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ABSTRACT

Many future linear collider designs call for electron and positron beams with
normalized rms horizontal and vertical emittances of ye; = 3 x 10™% m-rad and Yey =
3 x 10~8 m-rad; these are a factor of 10 to 100 below those observed in the Stanford
Linear Collider. In this dissertation, we examine the feasibility of achieving beams
with these very small vertical emittances. We examine the limitations encountered
during both the generation and the subsequent acceleration of such low emittance
beams. We consider collective limitations, such as wakefields, space charge effects,
scattering processes, and ion trapping; and also low intensity limitations, such as
anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general,
the minimum emittance in both the generation and the acceleration stages is limited
by the transverse misalignments of the accelerator components. We describe a few
techniques of correcting the effect of these errors, thereby easing the alignment
tolerances by over an order of magnitude. Finally, we also calculate “fundamental”
limitations on the minimum vertical emittance; these do not constrain the current
designs but may prove important in the future.
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location of 95% confidence level in units of the expected value,
Section 2.2.8.

measure of emittance dilution, Eq. (3.4.4).

relativistic factor.

lattice (Twiss) parameters, Appendix A.2.

beam parameters, Eq. (A.2.20).

distribution function for emittances, Section 2.2.8.
coefficient for synchro-betatron coupling, Section 2.2.6.1.
accelerating gradient: G = dv/ds.

inverse bending radius of main bending field, Eq. (A.2.1).



px!yiz
9+

Q+

Symbols

inverse bending radii of dipole correctors, Eq. (A.2.1).
dispersion functions, Eqg. (A.2.15).

dispersion invarients, Eq. (A.5.9).

Bessel functions, Section 2.2.6.

transverse single particle invarients, Eq. (A.2.21).

transverse and longitudinal damping partitions, Appendix A.4.
coefficient for betatron coupling: k= Kyy. — I?l, Section 2.2.5.
normal magnetic field components, Eq. (A.2.1).

skew magnetic field components, Eq. (A.2.1).

luminosity, Eq. (1.1.1).

electron mass: m = 9.11 x 103! kg.

storage ring oscillation tunes, Appendices A.2 and A.3.
atomic gas density, Section 2.3.6.

betatron phase advances, Eq. (A.2.7).

design particle momentum.

transverse and longitudinal momenta.

integrand of betatron coupling coefficients @)+, Appendix C.2.
betatron coupling coefficients, Eq. (2.2.66).

local magnetic bending radius.

electron classical radius: ¢ = 2.8 x 10~15 m.

proton classical radius: r, = 1.5 x 10718 m.

storage ring radius: R = C/2r.

transport matrix elements, Eq. (A.2.10).

transport matrix, Eq. (A.2.10).

longitudinal coordinate, Appendix A.l

Xi



az)yYZ)e

Tz,y,2

To
Q

synchro-betatron coupling coefficients, Eq. (2.2.86).

crosssection for scattering, or, conductivity of vacuum chamber:
for copper ¢ = 5.8 x 10" mhos/m.

rms beam sizes for transverse, longitudinal and energy deviation.
transverse and longitudinal damping times, Appendix A.4.
revolution period of storage ring.

synchrotron oscillation frequency, or, solid angle.

transverse and longitudinal wakefields, Sections 2.3.4 and 3.4.2.
transverse chromticities: ¢z, = dv/dp/p, Eq. (A.2.17).
transverse and longitudinal coordinates, Appendix A. 1.

betatron component of x and y motion, Eq. (A.2.6).

horizontal and verical closed orbit, Eq. (A.2.13).

transverse misalignments.

impedance of free-space: Zg = 377 1.

Xi i



Chapter 1.1

CHAPTER 1
THE GENERATION AND ACCELERATION OF LOW
EMITTANCE FLAT BEAMS

In this dissertation, we will examine the generation and subsequent acceleration
of electron and positron beams with very small vertical emittances. Currently,
many groups around the world are designing the “next generation” of e"'/e' linear
colliders; the first generation is the Stanford Linear Collider (SLC) at SLAC. The

future accelerators are designed to have center-of-mass energies of % to 2 TeV.

To perform useful measurements, these accelerators need to have very high lu-
minosities; the luminosity multiplied by the cross section of interest specifies the
experimental event rate. The linear colliders are being designed for luminosities of
1033 to 10%* cm™2sec™!. This is one-to-two orders of magnitude higher than that

currently achieved in colliding beam machines, and many orders of magnitude higher
than that achieved by the SLC.

The luminosity depends upon the density of the colliding beams and the degree

of overlap. Assuming that the beams fully overlap, the luminosity can be written:

— N_Niny frep Hp

drogoy

£ , (1.1.1)

where we have assumed that the beams have gaussian transverse distributions with
rms dimensions of oz and oy. In addition, N_ and N+ are the number of electrons
and positrons per bunch, ny is the number of bunches per batch, fiep is the batch

repetition rate, and Hp is the pinch enhancement factor.

To achieve the required luminosity, many future linear colliders designs are striv-
ing for very small spot sizes at the interaction point (IP); parameters of a number
of the designs are listed in Table-T. il THe-spot*size is described by two parameters:

the beam emittance, which is a measure of the beam’s phase space volume, and

* The parameters are in a state of flux and, in addition, many laboratories have multiple sets of
parameters. Thus, we have chosen a representative, but not necessarily current or exhaustive,
set.

t There are two designs (not listed) that have much Jarger spot sizes: the superconducting
TESLA design and the high current DESY design. These machines achieve the necessary
Juminosity by having many bunches.



Table 1.

Parameters of linear collider designs.

sLc™ | NLc™" | JLCH*" | cLIC™™ | DESY"
C-O-M Energy [TeV] 0.1 1.0 1.0 2.0 0.5
Luminosity [ 1033 cm™2sec™!] | 0.006 10 6 12 4.1
et /e~ per bunch [10'°] 5.0 2.0 1.0 0.5 0.7
Number bunches 1 10 10 11 172
Repetition rate [Hz] 180 180 200 1700 50
IP beam size: Oz [nm] 1600 220 200 60 169
oy [nm] 1600 2.5 1.7 12 5.5
o [um] 1000 100 76 200 200
Emittance: e, [107% m-rad] [ 16 3 3 3 4
véy [1078 m-rad] 16 0.03 0.03 1 0.04

the beta function which depends upon the focusing structure of the accelerator. In

particular, the spot size can be written:

Gz)y = vV ,Bz’yfz,y I

where §; 4 is the beta function and ¢z y is the projected emittance. To reduce the

(1.1.2)

spot size, we need to reduce both the beta function and the beam emittance at the

IP; this is the driving force behind small emittance beams.

To get a small emittance beam at the IP, the beam is created at low energy and
then (very carefully) accelerated to the final energy; Figure 1 shows a schematic of
the proposed linear collider. The main components are: damping rings to generate
the very low emittance electron and positron beams, bunch compressors to decrease
the length of the particle bunches, linear accelerators to accelerate the beams, and
final focus regions to demagnify the beams to very small sizes.

In this dissertation, we will examine the limitations and the tolerances associ-
ated with both the generation and the subsequent acceleration of beams with very
small vertical emittances; we will not consider problems encountered in the bunch
compressors or the final focus and we neglect all of the issues associated with hav-
ing multiple closely spaced bunches. Although much of the physics is the same in

both the damping rings and the linear accelerators, the relative importance differs;
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2 GeV Damping Rings
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Fig. 1. Schematic of the NLC, a future linear collider.

the primary sources of dilution in the damping rings are non-conservative processes
while in the linacs the main dilutions are due to conservative dilutions and pulse-to-
pulse jitter. Thus, we will consider each region separately, breaking this dissertation
into two main sections.

Specifically, in Section 2, we will discuss determination of the vertical emittance
in the damping rings. Here, we will calculate the emittance dilutions due to:

¢ Opening angle of radiation e Vertical dispersion

e Betatron coupling e Synchro-betatron coupling
e Jntrabeam scattering e lon trapping

e Space charge field e  Wakefields

e Beam-gas scattering e Lifetime limits
e Ground motion e Power supply fluctuations
e High frequency jitter e Injection matching.

And, in Section 3, we will discuss the vertical emittance dilutions in the linear
accelerators, calculating the dilutions due to:

e Matching and filamentation e Vertical dispersion
e Transverse wakefields e RF deflections

e Betatron coupling e Space charge field

e Synchrotron radiation e Beam-gas scattering



e Ground motion e pulse-to-pulse jitter.

We have attempted to make a complete analysis of the effects that determine the
vertical emittance in the damping rings and the effects that can dilute the emittance
during the subsequent acceleration. Much of this work is analysis of well known
phenomena, in a new regime. However, some of it is actually new analysis, while
the remainder is a compilation of others work, sometimes with minor corrections or

extensions. We attempt to clarify this with extensive references.

Finally, it is worth making two remarks to prevent potential confusion: first,
the references are organized in alphabetical order and thus the reference numbers
do not appear sequentially. Second, most equations are written in a form that does
not depend upon the explicit system of units, but, whenever the choice of units is
important, the MKS system is used.
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CHAPTER 2
GENERATION OF SMALL VERTICAL EMITTANCE BEAMS

In this chapter, we will discuss the generation of et /e~ beams with the very
small vertical emittances required by many future linear collider designs; parameters
are listed in Table 1. Many designs have specified normalized vertical emittances
of roughly 3 x 10~% m-rad. This is over one order of magnitude smaller than that
specified in any of the current colliding beam storage rings or synchrotron light

sources.

In general, the electron beam originates at an “injector” while the positron beam
is created by colliding an electron beam with a target; the positrons are collected
from the resulting electron-positron pairs. At this time, electron injectors are not
able to generate beams with the necessary emittances and currents. Currently, ad-
vanced injectors, using RF guns with photo-cathodes, are able to generate beams

with ve; = 10~% m-rad at currents of 2 x 101%™ per pulse!****"

Theoretical con-
siderations suggest that an order of magnitude improvement is possible, but not the
two-to-three orders of magnitude that are required. Furthermore, although some
new techniques have been suggested,[m’ there are no known techniques of producing
positrons with comparable emittances; usually conventional positron systems gener-
ate beams with emittances of ve ~ 10~2 — 1073 m-rad. Thus, the beam emittances
must be damped to decrease the six-dimensional emittance after the beams have

been created.

Liouville’s theorem can be used to show that the phase space density of an infi-
nite number of particles is conserved in the absence of inter-particle and dissipative
forces. This does not leave many avenues to damp the beam. Currently, three tech-
niques have been developed to damp high energy charged particle beams: stochastic
cooling, electron cooling, and radiation damping. The first two techniques are typ-
ically used on protons and ions where the radiation damping is ineffective. Both

processes are much too slow to be useful for a future linear collider.

The other technique, radiation damping, damps the beam by causing the par-
ticles to radiate. The phase space density is damped because the radiation acts as
a dissipative force. Usually, one uses synchrotron radiation to perform the damp-
ing, although any form of incoherent radiation, such as Cherenkov and transition
radiation, will also damp the beam.



It is important to realize that the radiation must be incoherent to damp the
beam; each particle must radiate independently. If one were to write a Hamiltonian
for the system, the coordinates and momenta of each photon need to be included;
the phase space density of the beam is damped at the expense of the photon phase
space. In contrast, if there is coherent or stimulated radiation, there is a definite
phase relationship between the photons. In this case, one can describe the radiation
as an interaction with an external field and the phase space density of the beam is

conserved.

Explicitly, stimulated devices such as Free Electron Lasers (FELs), klystrons,
gyrotrons, etc., do not damp the beam. FELs and klystrons bunch the beam longitu-
dinally, but they increase the energy spread within the bunches. Similarly, gyrotrons
bunch the beam in transverse position (phase) but this is done at the expense of the
transverse momenta. This is also true of the Cyclotron Maser Cooling technique
suggested in Ref. 59. This device may generate substantial radiation, but it will not
damp the beam; the author has confused radiation power with damping and he did

not examine the effect on the beam phase space.
2.1.1 Damping Rings

Although the radiation damping process is faster than other techniques, it is still
relatively slow. Thus, the beams are damped while they are stored in a damping
ring. As the highly relativistic particles are directed around the circumference of the
ring, they emit synchrotron radiation. This incoherent radiation has two competing

effects; it is a source of damping and a source of excitation.

The damping occurs because the synchrotron radiation acts as a frictional force,
decreasing the particle’s momentum deviation from the design momentum, while
the excitation occurs because of the quantum nature of the radiation. Specifically,
the radiation of a photon changes the particle’s energy and gives a small transverse
kick that depends upon the opening angle of the radiation. The transverse kicks
due to the opening angle directly change the amplitude of the particle’s betatron
motion, and thereby the bunch’s emittance, while the change in energy, due to the
radiation, has a more subtle effect. The particle executes betatron oscillations about
a closed orbit in the ring. Since this closed orbit depends upon the particle energy,
the radiation of a photon increases the rms amplitude of the betatron motion by

displacing the closed orbit relative to the particle’s position.um]
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Table 2. Damping ring parameters.[m]

s | cLic™ |JLc™? | NLC*™ | DESY™
Energy [GeV] 1.15 2.0 1.54 1.8 3.15
Circumference [meters] 35 162+ins. | 180 155 650
Rep. rate [Hz] 180 1700 | 200 | 360 50
Current/bunch [10}%t/e~] 5 0.5 1 1.4 0.7
Number of bunches 2 22 x 10 | 8 x 10 |10 x 10 172
Injected Yézy [1073 m-rad] 10 - 3 3 -
Extracted e, [107% m-rad] 16 3 3 3 4.1
Coupling €z /€y 1 l 3 100 100 100

In a storage ring these two competing effects lead to an equilibrium beam size
and emittance. When designing a damping ring, one strives to maximize the damp-
ing while keeping the equilibrium emittance small. A review of the basic dynamics
in an et /e~ ring is presented in Appendix A along with a more detailed discussion

of damping rings and the basic scaling of damping ring parameters.

2.1.2 Current Designs

The main parameters of four damping ring designs for high energy linear colliders
are compared with the SLC damping rings in Table 2; the NLC design is described
in greater detail in Appendix B. Although these rings are each optimized for the
respective linear colliders, there are two primary differences between the future
designs and the SLC damping rings: first, the future rings are striving for very small
emittances, especially the JLC, NLC, and DESY designs which call for extracted
vertical emittances of vey, = 3 ~ 4 x 10~8 m-rad; this is a factor of 500 smaller than
the SLC design.

Second, the future designs plan to provide much more damping than the SLC
damping rings. For example, in the NLC design, the injected vertical emittance is
damped twice as much as in the SLC rings while operating at a faster repetition rate.
To achieve the necessary damping, the rings have larger circumferences, allowing
multiple batches of bunches to be damped at once. In addition, the rings operate at

slightly higher energies and use smaller angle bends to further increase the damping



while maintaining small equilibrium emittances. Finally, some of the designs plan

to supplement the damping with damping wigglers.
2.1.3 Limitations

As mentioned, there are two primary differences between the SLC damping rings
and the future designs: the damping requirements and the emittances. In principal,
the damping requirement is not really a limitation; one can always cascade multiple
rings to decrease the requirements. The difficulty, of course, is in arriving at an
elegant solution.

In contrast, the very small vertical emittance, that many designs require, may
prove more difficult to achieve; we will examine the feasibility of this requirement.
In the next sections, we will analyze the limitations on the vertical emittance and
the aspect ratio €;/€y. In Section 2.2, we discuss the single particle limitations;
these are primarily due to transverse betatron coupling and the vertical dispersion.
Next, in Section 2.3, we examine the collective limitations: intrabeam scattering,
ion trapping, direct space charge effects, and wakefields. In addition, we will discuss
limitations due to beam-gas scattering and the beam lifetimes. In Sections 2.4
and 2.5, we calculate the effect of jitter sources and the required injection matching;
matching the extracted beam is discussed in Section 3.3.2. Finally, in Section 2.6,
we summarize our results.

Of course, the vertical emittance is not the only limitation facing these future
damping rings and, for completeness, we briefly describe a few of the other problems
in Appendix B.



Chapter 2.2.1

CHAPTER 2.2
SINGLE PARTICLE LIMITATIONS

2.2.1 Introduction

In this chapter, we discuss low current effects that contribute to both the ver-
tical emittance and the vertical beam size in et /e~ storage rings; we differentiate
between the two because it is possible to increase the beam size without increasing
the emittance. Most of this discussion is taken directly from Ref. 84. A section
discussing the synchrotron motion and a section applying the results to the NLC
damping ring has been added. The discussion is very general and is applicable
to synchrotron radiation sources as well as damping rings; synchrotron radiation
sources strive for small emittances to increase the spatial coherence of the photon
beams.

We consider contributions from the opening angle of the synchrotron radiation,
the vertical dispersion, and the betatron and synchro-betatron couplings; we neglect
all current dependent phenomena which also constrain the ring performance, these
are discussed in Section 2.3. The goal in performing this study is to illustrate
how these effects contribute to the vertical emittance and beam size, and thereby
determine the limitations that they impose on future designs. In particular, we will
discuss alignment tolerances needed to limit the vertical emittance and beam size
that are consistent with the inclusion of realistic correction techniques.

As discussed in Appendix A, the low current equilibrium emittance and beam
size in an e¥ /e~ storage ring is determined by two competing processes: quantum
excitation and damping, both of which result from the synchrotron radiation emitted
by the particles in the ring. The quantum excitation is due to the discrete nature of
the radiation whereas the damping is a result of the mere existence of the incoherent
synchrotron radiation.

The radiation of a photon changes the particle’s energy and gives a small trans-
verse Kkick that depends upon the opening angle of the radiation. The transverse
deflections due to the opening angle directly change the amplitude of the particles
betatron motion, and thereby the bunch’s emittance, while the change in energy due
to the radiation has a more subtle effect. The particle executes betatron oscillations
about a closed orbit in the ring. Since this closed orbit depends upon the particle
energy, the radiation of a photon increases the rms amplitude of the betatron motion



by displacing the closed orbit relative to the particle’s position. In the horizontal
plane, the increase in emittance due to this second effect is typically much larger
than the increase due to the opening angle of the radiation. However, ideally, in the
vertical plane, there is no dispersion and thus the opening angle should determine
the vertical emittance.

In practice, this is not the case. First, vertical dipole errors and a non-zero
vertical closed orbit in the quadrupole magnets will directly introduce vertical dis-
persion. Second, a non-zero vertical closed orbit through the sextupole magnets,
vertical sextupole misalignments, or rotational misalignments of the quadrupoles
couple the horizontal and vertical planes. This coupling has two effects, both of
which increase the vertical emittance. It couples the horizontal dispersion to the
vertical, increasing the vertical, and it couples the z and y betatron motion so that
energy is transferred between the two planes. Finally, misalignments of the RF
cavities or vertical dispersion in the RF cavities can couple the transverse and the
longitudinal planes.

In this chapter, the effects of the coupling on the vertical emittance are analyzed
perturbatively, assuming large aspect ratios €:/ey and €;/¢ey. In the next section,
the relevant equations of motion are introduced and we discuss the closed orbit and
the closed orbit correlation function which will be needed to calculate the effects of a
closed orbit. Then, in Section 2.2.3, we calculate the emittance due to the opening
angle of the radiation. This is roughly estimated in Ref. 104; the more detailed
calculation in Section 2.23 yields a result a factor of two smaller.

In Section 2.2.4, we calculate the vertical emittance and beam size due to the
vertical dispersion caused by random errors and a non-zero closed orbit. In previous
work, the corrected closed orbit has been treated either as a series of uncorrelated
offsets in the magnets” " or the same as an uncorrected closed orbit**'? Typically,
the first procedure will overestimate the effect of the closed orbit and the second
will underestimate the contribution.

Next, in Sections 2.2.5 and 2.2.6, we use analogy with the vertical dispersion to
discuss the betatron and synchro-betatron coupling. As stated, in an et /e~ ring,
the betatron and synchro-betatron couplings cause both a local beam size increase
and a fundamental dilution of the vertical phase space; the local beam size increase
arises because the horizontal and longitudinal emittances are projected into the

vertical plane. The betatron coupling has een treated both exa.ctlym'sg'm]

{26.4

and when

close to the coupling resonances. T Likewise, the synchro-betatron coupling has
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s 5,80,113
been treated exactly““g] and when close to resonance.[ ] Unfortunately, the

first provides a formalism that is complex and does not lend itself to a simple
understanding of the problem, and the second approach is not sufficient in e* /e~
rings. In particular, such an analysis of the betatron coupling suggests that the
coupling can be fully corrected with a few (2-4) skew quadrupoles. This is not
correct; one must fix the coupling at every bending magnet to fully cancel the
coupling contribution to the emittance.

In Section 2.2.7, we estimate the effectiveness of various techniques in reducing
the vertical emittance and beam size, and we compare these analytic results with the
results of simulations. Next, in Section 2.2.8, we discuss the calculation of tolerances,
consistent with the correction techniques, to limit the vertical emittance and beam
size in future storage ring designs. The results of both Sections 2.2.7 and 2.2.8
are important when determining tolerances to limit the vertical emittance with a
specified degree of confidence. Then, in Sections 2.2.9 and 2.2.10, we summarize our
results and apply them to calculate tolerances for the NLC damping ring.

Finally, it should be noted that many of the results in Sections 2.2.4 and 2.2.5,
in particular, the effect of random errors, have been derived repeatedly over the
last thirty years; references to the earlier sources are provided. The new contri-
butions in these sections are: the effects of a corrected closed orbit are calculated
more precisely, the distinct ion between the projected emittance and the emittance is
emphasized, and a simple form for the emittance due to betatron coupling is found
which is analogous to the emittance due to the vertical dispersion. This later result
is important for determining the effectiveness of the coupling correction which is
discussed in Section 2.2.7. In addition, the distinction between the beam size and
the emittance was obviously realized by Piwinski in Ref. 82, but it seems to have
been neglected in much of the literature. Since this is relevant in damping rings, it
is important to emphasize the difference.

2.2.2 Preliminaries

A particle beam consists of particles distributed in six-dimensiona. phase space.
When the beam is uncoupled, the rms vertical emittance of a. matched beam is
simply given by:

2 (3/2>

€y = \/<y9><y"> —{yy')" = 5,

But, when the beam is coupled the normal modes of oscillation rotate from the

(2.2.1)
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horizontal, vertical, and longitudinal planes. In weakly coupled et/e™ rings, this
coupling has two effects: it increases the projected vertical emittance, the larger
horizontal and longitudinal emittances are projected into the vertical phase space,
and it couples the “vertical” normal mode emittance to the synchrotron radiation
noise, leading to an increase in the normal mode emittance; in a weakly coupled
ring, we can discuss the *“vertical” normal mode emittance since the normal modes
are not rotated far from the uncoupled orientations.

The projected emittance depends upon the coupling and can fluctuate from
point-to-point around the ring while the equilibrium normal mode emittance is in-
variant. Thus, in this chapter, we will refer to the vertical normal mode emittance
as the “vertical emittance” and the projected emittance as the local beam size:

(y2>/5y-

We are interested in calculating both the vertical beam size and the “vertical”
normal mode emittance; the beam size is the relevant quantity in some situations
while the emittance is in others. As mentioned. we need to differentiate between the
two because the vertical beam size is the projection of the beam’s six-dimensional
emittance onto the vertical plane. Thus, in addition to depending on the vertical
emittance, the vertical beam size is also a function of the local coupling between
the vertical plane and the horizontal and longitudinal planes. An example, is the
coupling due to vertical dispersion: in this case, the beam size depends on both the
vertical emittance and the energy spread, through the vertical dispersion.

In the limit of weak coupling, this relation can be expressed as

ﬁ(_s_)_ _ Uglocal(‘s)
B,(5) =€y + ___ﬂy(s) 5 (2.2.2)

where oy 10cal includes the effects of the local coupling and €y is the “vertical” normal
mode emittance. Notice that the local coupling contribution to og/ﬁy is a function
of the azimuthal position in the ring s, while the contribution from the emittance
is (approximately) invariant. This occurs because the emittance represents a fun-
damental measure of the vertical phase space while gy, is due to a coupling that
can change from point-to-point.

At this point, we can further subdivide the contributions to the vertical beam
size. As mentioned in the introduction, we consider four effects that contribute to the

low current beam size: (1) the moment um dependance of the vertical closed orbit,
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i.e., the vertical dispersion, (2) the coupling of the betatron motion, (3) the synchro-
betatron coupling, and (4) the opening angle of the radiation. These effects have
contributions that are statistically independent which is discussed in Appendix C.I.
Thus, the vertical beam size can be written as the sum of the contributions:

2 2 2
05(3) Ogispersion + 7 Bcoupling + Zsynchro— 8 coupling .
= + €opening ang. - (2.2.3)
By(s) By By By

Here, the first three contributions have both a local coupling contribution and an
emittance contribution while the opening angle only contributes to the vertical emit-

tance.

2.2.2.1 EQUATIONS OF MOTION

To calculate the contributions to the beam size, we will need equations for the
vertical dispersion, the betatron motion, and the synchrotron motion. Strictly, the
transverse and the longitudinal motion should be treated together in a complete
description of the coupled six-dimensiona. motion. Fortunately, in a strong-focusing
storage ring, the synchrotron frequency is much lower than the betatron frequencies,
and thus it is usually valid to assume that the synchrotron motion only causes
an adiabatic modulation of the betatron motion; we examine the effects of the

synchrotron motion and the synchro-betatron resonances in Section 2.2.6.

The equations of motion for a particle in a storage ring are discussed in Ap-
pendix A. Neglecting the effects of synchrotron radiation and acceleration, the trans-

. . 100
verse equations can be Wntten[ :

AG + (1 — A)Gg¢

» 2 T 1’2 2 2
57+ (1 — A) [(1\1 + G + KNyy + -\5-(”0‘ — y')}
(2.2.4)

y’— (1 - A [I\’ly - Kz + Kgxy] (1 — A)Gye |

where the primes denote derivatives with respect to s, the azimuthal coordinate, and
A is the relative energy deviation: A = (p—po)/p Wliere p is the particle momentum
and pg is the design momentum; to first-order A equals the more common parameter
6 = (p—po)/po. In addition, G is the rnain horizontal guide field which is the inverse
of the local bending radius:

G(s) = =B, , (2.2.5)

p(s)  Ppo

Ggzc and Gy, are the inverse bending radii of additional corrector or error dipole

13



fields, and ISy, I~x’1, and K7 are the normalized quadrupole, skew quadrupole, and
sextupole fields:

e OB ~ € aBz
1{1(5) = p——o'-é:—ry‘ I(l(s) = E-(—)ax

Q
lp
1\’2(3) =25 9 Y

= (2.2.6)

With these definitions, positive Gzcye causes a deflection in the positive x or y
direction and positive If1 corresponds to focusing in the horizontal plane.

Now, with complete generality, we can separate the solutions into: (1) the on-
energy (A = 0) inhomogeneous solution, referred to as the closed orbit, (2) the first-
order energy dependence of this closed orbit, referred to as the dispersion function,
and (3) the homogeneous solution which is referred to as the betatron motion. Thus,
X = ¢, + 6z + T Where z is the closed orbit, 7, is the dispersion function, and zg
is the betatron motion. Using this expansion in Eq. {2.2.4), we find equations for
the closed orbit

,

~ I{s
" v 2 - — .2 — 2y =
zg + (K1 + Gae + Kiye + 57 (27 — 92) = Gac (2.2.7)

?/’cl - Kyye + Kl . — Kazoye = Gyc

Next, linear equations for the dispersion function and the on-energy betatron
motion can be found by expanding about the closed orbit:

N + (K1 + Gz)"h + f\’l’?y + KNa(xenz — yeny) =

. . ~ Ky o 5
G~ Gz + (1 + GHzc+ Kiye + “5'(1‘2 ~y2) (2.2.5)
ng — Kiny + Kyng — ]\'g(a:c?]y + Yenz) =
*’Gyc - K1y+ ‘F{lxc — Kazcyc
and
2y + (K1 + G*ag + K1yg + Ko(acwg — yeyg) = 0 229

yg — KNy + f\’l;l?ﬁ — KNo(zgyc + mcy/;) =0

These equations for the transverse motion are complicated. Although, we could
solve for the coupled motion and beam sizes exa.ctly,m'”’”'m] these exact solutions
do not provide simple insight into the weakly coupled (flat beam) case. Thus, we

will proceed by further approximating these equations of motion.
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Table 3. Effects of rotational {®] and vertical [ym] misalignments.

Misalignment Effect Result

Vert. BPM Ye X Ym non-zero closed orbit
Vert. Quad.|AG; = —Ki1ym dipole kick
Vert. Sext. AI:’l = Koym coupling

Rot. Bend AG; = -GO dipole kick
Rot. Quad; AK, = 2,0 coupling

2.2.2.2 PERTURBATIVE APPROXIMATION

In the limit of flat beams, one can solve the equations for the dispersion function
and the betatron motion perturbatively. For the beam to be flat, the horizontal
dispersion must be, on average, much larger than the vertical nz >> 7y and the
horizontal betatron amplitude must be much larger than the vertical zg >> yg.
Furthermore, without a loss in generality, we can assume that the horizontal closed
orbit is zero; the effect of a non-zero horizontal closed orbit can be included by
considering small changes of the focusing function K1 due to the sextupoles.

Now, with these approximations, the equations for the dispersion and the beta-

tron motion are

:L'ﬂ' + (N + Gg)a‘p =0
) i ~ ; (2.2.10)
¥g — ]\1?/'/3 = _]\11’5 + I\chxﬂ ,

and

"+ (K1 + G =G

" i . i ~ : (2.2.11)
My — I\177y = —Gyc - Kyye — I\lnz“"l\?ycnx

These equations are no longer coupled, the vertical motion is simply driven by the
horizontal, and thus they are simple to solve.

2.2.2.3 ERRORS

As has been mentioned, excluding the opening angle contribution, the low cur-
rent vertical beam size is determined by errors in an uncoupled storage ring. In
this chapter, we consider the effect of random vertical misalignments of the quad-
rupoles, sestupoles, and the Beam Position Monitors (BPMs). In addition, we will

15



also consider the effect of random rotational errors of the quadrupoles and the bend-
ing dipoles. The effect of these errors is summarized in Table 3 where y, and ©
are the vertical and rotational misalignments. As one can see from Egs. (2.2.10)
and (2.2.11), vertical dipole errors, due to rotations of the bends, vertical mis-
alignments of the quadrupoles, or non-zero closed orbits in the quadrupoles directly
introduce vertical dispersion. In addition, these same dipole errors create a non-zero
vertical closed orbit which couples the z and y planes in the sextupoles. Finally,
guadrupole rotations and sextupole misalignments will also couple the two trans-
verse planes. We will discuss these effects in detail in Sections 2.2.4 and 2.2.5 after

discussing the opening angle contribution to the emittance.
2.2.2.4 CLOSED ORBIT

Here, we calculate the closed orbit and the closed orbit correlation function re-
sulting from the misalignments. The correlation function will be needed, in Sections
2.2.4 and 2.2.5, to calculate the beam sizes resulting from the vertical dispersion and
the betatron coupling. Although we are primarily concerned with the effects of cor-
rected orbits, we will derive expressions for both corrected and uncorrected orbits

for comparison.

The vertical close orbit is described by Eq. (2.2.7). Assuming that the skew
quadrupole terms are small, i.e., the weak coupling limit, Eq. (2.2.7) is easily solved
with the periodic Greens function for the ring:

' z,y S8}, (YSI '
gz,y(s,s)=\/ﬁ2;fi§fi€rz L cos(l(5) = ¥rp&) = 7). (2212)

where § is the beta function, v is the tune. and % is the phase advance: ¢y = fds/ﬁ.

Using this, we find a. solution for the vertical closed orbit,[“]

s+C
By(s)

ye(s) = —— / \/ By(z) cos(by(s) — y(2) + Try)G(2)dz (2.2.13)

2sinmyy /

where G(s) = Gyc + GOB + K1 ynm.

Now, we can calculate the expected rms magnitude of the closed orbit given an

ensemble of random dipole errors, with Gaussian distributions. One finds the well
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34
known result o4

By(s N
W) = —2L S~ rnE (2214
8sin” wyy .
where the beta function at each kick is approximated by the average beta function
within that magnet and the angle brackets are used to denote the expected value
which is found by averaging over the gaussian distribution of errors.

Next, to calculate the wvertical dispersion and the coupling introduced by the
errors, we need the correlation function for the closed orbit, {yc(s')yc(s)). Using
Eq. (2.2.13), this can be expressed as a double integral

s'+C s+C

(ye(s)ye(s)) = 4sm — / / dz/B'B(G(z')G(z) cos' cos)  (2.2.15)

where 8 = 3(z'), cos = cos((s) — ¥(z) + wv), and cos’ = cos((s') — (z") + TV).
To evaluate (G(z')G(z)) the integrals must be over the same portion of the ring.
Assume initially that s’ > s, then

- s+C s'+C s’
/ a)/ o
(yc(s')yc(s)) = M‘://dz'dz- v / dz'/dZ"‘} , (2.2.16)
4sin” wv
s' s+4+C K]
where . .- is used to represent the integrands and we have used the fact that the

errors G are uncorrelated to simplify the expression.

As before, the double integrals collapse to single sums over the deflections, but
the second double integral has different limits and thus an additional factor of 27wv
must be added to the phase v"(z'). We average over the high frequency terms and,
in the case of an uncorrected closed orbit, we are left with

) S s+C
(ye(s)ye(s)) = VOB [C

.. A (GiL}
8 sin? 7, 0s d’;ﬁyt( iL7)
= , (2.2.17)
$
+ (cos( |[AY|—27vy) = cos Ai/)> Z 5yi(G?L?)] ,

1=38

where Ay = ¥y (s') — ¥y(s) and the absolute values signs were used to include the
case s’ < 's. Note that terms of order 1/47wv, have been dropped from Eq. (2.2.17);
these will be small corrections in high tune, low emittance rings.
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We consider two cases: an uncorrected orbit and the orbit after substantial
correction. Since the correlation function is periodic in As, we can express it as
a Fourier series, Furthermore, since the \//3_(._97 dependence has been removed, the
correlation function must be an even function of As and thus the Fourier series only

contains cosine terms:

/ ' (y?) co = nAd)
(Ye(s"ye(8)) = 1/By(9)By(s) 5= |5 + D en cos ] (2.2.18)
:By 2 n=1 Vy
To calculate the coefficients ¢, for an uncorrected orbit, we make a smooth approx-
imation
s . lAd’l s+C -
Zﬁyi(G;Li) ~ Sy ;ﬂyi(G,-Li) , (2.2.19)
1=3 =

where Ay = ¥(s') — ¢(s). The coefficients are then

(n? + 1/3)(1 — cos 27vy)

mi(n? — v2)?

Cn = (2.2.20)

Here, only the two harmonics ¢, on either side of the tune, n = |, |, [vy], will
be large, and thus, we can approximate the uncorrected orbit with just these two

terms.

When the closed orbit is corrected its Fourier spectrum tends towards that of
white noise. There are two reasons for this: first, most orbit correction techniques
tend to reduce the dominant harmonics on either side of the tune while increasing
the other modes. The second, and more fundamental, reason is that the BPMs are
misaligned relative to the ring centerline. Thus, even with perfect orbit correction,
where the measured orbit is zeroed at a.11 of the position monitors, the actual closed
orbit will have a white noise spectrum.

We can approximate this by assuming that the correctors “randomize” the or-
bit, and thus points on either side of a corrector are uncorrelated. Furthermore,
assuming that many correctors are used to correct the orbit, we can approximate
the correlation function between correctors with just the first term of Eq. (2.2.17).
Thus,

cos A, No correctors

(yc(s')yc(s))cor = /ﬂy(s)ﬁy(s')%fyl between s and s’ (22.21)

0, 0 therwise

Here, the term (yf)/ﬁy is not equal to Eq. (2.2.14); it is the square of the residual
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orbit after correction. In particular, for an orbit that is fully corrected, one can
approximate (y2) with the estimated vertical misalignments of the BPMs (y2,). We
will use this correlation function in Sections 2.2.4 and 2.2.5 after calculating the
effect of the opening angle of the radiation.

2.2.3 Opening Angle Emittance

In this section, we derive the emittance contribution due to the opening angle of
the synchrotron radiation. Photons are radiated with an rms angle of 1/4 relative
to the particle trajectory, thereby changing both the longitudinal and transverse
momentum of the particle. In an ideal storage ring built in the horizontal plane, the
vertical closed orbit does not depend upon the longitudinal momentum and thus
the radiation opening angle should determine the vertical emittance. In practice,
errors in the machine will generate vertical dispersion and couple the horizontal and
vertical betatron motion. These effects will then determine the vertical emittance.
Still, the emittance due to the opening angle is useful since it specifies a lower bound
on the vertical emittance, a. lower bound that will be approached by future machines.

The emittance contribution clue to the opening angle is estimated in Ref. 104
by ignoring the correlation between the energy and angle of the radiated photons.
In this approximation, one finds

€, Cq §ﬂy(3).G3(s)!ds
¥y — 2jy SgGQ(S)ds

(2.2.22)

where Cy = 3.84 x 10713 meters. Our derivation will parallel that of Ref. 104, except
that the correlation between the energy and angle of the photon will be included.
The high energy photons should be radiated at smaller angles than the low energy
photons and thus the correct result will be smaller than Eq. (2.2.22).

When a particle radiates a photon of energy u, the transverse angle changes

Ay = =0, and Ay=0 . (2.2.23)

Eo

where O, is the angle of inclination between the particle trajectory and the path of

the photon. The change in y' changes the particle’s transverse invariant Jy:

AJ, = (ayuAy' + By’ Ay + %(Ay')z) , (2.2.24)
where Jy is defined in Eq. (A.2.21).
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Now, the beam emittance is calculated from Jy, by averaging over the beam.
Since changes in y’ are statistically independent, the change in the emittance is
found from the average of AJ,. Furthermore. the averages of y and y’ are zero, and
thus, if we assume that the probability of radiation is uncorrelated with the particle
position and transverse momentum, the change in the emittance between position

sand s + ds is

dels) = 2N Ay (o) S

(2.2.25)
where the angle brackets are used to denote an average over the particles in the
beam and

2 03
N{Ay'"(s)) = —E—T”(“’ Q, s)dud) . (2.2.26)

4
Here, n(u, £, s)dudQ} is the expected number of photons radiated per unit time at
position s with an energy between u and u + du and a solid angle of {2 to 2 + df2.

By assuming that (yAy') = (y){Ay') = 0, as we did in Eq. (2.2.25), we are
ignoring the effect of gradients in the magnets. When the magnetic field has a
gradient, the probability of radiation depends upon the particle position. But.,
the magnetic field variation across a beam is typically very small and thus we can
ignore it. For example, a damping ring design for the NLC®? has gradients of 300
KG/meter in the 13.1 KG bending magnets while the beam sigma is 4 microns.
Thus, the field varies by only 2 Gauss across the beam.

Now, to find the change in the emittance over one turn, we integrate de over the

ring
| ) d
Ae= f%ﬂ;\f(ay")—cf . (2.2.27)

The equilibrium emittance is then calculated by setting the change due to quantum
excitation equal to the change due to damping. Thus

_ T f il [0
€y = 4T0f . 3y(s) Eg n(u,Q, s)dudQ) (2.2.28)

where 7y is the vertical damping time and 7j is the revolution period of the ring.

Note that the vertical emittance damping rate is 2/7,.
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Thus, we need to evaluate the integral in Eq. (2.2.28) over u and §). The rate
of photons emitted with energy between u and u 4 du multiplied by the energy u is
equal to the power radiated with a. frequency between w = u/hk and (u + du)/h.

O’ P(u/h,Q,s)
Owdf)

un(u, 2, s)dudQl = dwd) (2.2.29)

The classical relation for the differential power radiated by an ultra-relativistic

L. . . . [109}
electron in instantaneous circular motion was calculated by Schwinger

d*P(w,,s) € 2(}_ 2)2[ 2 ? K2
oy = 3W2C2p(s)w v + ¢ K%(g) ———1/72 e £(§) (2.2.30)

where
2
= ———(—1~ + z,/ﬂ) C (2.2.31)
~2

Here, ¢ is the angle of inclination above the orbital plane; thus, i is equivalent
to O, of Eqg. (2.2.23). In addition, p(s) is the instantaneous radius of curvature,
and Kal and K% are modified Bessel functions. Notice that the azimuthal angle has
been integrated out of Eq. (2.2.30); it would be needed if we wanted to calculate
the opening angle contribution to the horizontal emittance, but, as was mentioned
earlier, the horizontal emittance is dominated by the dispersive effects.

Thus, the equilibrium emittance is

bl

2 2 —4
Ty 27 ce“hf 3, ( >
= —_—— d di )
“Ein 2 ] 3( e E Y

x / deg’ [A’g(g) + ——'L-glx’g(i)]
0

1y +9

where w has been written in terms of £. Furthermore, since the integrand is very
small for p ~ 7/2 > 1/, and decreases rapidly with %, we can extend the limits
of integration from 7 /2 to oo

o

—~4 9
Ty 2T ce” 2h % By , 2( 1 2) [ 2
e —=— du — + I % + _=q_===] %
Y= iTon? Eo Ip 3| ok v (%) 1/4% + 12 (¥)
' (2.2.33)
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where

In(v) = / dEEnKA(E) . (2.2.34)
0
The integral In(v) is equal to™"
1T /n41 n+1
I.(v) = 1T NEESY) r 5 +v |l 5=~ V) (2.2.35)
where T'(z) is the gamma function. Specifically,
1 wr 2
Lv)= c—2(1 =) . (2.2.36)
3sinmw

Next, the integral over v is performed using the algebraic integral””

/> ™M dg (2m — 1)(2n — 2m — )!r

(22 4+ )" = 2(2n — 2)en—m-1, /¢
0

(2.2.37)

Finally, substituting for 7'.,,,“0‘l we find for the opening angle contribution to the

emit tance,

13C, § By (s pc s)!ds
TRl S feTp . (2.2.38)

This is a factor of 2.1 times smaller than the estimate in Eq. (2.2.22). This expression
can be further simplified by using the average value of 8, and the rms energy spread
(Eg. (A.5.6)). We find

ey N 0.243}@“—7— , (2.2.39)

where ~e is the normalized emittance and Je and o¢ are the longitudinal damping
partition number and the rms energy spread.

To estimate the importance of this effect, we note that opening angle emittance
is roughly a factor of 10° smaller than the SLC damping ring design emittance,
a factor of 10% smaller than the Advanced Light Source " (ALS) design vertical

emittance (ez/ey = 10), and a. factor of 45 smaller than the NLC damping ring
design vertical emittance.
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Chapter 2.2.4.1

2.2.4 Vertical Dispersion

The vertical dispersion increases the beam size in two ways: first, the vertical
dispersion is a coupling between the longitudinal energy deviation and the vertical
position. Since the beam contains a finite energy spread, the vertical dispersion
directly contributes to the vertical beam size. This will be referred to as the “local”
contribution since the beam size increase only depends upon the local value of the
vertical dispersion; the energy spread in the beam does not vary significantly around
the ring.

Second, the vertical dispersion couples the “noise” due to the synchrotron ra-
diation from the longitudinal plane to the vertical plane. Since the photons are
uncorrelated, the radiation causes an increase in the rms amplitude of the betatron
oscillation. This effect will be referred to as the “global” contribution of the vertical
dispersion since the effect. depends upon the value of the dispersion in all of the
bending magnets.

Although, both the local and the global contributions from the vertical disper-
sion increase the vertical beam size, there is a fundamental difference between the
two. The local effect is simply clue to a coupling between the longitudinal and ver-
tical planes; it does not actually change the beam’s six-dimensional emittance. In
contrast, the global effect of the dispersion does cause an increase in the beam emit-
tance. In a synchrotron light source, the distinction between the local and global
effects is irrelevant; one is only interested in projected beam size. But, in a damp-
ing ring, the distinction is important since one is interested in the extracted beam
emittance; in theory, any residual coupling can be removed.

To calculate these two effects, we will first derive expressions for the dispersion
arising from random errors and a non-zero closed orbit. Then, we will calculate the
contributions to the vertical beam size and the emittance. Finally, the calculations

will be compared with the results of simulations.

2.2.4.1 VERTICAL DISPERSION

To find the vertical beam size contribution due to dispersion, we need to first
solve for the vertical dispersion and the derivative. In the limit of flat beams, the
vertical dispersion is given by:

ny + (K1 + G, =G

. , , . ] (2.2.11)
Ny — Niny = —Gye — N1ye ~ Kine + Keyene
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These equations are solved in the same manner as the equation for the closed orbit,
namely, by using the periodic Greens function for the focusing field of the ring,
Eq. (2.2.12). The solutions are”™"

Ns(s) = VP:(e) / V Bz(z) cos(Yz(8) — ¥z(2) + mve)G(2)dz

2511’17”/1;
(2.2.40)
1(s) = ot / VB cos(y(6) = () + ) F(2)d2

where G(s) is the main bending function and F(s) = (Kaon; — K1)ye — I';'mz - Gye.

Now, the derivative of 7, with respect to s can be found directly from Eq.
(2.2.40). Unfortunately, this is complicated by the beta function which is also a
function of s. Instead, the function 7);, which is a function of ny, and its derivative,

is introduced:”
my(8) = ayny + Byny (2.2.41)

This function is convenient since it. both simplifies the expression for the vertical

emittance and has a solution that can be esprcssed in a form similar to (2.2.40):

s+C
R /Byl
1,(8) = )Smywy v/ By(z)sin(iby(s) — vy (z) + 7ry)F(z)dz . (2.2.42)

Because the two equations have similar forms, the calculation of nyz will parallel
that of 775- In particular, we will see that for random errors the expected values of

n? and n3? are equal.
2.2.4.2 RANDOM ERRORS

To estimate the beam size contribution, we need to calculate the expected values
of ny /By and nyQ/ﬂy for the various error distributions. The square of the vertical

dispersion, Eq. (2.2.40), is a double integral

s+C

(my) - //(/ d='\/B3'{cos cos’ F*(z,2")) (2.2.43)

By  4sin’ 7y

where 3, cos, and cos’ are defined as they were in Eq. (2.2.15). In addition, since the

errors considered (quadrupole rotations, sextupole misalignments, and dipole errors)
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Chapter 2.2.4.2

are all assumed to be statistically independent, the function Fz(z,z’) contains five
terms

(Fz(z,z')) = 41\ 7711\'{7],'1(@@') + Ix’gnzlx'én;(ymy;n)
+{GyGy) — 2f(Gyye) + T {yeye)

where the primes are used to denote functions of 2z’ instead of z and f(z) is pro-

portional to the local chromaticity, f(z) = Kan, — Kji; the chromaticity is given
by[34]

(2.2.44)

_ _dvy
~ dp/po

where we have neglected the term from combined function magnets. It is impor-

1
2 = - fun - Kan)gds (A217

tant to notice that the vertical dispersion due to a closed orbit can be reduced by
using local chromatic correction which reduces f(z); this will be discussed further
subsequently.

Since the errors are uncorrelated, the first three terms of Eq. (2.2.43) are calcu-
lated in the same manner as (y2)/83,, Eq. (2.2.14), yielding the results"”

(77§)quad rotation
By " Ssin’ Ty Z(AIL) UOBys
(2.2.45)
<n3>sext misalign 1 - 27,2 2
— == ) Z(]\ZL) <ym)ﬂy77x ’
By 8sin” myy
7]2 R Sl 12
( y)dnpo]e kicks _ (Jc) . (2.2.46)
By By

All of the above equations are applicable for both corrected or uncorrected orbits.
The first two do not depend upon the closed orbit and the term (y2)/8, in the third
equation is equal to Eq. (2.2.14) for an uncorrected orbit or the square of the residual
for a corrected orbit. Notice that this third term is not a result of a non-zero closed
orbit; it results from the errors and correctors that create the non-zero closed orbit.

Finally, note that we have calculated the expected value of (ng)/ﬂy, but to
calculate the emittance we will also need to calculate (n;z)/ﬂy. As mentioned, this
quantity is calculated in an analogous manner; it differs from (ng)//}y in that cos
and cos’ become sin and sin’, but with the same approximations, the results are
identical.
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uncorrected case depends on the average values of f3, and fﬁyeiz‘[’. In general, these
will be small; the former, the chromaticity, is usually small by design while the later
tends to be small because of the oscillating term €Y. In contrast, the corrected
case depends on what we refer to as the local chromaticity and the local A. Both of
these will typically be much larger than the average values. The local chromaticity
is usually positive in regions of dispersion to compensate the negative values in the
dispersion free regions. While the average may be zero, the local values are not. In
addition, the local value of A will tend to be much larger than the average since the
oscillating term does not vary significantly over a short region.

Of course, despite the larger values of ocal and Ajocal, the dispersion of the
corrected orbit will usually be smaller than that of an uncorrected orbit; orbit
correction reduces the residual orbit {y2)/8. Furthermore, if the closed orbit is
comparable in magnitude to the misalignments y. = ym, the contribution to the
vertical dispersion from the closed orbit will usually be much less than that from
the misalignments. This occurs because the orbit, even after correction, is still

correlated for short segments and some of the quadrupole and sextupole deflections
cancel.

2.2.4.4 BEAM SIZE

At this point, we can solve for the beam size increase due to the vertical disper-
sion. As mentioned, the vertical dispersion has two effects: (1) it directly increases
the beam size by coupling a particle’s energy deviation to the vertical position, and
(2) it causes the vertical emittance to increase. The first effect is simple; it causes
a local contribution to the expected beam size of

(03(3))10011 _ ("13(3)) 2
B(5) = 3,(5) lop (2.2.56)

where o, is the rms energy deviation in the beam.

To calculate the second effect., the emittance increase, we use the dispersion
invariant Hy which is analogous to H., defined in Eq. (A.5.9). Thus, Hy can be
expressed

1

Hy(s) = (g +1;°) (2.257)
Hy

where we have used the function 7, introduced in Eq. (2.2.41). The contribution to

o
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Chapter 2.2.4.5

the emittance from the vertical dispersion is"*"

Co7’ § 1G3(s)|Hy(s)ds
= 2.2.58
YT, §Gi(s)ds (22.58)
where Cq = 55k/(32v/3mc) = 3.84 x 10~3meter and Jy is the vertical damping
partition. For a ring in the horizontal plane Jy = 1; in the limit of weak coupling,
the change in Jy, due to errors is negligible.

Since the expected values of {n;)/8y and (7];2)/ﬁy are equal and are independent
of s, the expected value of the emittance can be written

2.2 3 2
_ 5 Cu7 (y) $1GPds _ QJC(_”glag : (2.2.59)

(6y>—~ jy ﬂy szdS ,By

where, the relative energy spread (Eq. (A.5.6)) has been used to simplify the ex-
pression and J. is the longitudinal damping partition. Since J¢ is typically between
1 and 2, one can see that the cmittance generally has a larger contribution to the
beam size than the coupling increase of Eqg. (2.2.56).

At this point, we will again emphasize the distinction between these two effects.
As mentioned, the first effect, Eq. (2.2.56), is due to a coupling between the energy
deviation and the vertical position; it does not change the beam’s six-dimensional
emittance. In contrast, the second effect, Eq. (2.2.58), causes a fundamental increase
in the phase space volume occupied by the beam. In a synchrotron light source this
distinction is irrelevant, but in a damping ring it is important because, unlike the
first effect, the emittance increase cannot be corrected once the beam has been
extracted from the ring. Of course, both effects can be corrected by correcting the
vertical dispersion in the ring; this is the subject of Section 2.2.7.

2.2.4.5 SIMULATIONS

To verify these results, the computer program CEMIT™ has been used to sim-
ulate various errors in the SLC North Damping Ring (NDR);“”"”] the CEMIT
program calculates the closcd orbit and dispersion and then finds the equilibrium
emittance by calculating generalized synchrotron integrals. The NDR is designed
to operate on the coupling difference resonance, but for these simulations the tunes
were shifted to v, = S.375 and », = 3.275; this lattice will be referred to as the
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Table 4. ¢, from vertical dispersion due to misalignments in the NDRI.

Misalignment Calc. ¢y [ m-rad]| Simulated ¢, [ m-rad]
Random quad. © = 0.5 mrad 1.91 x 10712 | 1.83 4+ 0.05 x 10712
Random sext. ym = 150 um 6.51 x 10712 | 6.42 £ 0.16 x 10~12

Corrected closed orbit due to random
quad. ym = 150 um and BPM yp, = 150 um| 1.32 x 10712 1.1 + 0.2 x 10712

NDRL1. Finally, in this comparison, we will only discuss the increase in the vertical

emittance due to the vertical dispersion.

The results of simulating rotational misalignments in the quadrupoles and ver-
tical misalignments in the sextupoles are listed in Table 4. The misalignments were
generated from gaussian distributions with rms widths of 0.5 mrad and 150 zm, re-
spectively. The calculated values are found using Egs. (2.2.45) and (2.2.59), while
the simulated values are found by averaging the results from 1000 different random
error distributions. Finally, the simulated errors are the standard errors of the av-
eraged values. In both cases, one can see that the approximate formula agree well
with the simulations.

In addition, Table 4 lists results from simulating the effects of a corrected closed
orbit. Here, the results are the average of twenty simulations. The simulations
included vertical quadrupole misalignments with an rms of 150 gm and vertical BPM
misalignments, also, with an rms of 150 gm. The resulting orbit was corrected using
the twenty vertical dipole correctors in the NDR to minimize the rms of the simulated
orbit. Before correction, the rms magnitude of the actual orbit was roughly 1.5 mm;
the correction reduced this to 140 um, roughly the accuracy of the BPM alignment.
In this case, the calculated result was found from Egs. (2.2.46), (2.2.50), (2.2.55),
and (2.2.59), although the dominant contribution comes from Eq. (2.2.55). Again,
the calculated estimate agrees well with the average of the simulations. Finally,
notice that the contribution from the corrected orbit is less than the contribution
due to similar misalignments in the sextupoles; as mentioned, this occurs since the
orbit is still correlated over short, segments.

To further study the effect of a. corrected closed orbit, the average (13)/3, has
been plotted versus the chromaticity of the ring. In Figure 2, the closed orbit was not
corrected while in Figure 3 the orbit. was corrected with twenty correctors. Again,
the data and errors were found from the results of twenty simulations. The lines
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Fig. 2. Vertical dispersion versus £y for an uncorrected closed orbit.
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Fig. 3. Vertical dispersion versus £, for a closed orbit corrected with 20
correctors.
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2.2.5 Betatron Coupling

In a conservative system, such as a proton storage ring, betatron coupling leads
to “beats” where energy is transferred between the two transverse planes, An et/e™
storage ring is not a conservative system; the synchrotron radiation provides both a
source of noise and damping. Neglecting the vertical dispersion, only the horizontal
plane is coupled to the noise source, while both planes are damped. Thus, in an
uncoupled ring, only the horizontal emittance is driven. Unfortunately, in the pres-
ence of coupling, the eigenvectors of the betatron motion rotate from the x and y
axes so that both eigenmodes couple to the noise in the horizontal plane. Thus, in
the case of weak betatron coupling, the vertical beam size is determined by both the
projection of the “horizontal” emittance in the vertical plane and the contribution

to the “vertical” emittance from the noise in the horizontal plane.

Much like the beam size due to the vertical dispersion, we can separate this
increase into two contributions, one due to a coupling which increases the projec-
tion of the six-dimensional emittance into the vertical plane, and another due to
a fundamental increase in the vertical emittance. As before, the former effect will
be referred to as the “local” contribution since it depends upon the local value of
the coupling. In principal, this local coupling can be corrected at one location in
the ring with four independent skew quadrupoles; the four magnets can be used
to uncouple the one-turn transport matrix at a specified location. Unfortunately,
this does not remove the second effect which arises from the “global” coupling; the
coupling would need to be corrected at every bending magnet to fully remove this

emittance contribution.

In this section, we will calculate the beam size increase due to both the local
and the global coupling. Paralleling the discussion of the vertical dispersion, we will
first calculate the effects of random errors and a non-zero closed orbit. Then, these

analytic results will be compared with the results of simulations.

2.2.5.1 VERTICAL BEAM SI1ZE

To calculate the rms equilibrium vertical beam size due to the linear betatron
coupling, we will start from the equations of motion for a single particle, calculate
the rms betatron motion, and finally? average over the ensemble of particles to find

the rms beam size. Alternately: one could use the Fokker-Planck equa,tion,[ml but in

3¢



Chapter 2.25.1

many ways the more intuitive approach is appealing since it allows one to explicitly
see the cause of the various contributions.

We will analyze the motion assuming that the coupling is weak and the vertical
motion is much smaller than the horizontal. Thus, we can use the unperturbed
horizontal motion to calculate the vertical. The equation for the vertical betatron
motion was calculated, for the weal; coupling limit, in Section 2.2.2:

v — Kyyg = (Koye — Ki)zg (2.2.10)

where the effects of the synchrotron radiation have been neglected.

We want to calculate the change in yg. Treating the magnets as delta-functions,
the coupling adds a deflection Ay’ = z4(Kay: — R’l)As to the vertical motion which
is then exponentially damped by the radiation damping process. Thus, we can
express the vertical motion as a sum over the deflections Ay’

8

ya(s) = /dzic(z)mﬂ(:)e(z's)O”/c[ By(8)By(z)sin(y(s) — y(z)){ . (2.2.60)

-0

Here, £ is the coupling coeflicient ( z) = (K3 ye — 1?1), ay is the vertical damping
rate, and ¢ is the speed of light. In addition, the function enclosed in the brackets
is the standard Rj» betatron matrix element which transforms a deflection Ay’ at
z to a position Ay at s.

At this point we need an esprcssion for the z betatron motion. The horizontal
betatron motion is driven by energy fluctuations due to the synchrotron radiation;
these are coupled to the horizontal plane through the dispersion. When a photon of
energy u is radiated, x5 and 24 change by Azxg = n,u/Eo and Azl = nyu/Ey. For
brevity, we will let 7}, and thus Aw};, equal zero in the next two equations, but this
assumption will be removed thereafter. In this case, the horizontal betatron motion

is just a sum of displacements Axs which are exponentially damped:

Ujq 2i—8)Qz ﬁ-li S) R
zg(s) = ‘E"naz(zi)e(”’ Josle [ 3 ((z,) (cos Az + arz (i) sin Av,)
= — 00 0 z\<1
{photons}

(2.2.61)
Here, u; is a stochastic variable equal to the energy of a photon radiated at z;. In

addition, Ay, = ¥z(s) — ¥,(zi) and the function in brackets is the Ry betatron



matrix element which transforms a change in position Az at z; to a Ax at s. Finally,

we have assumed that the particle has been in the ring for infinite time and thus it
has no memory of the initial amplitude and phase.

Now, we can use Eq. (2.2.61) to express Eqg. (2.2.60) as a sum over photons &;,

S
L]

ya(s) = E ——Ei nz(zi)/dze("’“z)“"/cRuz(Zi,2)6(”"3)"”/615(Z)R12y(z,8)
. 0
=00

2t
{photons}

(2.2.62)
The vertical beam size is now found by averaging the equihbrium value of y[";/ﬂy
over an ensemble of particles. The calculation simplifies since the radiation is a
stochastic process, {(uiu;) = (u})é;;. In addition, when performing the ensemble

average, we can express the sum over photons as the integral of a rate of emission.
Thus,

8 2 r d:,‘ 9
Yoo W) = / —;—N(u‘(zi)) , (2.2.63)
{;:Iz-t.oo:s} -co

where this second moment of the photon distribution is given by Eq. (A-5.2). This
yields a beam size of

L]

o2(s) dzi , (u?(zi)) s i (zim2)as /e (s=8)ay/c .
Bi—(-s—)- = / —Z-N——Eg {/ d.,l\v(:)t,( ) /e( ) / ﬂx(z)ﬁy(Z)SIDA‘d)y

— 00 N

. 2
X (\Z%—iz(_'j:)(cos Atpy + az(zi) sin Avy) + ny(zi) v/ Be(2i) sin Ai/)x)] ,

(2.2.64)
where Ay, = (2} ~v¥=(z;) and Ay = 3, (s)~1y(z). Notice that we have included
the contributions from both 7, and 75.

At this point, we assume that the tunes are far from the coupling resonances,
ve £ vy =N, and damping per turn is small compared to the tunes, 27 (v, £ v,) >
azTo, ayTy. After some algebra, that is explicitly displayed in Appendix C.2, we

find contributions to the vertical beam size and emittance from both the sum and
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difference resonances of

oy ($ho Slocal fz[ 109" — 9Re Q+(s)Qx(s) 1

" By(s) sin’) WAui “sinwAvgsintAvo

Cor /dHrGa[ZsQiui b oo Q00|

Y= 16‘73:)5@) sin® TAvy sin TAvysinTAv_
0

(2.2.65)
where

s+C

Quls) = / F(2)/BaBye’ [(ve(20u(9) = (B ()20 () +x0etrs)] . (2.2.66)

8

Here, k = (Kay — f\’l) and the sum over £ denotes a sum over both the + term
(sum resonance) and the — term (difference resonance) while Avy = vz + vy and
Av_ = vy — vy. In addition, the * is used to represent the complex conjugate and
the operator “Re” yields the real portion of the expression.

Equation (2.2.65) explicitly displays the physics described in the beginning of
this section. The first expression represents the projection of the “horizontal” emit-
tance into the vertical plane and the second expressions describes the contribution
to the “vertical” emittance from the horizontal dispersion. This is analogous to the
situation with the vertical dispersion where the projected vertical emittance is in-
creased by the local value of the dispersion while the vertical emittance is increased
by the average value of the dispersion.

This analogy can be taken further by noticing that the real part of Q+/ sin TAvg
is analogous to the vertical dispersion with a phase advance of ¥ £ 1y instead of
1y. In addition, the imaginary portion of Q+(s)/ sin #Avy is analogous to 7;(s),
Eq. (2.2.41). Thus, |Q+(s)|?/ sin’ 7 Avy is completely analogous to Mz 4(s). This
analogy will be used in Sect ion 2.2.7 when we discuss correction of the coupling.

At this point, we should compare our result with the results of others. Equa-
tion (2.2.65) is similar to the result found in Ref. 26 where the expression was
derived by solving the Fokker-Planck equation when close to the difference coupling
resonance. The results differ in that (1) the effect of the sum resonance and the
cross terms between the sum and difference resonances have been included, (2) the

contribution to the vertical emittance involves the average of the coupling coefficient
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around the ring while the contribution to the local beam size (projected emittance)
just depends upon the local value of the coupling, and (3) the explicit form of
the coupling coefficients differ slightly. In many references, including Refs. ‘26, 27,
46, and 47, the coupling coefficient, is found by Fourier analyzing the coupling and
choosing only the coefficient closest, to the difference resonance. This is not valid in

our case since we have assumed that the ring is far from both coupling resonances.

2.2.5.2 RANDOM ERRORS

Now we evaluate Eq. (2.2.65) for specific errors. The quadrupole rotational
errors, sextupole misalignments, and the closed orbit are all independent. Thus, the
square of the coupling function k is

(h(2)F()) = 4F1(2) K0 (2 )(00') + Ka(2)Ka(2) (ym¥i) + Wet))  (22.67)

where primes have been used to indicate functions of 2 rather than z. In the case of
uncorrected coupling, we can quickly evaluate Eq. (2.2.65) to find the contribution

from random quadrupole rotations and random sextupole misalignments. Specifi-
cally, we find

(03)1oca1 €z (1~ cos 2mu, cos 2niy)

e 2 2
By 4 (cos 2muy — cos 2muy)? quzd(AlL) 407) Bz By
ad
(2.2.68)
(0;‘}))10&1 €z (1 — cos2nv, cos2myy) L, o
L Jroce . o i : KoL) (42
By 4 (cos2mwvg — cos2muy)? ;It( C2L) {ym) Bz By
and
€z Jr (1 — cos2muy cos2muy) e g
= —— . K1L)4(©"
(€y> 4 g (COS??TVI, — COS way)z q%l:d( V1 ) ( )/Bzﬂy
(2.2.69)
€ (1 —cos 27wy cos 2riy) ) R
(e _ 7, 7 : D (KoL) (y%) BBy

= 9 —_— D) : 2
Jy (cos2myy — cos2miy) o

Here, the sum of 1/ sin® (v, £ Vy) has been written in terms of cos 27, and cos 2myy
and we have simplified expression Eq. (2.2.69) with the equilibrium horizontal emit-

tance; these expressions are identical to those quoted in Ref. S2.
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In addition, notice that the cross terms have been not included in Eq. (2.2.65).
These terms add contributions of

(Ug)loca.l _ &z sin 27”/3/ Equ,ml(I\/lL)%l@zﬁIﬂy + Zscxi(I(ZL)zy?'m/Bzﬂy
By 16 27y, sinTAvy sinTAv_

(2.2.70)
€ ._73 sin 27('1/1; unad(]\'ll)zliezﬁ.’rﬂy + Zsexi(](?-[’)zyrznﬁz:@y

€y = . .
Y716, 27ug sinmAvy sinTAv.

Since these contributions are at least 1/2mv; y smaller than the contributions from

the individual resonances, they will be neglected in all future calculations.
2253 ORBIT ERRORS

To calculate the effect of a closed orbit, we use Eq. (2.2.21) or Egs. (2.2.18)
and (2. 2. 20) for the correlation function of a corrected or uncorrected orbit. For an
uncorrected orbit, we find

s+C 9

/ dzKo(2)By(2)V/ Ba(2)e|

L]

c
PO n
32sin” TAve By

(0321>local ~ €r (yg>
By 2

2,804 ,4'n

(2.2.71)
where the contribution to €, is similar, but it has as additional coefficient of Jz/Jy
and must be averaged around the ring. In addition, the sum over Avi and ¥, is
a sum over four terms: the two values of Avy = v; £ vy and the two values of ¥y,

associated with each value for Avy. The values of ¥y, are

(2.2.72)

n

" " (1t )¢y and (1 - )y, Avy = vz + vy
= t
" z —(1t E)z,”y and — (1 — ;";)d)y, AU, = vy — 1y

In the case of a. corrected orbit, we find a form similar to Eq. (2.2.71), except

that the integral is broken into segments by the correctors

. e+l

52 ; 2y Neorr) ™ ) 12

: y;——l"c% > maTA Y / d2K2(2)8y(2)V/Ba()e | (2:2.73)
y Al/ir'll) “ 8- T Y Py e M¢

where, again, the cont ribution to €, is similar. Here, the sum over Avy and v is
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Table 5. ¢, from betatron coupling due to misalignments in the NDR1.

Misalignment Calc. € [m-rad]| Simulated €, [ m-rad]
Random quad. © = 0.5 mrad 6.00 x 10712 | 6.17 £ 0.14 x 10712
Random sext. ym = 150 jum 1.16 x 1071} 1.11 £0.02 x 10~

Corrected closed orbit due to random
quad. ym = 150 gm and BPM y,, = 150 um] 2.01 x 1072* | 26 4+ 0.3 x 10712

the same as in the uncorrected case except ¥ is now

: + 2’9/) d z, If Avy = r +
P = {¢ vand Yo, 0if Bve = ve + vy (2.2.74)

Yo — 29y and i, if Ave = vz — vy

The integrals in Eg. (2.2.73) are the same integrals one finds when using time
dependant perturbation theory to calculate the effect of sextupoles on the betatron
motion. The similarity arises because. over a. short segment, the closed orbit oscil-
lates like a free betatron oscillation. It is important to emphasize that Eq. (2.2.73)
describes an effect due to linear coupling — notice the resonant denominator in
Eq: (2.2.73); itis not an effect of the third order resonances. Specifically, Eq. (2.2.73)
is only valid when the closed orbit is broken into short segments (by correctors). No-
tice that if the orbit is broken at every sextupole, Eq. (2.2.73) reduces to Eq. (2.2.69)
which estimates the effect of random sestupole misalignments. Thus, for compara-
ble orbits and misalignments y. = ¥y, the contribution to the beam size from the
orbit will usually be less than the contribution from the misalignments since the
orbit is typically correlated across many sestupoles.

Typically, when correcting the dynamic aperture, one adjusts the sextupole
strength and placement so that the first, order aberrations will cancel over the ring,
For example, in the NDR, the cell phase advances are v, ce = 0.37 and vy ey = 0.12.
This causes the first order geometric aberrations due to the sextupoles to cancel over
an arc of roughly 85 cells. Unfortunately. when correcting the orbit, we break this
cancellation scheme, and thus ai//i,, normalized by the square of the closed orbit
tends to grow.

2.2.5.4 S| MULATI ONS

To verify the analytic results, the betatron coupling contributions to the vertical

emittance were determined from simulations of random alignment errors. Again, we
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used the program CEMIT, which calculates generalized synchrotron integrals, and,
again, we used the NDRI lattice; this is a lattice of the SLC NDR where the tunes
have been changed to v, = 8.375 and vy = 3.275. Table 5 lists the results of
simulating rotational misalignments in quadrupoles and vertical misalignments in
sextupoles in the NDRI1 lattice. As before, the misalignments are generated from
a gaussian distribution with an rms of 0.5 mrad and 150 pgm respectively. The
calculated values are found using Eg. (2.2.69). The simulated values are found by
averaging the result of 1000 different random error distributions and the errors listed
are the standard error of the average of the 1000 simulations; again, there is good

agreement between the estiimates and the simulation results.

In addition, Table 5 also lists results from simulating the effects of a corrected
closed orbit where the results are found from twenty simulations. Here, the sim-
ulations included vertical quadrupole misalignments with an rms of 150 yum and
vertical BPM misalignments, also, with an rms of 150 um. The resulting orbit was
corrected using the twenty vertical dipole correctors in the NDR to minimize the
rms of the simulated orbit. Before correction, the rms magnitude of the actual orbit
was roughly 1.5 mm; the correction reduced this to 140 gm. In this case, the cal-
culated result was found from Eq. (2.2.73). Again, the calculated estimate agrees
well with the average of the simulations. Finally, notice that the contribution from
the corrected orbit is less thian the contribution due to similar misalignments in the
sextupoles; as mentioned, this occurs because the orbit is still correlated over short

segments.

Finally, in Figures 6 and 7, the betatron coupling contribution to the vertical
emittance, normalized by the square of the closed orbit, is plotted versus the number
of orbit correctors used. The points plotted are generated by simulating random
qguadrupole and BPM misalignments in the NDR and the ALS as was done in
Figures 4 and 5. The line is an approximation of Eq. (2.2.73) which we evaluated by
assuming that correctors were evenly distributed in the ring. Notice that initially the
normalized contribution increases roughly linearly with the number of correctors.
As mentioned, this occurs since the cancellation is broken by the correctors. Of
course, since the residual orbit is decreased by the correction, the actual beam size

contribution tends to decrease as the orbit is corrected.
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2.2.5.5 NoN- LI NEAR CoOUPLING EFFECTS

We can also estimate the effects of the higher order coupling resonances. In this

case, the equation for the vertical betatron motion is
yg + K1yg = Kpzgyg (2.2.75)

where p = m + n. Using perturbation theory, we would find a similar form for the
increase in the vertical emittance except that the increase would depend upon higher
powers of e; and the unperturbed vertical emittance. Because ¢; and ¢, are small,
these effects will be negligible unless one is very close to the non-linear coupling
resonances. A detailed analysis of these higher order coupling resonances can be
found in Ref. 46.

Actually, there is one case where this higher order coupling could be significant.
This occurs if the beam is very large when it is injected into the ring. Because of the
large beam sizes, the widths of these higher order coupling resonances are larger.
In simulations of a future damping ring ]attice,lgo] coupling has been observed after
injecting the beam into the ring which was operating close to the sextupole difference
resonance, vz — 2vy &~ 0.03. This is actually advantageous in this design since the
vertical emittance damps faster when the beams are coupled; this occurs because
Jz = 1.6 while Jy = 1.0 and thus there is more damping in the horizontal plane. Of
course, one has to be sure that the beam becomes uncoupled before the horizontal
emittance reaches its equilibrium value or the vertical emittance will never damp
beyond this point.

2.2.6 Synchrotron Motion

So far, we have neglected the effects of the incoherent synchrotron motion; the
basic synchrotron motion is discussed in Appendix A.3. In this section, we will
discuss three effects that couple the transverse planes to the longitudinal. First,
we will treat a direct synchro-betatron coupling contribution that is completely
analogous to the transverse bet atron coupling discussed previously. Then, we will
discuss the effect of the bhetatron tune modulation due the synchrotron motion.
Finally, we calculate the change of the damping partitions during a synchrotron
oscillation and the effect, on the emittances and damping times. Although all these
effects are manifestations of the synchrotron motion, they have different mechanisms,

and thus we treat them separately.
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2.2.6.1 SYNCHRO- BETATROM COUPLI NG

The direct synchro-betatron coupling is a coupling of the transverse and the
longitudinal phase spaces through the longitudinal position z in the bunch. The
theory of the coupling was first developed in Ref. 80. Since then there have been
numerous refinements and generalizations; a good review can be found in Ref. 114.
Unfortunately, most of these theories use a symplectic approach that is suitable for
strong coupling but is unnecessarily complex for weak coupling and flat beams.

The synchro-betatron coupling is completely analogous to the transverse beta-
tron coupling described in Section 2.2.5. In a proton ring, the coupling will leads
to “beats” where the transverse planes and the longitudinal plane exchange en-
ergy. Again, the situation is slightly different in an electron ring because of the
synchrotron radiation. Thus, there are two contributions: one due to the projection
of the longitudinal emittance in the vertical plane, and another due to a fundamen-
tal increase in the vertical emittance. In theory, the former can be corrected, even
after the beam has been extracted from the storage ring. In contrast, the emittance
contribution must be corrected by correcting the coupling sources in the ring.

At low currents, the synchro-betatron coupling is induced in the RF cavities.
The primary causes are either dispersion in the cavities, an angular misalignment
between the RF accelerating field and the closed orbit, or RF deflecting fields. In
addition, the coupling can be caused by transverse wakefields due to a non-zero
closed orbit or longitudinal wakefields in regions of dispersion. Here, we will only
treat the effects of dispersion in the RF cavities and angular misalignments of the
cavities although the expressions are trivial to generalize; the wakefield effects are
calculated in Section 2.3.4.

To estimate these synchro-betatron contributions, we will derive an expression
for the coupling due to a sinusoidal RF voltage when off resonance. The derivation
will parallel that of the transverse betatron coupling, allowing us to use results
directly from Section 2.2.5.1. As before, we will analyze the motion assuming that
the coupling is weak and the vertical motion is much smaller than the longitudinal;
this is equivalent to the condition ¢, < oeo:"™ and is satisfied in most storage

rings.

Paralleling Section 2.2.5.1, we start by calculating the change in yg on passing
through a cavity, where yg is the betatron component of the vertical motion. The

energy gain in a cavity is a function of z, the longitudinal position in the bunch.
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Chapter 2.2.6.1

Thus, if there is vertical dispersion or the accelerating field is not aligned to the
trajectory, there will be a change in yg that depends upon z. Treating the cavities
as delta-functions, we find

AFERp(z NERF
Ayp = nyE—:() and Ayp = (n, +®)Ri (2.2.76)

where © is the angular misalignment of the cavity fields with respect to the closed
orbit and AERF is the difference between the energy gain of a particle at longi-
tudinal position z and the energy gain of the synchronous particle. Note that the
synchronous energy gain does not directly affect the beam size or the emittance; it
sirnply replaces the average energy lost to radiation.

If we assume a RF sinusoidal voltage, AFRrF is

AEge(z) _ cVir
0 Ey

(sin(szF + ¢3) — sin ¢3) , (2.2.77)

where, krr is the wavenumber for the accelerating field krr = 27/ARF, @5 is the
synchronous phase, and VRrr is the accelerating voltage. This expression can be
expanded as a power series in z, yielding

o0 oo
Dyg = Z fnz" Lea and Ayp =Zgnz"Lcav , (2.2.78)

n=1

where L¢ay is the length of the RF cavities and

fa = T e (2.2.79)

eVRF ARF (— 1)(""1)/2 cos ¢, if n is odd,
cavEo 77'

(=1)*21sing,, if n is even,

and g, is similar except it has a coefficient of n; + © instead of ny.

Now, we can express the vertical motion as a sum over the changes Ayg and
Ay in an equation analogous to Eq. (2.2.60):

oo
= Z / ds'e'® —s)a'”/c:"(s') fuRy 11 (5, 8) + gnRy12(s'y 8)]  (2.2.80)

where Ry 11 and Ry 12 are the standard betatron transport matrix elements that map
a position offset or a. deflection at location s' to a position offset Ay at location s.
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Next, we need an expression, analogous to Eq. (2.2.61), for the longitudinal po-

sition z, which is driven by the energy fluctuations due to the synchrotron radiation.
In the smooth approximation of Eq. (A.3.9), this can be written

()= 3 "“Le(&-s)m/csin@ms_s‘) : (2.2.81)

{photons}

where, u; is a stochastic variable equal to the energy of a photon radiated at s;, ¢ is
the longitudinal damping rate, am and s are the momentum compaction factor and

the synchrotron tune, and C is the ring circumference. Note that we have neglected
the nonlinearity of the synchrotron motion. Strictly, this should be included in

Eqg. (2.2.81) butwe will neglect it. In general, the nonlinearity of the synchrotron
motion will reduce the importance of the nonlinear resonances (v is smaller).

At this point, we can calculate the vertical beam size and the emittance dilution
by following the procedure described in Section 2.2.5.1. The only difference is that
now we need to include the nonlinearity in z. This is easily handled with the identity

8 8¢

/ ds'f(s’)( / ds.-u(si))n=vz / d.s,-u<s,<>( / ds:u<s2))"~1 / ds' f(s') (2.2.82)

which can be verified by integrating by parts. In addition, when calculating the

ensemble average of y;‘;/ﬁy, one finds higher moments of the photon distribution.
Since many photons are emitted, we can use the Central Limit Theorem to express

85

<</ds:u(SZ)f(S:)>2n—2>=%<7d52<u2(82))f2(si)>n—1 , (2.2.83)

—_00 -0

where f is the integrand and we have assumed a. gaussian distribution suitable for
low beam intensity.

Thus, assuming that one is far from resonance, we find the results

02($)ocal _ no2™(2n — 2)! [Z |55 (s))?
By(s) — 4l (n — ) [ & sin’ (v, £ py)
(2.2.84)
s ()55 (s)

— 2Re— -
sin T(nvs + vy) sin w(nvs — vy)
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and
2n Al y . (n)
_no™(2n - ).njf/d_b_[ IS l
= 4‘""‘1(71 -7 J C ;inz T(nvs £ vy)
0
s (5)s™)(s)
+ 2Re— -
sin w(nvs + vy) sin ©(nyvs — vy)
(2.2.85)

where

s+C

(n)(s)_! ((Oy\/—;_yz)fn“*' ﬁy!]"> (2.2.86)

y ei[21r1w,(s—s’)/Ci(1/),,(3)—1/1,,(3'))+1r(nu,:i:uy)] ‘
and the coefficients f, and g, are defined in Eqg. (2.2.78). Note that we have ne-
glected the cross terms between resonance orders. Although this is not valid when
there are many contributions of equal magnitude, usually the nonlinear contribu-
tions are only significant when very close to the nonlinear resonances; we will discuss
this shortly. Finally, notice that in Eq. (2.2.85) we have assumed that the photons

are radiated uniformly around the ring. This is acceptable because the emittance
contribution, Eq. (2.2.85), is small.

Unlike the situation for the transverse betatron coupling, the cross term in
Eq. (2.2.85) is important; it will tend to cancel the two main terms, reducing the
emittance contribution. This occurs because the synchrotron tune is small. The
cross term in Eq. (2.2.85) depends upon the average of an oscillating term H4mves/C,
Since v, is small, the oscillating term is nearly constant and the cross term is large.
In fact, in an isochronous ring, where the synchrotron tune equals zero and the
longitudinal distribution in z is frozen, Eq. (2.2.85) predicts zero emittance dilution;
the cross term exactly cancels the main terms. This differs from the transverse case
where the cross term is small since it depends on the average of 654””=3/C, which
oscillates rapidly.

At this point, we need to discuss the effect of the nonlinearities. First.. the
nonlinearities are (usually) weaker than the linear contribution and thus arc v lv
important when on resonance. To analyze these effects correctly, we should {ullow
the procedure of Refs. SO and 113, where the coupling is analyzed on resonance.

47



Table 6. Longitudinal parameters for the SLC NDR and the ALS.

SLC NDR ALS

JRF 714 MHz 500 MHz

Ver, Eo |1 MV, 1.2 GeV |15 MV, 15 GeV
Vy, Vs 3.17, 0.01 8.18, 0.008

oz, By I 5mm,2 m 4 mm5 m

Instead, we will simply note that these nonlinear resonances are usually very narrow
and, provided that the resonance is high order, we can neglect them. This occurs
because damping rings and synchrotron light sources tend to have bunches short
compared to the RF wavelength, and thus the nonlinear dependence of the forces
on z is small.

Finally, we will illustrate the importance of these effects by estimating their
magnitude in the SLC NDR. and ALS storage rings. Table 6 lists the relevant, equi-
librium longitudinal parameters for both rings. Using these values and Eq. (2.2.84),
we find a contribution from the linear coupling due to 17; or an angular misalignment
Of:

U; -9, 2
3, $5x107 (g, + ©)° (2.2.87)
¥

for both the SLC NDR and the ALS. This is a very loose tolerance, much looser
than the effect of random dispersion in the bending magnets. Furthermore, because
the synchrotron tunes are so small, the nonlinear resonances can be safely ignhored;
the resonances would be extremely high order (& 20th order).

2.2.6.2 TUNE MODULATI ON

The synchrotron motion also modulates the betatron tunes. This is due to both
the chromatic dependance of the betatron tunes and the effect of the space charge
tune shift; the space charge tune shift depends upon the local bunch density which
is a function of the longitudinal position z, see Section 2.3.3. The chromaticity
modulates the betatron tunes at the synchrotron frequency while the space charge
modulates the tunes at twice this rate.

This slow modulation will generate sidebands separated by v or 2v, around
the betatron tunes. These sidebands can then overlap nearby resonances, increasing
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the beam size and emittance. We can estimate the importance of this nonlinear
coupling from the magnitude of the sidebands. Initially, we will only consider the
effect of the chromaticity. In the smooth approsimation, the equation for a betatron

oscillation can be written

dzy 2
w75 + (vy + £ybo cos(vsb + 00)) y=0 , (2.2.88)
where §g is the amplitude of the energy synchrotron oscillation and 8y is the initial

phase.

Since vg is much less than vy, the solution for the vertical motion can be found
using the WKB approximation. This can be expressed in terms of the frequency
components

y(0)=Re[yoe‘”y9 > ike‘k”’eJk(fiéq)] | (2.2.89)

v
k=—o00 8

where Ji are Bessel functions of integral order and yg is the initial amplitude. One
can estimate the magnitude of these sidebands using an asymptotic expansion of

the Bessel functions for large orders:

k
1 T
Ji(a) ~ 1.36— . 2.2.
o)~ = (1365 ) (2:2.90)
This shows that the Bessel functions decrease rapidly for orders & & x and thus it
confirms the intuitively obvious fact that sidebands, separated from the betatron

tune by more than the tune shift, are small.

Now, we can calculate the coupling due to the sidebands by replacing vy in
Egs. (2.2.65), (2.2.84), and (2.2.5.5) with vy %+ kv, and multiplying the result by the
square of the Bessel function coefficient in Eq. (2.2.89). Since the chromaticity is
usually corrected to the order of unity while the energy spread is the order of 10'3,

this effect tends to be negligible.

At this point, we can follow the same procedure to calculate the effect of the
space charge tune shift. In contrast to the effect of the chromaticity, this effect
may become significant in future rings since the tune modulation increases as the
vertical beam size decreases. Assuming a gaussian longitudinal distribution and

linear synchrotron oscillations, the equation for a betatron okillation, in the smooth
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approximation, is:

2 2 N
%’0—% + (vy + Drgee™? cos2(u,o+¢o)/2c;)‘y =0 (2.2.91)

where Avygc is the space charge tune shift at the center of the bunch, zp is the
amplitude of the synchrotron oscillation, and ¢g is the initial phase.

Again, using the WKB approximation, the solution for the vertical motion can
be written

70 k ikl2v,6 1! Avgee™/49% 123
= Wy K rki2v, ' 2.2.92
y(8) = Re [yge l l E Ve Jk( o] J1<403>>} , ( )

I=1k=~00

where 7, is the average tune which now depends upon the synchrotron amplitude:

2]
do-

z

A
.2/4n2 1zZ5
Ty = v, + Al/sce_‘°/4”‘Jo( 0 ) : (2.2.93)

Obviously, this is much more complicated than the tune modulation due to the
chromaticity, although in general, the same conclusion applies: the sidebands are
small when greater than the amplitude of modulation. However, now there is one
important difference: the space charge modulation causes a tune spread, as specified
by Eg. (2.2.93), in addition to the sidebands. This will further reduce the available

non-resonant tune space.

2.2.6.3 MDULATION OF THE DAMPING PARTI TI ONS

During the synchrotron oscillation, the particle energy changes, changing the

damping times and the quantum excitation;(”'m]

this then causes the expected
single particle amplitude to oscillate. Usually, the strongest energy dependence is
due to the energy dependence of the damping partitions. For example, at injection
in the SLC NDR, a particle with an energy £ = Ey + ¢, where o¢ is the rms
energy spread of 1%, will have a. horizontal damping rate that is 16% slower than a
particle with the design energy; d.J./dE is negative. Of course, since the synchrotron
oscillation frequency is much larger than the damping rates, the average damping
rate is unchanged, but the fluctuating single particle amplitude could change the

equilibrium beam emittance.
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In Ref. 121, an expression is derived for the equilibrium single particle invariant
as a function of the synchrotron phase and amplitude:

dJ cos it + ¢0> (2.2.94)

J = Jopexp| —2AF—
"e\p< dE 0
where Jp is unperturbed equilibrium invariant, J is the damping partition, € is the

synchrotron frequency, and 7 is the synchrotron radiation damping time.

Now, to determine the rms emittance increase in the beam, we need to integrate
this expression over the beam distribution of synchrotron phase and amplitude.
The expression within the brackets is usually small and thus we can expand the

exponential. After integrating over the distribution, we find

e=el1+ (Z9TY 4o (2.2.95)
Qr dE

There is no linear contribution to the beam emittance and the second order contri-
bution tends to be small. In both the SLC NDR and the ALS, the relative emittance
increase due to this effect is the order of 10~8.

2.2.7 Correction

In this section, we will discuss reduction and correction of the vertical dispersion
and the betatron coupling. The simplest way to reduce these effects is to decrease
the sensitivity of the ring to the errors. The most obvious method of doing this is
to reduce the resonant denominators 1/ sin? Ty or 1/ sin? 7 Avs which appear in all
the dispersion and coupling formulas.

In addition to decreasing the sensitivity to the errors, one can correct these
effects directly. Specifically, we will first calculate the amount one can correct the
vertical dispersion with a. pair of correctors, typically skew quadrupoles, separated
by ninety degrees in phase. Then, using the analogy between the vertical dispersion
and the coupling functions that was noted in Section 2.2.5.1, we will apply our
results to the correction of the betatron coupling. Finally, we will compare these
analytic estimates with the results of simulations.

Notice that we have not mentioned correcting the synchro-betatron coupling.
This is corrected by correcting the orbit or the dispersion at the cavities and thus falls
under the vertical dispersion discussion, but, since the synchro-betatron coupling is

small, as calculated in Eq. (2.2.87), we will not discuss it directly.
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2.2.7.1 VERTICAL Di SPERSI ON

As mentioned, one can correct the vertical dispersion directly with either skew
guadrupoles in regions of horizontal dispersion or orbit bumps in the quadrupoles.[“]
Unfortunately, this is complicated because the skew quadrupoles and orbit bumps
in the sextupoles also contribute to the betatron coupling. Thus, one has to either
compensate the betatron coupling or use orbit bumps in regions without sextupoles;
this will effectively limit the number of correctors one can use.

Regardless, the correction of the dispersion itself is relatively simple; the dis-
persion generated by random errors, much like a closed orbit, will primarily have
harmonics near the vertical betatron tune. Thus, as when correcting a close orbit,
only a few dispersion correctors are needed to cancel these dominant components,
thereby significantly reducing the dispersion. We will consider two cases: (1) correct-
ing the vertical emittance, i.e., the global effect of the dispersion, and (2) correcting
the local dispersion at one location.

Global Correction — Emittance correction

The vertical emittance due to the dispersion is proportional to the average of
H, in the bend magnets. For this estimate we will assume that this is equal to
the average of 7—{; around the ring. Using a few trigonometric identities, along with
Egs. (2.2.40), (2.2.42), and (2.2.57), we can express H, as the squared absolute
value of an integral over a complex exponential; this is very similar to the coupling
coefficients |Qx|?/sin? 7 Avy. Thus, the average of H, in a ring with two correctors
can be written

s+C
/ VBu(E)E P (2)dz

s+C
+‘2aRe/ v/ By(2)e'Crr—¥y(2)) F(2)dz (2.2.96)

s+C
- ‘.Zblm/ By(2)etCmrs=dy (2D F(2)dz|

8

2
+a? 4+ 0?

1
y = - 2
4 s1n” wyy

where the bar is used to denote an average around the ring and a and & are the
strengths of the two correctors which are separated by #/2 in phase and are arbi-
trarily assumed to be located at. t» = 0 and v = —7 /2.

(W3]
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To minimize ﬁ—y—, and thereby the emittance, we solve for the a and b which zero
the first derivatives of Eq. (2.2.96). The solutions are

s+C
a= -—R.e/ v/ By(2)erCmry—%u(2) F(2)dz

s+C

b=+1m/ A/ By(2)eiCrv=tu(A) F(2)dz

and these yield a residual dispersion of

(2.2.97)

s+C

/1/ ze”r" AF(z

Now, we can solve for the expected value due to a. distribution of random er-

[ —a® - bQ] : (2.2.98)
4sm Ty

rors. Assuming that the errors I are uniformly distributed in the ring, we find an
expected value of

H,) GZ (FL)Byi (2.2.99)

where L; is the length of the element at position ¢. This result should be compared
with the uncorrected expected values, Eqs. (2.2.45) and (2.2.57). We see that using
two correctors reduces the residual dispersion H, by a factor of 2/3 sin® Ty,

Strictly, this result is only valid for the vertical dispersion due to uncorrelated
errors, but because orbit correction effectively randomizes the orbit, we can also
apply the result to the dispersion due to a corrected orbit. Thus global dispersion

correction, will reduce the expected values of the beam size and the emittance as

<Ug>loca1

Py

where the subscript 0 is used to denote the values before correction.

o
sin2 y( 1/)0

and (e,) = =sin? 7ry{ey)y (2.2.100)

ol

i

Y

Wi

Notice that the correction cancels the resonant denominator. We will also find
this cancellation when we estimate the effect of local correction. The resonant
denominator occurs because the vertical dispersion is a periodic function that must
close upon itself. When the dispersion is corrected, the boundary conditions are
satisfied by the correctors; thus, the resonant denominator no longer appears. This

is analogous to correcting the closed orbit or the coupling functions Q+ and @—,
which are also periodic functions.
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Local Correction

Here, we use the two correctors to zero 7y(s) and nfy(s) at one location in the
ring; this is equivalent to zeroing Hy(s). From Egs. (2.2.40), (2.2.41), and (2.2.42),
we find the required corrector strengths

s+C
a = —Re / /By (2)e (@) p(2)d2
e (2.2.101)

b= +Im / \/ﬂy(z)e"(‘z"”v**"v(zﬂF(z)dz ,
3

where s is the point that ny and n; are to be corrected to zero. Notice that these
solutions are similar to the corrector solutions for global correction; they differ in
that the solution for global correction is averaged while this is not.

Now, we need to know how this correction affects the global contribution, i.e.,
H,. Here, we use Eq. (2.2.96) with the corrector strengths just calculated. Assuming
random errors, we find

fcor ; 2
=Y (FL:By i s (2.2.102)

4

() =23

1

which differs from the uncorrected result by a factor of 2fcor Sin” Ty, Here, feor is
a function that depends upon the location of the correctors relative to the location
that 7, and n; are corrected. In particular,

2 p 2
feor (1 - A¢”> + (Aw”> : (2.2.103)

2rwy 2myy

and A is the phase difference from the correctors to the correction. This function
varies between one and 1/2, having a. minimum when the correctors are separated
from the correction point by half the ring and having a maximum when the correctors
are immediately adjacent to the correction.

Applying this result, we see that at most positions around the ring,

(oF ) {o2)
y;:/ocal = 2 feor sin? Ty ﬁyy ¢ (€y) = 2 fcor sin” avyley), o (2:2.104)

while at position s: {(62(s))oca/By ~ 0. Finally, notice that after local correction
the emittance is between one and a half to three times larger than after global



Chapter 2.2.7.2

correction, Eq. (2.2.99); in the worst case, local correction actually increases the
global contribution if the fractional tune is greater than 0.25.

Measurement

Of course, to correct the vertical dispersion, one needs to measure it. If the
BPMs are sufficiently accurate, one can measure the vertical dispersion directly by
changing the beam energy. Alternately, if the BPMs are not sufficiently accurate,
one can observe the effects of the vertical dispersion in the beam size. In this case,
the vertical emittance is simply minimized with the correction elements. There are
two problems with this approach: first, it is hard to decouple the local effect of
the dispersion from the increase in the emittance, and second, the finite resolution
of the beam size measurement will limit the convergence of the minimization; this
will effectively limit the number of correctors that can be used in the minimization

procedure.

2.2.7.2 BETATRON COUPLING

In this section, we will estimate the amount one can reduce the betatron coupling
by directly correcting it with skew quadrupoles or orbit bumps in the sextupoles. In
Section 227, we calculated the reduction in H, after both global and local correction
using just two correctors. The situation for the betatron coupling is similar, except
we need four independent correctors to correct both Q+ and ¢J-.

To perform the calculation correctly, we would need to solve four coupled equa-
tions for the skew quadrupole strengths. Instead, we will make use of the analogy,
noted in Section 2.2.5.1, between (J+ and the vertical dispersion. This will al-
low us to use the results of the previous section. Of course, in treating the sum
and difference resonance separately, we will neglect the effect of the cross term in
Eq. (2.2.65). This is valid since, as was noted in Section 2.2.5, the cross term will
tend to be small because of the rapidly oscillating phase. Furthermore, by treating
Q)+ and Q- separately we assume that the correctors for Q+ do not affect () and
vise-versa, Obviously, this is not true of the individual skew quadrupoles, but linear
combinations of the four skew quadrupoles can have this property.

Global Correction ~ Emit tance Correction

To estimate the global correction one can perform with four skew quadrupoles,
we use the global coupling result. of Section 2.2.7. Thus, global correction will
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cancel the resonant denominators, reducing the expected values of the emittance
and the beam size by 2/3 sin? TAvz. Specifically, if four skew quadrupoles are used
to correct the global coupling contribution, we use Egs. (2.2.68) and (2.2.69) to find
an expected residual due to uncorrelated errors of

2 -
(Uy)}oca.l — _e_i E(I{IL)E ( ﬂxﬂy -+ Z(IX‘)L ym>/31‘/3y

B!I 12 Lquad sert
(2.2.105)

Z?JZL‘
(@=%%g;mL m@+;msz@m ,

and we use Eq. (2.2.73) to find the residual due to a corrected closed orbit of

ne+l 2

/dz](g(z)ﬂy(z)\/ﬂz(z)ew ,  (2.2.106)

B €x :,Z—I_ yc corr t
=2 57,5, & /

where As is the distance between correctors and the values of % are given by
Eq. (2.2.74).

Local Correction

To estimate the effect of local correction at position s, we could use the results
derived in Section 2.2.7 as we did for the global correction. Alternately, we can
observe the effect of local correction by examining Eq. (C.2.4). When the local
coupling is corrected at location s, the first integral over ¢4+ is zero; this integral
is equal to @+(s). The remaining term in Eq. (C.2.4) will cause an emittance
contribution of

s+C )
/ dzg\/Befye’ W= (2.2.107)

z
~t

j 3+Cd
€z Jz 4
Y17, / C g

where s is the point of correction. Here, we have neglected the cross coupling terms.
In addition, we have ignored the contribution from the correctors themselves. This
is equivalent to assuming that the correctors are located just after point s and thus
they do not contribute to the integral. To include the correctors, we only need
include the factor feor that was found in Eq. (2.2.102).
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Now, we use Eq. (2.2.107) to find the emittance after correction of the local
coupling with four skew quadrupoles. For random errors, we find

(&) = fcof“%[

47, 2(1‘1 )40 ﬂzﬂy‘*‘Z(KZL Jm>5zﬂy] . (2.2.108)

quad sext

where feor is given by Eq. (2.2. 103). Notice that this result is equal to the estimate
of local correction found in Eq. (2.2.102), namely, the correction changes the global
coupling by 2 fcor sin’ mAv+4. Also notice that this is a factor of three larger than
the result after global correction.

Finally, we estimate the effect of a corrected orbit after the local coupling has
been corrected. Using Eqgs. (2.2.107) and (2.2.73), we find

ne+1

_ Cx ;7i yc Neogs ™ d“' T 1) :
€y) = fcorg 57, /3y A / l / dz Ko (2)By(z)\/ Be(2)e ,

(2.2.109)
where as is the distance between correctors and the values of i) are given above by
Eq. (2.2.74).

Measurement

Finally, to perform these corrections, one needs to measure the coupling. Unfor-
tunately, when operating a ring far from the coupling resonances, one cannot rely
upon the standard technique of putting the ring on the difference resonance and
then adjusting skew quadrupoles to make the two measured tunes equal. First, this
technique does not correct, the coupling due to the sum resonance. Second, the ring
is perturbed when making t he measurements and thus even the difference resonance
will not be fully corrected when the ring is brought back to its nominal tunes.

Instead, the coupling can be measured by analyzing the coherent motion of a
kicked beam!'™* This measurement is convenient since one can measure the local
value of the coupling a.11 around the ring. Finally, as in the measurement of the
dispersion, additional information can be obtained from measurements of the beam

size at synchrotron light monitors or, in a. damping ring, from the extracted beam.
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Table 7. ¢, from globally corrected vertical dispersion in the NDRI.

Misalignment Calc. €y [m-rad)| Simulated ey [ m-rad
Random quad. © = 0.5 mrad 0.72 x 1071* | 0.80 £0.02 x 10712
Random sext. y;, = 150 um 2.44 x 10™12 | 2.35 + 0.04 x 10712

Corrected closed orbit due to random
quad. ym = 150 pm and BPM y,, = 150 um| 0.50 x 10712 | 0.60 4 0.02 x 1072

Table 8. ¢, from locally corrected coupling due to misalignments in the NDRI.

Misalignment Calc. €4 [ m-rad]| Simulated €, [ m-rad]
Random quad. © = 0.5 mrad 152 x 10712 | 1.69 + 0.03 x 10~12
Random sext. ym = 150 xm 3.00 x 10712 1 3.36 & 0.06 x 10712

Corrected closed orbit due to random
quad. ym = 150 um and BPM y,, = 150 gm| 1.01 x 10712 1.74 0.2 x 10712

2.2.7.3 SI MULATI ONS

Simulations of the correction were performed in the NDR to verify these ana-
lytic estimates. First, the effect of correcting the global dispersion was simulated in
the NDR1 ring. The correction was performed with two orbit bumps separated by
roughly ninety degrees. The bumps were located in regions without sextupoles so
there was no contribution to the betatron coupling. The results are listed in Table 7.
Again, 1000 simulations were used to calculate the effect of the random misalign-
ments and twenty simulations of a. corrected closed orbit. Here, the estimates are
found from Eq. (2.2.100) along with Iq. (2.2.59) and the equations for random er-
rors Eq. (22.45) or the equations for a corrected closed orbit, Egs. {(2.2.46), (2.2.50),
and (2.2.55). Notice, by comparing with Table 4, that the vertical emittance was
decreased by roughly a factor of three. This is in excellent agreement with our
estimate.

Next, the effect of correcting the local coupling was simulated. Four skew quad-
rupoles were used to completely uncouple the beam at the extraction point of the
damping ring; two skew quads were located immediately adjacent to the extraction
point while the other two were located on the opposite side of the ring. The results
are listed in Table 8. Again, 1000 simulations were used to calculate the effect of the
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Table 9. ¢, from globally corrected coupling due to misalignments in the NDR1.

Misalignment I Calc. ¢y [ m~rad]| Simulated ¢, | m—rad]l
Random quad. © = 0.5 mrad 0.68 x 10712 | 0.71 £ 0.0s x 10712
Random sext. ym, = 150 pm 1.33 x 1071% | 1.55 +£0.09 x 10712

Corrected closed orbit due to random
quad. ym = 150 pm and BPM y,, = 150 gm;  0.44 x 10712 0.7 + 0.1 x 10712

random misalignments and twenty simulations of a corrected closed orbit. In this
case, the calculated values are found using Egs. (2.2.108) and (2.2.109) with a value
feor = 0.75 since two correctors are adjacent to the point of correction (feor = 1.0)
and two are halfway around to ring from the point of correction (fcor = 0.5). Notice
that the vertical emittance due to the errors is roughly a factor of four smaller than
before the correction. Again, the simulated results agree well with the calculated

values .

Finally, the effect of correcting the global coupling was simulated. This time the
four skew quadrupoles were used to minimize the vertical emittance at the extraction
point of the damping ring. The results are listed in Table 9. Here, only 100 sim-
ulations were used to calculate the effect of the random misalignments and twenty
simulations of a corrected closed orbit; the global correction simulations are compu-
tation intensive. In this case, the calculated values are found using Egs. (2.2.105)
and (2.2.106). Notice, by comparing with Table 5, that now the vertical emittance
due to the errors is roughly a. factor of nine smaller than before the correction and,
again, the calculated estimates agree well with results of the simulations.

2.2.8 Distributions and Tolerances

In Sections 2.2.4, 2.2.5, 2.2.6, and 2.2.7, we have calculated the ezpected values
of the vertical emittance and the beam size. Naively, one could simply invert these
equations to solve for alignment tolerances. But, when specifying tolerances, one
should include a “confidence level” (CL); this is the probability that, given the spec-
ified tolerances, any specific machine will be less than the design limit. Typically,
one wants to specify a large CL so that there is a small probability of exceeding
the design limit. In this section. we will calculate the location of the 95% CL as a

function of the expected values calculated previously.
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Fig. 8. Second, third, and fourth normalized moments of the distribution
for ¢, from dispersion due to random errors versus the fractional tune; the
second moment is the largest and the fourth moment is the smallest. The
data points are found from simulations.

Calculating the CL requires a detailed knowledge of the distribution of the values
of the emittance and the beam size i1 an ensemble of machines. It has been shown
that the mean square amplitude of the normalized orbit due to random errors with
gaussian distributions should have an exponential distribution function' Since the
equations for the closed orbit are similar to those of the dispersion function and the
betatron coupling, the same result applies to the amplitudes of H,(s) and |Q+(s)]*.

Here, we will consider the effect of averaging H,(s) and |Q+(s)]* over s; the
vertical emittance is equal to the average of these functions in the bending magnets.
We will first discuss the distribution of the values of the emittance arising from
vertical dispersion and betatron coupling due to random errors. Then, we will
discuss the distribution of the values of the local contribution to the vertical beam
size. Finally, note that, although the discussion is limited to the effect of random
misalignment errors, the effect of a corrected closed orbit is similar.

2.2.8.1 EMITTANCE DUE TO VERTICAL DISPERSION

The distribution function for the values of the vertical emittance due to random
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errors is a very complicated function. Thus, we will derive an approximate form that
can be integrated to solve for the location of the 95% CL. We do this by solving for
the moments of the distribution of emittances. The vertical emittance is given by
Eq. (2.2.58). Assuming identical bending magnets, we can express this in the same
form as Eq. (2.2.96):

s+C

/,/ﬂy z)er¥s() F(2)dz

€y = (2.2.110)

4 sin” 7r1/y

where F' is defined in Eq. (2.2.40).

‘Now, we solve for the moments assuming random errors with gaussian distribu-
tions. This yields

(€y) = 1
1.
(632;) =2 (1 - 3 sin? m/y)
2 2 & (2.2.111)
3 3 - .
= 6u"{ 1 —zsin’ vy + —sin” Tv
(€y> K ( 3 I/y + 45 y)
: 1. 2 .
<6§> ~ 24#4 (1 - Sill2 Ty + —3— sin? Ty — E sin® 7TI/y> ’

where 4 is the expected value of the emittance calculated in Section 2.2.4. The first
three moments were calculated from Eq. (2.2.110), while the fourth moment was fit
to data from simulations. These are shown in Figure S where the second, third, and
fourth moments, normalized by n!x", are plotted.

Notice that the moments only depend upon the first moment g and the fractional
vertical tune. When the vertical tune is close to an integer, the moments have the
form pun, = ntl’ These are the moments of an exponential distribution as noted in
Ref. 71. As the fractional tune increases, the moments decrease, implying that the
probability of large emittance values is decreased.

We could attempt to construct a distribution directly from these moments, but,
instead, we simply notice that these moments are close to those of a modified x-
squared distribution where the number of degrees of freedom is a function of sin’ wvy.
In particular, the distribution density can be approsima.ted by

n e~ <vn/2m €yn 71
y(fy)fv;;*—--—”%) (ﬁ , (2.2.112)

<

where p is the expected value of the emittance and n is the number of degrees of
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freedom which depends upon sin” wvy:

n 1
5 1-%577% (2.2.113)
With these definitions, this distribution has the same first and second moments
as the value of the vertical emittance, Eq. (2.2.111). Furthermore, when the tune is
integral, Eq. (2.2.112) is correctly equal to the density of an exponential distribution,
and, when the fractional tune increases to 0.5, the third and fourth moments of
Eq. (2.2.112) are within 2% and 8% of the moments of the value of the vertical
emittance.

These distributions are illustrated in Figure 9 where the distribution density
of the vertical emittance, arising from random errors, has been plotted for three
different tunes. All of the histograms are generated from 1000 simulations of 150 um
vertical sextupole misalignments in the NDR. In Figure 9(a), the tune is vy, = 3.07,
while in Figures 9(b) and 9(c) the tunes are v, = 3.275 and v, = 3.43. In addition,
the approximate distribution density of Iiq. (2.2.112) is plotted for each of these three
cases. One can see that there is fairly good agreement between the simulations and
the approximation.

Now, we need to calculate the distribution after correction of the vertical dis-
persion. After global correction, the expected value of the emittance is given by
Eq. (2.2.100). In addition, the second moment of the distribution can be found
from Eqg. (2.2.96). It is

() =247 (-7-) . (2.2.114)

Notice that this second moment is independent of the tune. Thus, we would expect
the 95% CL to only be weakly dependent upon the fractional tune. To approximate
this distribution, we simply choose n to equate the second moment of Eq. (2.2.112)
with this second moment; this occurs when n = 5.0.

The distribution density of the value of the vertical emittance after global cor-
rection is illustrated in Figure 9(d). The data was found from 1000 simulations of
random sextupole misalignments in the NDR1 and the approximate distribution is
found from Eq. (2.2.112where n = 5.0. Here, our approximation does not accu-
rately reproduce the distribution density for emittance values less than 2(e,), but
it does describe the tail of the distribution well; this is ultimately what we need to
know to calculate the location of the 9.5% CL.
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Fig. 9. Events versus ¢y due to the vertical dispersion in the NDR1 lat-
tice. Histograms are calculated from 1000 simulations of random vertical
sextupole misalignments with ring tunes of: (a) vy = 3.07, (b) vy = 3.275,
(¢) vy = 3.43, and (d) vy = 3.275 after global correction. The curves are
calculated from Eq. (2.2.112).
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At this point, we can calculate the location of the 95% CL for the distributions.
This found by integrating the distribution density

feu(ey)

gley)dey- 0.95 (22.115)
0

where fgy, is the location of the 95% CL in units of the expected vertical emittance.
The results are plotted in Figure 10 as a function of the fractional vertical tune
Av,y. The solid curve is calculated from Eq. (2.2.112), while the simulation results
are plotted as crosses. One can see that there is very close agreement between the
simulation and the approximation results.

In addition, the value of fcy after global correction of the dispersion has also
been plotted in Figure 10. The simulated data is plotted as diamonds while the
dashed line is our approximation. Al t hough the approximation for the correction
does not agree well with the simulated results, as expected, fcy, is only weakly

dependent upon the fractional tune and it is usually much less than the fci, of the
uncorrected cases.

Finally, it is important to note the following: first, the curves for fcg are univer-

sal. The only dependence comes from the fractional vertical tune. The value of fcr,

6-I;
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is independent of the type of errors. the lattice type, and the integral portion of the
tune. The data in Figure 10 has been compared with simulations run on the ALS:
a Triple Bend Achromat lattice with an integral tune of 8, and a future damping
ring design:lgo) a FODO lattice with an integral tune of 11. In both cases, excellent

agreement was found with the curve in Figure 10.

Second, our calculations have assumed that the errors are random with gaussian
distributions. A more realistic error distribution is a gaussian distribution where
the tails are cutoff at =2¢; it is doubtful that large alignment errors, values that are
many ¢, would go undetected. This will reduce fcr even further, making Figure 10
a conservative estimate of fcr.

And lastly, notice that there are two advantages of increasing the fractional
tune towards a half-integer: the expected value of the emittance decreases, and the

probability of large deviations above this expected value also decreases.

2.2.5.2 EMITTANCE DUE TO BETATRON COUPLI NG

Now, we can use the results of’ the previous section to calculate the distribution
of the value of the vertical emittance arising from hetatron coupling. Ignoring the
cross term in Eq. (2.2.65), the emittance is the sum of the two quantities W
As noted earlier, these two values have the same form as ﬂ_y_ and thus they should
each have approximate distributions given by Eq. (2.2.112). Furthermore, if W
and W are mutually independent, then the distribution of their sum is just the
convolution of the two individual distributions.

Since we have assumed that the errors have gaussian distributions, Q+ and Q-
will be independent Taaat

s+C

/ d=(k*(2)) BBy = 0

8

s4+-C

/ d=(F(2)) B Bye s = 0

§

(22.116)

where k = Koy — k1. Both of these conditions will be (approximately) satisfied if
there are many errors in a betatron period, N >» vz 4, and if the tunes are large,

vz y >> 1; this is typical of high tune (low emittance) rings.
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Convolving the two individual distributions for |Q+|?> and |Q-|2, we find an

approximate distribution for the value of the vertical emittance:

N n+ 27?_ < [ >-n2—_ e—fy"—/2l‘—
=) &) T

€y (2.2.117)

Y LT L n n_
X /dwe I(“*r 2“—)m'2i-1(ey———x)"2_"l ,
0
where n4 and n— are

T4 1
—_ = 2.2.118
2 1 %sél?l rAvy ( )

and p4 are the expected values of the contributions from the sum and difference
resonances; these were found in Section 2.2.5. Although the integral in Eq. (2.2.117)
can be expressed in terms of the degenerate hypergeometric function, sometimes

called Kummer’s function, there is no simple evaluation and is thus left as is.

The distribution of the emittances is illustrated in Figure 11 where the distribu-
tion density is plotted for two sets of tunes. In Figure 11(a) the tunes are v; = 8.375
and vy = 3.275 so that Avy = 0.35 and Ar— = 0.10, while in Figure 11(b) the tunes
are v; = 8.425 and vy = 2.925 so that Avy = 0.35 and Av_ = 0.50. As before
the histograms are found from 1000 simulations of random sextupole errors and
the curves are calculated from Eq. (2.2.117). Again, there is very good agreement

between the simulations and the approximation.

Now, we can calculate the location of the 9.5% CL which, in the case of the
betatron coupling, is a function of both Awvy and Av-. This is illustrated in Fig-
ure 12 where fcr is plotted as a function of Aw_, for Avy = 0.35. The crosses
are the results of simulations and the solid line is calculated from Eq. (2.2.117). In
addition, the fcr, found from 100 simulations of global correction, is plotted for
three different tunes; this data is plotted as diamonds while the estimated value,

found using the approximation of Iq. (2.2.114), is plotted as a dashed line.

One can see that there is very good agreement between the simulated results
and the approximation when Av_ is small, but there is a significant discrepancy as
Av_ increases. In particular, as Av_ increases toward the half-integer, the value of
fcr appears to depend upon the horizontal and vertical tunes in addition to Avy

and Av_. For example, when the tunes are #, = 8.575 and vy, = 3.075 (Avy = 0.35
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Fig. 11.  Events versus ¢, due to the linear coupling in the NDRI lattice.
Histograms are calculated from 1000 simulations of random vertical sex-
tupole misalignments for tunes of: (a) Av4 = 0.35 and Av_ = 0.10, and (b)
Avy = 0.35 and Av. = 0.50. The curves are calculated with Eq. (2.2.117).
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and Av. = 0.50), fcL equals 2.05. In contrast, when the tunes are v, = S.425
and v, = 2,925 (Avy = 0.35 and Au- = 0.50), fcL equals 1.86. Thus, there is a
substantial difference in for even though Avy are the same in the two cases. This
difference could be explained by the cross term in Egs. (2.2.65) and (2.270) which
depends upon sin 27y, along with sin 7Avy.

Finally, again notice the following: (1) the curves in Figure 12 are universal
in that all rings will have similar values of fci, (2) the values of fcr in Figure 12
are conservative since the actual disiributions of errors will probably not have large
value tails, and (3) there are two advantages of keeping Av_ and Awvy large: the
expected value of the emittance decreases and the probability of large deviations

above this expected value also decreases.

2283 LOCAL BeEaM S| ZE

Now, we can calculate the distribution of the value of the beam size arising
from the local coupling effects. These are simpler than the distributions of the
emittances since the contribution depends upon the local value, not the average
value, of the coupling. In the case of the dispersion, the beam size ag/ﬁy depends
upon n;(s)/ﬂy. As stated, this will have an exponential distribution similar to the
closed orbit ™! Thus, the value of the projected emittance increase due to dispersion
will have an exponential distribution with a 95% CL located at 3.00(0;’)/&; this is
equal to the distribution of Eq. (2.2112) where n = 2 instead of the value specified
in Eq. (2.2.113).

Similarly, the beam size due to local effect of the betatron coupling depends
upon both |Q%(s)| and |Q%(s)ric'11a 5o laave exponential distributions. Thus,
the resulting distribution can be found from Eq. (2.2.117) where n4 = 2 instead of
the values specified in Eq. (2.2.118). In this case, we can evaluate the integral in
Eq. (2.2.117), finding

e={oN  Byns _ ~(o3)/Byn-

278 ) =
9({ay)/By) = P , (2.2.119)

where p4 are the expected contributions for the sum and difference resonances,
found in Section 22.5. Now, the location of the 95% CL can be calculated directly
from this “bi-exponential” distribution. It ranges from fcr = 3.00, when gy > p-
or u— >> uy, to for = 2.37, when iy = p.
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Chapter 2.2.9

2.2.8.4 TOLERANCES

Finally, one can use the results of this section to calculate tolerances. We have
found that the 95% CL occurs at a value between roughly two and three times the
expected emittance. To calculate alignment tolerances with a 95% CL, we simply

solve for tolerances that yield expected values that are a factor fcr smaller than the
design values.

For example, if we wish to limit the vertical emittance due to sextupole mis-
alignments, we can use Egs. (2.2.45) and (2.2.69) along with the appropriate values
of fcr to solve for the 95% CL emittance:

Jeo? s
€yos% = [—"— (Z(fsz>2v;;ﬂy) fotn,

4sin® v
sin” mvy \ &

€z (1 — cos2mrycos2nyy) o i
& - y)'i(Z(I\2L)2ﬂzﬁy>fCLB]ygn ;

0s 2Ty — cos 27wy ) a
4 (C r y) y sext

(2.2.120)
where fcLy,, can be found from Figure 10 and fcL g can be found from Figure 12.
It is trivial to invert this to solve for the desired alignment tolerance.

Actually, the factors fci were calculated for the dispersive contribution and
coupling contribution individually. Strictly, to calculate the fcr for the sum of the
two contributions requires convolving both distributions. Fortunately, one usually
finds that either the dispersive or the coupling contribution dominates and thus the
separate values fci, can be used accurately. However, if both contributions are of
equal magnitude, this method will result in tolerances that are slightly too severe.

2.2.9 Summary

In this chapter, Section 2.2, we have discussed the dominant low current contri-
butions to the vertical emittance and beam size in e /e~ storage rings, namely, the
vertical dispersion and the betatron coupling. In addition, we have calculated the
synchro-betatron coupling and presented a corrected derivation for the emittance
contribution from the opening angle of the synchrotron radiation. These are negli-
gible contributions in the current designs, although, the later effect does specify a
lower bound on the vertical emittance and may be an important limitation in the
future.

69



The vertical dispersion and the betatron coupling are generated by both magnet
alignment errors and a non-zero beam trajectory. We have calculated the expected
contributions to the vertical emittance and the vertical beam size due to random
misalignments of the magnets and a corrected closed orbit. In addition, we have care-
fully separated the contributions to the vertical emittance and the beam size since
local coupling effects can increase the beam size without increasing the emittance.
This is important since the emittance is the relevant quantity in some instances
while the beam size is in others.

We have also estimated the effectiveness of simple correction techniques in re-
ducing both the vertical emittance and the beam size. In particular, we used one
pair of correctors to reduce the vertical dispersion and four skew quadrupoles to
reduce the betatron coupling. In general, the correctors reduce the emittance by
cancelling the resonant denominators found in the espressions for the emittance due
to dispersion or betatron coupling. Of course, two dispersion correctors or four skew
guadrupoles cannot be used to zero the respective emittance contributions anymore

than two dipole correctors can be used to zero the closed orbit at all locations around
a ring.

Finally, we have calculated alignment tolerances to limit the vertical emittance
and beam size from the vertical dispersion and the betatron coupling. In particular,
we have calculated approximate distribution functions for the values of the emittance
and beam size in an ensemble of machines. From these distributions, we found
tolerances that limit the vertical emittance and beam size with a 95% confidence
level. In general, these are a factor of V2 to v/3 more severe than tolerances simply
calculated from the expected values of the emittance and beam size. It is thought
that this analysis could greatly simplify the calculation of alignment tolerances to
limit the vertical emittance and beam size, thereby reducing the need for extensive
simulation.

2.2.10 Application to NLC Damping Ring

At this point, we can apply the results of this section to the NLC damping ring
design. Of course, the NLC ring design is not finalized and thus these will be prelimi-
nary tolerances. The ring consists of two families of sextupoles and twelve families of
quadrupoles (including the combined function bending magnets). The effect of ran-
dom sextupole misalignments and quadrupole rotations is listed in Table 10 where

we have calculated the normalized emittance in m-rad as a function of the error
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Chapter 2.2.10

Table 10. Vertical emitlance budget for NLC damping ring.

Dispersion {(vey) | B coupling (vey) Y€y 95% CL

SF & SD (bends) 0.84y2, 0.52y2, 2.80y2,
SF & SD (wigglers) 1.6y% 0.13y2, 3.75y2,
QF (bends) 32x107%02 | 1.6x107%02 | 9.8x107%0]
QF (wigglers) 6.2x 107302 | 0.5x107°07 |14.5 x 10707

other quads (bends) 0.6 x 107202 1.6 x 107302 | 4.2 x 107307
- -302 -392 -3092
other quads (wigglers){ 1.1 x 10 3@q 0.5 x107°0; | 3.3x107°0;

Table 11. Tolerances for the NLC damping ring.

Tolerances Y€y 95% CL

SF & SD Y = T5pm |1.7 x 1078 m-rad

QF O, = 0.25mrad | 0.1 x 1078 m-rad
Other Quads | ©, = 0.50 mrad | 0.1 x 107% m-rad
BPMs Y = 100pm {0.4 x 108 m-rad

ny wigglers | nyrms = 1mm [0.2 x 1078 m-rad

strength assuming global correction of both the dispersion and the coupling; ym 1s
the rms vertical alignment in meters and ©, is the rms rotational alignment in radi-
ans. The contributions are divided into dispersive and coupling effects due to both
the bending magnets and the wigglers. Finally, the table also lists the maximum
emittance, with a 95% confidence level, due to both the dispersion and the betatron
coupling; we used fcry, = 2.2 and fcpg = 1.8.

Notice that, after correction, the dispersive contributions are larger than the
betatron coupling contributions. Furthermore, the effect of vertical dispersion in
the wigglers is severe; the coupling in the wigglers is small because the horizontal
dispersion is small. We will estimate tolerances assuming that the dispersion is
locally corrected in the wigglers to 1 mm rms. In addition, we assume that the rms
BPM and quadrupole misaligniments arc comparable to the sextupole alignment and
thus the effects of the closed orbit are small.

The resulting tolerances are listed in Table 11. Obviously, the sextupole align-
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ment tolerances are the most severe at 75 pym. The sum of the emittance contribu-
tions is yey < 2.5 X 10~ m-rad with a confidence level of 95%. The expected value
of the vertical emittance is roughly a factor of two smaller.
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Chapter 2.3.1.1

CHAPTER 2.3
COLLECTIVE LIMITATIONS

In this chapter, we will discuss current dependent phenomena that could limit
the vertical emittance. The primary issues are: intrabeam scattering, ion trapping,
direct effects of the beam’s space charge field, and the interaction of the space
charge field with the environment, namely, the vacuum pipe. This last category will
be separated into both static effects and instabilities. Finally, we will also discuss
the effect of beam-gas scattering and lifetime limitations.

2.3.1 Intrabeam Scattering

Intrabeam scattering is the result of multiple small angle Coulomb collisions
between particles in the beam leading to diffusion. In addition, there are relatively
infrequent large angle Coulomb collisions where a particle can gain momenta that
exceed the machine aperture. This causes particle loss and is referred to as the
Touschek effect; it will be discussed in Section 2.3.7.

In et /e~ storage rings, intrabeam scattering increases the equilibrium emit-
tances until the additional diffusion is countered by the radiation damping. Detailed
theories of intrabeam scattering have been developed in Refs. 17, 72, and 79. These
theories are complex and, in general, require numerical evaluation. Here, we will
describe the basic physics in e*/e™ rings using some analytic results from Ref. 79.
Then, we discuss the limitations that intrabeam scattering imposes on the vertical
emittance and it’s effect on the vertical damping rate. Finally, we discuss the scaling
of the intrabeam phenomena with the storage ring energy.

2.3.1.1 THEORY

Intrabeam scattering will redistribute the beam momenta in an approach to
“thermal” equilibrium. In a. reference frame co-moving with the particle beam,
the beam usually has an anisotropic momentum distribution. Assuming an ultra-
relativistic beam, the beam frame momentum spreads are given by

N 2 2 2 2
' 2 Ej 12, _ { Eo v2y (o O
{pz) = (—(;) e (py) = (—;) gy (p) = (—;) <7> ,
(2.3.1)
where vz, are the beam ellipse parameters and the primes are used to denote quan-

tities in the beam frame. The longitudinal momentum tends to be much smaller
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than the horizontal or vertical because of the 1/’7 factor; for example, in the NLC

damping ring, the ratio of the momenta is: (p’,z) : (p.'yz) : (p’zz) = 7000 : 35 : 1.

Actually, in et/e™ storage rings, the opening angle of the synchrotron radi-
ation, see Section 2.2.3, imposes a lower bound on the transverse momenta such
that €z yvz,y 2 03/72. Thus, the transverse momenta are always greater than or
comparable to the longitudinal (p;,yz} R (p’fz). Since the longitudinal direction is
“cooler” than the transverse, one would expect the longitudinal momentum spread
to increase at the expense of the transverse momenta. Unfortunately, this simple
picture is complicated by the dispersion, which couples a change in the longitudinal
momentum to the transverse planes. Thus, a scattering event that transfers trans-
verse momentum to the longitudinal plane has both a cooling and a heating effect
on the transverse phase space. The cooling is due to the direct exchange of momenta
and the heating is due to the dispersion; it is important to realize that this heating

is completely analogous to the heating clue to synchrotron radiation.

We can see this behavior in an estimate of the diffusion rates. Assuming that
the two transverse momenta are comparable and they are both much greater than

the longitudinal, the diffusion rates are approximat.ely(m

9
1 o:
-~

Yy T 5.9
Tz,y1BS €y 27° ) TeIBS

1 criN <crey )”41 (aﬂzez)
N = - — n A ,
Teigs  32vdo.olerey \ Bi By 0Bz

where the diffusion rates are those of the rms values: 1/7z,ye = 1/0z 4 dog y.e/dt,

(2.3.2)

Hz,y is a function of the dispersion, Eq. (A.5.9), and the values H and B are averaged
around the ring.

In an e* /e~ storage ring, we can further simplify the expression for the trans-
verse rates by realizing that the emittances are functions of the dispersion. In

particular, the emittances can be expressed as

2 Je

€z,y ~ Hr.ybemlsac—",j:‘ ; (2.3.3)
,’y

where J: 4. are the damping partitions and Hyeyq is averaged over the bending
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Chapter 2.3.1.2

magnets. Now, the transverse diffusion rates can be written:

1 Hz,y Jc 1
Tz,yIBS Hz,y bends »71‘,3’ TeIBS

(2.3.4)

Typically, the damping partitions are in the range of one to two. Furthermore,
in the vertical plane, the ratio ﬂ/m will be close to one since the vertical
dispersion is due to errors. In contrast, the ratio is usually greater than one in the
horizontal plane since the dispersion function is minimized in the bends.

Thus, Eq. (2.3.4) shows that the diffusion rates are comparable in all three
planes. We can understand this simply by realizing that when (p;,y2) > (p'fz)
the intrabeam scattering heating is analogous to the heating due to synchrotron
radiation, except the scattering occurs everywhere around the ring and not just in
the bending magnets. Since the low current equilibrium emittances are determined
by the synchrotron radiation, the relative increase of the three emittances due to
the intrabeam scattering must be comparable, Ae;/ezsr ~ Aey/eysr ~ A€, [€,8R;
this must be true whether the vertical emittanceis due to vertical dispersion or due
to betatron coupling.

Finally, we should note that the current theories of intrabeam scattering may
over-estimate the real emittance growth. These theories estimate the rms emittance,
but, with scattering, the beam distribution becomes non-gaussian and thus the rms
emittance does not characterize the beam emittance well. This occurs because the
infrequent hard scatterings can heavily bias the rms emittance and yet they only
cause a halo of large amplitude particles; the hard scatterings do not affect the
core emittance. A similar effect occurs with beam-gas scattering and is described in
greater detail there (Section 2.3.6).

2.3.1.2 SMALL VERTICAL EMITTANCES

Now, we will discuss modifications to this theory as the vertical emittance de-
creases. As the vertical emittance gets smaller, the vertical diffusion rate must
increase relative to the horizontal. If the vertical emittance is comparable to the
opening angle limit while the horizontal emittance is much larger, then there are
two changes to the scattering rates of Eq. (2.3.2): first, since the vertical and lon-
gitudinal momenta are then comparable, the vertical plane is not cooled by the

longitudinal. Second, since the vertical momentum distribution is much cooler than
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Fig. 13. Emittance increase due to IBS vs. er/ey. The solid, dashed, and
dotted lines are the horizontal, vertical, and longitudinal emittances in units
of the equilibrium emittance without 1BS.

the horizontal, there is additional heating of the vertical from the horizontal plane.

These simple arguments suggest that the diffusion rates can be written:

1 olH: 1

Tz IBS €x  TeIBS

1 ol [— 1 1
Ty IBS Y*/ TeIBS

1 N cr%]\’ <€I€y)l/4 In(Uy’Yzcz)
TeiBs  64v30.0ferey \ B, 5y e ’

where we have used the fact that the diffusion from the horizontal to the vertical is

()
e ~ o

equal to the diffusion from the horizontal to the longitudinal when €yvzy ~ 03/72.

These equations show that as ¢, decreases, the vertical rate should increase rela-
tive to the horizontal. At the limit imposed by the opening angle of the synchrotron
radiation, the vertical scattering rate, and therefore, the increase of the vertical

emittance, is roughly twice that of the horizontal.
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Chapter 2.3.1.3

This is illustrated in Fig. 13 where we have used the theory of Ref. 17 to cal-
culate the equilibrium emittances as a function of the aspect ratio ezSR/ey srR. The
equilibrium emittance values are plotted in units of the equilibrium emittance due
to synchrotron radiation € sr. The emittance egg only includes contributions from
the dispersion; the opening angle contribution has been neglected. Finally, we have
used parameters of the NLC damping ring, in particular, N = 2 x 10%® particles,
~vez = 3 x 1078 mrad, and v = 3522.

One can see in Fig. 13 that when the aspect ratio is less than 1000, the relative
emittance increase due to intrabeam scattering is comparable in all three planes; it
increases slowly from a few percent to roughly 100%. As the aspect ratio increases
beyond 1000, the vertical emittance starts to increase more rapidly than the hor-
izontal and longitudinal. At the opening angle limit, which occurs at an aspect
ratio of 5000, the vertical emittance has been increased by roughly 120% while the
horizontal has increased only 80%. At aspect ratios greater than 5000, the vertical
emittance rapidly increases while the horizontal and longitudinal emittances remain

roughly constant; of course, this regime is not actually accessible since the opening
angle limits the vertical emittance.

Thus, in et /e~ storage rings, intrabeam scattering is roughly as important in the
vertical as in the horizontal. While intrabeam scattering becomes more important as
the vertical emittance decreases, the scattering does not become significantly more
detrimental in the vertical plane than in the horizontal. This occurs because, in
et /e~ rings, the vertical emittance cannot be decreased beyond the limit due to the
opening angle of the synchrotron radiation.

2.3.1.3 DAMPING RATES

Here, we will briefly discuss the effect of intrabeam scattering on the damp-
ing. Since intrabeam scattering causes a. diffusion that counters the synchrotron
radiation damping, it is reasonable to assume that it might slow the approach to
equilibrium, in addition to increasing the equilibrium value. We start with the
differential equation for the emittance which can be written

dt TSR TiBs(€z,€y,€:) TSR

de(t) 3 2¢(t) + 2¢(t) + 2¢sR

(2.3.6)

Here, the first term is clue to the synchrotron radiation damping while second and
third terms are due to the intrabeam scattering diffusion and the synchrotron radia-
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Fig.14. Emittance vs. storage time in the NLC damping ring with 4 x 10'2
et /e~. The solid, dashed, and dotted lines are vez, y¢y, and €, respectively.

tion (quantum) diffusion; in the last term, ¢ sg is a constant equal to the equilibrium
emittance due to the synchrotron radiation.

The intrabeam scattering diffusion rate is inversely proportional to the emit-
tances. If we assume that all three emittances approach equilibrium at the same
time, then the intrabeam scattering rate increases as 1/63. Thus, the emittance
approaches the equilibrium value faster than it does when intrabeam scattering is
negligible; of course, the equilibrium emittance is larger with intrabeam scattering
than without intrabea.m scattering.

If the horizontal and longitudinal emittance reach equilibrium before the vertical,
as is the case in the NLC damping ring, then the horizontal and vertical emittance
will be increased as the vertical damps to its equilibrium. This occurs because the
intrabeam scattering becomes more important as the vertical continues to damp.
Thus, using the argument above, one would expect the damping rate to be decreased
as the vertical emittance approaches equilibrium.

Actually, in calculations using the theory of Ref. 17, we find that the vertical
damps faster with intrabeam scattering than without. An example is illustrated in

Fig. 14 where we have plotted ez, 7€y, and o,0¢ as a function of time in the NLC
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damping ring. To exaggerate the effect of the intrabeam scattering, we have used
a current of 4 x 101%*/e™ per bunch and thus the horizontal and longitudinal

emittance increase noticeably as the vertical emittance damps.

In Fig. 14, the vertical emittance damps faster with intrabeam scattering than
without because the intrabeam scattering provides additional damping in the verti-
cal plane when the vertical emittance is larger than the horizontal and longitudinal
emittances. For example, after five damping times, the vertical emittance is 96% of
the value it would be without the intrabeam scattering. Of course, this is a small
effect and at lower currents, intrabeam scattering has no noticeable effect on the
damping rates.

2.3.1.4 SCALING WITH ENERGY

Finally, we will examine the dependence of the intrabeam scattering on the ring
energy. The diffusion rates are given by Egs. (2.3.2) or (2.3.5). Since these expres-

sions depend inversely upon = 3

, it is standard to state that intrabeam scattering
becomes insignificant as the beam cunergy increases. But, in a damping ring, we are
interested in the normalized emittances: ez y and yo,0,. Expressing Eq. (2.3.2) in

terms of these values, we find

1 o N | ( )
n
TeIBS  /A0(¥0:0¢)(ver)3?

1 NH, ( )
x =In
T21BS  JYos(7er)?/?

In terms of these normalized quantities, the scattering rates are only weakly depen-

(2.3.7)

dent on the energy.

Of course, we are actually interested in the effect of intrabeam scattering on
the emittances. This depends on the ratios of the intrabeam diffusion rates to
the synchrotron radiation damping rates. If we naively assume a scaling such that
the important parameters of the ring, namely the normalized emittances and the
effective damping rates, remain constant, see Egs. (A.6.6) and (A.6.7), we find that
‘H: also remains constant while the bending radius and the damping times increase
with 43. This implies that. the effect of the intrabeam scattering increases as 7* and
thus lower energies are better!
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Obviously, one can be far more clever in the scaling, but it is important to realize
that, when designing a ring with specified normalized emittances, simply increasing
the beam energy does not imply that the intrabeam scattering can be neglected.
Although, initially this result may seem counter-intuitive, one has to remember
that the scattering is inversely dependent on the normalized six-dimensional phase
space volume of the beam. If this is held constant, then the effect of the scattering

will only depend upon the synchrotron radiation damping rates.
2.3.2 lon Trapping

The particle beam will ionize the residual gas in the vacuum chamber. In the
case of an electron beam, these ions can be trapped in the negative potential well
created by the circulating electron beam. The trapped ions will then cause large
tune shifts in the stored beam, possibly leading to beam loss. In addition, the ion
potential is highly nonlinear and thus it can drive high order resonances. Finally,
the ions can also drive collective instabilities of the electron beam. In all cases, the

net effect is to limit the beam current and increase the beam emittances.

We can estimate the stability of the ions by assuming that the circulating elec-
tron bunches act like thin-lense focusing quadrupoles. Then, the problem becomes
that of analyzing betatron stability where the focusing is due to the space charge field
of the electrons. To obtain an initial estimate, we assume equally spaced bunches
with equal charge and dimensions. In this case, one finds that, for stability, the ions

must have atomic weights greater than'

_ Nry C

ny doy(oz + o)’

A

(2.3.8)

where ny is the number of bunches, r is the proton classical radius, and C is the ring
circumference. Notice that the minimum stable ion mass is inversely proportional
to the vertical beam size; this is probably the only detrimental effect that actually

eases as the beam size decreases.

Equation (2.3.8) shows that the minimum atomic weight is inversely propor-
tional to the vertical beam size. Thus, we can estimate the worst case for the NLC
damping ring by calculating the minimum atomic weight of ions that are trapped
when a batch of electrons is injected into the ring. A batch contains ten closely

spaced bunches of 2 x 10!° electrons: in this simple estimate we will treat this as a
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Fig. 15. Bands of stable ion masses in the NLC damping ring as a function
of the charge per bunch assuming ten batches of ten bunches.

single bunch of 2 x 1011 electrons. With these values, Eq. (2.3.S) specifies a mini-
mum atomic weight of ten. In a typical vacuum system, one finds ions with atomic
masses ranging from 1 to 44. Obviously, this indicates that ions might be a problem

before the beam damps.

Of course, in operation the NLC damping ring will contain ten batches of
bunches with beam sizes ranging from that of a fully damped beam to that of an
injected beam. Equation (2.3.S) cannot be used in this case, but one can calculate
the linear stability in the same {ashion. Although the theory is simple, the compu-
tation is complex and one cannot express the result in a simple formula. Despite
this, the scaling of the result is the same as given by Eq. (2.3.8). Thus, lowering the
bunch population decreases the threshold for trapping while decreasing the number

of batches and decreeing beam sizes increases the threshold for trapping.

Calculating with ten batches of ten bunches of 2 x 1010 electrons, we find stable
bands of ions with masses greater than 440; obviously, this is not a problem. But,
if the bunch population is decreased, as it undoubtedly will when commissioning
the ring, the minimum stable ion mass also decreases. In Fig. 15, we have plotted

the regions of stability as a function of the current per bunch for the NLC damping
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ring, assuming ten batches of ten bunches. When the current is decreased to 1 x 10°
electrons per bunch, one finds stable regions where the ions typically found in storage
rings could be trapped. Fortunately, these bands of stability are narrow. Since the
bunches in the ring are continuously damping, the regions of stability change. Thus,
this linear theory indicates that it is unlikely that significant accumulation could
occur, even at very low currents.

Of course, we should note that we have assumed a linear restoring force while
the actual space charge force is highly nonlinear, dropping to zero at large distances.
Although, the nonlinearity could generate large amplitude stable islands, even when
the linear motion is unstable, nonlinear simulations are in extremely good agreement
with the linear theory”***” indicating that, the linear theory is sufficient,

Finally, wigglers in the ring can act like magnetic bottles, thereby increasing the
trapping. These effects can be analyzed with detailed computer programs. However,
in the case of the NLC damping ring, ions are unlikely to be a problem since, at the
design current, the ions are very far from linear stability.

2.3.3 Space Charge

In this section, we will discuss incoherent effects due to the electromagnetic
field of the beam. We will treat the beam as if it were in free space, neglecting
the modification of the fields by the vacuum chamber; these will be treated in
Sections 2.3.4 and 2.3.5. The primary effect of the space charge field is to cause
an amplitude dependent tune shift.. We will calculate this and estimate its effects.
In addition, we will estimate the betatron coupling introduced by the space charge
field; this could be relevant for flat. beams.

2.3.3.1 SPACE CHARGE FIELD

The space charge field will modify the forces felt by the particles. Like the beam-
beam force, the force particles experience when two colliding beams pass through
each other, the space charge force is highly nonlinear. Unlike the beam-beam force
which is discrete, the space charge force is continuous and thus it will not tend to
drive high-order resonances.

The space charge field for a gaussian bunch, whose transverse dimensions are
small compared to the longitudinal, is given in Ref. 12. This is illustrated in Fig. 16,

where we have plotted the vertical electric field versus the vertical position for a
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bunch with an aspect ratio o, /o, of 10:1. Obviously, the space charge field is highly
nonlinear. The field changes rapidly as one passes through the center of the bunch
and then decays slowly at amplitudes greater than roughly £20y.

We can expand the Lorentz force in a. power series in z and y. In a gaussian
bunch, the vertical force is

Fy(z) = 7177026"22/%3 Z Fyij 'y (2.3.9)
1J

where ymc? is the electron energy. = is the longitudinal position within the bunch,

and the first couple of coeflicient s Fy;; are

F 2Nrg 1
vor = V210,73 0y(0z + 0y)
Nr 1
Fym = — 0 - (2.3.10)
V27,3 070y(0z + 0y)?
Nrg (02 + 20y)
Fyos —

3V2no.v° 03(% + 0y)?

with similar expressions for the horizontal plane.
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These coefficient Fy,; are analogous to the magnetic field coefficients Ky that
are used to specify the magnetic multipole strengths. The first term Fj o1 causes a
linear tune shift similar to a quadrupole magnet while the second and third terms
cause an amplitude dependent betatron coupling and an amplitude dependent tune
shift having effects similar to those of an octupole magnet.

2.3.3.2 INCOHERENT TUNE SHIFT
We can estimate the magnitude of the space charge force with the linear tune
shift; this is usually referred to as the direct incoherent Laslett tune shift*? Assum-

ing gaussian bunches, the maximum tune shift occurs at the center of the bunch: it
is given by[“]

C
1
Avy=—— /dsﬁyFym (2.3.11)
0

with a similar expression for the horizontal. This yields tunes shifts of

l\rrodlny 1
V21730, 0zylos +oy)

Avgy = (2.3.12)

where R is the average radius of the ring: R = C/2=. Notice that it is inversely pro-
portional to the beam dimensions and thus Av, becomes important as the vertical
beam size shrinks. In addition, notice that the tune shift is amplitude dependent. It
strongly depends upon the amplitude of the longitudinal and horizontal motion and,
in the flat beam case, is more weakly dependent on the amplitude of the vertical
motion. The transverse amplitude dependence stabilizes the beam to high order
resonances while the longitudinal amplitude dependence causes the tune shift to be
modulated by the synchrotron motion; this is discussed in Section 2.2.6.

In the NLC damping ring, we find a. vertical tune shift of Ay, = -0.015 while
the horizontal tune shift is an order of magnitude smaller. Although this is much
larger than is typical in electron storage rings, it should not present a problem.
Proton rings frequently run with space charge tune shifts that are larger by more
than an order of magnitude. The primary effect. of this tune shift is to move particles
onto resonances, see Section 2.2.6. Thus, provided that, the tunes are far from the
low-order resonances, the space charge tune shift should be a negligible effect.
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Chapter 2.3.3.3

Finally, we should note that the space charge does not affect rigid dipole oscil-

lations of the beam"*”

since the beam drags it’s self-field with it. Thus, the space
charge induced tune spread will not cause a coherent betatron oscillation to deco-
here. This is important when discussing filamentation and the effect of coherent

jitter.
2.3.3.3 BETATRON COUPLING

The space charge field of any non-uniform bunch has skew components that
could drive betatron coupling resonances. Obviously, this could be important when
striving for very dense asymmetric beams. This coupling was first calculated in
Ref. 75 with reference to low energy proton beams. There, the smooth approxi-
mation was used to calculate the single particle behavior including all components
of the space charge potential through fourth order. Unfortunately, this analysis
is rather complex and does not lend itself to a simple estimate of when the effect

becomes important for flat beams.

Here, we will estimate the magnitude of the space charge coupling in the flat
beam limit where the vertical motion does not affect the horizontal. We will use
the smooth approximation and consider only the effect of the lowest order coupling
resonance; in a gaussian beam this is the 2v; £ 2vy resonance. To estimate the
emittance dilution, we assume that the ring is far from the coupling resonances and
we use first order perturbation theory, neglecting all de-tuning effects; obviously,
such an analysis is only valid when the space charge forces are weak. The other
limit, where one is close to the coupling resonance, is analyzed in Section 3.9.1, with

reference to transport in linacs.

In a gaussian beam, the vertical space charge force is given by Eg. (2.3.9). In
the smooth approximation, this yields a differential equation for y as a function of

8, the azimuthal position around the ring:

d*y

ot vly = Z R*Fyiiz'y’ (2.3.13)

1]

where vy is the vertical tune and the first couple of coefficients Fy;; are given in

Eg. (2.3.10); the lowest order coupling resonance is driven by the Fy,; term.

Now, we use first order perturbation theory to solve for the increased beam size

due to the coupling. The vertical position is y = y(o) + y(l) where y(o) and z(©
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describe the unperturbed motion. These are

20 = /20,8, cos(vs0+¢:)  and  y(® = /2T, Bycos(1 + ¢y) , (2.3.14)

where Jz 4 are the single particle actions, Eq. (A.2.21), ¢ 4 are the conjugate phases,
and, in the smooth approximation, 8,y = R/vz . The equation for the lowest order
coupling contribution is

d2y)
do?

n Vygy(l) - RQFyQL’IJ(O)zy(O) . (2.3.15)

Provided that vz, vy, |vz £ vy| > Au, we can neglect the tune shifts and the inho-
mogeneous solution is

(1) ‘- R2Fy12-]x,81;\/2-]y,6y
Y — —
8vz(vy £ vy)

cos((vy & 202 )0 + ¢y £ 2¢2) . (2.3.16)

Notice that the solution depends upon the full tunes, not just the fractional portions.
This occurs because the force was assumed to be constant around the ring and thus
only the zeroth harmonic is driven.

At this point, we can find the emittance increase by averaging y?/8, over the
phases ¢z 4. Assuming a gaussian beam distribution, this yields

2
By Lo Bl 1 (2.3.17)
€y 16 ve(ve £ 1vy) ’ o

where we have used the linear tune shift, £q. (2.3.12), to simplify the expression.
This clearly shows that this effect is only significant when the tune difference v; — vy
is comparable to the linear space charge tune shift. In the NLC damping ring, the
tune difference is roughly thirteen while the Laslett tune shift is 0.02; thus the
emittance increase is negligible.

Finally, we can generalize this result to include the variation of the space charge
force around the ring. We express the force in a Fourier series

Fyn(@)= > fie™ (2.3.18)

where the magnitudes of the coefficients | f;.| must be less than or equal to the d.c.

term | fo|, since Fy21 does not change sign. This allows us to express the emit t ance
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increase due to the kth harmonic as

Ay Avyyy 2
— 52 . 2.3.19
€y S (4(k:i:21/,;)(k + 2y & 2v;) ( )

Again, this will be a negligible contribution, although it does suggest against tunes
such that 2v; £ 2vy = np, where n is an integer and p is the periodicity of the ring.

2.3.4 Wakefidlds: Static Effects

Wakefields and image forces arise from the electromagnetic interaction between
the beam and the external environment. They occur when the direct space charge
field is modified to meet, the boundary conditions imposed by the vacuum cham-
ber, In this section, we will only treat the static effects of the wakefields where
the wakefield distorts the equilibrium beam distribution; we discuss the dynamical
effects, which can lead to coherent instabilities, in the next section. In both sections,
we will only treat a few issues which are pertinent to the vertical emittance. The
beam-environment interaction is a very rich topic and we certainly make no attempt
to cover it in detail.

As was mentioned in Section 2.2.6, the longitudinal wakefield in the presence
of dispersion and the transverse dipole wakefield due to a non-zero closed orbit can
cause synchro-betatron coupling in a single bunch; this occurs because the wakefield
deflection is a function of the longitudinal position z within the bunch. In addition,
the transverse yuadrupole wakefield can contain skew quadrupole components that
induce transverse betatron coupling. Finally, there are higher order wakefield contri-
butions. However, provided that the orbit offsets are small compared to the vacuum
chamber radius, these will be much smaller.

We will estimate these effects after describing the origin of the wakefields in a bit
more detail. We will only consider the effects in a. single bunch, assuming that the
wake is damped between bunches. Of course, there are multi-bunch analogs to each
of these effects. For example, the longitudinal wakefield, in regions of dispersion,
or the dipole transverse wakefield can increase the effective emittance of a train of
bunches, since each bunch will receive a different deflection and thus the closed orbit
of each bunch will differ.

(02]
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2.3.4.1 WAKEFIELDS

In free space, the electromagnetic field of an ultra-relativistic particle is Lorentz
contracted into a thin disk perpendicular to the particle motion. Similarly, if the
particle is propagating inside a perfectly conducting vacuum chamber, the elec-
tromagnetic field is still Lorentz contracted into a thin disk, although now, the
transverse field is modified to meet the boundary conditions at the chamber wall.
These modifications are due to image currents that flow on the inside surface of the
vacuum chamber.

This changes if the vacuum chamber has finite conductivity or if the chamber
changes cross section. In this case, the electromagnetic field acquires a longitudinal
component; it trails the generating charge. This is called a wakefield and is im-
portant because it provides a mechanism for a particle to affect both other trailing
particles and itself on subsequent revolutions.

The wakefield is typically described in either the time domain with the wake
function W or in the frequency domain with the impedance Z; the impedance is
simply the Fourier transform of the wake function. The wake function is proportional
to the Lorentz force experienced by a. test charge a distance Az from the point
charge generating the field. Obviously, causality requires that the wakefield of an
ultra-relativistic particle must. be zero when Az > 0.

We will consider both the wakefield clue to the finite conductivity of the vacuum
chamber and the wakefield due to RF cavities. For values of Az = z/ — z in the
range:

(aZo> KAz abZy (2.3.20)

the wake force due to the resistive wall of a cylindrical vacuum chamber can be

expressed in a simple analytic form

Fio(Az)  Nrg 7 £
mer wb \ 0Zp AZ3/?

Fii(Az) 4Nvy' [7 g

= VT (2.3.21)
Fia(z) _ SNy [F (' +25)

me?  wlbd cZo Az

We have listed the monopole longitudinal, the vertical dipole, and the skew quadru-
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Chapter 2.3.4.2

pole wakefield forces scaled by mc®. Here, b is the vacuum chamber radius, o is the
conductivity, Zg is the impedance of free-space, and the primed coordinates denote
the position of the generating charge while the un-primed coordinates denote the
position of the test charge.

Unfortunately, one cannot find a similar simple expression for the wakefields
due to a cavity. Here, one typically uses a computer program to find the modes of
oscillation for the cavity and then the wake function can be written as a sum over
these modes. An example is illustrated in Fig. 51 (Appendix D), where we have
plotted the longitudinal and the transverse dipole wake functions for the 11.4 GHz

[10
NLC accelerator structure. ]

2.3.4.2 LONGITUDINAL AND TRANSVERSE DIPOLE WAKEFIELDS

As discussed, the transverse dipole wakefield and the longitudinal wakefield in
regions of dispersion will cause synchro-betatron coupling. When the synchrotron
tune is very small, this coupling simply causes the beam to tilt in the y-z and y'-z
planes; the particles have different closed orbit depending upon their longitudinal
position z in the bunch. Here, we will estimate the effect of the transverse dipole
wakefield, due to both the vacuum chamber resistance and the RF cavities, using
the results of Section 2.2.6.1; these two sources should provide a good (factor of
two) estimate of the transverse wakefield. Effects of the longitudinal wakefield can
be estimated in a similar manner.

Resistive Wall

To use the results of Section 2.2.6.1, we need to express the deflection due to
the wakefields as a function of the longitudinal position in the bunch. This is found
by integrating the wakefield over the bunch distribution:

y(z) _ /dzfp(z')f}_l_(i‘_z_) (2.3.22)

ymc?

where p is the particle distribution in z. To perform this integration for the resistive
wall wakefield, we need to know the wakefield from z = 0 to z = oo. Fortunately,
simply integrating the approximation in Eq. (2.3.21) will yield negligible error”
provided that o, > (b*/5Z3)/3 In a. copper vacuum chamber with a 1 cm radius,
this requires that o, > 17 gm; this is certainly satisfied in the NLC damping ring

where the rms bunch length is roughly 5 mm.
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Thus, assuming a gaussian longitudinal distribution, we find a deflecting force:

dy(z) _ Nroy' \/— / e~ /20, 2323)
ds? yrbda, N 02 ' A

Now, to obtain the coefficients g, needed in Eq. (2.2.84), we can expand in a Taylor
series about z = O:

Z) — Zgnzn
— NT'ch Z ( d(n d'u (u+z) / )
yrbdo, aZo n! \/— =0

where we have replaced y’ with y., the closed orbit offset. This yields the coefficients:

(2.3.24)

g2 = — (2.3.25)

where T' is the gamma function and F(%) =122---

Now, to calculate the coupling coefficient S+ (Eq. (2.2.86)), we need the closed
orbit. We shall approximate this assuming that the orbit is corrected to a ran-
dom offset at each of the focusing quadrupoles. In this case, the value of IS:{:IQ is
approximately:

1552 ~ ‘,3” 02 (Yerms)C? (2.3.26)
Nqr
where C is the ring circumference, ¥crms IS the rms of the closed orbit, and NQF is
the number of focusing quadrupoles in the ring.

Finally, we can estimate the projected emittance. We will only estimate the
lowest order coefficient since the higher-order contributions tend to be small unless

they are on resonance. In the NIX, tliese resonances are very high-order (~ 20th)
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and thus they will be very narrow. The NLC design calls for 2 x 10° particles
per bunch with a 5mm rms bunch length at 1.8 GeV. Assuming a copper vacuum
chamber (a = 5.8 x 10’ mhos/m) with a 1 cm radius and a 100 gm rms orbit with
75 QF's, we find:

ISPP ~5x107 ¥ m™! (2.3.27)
Now, using Eq. (2.2.84), we find an increase in the projected vertical emittance of:

(v*)

L5 x 107! morad | (2.3.28)
Py
This is six orders of magnitude smaller than the beam emittance and is thus negli-
gible.
RF Cavities

At this point, we can perform a similar analysis to estimate the effect of wake-
fields in the RF cavities. The NLC damping ring will need roughly one to two meters
of 1.4 GHz RF cavity to provide sufficient longitudinal acceleration and bunching.
To estimate the transverse wakefield, we could simply scale the 11.4 GHz NLC linac
wakefield, plotted in Fig. 51, to this lower frequency, but this yields a wakefield that
is small since the irises in the 11.4 GHz NLC structure are relatively large.

Instead, we will use the transverse wakefield of the RF cavities in the PEP
storage ring, scaled to the 1.4 GHz frequency.[m] Over the range of interest, we can

approximate this dipole wakefield as a linearly increasing function of Az:
W11 (Az) = Az 012 V/pC/em® . (2.3.29)

Now, we follow the procedure outlined in the previous section: we find the deflection
by convolving the wake function over the bunch distribution and then we expand
in a Taylor series about z = 0 to find the coefficients ¢g,. Assuming a gaussian
distribution, this yields

Ney. W/
o= - L L

Eo[eV] 2
o Newe W (2.3.30)
9= EgleV] 2v/2ro,
g3=0

where Ej is the ring energy in eV and W is the slope of the wakefield in V/C/m?3;
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for the scaled PEP cavity: W/} = 0.12 x 108 V/C/m3.

Finally, we can calculate the increase in the projected vertical emittance using
Egs. (2.2.84) and (2.2.86). For a worst case estimate, we will assume that all of the

cavities are lumped together with the same trajectory offset. In this case,
SVP = 628, LY (2.331)

where Lcay is the total length of the RF cavities. In the NLC damping ring, with

2 x 1019 particle per bunch, a 100 zm orbit offset, and 2 meters of cavity, we find:

~6x 1071 m-rad . (2.3.32)
By

While this is much larger than the effect of the resistive wall wakefield, it is still
three orders of magnitude smaller than the vertical emittance and is thus negligible.

2.3.4.3 TRANSVERSE QUADRUPOLE WAKEFIELD

The wakefields also have quadrupole and skew quadrupole gradients. But, the
guadrupole wakefield tends to be much smaller than the dipole wakefield. One can
estimate the importance of this wakefield since the effect of the transverse wakefield
roughly scales as (r/ b)®, where r is the offset, b is the chamber radius, and n is the
field harmonic. Thus, provided that the beam is much smaller than the vacuum
chamber radius, the higher-order wakefields will be much smaller than the dipole
wakefield.

2.3.4.4 SUMMARY

In this section, we have calculated the increase in the projected vertical emit-
tance due to transverse wakefields. In the NLC damping ring, the effect of the
low-order coupling on a damped beam is small and the effect of the higher-order
coupling should be even smaller. We have not estimated the effect of the longitudi-
nal wakefields nor have we considered all sources of the transverse wakefield; even
though our initial estimates indicate that the wakefields will not present a limita-
tion, these calculations should be performed. In addition, we have neglected all of
the multi-bunch analogs of the single bunch dilutions; in the NLC damping ring,

these also need to be estimated.
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2.3.5 Wakefields. Dynamical Effects

The wakefields can also lead to dynamical instability. These are usually referred
to as coherent instabilities”” In general, the instability thresholds do not depend
upon the magnitude of the vertical emittance. Instead, the thresholds depend upon
the beam current, the impedance of the ring, and the tune spreads. Thus, these

effects do not directly limit the vertical emittance.

However, the wakefields do change the beam response function. We will mention
two important effects: first, in a ring with positive chromaticity, the rigid dipole
oscillations can be damped; this is referred to as the head-tail damping and can
be an important source of damping for coherent oscillations. Second, even though
the beam may be stable, interference between the normal modes of oscillation can
cause a transient growth in a beam or, more importantly, in a train of bunches*!
This later effect is important because it will amplify the effect of noise that drives

coherent oscillations of the beam; we will discuss these effects further in Section 2.4.

2.3.6 Beam-Gas Scattering

In this section, we will determine limitations on the vertical emittance due to
beam-gas scattering. Beam-gas scattering occurs when particles in the beam scatter,
elastically or inelastically, with the residual gas in the vacuum chamber. In an e+/e“
storage ring, the background gas is primarily due to gas desorption occurring when
the synchrotron photons hit the vacuum chamber wall. Typically, the residual gas
is composed of light molecules such as hydrogen, methane, water vapor and carbon
monoxide and dioxide. In addition to the effect on the vertical emittance, beam-gas
scattering causes particle losses, and it will ionize the gas which can then cause

beam instabilities; we discuss these effects in Sections 2.3.7 and 2.3.2.

We can divide the beam-gas scattering into three processes: elastic scattering
with the nuclei, elastic scattering with the atomic electrons, and inelastic scattering
with both the nuclei and the atomic electrons. Elastic scattering with a nucleus
will deflect the incident particle without significantly changing the particle’s energy.
In contrast, elastic scattering with the atomic electrons both deflects the incident
particle and reduces the particle’s energy. Finally, the inelastic scattering, namely
bremsstrahlung, causes the circulating particle to lose energy; we can neglect the

opening angle of the radiation.
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All of these processes are analogous to the quantum excitation due to syn-
chrotron radiation; they cause a discrete change in the particle’s betatron oscilla-
tion amplitude. The. processes differ from the synchrotron radiation effects in that
the beam-gas scattering events occur very infrequently, but the expected amplitude
change due to a beam-gas scattering event is much greater than that resulting from
the emission of a synchrotron photon. Thus, we will find that for reasonable vacuum
pressures, the beam-gas scattering does not affect the core emittance; only a few
particles are scattered to significant amplitudes. Instead, the beam-gas scattering

will cause a halo of large amplitude particles around the core of the beam.

2.3.6.1 ELASTIC —~ NUCLEI

We are interested in scattering with small momentum transfers; large momentum
transfers will cause the particle to be lost. In this regime, the screening effects of
the atomic electrons are important,; the screening will reduce the number of very
small angle collisions. The Born approximation with the Fermi-Thomas model for

atomic potential yields a differential cross section of ¢

da 27r0\ 1
- ~ - FIE (2.3.33)

min

Here, rg is the classical electron radius, Z is the atomic number, and O, is a
function of the screening: &p,in =~ I‘z./pa wliere p is the incident particle momentum
and a is the atomic radius: a ~ 1.4%%/mc?Z}/3. We can integrate this to find the

total cross section

g 2
o~ 4n 23 (192r0)° . (2.3.34)

At this point, we can solve for the contribution to the rms equilibrium emittance
in the same manner that we calculated the emittance contribution from the open-

ing angle of the synchrotron radiation, Section 2.2.3. The normalized equilibrium
emittance is

Ty~
ey =1 N8y (2.3.35)
where (6%) is the expected value of 0. A" is the rate of scattering, and the bar
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denotes the average around the ring. In particular,

gm.x

2 dO’
N(6;) = cngas / mw(ﬁd& , (2.3.36)

where ¢ is the speed of light, dmax is the maximum scattering angle, this is usually
determined by the aperture of the machine, and ngas is the atomic density of the
gas; numerically, ngas is equal to: ngas = 3.21 x 10*?mol./Torrm? at a temperature
of 300° K.

This yields an equilibrium emittance of

2.2
vey R 7rcryZ i [ln(gmax) - —1—} Byngas - (2.3.37)
Y omin 2

In the NLC damping ring, Ey. {2.3.37) predicts an emittance equal to the design
emittance of yey, = 3 X 1078 m-rad at a pressure of roughly 10~7 Torr, assuming
Z = 7.3 and two atoms per molecule: this approximates air. For comparison, typical
vacuum pressures are roughly 1078 to 10~° Torr.

Next, we need to examine the particle distribution due to this scattering. We
will describe the distribution in terms of the single particle action J which is a
quadratic function of the transverse position and momentum and, when averaged
over the beam, J is equal to the beam emittance. Synchrotron radiation generates
an exponential distribution

e—J/(!l
Per(d) = ‘—— . (2.3.38)
y

This occurs since many photons are radiated within a damping time. Thus, using
the Central Limit Theorem. the distribution should be gaussian in position and
momentum and exponential in J. In contrast, the expected number of elastic beam-
gas collisions is typically very small. For example, at a pressure of 108 Torr,
we expect roughly ten elastic collisions per second; the damping time in the NLC
damping ring is 4 ms. Obviously, the central limit theorem does not apply in this

case and thus we cannot expect an exponential distribution in J.

Instead, the distribution is dominated by single scattering events. Examining
Eq. (2.3.33), we would expect, the distribution density in J to depend upon J~? at
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large amplitudes, We can approximate this with a distribution density of the form

T omm
P(J) (anin+ J)

. for J < Jmax (2.3.39)
where Jmax , like Omax, is determined by the machine aperture and J,;, is determined
from the requirement that the expected value of J equal the equilibrium emittance
due to beam gas scattering, Eq. (2.3.37). Thus,

~ Cy
- In{(Jmax/€y)

Jmin

(2.3.40)

where we have assumed that Jmax > Jmin, €y

This distribution due to beam gas scattering decreases relatively slowly with
amplitude. Thus, the scattering causes a halo of large amplitude particles which will
increase the rms emitta.nce even though the core of the beam is relatively unaffected.
For example, in the NLC damping ring, a vacuum pressure of 10~7 Torr will double
the rms equilibrium emittance. But., if one neglects the outer 3% of the beam, one
finds that the emittance increase due to the scattering is only 10%. Of course, in a
linear collider, these large amplitude particles must be collimated or they will cause
large background signals at the detector.

This is illustrated in Fig. 17. The solid line is the calculated distribution P( Jy),
due to both synchrotron radiation and beam-gas scattering, when the background
pressure is 107 Torr. In such a case, the expected value (Jy) is twice that due to
the synchrotron radiation alone. The dashed line is the distribution Psr(Jy). One
can see that the two distributions are extremely similar for values J, 5 6( Jsg) and,
although they differ significantly for larger values of Jy, there are very few particles
in these large amplitude tails.

2.3.6.2 ELASTIC — ELECTRONS

Now, we can consider elastic scattering with the atomic electrons. In contrast to
elastic scattering with a nucleus, elastic scattering events with the atomic electrons
cause both an angular deflection and an energy transfer. Again, we are only inter-

ested in small momentum transfers since hard scatterings will cause particle losses.
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Fig. 17. The effect of beam-gas scattering on the beam distribution in the
NLC damping ring with a background pressure of 107 Torr; the solid line is
the distribution with beam-gas scattering while the dashed line only includes
the effect of the synchrotron radiation.

In this regime, the differential cross section is"

(=] &3

()
2y L (2.3.41)
vy 6

Sy

[V

where § is the relative energy loss: 6 = AE/E. Alternately, we could express this in
terms of the scattering angle § = 1/26/4. In this case, we would find a cross section
equal to Eq. (2.3.33) with the substitution Z — 1.

Now, we can calculate the resulting equilibrium emittance. The energy loss
is coupled to the betatron amplitude via the dispersion function: Ayg = 746 and
Ayp = 16, while the angular kick directly changes yg- Thus, these two effects
are uncorrelated and we can simply add the emittance contributions. Since the
angular deflection by the electron is similar to that given by a nucleus, the emittance
contribution is given by Eq. (2.3.37) with the substitution Z> — Z. In addition,
the amplitude limit Omax is now the lesser of the limit due to the angular deflection
or the limit imposed by the energy change. For typical damping ring parameters,
these two limits are comparable and thus we will neglect this distinction. Thus, we

97



find an emittance contribution due the angular kicks of

Z z 9 a. 1
Tey R WCTy'—’:-O' {hl(——r—n—}-) - -2—} Byngas - (2.3.42)

omin

In air this contribution is roughly 15% of the contribution from the elastic scattering
with the nuclei.

Next, calculating the emittance contribution from the energy change is com-
pletely analogous to calculating the equilibrium emittance due to synchrotron radi-
ation. Here, the emittance contribution is

vey = %N(a?)m : (2.3.43)

where H, is a function of the dispersion and it’s derivative, Eq. (A.5.9). The value
of M(62) is found from the cross section Eq. (2.3.41):
6max l
ao
N(6%) = cngas / 623-5-&5 : (2.3.44)
0
where émax is determined by the aperture of the storage ring; typically, this is limited

to a few percent. We find an emittance contribution of
Ty R 27rc*ryZ7*35maxHyngas . (2.3.45)

In the NLC damping ring, this contribution is much smaller than the contribution
from the angular deflection, Eq. (2.3.42), and thus we will neglect it.

2.3.6.3 INELASTIC SCATTERING

Finally, we consider the inelastic scattering of the beam particles with the resid-
ual gas. In this case, bremsstrahlung photons are emitted causing the incident
particle to lose energy. We are only interested in small energy changes, less than
a few percent of the incident particle energy. In this regime, the differential cross
section for scattering with both the nucleus and the atomic electrons is el

(2.3.46)

da 16 Z(Z +1.35)rg I 183
s~ 3 137 5

Y 71/3
Now, we can calculate the equilibrium emittance due to these bremsstrahlung
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photons using Eq. (2.3.43). This yields an equilibrium emittance of

2¢ry Z(Z +1.35 (183)
ey = g” ( o )rgsfnaxln —— ) Hyngas - (2.3.47)

In the NLC damping ring with a pressure of 1078 Torr, the bremsstrahlung induced
emittance is many orders of magnitude less than the elastic scattering contribution,
and thus we can ignore it.

2.3.6.4 SUMMARY

In the low energy damping rings, we have found that the most important beam
gas contribution comes from the elastic scattering with the gas nuclei. In the NLC
damping ring, a pressure of 1078 Torr will cause a 10% vertical rms emittance
increase. But, it is important to realize that this emittance increase is dominated
by a few large scattering events; the core of the beam is virtually unaffected while
population of the tails of the beam distribution is increased slightly. Thus, we
conclude that the beam gas scattering is not a significant limitation, even at much
higher vacuum pressures.

2.3.7 Lifetimes

In a damping ring, it is unlikelythat the beam lifetimes could limit the operation
of the ring since the beams are stored for a very short time. But, poor beam
lifetimes could make commissioning and studying the ring difficult. The primary
beam lifetime limitations are excessively small aperture, beam-gas scattering, and
the Touschek effect; the later refers to large angle collisions between particles within
the beam that lead to particle loss.

With adequate design and tolerances, one should be able to avoid the first
limitation. In addition, with reasonable vacuum pressures, the lifetime due to beam-
gas scattering should not be significant. Formulas for the beam gas lifetimes are
listed in Ref. 68. Assuming a. pressure of 10~8 Torr in the NLC damping ring, the
lifetime due to beam gas scattering is roughly four hours; this is more than sufficient.

In contrast,, the Touschek lifetime will tend to be more severe since it depends
inversely upon the particle density in the beam. |n the limit of non-relativistic
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transverse momenta, the Touschek lifetime is given by"****"*"
1 N 2 D(P,
- oD% ) . (2.3.48)

- 2
Ttou 810y 0-1110'27~6?nax

where P, = 6%, B:/2v%€¢; and D(P;) is plotted in Fig. 18; for typical parameters
D(P;) is between 0.1 and 0.3. In the NLC damping ring, the Touschek lifetime is
roughly two minutes. While this is long compared to the operating beam storage
time of 28 ms, it may be too short to study the properties of a stored beam. In this
case, we can increase the vertical beam size or decrease the number of particles per
bunch, thereby decreasing the beam density and increasing the lifetime.
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Chapter 2.4.1

CHAPTER 2.4
JTTER AND NOISE EFFECTS

In this chapter, we will discuss the effect of slow and fast jitter processes that
can increase the effective emittance of the beam. The sources can be divided into
low frequency contributions, such as ground motion and power supply fluctuations,
where the jitter adiabatically changes the ring orbit and high frequency effects which
drive coherent oscillations. We will estimate the magnitude of these effects and then
briefly mention some of the feedback techniques that will almost certainly be needed
for compensation.

2.4.1 Ground Motion

The ground has many frequencies of movement with periods ranging from years
to fractions of a second. Here, we will discuss the “fast” motion where the ground
vibrates at the micron level with frequencies between 0.1 Hz < f < 100 Hz;[m the
high frequency end of this spectrum is primarily due to cultural noise, i.e., man-

made noise, while the low frequency vibrations are primarily nature.

This ground motion moves the quadrupole magnets which then deflect the closed
orbit. In general, the vibration has a small effect, unless the wavelength is smaller
than or comparable to the betatron-wavelength in the ring.“'g‘] Thus, the ground
motion tends to be less of a problem in small strong focusing rings than in the large
rings such as LEP, HERA, and the SSC.

At the SLAC and DESY sites, the measured ground motion near the surface
has a phase velocity of 250 ~ 300 m/s and, during the day, the rms amplitude is
roughly 0.2 pgm; tz.esl during the night, the amplitude is much less. Finally, the noise
has a power spectrum that tends to decay as 1/f2. Note that the phase velocity
of these high frequency ground waves is roughly an order of magnitude slower than
that of the long wavelength motion measured during seismic events. The longer
wavelengths sample deeper and denser material and thus have faster velocities*”

In the NLC damping ring, the average vertical betatron wavelength is roughly
C/vy = 14 m. Using the results of Refs. 4 and 94, the first resonant frequency occurs
at approximately 20 Hz. Although this is at the high frequency end of the power
spectrum, it still suggests that the ground motion might be a problem in the NLC
ring; a more detailed analysis, including the actual ring optics and the response of

the magnet supports, is needed to determine the real magnitude of the problem.
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If indeed the ground motion is a problem, there are three solutions: (1) choosing
a site with reduced noise, much of the high frequency noise is caused by motor vehicle
traffic, (2) use isolation supports to damp the noise, and (3) use low frequency
feedback systems to stabilize the closed orbit; this will be discussed later.

2.4.2 Power Supply Fluctuations

In general, the magnet fluctuations due to power supply fluctuations are low
frequency f S 1 KHz in comparison to the beam revolution frequency; higher fre-
guency fluctuations are attenuated by the vacuum chamber. Thus, the fluctuations
cause adiabatic changes. Fluctuations of the correctors change the closed orbit and
fluctuations of the quadrupoles change both the betatron tunes and the closed orbit.
In addition, fluctuations of the bending magnets cause the ring energy to change;
this occurs because, in an e¥ /e~ storage ring, the RF fixes the revolution period.

Correctors

The dipole correctors usually have independent power supplies and we assume
that the fluctuations are independent. Thus, using Eq. (2.2.13), we find a tolerance

ay‘Z\/‘E[ sin wuy|

A0, 2.4.1
Yy rms S \/N::;r—rﬁy 9 ( )

where Neorr is the number of correctors and 8, is the vertical beta function at the
correctors.

In the NLC damping ring design, this yields a tolerance of Afyrms < 0.08 prad
to limit the jitter to one quarter of the vertical beam size. We can estimate the
maximum required corrector strength from the alignment tolerances and the magnet
strengths; a maximum deflection of 1 mrad should be more than sufficient. This
yields a relative tolerance on the corrector power supplies of AI/Tpeax S S x 1075,
This is a fairly tight tolerance, but it could be eased by reducing the maximum
corrector strengths.

Main Bending Magnets

We will assume that all of the bending dipoles are powered by the same supply.
In this case, slow fluctuations of the dipoles will change the beam energy; as men-
tioned, this occurs because the revolution period is fixed by the RF in an e'*’/e“

ring. In terms of the closed orbit and the betatron tunes, slowly changing the main
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Chapter 2.4.2

bends is equivalent. to changing the correctors and the quadrupoles in the opposite
direction. Thus, in the vertical plane, the closed orbit change due to the fluctuation
can be written

AR
Ayc = ﬂy(S)'E‘ . (242)

This can be further simplified since, in Section 2.2.4, we saw that oy ~ 27,0.
Thus, to limit the orbit variation to one quarter of the vertical beam size, we find a
tolerance

AB O¢
B S—Q— . (2.4.3)

In the NLC damping ring this tolerance is roughly 5 x 1074,

In addition to the closed orbit, the betatron tunes will vary as the bends change.
As mentioned, changing the bends is equivalent to changing the quadrupoles in the
opposite direction. Thus, the tune shift is

Av = funm,é]—a- , (2.4.4)

B
where £uncor 1S the uncorrecicd chromaticity. Notice that the sextupoles do not
compensate this “chromatic” tune {luctuation. This occurs because the horizontal
orbit change is not proportional to the horizontal dispersion since the revolution
period is fixed. In the NLC damping ring, the uncorrected chromaticity is roughly

-25. Thus, to limit the tune fluctuation to 0.01, we find a tolerance of

AB
— <g4ax 1074 (2.4.5)

B
This is comparable to the tolerance on the closed orbit fluctuations and should not

be difficult to achieve; commercial power supplies are available with regulation of
107% ~ 1075,

Quadrupoles

In this case, we will assume that all of the focusing quadrupole magnets are
powered by a single supply, while all of the defocusing quadrupoles are powered by
another supply. First, we can solve for the vertical orbit change with Eq. (2.2.13).
Here, the deflection of the closed orbit depends upon the quadrupole field and the

closed orbit offset. Although the strength variation is correlated between magnets,
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the orbit offsets of a corrected orbit are not. Thus, we find a result analogous to
Eq. (2.4.1):

0y 2V/2| sin Ty
LquadycrmS\/Nquadﬁy ,

where Lguaq is the length of the quadrupole, yc is the rms magnitude of the closed
orbit, and AKj is the rms error in the normalized quadrupole gradient.

ALK £

(2.4.6)

Finally, we can estimate the tune variation due to the quadrupole fluctuations.
If we wish to limit this to Au < 0.01, we find a tolerance

A{\’l < 0.01
I\'l guncor

, (2.4.7)

where £uncor 1S the uncorrected chromaticity.

In the NLC damping ring design, the closed orbit constraint imposes power
supply tolerances of AI/I ~ 2 x 107 to limit the jitter to one quarter of the
beam size. Here, we have assumed 100 quadrupoles with X = 20m™2, L = 0.2m,
and y. = 100 um; these values should overestimate the severity of the tolerance.
Similarly, the tune variation imposes a comparable tolerance of A7/I < 4 x107%. In
both cases, commercially available supplies should be able to meet these tolerances.

2.4.3 High Frequency Jitter

The primary sources of high frequency noise are the RF system, the high fre-
guency feedback systems that would likely be needed to damp coherent oscillations,
and the injection/extraction kickers. The noise will drive coherent oscillations of
the beam. Longitudinal noise, such as that from the RF system, will drive coher-
ent synchrotron oscillations that, in the presence of synchro-betatron coupling, will
cause coherent betatron oscillations. Transverse noise will directly drive coherent
transverse oscillations.

A coherent betatron oscillation can be damped by the head-tail damping process,
synchrotron radiation damping, and feedback systems. In addition, if there is a
large spread in the oscillation tune, the coherent oscillation can filament before it
is damped coherently; the oscillation decoheres and the beam size increases. After
this filamentation, the fast hea.cl-tail process and feedback cannot damp the beam.
Thus, the filamented beam damps at. the (slower) synchrotron radiation damping
rate.
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Chapter 2.4.3

We can estimate a tolerance on the RF noise in the same manner that we calcu-
late the equilibrium emittance. Assume that the noise causes a discrete transverse
deflection 6’ that is uncorrelated between revolutions. Then, the change per turn of
the single particle invariant that describes the coherent oscillation is 2A) = 362
By equating this with the damping rate, we find the expected value of (J):

= , (2.4.8)

where T is the damping time and 7 is the period of revolution.

To prevent dilution of the effective emittance, we require (J) < €. For a worst
case estimate, we can assume that the beam damps at the synchrotron radiation
damping rate. Thus, in the NLC damping ring design, we find a tolerance on the
vertical deflecting voltage

V-yrms S 20 Volts 3 (249)

to limit the jitter to one fourth the beam size. This can be translated into a tolerance
on the phase stability of the main accelerating RF:

2 VRF 2 T
3 VHyl — | — . 2.4.10
cyz<¢>y(EO P (2.4.10)
In the NLC damping ring design, assuming a 1 MV RF system with 1 mm of
vertical dispersion in the cavities, this implies a phase stability of ¢rms ~ 2° which
is a relatively loose tolerance.

Finally, we should note that a more severe tolerance on the RF phase is due
to the phase stability required of the extracted beam. Phase jitter of the extracted
beam is translated into energy jitter at the beginning of the bunch compressor;
a correlated energy spread is added to the bunch at the beginning of the bunch
compressor using an acceleration section, phased to give the nominal center of the
bunch zero energy gain. This energy jitter is then translated back into phase jitter
during the compression, since low and high energy particles have different path
lengths. Finally, the phase jitter is translated into an energy jitter in the linac. This
effect has been observed in the SLC but. we will not calculate tolerances here since

it requires detailed knowledge of the bunch compressors.



2.4.4 Feedback

Stabilization of the closed orbit is very important in synchrotron light sources.
Currently, many of the synchrotron light sources stabilize the closed orbit at the
level of a few microns”***"*"* The primary limitation of these feedback systems is
the measurement of the beam position. This is a problem that needs to be resolved
throughout the linear collider complex; one needs to accurately measure the beam
position at the level of the beam size. But, assuming that the required measurement

accuracy can be achieved, stabilization of the closed orbit should be straight-forward.

In addition, to slow feedback for the closed orbit, fast feedback can be used
to damp coherent oscillations of the beam. Wide band bunch-to-bunch feedback
systems are used to stabilize the beam in PETRA and HERA™** and are planned
for in the LBL-LLNL-SLAC B-Factory design”"*® In the NLC damping ring, one
may not be able to feedback on each bunch, this requires a I-2 GHz feedback system,
but it should be relatively simple to feedback on the batches of ten bunches; this
only requires a 20 MHz system which is comparable to the PETRA feedback system.
Of course, again, any feedback system will be limited by the resolution of the beam
measurement.

106



Chapter 2.5

CHAPTER 2.5
INJECTION MATCHING

In a damping ring, it is important to match the injected beam to the ring. In
the transverse case, the beam must be injected onto the closed orbit, and the beta
functions and the dispersion must be matched correctly. If there is a mismatch,
the beam will filament; the beam is large at injection and thus nonlinear fields
cause a significant tune spread. The filamentation of the mismatch will increase the

beam size and thereby increase the storage time needed to damp the beam to the
equilibrium value.

The emittance dilution due to filamentation of a beta mismatch can be writ-

. [35)
Ae 1(B BN 1( . [B B\ _
—-—6 —§<”ﬁ*+‘-ﬂ)+2<a 5 o ,3) 1 (2.5.1)

where a and A are the machine parameters and a* and 3* are the beam parameters.
(73]

ten

Similarly, the dilution due to a filamented dispersion mismatch is

Ae = 7‘[0’62

: (2.5.2)

where H is the dispersion function defined in Eq. (A.5.9). Finally, the dilution due

to a orbit mismatch is"*"

1 2
Aey = 5 (18 + 209390 + Boo ) (2.5.3)

where y¢ and y6 are the difference between the closed orbit and the injected trajec-
tory.

In addition to the transverse matching, the beam must be matched longitudi-
nally to prevent coherent synchrotron oscillations. The synchro-betatron coupling
could couple the synchrotron oscillations to the transverse planes as discussed in
section 2.2.6. This increases the beam size when the oscillations filament. The
nonlinear synchro-betatron coupling is more important at injection since the beam
occupies a large portion of the accelerating RF and thus experiences the sinusoidal
variation of the fields. Furthermore, since the bunch is usually longer, the transverse
wakefields, which are an important source of coupling, are much stronger. These
effects can be estimated from the results of Sections 2.2.6 and 2.3.4, although a
detailed analysis has not yet been performed for the NLC damping ring.
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Actually, in the NLC damping ring design, the tolerances on the injection mis-
match are very loose. This occurs because the beam is over-damped to ease toler-
ances on the vertical equilibrium emittance. The horizontal and longitudinal emit-
tances are damped to their equilibrium values after roughly half the damping cycle
and thus injection errors will have negligible effect on the extracted emittances.
Even the vertical emittance, which requires the most damping, is dominated by
the equilibrium value at the end of the damping cycle. The injected emittance
of vey = 3 x 102 m-rad contributes roughly 10% of the extracted emittance of
yey = 3 x 1078 m-rad. Thus, even if the injected beam filaments to twice its size,
the extracted emittance will only increase by 10%.

108



Chapter 2.6

CHAPTER 2.6
GENERATION SUMMARY

In this chapter, we have discussed effects that can limit the vertical emittance
in future damping rings, In particular, we have calculated limitations due to single
particle effects, collective effects, and pulse-to-pulse jitter sources. We then applied
these results to the current design of the NLC damping ring which calls for a very
low vertical emittance of yéy = 3 x 1078 m-rad with an aspect ratio (e;/€,) of 100.

The single particle limitations are primarily due to vertical dispersion and be-
tatron coupling; the more fundamental limitation, due to the opening angle of the
synchrotron radiation, is a factor of 45 smaller than the design vertical emittance.
The wvertical dispersion and the betatron coupling impose alignment tolerances on
the ring components. In the NLC damping ring, we have calculated that ver-
tical alignment tolerances of roughly 100 um will limit the vertical emittance to
vey < 2.5 x 1078 m-rad with a 95% confidence level; these results are summarize in
Table 11.

Next, the most important collective effects are intrabeam scattering and the
space charge tune shift. The space charge tune shift reduces the working area in
tune space. In the current design, the space charge tune shift is Avy = -0.015.
While this is not thought to pose a problem, a larger value might cause the induced
synchrotron sidebands to overlap a strong resonance, leading to emittance growth.
Of course, for given normalized emittances, the space charge tune shift depends
inversely upon 42 and thus it decreases rapidly as the ring energy is increased.

In contrast, for given normalized emittances, intrabeam scattering does not
necessarily decrease rapidly with the ring energy. But, in the current NLC design,
intrabeam scattering only increases the rms vertical emittance by 20%; this only
increases to a 120% dilution as the vertical emittance is decreased to the limit
imposed by the opening angle of the synchrotron radiation (a factor of 45). Thus,
the intrabeam scattering is *“annoying”, but it does not present a severe limitation.

Furthermore, the current theories of intrabeam scattering may over-estimate
the real emittance growth. These theories estimate the rms emittance, but, with
scattering, the distribution becomes non-gaussian and thus the rms emittance does
not characterize the beam emittance well. The emittance growth due to beam-
gas scattering is an example of this. In the NLC damping ring, a background gas
pressure of 10~7 Torr will cause the rms vertical emittance to double. But, the
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actual effect on the beam is small; the scattering generates a halo of large amplitude
particles without significantly diluting the core of the beam.

Finally, we have also estimated tolerances on the sources of pulse-to-pulse jitter.
In the current design, the tolerances on the power supplies, which limit the beam
jitter to 25% of the rms beam size, are reasonable (AI/I < 10™*%). But, tolerances
on the ground motion may be more severe; the ring will be resonant to ground
motion with frequencies above approximately 20 Hz. Fortunately, in a storage ring,
it is relatively simple to stabilize the beam with feedback, easing both the power
supply tolerances and the ground motion tolerances.

Thus, to conclude, there does not appear to be any significant limitation in
achieving the design vertical emitta.nce of vey = 3 x 1078 m-rad in the NLC damping
ring. In fact, it seems quite possible that one might be able to reduce this an
order of magnitude to 3 x 10™° m-rad. This would require reducing the alignment
tolerances by roughly a factor of four, and, perhaps, increasing the damping ring
energy to reduce the space charge tune shift and the opening angle contribution
to the emittance. Furthermore, one would need beam position monitors with sub-
micron accuracy for the feedback systems.

Of course, we must qualify these statements by noting that we have neglected
two important effects: first, the effect, on the emittance, of multiple closely spaced
bunches needs to be considered. The intra-bunch wakefields could cause the bunches
in a train to have different trajectories, increasing the effective emittance of the
bunch train. Second, effects that occur at injection, before the beam damps should
also be considered. Here, the bunch length and the energy spread are much larger
and the nonlinear synchro-betatron resonances might enlarge the initial injected
beam; fortunately, as mentioned, this would not be extremely significant in the
NLC damping rings since the vertical emittance is over-damped.
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CHAPTER 3
ACCELERATION OF BEAMS WITH SMALL
VERTICAL EMITTANCES

After the beams are generated in the damping rings, they need to be accelerated
to the desired final energy while preserving the small beam emittances. In many
current designs, as schematically illustrated in Fig. 1, the beams are extracted from
the rings into a bunch compression and matching region, Then, the beams are
accelerated, in a preliminary linac, to an intermediate energy where they undergo a
second bunch compression. Finally, the beams are accelerated in the main linac to
the desired energy.

In this chapter, we will discuss effects that can dilute the vertical emittance
during the acceleration. We will limit the discussion to the linacs and neglect dilu-
tions that occur in the bunch compressors and other sections of the linear collider.
Throughout, we will calculate with parameters of the NLC designs described in Ap-
pendix D; note that the linac parameters are still in a state of flux, but those listed
in Appendix D provide a representative set.

There are three forms of emittance dilution that can increase the effective ver-
tical emittance in the linacs: conservative dilutions where the six-dimensional emit-
tance is conserved but the projected emittance is increased, pulse-to-pulse jitter
where the beam emittance is not necessarily increased, but the effective beam size
is enlarged, and finally, non-conservative dilutions, such as scattering and radiation,
that directly increase the beam emittance.

The conservative dilutions are similar to those that lead to a local beam size
increase in the damping ring; this was discussed in Section 2.2. These dilutions only
increase the projected emittance beam, and, in theory, the effects can be removed.
Unfortunately, in a linac, the dilutions “filament” because the beam has a finite
energy spread and the phase advance is energy dependent. Thus, after propagating
through the linac for a short distance, the dilutions become very difficult to remove
and effectively become an emittance increase.

We discuss the equations of motion in a linac and the filamentation process in
Sections 3.2 and 3.3. Then, in Section 3.4, we calculate the primary conservative
dilutions which are due to dispersive errors, transverse wakefields, and RF deflec-
tions; these are analogous to the local dispersive and synchro-betatron coupling in

the damping ring. In Sections 3.5 and 3.6, we discuss methods of easing some of
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the tolerances that these dilutions impose, and finally, in Section 3.7, we calculate
the effect of magnetic field errors which cause betatron mismatches and transverse
betatron coupling.

Next, in Section 3.8, we discuss the effect and sources of pulse-to-pulse jitter;
these effects are important in future linear colliders because the beam sizes are
very small. Finally, in Section 3.9, we discuss a few additional dilutions, including
the beam space charge and the non-conservative dilutions. The non-conservative
dilutions are similar to those that determine the beam emittance in the damping

rings, but in a linac, these effects are very small.

Throughout this chapter, we will calculate tolerances to limit the vertical emit-
tance dilution to roughly 6%; this causes a 3% reduction in the luminosity. We
choose to limit the individual dilutions to this small value because there are many
independent sources of dilution, all of which add to the final result.
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CHAPTER 3.2
EQUATIONS OF MOTION AND PROJECTED EMITTANCES

3.2.1 Equations of Motion

In a high energy linear accelerator, the longitudinal motion is effectively in-
dependent of the transverse motion. There are sources of coupling between the
longitudinal and transverse planes, but the longitudinal emittance is much greater
than the transverse emittance (between four and six orders of magnitude greater in
the NLC linacs) and thus we can neglect the perturbations to the longitudinal plane
from the transverse motion.

Furthermore, in a high energy linear accelerator, the longitudinal position is
essentially fixed; as discussed in Appendix A, it is independent of the energy devia-
tion as well as the transverse motion. For example, in the NLC main linac, particles
within 3o of the design energy and beam divergence shift longitudinal position by
much less that 1 ym; in contrast, the bunch length is roughly 100 pm.

Since the transverse motion does not affect the longitudinal, we can parameterize
the transverse motion with the longitudinal coordinates. The dominant effects in
a linear accelerator are due to the focusing and deflecting magnetic fields and the

wakefields. Thus, the transverse equations of motion can be written:

ST 5 50) = (= OKily(s52,0)~w) = (1= 6)G,
a-s. F 7 (3.2.1)
+ WNTO/T dz'/ d&'p(2', &YW (852" — z)[y(s; 2, 8") = va]

where the only difference between this equation and that for the motion in a storage
ring is the dependence on y(s) which leads to the adiabatic damping.

Specifically, s and z are the longitudinal position in the accelerator and in the
bunch, and ¢ is the relative energy deviation which is also a function of s and
z. Next, K; and G are the normalized focusing and bending functions, and W,
is the transverse dipole wakefield which depends upon the dipole moment of the
bunch; wakefields are introduced in Section 2.3.4 and the wakefields in the NLC are
plotted in Appendix D. In addition, N and rg are the number of particles and the
classical electron radius, g is the longitudinal distribution function for the particle
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bunch, and, y, and y, are the misalignments of the quadrupoles and the accelerator
structures. Finally, we have neglected skew quadrupole and higher-order multipole
fields and the higher-order wakefields; these are discussed in Sections 3.7 and 3.4.2,

respectively.

Now, we need the longitudinal equations of motion. As mentioned, the longi-
tudinal position z is fixed; this leaves the relative energy deviation é. The energy
spread consists of two components: an uncorrelated energy spread which comes from
the finite longitudinal emittance and an energy spread that is correlated with z; this
correlated energy spread is due to incomplete bunch compression, the longitudinal
wakefields, and the accelerating RF voltage. Neglecting any initial correlation, we
can express this as

38 8 oo
Nr
8(s) = bun o +/ds'eAERF(SI;Z)+‘—2‘/d‘S,/dZIVVHU(SI;ZI_Z) , (3.2.2)
(s) (s)
0 0 z
where v is the initial energy, dun is the initial uncorrelated energy spread, and Wuo
is the lowest order longitudinal wakefield. Assuming a sinusoidal RF accelerating

field,
AERr = ERF(S)[Sin(:A‘RF + (,253) - sin(qﬁs)] . (3.2.3)

Here, kgrr is the wavenumber of the RF and ¢s is the RF phase which is 90° for
maximum acceleration of electrons.

Finally, we will calculate the motion of the bunch centroid. This is important
because the centroid, and thus the transport matrices for the central trajectory,
depends upon the bunch intensity and the correlated energy spread!” The equation
for the centroid is found by integrating Eqg. (3.2.1) over the particle distribution
in 6 and z. In general, this is complicated, but if we assume that the transverse
trajectory offsets are large compared to the dilutions and we assume that the bunch
has a gaussian distribution in z, we find

SO (1 B Kaluels) ~ vl = (1 - 800G
!
:;\;23 ‘Vli;-)az [e(s) —ya]

(3.2.4)

+ (1 - 5av)

where 6,y is the average beam energy and we have approximated the transverse
wakefield as Wii(s; 2/ — z) = (z' — =)W, (s).
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Notice that the dipole wakefield acts like a defocusing term in that it increases
the wavelength of a coherent oscillation; of course, the dipole wakefield does not
actually have a gradient and thus it does not change the focusing seen by particles
within the bunch, i.e., the beta functions are unchanged.

Strictly, we need to include this effect whenever we calculate the bunch trajec-
tory, but, in the NLC main linacs, the wakefield effects are relatively weak. The
relative decrease in the phase advance is roughly év/v = -0.002 and thus we will
neglect the effect. However, in the SLC linac, this effect is much more important.

3.2.2 Projected Emittance

In a conservative system, which a. linear accelerator approximates, the normal-
ized six-dimensional emittance is conserved. Furthermore, in a conservative system
with linear forces, the rms six-dimensional emittance is conserved. But, in a linear
collider, the luminosity is strongly dependent upon the projection of this emittance
into the transverse planes.

As discussed in Appendix A, the six-dimensiona. rms emittance can be calcu-
lated from the beam matrix o which consists of the second moments of the beam
distribution:

2 =deto where oi; = (zizj) , (3.2.5)

the angle brackets denote the average over all beam particles, and z; are the com-
ponents of the vector: (zg, x'ﬂ, Y3, y’ﬂ,z, 6). Similarly, the two-dimensional projected
emittances are just calculated from the 2 x 2 sub-matrices along the diagonal of the
full beam matrix. Specifically,

(3.2.6)

e = deto where o, =
v STy ) v

Y (vy') )

(vy") (¥

At this point, we should note a very useful method of visualizing the beam.
The transverse projected emittance is not conserved because it is coupled to the
longitudinal plane. But, since the longitudinal position is fixed, we can divide the
beam longitudinally into slices of constant z. Each slice has a specified correlated
energy deviation which is determined from the bunch compression, the longitudinal
wakefields, and the RF acceleration. Finally, we further subdivide each slice into

slices of constant éuy, the uncorrelated energy deviation.
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Now, as the beam travels down the linac, the bunch is deformed by the wake-
fields and the chromatic and dispersive effects. The wakefields depend upon the
longitudinal position z while the chromatic and dispersive effects depend upon the
energy deviation. Since z and é are parameters in the equations of motion, the area
of any given slice remains constant, but the centroids of the slices are shifted by
dipole wakefields and dispersive errors while the shapes of the slices are changed by
chromatic errors and quadrupole wakefields.

So we visualize the beam as being composed of all these slices which have dif-
ferent shapes and centroids. The projected emittance is found by summing over all
of the slices. Specifically,

g:det [/ dz/déunp(z,éun)ay(z,éun)] , (3.2.7)

where we have neglected the possibility of transverse coupling. Now, using Schwarz’s
inequality and the positive definite nature of the beam matrix, it is easy to show
that any source of correlation with z or 6 increases this projected emittance:

det [/dz/d5p(z,6)a(z,6)i} > (/d:/chp(z,(S)m)Z . (3.2.8)

where the equality occurs if and only if the beam matrix does not depend upon
either z or 6.

Inequality (3.2.S) is a specific case of a more general result which states that,
assuming the beams are initially uncoupled, any source of coupling always increases
the smaller of the emittances. In the case of inequality Eq. (3.2.8), the longitudinal
emittance has been implicitly assumed to be much much greater than the transverse
since the transverse motion does not affect the longitudinal, but a similar result holds
for the transverse coupling in the NLC, where the vertical emittance is much smaller
than the horizontal; any betatron coupling leads to an increase in the projected
vertical emittance.
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CHAPTER 33
FILAMENTATION AND TRANSVERSE MATCHING

In this chapter, we will discuss filamentation and the transverse matching of
the beam. The beam extracted from the damping rings has a well defined beam
ellipse. This needs to be matched to the machine ellipses of the linacs and the bunch
compressors to prevent dilution of the projected transverse emittances. We will first
describe the reasons for this requirement and then estimate the effect of mismatches.
Most of these effects have been studied by people working on the SLC at SLAC and
many of the results are described in Refs. 70, 2, 35, and 73.

3.3.1 Filamentation and Natural # Functions

Filamentation occurs when particles in the beam have different frequencies of
oscillation. The frequency dependence can be due to the energy dependence of
the phase advance, i.e., the chromaticity, or nonlinear fields which cause the phase
advance to be amplitude dependent. The effect of the filamentation is to cause a
phase mixing which makes it difficult to correct dilutions of the projected emittance;
once a dilution filaments, it is, for practical purposes, unrecoverable.

Filamentation is important when describing the transient response of the beam,
i.e., in linacs or transport lines, or at injection in a storage ring. It is not important
when considering the periodic behavior of a beam in a storage ring. Thus, the
filamentation is not important when correcting the local (projected) beam size in
the damping rings (see Section 2.2) provided that the dilution is corrected in the
ring or promptly after the beam is extracted.

The reason for this distinction between the transient and periodic behaviors
can be understood by examining the behavior of two harmonic oscillators that have
slightly different resonant frequencies; this models the transverse motion of two
particles with slightly different energies. If the oscillators are driven off-resonance
by the same periodic force, the motion of the oscillators will be similar in both
amplitude and phase. In contrast, if both oscillators receive a transient deflection,
the amplitude of the resulting oscillations will be similar, but they will have a
steadily increasing difference in phase.

We will divide the energy dependent filamentation into two catagories: disper-
sive and chromatic filamentation, the former applying to filamentation of an oscil-
lation and the later referring to the filamentation of the beam ellipse. Dispersive
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Fig. 19. Dispersive filamentation of a coherent betatron oscillation.

filamentation occurs when the beam performs a coherent oscillation. Here, the cen-
troid of the lower energy particles oscillates at a higher frequency than that of the
higher energy particles. The situation in y-y' phase space is illustrated schemati-
cally in Fig. 19. As the beam filaments, it will fill the annular region in the machine
ellipse and the amplitude of the initial coherent oscillation decays.

Chromatic filamentation occurs when the beam is not matched to the focusing
structure of the machine; this is illustrated in Fig. 20. Here, the beam ellipse of the
low energy particles rotates within the machine ellipse more quickly than that of
the higher energy particles. In this case, the beam will filament to fill the machine
ellipse at twice the rate of the dispersive filamentation.

In both cases, the projected emittance mcreases as the beam filaments to occupy
the machine ellipse. The machine ellipse is defined by the beta functions which, as
discussed in Appendix A, are a characteristic of the focusing structure, not of the
beam. In a storage ring, the beta functions are chosen to be periodic, but, in a
transport line, the choice is not as obvious; one needs to determine the boundary
conditions. In this section, we will show that there are “natural” beta functions
which are determined by the perioclicity of the system. This is well known in storage
rings and is intuitively obvious in a long transport line, but it is worth demonstrating
explicitly.
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Fig. 20. Chromatic filamentation of a mismatched beam.

To examine the effect of the filamentation, we will consider the transport of the
beam matrix a through a periodic, lattice. The two-dimensional beam matrix equals

() @) _ (8 e
a—((mw’) <$12)> (-—a* 7*) s (3.3.1)

where we have used the beam parameters introduced in Eq. (A.2.20) in Appendix A.

The transport of a monochromatic beam can be described with the linear trans-
port matrix R.

o(b.s) = R(é;O.s)a(é;O)ﬁ(&O,s) , (3.3.2)
where 6 is the relative energy deviation of the beam and the transport matrix R

is also introduced in Appendix A. Specifically, the transport matrix for n periodic
cells can be written

( cos nyp(8) Bo(6) sin m,/;o(é))
R(6)= , (3.3.3)

— 708y Sin 7o (é) cos ni(6)

where the subscript ¢ is used to denote the periodic lattice parameters which are
functions of the energy deviation and we have assumed that we are starting from
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a symmetry point so ag = 0. Notice that the determinant of the transport matrix
is unity; the transverse rms emitta.nce of a monochromatic beam is not changed by
transport through a linear lattice.

Now, we are in a position to demonstrate the existence of the natural lattice
functions. Assume that the initial beam is independent of 6 but it has a finite
energy spread and an initial emittance €. The inequality Eq. (3.2.8) shows that the
projected emittance will increase if o depends upon 6. Assuming that the energy
spread is small, we only need consider the first few derivatives of the beam matrix
Eq. (3.3.2):

doyy P . P N
-5 = —enyp(2a* Bo cos(2n3o) + (8 — 77 Bg) sin(2ntho))

!
do1y _ e%(‘za*ﬂg sin(2nto) — (3" — v*B3) cos(2no))
dé Bao

(3.3.4)
d*oq1 9 2 (e wp e aw %32

5 = e2n’y” (20" Bo sin(2n1ho) — (B — 4™ B3) cos(2nhg))
d*o19 _ 2?221,1202

5 = B (2o Bp cos(2nebo) + (8™ — v*B3) sin(2nto))

where ' = dy/dé and we have assumed that n >> 1; there are also terms that
depend upon df3/ds and da/ds but we have only kept terms of highest order in n.
The derivatives of the other elements of the beam matrix are linear combinations of

these.

To prevent dilution of the projected emittance, these derivatives should be zero.
One can immediately see that both the first and second derivatives will be zero

provided that
a” =0 = a* =
B ='B5=0 =  F=p

i.e., the beam should be matched to the periodic lattice parameters. A mismatched

(3.3.5)

beam will filament, with corresponding emittance growth, until it is matched to these
natural lattice functions. This is illustrated in Figs. 21 and 22 which are generated
by tracking the beam ellipses of {orty macro-particles distributed between 6 = 430
and § = —30¢. In Fig. 21, we have plotted the projected emittance versus initial
beta mismatch for a beam, with a 1% rms energy spread, that has traversed sixty
90° FODO cells. The dilution of the projected emittance has a minimum when the

beam is matched to the periodic latt ice functions.
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Fig. 21. Simulation of chromatic filamentation in a FODO lattice with 90°
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Fig. 22. Simulation of chromatic filamentation in a FODO lattice with 90”
cells and a 1% rms energy spread; the solid line is the emittance in units of
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In Fig. 22, we have plotted the rms emittance and the measured beta function
of the same beam versus cell number. Here, the initial beta mismatch is 8*/8y =
0.5. The rms emittance increases towards an asymptotic dilution of 25% while the
measured beta function oscillates about the natural beta function, decaying to the
natural value as the beam filaments and the projected emittance grows.

Finally, we need to discuss the degree of filamentation in a linac. This can
be estimated from the chromatic phase advance for particles with the rms energy
deviation:

L
1 ,
by = / §K1 Bds . (3.3.6)
0

We will evaluate this using the NLC scaling for a FODO lattice described in
Appendix D. Here, the normalized quadrupole strength decreases inversely with the
beam energy while the beta functions and the yuadrupole and drift lengths increase
with the square root of the beam energy. Assuming that the energy spread decreases
inversely with the beam energy, we find

Ncell_l

1 - « Yo
Sy = Z;(Aqu)o(/io — Bo)bo n};ﬂ ol (3.3.7)

where (K1 Lg)o is the initial integrated quadrupole strength, ,30 and B, are the initial
maximum and minimum beta functions given by Eq. (D.1.1), and &g is the initial
energy spread. Now, using the relation Eq. (D.1.7) for 4,, we find

~ g tan @/"c/z 0

Neelty/ — (3.3.8)

s Tn

bv

where ). is the phase advance per cell and we have simplified the expression with
Eq. (D.1.3). In the 500 GeV NLC linac, we find év ~ 0.22 and thus we conclude that
the NLC linac is in the partial filamentation regime; an initial mismatch filaments,
but most subsequent dilutions do not.
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3.3.2 Matching Tolerances

At this point, we can discuss the required tolerances on matching into the linac.
We will consider the effect of beta mismatches, dispersion mismatches, and higher-
order contributions. In all cases, we will assume that the mismatch fully filaments.
This will over-estimate the severity of the tolerances in the NLC linacs where the
beam does not fully filament. Finally, trajectory mismatches, which lead to disper-
sive filamentation, are discussed in Section 3.4.1.

Lattice Functions

The emittance dilution due to filamentation of a beta mismatch can be writ-

L [3s)
—-_1_ ._.__{_. +.l_. Is! ,__.__a‘,——.- -‘—-I 339
€ Q(ﬁ* B) 2( IB* ﬁ) , ( o )

where o and 8 are the machine parameters and a* and * are the beam parameters.

ten

At a symrnetry point where o* is matched, i.e., @* = & = 0, this yields the emittance
dilution seen in Fig. 21. Notice that the effect of the beta mismatch is multiplicative.
Thus, the tolerances do not decrease as the emittance decreases and the tolerances
in the NLC for 6% emittance dilution are similar to those in the SLC.

Specifically, to limit the vertical emittance dilution to less than 6%, we need to

match the beam parameters and the lattice functions to roughly
Ay
By

where we have assumed that we are matching to a symmetry point in the lattice.

ley | 5 0.20 0.80 £ <125 (3.3.10)

Beta matching at this level is frequently achieved in the SLC despite the non-optimal

. (35)
matching arrangement.
Dispersion

Unlike the beta matching, a dispersion mismatch is an additive increase to the
emittance. Thus, the tolerance on the vertical dispersion will be much tighter than

in the SLC. Assuming full filamentation, the emittance dilution due to residual

dispersion at the beginning of the linac is: "

2
_ Hygc
= ———9 ’

e

Ae (3.3.11)

where H, is the dispersion function defined in Eq. (A.5.9) and in the NLC linacs,
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this implies a tolerance of

(3504)°

Hy S
Y ﬁy

= 1§, $T0pm , (3.3.12)

at injection to limit the dilution to 6%.
Nonlinearity

In the SLC, it has been found that it is extremely important to match the
higher-order dispersion and chromaticities at the beginning of the linac™” These
higher-order terms are supposed to cancel in the bunch compressors, but errors
in the lattice reduce the cancellations. Furthermore, these effects were not easy
to correct because the lattice had few independent “knobs” with which one could
modify the optics; the problem has been eased with the addition of independent
power supplies. We could list tolerances on these higher-order contributions, but,

instead, we simply note that the bunch compressors must be designed to facilitate
correction of the inevitable errors.
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CHAPTER 34
PRIMARY SOURCES OF DILUTION

In this chapter, we will discuss the primary sources of coupling that increase
the projected emittance. These are dispersive errors, transverse wakefields, and RF
deflections. In the first two cases, we will consider the effect of a coherent betatron
oscillation and a trajectory which is corrected to zero the Beam Position Monitors
(BPMs) measurements. In the case of the RF errors, we will only estimate the effect
of random errors. Finally, in analogy with Section 2.2.8, we will comment on the
distribution of the emittance from these errors and the additional tolerance needed
to limit the emittance with a 95% confidence level. In general, the tolerances found

in this section are severe; we will discuss techniques of easing them in Section 3.5.

To estimate these dilutions, we will use two particle models. Here, we repre-
sent the beam with two macro-particles separated in é or z and then estimate the
emittance dilution assuming that the coupling is a linear function of the separa-
tion. Instead, one could calculate the dilution as a function of é or z and then
integrate over the distribution to find the dilution; this approach is taken in Ref. 31.
We choose the two particle model since it provides a fairly accurate estimate of
the dilution while also providing a simple picture for understanding the correction
techniques discussed in Section 3.5.

Finally, throughout this section, we will compare our estimates with the results
of computer simulations. These involved tracking the centroids and beam ellipses
of 55 macro-particles distributed in the longitudinal phase space in the NLC linac.
The simulations included the effect of wakefields and/or dispersive errors as noted

in the text.
3.4.1 Dispersive Errors

We differentiate between two types of energy dependent errors: dispersive and
chromatic. Dispersive errors arise from a correlation between the centroid of the
constant energy slices of the beam and the energy deviation while the chromatic
errors are due to a correlation between the second moments of the slices and the
energy deviation, i.e., chromatic errors distort the shape of the beam ellipses. The
chromatic error was discussed in Section 3.3 as a source of filamentation. If the

beam is matched to the lattice, the chromatic error is small.
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The energy deviation includes both an uncorrelated contribution and a contri-
bution correlated with the longitudinal position z. The dispersive error due to the
correlated energy deviation is used to (partially) cancel the effect of the dipole wake-
fields; this is BNS dampingle] and will be discussed in the next section. Thus, we
categorize this correlated dispersive error with the wakefields and, in these calcula-
tions, only consider the dispersive errors due to the uncorrelated energy deviation.

To estimate the effect of the dispersive error, we use a two particle model where
one macro-particle has the design energy and one has an energy deviation éyy. Then,
the difference between these two macro-particles Ayg = ye — ys,, is found from the
equation of motion Eq. (3.2.1). This yields
7(15)5;7(8);;133151 — {1 = bun) 3 (S)Ayd = (3.4.1)

8unGy(6) — 6unN1(8)yq + bunK1(&)ye

where § is the correlated energy spread and Ki(6) = (1 — 8§)K;. In addition, we
have neglected the dispersive effects of the wakefields, this is valid if the wakefield
is weak compared to the external focusing as it is in the NLC.

The solution to this equation can be expressed in terms of the Rj2 transport
matrix element. The Rj2 transport element (see Appendix A) describes the position
offset resulting from a deflection; it can be thought of as the Greens function for the
accelerator lattice. This yields

Aya(s) = /ds'éu,\(sl)(Gy — K1yg)R12(8;8', s)
v (3.42)
+ [ a b KapeRasi5')
0

where & = 6uy + 6.

Note that we have separated the solution into two contributions. If we ne-
glect the slow variation of éyy, the first contribution is simply proportional to the
trajectory at s and can be neglected. The second contribution depends upon the
trajectory offsets in all of the quadrupoles along the linac. It is this term that can

grow to become a significant emittance dilution.
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At this point, we need to calculate the effect of the dispersion on the projected
emittance. If the dispersion is linear in the energy deviation, valid for small éyp,

then the resulting projected emittance can be expressed as'™”

ey = €0V 1+2F]eq (3.4.3)

where ¢q is the undiluted emittance and 3 is analogous to the single particle invari-

ant:

23 = 7, A% + 20, AyAY + B, Ay (3.4.4)

To limit the luminosity reduction to 3%, we want to limit the emittance dilution
to 6%. In this case, the tolerance on 3 is 3 5 0.06¢, and tolerance on the expected
value of Ay2 can be expressed as

Ay?

Lﬁi—) <0066, or  AymsS 0250, . (3.4.5)
We will consider the dilution due to two types of trajectories: a coherent betatron
oscillation and a trajectory corrected to zero the Beam Position Monitors (BPMs).

3.4.1.1 COHERENT BETATRON OSCILLATION

If the beam performs a. betatron oscillation down the linac, it will begin to
filament because of the chromatic phase advance. This was referred to as dispersive
filamentation in Section 3.3 and is schematically illustrated in Fig. 19 where we
have plotted a low-energy, an on-energy, and a high-energy beam ellipse of a beam
starting to filament. If the beam fully filaments, the emittance dilution is found
from Eq. (A.5.10) to be

2
Aey = =(1¥3 + 2095080 + By¥o ) (3.4.6)

[N-R

where yo and y(’) are the initial amplitudes of the betatron oscillation. For 6%
emittance dilution, this sets a tolerance on the maximum injection jitter of

yo S 0.350y , (3.4.7)

which corresponds to a tolerance of roughly 0.7 um in the NLC main linacs.
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Equation (X4.6) specifies the marimum dilution due to beam jitter, but if the
beam does not filament significantly, the dilution is smaller and thus the tolerance
is looser. To calculate this, we use Eq. (3.4.2) and an expression for a coherent

betatron oscillation. Using the R;; matrix element, a betatron oscillation can be

yels) = yo\/ 2] 2 cos(b(e) = o) c.48)

where we have assumed the oscillates starts from a symmetry point where oy = 0.

written:

Now, we use the NLC scaling described in Appendix D. In particular, Kj is
assumed to decreases inversely with the beam energy while the beta functions and
the lengths increase with the square root of the beam energy. This yields a sum over
guadrupoles that depends upon the beam energy at the magnets. Using Eq. (D.1.7)
and expressing the sum as an integral, we find

Ay =~ yﬁéz]\f2 2 tan> Ye (12>2 (3.4.9)
ﬂf ﬂO 0-Ycell 9 vy 3

where N is the number of FODO cells in the linac, ép is the initial uncorrelated
energy spread, . is the phase advance per cell, and the expression was simplified
with Eq. (D.1.3).

In the 500 GeV NLC linac, Eq. (3.4.9) incorrectly yields a tolerance that is
tighter than that of Eq. (3.4.6). This occurs because, as described in Section 3.3,
the beam partially filaments in the NLC linacs. The dispersive emittance dilution
due to a coherent betatron oscillation in the NLC 500 GeV main linac is plotted in
Fig. 23; the dilution due to the wakefields is not included. The maximum amplitude
of the oscillation is equal to the beam size and thus Eq. (3.4.6) predicts a. maximum
emittance dilution of 50%. In Fig. 23, the dilution approaches this maximum,
reaching 44% at the end of the linac.

3.4.1.2 CORRECTED TRAJECTORY

We will consider the dispersion due to a corrected trajectory essentially following
the procedure outlined in Ref. 99. We assume that the trajectory is corrected
to zero the BPM measurements as is usually the case. Unfortunately, the BPMs
are misaligned, both mechanically and electronically, and thus, the actual orbit is
deflected from side-to-side following the misalignments.
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Fig. 23. Simulation of dispersive filamentation of a betatron oscillation in
the 500 GeV NLC main linac; the initial oscillation amplitude is equal to
the initial beam size.

We will calculate the dispersive error assuming that the BPM misalignments are
random and that the trajectory correction only uses correctors and BPMs located
at the focusing quadrupoles; we refer to this as “one-to-one” trajectory correction.

To begin, we need to demonstrate that we can neglect the first term of Eq.
(3.4.2); then, we can calculate the expected dispersive error. Consider a single mis-
aligned BPM as is illustrated in Fig. 24. Using Eq. (3.4.2), the resulting dispersive
error is

Buats) =(101/B1 = s0ay/ B ) VBGTsin0(5) — v3)
+ 82(K1Lg)in/ B2B(s) cos(¥(s) — v3)

where, for simplicity, we have assumed 90° phase advance per cell and we have

(3.4.10)

neglected the defocusing quadrupoles. Since the final trajectory is zero, the deflec-

tions must cancel: ¢, \/Bl = 0 \/B =y/ ﬁz. We can neglect the first term if it’s
magnitude is much less than that of the second, i.e., if

A

(61 — 53)% < 52([(1Lq)3} , (3.4.11)
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Fig. 24. Schematic of one-to-one trajectory correction; the trajectory is
corrected to the BPMs (diamonds) which are misaligned in the quadrupoles
which are also misaligned relative to the centerline.

Using the NLC scaling, Eq. (D.1.7), and expressing the integrated quadrupole
strength in terms of the beta functions, this condition can be expressed as

2 / A

2 Y5 v
—_— = =2— K1l 3.4.12
Ncen V 7o Y ( )

where A+ is the energy gain over one cell. This is certainly satisfied in the NLC

linacs and thus we will neglect the first term of Eq. (3.4.2).

Now, from the second term of IXq. (3.4.2), we find an expected error

3 2 Neen—1 3/2
(A3 oo 2B (20) 70
5 ~50<yc>(]\1Lq)o'.2‘ ?f_ Z :)/: , (3.4.13)

n=0

where we have used the NLC scaling described in Appendix D. In addition, to
simplify the result, we have neglected the defocusing quadrupoles and thus our result
will slightly overestimate the error; the contribution from the defocusing quadrupoles
will reduce this result by a factor of B/B which is about 15% in a lattice with a 90°

phase advance per cell.
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Finally, using Eqg. (D.1.7) for v, and expressing the sum as an integral, we find

5) 0 o dtan? /2
(Bva) o gppyyttan Yel2 (%0 (3.4.14)
B ﬂf vf

where we have used Eg. (D.1.3) to express the result in terms of the phase advance
per cell.

In the 500 GeV NLC linac, this yields a tolerance on the actual trajectory of

Yerms S 4 pm (3.4.15)

for 6% emittance dilution. This is a tolerance on the alignment of the BPMs and it
is severe. To verify this result, we have simulated 10 um BPM errors in the NLC 500
GeV linac. The final dilution, found by averaging the results of 20 different random
error distributions, is Aey = 37%; this agrees well with the prediction Eq. (3.4.14).

Of course, this tolerance assumes that the trajectory follows the random BPM
alignment errors. In Section 3.5, we will discuss alternate techniques of correcting
the trajectory that could ease this tolerance by over an order of magnitude.

3.4.2 Transverse Wakefields

As described in Section 2.3.4, wakefields arise from the electromagnetic interac-
tion between the beam and the external environment. They cause forces that are
functions of the longitudinal position with the bunch z, and thus, the wakes will
dilute the transverse projected emittance. In this section, we will discuss the effect
of the wakefields in the linacs. We will only consider a single bunch of particles,
neglecting the multi-bunch effects; these are discussed in Ref. 117.

The wakefield force can be separated into multipole components much like the

magnetic fields. In a cylindrically symmetric structure®”

Fy(z) = N ({)Wii(2) = 2(2” =y )Wia(2)y + 4{zy)Wia(z)z +- 1) | (3.4.16)

where the angle brackets denote an average over the beam particles and W, ; and
W, are the dipole and quadrupole wakefields. In general, the magnitude of the
higher-order wakefield multipoles decreases inversely with the square of the iris ra-
dius: W, « 1/d".Thus provided that the beam size and the trajectory offsets
are small compared to the iris radius, me only need consider the first few multipoles.
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Here, we will first consider the effect of the dipole wakefield due to a coherent
betatron oscillation, a corrected trajectory, and random misalignments of the ac-
celerator sections. Then, we will briefly discuss the quadrupole wakefield; it has a
small effect. To calculate the effect of the dipole wakefield, we start from the two
particle model where one particle is located at the head of the bunch z = +a, and
the other particle is at the tail z = —o.. Now, half of the difference between these
two particles 24y, = y(z = +0;) — y(z = —o;) is found from the equation of
motion Eq. (3.2.1). Specifically,

(s) ds'y( ) Ayw - (1 - 26)1\1AJw = 6<Gy - Iﬁyg)
Y (3.4.17)

Nro Nr
(51\1""'4_7‘“” 1(20 ))yc‘i"‘;ggW_u(?-C’z)ya ,

where W, 1(20;) is the transverse wakefield at —2¢, and é is half of the coherent
energy difference between z = 4+0, and z = —0,: 26 = §(z = ~0,) — §(z = +0.).

Again, the solution for Ay, can be written in terms of the Rjs transport matrix
elements in a form similar to Eq. (3.4.2). In addition, the resulting dilution can be
found from Eq. (3.4.3), where 3 is now a function of Ay,. To limit the luminosity
reduction to 3%, we need to limit Ay, to Ay, £ 0.250, O Ay /B, < 0.06¢,.

3.4.2.1 CoOHERENT OSCI LLATIONS ano BNS DAMPING

A betatron oscillation can be written in the form of Eq. (3.4.8) and the solution
can be found from Eq. (3.4.17) using the Rz matrix elements. If the correlated
energy spread is zero § = 0, the tail particle is driven on resonance by the wakefield
of the head particle. Using the NLC scaling and noting that the energy increases

linearly with position down a linac, we can express the solution as

Ayl 4 (N?‘OT’VM(QUZ))Q ~o (‘5’})2
~ — - , 3.4.18
B " B 1 297\ G (3.4.18)

where G is the acceleration gradient, in A~ per meter and B is calculated in Ap-

pendix D.

In most cases, this will result. in severe tolerances. In the NLC 500 GeV linac,
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this yields a tolerance on the initial amplitude of the coherent oscillation of

yo & 0.4 pum | (3.4.19)
for 3% luminosity reduction and, in the lower gradient 250 GeV linac, this tolerance

is a factor of two more severe.

To ease this tolerance, we can add a correlated energy spread 8" This correlated
energy spread can have three effects: first, the head and the tail particle have
different betatron frequencies because of the chromatic phase advance and thus
the resonant growth is reduced; the dilution “beats” rather than growing linearly.
Second, the dispersive factor 81X can be used to directly cancel the wakefield driving
term and thereby the growth and, third, the energy spread can cause an apparent
damping of an oscillation in the transverse phase space. These techniques are all
referred to as BNS damping['sl but we will denote the first two cases as the “beating”
and “autophasing” regimes of weak BNS damping and the third as strong BNS
damping. Since the NLC is in the weak BNS damping regime, we will only discuss
the first two effects.

Weak BNS Damping: Beating

In this regime, the cancellation is a global correction. It depends upon the
chromatic phase advance and thus the correction is averaged over many cells. In
this case, we can calculate the dilution using a smooth approximation. Explicitly,
we assume that the tail macro-particle has a phase advance of ¥ + 4#.53 where £ is

the chromaticity; in a FODO cell the chromaticity per cell is approximatte]y(1201

(= BnVe/2 (3.4.20)
T

Now, if we calculate the effect of a coherent betatron oscillation, neglecting the

dispersive contribution, we find

r 2 - . =\ 2
Ay, ~ y_g_(NT‘oW_Ll(‘ZUz)> 70 ( B )2( sin Nceu?,?rfcé) | (3.4.21)

ﬂf PO 4 27f Neen@ Qﬂ’fc-g

This shows that the dilution beats as the beam propagates down the linac, increasing

and decreasing depending upon the relative phase between the head and the tail.
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Ideally, one can minimize the dilution by choosing

n

2Ncell£¢ ’

8BNS ~ (3.4.22)

where n = fl, £2,- . . . Of course, when the dispersive effects of the 3](1 term are

included, one finds that a negative § is much more effective than a positive 8. In
the 500 GeV NLC linac, Eq. (3.4.22) yields a minimum energy spread of

SgNs = -4 x 1073 (3.4.23)

Weak BNS Damping: Autophasing

Next, in the autophasing regime, the dispersive term 6Ky is used to cancel the
wakefield. In the smooth approximation, where K3 and W, are smooth functions
of s, one can solve for a § such that the cancellation always occurs. Unfortunately,
this local cancellation is not possible in the alternating-gradient focusing structures
used in high-energy machines. While the wakefield W, has a constant sign, an
alternating-gradient focusing structure usually contains a periodic array of discrete
focusing magnets with both positive and negative K; values. Since the energy
spread é cannot be changed rapidly with s, at best one can adjust correlated energy

deviation to cancel the integral of the wakefield over a cell of the focusing structure.

To calculate the BNS damping condition, we start with the betatron oscillation
of Eq. (3.4.8) and use the Rj» matrix element to solve Eq. (3.4.17). Since the
autophasing cancellation is quasi-local, we can neglect the chromatic phase advance

which is only significant after many cells. Thus, we find the expression:

é_y_g_ Yo Ncell 1[ ]\1L <.— L ~
\/,B—f— 1;) (8 — B)sinepy

(Bcosz/)c - 5) sin((‘Zn + 1) — z/)f))
_ NT()VVJJ(QO’Z)

o (L acc) ﬂn<sm¢f—sm((‘)n+1 ——t/)f)cosz[c/‘))] \

(3.4.24)

where Ly is the length of accelerator section between two quadrupoles, i.e., nearly
the half of the cell length in our model.
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Fig. 25. Simulated emittance dilution due to wakefields with and without
BNS damping in the 500 GeV NLC linac; initial amplitude of the betatron
oscillation equals the beam size: 2 um.

If we neglect the quickly varying terms, which will average to zero, we find the
autophasing condition:

NroW1(20.)
2y

K 1L (B - B) = 46tan v /2 ~ LaceB . (3.4.25)
Here, the NLC scaling is convenient since the required é is independent of 4. In the
500 GeV NLC linac, we find

Spns =-1.7 x 1073 . (3.4.26)

In the NLC, the correlated energy spread for autophasing is less than that required
for the beating BNS damping. In the SLC, the situation is reversed; the energy
spread for autophasing is much greater than that for the beating BNS damping.

Of course, in practice it is difficult to achieve the BNS damping conditions for the
entire bunch. Thus, even when close to the BNS damping conditions, there is still a
small growth of the projected emittance. In Fig. 25 we have plotted the emittance
dilution due to wakefields of a beam with and without the optima.l autophasing
energy spread in the 500 GeV NLC linac; the initial amplitude of the betatron

135



oscillation is equal to the beam size: yo = 2pm. Without BNS damping, the
emittance doubles, while with BNS damping, the dilution is only 8%; this implies a
tolerance on an oscillation of roughly 2 um with BNS damping and thus the tolerance
on the amplitude of the oscillation is determined by the dispersive dilution and not
the wakefields.

3.4.2.2 CORRECTED TRAJECTORY

At this point, we need to consider the effect of the wakefields due to a corrected
trajectory where we assume that the trajectory is corrected to zero the BPMs at
the focusing quadrupoles. Thus, this dilution will be very similar to the dispersive
error due to a corrected trajectory.

As discussed in Section 3.4.1.2, we can neglect the first term: (Gy — K1y,),
in Eg. (3.4.17) which gives rise to the non-zero trajectory. This leaves the term
proportional to the trajectory. In this estimate, we will assume that the autophasing
condition is exactly satisfied. Unfortunately, this does not cancel the wakefields due
to a corrected orbit. In particular, the cancellation depends upon the position =z
in the quadrupoles and the accelerator sections and thus exact cancellation is only
possible if z(s) is correlated from point-to-point. This is the case for a coherent
betatron oscillation, but it is not true if the particle is steered or deflected by random
errors as is the case for a corrected trajectory. Thus, while the BNS technique can
cancel the wakefield effects due to a coherent betatron oscillation, it may reduce,
but cannot cancel, the effects of wakefields due to a corrected trajectory.

We can estimate the residual dilution using the model illustrated in Fig. 26. We
assume that the trajectory is corrected to the (misaligned) BPMs at the focusing
guadrupoles and we ignore any misalignments of the defocusing quadrupoles. In
this case, the trajectory at the defocusing quadrupoles can be written in terms of
the trajectory at the two adjacent focusing quadrupoles:

3 sin e /2
y+d:(y0+y+1)\/jg'% ,

where we have used the notation of Fig. 26 for the positions at the quadrupoles.

(3.4.27)

Furthermore, the position at the centers of the accelerator sections is just the average
of the position in the adjacent focusing and defocusing quadrupoles.
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Vertical trajectory at elements:

VR R O

Y_+Y_4 Y_ +Y, Yo+Y, 4 Y, q+Y,,

Fig. 26. Schematic of the model used to calculate the wakefield dilution
of a corrected orbit; notation denotes the trajectory at the center of the
elements.

Now, the dilution can be found using Eq. (3.4.17). Assuming that the trajectory

offsets, i.e., the BPM misalignments, are uncorrelated, we find

A2 2 Neen—1 _ ’ 4 - 3
ﬁyfw — (yB;'M) Z (6BNS(I\qu)n) [\/ﬂ:(l _ _g)

n=0 (3.4.28)

3 5 5 2
- ——————(ﬁn —_-_/3,7) \/B_,:cos E(l -+ é—’l)] (12)
20 V Ba V5
where cos?{; is calculated in Appendix D. we have expressed the wakefield in terms
of the BNS damping condition Eq. (3.4.25).

Finally, using the NLC scaling and Eys. (D.1.7) and_(D.1.3), we find

Neell - (3.4.29)

Ayl ,  Spnstan vo/2[ siny/2l?
B ~ 4(yzpm) By [1 -

In the 500 GeV NLC main linac, this yields a tolerance on the BPM alignment of
yBPM S Spm (3.4.30)

to limit the emittance dilution to 6%.
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Fig. 27. Simulated wakefield dilution in the 500 GeV NLC linac due to a
corrected trajectory with 10 um BPM random alignment errors; the optimal
BNS damping is included.

To verify this result, we have simulated the effect of 10 pum BPM alignment errors
in the 500 GeV NLC linac; the emittance dilution for a typical case is illustrated
in Fig. 27. The final dilution, found by averaging the results of 20 different error
distributions, is Ae,=14%; this implies a tolerance of roughly 6 um, slightly tighter
that the 8 um calculated above. Again, this is a severe alignment tolerance, but it

can be eased with special correction techniques discussed in Section 3.5.

Finally, it is useful to compare the dispersive error due to a corrected trajectory
with the wakefield dilution. In general, the dispersive dilution decreases as the focus-
ing decreases while the wakefield dilution increases; égns, in EQ. (3.4.25), decreases
with increasing phase advance per cell. This is illustrated in Fig. 28, where we have
plotted the dilution arising from a trajectory corrected to BPMs with 10 um rms
alignment errors versus the phase advance per cell in the 500 GeV NLC main linac.
The solid line is the total dilution while the dashed and dotted lines are the disper-
sive and wakefield contributions, respectively; the total dilution is not necessarily
the sum of the two individual contributions since cancellations and additive effects
occur. Notice that, in the NLC linac, the minimum dilution occurs at roughly 70”

per cell. Although one could conclude that this lower phase advance per cell would
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Fig. 28. Simulated emittance dilution in the 500 GeV NLC linac due to
a corrected trajectory with 10 gm BPM random alignment errors and BNS
damping; the solid line is the total dilution while the dashed and dotted
lines are the dispersive and wakefield contributions.

be better than the 90° per cell currently suggested, we need to remember that the
effect of the accelerator section misalignments has not been included; these are eased
with stronger focusing.

3.4.2.3 ACCELERATOR SECTION MISALIGNMENTS

Finally, we can calculate the effect of random accelerator section misalign-
ments. In this case, the BNS damping does not reduce the dilution. Starting
from Eg. (3.4.17) and using the NLC scaling, we find

(Ay2) ~ (ya><NT'O‘V.L1(202)>2 B? (3.4.31)

= 4

By
where G is the accelerating gradient in A~/meter.

In the 500 GeV NLC linac, this yields a tolerance on the alignment of the
accelerator sections of

Yarms S 4.2 pm (3.4.32)

to limit the emittance dilution to 6%. We will discuss techniques of easing this
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tolerance in Section 3.6.

3.4.2.4 QUADRUPOLE WAKEFIELD

As expressed in Eq. (3.4.16), the quadrupole wakefield is proportional to the
second moments (z2 — y?) and {zy) of the bearn. It generates a quadrupole or skew
guadrupole force that varies along the length of the beam. Thus, the wakefield
causes a z dependent betatron mismatch or a z dependent betatron coupling; both
effects increase the vertical emittance of a flat beam. Furthermore, in an alternating
gradient lattice, the second moments of the beam are usually non-zero, even if
the trajectory is corrected perfectly. Thus, the wakefield causes a “fundamental”
dilution of the vertical emittance of an intense beam; these effects were first analyzed
in Ref. 30.

In the NLC linacs, this fundamental dilution is insignificant because the beam
size is tiny compared to the iris radius of the accelerating structures. Instead, the
guadrupole wakefield may prove important because it can couple large horizontal
trajectory offsets into the vertical plane. We can estimate the effect of the quad-
rupole wakefield using the two particle model for Ay, described earlier. Using the
force in Eq. (3.4.16), we find a solution for Ay, similar to Eq. (3.4.2):

N -
Ayy = /ds —’—:—O—W_Lo(Qaz) 22y R12(26; ', s) (3.4.33)
0

where z. is the horizontal beam trajectory.

We consider the effect of coherent betatron oscillations in both planes; the os-
cillations are given by Eq. (3.4.S). In this case, we use Eq. (3.4.33) to find

Ayw (NT()” _j_’)>2 mgyo D D Y 2 ’yf
~ Bzo Byo — , 3.4.34
ﬁf 4G zoﬁy = f o ( )

where zg and yp are the initial amplitudes of the betatron oscillations and G is the
acceleration gradient. Here, we have assumed that the horizontal and vertical phase
advance per cell are separated; the result should be doubled for the case of equal

phase advances per cell.

To use this equation, we need the quadrupole wakefield at 20,. We will estimate

this by simply scaling the dipole wakefield. In general, the quadrupole wakefield is
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a factor of (1 /a)2 smaller that the dipole wakeﬁeld;m] a is the accelerator structure
iris radius which is a & 4 mm in the NLC main linacs (11.4 GHz) and a = 1.5 cm in

the preliminary linacs (2.8 GHz).

Thus, in the 500 GeV NLC linac, we find W,(20;) ~ 10! m™3 for a bunch
length of 100 um. Now, Eq. (3.4.34) predicts an emittance dilution of less than 10~*
assuming a 100 pm horizontal betatron oscillation and a 10 pm vertical oscillation.
Thus, this is an insignificant effect even though we have assumed extremely large

amplitudes for the initial betatron oscillations.

3.4.3 RF Deflections

RF deflections occur if the accelerating field is not oriented in the direction of
the beam propagation. This can be due to misalignments of the RF structures,
errors with the RF structures such as tilted irises, or an angular trajectory through
the structure.

Assuming a sinusoidal RF field, the deflection can be Writtenlml

A~RF,
Ay’ = g—%B—Fsm(szF + ¢o) | (3.4.35)

where A4gryr is the acceleration from the structure, krf is the RF wavenumber, and
¢p is the phase of the deflection relative to the bunch; this is not necessarily equal to
the phase of the accelerating field. Finally, ¢ is the longitudinal-transverse coupling.
This can be due to misaligned section, a non-zero trajectory through the section,
input/output coupler asymetries, and construction errors in the sections. In these
case, g is:
Oacc/2 for misaligned sections
g=19/2 for trajectory error : (3.4.36)

< Ois  for systematic tilted irises

The factor of % appearing in the first. two expressions arises from the radial focusing
at the ends of the structure while the effect of tilted irises is much more complex
since the cavity fields are perturbed; using simple analysis, one estimates g to be

between ©;;s and Ojis/2.

The deflections have two effects: they deflect the beam centroicl and they cause

a deflection that is correlated with the longitudinal position within the bunch z. The
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former effect is simply corrected with dipole correctors, but the later effect dilutes
the projected emittance in a manner similar to the dilution due to the transverse

wakefields.
We can estimate the dilution in the same manner that we calculated the effect

of the wakefields. Assuming uncorrelated errors with random phases ¢ and using
the NLC scaling, we find

I 2 Nace—1 1/2
(AyﬁF) 2, o\ RPf <A7RF> (71’)
DRE) (o, kp)?(g%) 2L =) (34.37)
where 2Aygrr = y(z = +0,) — y(z = —0;) and Ny is the number of accelerator

sections. Finally, we express the sum as an integral and note that = increases linearly
with the number of accelerator sections, finding

2 o o A~
(—A%zz(azmr(g“)—%( ’“‘F> - (3.4.33)

In the 500 Gev NLC linac, Eq. (3.4.38) yields a tolerance of

drms < 31 prad R (3439)

for 6% emittance dilution. This is not a severe tolerance on the trajectory or the
alignment; at the beginning of the linac, it corresponds to a 120 gm orbit tolerance
in the focusing quadrupoles and a 80 um tolerance on aligning the ends of each
structure. But, it is a severe construction tolerance on the systematic alignment
of the irises in the accelerator sections. Furthermore, despite the lower gradient,
the tolerance is comparable in the preliminary linac since it is much lower energy.

Specifically, in the weak focusing preliminary linac, we find
grms S 90 urad (3.4.40)

for 6% emittance dilution; the stronger focusing version has a looser tolerance.
For comparison, the measured value in the SLC accelerator sections iS gyms ~
200 prad ™"

Finally, we note two points: first, these effects can also be very severe in the
bunch compressors since the bunch is long in what is usually a very high gradient
structure!*™” Second, since the effect of these RF Kkicks is similar to that of the
transverse dipole wakefield, we can correct, the effect of the RF deflections with the

wakefields. This will be discussed further in Section 3.6.
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3.4.4 Distributions

Throughout this section, we have calculated the ezpected dilution from random
errors. Of course, the dilution has a distribution and when specifying a tolerance,
we need to include the confidence that, given the tolerance, the dilution will be less
than the desired limit. This issue has been discussed in Section 2.2.8 with respect
to emittance dilutions in storage rings.

In a linac, we can quickly conclude that the dilution function 3 will have
an exponential distribution if the alignment errors have gaussian distributions.
Thus, small emittance dilutions should also have exponential distributions; using
Eqg. (3.4.3), the emittance dilution can be written

Ae 3
262 (3.4.41)
€ €

if the dilution is small.

Unfortunately, as noted in Section 2.2.8, an exponential distribution has a 95%
confidence level at three times the expected value. Thus, if one wants to specify
tolerances that will limit the emittance dilution for 95Yo of the possible arrangements
of errors, the tolerances given in this section need to be divided by a factor of
V3. Fortunately, unlike a storage ring, in a linac we are specifying many unrelated
tolerances that all limit the respective dilutions to 6%. Thus, we do not need to
specify each individual tolerance with a 95Yo CL to limit the sum of all of the
independent effects with a 95% confidence level. The final distribution is found by
convolving all of the individual exponential distributions and will have the form
of a x-squared distribution with 2N degrees of freedom, where N is the number
of individual tolerances. This distribution becomes narrowly centered about the
expected value as N increases and thus the value of for needed to scale from the
expected value to the 95% confidence value will be much less than three.
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CHAPTER 3.5
TRAJECTORY CORRECTION

3.5.1 Introduction

As discussed in Sections 3.4.1.2 and 3.4.2.2, standard trajectory correction tech-
niques steer the beam to zero the BPM measurements; we generically refer to these
techniques as “one-to-one” correction since typically a single upstream corrector is
used to zero a single downstream BPM. The problem with this approach is that
the BPMs are typically misaligned, both electronically and mechanically. Thus, the
corrected trajectory is kicked from side to side, following the BPM misalignments.
In such a case, we found that the dilutions due to the dispersive errors and the wake-
fields tend to grow with the square root of the number of BPMs. In the 500 GeV
NLC linac, we found tolerances on the BPM alignment of roughly ogpm S 4 pm for
6% emittance dilution. This is over one order of magnitude better alignment than
can be achieved with techniques now in practice.

To avoid this situation, we need to either find and correct the BPM misalign-
ments or develop an algorithm which does not depend upon the BPM alignment
errors. A method of using the beam to do the former has been developed for the
SLC linac®™ This “beam-based” alignment technique uses trajectory informa-
tion from two or more different focusing configurations to solve for the individual
misalignments of the quadrupoles and the BPMs; the focusing configuration of the
machine is varied by tuning the quadrupole magnets which focus the beam through-
out the linac. This method has been used very successfully to find most of the large

alignment errors in the SLC linac with an accuracy of roughly 100 ,um.m

In this section, we discuss the other approach, namely, the use of correction
algorithms that are less dependent on the BPM alignment errors. Specifically, we
will discuss two methods referred to as “Dispersion-Free” (DF) correction ***”

“Wake-Free” (WF) correction;187

due to a corrected trajectory while the WF method reduces both the dispersive and

and
** the DF technique reduces the dispersive dilution

the wakefield dilution arising from a corrected beam trajectory.

Our basic approach is similar to that of the beam-based alignment of Refs. 3
and 67 in that we use information from two or more different focusing configurations.
Specifically, we measure trajectories where the focusing structure is changed between

measurements. By subtracting these trajectories, the resulting difference orbits are
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independent of the BPM alignment errors. In theory, the quadrupole misalignments
could now be found. Unfortunately, the difference orbits still have errors due to
beam jitter, finite BPM precision, and additional unknown deflections. Rather than
trying to solve for the individual misalignments, we simply correct the trajectory to
minimize these difference orbits; this will then minimize the dispersive error and/or
the wakefield dilution.

In the next sections, we will first describe the DF correction algorithm. We
present the basic algorithm and then perform a detailed error analysis to determine
the limitations of the technique. Finally, we verify the performance of the technique
with simulations on the NLC linac. Next, we introduce the WF technique. This is a
simple extension of the DF algorithm. Again, we present the results of simulations
illustrating the effectiveness of the correction algorithm. Finally, we describe some
extensions to these techniques and we discuss the relative merits of these trajec-
tory correction algorithms and the beam-based alignment technique. Much of the

material in these sections is taken directly from Refs. 85 and 87.

3.52 DF Correction

The DF correction technique is quite intuitive. To correct the dispersive emit-
tance dilution, we simply correct the energy dependence of the beam trajectory.
This can done by varying the effective beam energy and then correcting the differ-
ence between the resulting orbit and the original trajectory; in a linac, the effective
beam energy can be varied by either changing the actual beam energy or, equiva-
lently, changing the magnet strengths. Physically, it is easiest to understand this
algorithm in terms of the dispersive error expressed in Eqgs. (3.4.1) and (3.4.2) of
Section 3.4.1. In essence, the DF algorithm finds a trajectory y,(s) such that over

any short region of the accelerator the integrals in expression Eq. (3.4.2) are small.

We should note that the technique is very similar to the dispersion correction
used in storage rings. Actually, the process is simpler in a linac than in a storage
ring since one can make larger effective energy changes, increasing the measurement
precision, and there are no nonlinear sextupole magnets which can confuse the

measurement,

To correct the difference orbit resulting from changing the effective beam energy,

we need to measure the beam trajectories. If we only consider transverse deflections
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due to quadrupole misalignments and dipole correctors, the ith BPM will measure

mi = vi(t1) = b + zoR11(s0, i) + zgRi2(s0, Si)+ZOjR12(Sja5i) ,  (3.5.1)
J

where x is a stochastic variable representing the BPM precision error, i.e., the
reading-to-reading jitter of the BPM measurement, @ is the integrated deflection of
the dipole correctors and the quadrupole misalignments, and b is the BPM misalign-
ment relative to the linac centerline. Finally, the matrix coefficients Rj3 and Rj2
describe the motion of the beam centroid and thus they implicitly include the effect
of the wakefields and filamentation.

In a similar manner, we can calculate the measured trajectory after the effective
beam energy is changed by 6(s). The difference orbit that we will correct is found
by subtracting this new trajectory from the original measured trajectory:

Ami = (xi(t1) — xi(t2)) + 2o R11(6; s0, i) + 24 R12(6; so, s;)

Ry2(6;85, 8 5.
+ 291‘ (Rlz(s]',s.') - _12§ +S<JS s )) | (3.5.2)
j=1

Here, R(6) = R — R(6) and R(6) is the coefficient R calculated for the modified
optics due to the change in energy. It. is important to notice that the difference
orbit is independent of the BPM misalignments. We should also note that we have
not included additional unknown errors such as RF deflections or magnetic strength
errors; these and other errors will be discussed in Section 3.5.3.

In principle, using (N, + 2) BPMs, we could solve for the N, quadrupole mis-
alignments and the initial conditions exactly, provided that the BPM precision errors
and any unknown deflections are negligible. In such a case, we could fix the injection
and the quadrupole errors; the trajectory would then follow the linac centerline and
the dispersive error would be zero.

Obviously, this is not realistic. When the additional errors are included, the
difference orbit is not a function of just (Ny + 2) unknowns. Thus, we cannot
calculate the individual quadrupole misalignments and the initial conditions exactly.
The error in each calculated value will increase with the number of misalignments
being estimated since each calculation depends upon the accuracy of the preceding
calculations. Of course, while the error of each individual calculation may be large,
the global solution could be used to reduce the difference orbit to the level of the
BPM precision errors.
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Unfortunately, if we use this global solution to correct the difference orbit, and
thereby the dispersive error, we would find that the trajectory diverges from the
linac centerline. This occurs because the difference orbit is not referenced to the
linac centerline and small errors add. Thus, we need to include some information
about the real trajectory while correcting the difference orbit.

We have found that the best approach is to perform a least squares solution for
the unknowns, using both the original trajectory and the difference orbit weighted
with the absolute accuracy with which these trajectories are known. Thus, we solve
for the dipole corrector strengths which minimize the sum

, AY . AY-
Z (m; + Xj) (Am; + AX;) (35.3)

je{BPM) Threc T Tipn 2prec ’
where oprec IS the rms of the BPM precision errors and ogpm is the rms of the
BPM misalignments relative to the linac centerline. In addition, X is the predicted
trajectory at the jth BPM as a function of the dipole corrector strengths and AX;
is the predicted difference orbit. We will subsequently refer to this algorithm as
Dispersion-Free (DF) correction.

3.5.3 DF Error Analysis

In this section, we analyze the effect of various errors on the performance of
the DF correction algorithm. In a linac, there are many additional errors that were
not included in the initial formulation of the DF algorithm. Thus, to understand
the utility of the algorithm, we have to determine its sensitivity to these additional
errors.

The DF algorithm corrects the dispersive error by correcting a measured dif-
ference orbit which is created by changing the effective beam energy. ‘Thus, the
algorithm relies upon the resemblance between this measured difference orbit and
the actual dispersive error. We can divide any errors into two catagories: errors
which cause the measured difference orbit to differ from the actual difference orbit
(measurement errors) and errors which cause the difference orbit to differ from the
dispersive error of a particle within the beam.

Errors in neither category will not degrade the correction of the chromatic di-
lution and thus can be ignored. This is an important aspect of the algorithm.

The algorithm does not, attempt to extract specific information from noisy data; it
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minimizes a measured quantity. Thus, if errors reduce the convergence of the mini-
mization, one can simply iterate the correction procedure. Examples of such errors
are BPM and corrector calibration errors, absolute beam energy errors, and errors
in the transport coefficients Rj2 used to calculate the corrections. These errors will
only slow the convergence of the algorithms. Rather than requiring one iteration,
perhaps two or even three iterations will be required to achieve a good solution.

In contrast, errors in the first two catagories will cause the algorithm to converge
to an incorrect solution. BPM precision and beam jitter errors are examples of errors
from the first category. Magnet scaling errors, RF deflections, and effects due to
the nonlinearity of the dispersion are examples of errors in the second category. We
will first discuss effects due to the nonlinearity of the dispersive error and then we
will discuss each of the other effects in turn. We proceed in this order since the
nonlinearity is important for determining the full effect of the BPM precision and
beam jitter errors.

3.5.3.1 NONLINEARITY

The goal of our correction algorithm is to improve the transverse emittance
dilution due to the dispersive error; we want to correct the dispersive error arising
from the energy variation within the particle bunch. The dispersion is a nonlinear
function of the energy deviation and thus, ideally, we would like to measure the
difference orbit by making an eflective energy change comparable to the bunch
energy spread. Unfortunately, this tends to be small, the order of 1% or less, and we
will see that a small effective energy change can lead to large errors in the corrected
solution. Therefore, we need to determine the effect of correcting a difference orbit
created by an energy change that is substantially different from the beam energy
spread.

The equation for the difference orbit Ays = y.— ys, due to an energy difference of
8, is equal to the equation for the dispersive error Eq. (3.4.1), found in Section 3.4.1.
Neglecting the adiabatic damping, this can be written:

Ayg -+ I\’I Ayg = 6(G - ]"] Yq + I(lyc + 1\,1 Ay&) ’ (354)

where yg and y. are the quadrupole misalignment and the on-energy trajectory
and, here, we have used the notation Ays instead of Ayy; the subscript § refers to
the magnitude of the energy change which created the difference orbit. We solve
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this equation perturhatively, treating all elements as infinitely thin in length, i.e.,
delta-functions in s. To second order, this yields

Ays(s) = Ay{(s) + S S(K1L)idy (si) Ria(s, o) (3.5.5)
i
where the first order term is

Ay(s) =576 ((GL); — Wei = ) (K1Lg)) Rya(s, sy . (3.5.6)
i )

Here, yci and yq: are the on-energy trajectory and misalignment at the ith quadru-
pole, and GL and K1Lg are the integrated deflection due to a dipole field and the
integrated quadrupole strength, respectively.

Equation (3.5.5) illustrates a. potential problem of using an energy change ¢ that
is substantially larger than the beam energy spread a(s). Because the dispersive
error is a nonlinear function of the energy deviation, if 6 is relatively large, it is
possible to correct the resulting difference orbit Ays to a small value while having
a large first order contribution Aygl); the second order contribution can be used to
cancel the first order term. Unfortunately, this cancellation does not work within
the beam since the beam energy spread is small. Thus, one can correct Ays while
actually increasing the dispersive dilution of the beam. In the subsequent sections,
we will use Egs. (3.5.5) and (3.5.6) to determine the effect of errors on the DF
correction algorithm.

3.5.3.2 BPM PRECISION

The BPM precision errors will limit the accuracy with which we can correct the
difference orbit. Assuming that the BPMs have random precision errors with an
rms of oprec, the measured difference orbit will differ from the actual difference orbit
by an rms error of \/iap,.ec. We can estimate the residual dispersive error, after
correcting this measured difference orbit, by considering a simplified example where
one zeros the measured difference orbit at each of the BPMs. After correction, the
actual difference orbit Ays would be equal to the negative of the BPM precision

errors.

Given this residual difference orbit Ay, we want to solve for the difference orbit

Ay, created by an energy change of o(s), where ¢ is the rms energy spread. This
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will allow us to determine the emittance dilution due to the BPM precision errors
using Egs. (3.4.3) and (3.4.4). First, we use Eq. (3.5.5), with the change § — &, to
express AYe,

Ayy = Ay (3.5.7)

where we have only included the first order term since o is assumed small. Next,

)

we invert Eqg. (3.5.5) to solve for Aygl from the residual difference orbit Ays

Aygl)(s) = Ays(s) — Z 6i(K1Lg)iAys(si) Riz(s, si) (3.5.8)

Now, we need to relate Ayc(,l) to Ayél). The difference orbit Ays is equal to the

negative of the random BPM precision errors; it is constructed from sums of “de-
flections” and coefficients K2 which oscillate, Egs. (3.5.5) and (3.5.6). Thus, there
are three length scales we need to consider: the length between “deflections” Lp,
the betatron oscillation period Lp, and the length over which a(s) changes L,.
Provided that Lp, Ls < Ly, we can treat ¢ and 6 as constant over the correlated
“deflections”. This allows us, using Eqg. (3.5.6) and performing ensemble averages

over the random deflections, to find the relation:

(1)? 3- (1)2
(Bye” )= 5 (Byy ) (3.5.9)

where o2 is the average of a’(s) over s. Now, using this result and Egs. (3.5.7)
and (3.5.8), we find that after DF correction the BPM precision errors cause an rms

residual dispersive error of

>

1

2 07

<Ay02BPM(Sf)> = QJprecEE + 2agrec;§Z(I(l Lq)?R%2(sf3 Si) . (3'5'10)

t

To evaluate the sum in the second term in Eq. (3.5.10), we need to assume a
model linac. We use the NLC model described Appendix D, where the phase advance
per cell is constant while the beta functions and the cell lengths increase with the
square root of the beam energy. In addition, we assume that the uncorrelated energy

spread of the beam decreases inversely with the beam energy. Using this model, we
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can evaluate the sum in Eqg. (3.5.10) by approximating it with an integral. In this
manner, we find an expected dispersive error due to the BPM precision errors of

9
2 o5 1 o, 52 2 270
<Ay0%PM(Sf)> ~ Qo-;recgg:y}_ + aogrecNBPMﬁO (‘K]LQ)OUO:Y? . (3.5.11)

Here, 8o, (K1Lg)o, and og are the average beta function, the integrated quadrupole
strength, and the energy spread at the beginning of the linac.

Finally, we can use Egs. (3.4.3) and (3.4.4) to solve for the dispersive emittance
dilution due to this error. We will not perform the explicit substitutions here, but we
will instead discuss a few implications of Eq. (3.5.11). First, Eq. (3.5.11) indicates
that there will be a minimum dispersive error, due to the BPM precision errors,
for some value of é. The first term of Eqg. (3.5.11) decreases rapidly with é while
the second term remains constant; if we had included higher orders of §, we would
find terms that increase with 6. Secondly, notice that both terms in Eq. (3.5.11)
can be reduced by decreasing oprec, i.e., the measurement error; the rms of the
BPM precision errors will tend to decrease with the square root of the number of
measurements when the separate measurements are averaged together. We will see
this behavior in the results of simulations discussed in Section 3.5.4.

3.5.3.3 BEAM JITTER

In a linac there are many sources of jitter which cause the beam position to
fluctuate. For example, injection jitter, ground motion, and power supply fluctu-
ations all have this effect. To prevent these from degrading the performance of a
linear collider, this beam jitter must be constrained to be much less than the beam
size; the beam jitter will directly increase the time average of the emittance since
the beam changes position with time, thereby, increasing the effective phase-space
volume occupied. In this section, we will estimate a secondary effect of the beam
jitter, namely, its effect on the performance of the DF correction algorithm.

The beam is most sensitive to dispersive errors when the beam energy spread
is large and thus we will only consider jitter of the injected beam; the beam energy
spread is typically largest at injection. Of course, if desired, our result could easily
be generalized by summing over all the sources of the jitter. In fact, this will be
done when analyzing the effect of magnet scaling errors which are treated in an

analogous manner to the beam jitter errors.
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In the case of injection jitter, the measured difference orbit will differ from the
actual difference orbit by a betatron oscillation caused by the jitter in initial condi-
tions. After correcting the measured difference orbit to zero, the actual difference
orbit Ays will be the negative of this betatron oscillation. To estimate the magni-
tude of Ay, we use Egs. (3.5.7) and (3.5.8) derived in the previous section on the
BPM precision errors. This case differs from the case of the BPM precision errors in
that the deflections that create the difference orbit, i.e., the summand of Eq. (3.5.6),
are only non-zero near the beginning of the linac. Thus, instead of Eq. (3.5.9), we

have the relation

%(-)-Ayél) (3.5.12)

Aygl) =
where og is the rms energy spread at the beginning of the linac. Using this and
Egs. (3.5.7) and (3.5.8), we find an expected dispersive error due to the beam jitter

of
<Ayaj2it(3f)> = 20j‘it—6—2- — <(Z oo(IN1Lg)iR12(sy, si) [yoRu(si,.So)

+ y5 R11(6; suSo)]) > :

(3.5.13)
where ;4 is the rms jitter measured at the beginning of the linac and the factor of
two appears in the first term since two trajectories must be measured to calculate
a difference orbit. The angle brackets denote an ensemble average over the jitter.
This is represented by yg for jitter of the on-energy trajectory and yg for jitter of
the trajectory after making the energy change of é; note that for simplicity we have
only included position jitter in these terms.

The expression in Eq. (3.5.13) differs from the expression found for the BPM
precision errors, Eq. (3.5.10). The BPM precision errors are uncorrelated and thus
the error (Ayaz) depends upon Nppm. In contrast, beam jitter leads to a difference
orbit that oscillates like a betatron oscillation. Thus, the error due to the nonlin-
earity, the second term of Ey. (3.5.13), will be correlated with the betatron phase
advance and (A y,°) will depend upon the square of Nj.

When performing the sums in Eq. (3.5.13), we treat jitter of the on-energy
trajectory and the off-energy trajectory separately because the induced betatron os-
cillations will have different phase advances; the phase advance is energy dependent.

In particular, after changing the effective beam energy, the different phase advance
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will cause the correlation between the injection error and the dispersive error to
breakdown. Thus, we would find that jitter of the off-energy trajectory contributes
far less than jitter of the on-energy trajectory; for this reason, we will only estimate

the on-energy jitter.

Using the NLC model linac, we can evaluate the sums in Eqg. (3.5.13) by approx-
imating them with integrals. After DF correction, we find an expected dispersive

error due to beam jitter of

2 90

Y0
<Ay,j2“(3f)> ~ 201-“3-;; + 4Nc2ellgj2itag tan? Pe/2, /;f— , (3.5.14)

where we have simplified the expression with Eq. (D.1.3).

Again, one can solve for the dispersive emittance dilution due to this error using
Egs. (3.4.3) and (3.4.4). As in the discussion of the BPM precision errors, we will
not perform the explicit substitutions here, but instead we will discuss Eq. (3.5.14).
Similar to the error due to the BPM precision errors, the first term of Eq. (3.5.14)
decreases rapidly with & while the second does not, indicating that the residual
error due to the beam jitter will have a minimum as a function of 6. Also notice
that, like the error due to the BPM precision errors, this contribution depends
upon the measurement errors, and thus it can be reduced by averaging multiple
measurements of the trajectory. We will estimate the effects of the beam jitter at

the end of Section 3.5.4, after discussing results from the simulations.

3.5.3.4 MAGNETIC SCALING ERRORS

Magnetic scaling errors occur when one changes the effective beam energy by
scaling the magnetic fields. The errors arise because different magnets will scale
slightly differently with the power supplies and because the power supplies have
finite precision. Thus, one cannot reduce all of the magnetic fields by exactly the
same percentage. Typically, it is possible to specify the magnetic field strength with
an accuracy of roughly 1073,

The effect of these scaling errors is analogous to the effect of beam jitter. When
measuring a difference orbit created by scaling the magnetic fields, one changes the
fields, measures the off-energy trajectory, resets the magnets and measures the on-
energy trajectory. We treat the final magnet values as the reference values and thus

the scaling errors only cause errors when measuring the off-energy trajectory. We
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should emphasize that the order in which one measures the trajectories is important.
If we measure the on-energy trajectory before the off-energy trajectory, the scaling

errors would cause errors in both measurements.

If a magnet deflects the central trajectory by an angle # and its magnetic field
can be specified with an rms accuracy of A, the off-energy trajectory will have an
rms deflection error of (1 — 8)A0. These deflections will drive betatron oscillations
which will add to the measured difference orbit just as beam jitter does. After
correction with the DF algorithm, the actual difference orbit will be corrected to

the negative of this (off-energy) betatron oscillation. Thus,

Ays(s) == AibiRis(6;s, ) (3.5.15)
t

where we have neglected the factor (1 — 6). Now, since the deflections A6 are
random, we can use Egs. (3.5.7), (3.5.8), and (3.5.9) to find Ay,. Using the NLC
model linac, we find a residual dispersive error of

(A2)(05) o385 0
82 3 vy

i 2
+ < (E oi(K1Lg)iRaz(sy, 81) Z AjO; Ria(6; si, 5j)> >
1 J

<Ay0magnet(sf > N—7F—
(3.5.16)

Here, N is the number of magnets and 8y is the deflection due to the magnets at
the beginning of the linac. In addition, we have assumed that the deflection errors
¢ are random and that they decrease in strength inversely with the square root of
the beam energy; this models quadrupole scaling errors in our example linac. In
the case of quadrupole errors, 8 is proportional to the integrated strength of the

quadrupole and the distance of the trajectory from the magnetic center. Thus,

(63) = (K1Lo) ((wl) + (v2)) (3.5.17)

where ¥y, and y. are the rms values of the quadrupole misalignments and the beam
trajectory. Alternately, for dipole correctors, ¢ can be estimated by assuming a
uniform distribution of kicks. Thus, (08) is equal to one-third of the initial peak

deflection.
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It is important to note that as described the magnet scaling errors only con-
tribute to the error of the off-energy trajectory. The nonlinear term, i.e., the second
term of Eq. (3.5.16), will be small because the off-energy phase advance differs from
the on-energy phase advance and thus we can neglect it. A similar situation occurs
in the case of beam jitter errors as discussed in the previous section. Of course, if
the difference orbit is not measured using the procedure described at the beginning
of this section, the magnet scaling errors could also affect the on-energy trajectory.
In this case, Eg. (3.5.16) would have a term proportional to N x qu

wad’ Obviously
this should be avoided.

Finally, we should note that the effect of the magnetic scaling errors does not
depend upon measurement errors which can be reduced. Thus, these errors could
limit the performance of our correction algorithm. In Section 3.5.4, we will use
Eq. (3.5.16) along with Eqgs. (3.4.3) and (3.4.4) to estimate the magnitude of the
errors; fortunately, they cause only a small error.

3.5.3.5 RF DEFLECTIONS

The RF is provided to accelerate the particles longitudinally. As discussed in
Section 3.4.3, there is typically a small coupling between the accelerating field and
the transverse planes. The RF deflections present a problem for our algorithm
because, unlike magnetic deflections, the RF deflections remain constant as the
effective beam energy is changed. Thus, they cause the measured difference orbit to
differ from the actual dispersive error.

As expressed in Section 3.4.3, the RF deflections are a sinusoidal function of the

RF phase, typically offset in phase relative to the longitudinal acceleration:

OrE - gL sin(zkrp + o) (3.5.18)
v(s)

Here, g is the longitudinal-transverse coupling of the accelerating structure, 4rF is
the energy gain from the structure, and y(s) is the beam energy, In addition, ¢q is

the phase of the deflection relative to the bunch.

There are two methods of changing the effective beam energy when measuring
the difference orbit: one can either change the magnet strengths or the actual beam
energy. For either method to work properly, all of the deflections should scale with

the change in effective energy. Unfortunately, if one changes the magnet strengths,
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the RF deflections are not affected. Likewise, if one scales the RF to change the
beam cenergy, the RF deflections also scale and the effect on the beam does not
change.

Since the RF deflections do not change when varying the effective beam energy,
the measured difference orbit will be independent of the RF deflections. The dis-
persive error in the beam resulting from the RF deflections and the beam energy
spread can be directly calculated from Eq. (3.5.5) with the substitution é — a(s).
Assuming that the RF errors are random and using the same model iinac described
earlier, we find a residual dispersive error of

——

N 3 9 23 9 E2 E
(Buake(sr)) ~ —3H(" cos’(d0 = 6a)) ol \/ 5 (3.5.19)

Here, Ngrr is the number of accelerator sections.

Notice that the RF errors do not depend upon the effective energy change 6
used to create the difference orbit. Furthermore, this effect cannot be reduced by
making multiple measurements of the trajectory. Thus, the RF errors could provide
a serious limitation on the performance of the correction algorithm. We will use
Eq. (3.5.19) along with Egs. (3.4.3) and (3.4.4) to estimate the importance of these
errors in both the SLC and NLC linacs after describing the results of the simulations
in Section 3.5.4.

3.5.4 DF Simulations

A computer program was written to test the DF correction technique against
the one-to-one correction algorithm. The program simulates random transverse
misalignments of the quadrupoles and BPMs, random quadrupole strength errors,
and BPM precision errors. The effects of RF deflections and beam jitter have not
been directly included; these are discussed at the end of this section using the results
of Section 3.5.3. Finally, the effect of the wakefields are neglected; these are discussed
in the section describing the WI technique.

All of the simulations were performed on the 250 GeV NLC linac described in
Appendix D. To simulate correcting the orbit in the NLC, we use twenty different
sets of random errors. The errors are found from gaussian distributions which had
been cutoff at two sigma.. The quadrupoles are misaligned 70 um rms relative to
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the linac centerline and the BPMs are misaligned 70 um rms relative to the quad-
rupoles; thus, the BPMs are misaligned with an rms of roughly 100 um relative to
the linac centerline. Furthermore, BPM precision errors of 2 um are assumed since
a measurement precision the order of the beam size will need to be achieved in the
NLC. Finally, 0.1% rms quadrupole strength errors are also included, simulating
calibration errors; the errors do not change from measurement to measurement as
power supply fluctuations would.

In the NLC, the trajectory is assumed to be corrected by moving the quadru-
poles horizontally or vertically to achieve the desired deflection. Both the focusing
and defocusing quadrupoles are used for correction. When correcting with the DF
algorithm, the linac is divided into eleven sections, each containing twenty cells.
The algorithm is then used to correct each section instead of correcting the entire
linac at once. While correcting the linac in sections will not minimize the dispersion
as well as correcting the entire linac at once, this procedure reduces the sensitivity
to discrepancies between the machine and the model one uses for correction. In all

cases, the solutions are calculated with a single iteration of the DF algorithm.

Table 12. Results of DF simulations in the 250 GeV NLC linac.
1-to-1 DF

Orbit rms 89 £ 1pum 54+ 1 pm

BPM rms 3+0.1um 80+ 1um

Dilution Aey |6.20 £ 0.8 €0 | 0.02 £ 0.01 ¢yo

Results from correcting the twenty sets of errors with the two correction schemes
are listed in Table 12; the error on the data is equal to one standard error. The Orbit
rms data is the rms of the trajectory relative to the linac centerline, while the BPM
rms data is the rms of the BPM measurements. Notice that the one-to-one algorithm
zeros the BPM readings (within the BPM precision) while the actual trajectory is
relatively large. In contrast,, our method corrects both the actual trajectory and the
measured BPM readings. In fact, the DF correction algorithm does better correcting
the actual trajectory than does the one-to-one method.

Of course, we are interested in more than just correction of the trajectory. The
dilution of the vertical emitta.nce due to the dispersive errors is listed in the bottom

row of Table 12; the dilution of the horizontal emittance will be much smaller than
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Fig. 31 Difference orbit in the NLC after (a) DF correction and (b) I-to-I
correction.

the vertical since the initial emittance is one hundred times larger. Obviously,
the one-to-one correction technique leads to a large (factor of six) increase in the
vertical emittance. Furthermore, this emittance will continue to filament and thus
the effective emittance growth may be much larger. In contrast, the new technique
performs very well, virtually eliminating the dispersive dilution.

The difference in correction techniques is illustrated in Figs. 29-33. Figure 29
compares the trajectory after DF correction (upper plot) with the result of one-to-
one correction (lower plot) and Fig. 30 compares the BPM readings in the same
manner. One can see that the one-to-one method zeroes the BPMs, but does not
correct the actual trajectory as well as the DF method. Finally, Fig. 31 shows the dif-
ference between the trajectory of an on-energy particle and a. particle whose energy
differs from the design, the energy difference being equal to the rms uncorrelated
energy spread which is 1% at injection and decays inversely with energy. Obviously,
the dispersive error, i.e., this’ difference orbit, and therefore the dispersive dilution,

is much smaller in the case of the DF correction.

Figure 32 is a plot of the y-y’ phase-space at the end of the NLC linac after
correction with the one-to-one algorithm. The curve plots the endpoints of particle

trajectories having energies between +a, and —o,. Also, for reference, the RMS
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beam size, excluding the chromatic errors, is plotted about the design energy tra-
jectory. Obviously, there is a large dispersive dilution in Fig. 32; the emittance
dilution is roughly eight times the initial emittance. For comparison, we plot, in
Fig. 33, the y-y’ phase-space at the end of the NLC after DF correction. This is the
same phase-space, although with different scales, as Fig. 32. After DF correction,

the emittance dilution is quite small, roughly 1% in this case.

It is evident from Table 12 and Figs. 29-33 that the DF correction technique per-
forms substantially better that the one-to-one method. In all of the data shown, the
effective energy change used by the DF algorithm was AF/E = +I0%. Changing
the beam energy, or equivalently changing the magnet strengths, is not necessarily
easy and can in itself introduce errors. For this reason, we wish to limit the energy
change used by the correction algorithm. Unfortunately, as the energy difference is
decreased, the measurement of the difference orbit, used by the DF algorithm, will
be lost in the noise of the BPM precision errors. Thus the correction technique will
not perform as wvell.

In Fig. 34, we plot results of the DF correction technique, again found from
the correction of twenty sets of random errors, versus the change in effective energy
AE/E. There are three curves: the dotted is the emittance magnification which
has a scale on the right, the solid is the rms of the actual trajectory, and the dashed
curve is the rms of the BPM measurement of the trajectory. Notice that both the
emittance magnification and the rms of the trajectory have broad minimums. The
increase which occurs as AE/E increases is due to the nonlinearity of the dispersion.
In contrast, as AE/E decreases, the BPM precision errors reduce the effectiveness
of the algorithm. Our estimate Eq. (3.5.11) is in good agreement with both the
behavior and the magnitude of this residual error. Finally, notice that the minimum
in the residual emittance will shift towards larger AE/E when one includes other

errors since the measurement resolution increases as AE/FE increases.

Finally, in Fig. 35, we compare the result of the DF correction technique versus
the magnitude of the BPM precision errors; the errors are varied from 2 gm to 40 pym.
As before, the data was found from the correction of twenty sets of random errors.
As in Fig. 34, the three curves: solid. dashed, and dotted, are the actual trajectory
rms, the measured trajectory rms, and the vertical emittance dilution; the first two
curves have scales on the left. and the emittance dilution has a scale on the right
side of the plot. Notice that the emittance dilution is still less than 25% when the

BPM precision errors have been increased to 8 um, which is roughly eight times the
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vertical beam size. Also notice that the rms of actual trajectory decreases rapidly
as the magnitude of the BPM precision errors is decreased. In fact, the decrease in
the trajectory rms, which is important for controlling wakefield effects, may be the
most significant gain from decreasing the BPM precision errors.

3.5.4.1 ERRORS

In this section we estimate the effects of errors not included in the simulations.
Specifically, we discuss the effect of beam jitter, RF deflections and magnetic scaling
errors. In the NLC, we estimate the effect of the RF deflections using the same
transverse-longitudinal coupling g that was measured in the SLC:“OS]g =4 x 1074
We further assume that the accelerator sections in the NLC are one meter in length
and each gives an energy gain of 100 MeV. In this case, Eq. (3.5.19) yields an
estimate of

Ayorp ~ 0.3 pm (NLC) . (3.520)

This residual dispersive error is comparable to the NLC vertical beam size. Using
Egs. (3.4.3) and (3.4.4), we find that it would lead to an emittance increase of
roughly 5%. Of course, as discussed in Section 3.4.3, the actual tolerances on the
RF accelerator sections in the NLC need to be much tighter than those in the
SLC. If the tolerance on the transverse-longitudinal coupling were reduced from
g=4x 10~*, this error should not be significant; the residual dilution scales with
the square of g.

We also estimate the effect of the magnetic scaling errors using random 1%
absolute errors of the magnetic field strengths after scaling the magnets by 10%.
Using Eq. (3.5.16), we find

Aydmagnet ~ 0.5 pm . (3-521)

This causes a 13% emittance dilution. Of course, again, we believe that we have
overestimated the error. In principle, one could reduce the absolute scaling error to
0.1% by cycling the magnets on a. specified path through their hysteresis curves. In
this case the dispersive dilution would be negligible.

Next, we consider the effect, of beam jitter. Here, we estimate the effect of
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injection jitter that is 25% of the vertical beam size. Using Eq. (3.5.14), we find
AYsijisger 03 pm  (NLC) (3.5.22)

when using an effective energy change of 10%. This error causes an emittance
dilution of 4%.

Finally, to verify our estimates, we simulated both random magnetic scaling
errors and jitter of the injected beam. Random 1% absolute errors were added
to the magnetic fields strengths when scaling the magnets by 10%. We found an
emittance dilution of 10.0+£2.7% due to the scaling errors; this is in fairly good

agreement with our estimate of 13%.

The injection jitter was simulated by adding a random initial position offset to
the trajectories used to measure the difference orbit; the position offsets have an rms
equal to 25% of the initial beam size. In this case, we found an emittance dilution
of 3.1 +0.6% when making an effective energy change of 10%. Again, this is in good
agreement with our estimate of 4%.

3.5.5 WF Correction and Simulations

Given the performance of the DF algorithm, we have extended its use to also
correct wakefield dilutions that result from the corrected trajectory. In this section,
we will describe the WF algorithm and then present the results of simulations.
Because the WF technique is a simple extension of the DF method, this discussion
will be brief. In particular, we will not reiterate the error analysis of Section 3.5.3;
the analysis for the WF algorithm is very similar.

3.5.5.1 WF ALGORITHM

The goal is to find a new trajectory along which both the wakefield and the
dispersive effects cancel. The wakefields are caused by trajectory offsets in the
accelerator sections which are due to both misalignments of the accelerator sections
and a non-zero trajectory. If we ignore the accelerator misalignments, the effective
offset in a section is just the average of the position in the two adjacent quadrupoles.
By varying the quadrupole strengths in a. specified manner, one can measure a
difference orbit where the orbit in the quadrupoles will mimic the effects of the

wakefields due to bhe trajectory.
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We can understand this by examining Eq. (3.4.17), derived in Section 3.4.2. Both
the quadrupoles and the dipole wakefields cause a deflection that is proportional to
the trajectory offset in the respective elements. But, the wakefield always deflects
away from the structure centerline while the quadrupole deflection depends upon
the sign of K3 . Assuming periodic FODO cells with accelerator sections centered
between the quadrupoles, we find that, to mimic the wakefield effect, the quadrupole
strengths must be varied as

5K, Laco(s) \/E

— — — COs
K1 y()K1Lg(s) | By

Ay (3.5.23)

where § and f, are the beta functions at the middle of the accelerator sections
and the adjacent quadrupoles and A is the betatron phase advance between the
two. In addition, Lacc and L, are the lengths of the accelerator sections and the
guadrupoles, Finally, note that because the correction is local, this condition can
fluctuate slowly with s.

Condition (3.5.23) specifies that the quadrupole strength variation é has oppo-
site signs at focusing (QFs)and defocusing quadrupoles (QDs). In contrast, when
creating the difference orbit to measure the dispersive error, 6 has the same sign
at both the QFs and the QDs. To correct both the wakefields and the dispersive
errors one minimizes both of these difference orbits along with the actual trajectory.
Unfortunately, it is not necessarily possible to increase some magnets while decreas-
ing others since the quadrupoles are usually run close to their maximum strength.
Thus, one can use an equivalent procedure where one minimizes a difference orbit
created by varying only the QF's and a difference orbit created by varying only the
QD magnets. In addition to being feasible, this later procedure also benefits from
being simpler.

Strictly, by examining Eq. (3.4.17), we can see that minimizing these two dif-
ference orbits will reduce the wakefields if the accelerator sections are aligned to
the centers of the quadrupoles, not the machine centerline. This can be remedied
by varying the dipole correctors when varying the quadrupoles. Thus, the dipole
correctors (partially) cancel the effect of the quadrupole misalignments; they must
or the trajectory would tend to grow. In practice, the correction technique works
best when the accelerator structures are aligned to the quadrupoles, but, as will be
demonstrated, it still works very well when the accelerator sections are aligned to
the ideal centerline.
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Table 13. Results of WF simulations in the 250 GeV NLC linac.

Method €y Trajectory rms

1-to-1 | 229+ 4.8¢y 72+ 1pum
DF 9.3+ 1.6¢y0 55+ 1pum
WF 11.094+0.0leo| 44+1pum

To recapitulate, the correction algorithm is: (1) measure a difference orbit
Azqr(s) created by varying the QFs and the associated dipole correctors, (2) mea-
sure the difference orbit Azgp(s) created by varying the QDs and the associated
dipole correctors, (3) measure the actual trajectory z(s), and finally, (4) one mini-
mizes all three of these orbits. When developing the DF algorithm, it was found that
a weighted least-squares is the best minimization procedure. Thus, in this variation,
one minimizes the sum:

> ( QF)J+( ap); J (3.5.24)

Y2 2 2 2 ?
je{BPA!} “aprec “apl'ec UBPM + aprec

where each term is weighted by the accuracy of the respective measurement: oppp
is the estimated rms of the BPM misalignments and oprec is the rms precision
(reading-to-reading jitter) of the BPM measurements. Although it does not correct
the wakefields due to the accelerator section misalignments, this technique will be
referred to as Wake-Free (WF) correction because the corrected trajectory does not
cause wakefield or dispersive dilutions.

3.5.5.2 SIMULATIONS

In Table 13, the performance of the DF and WF techniques is compared against
the one-to-one algorithm in the 250 GeV NLC linac. The one-to-one algorithm
adjusts the trajectory to zero the BPM measurements using only the BPMs and
correctors located near the focusing quadrupoles. The results in Table 13 are the
average of correcting 20 sets of random error distributions and the errors are the
standard error on the results. In all cases, the trajectory is corrected at low intensity

and then the intensity is increased to the design value.

The misalignment error distributions are the same as those used in the DF

simulations described in Section 3.5.4, namely, 70 um rms vertical quadrupole and
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BPM misalignments, and 2um rms BPM precision errors; the accelerator sections
were aligned to the ideal machine centerline. In addition, the wakefields have been
included and the optimal BNS energy spread has been added to the beam in all
three cases. Finally, the initial conditions (yg, yg) were optimizedm] after one-to-one
correction to further reduce the dilution; while this procedure reduces the dilution
from nearly 50 €40 when using the one-to-one algorithm, it yields little improvement
when using DF or WF correction. The WF technique performs extremely well; it
virtually eliminates all of the dispersive and wakefield emittance dilution and it does

a better job correcting the actual trajectory than the other two methods.

Figures 36 and 37 illustrate the differences between the one-to-one correction
technique and the WF method for one of the twenty cases used to calculate Table 13.
Figure 36 compares the trajectory after WF correction (upper plot) with the tra-
jectory after one-to-one correction (lower plot). Likewise, Fig. 37 compares the
emittance dilution after WF correction (upper plot) with the dilution after one-to-
one correction (lower plot). One can see that, after WF, the trajectory has a smaller
rms and is “smoother” than after one-to-one correction and, more importantly, the
emittance dilution after WF is much smaller than after one-to-one correction.

In the DF/WF techniques, the emittance dilution is “measured” by varying the
quadrupole magnets. This measurement is then corrected to the level of the BPM
precision. Thus, provided that the measurement resembles the emittance dilution,
the dilution is constrained to the level of the BPM precision errors and does not
increase along the length of the linac. This is illustrated in Fig. 37; the large spikes
that occur in the emittance dilution arise because linac is corrected in sections and
there is insufficient resolution at the beginning of each section to adequately correct
the dilution.

Finally, Fig. 38 shows plots of the beam distribution after (a) one-to-one, (b)
DF, and (c) WF correction for one of the twenty cases in Table 13. The scatter-
plots on the left are the projections of the beam distributions in the y-y’ phase space
while the right-hand plots are projections onto the y-z plane; in both cases, we have
represented the beam wit.11 1000 macro-particles. One can immediately see that the
beam emittance is seriously diluted after one-to-one correction; this is primarily due
to dispersive errors. Next, after DI correction, the dispersive errors are corrected,
but the distribution displays the tails characteristic of transverse wakefields; these
arise from the random trajectory. Finally, after WF correction, one can see that the
dilution due to both the dispersive errors and the wakefields is negligible.
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Fig. 36 The trajectory in the 250 GeV NLC linac after (a) WF and (b)
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Fig. 38 The beam distribution after (a) I-to-l, (b) DF, and (c) WF cor-
rection at the end of the 250 GeV NLC linac; the left-hand plots are the

y-y’ phase space while the right-hand plots are the beam in y-z space; from
Ref. 87.
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Obviously, the WF technique reduces the emittance dilution due to misaligned
BPMs, quadrupoles, and a non-zero trajectory extremely well. Since the technique
is very similar to the DF method, we know that it is a robust algorithm and it is

not sensitive to effects such as jitter and calibration errors.

3.5.6 Further Extensions

The WF correction technique does not correct the effect of misaligned accelerator
sections. In fact, the WF method never actually measures the wakefields; it simply
adjusts the trajectory such that any wakefield effects cancel. But, as noted in
Eqg. (3.5.23), the wakefields will shift the bunch centroid and thus it should be

possible to measure the effects on the trajectory directly.

In theory, this could be performed by measuring a difference orbit where the
bunch length, bunch intensity, or beam energy and magnets are changed. Unfortu-
nately, this becomes complicated because the beam loading changes the beam energy
and energy spread, and thus, it is difficult to unravel the wakefield effects from the
dispersive effects. Furthermore, the effect of the wakefields on the bunch centroid is
much smaller than the effect on the beam tail where most of the emittance dilution
occurs. Thus, it is difficult to make significant measurements.

7]

.. . . . . is .
We have performed some initial simulations of this technique; " more work is

still needed to determine the feasibility of the approach.

3.5.7 Tolerances with DF/WF

The scaling of the emittance dilution with the misalignments can be found
from the emittance dilution Egs. (3.4.3) and (3.4.4). Furthermore, in Sections 3.4.1
and 3.4.2, we found that, when correcting the trajectory with the one-to-one tech-
nique, the dispersive and wakefield errors: Ay and Ay, depend linearly upon the
magnitude of the misalignments. Thus, the em: ttance dilution depends quadrati-
cally upon the magnitude of the misalignments when the dilution is small, less than
100%, and the emittance dilution a. linear function of the misalignment magnitude
as the dilution increases.

In contrast, the dilution when correcting with the DF/WF techniques is roughly
independent of the misalignment magnitude. We have removed this dependence by
scaling the trajectory measurements in Eqs. (3.5.3) and (3.5.24) by the estimated

rms of the misalignments. Thus, the emittance dilution should only depend upon
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Fig. 39 One-to-one and DF correction versus the rms misalignment mag-
nitude.

the other errors, namely, BPM precision, beam jitter, magnet scaling errors, and
the RF deflections; these effects were discussed in Section 3.5.3.

The dependence of the trajectory correction techniques on the misalignment
amplitude is illustrated in Fig. 39. Here, we have varied the rms magnitude of the
vertical BPM and quadrupole misalignments from 7 gm to 350 um; note that all of
the axes in Fig. 39 have logarithmic scales. The points plotted were found from
the average of correcting twenty sets of random errors. The solid and dashed lines,
at the top of the plot, are the rms values of the actual trajectory after correction
with the one-to-one and DF techniques, respectively; these curves have scales on the
left side of the figure. The DF technique is slightly better at correcting the actual
trajectory, but the two curves are similar; in both cases the rms of the trajectory is
roughly proportional to the rms of the misalignments.

The two other curves, the dotted and the dot-dash lines, are the emittances
after correction with the one-to-one and DF techniques. The dilution after one-
to-one correction is strongly dependent upon the misalignment magnitude. Here,
the dilution varies from roughly 25% to over 3400% as the misalignments increase.
In contrast, the dilution after DF correction is only weakly dependent upon the
misalignment magnitude; it increases slowly from roughly 1% to 6% of the initial
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emittance as the misalignments become larger.

Thus, when using the DF/WI" correction techniques, the emittance dilution is
effectively uncoupled from the magnitude of the transverse magnet misalignments.
Instead, the DF/WF correction techniques impose relatively straight-forward toler-

ances on the BPM precision, beam jitter, RF deflections, and magnet scaling.

3.5.8 Discussion

In this section, we have described two trajectory correction algorithms that
can significantly reduce the emittance dilution due to a corrected trajectory. To
fully determine the utility of these correction techniques, they need to be compared
against the various alignment techniques. We will not perform such an analysis
since it requires detailed knowledge of the sources of error and is machine specific.
Instead, we will describe the difference between the D¥F/WF approach and that of
the beam-based alignment of Refs. 3 and 67.

The DF/WF technique is similar to the beam-based alignment of Refs. 3 and 67
in that the alignment errors are detected by varying the effective beam energy,
but, the approaches differ in the analysis of the data. The beam-based alignment
technique uses the data to determine the individual BPM and quadrupole misalign-
ments. Because the data has errors, these misalignments can only be determined
with finite precision. Thus, large effective energy changes are used to increase the
sensitivity to the individual misalignment errors. But, because the effective energy
change is large, the beam-based technique is not especially sensitive to errors at the
betatron frequency; this is the component that drives the wakefield and dispersive

dilutions.

In contrast, the DF/WF technique finds a global solution to constrain the emit-
tance dilution. Small effective energy changes are used so that the measured dif-
ference orbit resembles the actual emittance dilution. Thus, although the DF/WF
is less sensitive to the individual misalignments, it is very sensitive to errors at the
betatron frequency which cause the emittance dilution. This is illustrated in Fig. 40
where we have plotted the frequency spectrum of the trajectory after (a) WEF' correc-
tion and (b) one-to-one correction; the respective trajectory rms’s are yerms = 51 gm
and Ycrms = 94 pum. Notice that, although the WF technique only reduced the tra-
jectory rms by a factor of two, the component at the betatron frequency is reduced

by roughly a factor of ten. Of course, using a smaller effective energy change may
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Fig. 40 The frequency spectrum of the trajectory after (a) WF and (b)
one-to-one correction versus frequency in units of the betatron oscillation

frequency; the trajectory rms’s are Ycrms = 51 pm and Yerms = 94 pm after
WF and I-to-l correction, respectively.

make the DF/WF algorithm more sensitive to additional sources of error. Thus,
the utility of the technique needs to he verified experimentally. Ultimately, it is

likely to be found that the two techniques, the DF/WF trajectory correction and
the beam-based alignment, are complementary.
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CHAPTER 3.6
ADDITIONAL CORRECTION METHODS

In this section, we will discuss two additional techniques of correcting the emit-
tance dilution due to transverse wakefields and RF deflections. Specifically, we
will describe the use of RF deflecting cavities and then we will describe the use of
trajectory bumps.

3.6.1 RF Deflecting Cavities

We can use an RF deflecting cavity to correct the emittance dilutions due to
both the RF deflections from accelerator sections and the transverse wakefields; an
RF deflecting cavity, like the transverse wakefield or an RF deflection, provides a
transverse deflection that is a function of z, the longitudinal coordinate in the bunch.
To correct the dilutions, we use the RF cavities to remove any correlation between
the transverse planes and z. This is simple, when correcting the RF deflections,
since the time structure of the correcting fields can be adjusted to be similar to
that of the RF deflections, but, it becomes more complicated when correcting the
transverse wakefields; the wakefield deflecting forces are highly nonlinear functions
of z. Thus, to fully correct these dilutions, the deflecting cavity fields need to be
shaped appropriately.

In the NLC, the wakefields appear to be a more serious limitation than the RF
deflections, and thus, we will not discuss this technique further except to note that
the correction cavities need to be distributed along the linac. The correction needs to
be applied quasi-locally or the dilution will start to filament and thus becomes much
harder to remove; this issue is illustrated when discussing the trajectory bumps in
the next section.

3.6.2 Trajectory Bumps

The idea of using the beam trajectory to correct the wakefield dilutions was
first suggested in Ref. 31. There, the authors calculate the effect of inducing a
coherent betatron oscillation to reduce the emittance dilution due to misalignments;
the wakefields due to the betatron oscillation are used to cancel, on average, the
wakefields due to the misalignments.
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Unfortunately, this approach does not work well in the NLC linacs since (1)
BNS damping reduces the wakefields generated by the coherent oscillation and (2)
the dilution partially filaments and thus needs to be corrected quasi-locally. The
solution is to use multiple “non-dispersive” (ND) bumps to cancel the dilutions due
to wakefields and RF deflections. In addition, dispersive bumps, i.e., closed betatron

oscillations, can be used to cancel the dispersive emittance dilutions if desired.

The ND bumps can be created by deflecting the beam so that there are large
offsets in the defocusing quadrupoles and smaller offsets in the focusing quadrupoles
while the period of oscillation is equal to that of a betatron oscillation. In this way,
the dispersive and BNS effects are cancelled while, the wakefield deflections add. We
can find an equation for the detailed trajectory using the equations for the dispersive
error, Eqgs. (3.4.1) and (3.4.2). Assurning that the energy spread is small so that we
can neglect the chromatic phase advance, we have the condition

0= /ds'&(Gy - I(1Lq)R12(S,, S) + /ds'é[\rlchlz(sl, s) , (3.6.1)
0 0

where s is usually chosen to be equal to the betatron wave length.

An example of an ND bump in the 250 GeV NLC linac is shown in Fig. 41. The
bump consists of five oscillations so that it will have a strong effect on the wakefield
dilutions. Although the bump is not perfectly closed, the dispersive emittance dilu-
tion is less than 1% while the wakefield effects are large; they increase the emittance
of an undiluted beam by a factor of 3.6. In Fig. 42, a single oscillation of this bump
is compared with a betatron oscillation; the ND bump is the solid line while the
betatron oscillation is plotted as a. dashed line. Although, the period of oscillation
is the same, the trajectories in the quadrupoles is quite different; the ND bump is

created with dipole correctors at both the focusing and defocusing quadrupoles.

We have simulated the use of ND bumps in reducing the emittance dilution due
to misaligned accelerator sections in the 250 GeV NLC linac. The averages of twenty
simulations with 70 gm rms accelerator section misalignments are listed in Table 14;
the errors listed are the standard error. Without any correction, the emittance is
increased by over a factor of 11. Optimizing the launch conditions (yo, y(')), to induce
a coherent betatron oscillation. yields little improvement. As cliscussed, this occurs
because the BNS damping reduces the wakefield dilution due to the oscillation but

not the dispersive dilution.
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Table 14. Simulations of ND bumps in the NLC linac.

Uncorrected dilution 11,7+ 2.1 €y

Initial conditions (yo,y() | 9.8+ 1.2¢€y0

2 ND bumps 2632 0.22¢40
4 ND bumps 1.40 £ 0.07 eyo
6 ND bumps 1.12 £ 0.02 €40

In contrast, the ND bumps are very effective at cancelling the dilution. Just two
bumps, located near the beginning of the linac where the wakefields are the most
severe, reduces the emittance to 2.6 ¢y from 11.7 €y0; the two bumps are separated
90° in phase to provide orthogonal controls. Of course, because of the filamentation,
bumps near the front of the linac are not very effective at correcting the dilution
originating at the end of the linac. Thus, we find improvement when we add another
pair slightly further back, and even more improvement when we add a final pair at
the end of the linac.

Finally, we need to discuss the algorithm used to optimize the emittance. In
the simulations, we calculate the ND bump corrections by optimizing the emittance
at the end of the linac with the bumps. This is a time intensive procedure, and,
in a real linac, it would likely be impossible. Instead, one should break the linac
into sections and use two orthogonal bumps to optimize each section. Although this
requires multiple emittance measurements along the length of the linac, the final

solution will be found much more quickly and accurately.

Thus, to summarize, these ND bumps can be used to effectively correct the
wakefield dilutions; these dilutions may he due to misaligned accelerator sections or
a corrected trajectory. Furthermore, the ND bumps can also be used to partially
correct the dilutions due to RF deflections. Finally, although multiple bumps are
needed to correct the dilutions before they begin to filament, these ND bumps would
likely be easier (and cheaper) to implement than having independent movers on all
of the accelerator sections as suggested in Ref. 106.
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MAGNETIC FIELD TOLERANCES

In this section, we will calculate the effect of static magnetic field errors in the
linacs. We assume that only the quadrupole magnets have field errors. These errors
have three effects: (1) there are betatron mismatches due to the quadrupole errors,
(2) there is transverse coupling due to the skew quadrupole fields, and (3) there is
rms emittance dilution due to strong nonlinear fields.

The equation for the vertical motion for generalized transverse magnetic fields
can be written:

o0 o0
yg — Z KpIm(x +iy)" + Z K,Re(z +iy)" =0 (3.74

n=1 n=]

where K, and I:’,, are the normal and skew field components analogous to K; and
1?1, and z and y include both the betatron motion, zg and y3, and the central
trajectory. In the NLC, where the closed orbit is much greater than the betatron
amplitude, the quadrupole field, found by expanding the higher order multipole
fields about the central trajectory, usually has a more significant effect than the
actual nonlinear fields; in essence, the beams are so small that the fields always
appear linear. This is one of the problems in attempting nonlinear collimation; '™
the nonlinear fields must be extremely large to have any nonlinear effect. For this
reason, we will only consider the effect of the quadrupole and skew quadrupole field
errors.

Finally, we should note that in making our estimates, we will neglect filamen-
tation. Filamentation will make these effects worse and thereby force tighter toler-
ances. The reason for this is that once the beam filaments, the dilution is effectively
not recoverable. Fortunately, the NLC linacs are in the partial filamentation regime
and thus our estimates should be accurate.

178



Chapter 3.7.1

3.7.1 Quadrupole Tolerances

. . - 3
Quadrupole errors introduce beta mismatch errors. These are given by:[ |

8

—ABE(S—) = /ds'AKﬁsin2(v,b(s) — P(s)) . (3.7.2)
0
where AK is the quadrupole error: AK = AK; +2Ksz.+2Kyc +- . . . In addition,

12
)

there are higher-order contributions.> but these will be negligible in a linac where
the design dispersion functions are zero.

Random Errors

Random quadrupole errors will cause a beta mismatch of:

8

AB(s)\ _ SIAKYB? sin? 2(w(s) — (s’
(%5 ))-Zd AR)S sl o)~ v() . (79)

where in a FODO cell the minimum and maximum beta functions are given by
Eq. (D.1.1). Now, the integral can be expressed as a sum over the FODO cells. In the
NLC linac, K1L,fB is constant; the integrated quadrupole strength decreases as 7“%
while the beta function increases with the square root of the energy. Furthermore,
with this scaling, the phase advance per cell remains constant. Thus, the sum
becomes

éﬂ‘?_} 2 B AK 2 4 Neen—~1 ' ) . B
<< B ) = (< m) ) eos? be2 Z:O [(1 + sine/2) sin® 2((s) — n¥be)

+ (1 = sin ¥e/2)* sin” 2((s) — ntpe — d‘c/‘Z)]
(3.7.4)

For reasonable phase advances, i. e., between 60° and 120° per cell, we can
express this as

AB\? AKN? /1 +sinye/2\°
((75) )z4Ncen(<K1> )( ;Z]Z:/;Q/ ) . (3.7.5)

For the NLC main linac, a. 1% tolerance on the quadrupole field yields an rms beta

error of roughly 10%; this is a. relatively loose tolerance.
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Systematic Errors

The systematic quadrupole errors have a small effect unless the phase advance
per cell approaches 180°. For cells with a phase advance of 90°, the systematic
tolerance is roughly a factor of v/Neey looser than the random tolerance and thus
we will neglect it.

3.7.2 Skew Quadrupole Tolerances

In the case of skew quadrupole errors, we solve the equation for the vertical
motion using the Rj;; matrix element and the horizontal betatron motion. This
yields

yﬁ(s) = =4/ 'gl(%z\/ 22070 /ds’f\;\/ ﬂrﬁy
0

x sin(Yz(s') — éz0) sin(vy(s) = ¢y (s'))

(3.7.6)

where v is the initial relativistic factor, Jzo is the initial horizontal single particle
invariant, ¢,o is the initial horizontal phase, and K= Ky —2Kqy.+ .. ..

Random Errors

To calculate the effect of random errors, we square Eqg. (3.7.6) and calculate
the expected skew quadrupole strengths. Thus, the double integral condenses to a

single sum. Next, we perform an ensemble average over the beam particles, yielding

@2(5» = Tro2 .2
v(s)= 3 vez O (K Lg)*)BzBy sin® (y(s) — ty(sn)) (3.7.7)
n=0

At this point, we use the expression for the beta functions in a FODO lattice,
Eqg. (D.Ll); note that the horizontal and vertical beta functions are 180° out of
phase, when one is maximum the other is minimum. Then, we calculate the sum,

finding
\?

Finally, if the skew quadrupole component is due to small rotations of the quad-

rupoles, where K = 20,K7, we find a. tolerance to limit the vertical emittance
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Chapter 3.7.2

increase to 6% in the NLC main linac of
qumg S 0.3mrad 3 (379)

this yields a 3% luminosity reduction and is a fairly loose tolerance. Furthermore,
notice that we have expressed the beam size increase in terms of an emittance
increase. Actually, the coupling does not cause a real emittance increase; it increases
the projected emittance. Thus, if the beam does not filament, the coupling can be
corrected with four independent skew quadrupoles.

Systematic Errors

To estimate the effect of systematic errors, we start from Eq. (3.7.6) again,
but now, we calculate the integral over the errors before squaring the expression.
Assuming that the horizontal and vertical phase advances are similar and are not
close to 180°, we find

- Ng-1 _
yale) = = B S R Bcos(a(sa) — dylin) + b0+ 84()
- n=0

(3.7.10)

Now, we calculate the sum and average the square over the beam distribution.
This yields an emittance increase

(Kqr + Kqp)? sin® Ney Ate/2
R} sin® Ay, /2

Dey = €

, (3.7.11)

where A = Yze — Yyc and ]~\”QD and I?QF are the skew quadrupole fields at the
focusing and defocusing quadrupoles.

Notice that this expression depends upon the sum of the skew quadrupole fields
at the focusing and the defocusing quadrupoles. Thus, if the quadrupoles have the
same error, i.e., the same rotation or the same pole error, the emittance dilution
will be small because the errors cancel. But, also notice that this expression goes
as Nfeu when Awe S 2/Neey. Thus, it is desirable to separate the horizontal and
vertical phase advances. In the NLC linacs, we are separating the phase advances
by roughly six degrees per cell and thus this systematic tolerance is smaller than
the random tolerance.
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CHAPTER 3.8
PULSE-TO-PULSE JITTER

In this section, we will calculate the pulse-to-pulse jitter which could be a severe
limitation for future linear colliders since the vertical beam sizes are very small. This
discussion will be similar to discussions found in Refs. 53, 97, 98, and 99. We have
improved the accuracy of the estimates by using the correct scaling as is discussed
in Appendix D; in general, this leads to tolerances that are less than a factor of
\/2 tighter. In addition, we have improved the estimate of the jitter due to ground

motion finding that it is almost as severe as the effect of purely random jitter.

When discussing the jitter, we need to consider two regimes: rapid filamentation
and no filamentation. In the case of rapid filamentation, the beam rapidly loses it’s
“memory” of the deflection and thus the kicks from different, sources of jitter add
linearly, In the other case, that without filamentation, the random sources of jitter
cause the beam to perform a random walk and thus they add in quadrature, i.e., as
the square root of the number of sources. The beam will only partially filament, in

the NLC linacs and thus we neglect the filamentation when calculating tolerances.

In the case of weak filamentation, the jitter shifts the beams centroids and thus
the colliding beams do not fully overlap at the IP. In the limit of small beam currents,

the luminosity reduction is given by
L=e Mg, (3.84

where A is the vertical offset between the two beams and Lg is the full luminosity.
As the beam charge increases, the luminosity reduction decreases; this occurs be-

cause the two oppositely charged beams attract each other 7%

For our purposes
in the NLC, we will neglect the beam disruption and use Eqg. (3.8.1) to estimate the
reduction. Specifically, we will calculate tolerances to limit the jitter of each beam
to less than 0.250y; this corresponds to 3% luminosity reduction which is consistent

with our other tolerances.

There are three primary sources of jitter: injection jitter, where the injected
beam varies from pulse-to-pulse, trajectory changes due to movement of the quadru-
pole magnets, and trajectory changes due to power supply fluctuations. In addition,
there are also effects that can arise from movement of the accelerator sections or

variations of the RF power.
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Chapter 3.5.2

We will start by estimating tolerances on the injection jitter. Then, we calculate
the effect of random movement of the quadrupoles and the accelerator sections. This
will lead to extremely tight tolerances. Fortunately, most sources of vibration lead
to correlated motion of the magnets and accelerator sections and thus we discuss
these effects next; unfortunately, these tolerances are similar. Finally, we calculate
the effect of power supply fluctuations and then we discuss some of the feedback
methods that may be used in the linac. Throughout, we only discuss the direct
effect of the jitter, namely, the centroid shift.

3.8.1 Injection Jitter

If the beam does not filament, injection jitter directly causes position jitter at
the IP. Since the jitter is demagnified along with the beam, the injection jitter
tolerance, in units of the beam size, is the same as the IP jitter tolerance:

Yin S 0.25V20, , (3.5.2)

where, since we do not know the phase of the jitter relative to the IP, we included a
factor of /2. This imposes stability tolerances on the damping rings and the bunch
compressors. In the NLC main linac, we find a tolerance on the initial jitter of
y;ie S 0.7um. Notice that this is the same as the tolerance due to the dispersive
filamentation.

3.8.2 Random Jitter

Magnets

Here, we will consider the effects of uncorrelated motion of the quadrupoles and
the accelerator sections. Transverse movement of the quadrupoles will deflect the
beam trajectory. Assuming that there is negligible filamentation, these deflections
simply add:

Ny-1
Yc = Z 1\’1qujitR12(sn,Sf) , (3.8.3)

n=0

where yji¢(n) is the movement. of the nth quadrupole, L, is the length of the magnet,
and N, is the number of quadrupole magnets.
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Assuming random jitter and using the NLC scaling, where the quadrupole
strength decreases inversely with the beam energy while the length of the quad-
rupoles and the beta functions increase with the square root of the beam energy, we
find

. R . No—1
Uy s AL NCD DR AN (3:8.4)
n=0

where the subscripts ¢ and s are used to denote the value at the beginning and end
of the linac, and Bg and Bo are the initial vertical beta functions at the focusing and
defocusing quadrupoles.

Finally, using the relation between v and the quadrupole number, Eq. (D.1.7),

we can evaluate the sum, finding

2 Ny (v

(ve) = 575 b2 (3.8.5)

where ¢, is the phase advance per cell and we have used Eq. (D.1.3) to simplify the

result.

Using parameters for the NLC 500 GeV linac, we find that a random magnet
jitter of 5nm leads to a trajectory jitter equal to one quarter the beam size; this is
a tight tolerance. Of course, only a small portion of the magnet jitter is actually
uncorrelated; most of the jitter is due to ground motion which we discuss next.
But, turbulence in the magnet cooling water or other local sources of noise can
cause uncorrelated vibrations and thus these effects need to be examined in detail.

Accelerator Sections

If the jitter moves the ends of the accelerator sections so that the section is tilted,
the beam will be deflected. We can estimate a tolerance following the procedure of
the previous section. To limit the jitter to a quarter of the rms beam size, we find
a tolerance of 250 nm on the random jitter of the ends of the sections, assuming a
gradient of 100 MeV/m in the 500 GeV NLC linac; this is negligible.



Chapter 3.8.3

3.8.3 Ground Motion

As discussed in Section 2.4.1, the ground moves at the micron level at frequencies
between roughly 0.1 Hz and 100 Hz;m] the high frequency components of the motion
are primarily due to cultural noise. Motion of the ground will cause correlated
motion of the quadrupoles magnets which then deflect the beam trajectory. The
effect of this ground motion has been estimated using the smooth approximation.lgﬁ]
Unfortunately, the smooth approximation can only estimate the lowest frequency
resonance; it neglects the effect of the higher frequency resonances which are actually

(4,94]
stronger. In general, resonances occur whenever

kgr = e/ Le, (2m £ ¢c)/Le, (Am £ ¢bc)/Le, - - - (3.8.6)

where 1;,, is the wavenumber of the ground motion, . is the phase advance per cell,
and L. is the length of the cell.

We neglected the higher frequency resonances in the damping ring since they are
far too high to be relevant,; the power spectrum of the ground motion decays as 1/f2.
But, in the NLC linacs, the betatron wavelength varies from 20 m to roughly 120 m.
Assuming a phase velocity of 300 m/s, which is similar to the values measured at the
SLAC and DESY sites,m’951 the lowest resonance occurs at frequencies above 2.5 Hz
while the next two resonances occur at frequencies above roughly 8 Hz and 14 Hz,
assuming a 90” phase advance per cell; these are still low enough to be important.

The motion of the quadrupoles in the three lowest frequency resonances is shown
schematically in Fig. 43 where the lattice has a phase advance of 90° per cell. Since
the strengths of the focusing and defocusing quadrupoles are of opposite signs, it
is apparent that the higher frequency resonances have a greater effect than the
lowest resonance; in the higher frequency resonances the kicks from the focusing
and defocusing-quadrupolcs add while in the lowest resonance the kicks subtract.

We will estimate the effect of the ground motion by considering the response to
a plane wave traveling at an angle to the linac

Yer(s) = ygr cos(:grs cos ¢ + ¢>> , (3.8.7)

where s is the distance along the accelerator, ¢ is the angle between the ground
wave and the linac, and ¢ is the wave phase.
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Fig. 43. The quadrupole motion in the three lowest frequency ground mo-
tion resonances where the phase advance per cell is 90”.

The response of the central trajectory is found from

L
ye(L) /ds]xl $)ygr(s)Rig(s, L) . (3.8.8)
0

Assuming the NLC scaling, where /iy decreases inversely with the beam energy
while 8 and the length of the drifts and magnets increase with the square root the
energy, this can be written

o gy v /e
Ye = (K1Lg)oygr, [ —+/Bf Z (-—i> cos (kgrsn cosd ¢>
s n=o N0

K,
[Kal

(3.5.9)
Bosin(vf — nipe/2)——

where s, and 7, are the position and energy at the nth quadrupole and K1/|K]
changes sign between focusing and defocusing quadrupoles. Using simple trigono-
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metric relations, we can express the time averaged value of yg as

cell 1( >1/4
n=0

2
x ei(kxr cos CDsn:!:m,bc)( /BO _ /Boei(k,r cos @Ln/Qitbc/Z))

where 5’0 and [i’o are the initial maximum and minimum beta functions, Nee is the

= (K:1L,) 2ygr’YO

(3.8.10)

number of cells, Ly is the length of the nth cell, and the sum over % is a sum over

both the sum phase and the difference phase.

In general, a sum of this form will exhibit resonances when kg cos L. & 1, =
27p, where p is an integer. In the NLC, the cell length scales with the square root of
the beam energy and thus the resonance only occurs over a short distance. One can
express the exact solution to this problem in terms of the Jacobi Theta functions;
unfortunately, these are no simpler to evaluate. Thus, to evaluate the sum, we will
use the method of stationary phase. In general, the method of stationary phase can

be applied to an integral of the form b

lz/dsf(s)e‘ff(s) : (3.8.11)

where f(s) is “slowly” varying and |g(s)| is large. The method approximates the in-
tegral assurning that the only significant contribution comes when g(s) is stationary

and vyields a result

,[ ~ f(SO tg(so)

5 (80) : (3.5.12)

where sg is the point at which the first derivative of g goes to zero and we have
assumed that ¢"(s¢) # 0.

To apply this method in our case, we simply note that the phase is stationary

whenever

kgr LC :’C u"c = 2”]) (p = 0, 1,2, M ') . (3.8.13)
Now, using the NLC scaling, Ey. (D. 1.7), and treating all of the resonances sepa-
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rately, we find a tolerance

2
(w?) 7 Ny tan d’c/‘.?:y_o-< Yer )
el ™ 2L3 Y \ kgr cos @

« S (@rp £ v (Vo - (—17/B0)”

res

(3.8.14)

where Lg is the initial cell length and the sum only includes the resonances encoun-
tered for a given wavelength.

Equation (3.8.14) shows that the long wavelength ground motion, which is res-
onant at the high energy end of the linac, is the most severe; the effect of any single
resonance decays inversely with the frequency. There are two reasons for this: first,
the adiabatic damping reduces the effect at the beginning of the linac, and second,
when the resonance occurs at the end of the linsc, the resonance condition includes

more cells than when resonance occurs at the front of the linac.

At this point, we need to examine the scaling of our result. Eq. (3.5.14) explicitly
depends inversely upon the cell length L3, implying that longer cells greatly reduce
the response to the ground motion. This is misleading. Using the relations

NaT; 1 Ly
N, S ko X ——mo— | X - , 3.8.15
¢ TG 87 Lo /7oy & sin e ( )
we find that the response scales as
]
Ye VY
(y2) o —& Y (3.8.16)

cos? ¥ [2 LoG

Although, the effect of the ground motion is still eased by using longer cells and
weaker focusing (larger beta functions), the dependance is seen to be much weaker.
Furthermore, the effect depends inversely upon the accelerating gradient.

Now, we can use Eq. (3.8.14) to calculate tolerances. Assuming a worst case
situation where the waves are parallel to thie linac, i.e., cos ¢ = 1, the first resonance
in the 500 GeV NLC linac occurs at roughly 2.5 Hz. To limit the closed orbit jitter
to 25% of the beam size, we find a. tolerance on this component of the ground motion

of 6nm. This is comparable to the effect of random jitter.

This tolerance will decay inversely with frequency until we encounter the next
resonance at 8 Hz. At this point,, the first lattice resonance must be included and
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Fig. 44. Response function R = |yjit/¥gr | for ground motion in the 500 GeV
NLC linac.

we find a tolerance for jitter of 7 nm at 8 Hz. Finally, this will also decay until we
find the next resonance at roughly 14 Hz. Here, we find a. tolerance of 5 nm for jitter
equal to 25% of the beam size. These tolerances are roughly a factor of twenty
tighter than the estimates found in Refs. 97, 98, and 99.

To verify these results, we have simulated ground motion in the 500 GeV NLC
linac. The response of the trajectory to the ground motion is plotted in Fig. 44,
where the response is defined as B = |ycrms/yg:]- Notice that, as predicted, there
is an obvious resonance near 2 Hz, another at 8 Hz and another at 14 Hz. Above
roughly 20 Hz, many resonances interfere and the higher frequency resonances are
not distinct. In the NLC linac, the final beam size is roughly 0.8 um and thus the
tolerances found from Fig. 44 are very close to our estimates from Ey. (3.8.14).

To calculate a tolerance on the ground motion, we need to multiply the response
function with the power spectrum for the ground motion. Instead, we simply note
that the response is roughly 40 for frequencies above 8 Hz. This implies a tolerance
of 5nm for all ground motion with frequency above 8 Hz and suggests that the
ground motion will be a severe limitation in the future linear colliders.

Of course, we should note that our model for the magnet motion is rather

simplistic. we have neglected the response of the magnet supports and we have
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treated the ground as an ideal material, without attenuation or inhomogeneities.
In addition, we have assumed the worst case, where the ground motion is collinear
with the linac. These effects should be included in future calculations; some will
ease the tolerances and some will make them tighter.

Finally, there are a few methods of reducing the tolerances. One is to use
feedback; we will discuss this in Section 3.S.5. In addition, one obviously wants to
strive for a low noise site; most of the high frequency ground motion is cultural
(man-made), and thus, it is highly site dependent. Furthermore, one wants to
choose a site where the phase velocity of the ground waves is large; although this
does not decrease the response, it shifts the resonances to higher frequencies where
the amplitude of the ground motion is smaller. Lastly, if the ground motion has a
distinct source, one can build the linacs perpendicular to the ground waves so that
cos ¢ =~ 0.

3.8.4 Power Supply Fluctuations

Magnets

We will estimate three effects of power supply fluctuations: random variation of
individual quadrupole power supplies, variation of a string of quadrupoles, assuming
multiple quadrupoles per power supply, and finally, random variation of the dipole
corrector power supplies. In all cases, we will only be concerned with the orbit offset
caused by the fluctuation and we neglect the effect of the filamentation.

In the first case, the equation for the orbit offset is

Ak
\ r
Ye = Z ( ]\,ll)1\1Lq:’/oﬁset.R12(3nasf) > (3-8'17)
n=0

where yofset IS the orbit offset in the yuadrupole. This equation is virtually identical
to Eqg. (3.S.3). Thus, for the NLC scaling, we find

N, AK?
W) ~ < W yﬁﬂset> : (3.8.18)
: 1

cos? ¢c/2

In the 500 GeV NLC linac, an rms power supply fluctuation of AK;/K; =104
leads to an orbit jitter of one quarter the vertical beam size, assuming 50 gm orbit
offsets and individual power supplies for each quadrupole.
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This tolerance can be eased by connecting multiple quadrupoles to a power sup-
ply. In this case, we start from an equation similar to Eq. (3.5.17) except that AK,
does not vary between quadrupoles. If the trajectory were purely random, this tol-
erance would be identical to the previous one. But, as discussed in Section 2.2.4, a
purely random trajectory in the quadrupoles will create a huge dispersion. Fortu-
nately, the orbit correction that reduces the dispersion will also reduce the effect of
the power supply fluctuations.

Finally, we need to consider the effect of fluctuations in the dipole corrector
power supplies. As mentioned in Appendix D, there are two possible configura-
tions for the dipole correctors: we could physically move the quadrupole magnets
or we could use electromagnets. Although, moving the magnets sounds more com-
plex, there are disadvantages to the electromagnetic correctors; the power supply
tolerances are one of them.

We will estimate a tolerance assuming that every quadrupole has an associated
vertical dipole corrector which is individually powered. In this case, the tolerance is

(v2)

Ny /M> (3.8.19)

N RENNE
where we have assumed that the strength of the correctors decreases with the square
root of the beam energy as does the integrated quadrupole strength.

In the 500 GeV NLC linac, assuming that maximum corrector strength must be
at least 2yofset {1 Ly, we find a tolerance of A8/8 = 5 x 1073 to limit the jitter to
one quarter of the beam size.

Accelerator Sections

Unlike the magnet power supplies, it is much harder to regulate the RF power
to the structures. Since, as described in Section 3.4.3, the RF sections deflect the
beam, RF power jitter can lead to vertical beam jitter.

The RF deflections can be expressed as in Eq. (3.4.35) and the effect of jitter in
the RF power can be written:

Aucc‘_l

AV (Ayre ) (7Y
Z (9 7) (——-— = , (3.8.20)

Tn If

(J

where A~gr is the energy gain per accelerator section, g is the longitudinal-trans-
verse coupling in the structure, and we have assumed the NLC scaling. At this
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point, we calculate the sum noting that < increases linearly with the number of

accelerator sections. This yields a tolerance

AV? > Bo  AYRF (3.8.21)

2 o 2
(yc) ’Vgrms< V2 270

where BE is the initial average beta function in the accelerator sections; see Ap-
pendix D.

In the 500 GeV NLC linac, we find a tolerance on the jitter of the accelerating
voltage of AV/V < 3% to limit the jitter to one quarter of the beam size, assum-
ing that grms = 31 prad which is the tolerance determined in Section 3.4.3. This

tolerance on the RF power jitter should be relatively easy to achieve.

3.8.5 Feedback

Obviously, these jitter tolerances are severe. One solution is to use feedback sys-
tems. Unfortunately, beam-based feedback in a linac is limited because the sampling
rate, which is determined by the repetition rate, is usually low. In general, a broad-
band feedback system is only effective at frequencies much less than f < frep/6. For
example, numerous beam-based feedback systems have been implemented in the
SLC.P Here, the systems have been optimized to respond to a transient. A typical
frequency and transient response are shown in Figs. 45 and 46 where the sampling
rate is 60 Hz. In this case, the crossover point, where the system response is 0 DB,
occurs at 2 Hz; this is at frep/30.

If this is extrapolated to the NLC, with a repetition rate of 180 Hz, we find a
crossover point of 6 Hz. This will not be sufficient to damp much of the ground
motion. Fortunately, in any portion of the linac, the ground motion response is
only resonant at a few narrow frequency bands. Thus, it may be possible to de-
sign narrow-band beam-based feedback systems that are effective at damping much
higher frequencies than the broad-band systems; in theory, one should be able to

damp frequencies approaching the Nyquist frequency with a narrow-band system.

Alternately, one can design an active damping system for each of the compo-
nents. Here, the sampling rate is determined by the component position detectors
and not the beam repetition rate. Although, such systems are currently available,
they tend to be expensive and complicated; developing systems suitable for a linear

collider is a current topic of research.
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Fig. 45. Frequency response for SLC feedback system: frep = 60 Hz; from
Ref. 55.
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CHAPTER 3.9
ADDITIONAL EFFECTS

In this chapter, we will discuss some additional sources of emittance dilution
that have been neglected. Specifically, we will calculate the effect of the direct space
charge field, synchrotron radiation, and scattering processes. In the NLC design,

these all have negligible effect on the beam emittance.

3.9.1 Space Charge

As discussed in Section 2.3.3, the direct space charge field contains a factor of
1/73 and thus the effects should decrease rapidly as the beam is accelerated. But,
the space charge field also depends upon the bunch density. This is increased by
the bunch compressions and by the adiabatic damping that occurs as the beam is
accelerated. Thus, the effect of the space charge field actually only decreases as
]L/'y2 and because of the bunch compressions, the space charge field is roughly ten
times more intense at the beginning of both the low and the high energy linacs than

in the damping ring.

Fortunately, these forces are still weak compared to the external transverse
focusing. Specifically, in the NLC damping ring, the space charge force caused
a relative tune shift of Avy/vy = -0.001. At the beginning of the low energy
linac, the space charge phase shift is Avy /vy = -0.013 and at the beginning of the
high energy linac we find Auy/vy = -0.007; this is comparable to the effect of the
incoherent energy spread and should not pose a problem.

In Section 2.3.3, we also estimated the effect of the space charge driven betatron
coupling resonances 2v, % 2vy when far from resonance. In a linear accelerator, the
horizontal and vertical phase advances are usually similar. Thus, in this section, we
will re-analyze the coupling assuming that we are near resonance. In the smooth
approximation without acceleration, the equation for the vertical motion can be
written

d%y

E;Eu*-kzy = Fy01y+Fy21:L‘2y , (3.9.1)

where ky = 1/8, and the coefficients Fy;; are defined in Eq. (2.3.10).
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In the flat beam limit, where the horizontal motion is not perturbed, we can
express Eqg. (3.9.1) as
d2y

72 + k:"’FyOI"FyZIJIﬁz - Fy 21 Jzfz cos(2sky + 20;) }/ —0 | (3.9.2)

where J, is the single particle invariant, , is the initial phase, and k; = 1/8,. This
is an example of Mathieu’s equation, also referred to as a parametric oscillator, and
it has a resonance when ky = k,, i.e., equal horizontal and vertical phase advances.

When close to the ky = k. resonance, the solution to Mathieu’s equation can be

written""

y = ae®® cos(sky + 61) + be™*" cos(sks + 02) | (3.9.3)

where a and b are constants of the vertical motion, ¢; and ¢2 depend upon «, 4.,
and the space charge force, and

1 2 *2 _ 1232
hzim\/A-—my k2R (3.9.4)

Here, A equals Fy 21 J- 8z and k;z includes all of the constant terms with the square
bracket of Eq. (3.9.2).

The vertical motion is unstable if « is real; one term grows exponentially. We

can express this stability condition as

Jzﬂx Avsc

2
(24 14

4A N, _ 4Avsc + 2Avsc JB:

2
v v v o;

: (3.9.5)

S !

where Avgc is the shift in the phase advance due to the space charge and Ay, =
vy —vg is the difference between the vertical and the horizontal phase advances. This
stability condition implies that it is desirable to have the vertical phase advance
greater than the horizontal by an amount in excess of the space charge tune shift.
By making the vertical phase advance greater than the horizontal, particles never
encounter resonance, even as J, increases; this condition is also noted in Ref. 7.5

where the problem is solved including the perturbation to the horizontal plane.

Now, to determine the severity the coupling, we need to calculate the growth

rate when on resonance. This is simply found from Eq. (3.9.4) and is given by
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k = A/4ky which is:
K
= 4/210,9% /=76y 0%

To find the expected growth, we need to integrate « over the length of the linac,

(3.9.6)

i.e., we replace e** in Eq. (3.9.3) with ef 2** This integral can be written

(3.9.7)

and L is the length of the linac.

In the NLC low energy linac, we find a maximum growth in amplitude of 30%
for a particle with Jz8: = o2; the increase in Jy of particles with larger amplitudes
Jz is greater. This is significant growth and indicates that we should stay far from
the resonance. In the NLC linacs, a difference in phase advances of 6° per 90° cell

should be sufficient to remove all growth.

Finally, we note that since this coupling is a potential limitation, at least in
higher current linacs such as the VLEPP design, the problem should be solved
properly. This could be done by solving the Vlasov equation and examining the
transient solution.

3.9.2 Radiation

Synchrotron radiation is emitted whenever the beam is deflected. Since the
synchrotron radiation is a source of stochastic noise and can lead to emittance
growth, the radiation could impose a tolerance on the trajectory offsets in the linear
accelerator. In this section, we will calculate the vertical emittance dilution due
to the opening angle of the radiation and the presence of vertical dispersion. In
addition, we will calculate the increase in energy spread due to the radiation. In all
cases, we will neglect the effect of the damping that is also due to the radiation; in
general, this will be small provided that the radiation comprises a small percentage

of the beam energy.

The effect of synchrotron radiation in a. transport line is discussed in Refs. 69
and 105. We will use the results of Ref. 105 to calculate the emittance dilution due

to the residual dispersion. In this case, the change in the vertical beam size is given
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L
2
A-(%l = Cy /dsE5|G3|Hy cos’ & (3.9.8)

y
0

where Cy = 4.13 x 10711 m?/GeV® and the phase advance is ® = 1y (L) — ¥,(s) -
tan™! (ay + Byny/my ). In our treatment, we will average over @ assuming that the

radiation is emitted uniformly. Thus, we find an emittance dilution

L
€y = %./ dsES|G*H, . (3.9.9)
0

Now, we need to find expressions for G and £ in the linac. We assume that the
trajectory is randomly offset in every quadrupole. Furthermore, we assume that the
dipole correctors are located at the quadrupoles. In this case, the angular deflection

at each quadrupole is given by

B —71 T3 —7T3

0= : (3.9.10)

Layise Layigy

where Lg;ig is the distance between quadrupoles and 7; is the radial position at three
sequential quadrupoles. This yields an rms value for the inverse bending radius Grms
of

2 \% rms + yrms

9
LqLdnft.

(3.9.11)

Grms =

where L, is the length of the quadrupoles.

Next, we use the scaling for the lengths and the beta functions discussed in
Appendix D; in the NLC linac they both scale with the square root of the beam

energy. Thus, we can express the integral as a sum over quadrupoles

2 E3E2(z rms+y§’ms)‘°’/2

, (3.9.12)
L3 Lisiteo

where we have assumed that the dispersion is random and has a constant amplitude

down the linac and the subscript ¢ denotes values at the beginning of the linac.
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Finally, we use Eq. (D.1.7) to express the energy as a function of the quadrupole
number and we assume Ny > 1 so that we can replace the sum with an integral
over the quadrupole number. This yields

(ny> (mrms + yrms)3/2
Bo Ll Lisne

Aegy = —CquEOEf (3.9.13)
In the 500 GeV NLC linac, we find that an rms vertical dispersion of 3 mm with
100 pm orbit offsets increases the vertical emittance by only 1%. This is a loose
tolerance; we need to keep the vertical dispersion below a few hundred microns for
other reasons. Furthermore, the relative emittance dilution only increases as Ei/z
and thus it should not become a significant limitation even at a much higher final
energy.

Next, we can estimate the emittance contribution from the opening angle. Using
the results of Section 2.2.3, we can express the emittance dilution as

1300

A =
v T 0

ds }G3!E5’fo . (3.9.14)

o\.l—

Following the procedure used to calculate the dispersive dilution and using the NLC
scaling, we find

_FAE 3/2
Aey = Co]\/ 50 0 > f ( rms T yrms) (3.9.15)
70 qu Lisito

In the 500 GeV NLC linac, the opening angle contributes a relative emittance dilu-
tion of 108 for 100 um orbit offsets; this is a negligible effect.

Finally, we can calculate the expected increase in the energy spread:

L
Co
Ac? = E?/ds]G3IE7 . (3.9.16)
73
With the NLC parameters, we find
AU? = gCquEOZ E;( rm:u'*' Yims) : (3.9.17)
L DLdnftO

In the 500 GeV NLC linac, this predicts an increase in the relative energy spread of
10~ which, again, is negligible.
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3.9.3 Scattering

So far we have neglected all of the scattering effects such as intrabeam and
Touschek scattering, ion trapping, and beam-gas scattering. These phenomena are
discussed in reference to the damping ring in Sections 2.3.1, 2.3.2, and 2.3.6. In
general, the cross sections of these effects are too small to be relevant for emittance
dilution in a linac and thus it is valid to ignore them.

As an example, we will estimate the transverse emittance growth due to elastic
beam-gas scattering. We start from Eq. (2.3.36) to calculate the rate the rms angle
is increased by the scattering. This yields

91 X 1
A'}’Ey = '/dS“;’ﬂ'ngasZ(Z + 1)7‘3—@}1 {In (_..ﬁ.) — __i‘ . (3918)
v Hmin 2

Strictly, fmax and Onmin are functions of «, but the dependence is weak and thus
we simply estimate the factor within the square brackets as 20. Furthermore, both 3
and ~ are functions of s. In the NLC linac, the beta function grows with the square
root of the beam energy and thus the integrand decreases as 7"%. We assume that
Yf 3> 70 and find

Bo

Avey = 1607 Lngas Z(Z + 1)rd
Ty gas ) Om

(3.9.19)

Assuming 5000 meters of linac starting at a an energy of 2 GeV and having a
residual gas of carbon monoxide with a pressure of 10~7 Torr, we find an emittance
dilution of roughly 1%. Furthermore, we need to remember that it is dominated
by the large angle scattering events; see the discussion in Section 2.3.6. This may
have implications for the collimation that will be needed, but it does not represent
a dilution of the core emittance.
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CHAPTER 3.10
ACCELERATION SUMMARY

In this chapter, we have discussed and evaluated most of the effects that can
dilute the vertical emittance during acceleration in a linac. The primary sources of
dilution are conservative dilutions and pulse-to-pulse beam jitter. The conservative
dilutions increase the projected vertical emittance by coupling the vertical phase
space to the longitudinal and horizontal emittances. This coupling does not actually
increase the beam emittance; in theory, it is always correctable. Unfortunately, in a
linac the dilution filaments, becoming extremely difficult to correct and effectively
equivalent to an emittance increase.

These conservative dilutions impose tolerances on the magnitude of coherent
betatron oscillations and the transverse alignment of the magnets, BPMs, and accel-
erating structures. We have derived analytic expressions to estimate the tolerances,
assuming that the linac is composed of FODO focusing cells that are scaled with
the square root of the beam energy and neglecting the filamentation; this is valid for
designs in the partial filamentation regime but will under-estimate the tolerances
for machines with strong filamentation. These derived expressions were used to

calculate tolerances for the NLC linacs and they were confirmed with simulations.

Tolerances for the 500 GeV NLC main linac are listed in Table 15. The tolerance
on a coherent oscillation specifies a tolerance on the BPM precision; currently, BPMs
with sub-micron precision are being developed. In addition, the dispersive dilutions
and wakefields set the alignment tolerances; without any form of special correction,
these are only a few microns. The beam-based alignment techniques may be able
to achieve such tolerances. Alternately, the emittance dilutions can be corrected,
provided that the correction is performed before the dilution filaments. We have de-
scribed two styles of correction: DF/WF trajectory correction and non-local bumps.
One can see, in Table 15, that these techniques can substantially ease the required
alignment tolerances. Of course, these tolerances are not final; detailed simulations
need to be performed including all of the error effects. But, the implication is that,
in a machine with weak filamentation, we can use correction techniques to ease the

alignment tolerances by roughly one order of magnitude.

The other important source of dilution is pulse-to-pulse jitter, which affects
both the beam centroid and beam size. We have estimated the centroid jitter, again
neglecting the filamentation; the beam size jitter is primarily due to filamentation
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Table 15.
500 GeV NLC main linac.

Chapter 3.10

Summary of conservative dilutions and tolerances in the

Source Tolerance Dilution} Aey,

Injected betatron oscillation | yo < 0.7 pm Dispersive| 6%
with BNS damplng Wakefieldl 0%
BPM and quad. misalignments | y,, < 4um | Dispersivel 6%
with I-to-l traj. correction Wakefieldl 3%
BPM and quad. misalignmenty y,,, < 50 pm Dispersive | 10%
with special correction Wakefield |10%
Acc. section misalignments ym S 4pum Wakefield | 6%
without correction RF Deflect. | 0%

Acc. section misalignments Ym S 50 um Wakefield |10%
with ND bumps RF Deflect. | 4%
Quadrupole rotations LO < 0.3mrad | 8 coupling | 6%

Table 16.

of the centroid jitter.

Summary of jitter tolerances in the 500 GeV NLC main linac.
Source Tolerance AL
Uncorrelated quad. movement Yjir S 5nm -3%
Correlated quad. movement at Yjie S Hnm -3%
frequencies f = 8 Hz | (wors case)
Quadrupole power supply jitter | AK /Ky $1074{-3%
RF voltage jitter AVIV 3% |-3%
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Tolerances are listed in ‘Table 16;

systems for the individual quadrupole supports.

they correspond to 3%
luminosity reduction. which is similar te a 6% emittance increase. The tolerances
on the power supplies are not severe, but the tolerances on the quadrupole vibration
are tight and may be diflicult to achieve. One may be able to use feedback to ease
the tolerances. Unfortunately, beam-based feedback will be difficult at the relatively

high frequencies, and thus, we may need to develop active and passive damping



Thus, to conclude, we note that the fundamental emittance dilutions are very
small. Instead, the primary sources of emittance dilution depend upon the alignment
tolerances and the pulse-to-pulse stability. Furthermore, in a machine with weak

filamentation, correction techniques can be used to substantially ease the alignment
tolerances.
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Chapter 4

CHAPTER 4
CONCLUDING REMARKS

Maay future linear colliders are calling for normalized vertical emittances of
vey = 3 x 10~® m-rad with aspect ratios €z/€y of 100. In this dissertation, we
have investigated the tolerances and fundamental limitations on generating and
preserving these very small vertical emittances; the results are then applied to the
NLC linear collider design.

We have considered sources of emittance dilution in only two of the major sub-
systems of the linear collider, namely, the damping rings and the linear accelerators;
we have neglected dilutions that can occur in the bunch compressors and the colli-
mation/final focus regions. Furthermore, we have neglected all multi-bunch issues;
the NLC design calls for ten closely spaced bunches and thus multi-bunch effects
are potentially very important and need to be examined.

We have treated these two subsystems, the damping rings and linacs, separately,
dividing this dissertation into two major sections. Although the driving physics is
the same in both regions, the sources of dilution differ in importance. Specifically,
in the damping rings, the main sources of emittance dilution are non-conservative
processes while, in the linacs, the primary limitations are due to conservative dilu-
tions and pulse-to-pulse jitter; detailed discussions can be found in the respective
summaries.

To conclude, we address the question: is it possible to generate and accelerate
bunches with vertical emittances of ve, = 3 x 1078 m-rad? The answer is certainly,
yes; in the NLC design, the fundamental limitations are much smaller. But, the more
important question, is it practical? The answer here depends upon the state of the
hardware. But, it does seem practical, although some advances in hardware will
be needed. In particular, to correct the emittance dilutions due to misalignments,
we will need BPMs that have micron precision (reading-to-reading jitter) and we
will need the ability to measure these beam emittances. In addition, we will need
to develop a (cost-effective) method of reducing the pulse-to-pulse jitter; this will
likely include feedback on the beam and the individual components.

Finally, we again note that dilutions in either the bunch compressors or the final
focus regions were not considered. Furthermore, we have not examined the limita-
tions due to multiple bunches and we have only considered the weak filament&on
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regime. All of these effects will increase the emittance dilution and need to be in-
cluded in future work. In addition, many calculations throughout the dissertation
were made using simple models which could be improved. This includes: the effect
of ground motion in both the linacs and the damping rings, the wakefields in the
damping ring, effects on the injected beam in the damping rings, the space charge
coupling in the linacs, and finally, detailed simulations of the correction techniques,

including “all” sources of error.



Appendix A.2

Appendix A
BEAM DYNAMICS: SURVEY

In this appendix, we will briefly review the dynamics in an e* /e~ accelerator.
Detailed derivations of the equations and discussions of the particle motion can be
found in any textbook on charged particle optics. Here, we will describe the salient
physics and provide the necessary definitions so that one can follow the body of this
dissertation. In particular, we will discuss the linear transverse and longitudinal
motion and then we will consider the effects of the synchrotron radiation. Finally,
we will discuss some of the issues pertinent to damping rings. The first portion
of this appendix, Sections A.1-A.5, is a summary of Refs. 23, 62, and 104 while
Section A.6 is mostly taken from Ref. 90.

A.1 COORDINATE SYSTEM

We will use a right-handed coordinate system: (z, y, s), where s is the distance
along the accelerator and = and y are the horizontal and vertical coordinates. We
always chose y in the upward direction and s in the direction of propagation; these
then determine the z direction. In addition, we will use the coordinate z to describe
the longitudinal position of particles within a bunch; z has the same orientation as
s, but it is referenced to the center of the bunch.

A.2 TRANSVERSE MOTION

In this section, we will describe the transverse motion of the particles in a
storage ring or transport line. We start by introducing the equations of motion
and separating them into a closed orbit, the first order energy dependence, and the
betatron motion about the central trajectory. Then we introduce the beta function,
the phase advance, and the single particle invariant. Finally, we describe the beam
ellipse which parameterizes a particle beam.

Equations of Motion

In a high energy accelerator, transverse magnetic fields are used to control the
charged particle beam. The primary components are dipole, quadrupole, and sex-
tupole magnets; pole and field profiles for these magnets are illustrated in Fig. 47.
Dipole magnets have a uniform field and are used to direct the beam trajectory
while quadrupole magnets have fields that increase linearly with distance from the
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Fig. 47. Accelerator magnets.

magnetic center and thus they provide linear focusing. Finally, sextupole magnets
and higher multipole magnets are used to correct nonlinear dependencies. In partic-

ular, sextupole magnets are used to correct the energy dependence of the focusing
due to the quadrupoles.

In an accelerator, the longitudinal motion within the beam, referred to as the
synchrotron motion, is usually much slower than the transverse. Thus, we can solve
the transverse equations while holding the longitudinal motion fixed; the compli-
cations neglected in this approximation are discussed in Section 2.2.6. With this
approximation and in the absence of synchrotron radiation and longitudinal accel-

. . . . . . [100)
eration, the equations of motion for a single particle can be written

:c"+(1—A)[(I(](s)+G2(S))x+ 5 (= —y?)| =

AG(s) + (1= A)Gee(s)  (a21)

y” — (1 - A) [I&l(s)J -+ 182( ):cy = (1 - A)Gyc(s) )

where the primes denote derivatives with respect to s, the azimuthal coordinate, and

A is the relative energy deviation: A = (p—pp)/p where p is the particle momentum
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and pg is the design momentum; to first-order A equals the more common parameter
8 = (p—pa)/po. In addition, G is the main horizontal guide field which is the inverse
of the local bending radius, Gz and Gy are the inverse bending radii of additional
corrector or error dipole fields, and Kj and K, are the normalized quadrupole and

sextupole fields:

€ 52133,

G(S) = —— = —B, Ki(s) = — 224 Ka(s) = —

p(s}) PO T po Oz

1 e 0B
Y (A.2.2)

S

With these definitions, positive Gzcyc causes a deflection in the positive z or y

direction and positive K7 corresponds to focusing in the horizontal plane.

At this point, we can separate the solutions into: (1) the on-energy (A = 0)
inhomogeneous solution, referred to as the central trajectory, (2) the first-order
energy dependence of the central trajectory, referred to as the dispersion function,
and (3) the homogeneous sclution which is referred to as the belairon motion. Thus,
T =z+61; +x 3 where X, is the central trajectory, 7, is the dispersion function, and
zg is the betatron motion, and the vertical motion is similar. With this substitution,
the equations for the central trajectory are:

" - 2 Ky, o 9
zi + (K1 + G”)ac + _2-(2:; —y;) = Gz

c

(A.2.3)
yQ’ - Kiye — Kozreye = Gyc

Next, linear equations for the dispersion function and the betatron motion can
be found by expanding about the central trajectory:

772 + (K1 + Gz)% + Ka(zens — ycny) =

. Ky
G ~ Gre + (K14 G¥)ze + —21(1,-3 - ¥z) (A.2.4)
77;’ - 1{1771/ - ]"2(950771/ + Yz ) = '—Gyc - Kiye — Koz cye

and
x'é +(1-A) [(Kl + Gz):r/g + Ka(zcxpg — ycyﬂ)} +AKz(nzzs— nyys) = 0

yg — (1= A) {'\’1 yg + Ka(yezp + wcyﬂ)} — AKy(nyzp + nzyg) =0

(A.2.5)
In this appendix, we will neglect the complications due to the sextupoles; these

effects are discussed in Section 2.2.

207



Betatron Motion

If we neglect the sextupole terms, the equations for the betatron motion are
similar to those of one-dimensional harmonic oscillators and can be expressed in an
analogous form:

zg = \/2JzB:(s) cos(Pz(s) + ¢2)

(A.2.6)
Yg =4/ 2JyBy(s) cos(Py(s) + ¢y) -

Here, J: y and ¢z 4 are constants of the motion, Bz,y(s) are the beta functions, and
Yz,4(s) are the phase advances given by:

f ds'
T =7 A.2.7
d) ,y(s) 0/ ﬂx,y(s ) ( )

In a storage ring, the beta function is chosen to be periodic but in a transport
line there is room for ambiguity since one needs to define initial values or boundary
conditions; we will discuss this further in Section 3.3.1.

Similarly, a storage ring has a well defined tune; the tune equals the phase
advance around the ring divided by 27:
¢’z,y(c) - ¢z,y(0)

Viy = o , (A.2.8)

where C is the ring circumference. The tunes are very important in a storage ring
since they locate the proximity of destructive resonances. In general, there is a
resonance whenever kg + lvy t myg = n, where k, 1, m, and n are integers and vs is
the tune of the longitudinal motion.

In addition to the beta function and the phase advance, there are two other
parameters that are used to describe a focusing lattice. For systems without accel-
eration, these are:

_1dBzy and _ 1+ ai,y

Note that one needs be careful since the symbols used to denote these functions
also refer to the transverse damping rates and the relativistic factor -y; the context
should clarify the meaning.
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Finally, we can also describe the linear betatron motion in terms of transport

(fv(s)) _ (1311(0,5) 312(0,5)) <$(0)) . (A.2.10)
z'(s) R21(0,5)  Ra2(0,s) z'(0)

This form is useful because the individual transport matrices can be constructed

matrices R:

directly from the linear lattice elements: drifts, dipoles, and quadrupoles, and then
multiplied together to form the transport matrix for the structure. We will fre-

quently refer to the Rj; and Eji2 matrix elements which, in terms of the lattice

Rii(s1, s2) = \/%\/Tg(cos Ay + aisin A¢)

Ria(s1,82) = /8182, /jisin At
72

Here, the relativistic factor 4 has been used to include the adiabatic damping that

parameters, are

(A.2.11)

occurs as the beam is accelerated. Adiabatic damping occurs because as the beam
is accelerated py increases while the transverse momenta remain constant. Thus, in
z-z' and y-y’ phase spaces there is damping since ' = (1 + Gz)p./po decreases. In
this case, the betatron motion is still described by Eq. (A.2.6), but the definition of
a must be changed to

= 1482y Baydy

apy = : A2.12
zy > s oo ds ( )

and the single particle invariant decreases inversely with the beam energy.

Central Trajectory and Energy Dependence

At this point, we can find the central trajectory about which the particles per-
form betatron oscillations. In a storage ring, the central trajectory is periodic and
is referred to as the closed orbit. In an et /e~ ring, the particles damp towards this

closed orbit. Neglecting the sextupoles, the periodic solution for z. is

s+C
V B:c s
)= S e Sj)/ V Bz(s") cos(¥2(5) — 4o (s) 4 m1p)Gro(s)ds' - (A.2.13)

zc(s

with an analogous result. for the vertical plane. In a transport line, the central

trajectory depends upon the initial conditions (zg, xg) Typically, these are chosen
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to be zero, in which case the central trajectory is
zo(s) = J \/ﬁx(s)ﬂz(sl)\/%gn(d’(s) — P(s"))Gae(s)ds' ; (A.2.14)
0

the trajectory is the integral of the Riz matrix element and the deflections Gy.ds.

Now, we can calculate the dispersion function 7z 4. This is the first-order change

of the central trajectory with A (or S). In a storage ring, we have the periodic
solution

s+C

oV Bz(s) / r , !
nz(s) = m J Bz (s') cos(¥z(s) —s(s )+7”/z) (A.2.15)

8

X [G—=Gzc + (K1 + Gg)xc] ds’

while in a transport line we have

nc(s) = / \/ﬁz(s)ﬂr(sl)\/% sin($(s) — () [G = Gae + (K1 + GP)z]ds'

(A.2.16)
where we have assumed that the initial values (nz0,7,,) are zero. Again, there are

analogous results for the vertical plane.

Finally, we calculate the variation of the phase advance with energy; this is
referred to as the chromaticity. As the particle energy increases above the design
energy, the focusing, and thus the phase advance, becomes weaker. In a storage

ring, the uncoupled chromaticity is

_dugy  F1
T dp/py 4r

(K1 — Komg) Bz yds’ (A.2.17)

where the integral is calculated around the ring and the (—) sign applies to ¢
and the (+) sign applies to &. Without the sextupoles, a storage ring naturally
has a negative chromaticity. This can lead to coherent instabilities and thus the
chromaticity is corrected to be zero or slightly positive with the sextupole magnets
located in regions of horizontal dispersion.
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Emittance, Beam Ellipse, and Machine Ellipse

So far we have only discussed the trajectory of a single particle. Actually, we
have a beam of particles which all have different amplitudes and phases. We quantify
the phase space volume occupied by the beam in terms of the normalized emittance
~e. The normalized emittance is a useful quantity because in a conservative system,
which a linear accelerator approximates, the six-dimensional phase space volume
(z, pz, Y, P., 2, AE) enclosing the beam is invariant. Furthermore, if the three degrees
of freedom are uncoupled, then the phase space area of each degree of freedom is
also conserved.

Throughout this dissertation, we will refer to the rms emittance. This is a
parameterization of the phase space volume using the second moments of the beam
distribution. If the forces are linear, the six-dimensional rms emittance is conserved
and, if the planes are uncoupled, each two-dimensional rms emittance is conserved.

In the transverse planes, the two-dimensional normalized rms emittance is equal to

ver = v/ lad)ah’) = (ape)’ (A2.18)

where the angle brackets denote an average over the beam particles. More generally,

the rms emittance can be expressed as the determinant of the beam matrix &:
ve = ydeta oi; = (zizj) , (A.2.19)

where z; are components of the vector: (z3, :v'ﬂ, Y8, y'ﬂ, z, 8).

The moments of the beam distribution, (x%), (m’ﬂz), and (.’L‘g:l:lﬂ), define the beam
ellipse in the x-x’ phase space that can be used to further parameterize the beam. In
particular, the area of the beam ellipse is related to the rms emittance as Area = 7e.
Furthermore, et /e~ beams usually have gaussian transverse distributions in which
case the beam ellipse describes a contour of constant density that encloses 39% of
the beam.

In general, we can express these moments in terms of the beam parameters o*,
* * .
B*, and v*:

2 _
(z3) = Brez (g ) =mrex  (zprl) = —afes (A.2.20)

where the beam parameters are similar, but not necessarily equal, to the lattice
parameters; the lattice parameters describe the focusing lattice while the beam
parameters describe the beam.
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Fig. 48. Beam and machine ellipses for an unmatched beam.

At this point, we introduce the machine ellipse. The single particle invariant,
introduced in Eqg. (A.2.6), can be expressed in terms of zz and :r'ﬁ the lattice pa-

rameters:

1 2
Jy = _2.[%1% + 20,a82p + BaTy | (A.2.21)

and Jy is similar. Thus, particles with constant J;y are distributed on an ellipse
in x-x’ phase space which is defined by the single particle invariant and the lattice
parameters; this is referred to as the machine ellipse.

In general, the beam ellipse is inscribed in the machine ellipse. If the beam is
matched to the focusing lattice, then the beam and the machine ellipses are equal.
In this case, the beam parameters are equal to the lattice parameters and we can

express the emittance in terms of the single particle invariant: €z y = (Jz y).

This parameterization is not valid if the beam is not matched to the structure.
In such a case, the beam ellipse is inscribed in the machine ellipse; this is illustrated
in Fig. 48. If all particles in the beam have the same phase advance, then the
beam ellipse rotates coherently within the machine ellipse, but if there is a spread
in the phase advance, the beam will filament and fill all of the machine ellipse and
there is a corresponding rms emittance growth; fila.mentation is discussed further in
Section 3.3.1.
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Finally, it is important to realize that the rms normalized emittance is not nec-
essarily conserved; filamentation is one illustration of this. In particular, nonlinear
fields or coupling can distort the beam ellipse so that the second moments do not
accurately reflect the phase space volume. Regardless, accelerators are fairly lin-
ear machines and the rms ernittance provides a useful measure of the actual beam
emittance.

A.3 LONGITUDINAL MOTION

Now, we need to discuss the longitudinal motion. There are two ways for the
particles to change their relative longitudinal positions: velocity differences and path
differences. The velocity difference between two ultra-relativistic particles leads to
a longitudinal position change of

2]
[

Az~ (A.3.1)

~
-

2

where §é is the relative energy difference, v is the relativistic factor, and s is the

distance traveled. When ~ is large: this tends to be a negligible effect.

The path length for a particle can be written

) R ) R

where we have assumed that the only significant bending occurs in the horizontal

plane. To first-order, only the curvature term is important and thus the path length
difference is

Az
z = \] —ds (A.3.3)
p(s)

where Ax can be due to a betatron oscillation or the dispersion. Notice that Az
depends upon the bending radius and thus the longitudinal position is essentially
fixed in a linear accelerator where p — oo.

The dependence of Az on the betatron amplitude couples the longitudinal plane
to the transverse. This will be discussed further in Section 2.2.6, but, on average,
the effect of a betatron oscillation is small; the betatron oscillation has a different

phase every turn and thus the eflect averages to zero. This leaves the effect of
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the dispersion which can be written: Az = banmC, where apn, is the momentum

compaction factor:

C
o, = IC ~1—/-’%ds . (A.3.4)
0

At this point, we need to discuss the radio-frequency (RF) acceleration system.
The RF system provides longitudinal electric fields that can accelerate or decelerate
the particles. In an e*/e™ ring, the RF system is needed to replace the energy
emitted as synchrotron radiation while in a linac the RF is used to accelerate the
beam. Usually, the system consists of resonant RF cavities that are powered by
microwave sources. Assuming a sinusoidal RF, the accelerating voltage across a
cavity can be written

Vrr = Vo sin wrpt | (A.3.5)

where wgrp is the RF frequency.

In a high energy linac, the longitudinal positions of the particles do not change
since there is no bending. Thus, the particle energy depends upon the longitudinal
position and the phase of the RF voltage seen by the beam; usually the beam is
being accelerated and it is placed near the crest of the RF voltage. We can express
the voltage as

Ver = Vo sin(zkprr + ¢s) | (A.3.G)

where kgr is the RF wavenumber and ¢s is the synchronous phase: ¢s = 7 /2 for
maximum acceleration.

In a storage ring, the situation is different. Here, wrf is chosen to be an integral
multiple of the revolution frequency. Thus, we can express the voltage seen by a
circulating particle as Vp sin(z(tn)kRF + ¢s) where t, is time at which the particle
passes the cavity on turn n. Thus, the change in z depends upon the energy and
the change in energy depends upon z. Since the changes per turn are very small,
we can write a differential equation for the longitudinal motion:

" Qo eVo . Om AErad
—— kprz =
s Ty sin(krp=z + ¢s) C B (A.3.7)
which we can express as
n Qm 6% Qm 6‘/0 . Qam AErad
bl N PRl N —m
z + ( C B, 'RF 08 %) G E, "RFSin ¢s + C L, (A.3.5)
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Here, A£},q is the average energy lost on one turn.

The r.h.s. of Eq. (A.3.8) determines the synchronous phase while the 1.h.s. de-
termines the synchrotron motion. If we linearize this and make a smooth approxi-
mation, which is valid because the synchrotron motion is slow, we can express the
synchrotron motion as

S
§(s) = by cos ('27”/3-6-; + ¢0>
(A.3.9)

z(s) =

2wy, C

3"16 bo sin (QWVsi + ¢o> )

where 6y and ¢ are the constants of the motion and v, is the synchrotron tune:

(A.3.10)
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A.4 RADI ATION DAMPING

When an ultra-relativistic particle is accelerated, it emits synchrotron radiation.
The emission of the radiation is intrinsically a quantum mechanical phenomena and
the time of emission and the energy of the emitted photon are random. However,
provided that the expected energy of the photons is small compared to the particle
energy, the photon distribution can be accurately calculated using classical electro-
magnetic theory. In this section, we will only consider effects of the average power
radiated. Thus, we neglect the discrete nature of the photons and treat the radiation
as a classical field that is emitted continuously; the quantum nature of the radiation
is discussed in the next section.

As the particles orbit the ring, they are deflected by the dipole magnets and
they radiate. The average power radiated around the ring _13; can be expressed

T062

o

P, = E*B%(s) (A.4.1)

m3c3

o

where m is the electron mass, £ is the particle energy, and B 15 the average value
of the magnitude of the transverse magnetic field squared.
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In general, particles with higher energies radiate more than particles with lower
energies. This leads to an exponential damping of the longitudinal phase space. The

longitudinal damping rate is

1 dAE _1dP,
AE dt  2dE

e = (A.4.2)

When evaluating the derivative of F-, we have to include three effects: the
dependence on the energy of the particle, the dependence on the revolution time
which varies with energy, and the dependence on the magnetic field which varies with
the orbit which is also a function of the energy. When all the terms are included
correctly, we find

Cy E3

a——~$ —7~—-G%

A4.3
- i Ty ; (A.4.3)

where C, = 8.85 x 1075 m-GeV ™3, Ty is the revolution time, and J is the longitu-
dinal damping partition number:

$n:G(G? + 2Ky)ds
$ Gds

TJe = 2 (A.4.4)

Note that o, is the damping rate of z or 6; the longitudinal emittance damps at. a

rate of 2c..

In the transverse planes, the radiation decreases the transverse momenta p, and

py and again leads to an exponential damping. In this case, the damping rates are

1 P, Cy E}
Qary = = jx,y;‘% = jx fG ds y (A45)

Tz,y 2L Yir

where J; , are the transverse damping partition numbers which, if the ring is built

in the horizontal plane, are

f n,C(G +2K1)ds
szds

T =1~ and Jy=1 . (A.4.6)

Notice that the sum of the damping partitions is a. constant: J, + Jz + Jy = 4.

{93]

This is a statement of the Robinson theorem ™ and is valid whenever a negligible

quantity of synchrotron radiation is emitted in regions where the external fields are

time dependent, i.e.,, the RF cavities'®”
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A. 5 QUANTUM Excrration""

The synchrotron radiation is actually emitted as a series of photons which change
the particle’s energy in discrete steps; the emission can be considered instantaneous
in comparison to the particle motion. Since the emission of a photon is a stochastic
process, the radiation will introduce noise which leads to diffusion. This causes the

beam emittances to grow until the diffusion is balanced by the radiation damping.

As discussed, the radiation damping is due to the mean synchrotron radiation
power emitted. In contrast, the quantum excitation is due to higher moments of the
photon distribution. We can express the synchrotron radiation power as the rate of
emission multiplied by the expected photon energy:

N{u) = Py(s) , (A.5.1)

where N is the rate of emission, u is the photon energy, and P, is given by
Eq. (A.4.1). To calculate the diffusion effects, we will need the second moment
{u?) which is

55 he
122\ 2
A<u)“—16\/§“m B(s)Py(s) . (A.5.2)

In the longitudinal plane, these fluctuations directly increase the energy spread.
The particles are performing synchrotron oscillations, obeying Eq. (A.3.9), and if a
particle emits a photon, the oscillation changes to

3

6(s) = bg cos <27r1/3—2; + 450) + 6,24 cOS (27”/30 + ¢md) , (A.5.3)

and the amplitude of the oscillation becomes: 62 = 63 + &2, ; + 2606;ad c0S( o — Grad)-
Since the time of emission is not correlated with the synchrotron phase ¢g, the

expected amplitude grows at a rate

d(8?)  N{u?)
dt —  E3

(A.5.4)

Now, we can find the equilibrium amplitude by equating the expected growth with

the radiation damping:

(A.5.5)

Finally, we average around the ring and we find the rms energy spread by aver-

aging over all of the particles. This introduces a factor of one half, yielding an rms
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energy spread and an rms bunch length of:

2 3

7% ¢ 1G°|ds amC

_y 1= 198 =2 A5
7. §G2ds 7= e (A.5.9)

o;
where Cg is nearly equal to the Compton wavelength of the electron: Cq = 3.84 x
10~13 meters.

In the transverse planes, there are two effects: (1) the transverse planes are
coupled to the longitudinal through the dispersion function and (2) the radiation
has a finite opening angle that gives the particle small transverse kicks. Here, we
will only discuss the horizontal plane; the vertical plane is discussed in Section 2.2.

In the horizontal plane, the effect of the radiation opening angle is insignificant
compared to the coupling due to the horizontal dispersion. When a particle radiates
a photon, it’s energy changes. Since the periodic trajectory around the ring is energy
dependent, this implies that the particle oscillates about a new central trajectory.
Furthermore, since the particle’s physical transverse position does not change, the
amplitude of the betatron oscillation must change. Specifically, if a photon of energy
u is radiated, the change in the betatron motion is:

u !
Azg = —Enz Arg = —41; - (A.5.7)

At this point, we find the change in the single particle invariant J;. Since the
photon emission is not correlated with the betatron phase, we find an expected

change
1 (u?)
(AJz) =5 I He o, (A5.9)
where
2
H, = 7;773 + 20’177177; + 5177; , (A5.9)

Now, the procedure is identical to that used in the longitudinal plane; we find the
equilibrium value by equating the damping with the diffusion and then average over
all the particles to find the rms value. This yields

7® §1G3| M. ds

:quz fGZdS

(A.5.10)

Finally, we need to discuss the equilibrium particle distribution resulting from
the synchrotron radiation. Many photons are radiated within a. damping time;
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roughly /100 photons are radiated per radian of curvature while the damping times
are usually many hundreds of turns. Thus, using the Central Limit Theorem and
assuming linear forces, we find that the equilibrium beam distribution is gaussian
in each of the six coordinates: (zg, m;@, yg, yk,z, S). Alternately, this can expressed

in terms of the single particle invariants which have exponential distributions:

Psr(Jzy) = — (A.5.11)

A6 DAMPING RING PARAMETERS

At this point, we will specialize to the case of damping rings. The two main
parameters of a damping ring are the equilibrium emittance and the damping times.
These determine the emittance of the extracted beam:

e(t) = e 4 (1~ 72Ty (A.6.1)

where ¢; is the emittance of the injected beam and ¢p is the equilibrium ring emit-
tance. Here, 7 is the horizontal or vertical damping time, and t is the time the
particle bunch is in the ring.

To illustrate the determination of these parameters, we will use numbers from
the NLC design described in Appendix B. The design requires that the extracted
beam have normalized emittances of ye; < 3 x 1078 and v¢, < 3 x 1078, Here,
we assume an injected beam emittance of ¢ = 3 x 10~3, which is realistic for a
positron beam and over an order of magnitude too large for an electron beam. Thus
the vertical emittance needs to be decreased by five orders of magnitude. Damping
the bunch for seven vertical damping times will reduce the first term of Eq. (A.6.1)
by six orders of magnitude; we damp excessively to ease the tolerances on the
equilibrium vertical emittance. The limit on the vertical equilibrium emittance of
the ring is then

vego < 2.7 X 1078 m-rad . (A.6.2)

In a storage ring built in the horizontal plane the vertical emittance is mainly deter-
mined by the coupling between the horizontal and vertical planes. The tolerances
necessary to achieve this limit are discussed in Chapter II.
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The damping times required in the ring are determined from the desired repe-
tition rate (360 Hz), the number of damping times per bunch (7}, and the number
of batches of bunches stored in the ring at once (/NVp):

< 1 Ny
e Ty = frep # of damping times

= Np0.397 ms . (A.6.3)

The maximum number of batches stored in the ring is limited by the Kickers needed
for injection/extraction. We assume that the time for the kickers to turn on, ex-
tract/Zinject a batch, and turn off is less than 100 ns”? Thus the batches must be
separated by at least 50 ns. Since the number of batches is roughly proportional to
the size of the ring we can define an effective damping time as

:rsep
Ty

Teff = T < 0.397ms , (A.6.4)

where Tj is the revolution time of the ring and Zsep is the separation of the batches.

In general, the horizontal damping time is less than or equal to the vertical,
Jz = 1. Thus, only the vertical damping time is limited by Eq. (A.6.3) and the
horizontal emittance of the extracted beam is very nearly equal to the horizontal
emittance of the ring:

~ezo < 3 x 1078 morad (A.6.5)

Equations (A.6.4) and (A.6.5) determine the basic parameters. Initially, to study
these parameters, we ignore the option of damping wigglers and reversed bending
magnets and we ignore the effect of intrabeam scattering. In this case, we can write

simple expressions for yezp and 7, e, the two quantities we want to minimize:

Toep  2.88 x 102 ey

= 1.69 x 10%¢ = A.6.6
Ty FGs ~  BlkC? AE8)
3
— 65T e H
€z0 = 384 x 107 B L gy = 27in e ABT
ew0 T : Tyeff T ( )

Here, GG g is the inverse bending radius of the bend magnets, H, is the average of
‘H. over the bending magnets, By is the magnetic field in kilo-gauss, and we have
assumed that J, = 1. Finally, Tsep is the batch separation which is determined by
the fast injection/extraction Kkickers.
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Equations (A.6.6) and (A.6.7) dhiow that the emittanceof a ring can be decreased
by reducing the dispersion in the bend magnets, reducing the strength of the bends,
or decreasing the energy of the ring. Unfortunately, the damping times are increased
by reducing the bend magnet strength or decreasing the energy of the ring. This
implies that the dispersion in the bends is the only free parameter. Unfortunately,
as we will see, it is also constrained.

At this point, we need to discuss three additional parameters which constrain
the design: (1) collective limitations, (2) the energy of the ring, and (3) the dynamic
aperture. In general, the collective limitations are eased when the momentum com-
paction factor oy, is large. For example, the threshold for the longitudinal microwave
instability, also called turbulent bunch lengthening, occurs at a bunch intensity

(ZW)B/Qangazam
e2c(Z[n)est ’

Nihresh ~ (A.6.8)
where (Z/n)eq is the effective longitudinal impedance. To maximize the charge per
bunch, one wants to reduce the impedance and increase the longitudinal emittance,
the beam energy, and the momentum compaction factor. Of course, the longitudinal
emittance is constrained by the linear collider requirements, and, as we will discuss,
the energy is also. Thus, this only leaves the momentum compaction factor which
needs to be maximized.

Next, we would prefer to have the ring energy low. There are several reasons
for this: (1) it keeps the ring cost lower, (2) it keeps the normalized longitudinal
emittance small, and (3) itmakes bunch compression easier. The NLC requires that
the damping ring bunch be compressed longitudinally by, roughly, a factor of 100.
Since one does not want an uncorrelated energy spread much greater than 1% in the
linac, we need to perform at least a portion of the bunch compression at an energy
10 times that of the damping ring. Unfortunately, at higher energies it becomes

more difficult to perform the compression without degrading the beam emittances.

Finally, we need to mention the dynamic aperture. The dynamic aperture of
the ring is a function of the sextupoles needed to correct the chromaticity. To
prevent particle losses the dynamic aperture should be many times the injected
beam size. Unfortunately, rings with small emittances tend to have high tunes and
large uncorrected chromaticities. This makes the desired dynamic aperture difficult
to achieve, and we would like to choose a focusing lattice which naturally has a large
dynamic aperture.
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Obviously, these constraints are not necessarily consistent with achieving the
required emittances and damping rates. For example, in the NLC design, the ring
energy must be greater than 2.2 GeV to achieve the damping, assuming iron magnets
(non-superconducting) with saturated magnetic fields of 20 KG; this is higher than
the desired energy. Fortunately, the damping requirements can be eased by using
damping wigglers, reverse bending magnets, or a pre-damping ring to reduce the
incoming emittance. In addition, it is common practice to use combined function
bending magnets to increase J, at the expense of J¢; this decreases the horizontal
emittance. Detailed discussions of these choices in damping ring designs can be
found in Refs. 13, 22, 36, 37, 90, 119, and 130.

o
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Appendix B
NLC DAMPING RING DESIGN

Details of the current NLC damping ring design are described in Refs. 90 and
91. In addition, Ref. 90 also discusses the considerations that led to the design.
Here, we will summarize the current state of the design. To do so, we first list the
original design goals and then we briefly describe the current lattice. Finally, we

will comment on a few of the potential limitations of the design.

B.1 OrRiaNaL DeEsiaN GoALS

ez $3x107 8 mrad  and ey $ 3 x 1078 mrad.

Operation at 360 Hz.

~e; = 3 X 10~% mrad @ injection — this necessitates damping for &~ 7 vertical

damping times.

Separate batches by & 50ns for the injection/extraction kickers.

e Minimize wigglers due to cost and non-linearity.

Leave more space between magnets than in the SLC damping rings.

e Achieve a conservative design.

Some of these goals are summarized in Table 17, which compares the goals of the
NLC damping ring with the SLC positron damping ring design. The primary dif-
ference between the two rings is that the NLC ring needs to achieve a vertical
emittance almost three orders of magnitude smaller than the SLC ring at twice the
repetition rate. To achieve this damping rate, the ring needs to damp many batches
of bunches at the same time. A single batch of 10 bunches is extracted on one
kicker pulse while the remaining batches continue damping and an additional batch

is injected to replace the extracted one.

The other main difference between the SLC and NLC damping rings is the very
small vertical emittance specified for the NLC ring. This small vertical emittance
sets limits on the alignment tolerances of the damping ring. While these tolerances
are small (50 — 100 pm vertical alignment), they are not thought to present a. serious

limitation.
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Table 17.

B.2 CURRENT

Basic parameters of the SLC and NLC damping rings.

NLC SLC

Energy 1~2 GeV|1.15 Gev

Injected emittance, ve; | 3 mmrad |10 mmrad

Extracted emittance, ve; | 3.0 umrad | 26 pmrad

Extracted emittance, ve, | 30 nmrad | 26 pmrad

Repetition rate 360 Hz 180 Hz |
Bunch length | 4-5 mm 5mm
DESI &GN

The basic layout of our current damping ring design is shown in Fig. 49. Notice
that there are several insertions which contain wigglers. In order to obtain the

high repetition rate, we increased the damping rate with the addition of wigglers in

straight sections.

48 Meters

oy

Injection/Extraction
Insertions

/\\

Wiggler
Insertions

)

11 FODO
cell arcs

50 Meters

Fig. 49. Schematic of the NLC damping ring

The basic parameters for the ring are listed in Tables 18, 19, and 20. The
lattice is a. FODO lattice with combined function bends which change the damping
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partitions, increasing the horizontal damping rate at the expense of longitudinal
damping. The RF frequency is 1.4 GHz since the bunch spacing in this example
is about 20 cm. To meet the repetition rate requirements, ten batches of bunches
must be damped at the same time. Unfortunately, this leaves only 45 ns between
the batches for the injection/extraction kickers to turn on or off.

Table 18. NLC damping ring parameters.

Energy Ey = 1.8 GeV
Length L = 155.1 meters
Lattice FODO with CF bends and

22 meters of wiggler

Tunes vy = 2437, vy = 11.27
Momentum compaction a = 0.00120

Design . 10 batches of 10 bunches

Current, of 2 x 101%* /e~

Tables 19 and 20 list the transverse and longitudinal ring parameters when
the damping wigglers are both on and off. The wigglers do not strongly effect the
emittances of the ring; they are primarily used to decrease the damping times. Thus,
the ring can operate without the wigglers at a reduced repetition rate.

Table 20. NLC damping ring longitudinal parameters.

Wigglers Off | Wigglers On

Radiation/turn, Up| 203 KeV 468 KeV
Energy spread, o, 0.00128 0.00104
Bunch length, o, 5.1 mm 4.6 mm

RF Frequency 1.4 GHz 1.4 GHz
RF Vol tage A5 MV 15 MV
Synch. tune, v, 0.0075 0.0068
(Z[n)esr 0.320 0.200
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Table 19.

NLC damping ring transverse parameters.

Wigglers Off | Wigglers On

Natural ve, 2.46 pmrad | 2.00 pmrad

vez at design current | 3.33 pmrad | 2.74 pmrad
Damping, 72 3.88ms 2.50 ms
Damping, 7y 9.19ms 3.98 ms

Damp. partition, J; 2.37 1.59

Rep. rate, frep 155 Hz 360 Hz

Extracted ez 3.33 umrad | 2.74 pmrad

Extracted vey 0.035 pmrad {0.029 pmrad
Natural chrom., £, -28.35 -28.07
Natural chrom., £, -25.10 -22.27

The threshold impedance ( Z/n).g is that for the microwave instability at the
design current. It is quite small due to the small momentum compaction factor, but
is only about a factor of 4-5 below that obtained in the SLC damping rings.

The magnet parameters are listed in Table 21. The bending magnets have a
length of 20 cm and a bending field of 13.1 KG with a horizontally defocusing gra-
dient of 300 KG/m. Preliminary POISSON calculations indicate that the gradient
and bending field are achievable, but the short length of the magnets may make

end-effects a serious difﬁculty.[asl

For this reason we have re-designed the basic cell. The original cell was a FODO
cell with small defocusing quadrupoles; much of the vertical focusing was done in the
bends. In the new cell, the defocusing quadrupole is removed and the two bends are
joined. Thus, the bending magnet now is 40 cm long — a more reasonable length.
In addition, we elongated the cell and inserted two extra small quadrupoles. These
(optional) additional quadrupoles provide another degree of freedom for control of
the tunes. The parameters of the two cells are compared in Table 22.

For our design, we chose a wiggler with a peak field of 24 KG, a 50% filling
factor, and a period of 20 cm. This is within 15%"" of the limits for Nd-Fe-B
hybrid wigglers as specified in Ref. 50. If such high peak wiggler fields are not

possible, the required peak field can be dropped to 21 KG by increasing the ring
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Table 21. NLC magnet and wiggler parameters.

Bends By = 13.1 KG
B; = 300 KG/m

Quadrupoles B; €942 KG/m
pole tip field £ 11.3 KG

Sextupoles |SF [ Bpds = -3120 KG/m?
SD [ Bads = 4125 KG/m?

Wigglers Length Ligta) = 22 m
Period A = 20 cm
Gap g¢g=2cm
Field Bpesx = 24 KG

Table 22. Comparison of basic cells.

Yég Leen | am for ring

Original FODO | 2.5 x 107¢ m-rad '2.4 ' 1.2 | 1.2 x 1073

JIx

Modified 2.5 x 1078 m-rad |1.9 | 15 | 0.8 x 1073

energy to 1.9 GeV. Although it would be possible to achieve much higher peak fields
with superconducting wigglers, it appears that the non-linear effects increase with
the cube of the magnetic field strength™”

Finally, the chromaticity is corrected with only two families of sextupoles. The
sextupoles are assumed to be constructed with permanent magnets and have lengths
of 4 cm, keeping the fields similar to the SLC damping ring sextupoles. After
chromatic correction, the dynamic aperture of the perfect machine is just outside
the beam pipe. Errors and wiggler non-linearities will reduce the aperture, but
hopefully, it can be recovered with a more sophisticated chromaticity correction
scheme. Obviously, extensive tracking is needed to determine the dynamic aperture
with errors and detailed comparisons with other lattices should be performed to
search for superior dynamic aperture characteristics.
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B.3 FUTURE NOoDI FI CATI ONS

The primary modifications to the ring arise from changes in the desired parame-
ters: first, the desired repetition rate has decreased a factor of two to 180 Hz because
of limitations on the position target, and second, more realistic initial emittances
should be used: yee- ~ 3 x 107> m-rad and 7yee+ ~ 10~2 m-rad. The electron ini-
tial emittance is comparable to that achieved in the current generation of electron
injectors while the increase in the initial positron emittance was suggested to ease

. . . {20}
the requwements on the p05|tron creation system.

The current design without the wigglers will easily achieve the necessary damp-
ing for the electron beam. In fact, one might want to decrease the damping rate
by decreasing the main bending field while decreasing the number of cells to keep
the emittance constant; this will reduce the size, cost, and complexity of the design.
But, the wigglers will be needed if a single ring is to achieve the positron require-
ments. The alternate, and more desirable solution, is to use a pre-damping ring to
rapidly damp the positrons to an emittance comparable to that of the initial elec-
tron emittance. Then, both the electron and positron main damping rings would

be similar. This is the solution currently being employed in the JLC design.[1191

B.4 LI M TATI ONS

The iimitations on achieving the vertical emittance in the damping rings is the
subject of Section Il of this dissertation. Here, we will briefly list a few of the other
potential problems that will likely be encountered when designing these future rings.

Dynamic Aperture

To achieve the required horizontal emittances, the damping rings have strong
focusing and strong sextupoles to correct the chromaticity. Unfortunately, these
sextupoles limit the effective aperture of the ring; particles with large amplitudes
are lost due to the nonlinear fields. There are two solutions to this problem: (1)
design a ring with large dynamic aperture, and (2) reduce the aperture requirements

of the incoming beam.

Increasing the dynamic aperture is currently a topic of considerable research. It
is an issue in most of the synchrotron light sources as well as many of the larger
colliding beam rings. It is suggested in Refs. 22 and 40, that substantial gains in the

dynamic aperture can be realized by using a discrete sextupole arrangement rather
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than the distributed arrangement that is common. This technique may prove to be
important for these future rings.

While increasing the dynamic aperture is desirable regardless, the second solu-
tion also has many attractive features. The large aperture requirement is dictated
by the incoming positron beam which has an initial emittance one-to-two orders of
magnitude larger than the electron beam. It was suggested that a pre-damping ring
could ease some the damping ring requirements.‘ss'ugl This has been incorporated
into the JLC design, where it is shown that, in addition to easing the dynamic aper-
ture and the damping requirements, a pre-damping ring also eases the tolerances on
the extraction kicker magnet.

Single Bunch Instabilities

The single bunch currents in the damping rings are not very large, but because
of the small momentum compaction factor and the small synchrotron tunes, single
bunch instabilities could present a problem. The longitudinal microwave instability,
which is discussed in Appendix A.6, usually has the lowest threshold current. To
avoid this benign instability, the rings must have longitudinal impedances (Z/n)eg ~
0.20-0.5Q. This is well over a factor of two smaller than that measured in the SLC
ring and requires a very careful vacuum chamber design.

Multi-Bunch Instabilities

In addition to the single bunch instabilities, there are multi-bunch instabilities
that may be severe since many of the designs call for many closely spaced bunches.
For example, there are ten batches of ten bunches in the NLC design. The batches
are separated by roughly 50 ns but the bunches within a batch are only separated
by about 1 ns. This has been investigated[m] and it was determined that the NLC
ring will need specially designed RF cavities. In addition, the ring will likely need
feedback systems to further control the instability.

RF System

In addition to multi-bunch instabilities, the NLC RF system will need to handle
five times more current than in the SLC rings. This requires careful attention to
the higher-order modes. Furthermore, when the bunches are extracted from and

injected into the ring there will be large beam loading transients that need to be
carefully considered.
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Fast Kicker Magnets

Fast kicker magnets are used to extract or inject the batches of bunches into the
damping ring. The kickers need to have very fast rise and fall times so that they
do not affect the other stored batches of bunches. The SLC damping rings use a 50
ns bunch separation, but the kickers are a source of problems. Currently, the JLC
design[”g] assumes a 70 ns batch spacing while the NLC and CLIC designs ool call

for a 50 ns and 22 ns batch separation, respectively.

The Kickers need to have flat pulses so that all bunches within a batch are
injected/extracted on the same trajectory. The jitter and flatness tolerances on
the extraction kicker are related to the kick needed to extract the beam, typically
2 5mrad, compared to the beam divergence oz ~ 20 urad. This implies a tolerance
of roughly A8/8 < 4 x 10™* for a. jitter of one tenth the beam size. Such a tolerance
will be difficult to achieve.

One suggested solution of easing this tolerance is to use two Kkickers, driven
from the same pulsed power supply, that are separated by 180° in betatron phase.
The first kicker would reside in the ring while the second kicker would be in the
extraction line; the second kicker applies exactly the same Kick, including jitter, to
the beam, removing the jitter from the first Kkicker.

Synchrotron Radiation Power

The damping rings operate by radiating extensive amounts of beam power. This
radiation has three effects: (1) it heats the vacuum chamber, (2) it can damage
the magnets and electronic equipment, and (3) it frees gas molecules causing a
“dynamic” background gas pressure which can increase the vertical emittance as
discussed in Section 2.3.6. All these problems are exacerbated at the damping
wigglers, which generate copious quantities of photons in a small region.
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Appendix C. 1

Appendix C
COUPLING DERIVATIONS

In this appendix, we will discuss two issues related to coupling of the emittance;
both are relevant to Section 2.2 of this dissertation. In the first section, we discuss
the independence of the various contributions to the wvertical emittance and then,
in the next section, we explicitly perform the algebra needed to derive some the
coupling formulas.

C.l | NDEPENDENCEOF CONTRI BUTIONS TO €y

In Section 2.2.2, we state that the contributions from the opening angle of the
radiation, the vertical dispersion, and the betatron and synchro-betatron coupling
are all independent and thus they simple add to the emittance/beam size: (y%)/ﬂy.
First, we will consider only contributions to the emittance, and then we will discuss
the contributions to the beam size.

There are three contributions to the vertical emittance: the opening angle of
the radiation, the vertical dispersion, and the betatron coupling; as discussed in
Section 2.2.6, the direct synchro-betatron coupling has a very small contribution
to the emittance. These effects increase the vertical emittance by causing random
changes in the betatron motion. These changes can be written

yg = ypo + nyu/Eo + cngu/Eo + c'nzu/Eo

C.1.1
vy = o + Oymu/ Eo + dnzu/ Bo + d'nfu/Eq (C.1.1)

where 8y is the opening angle of the radiation and the coefficients c, ¢’, d, and d’
represent the rotation of the eigenvectors due to the betatron coupling; these are
functions of the coupling coefficients ¢ +.

Thus, these contributions will add independently to the emittance if
(uby) = memye(u®) = nemye(u®) = pymye' () = nyd(w®) =0 5 (C.1.2)

we have assumed that all of the effects are independent of the initial position and
angle (ygo, y'ﬁo)' The first term is zero since the expected angle of the radiation is
zero, but the other terms are not as obvious since the expected value of (uz) is not
zero.
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In this case, we have to consider the average of n;nyc through all the bending
magnets; the emittance would depend upon this average. In general, 5, has a
periodicity determined by the lattice cells. Thus, 5z is constant from cell to cell.
In contrast, ny and the coupling have periodicities determined by the tunes. The
vertical dispersion oscillates at the vertical tune (or the integral portion) while the
coupling oscillates at v; + vy and vz — vy. Provided that vy # 2vy and vy # 2vs,
these averages will be zero. Thus, it is valid to simply add these contributions.

C.2 DERIVATION OF EQs. (2.2.65) AND (2.2.107)

In this section, we will derive Egs. (2.2.65) and (2.2.107) from Eq. (2.2.64). We
will only explicitly calculate the contributions from the individual coupling reso-
nances; these come from the cos(%z(z) — 1¥5(2")) cos(¥y(z) — ¥y(2')) term which is
found when one expands the trigonometric functions in Eq. (2.2.64). The deriva-
tion of the cross term is similar except one needs to include all of the trigonometric
functions; this is easily accomplished using exponential notation, but, because of
the large number of terms, the calculation is quite tedious.

First, we expand the square of the bracket in Eq. (2.2.64), keeping only the
terms that depend upon the differences of the phases ¥(z) and ¥(z'):

4;? %) //dz:L z)k ) .. cos(wy(z)—-l/)y(z')) Cos(z/;x(z)—#)z(z'))

(C.2.1)
where trigonometric identities have been used in the expansion. Now, we can use
additional trigonometric identities to express this result as

N / zi—z)azfc -3 ¢ ¥ 2
/ Sc E2 Zi:(/ dze(fw Yazfet+(z~s)ay/ /ﬁzﬂyk COS(¢’;¢ + d)r)\)

+

Zi

s
+(/ dzelzimslosletlz=levle, [a R T sin(y, + wz))

23y

]
(C.2.2)
where the sum over + represents a sum over the ¥, + i, phase and the ¢, — vy
phase.

Next, we can condense this into a single integral using complex exponentials and

we separate the integral over z into a portion over an integral number of turns of
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the ring and a portion over the remaining segment. Thus, the result has the form:

8 3 s—nC 2
/dz’U ] Z/dz,[z/dp... / dz...} . (c23)
—00 zi zi—nC
where . -. is used to represent the integrand. Explicitly, this yields
n-1 s
Z / > 7E—£2 (Zz) Z e~nc¥xTo Zej(a:—ay)TO—ijzx’AVi / qi(z)dz
+ 7=0 S-C
. 2
+e—nayTo—in21rAvi/qi(z)dz
I
' (C.2.4)
where
= /BBy ke’ ¥=E¥s) (C.2.5)

In addition, Avs+ = (vz = uy), Ty is the revolution time, and it was assumed that
the damping per revolution is small compared to the betatron tunes.

Now, we perform the sum over j. The expression within the absolute value signs

becomes
S

IRT JAN/E .
o (TA~T) f g(=)dz

2sinTAv
+ s—C

s
2
_*_e—nayTo——inZWAui /qi(z)dz

Zs

At this point, we can calculate the case where the local coupling is zero at

location s. When the local coupling is zero, the first integral over q is zero and we
are left with only the second term. Thus,

UZ(S)global —2nayTo / d=
By . SCE0

Now, we perform the final summation, shifting s — s + C, and assuming that the

qi(z (C27)

photons are radiated uniformly around the ring, this yields Eq. (2.2.107).
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If the local coupling is not zero, we can group the terms in Eq. (C.2.6) as

8
Y. JA VY
_ —na:To 1e'” / d)
l ¢ <Zsin7rAvi 9x(2)dz

8§—

irAv y S
- 3 i
+ e—na'yTo—WQ?f'AVﬂ: <i~.—_—. / qi(z)dz + / Q:J:(z)dz>

2sinTtAvy
S-C 2z

(C.2.8)
2

When the absolute value sign is calculated, the cross term will have an oscillatory
term due to the complex exponential. Assuming that 27 Avy >> a7y, this cross term
will go to zero when the final sum over n is performed. Thus, we are left with the

separate absolute values of the two terms in Eq. (C.2.8). The first term is simple;

the absolute value is
s+C

[ asteri:

After performing the final sum over n and substituting with the equilibrium emit-
tance, this yields the first expression in Eq. (2.2.65).

—2na,Tp 2

e

e e C.2.9
4sin’ 7Avy ( )

Finally, we have the second term of Eq. (C.2.8). Let us express this as

e—?nayTo

4sin’ rAvy

8 2y 2
(ici'erV:.‘: + 2 sin 7Z'Al/i> /qi(z)dz + 'OV / qi(z)d%

zi S-C

(C.2.10)
Next, we express the sine in exponential form and shift the second integral by C.
When we shift the limits by C, we have to include a phase shift of e?TBv Thys,
Eqg. (C.2.10) becomes

s zi+C
Z-e—nrAui/qi(z)dz_‘_ie—iﬂ'Avi f qi(z)dz

zZi L)

e-ZnayTo 2

—_— Cc.211
4 sin® T Avg ( )

Now, we add these two integrals and perform the final summation over 7; this yields
the second expression in EqQ. (2.2.65).
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Appendix D
NLC LINEAR ACCELERATORS

D.l BASIC SCALING

As illustrated in Fig. 1, the proposed NLC is to consist of two linear accelerators:
a preliminary linac that accelerates the beam from the damping ring to the final
bunch compression, and a main linac that then accelerates the beam to the final
energy. The current design calls for the main linac to operate at an RF frequency of
11.4 GHz with a large accelerating gradient. In contrast, the low energy linac would
operate at 2.8 GHz with a lower gradient; the low energy linac would be comparable
to the SLC linac.

The higher frequency RF is used in the main linac to reduce both the average
power consumption and the length of the linac. But, before the second bunch com-
pression, the wakefields in a high frequency linac would rapidly dilute the transverse
emittance; the transverse wakefield increases with both the bunch length and the
RF frequency. Unfortunately, the second bunch compression can not be performed
at low energy since the relative energy spread would then be the order of many
percent and the transverse beam emittance would be diluted by the dispersive and
chromatic errors.

Both the preliminary and main linacs are assumed to be constructed of FODO
cells that are scaled as the beam is accelerated. A basic FODO cell is composed of
a focusing quadrupole, a drift, usually filled with accelerator sections, a defocusing
guadrupole, and another drift section. An example FODO cell with lattice functions
is illustrated in Fig. 50. In the “thin-lense” approximation where the length of
the quadrupole magnets is neglected, one can find simple expressions for the beta

. 120, - - - . .
functions™” In particular, the maximum and minimum beta functions are

1 + sintp/2 s . l—sintc/2
Sn v, and g = Lc—Sin ™ ,

where L, is the length of the cell and % is the phase advance per cell. Finally, the

B =L (D.1.1)

cell length and the phase advance can be simply related to the integrated quadrupole
strengths as

_ 4
- I(l Lq|

L sinthe/2 | (D.1.2)

where K is the normalized quadrupole strength and Lg is the quadrupole length.
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Fig. 50. Lattice functions for a basic FODO cell; the solid and dashed
lines are Bz and By, respectively. QF and QD represent the focusing and
defocusing quadrupoles.

Alternately, we can use the beta functions to find the relations

|KiLy|(B — B) = 4tanve/2  and  [KiL,|(B+ B) = m:ﬁ . (D.1.3)

As the beam is accelerated, the normalized quadrupole gradient K; of a given
magnetic field decreases inversely with the beam energy. If the cells are not scaled,
the beta function will increase linearly with energy while the phase advance per cell
decreases. Since many of the tolerances depend upon the local value of the beta
function, this is not a. good choice. Instead, a scaling is typically chosen where the
magnetic field strength is kept constant, but the cell lengths and the quadrupole
magnet lengths increase with the square root of the beam energy.[m] Such a lattice
has beta functions that increase with the square root of the beam energy while the
phase advance per cell remains constant. Thus,

Ky = Ko 2 5=ﬂo\/l
Y Y0
Ly = Looy |~ Le=Leoy |-
70 Y0

This lattice has the advantage that it makes “optimal” use of the quadrupole

(D.1.4)
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magnets. Unfortunately, such a scaling will cause extensive complications because
every magnet, drift, and accelerator section is different. Instead, one could scale
the lattice in a number of small discrete steps to approximate the /4 behavior.
Regardless, we will adopt this scaling because it simplifies the analytic treatment of
the lattice.

At this point, we need to describe how this scaling is used. First, Eq. (D.1.4)
gives the basic scaling of the parameters. Furthermore, many of the calculations in
Section 11l of this thesis will involve sums over the quadrupole magnets having the

form:
Nq

> flwm) (D.1.5)

n=1
where N, is the number of quadrupoles and <. is the beam energy at the nth
guadrupole. To evaluate these sums, we will replace them with an integral

N,
/dnf(’y(n)) , (D.1.6)
0

which is valid provided that /Vy is large and y(n) varies slowly as a function of n.
Now, for the scaling derived above, y(n) can be expressed as
2
n - Ny
n)= - + () y where ¢= ————o D.1.7
v(n) <c VI ) = T (D.1.7)
This dependence of 4 on n will give slightly different numerical results than the
linear dependence implicitly assumed in Refs. 99, 98, 97, and 53.

Finally, we also need to describe our approximation of the wakefield deflections.
As discussed in Section 3.4.2, the dipole wakefield occurs when the beam travels
off-axis in an accelerator structure and it deflects the tail of the beam. In the two
particle model described in Section 3.4.2, the deflection of the tail particle can be

written
K]

Aby(s) = /ds’ yo(s' Y Raa(s', s)
0

s (D.1.8)

NroW,
Ayw(s) = /db’ 7'(()17 ch(S,)Rl'l(S” s )

0

NroW,,
v

where A8, and Ay, are the change in angle and position due to the wakefield.
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We will approximate this with a. delta-function deflection located at the center
of the structure where the deflection depends upon the average trajectory offset
through the structure. In this approximation, Af,, is calculated correctly but there
is a smaller error in calculating Ayy. At the end of the structure, Ay, should be

(D.1.9)

Ayw = L““( 2 + 12

NroWiyL YoLace y(')Lgcc
4~ ’

but our approximation neglects the y; dependence; this causes a small error when

calculating the effect of a random trajectory.

Table 23. Average beta functions for various cell phase advances.

e 38 ¥
60° | Lc/1.01]10.9°
75° | Lo/1.19 |12.2°
90° | L/1.34|12.8°
105° | Lo/1.41 |12.6°

Lastly, we need to know the beta function at the center of the structure. As-
suming the structure is centered between the two adjacent quadrupoles, we find

B—( Le ) Sin Ve D.I1IO
" \4dsing/ Lol +singe/2) (B.116)

where 7 is the phase difference between the center of the structure and adjacent
focusing quadrupole. This can be written

sin ¥,

tan?l;_ = :
4(1 + sin ¥e/2X1 — ﬂ%ﬁ)

(D.1.11)

Values of B and {b_ are listed in Table 23 for various cell phase advances. Notice that
the beta function at the center of the cell decreases as the phase advance per cell
increases. Also note that 3 is slightly different from the average beta: (ﬁ + B)/2,
although this is a commonly used approximation.
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Appendix D.2

Table 24. Parameters for the preliminary NLC linac.
Version 1 Version 2
Energy 1.8—-16.5 GeV |1.8—16.5 GeV
Gradient 20 MeV/m 20 MeV/m
Structure length 1.5 m 3.0 m
# of acc. sections, Ngec 500 250
Linac length 1000 m 900 m
# of cells, Neay 125 62
Bo 6.5 m 13 m
Bo 1.1m 2.2 m
Bo 2.8 m 5.7 m
Y per cell 86° 86°
1y per cell 94° 94°
Initial cell length 3Sm 7.6 m
Initial beam size, oy; 55pm 7.5 pm
Final beam size, oyf 3.0 pm 4.3 pm
Bunch length. o, 500 pm 500 pm

D.2 PRELIMINARY

LI NaC

The preliminary NLC linac will accelerate the beams after the first bunch com-

pression at 1.8 GeV to the second bunch compression at 16.5 GeV. In Table 24, we

list parameters for two versions of this linac which differ in the degree of focusing;
detailed parameters have not been determined yet.

Both linacs are assumed to be constructed of FODO cells that are scaled with
the square root of the beam energy as described in Section D.l. In addition, the
linacs are assumed to have an RF frequency of 2.8 GHz with accelerating gradients
of 20 MeV/m; this is similar to the SLAC accelerator structures.
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Table 25. Parameters for the main NLC linac.
Low energy High energy
Energy 16.5—250 GeV | 16.5—500 GeV
Gradient 100 MeV/m 100 MeV/m
Structure length 23 m 1.8 m
# of acc. sections, Ngc¢ 1000 2700
Linac length 2900 m 5700 m
# of cells, Ncen 210 380
Bo 9.5 m 7.5 m
Bo 1.6 m 1.3m
Bo 4.2 m 3.3 m
g [cell 86° 86°
Yy /cell 94° 94°
Initial cell length 5.6 m 4.4 m
Initial beam size, oy; 2.0 pm 1.7pm
Final beam size, oy 1.0 ym 0.7 pm
Bunch length, o, 100 pm 100 pm

D.3 MaIN LINAC

for discussion in this dissertation.

a/Arr = 0.20 are illustrated in Fig. 51.

parameters have not been determined.

[10)

240

The main NLC linac will accelerate the beams after the second bunch compres-
sion to the final energy. In Table 25, we list parameters of two linacs that are used
These are only illustrative examples; detailed

Both linacs are assumed to be constructed of FODO cells that are scaled with
the square root of the beam energy as described in Section D.1. In addition, it
is assumed that the linacs have an RF frequency of 11.4 GHz with accelerating
gradients of 100 MeV/m. Wakefields for an 11.4 GHz structure with an iris size
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Longitudinal Wake [V/pC/cm]

Transverse Wake [V/pC/cm?]

O | I S H I | 1 1. i l S I R | 1 L I I L O
0] 0.5 1 1.5 2
Time [psec]

Fig. 51. Longitudinal (solid) and transverse (dashed) wakefields for 11.4
GHz NLC main linac accelerator structure; the iris radius is a/Agr = 0.2.
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