separated

by about 1 ns. This has been investigated”lcl and it was determined that the NLC

ring will need specially designed RF cavities. In addition, the ring will likely need

feedback systems to further control the instability.

RF System

In addition to multi-bunch instabilities, the NLC RF system will need to handle

five times more current tha.n in the SLC rings. This requires careful a.ttent.ion to

the higher-order modes. Furthermore, when the bunches are extracted from and

injected into the ring there will be large bea.m loading transients that need to be

carefully considered.
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Fast Kicker Magnets

. . . .

Fast kicker magnets are used to extract or inject the batches of bunches into the

damping ring. The kickers need to have very fast rise and fall times so that they

do not affect the other stored batches of bunches. The SLC damping rings use a 50

ns bunch separation, but the kickers are a source of problems. Currently, the JLC

designL”91 assumes a 70 ns batch spacing while the NLC and CLIC designs I3~8901  call

for a 50 ns and 22 ns batch separation, respectively.

The kickers need to have flat pulses so that all bunches within a batch are

injected/extracted on the same trajectory. The jitter and flatness tolerances on

the extraction kicker are related to the kick needed to extract the beam, typically

2 5mrad, compared to the beam divergence u,! - 20 prad. This implies a tolerance

of roughly AB/B  ZG 4 x 10 -4 for a. jitter of one tenth the beam size. Such a tolerance

will be difficult to achieve.

One suggested solution of easing this tolerance is to use two kickers, driven

from the same pulsed power supply, that are separated by 180”  in beta.tron phase.

The first kicker would reside in the ring while the second kicker would be in the

extraction line; the second kicker applies exactly the same kick, including jitter, to

the beam, removing the jitter from the first kicker.

Synchrotron  Radiation Power

The damping rings operate by radiating extensive amounts of beam power. This

radiation has three effects: (1) it heats the vacuum chamber, (2) it ca.n dama.ge

the magnets and electronic equipment, and (3) it frees gas molecules causing a

“dynamic” backg round gas pressure which can increase the vertical emittance  as

discussed in Section 2.3.6. All these problems a.re exacerbated at the damping

wigglers, which generate copious quantities of photons in a small region.

230



I

Appendix C. 1

Appendix C

COUPLING DERIVATIONS

In this appendix, we will discuss two issues related to coupling of the emittance;

both are relevant to Section 2.2 of this dissertation. In the first section, we discuss

the independence of the various contributions to the vertical emittance and then,

in the next section, we explicitly perform the algebra needed to derive some the

coupling formulas.

C.l INDEPENDENCEOF CONTRIBUTIONS TO cy

In Section 2.2.2, we state that the contributions from the opening angle of the

radiation, the vertical dispersion, and the betatron and synchro-betatron coupling

are all independent and thus they simple add to the emittance/beam size: (y$)/&.

First, we will consider only contributions to the emittance, and then we will discuss

the contributions to the beam size.

There are three contributions to the vertical emittance: the opening angle of

the radiation, the vertical dispersion, and the betatron coupling; as discussed in

Section 2.2.6, the direct synchro-betatron coupling has a very small contribution

to the emittance. These effects increase the vertical emittance by causing random

changes in the betatron motion. These changes can be written

YP = ypo + ~g~/Eo + qzu/Eo + c’du/Eo

Yb = YbO + 6,$,u/Eo + dqzu/Eo + d’d4Eo (C.l.1)
7

where 8, is the opening angle of the radiation and the coefficients c, c’, d, and d’

represent the rotation of the eigenvectors due to the betatron coupling; these are

functions of the coupling coefficients Q*.

Thus, these contributions will add independently to the emittance if

(uBy) = ~z?jyc(u2)  = rjz7j$c(u2) = 7&7jJyc’(u2)  = q~7&‘(u2) = 0 ; (C.l.2)

we have assumed that all of the effects are independent of the initial position and

angle (Y~o, ybo)- The first t,erm is zero since the expected angle of the radiation is

zero, but the other terms are not as obvious since the expected value of (u2) is not

zero.
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In this case, we have to consider the average of qrr,+,c through all the bending

magnets; the emittance  would depend upon this average. In general, qZ has a

periodicity determined by the lattice cells. Thus, 71% is constant from cell to cell.

In contrast, qY and the coupling have periodicities determined by the tunes. The

vertical dispersion oscillates at the vertical tune (or the integral portion) while the

coupling oscillates at vZ + z+,  and uZ - vY. Provided that I/= # 2v, and vY # 2vZ,

these averages will be zero. Thus, it is valid to simply add these contributions.

C.2 DERIVATION OF EQS. (2.2.65) AND (2.2.107)

In this section, we will derive Eqs. (2.2.65) and (2.2.107) from Eq. (2.2.64). We

will only explicitly calculate the contributions from the individual coupling reso-

nances; these come from the cos(&(z) - &(z’)) cos(&,(z)  - ?i,,(z’)) term which is

found when one expands the trigonometric functions in Eq. (2.2.64). The deriva-

tion of the cross term is similar except one needs to include all of the trigonometric

functions; this is easily accomplished using exponential notation, but, because of

the large number of terms, the calculation is quite tedious.

First, we expand the square of the bracket in Eq. (2.2.64), keeping only the

terms that depend upon the differences of the phases G(Z) and $(s’):

N(U2>%(Zi> s
4E,2 JJ

dzdz’i(z)&(z’) . . . cos(q!~&) - &(z’)) m($&) - $+‘)) ,
Zr

(C.2.1)
where trigonometric identities have been used in the expansion. Now, we can use

additional trigonometric identities to express this result as

where the sum over i represents a sum over the ?+!J~  + $y phase and the & - &

phase.

Next, we can condense this into a single integral using complex exponentials and

we separa.te  the integral over z into a portion over an imegral  number of turns of
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the ring and a portion over the remaining segment. Thus, the result has the form:

j dzi[jdz...]2+ 5 j dz;E j dz..a+ s~cdz---l’, (C.2.3)

--03 2; n s - c j s-~ z,-nC

where . - . is used to represent the integrand. Explicitly, this yields

n-1
S

-na,To
c

ej(cY,-a,)To-ij2*Av~

J
44dz

j=O s - c

S

Se
-wryTo-in2xAuk

J I
qib)dz 2

2,
(C.2.4)

where

q*(z)  = J~iei(@‘f4”)  . (C.2.5)

In addition, Av* = (vz f vY), 2’0 is the revolution time, and it was assumed that

the damping per revolution is small compared to the betatron tunes.

Now, we perform the sum over j. The expression within the absolute value signs

becomes
S

-na,To-inPrAu* _ e-n~,?b

)J
q&)dz

s-c
(C.2.6)

S

Se
-na,To-in.3rAu*

J I
q*(z)dz 2 .

2%

At this point, we can calculat,e  the case where the local coupling is zero at

location s. When the local coupling is zero, the first integral over q is zero and we

are left with only the second term. Thus,

S

++global
co

PY  =n=Oe
c

-2noyTo

J

d,,N(~2)~z(zi)
=c

ScE;
s - c

$f n-t(--)dz~2 . W-7)

z,

Now, we perform the final summation, shifting s -+ s + C, and assuming that the

photons are radiated uniformly a.round the ring, this yields Eq. (2.2.107).



If the local coupling is not zero, we can group the terms in Eq. (C.2.6) as

(C.2.S)
ieirAvk

S

Se
-na,To-inZrAv*

2 sin xAv*- J
q&)dz + j q&W) jz -

s - c 2,

When the absolute value sign is calculated, the cross term will have an oscillatory

term due to the complex exponential. Assuming that 27rAu* >> ~2’0,  this cross term

will go to zero when the final sum over n is performed. Thus, we are left with the

separate absolute values of the two terms in Eq. (C.2.8). The first term is simple;

the absolute value is

4 ;i;;;k 1 $&z)dz/2 . (C.2.9)
S

After performing the final sum over 12 a.nd substituting with the equilibrium emit-

tance, this yields the first expression in Eq. (2.2.65).

Finally, we have the second term of Eq. (C.2.8).  Let us express this as

e-2ncu,To
S

4 sin’ xAv* I(
ae’ irAu* + 2 sin sAv* q*(z)dz + ieixAu* i Iq*(z)dz 2 .

-7. s - c
(C.2.10)

Next, we express the sine in exponential form and shift the second integral by C.

When we shift the limits by C, we have to include a phase shift of ei3*AV*. Thus,

Eq. ((3.2.10) becomes

4 IiTich li,i”Av* j q*(z)dz + iewinAv* *]‘q*(z)dz[ .

2. S

(C.2.11)

Now, we add these two integrals and perform the final summation over n; this yields

the second expression in Eq. (2.2.65).
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Appendix D

NLC LINEAR ACCELERATORS

D.l BASIC SCALING

As illustrated in Fig. 1, the proposed NLC is to consist of two linear accelerators:

a preliminary linac that accelerates the beam from the damping ring to the final

bunch compression, and a main linac that then accelerates the beam to the final

energy. The current design calls for the main linac to operate at an RF frequency of

11.4 GHz with a large accelerating gradient. In contrast, the low energy linac would

operate at 2.8 GHz with a lower gradient; the low energy linac would be comparable

to the SLC linac.

The higher frequency RF is used in the main linac to reduce both the average

power consumption and the length of the linac. But, before the second bunch com-

pression, the wakefields in a high frequency linac would rapidly dilute the transverse

emittance; the transverse wakefield increases with both the bunch length and the

RF frequency. Unfortunately, the second bunch compression can not be performed

at low energy since the relative energy spread would then be the order of many

percent and the transverse beam emittance would be diluted by the dispersive and

chromatic errors.

Both the preliminary and main linacs are assumed to be constructed of FODO

cells that are scaled as the beam is accelerated. A basic FODO cell is composed of

a focusing quadrupole, a drift, usually filled with accelerator sections, a defocusing

quadrupole, and another drift section. An example FODO cell with lattice functions

is illustrated in Fig. 50. In the “thin-1ense”  approximation where the length of

the quadrupole magnets is neglected, one can find simple expressions for the beta

functions!1201 In particular, the maximum and minimum beta functions are

p= L,
1 + sin$,/2

sin &
and p = L,

1 - sin$c/2
sin & ,

where L, is the length of the cell and $J~ is the phase advance per cell. Finally, the

cell length and the phase advance can be simply related to the integrated quadrupole

strengths as

4
L,= -

I III,-1 L,
sin&/2  , (D.l.2)

where Is’1 is the normalized quadrupole strength and L, is the quadrupole length.

2.35



I

j-1
/ \

/ \/ \/ \/ \/ \

.

0~““““““““““”
lr Act. Act.

I QD 

0 1 2 3 4
S [meters]

Fig. 50. Lattice functions for a basic FODO cell; the solid and dashed
lines are ,& and ,&, respectively. QF and QD represent the focusing a.nd
defocusing quadrupoles.

Alternately, we can use the beta functions to find the relations

As the beam is accelerated, the normalized quadrupole gradient 1<1 of a given

magnetic field decreases inversely with the beam energy. If the cells are not scaled,

the beta function will increase linearly with energy while the phase advance per cell

decreases. Since many of the tolerances depend upon the local value of the beta

function, this is not a. good choice. Instead, a scaling is typically chosen where the

magnetic field strength is kept constant, but the cell lengths and the qua.drupole

magnet lengths increase with the square root of the beam energy!“”  Such a lattice

has beta functions that increase with the square root of the beam energy while the

phase advance per cell remains constant. Thus,

(D.1.4)

This lattice has the advantage tl1a.t  it makes “optimal” use of the quadrupole
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magnets. Unfortunately, such a scaling will cause extensive complications because

every magnet, drift, and accelerator section is different. Instead, one could scale

the lattice in a number of small discrete steps to approximate the fi behavior.

Regardless, we will adopt this scaling because it simplifies the analytic trea.tment of

the lattice.

At this point, we need to describe how this scaling is used. First, Eq. (D.1.4)

gives the basic scaling of the parameters. Furthermore, many of the calculations in

Section III of this thesis will involve sums over the quadrupole magnets having the

form:
9
fJ 1fm ? (D.1.5)
n=l

where Ng is the number of quadrupoles and 7n is the beam energy at the nth

quadrupole. To evaluate these sums, we will replace them with an integral

(D.1.6)

which is valid provided that N, is large a.nd y(n) va,ries slowly as a function of 72.

Now, for the scaling derived a.bove,  y(n) can be expressed as

r(n)= (:+&ii)’ , where c= n:fi . (D.1.7)

This dependence of y on n will give slightly different numerical results than the

linear dependence implicitly assumed in Refs. 99, 98, 97, and 53.

Finally, we also need to describe our approximation of the wakefield deflections.

As discussed in Section 3.4.2, the dipole wakefield  occurs when the beam travels

off-axis in an accelerator

particle model described

written

structure and it deflects the tail of the beam. In the two

in Sect.ion 3.4.2, the deflection of t,he tail particle ca.n be

AY&) =
J

&/ NT0 w I4y yc(s’)Rds’, s )  ,

0

(D.l.8)

where AO, and Ay, a.re the change in angle and position due to the wvakefield.

237



We will approxima.te  this with a. delta-function deflection loca.ted  at the center

of the structure where the deflection depends upon the average trajectory offset

through the structure. In this approximakion, A0, is calculated correctly but there

is a smaller error in calculating AyW. At the end of the structure, AyW should be

Ayw =
~~O@Yl Yi&cc

47 + 12 7 (D.1.9)

but our approximation neglec.ts the yb dependence; this causes a small error when

calculating the effect of a random trajectory.

Table 23. Average beta functions for various cell phase advances.

Lastly, we need to know the beta function at the center of the structure. As-

suming the structure is centered between the two adjacent quadrupoles, we find

(D.l.lO)

where $ is the phase difFerence between the center of the structure and adja.cent

focusing quadrupole. This can be written

tan? =
sin tic

(
( D . l . l l )

4(1 + sin qJC/2) 1

Values of B and $ are listed in Table 23 for va.rious cell phase advances. Notice that

the beta function at the center of the cell decreases as the phase a.dva.nce  per cell

increases. Also note that p is slightly different from the average beta: (fi + p)/2,

although this is a commonly used approximation.
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D.2 PRELIhlINARY LINAC

The preliminary NLC linac will accelerate the beams after the first bunch com-

pression at 1.S GeV to the secoilcl  bunch compression at 16.5 GeV. In Table 24, we

list parameters for two versions of this linac which differ in the degree of focusing;

detailed parameters have not been determined yet.

Both linacs are a.ssumed  to be constructed of FODO cells that are scaled with

the square root of the beam energy a.s described in Section D.l. In addition, the

linacs are assumed to have an RF frequency of 2.5 GHz with accelerating gradients

of 20 MeV/m; this is simi1a.r  to the SLAC accelerator structures.

Table 24. Parameters for the preliminary NLC linac.

T& per cell 94O 94O

Initial cell length 3.S m 7.6 m

Initial beam size, aYi 5.5 pm 7.S /lrn

Final beam size, aYf 3.0 pm 4.3 pm

Bunch length. gZ 500 pm 500 pm
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Table 25. Parameters for the main NLC linac.

D.3 MAIN LINAC

The main NLC linac will accelera.te  the beams after the second bunch compres-

sion to the final energy. In Table 25, we list parameters of two linacs that are used

for discussion in this dissertation. These are only illustrative examples; detailed

parameters have not been determined.

Both linacs are assumed to be constructed of FODO cells that are scaled with

the square root of the beam energy as described in Section D.1. In addition, it

is assumed that the linacs have an RF frequency of 11.4 GHz with accelerating

gradients of 100 hleV/ m. Wakefields for an 11.4 GHz structure with an iris size

U/XRF = 0.20 are illustrated in Fig. 5l!“]
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Fig. 51. Longitudinal (solid) and transverse (dashed) wakefields for 11.4
GHz NLC main linac accelerator structure; the iris radius is U/XRF = 0.2.
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