
SLAC-94
UC-32, Mathematics and,

Computers
NW

SPL COMPILER

by

Daniel Ross

December 1968

Technical Report

Prepared Under

Contract AT(04-3)-515

for the USAEC

San Francisco Operations Office

Also supported in part by The Advanced Research Projects Agency of the

the Department of Defense and by Carnegie-Mellon University, Pittsburgh,

Pennsylvania.

Printed in USA. Available from CFSTI, National Bureau of Standards,
U.S. Department of Commerce, Springfield, Virginia 22151
Price: Printed Copy $3.00; Microfiche $0.65.

ABSTRACT

A compiler source language and internal organization are

described, which utilize program block structure to provide a

virtual memory capability for linked-list hie.rarchically struc-

tured data. A nonprocedural source language notation is intro-

duced, resembling conventional mathematical set notation, for

describing the search and selection of the members of subsets

of ordered sets. An algorithm is presented for the translation

of these statements into conventional compiler loop statements.

Some convenience features in compiler source language nota-

tion are introduced, including the ability for the compiler to

%tay in contexttl with the programmer. One partial implemen-

tation of the compiler is outlined.

CONTENTS

1
2
3
4
5
5.1
5.2
5.3
6
7
8
9

10
11
12
13

iz.1
14.2
14.3
14.4
15
16
17
17.1
11.2
17.3
17.4
17.5
17.6
17.7
18
18.1
18.2

18.3
18.4
18.5
18.6
18.7
1n.n
18.9
It). 10
18.11
18.12
18.13
18.14
18.15
18.15-l
18.15.2
18.15.3
18.15.4
18.16
18.16.1
18.16.2
18.16.3
18.17

Introduction
Comment Convention
Data Storage
Data Structures
Names or Data Constructs
Type Names
Local Names
Releasiny and Reserving Names
Structure Activity, and Virtual Memory
Structure-Pointing Atoms
Graphs and Terminology of SPL Trees
Staying in Context
Isolated Cells
Access Chains
Storage Assiynment
Initial Values
Creating, Erasing, and Destroying Constructs
Creating Constructs
Copying Constructs
Erasiny Constructs
Destroying Constructs
Program Elock Structure, BEGIN and END
Procedures
LOOPS
Explicit Loops
Implicit Loops
Search and Select Loops
Implicit Program Block Structure of Explicit Loops
CYCLE and LEAVE
Boolean Implicit Loops
Counting Elements
Translating Boolean Search and Select Loops
Definition of the Problem
Examples Demonstrating Some of the Problems Involved in

Translation
Developing a Chart
Developing a Graph
Interpreting a Chart to Determine Loops
Clustering S's About the Main Diagonal
Propagating Dependency
Shifting Data Atoms to Eliminate Unnecessary Nesting of Loops
Independence of Loops Executed Sequentially
mutual Dependency Among Nested Loops
EXISTS
Starting the Search at Some Other Element
Source Code Errors Not Detectable by Chart
Specifying order of Execution
Translated Code
Simple Loops
Clutual Dependency for Selection
EXISTS as a Selection Criterion
Conditional Statements Using EXISTS
Selecting All Elements
Interpretation of the word ALL
Restrictions on the Use of ALL
Representing ALL in Chart and Graph
Extension of Source Code Syntax for Boolean Search and Select

Loops

19 Connecting Elements of a Complex
20 Extensions to the Declarations
20.1 Definitions
20-2 Collections
20-3 Declaration Nacros
20-4 MoleCUleS
20.5 Compile-Time Procedures
21 Input/Output
22 Implementation
23 Models
24 Stack
25 Fields Within Local Names
26 Yhen Not to Activate Structures
2-l Bookkeeping Fields Within Structures
28 Table of Structure Locations
29 Structure Storage Area
30 Becursive Generator
31 Auxiliary Storage
32 Collections
33 Extensions and Modifications
34 Acknowledgements
35 Bibliography

1. INTRODUCTION

SPL is a compiler designed for the processing of heirarchically
structured data, The overall appearance of SPL source language, and the
internal representation or data formats, both are somevhat similar to
those of PL/l- But the detailed differences between the two source
languages and between the two data representations allow for
significant improvements and extensions of the data handling capability
of SPL over PL/l.

The applications for which SFL is particularly useful are those
vhich require a large amount of "pointer chasing". SPL originally was
designed as a language in which to write school class scheduling
prograns. In this application, the types of data structures needed (for
descrihiny the properties of students, classes, rooms, instructors,
etc.) are known beforehand, and may be declared at compile time. The
total amount of data that must be processed is nearly overwhelming --
perhaps 100 times the primary memory storage capacity of the computer.
Both bit-packing to conserve memory space, and a virtual memory
capability are imperative. But the conceptually difficult part of an
application program is expected to be the choice and understanding of
the complicated decision-making processes involved in the application.
SPL allows the user to concentrate his efforts on the decision-making
processes, by simplifying as much as possible the source code statement
of these processes, and by automating the system overhead considerations
such as bit-packing and virtual memory.

Same of the unique features of SPL are:
(1) Automatic control of all data constructs, even those which are used

in list Processing applications, via the program block
structure.

(2) A virtual memory scheme using some auxiliary storage device, such
as disk or drum. The scheme employs the program block
structure of (1) to predict vhen data should be retained in
primary core storage,

(3) A co-nciso source language notation for the programming of loops.
The loops may range over all the elements of a linked list, or
over a selected subset of those elements.

(4) A unified source language notation for data stored in either
tabular fcrm or linked list form, or in any one of the many
composite forms which include some table structuring and some
linked list structuring. The SPL programmer has the freedom to
change the organization of his data merely by changing a few
declarations at the beginniny of his program.

(5) Ability of the SPL compiler to **stay in context" with the source
lanyuage code being supplied to it, much as a person might

(6)
retain context between sentences of English prose.

Free storage recovery is performed in an orderly, directed manner.
It is known in advance the location and length of regions of
consecutive memory which are to be freed.

It is typical of applications such as class scheduling that the
rate at which data is created or destroyed is lov compared with the rate
at uhich the program shifts its "focus of attention" among existing data
constructs. The shifts of attention correspond yuite closely uith the
program block structure (1 above), whereas data creation and destruction
are relatively independent of program block structure. For these
reasons, sPL program block structure is used to control the focus of
attention automatically, while the user is given the responsibility of
creating and destroying data. See Section 6.

In addition to the above features, the design of the SPL compiler
led to an interesting theoretical study of a translation process: from
a nonprocedural source language statement of a search and selection
operation, into the backtrack code procedure necessary to execute the
search operation. The method developed here enables the translation of
a new class of compiler source language statements.

One of the major design considerations of SPL vas the development
of a very concise source language notation, which still would not
restrict the flexibility inherent in the use of linked list structures,
nor sacritice efficiency in program execution. New notations mere
devised to describe some of the most frequently occurring special cases
of more general operations. These special cases also could have been
described at yreater length without the neu notations. The concise
notation is most valuable where it allows a complicated process to be
described in a single source language statement. For example, an entire
loop usually can be described in a single statement, if the action to
be performed within the loop can be described in a single statement.

The goal has been to reduce confusion by reducing the number of
statements in the source code. However, every effort was taken to avoid
introduciny cryptic abbreviations of common English words, merely to
reduce the number of source string characters that must be typed. Each
implementation ot SPL is free to adopt its own set of abbreviations, as
long as the unabbreviated words also remain valid. The declaration
NO ABBREVIATION appearing in the source code prevents SPL from
recognizing the abbreviations peculiar to a particular implementation.
The strings which otherwise would be translated as abbreviated reserved
words, then may be used as names.

A sufficiently large part of the grammar of SPL is context-
sensitive, so that it is inappropriate to describe SPL in a metalanguage
such as Backus-Naur Form. ho metalanguage has been developed to date
which achieves the required goals of accuracy, clarity, and economy of
notation in describing context-sensitive grammars. The only
alternative, and the one taken in this paper, is to describe the
language by exaaFle.

2. COBHENT CONVENTION

Comments may be embedded anyuhere within SPL
comments are delimited by two "less than" symbols
"greater than** symbols on the right. Example:

<<This is a comment.>>

source code. The
on the left, and two

Source code containing comments is translated by deleting the
comments and the "less than" and "greater than" symbols. The character
immediately to the left of the first "less than" and the character
immediately to the right of the last "greater than" are translated as
though they were adjacent.

3. DATA STOBAGE

SPL data may be stored in either of two organizations of memory.
One of these organizations consists of "data structures", the other of
V1isolated cellsqO. The ditference between the two organizations lies in
the way they respond to the SPL program block structure (the equivalent
of BEGINS and ENC.5 in ALGOL-60).

Data structures must be created and destroyed explicitly by the SPL
programmer. The duration of existence of data structures is independent
ot the program block structure, but the number of paths by which data
within structures can be accessed, is determined implicitly by the
program block structure. Any type ot data for numerical or nonnumerical
processing, including arrays, may be held in data structures. All data
used in list processing must be held in data structures. The virtual
memory capabiiity of SPL applies only to data structures.

Isolated cells are created and destroyed as program execution
enters and leaves the outermost blocks in which the isolated cells are
mentioned. In this respect, isolated cells correspond to the variables
of ALGOL.

Where there is no possibility of contusion between data structures
and program block structure, data structures sometimes may be called
just i'structures*~.

4. DATA STRUCTURES

The format of each type of data structure to be used in a program
must be declared at the beginning of the program. During execution of
the program, there may simultaneously exist several instances of each
declared type of data structure, For example, if a data structure of
type HOUSE has been declared, there may exist instances of houses at
107 Main St., 221 Elm St., and 999 Skid Row. The amount of variability
allowed between instances of the same declared structure type is shown
by example. Fig. 4-1 shows the declaration of structure type HOUSE
and the conceptual representation of an instance of a house.

Referring to Fig. 4-1, a structure consists of V*atomst8 and
*tcomplexeslq, Each atom in the structure is a single-valued attribute.
Its value may be a number [STREET NUBBER), an alphanumeric string
(STREET NAFlE), a Boolean truth value (GARAGE), or a pointer to an
instance of some declared structure type (HOUSE ON LEFT). The
declaration or an atom includes the maximum size for the data contained
in the atom, except for those atoms which point to other structures.
The declaration ot a structure-pointing atom includes specification of
the type of structure being pointed to. See Section 7.

Each complex in the structure is a multi-valued attribute, all of
whose values are of the same declared type. Each one of the values of a
complex is called an "element" of the complex, The declaration of a
complex consists or the word COMPLEX, followed by the type name of the
complex, followed by the declaration cf an element, in parentheses. The
number of elements in a complex may vary dynamically during program
execution -- for example, the number of elements in PEOPLE IN ROON. It
can be seen that an array, as used in ALGOL, is a special case of an SPL
complex, Further discussion of complexes appears in Section 19,

It is necessary to distinguish between structures and elements for
reasons of storage allocation. This is explained in Section 6,

5” 3. RELEASING AND RESERVING NA?lES

Local names may be released explicitly by RELEASE
statements. Example:

RELEASE CURRENT RCOfi

Any local name which has not been released explicitly, is released
implicitly when program execution leaves the block in which it was
assigned- See Section S-2.

If a local name must be used outside the block in which it was
assiyned, it must be reserved in an outer block. The reserved local
name is not implicitly released until program execution leaves the block
where it vas reserved. Example:

:::?:{ E{ &RENT "Of'! := ELEMENT Eps ROOMS Eps HONE;

L ----

c-
LENGTU Eps CURRENT ROOM <-- 23;

-I___
Programmers vriting SPL code should rarely, if ever, have occasion

to reserve local names. However, the SPL compiler itself often causes
local names to be reserved. Programmers must understand the meaning of
reserving a local name, in order to understand the semantics of certain
other source language statements.

6. STRUCTURE ACTIVITY, AND VIRTUAL MEHORY

Typically, computer programs are considered well-organized if they
are divided into some sort of functional segments, uhere any one segment
does not need to access all the data *'simultaneously". During execution
of some functional segment, only the data accessed by that segment need
be in core memory. The remaininy data can be stored on some auxiliary
memory device, such as disk, where direct processing of the data is not
possible. This opens the possibility of a program processing more data
than can be stored in core memory, provided that (1) there is a way of
bringing the data into core memory when it must be processed, and of
freeing the core memory space that the data occupied when that
processing is ComPleted, and (2) there is an access function which can
address every existing item of data uniquely. If storage allocation and
addressing can be accomplished automatically, so that a programmer never
explicitly writes code for these functions, then the program may be
written as though the computer had a "virtual** memory which is larger
than its actual core memory.

‘ihe virtual memory scheme in SPL is accomplished by introducing the
concept ot "activity", which is applied to data structures. Data
structures are the basic units of storage allocation, in the sense that
any given instance of a structure either is entirely in core memory or
entirely in auxiliary storaye (disk), It is this property which
necessitates distinguishing a structure trcm an element of a complex.

iihenever a structure or any construct within a structure is
accessed, the entire structure automatically is brought into core
memory, if it is not there already. The core memory space which the
structure occupies is taken from some other structure which is not being
processed by the currently executing functional segment of the program.
The other structure is moved to auxiliary memory and its core memory
space is freed autcmatically by SPL. SPL decides which structures to
move by classifyiny the structures in core memory as either active or
inactive; inactive structures may be moved when their space is needed.

Stored in a special bookkeeping area in each structure is an
activity count, which is incremented by 1 each time a local name is
assigned tc any construct within the structure, and decremented by 1
uben the local name is released. Any structure with a positive activity
count is active.

The activity count also may be incremented and subsequently
decremented automatically by SPL, when for certain reasons it becomes
necessary to hold a structure in core memory, even though the programmer
did not assign a local name.

Since the location where a structure is stored may be changed from
time to time, all references to the structure are indirect; they index
into a table of structure locations which is an intrinsic part of SPL.
Every currently existing structure is uniquely identified by its index
number in the table of structure locations.

The assignment ot a local name makes the structure
active, and consequently immovable; accesses via local names
Point directly to core memory locations.

7. STRUCTUi3E-PCIHlING ATCMS

An atom belonging to one structure may contain a pointer to another
structure. The pointer consists of the index number of the structure
being pointed to, It is independent of structure activity. There does
not exist in SPL any type of atom which points to constructs other than
structures; this restriction is imposed by the SPL storage allocation
scheme, Except as stated at the end of this section, instances of any
one type of structure-pointing atom are restricted to pointing either to
instances of a sirgle type of structure, or to nothing at all. A
structure-pointing atom which points to nothing at all contains the
constant 0. In Fig. U-1, OCCUPAN'I, HOUSE ON LEFT, and HOUSE ON RIGHT
are structure-pointing atoms. An example of a data reference using a
structure-pointing atom is:

IF COLG6 Eps HOUSE ON LEFT Eps HONE = COLOR Eps HONE
TBEN GO TO TRACTHOUSES:

In the absence of further notation, an ambiguity would arise in the
interpretation of

NEIGHBCR := HOUSE ON LEFT Eps HONE

Is the local name NEIGHBOR assigned to the structure-pointing atom, or
tc the structure pointed to by that atom? The question is significant
only in determining which structure becomes active. The possible
aab-iguity is resolved by saying that, in the above situation, the local
name is assigned to the structure-pointing atom, A dot meaning
"contents of structure-pointing atom" indicates that a local name is
assigned to a structure:

NEIGHBOR I= . HODSE ON LEFT Eps HORE

The restriction that all instances of a single type of structure-
pointing atom must point to a single type of structure, enables the
compilation of accesses to the structure. Uhere compilation of accesses
is not necessary, the restriction may be relaxed. Certain system
functions provided by SPL are rundamentally interpretive in nature.
These functions cttain the information about the type of a structure
from a private bookkeeping area within the structure itself. Included
among these functions are copying, erasing, destroying, and printing the
entire contents of a structure- If an SPL programmer can guarantee that
the only accesses of the contents of some declared type of structure-
pointing atom (let it have type name GARBAGE, for example) are for
interpretive functions, then he may let instances of this single type
(GAHBAGE) of structure-pointing atom- point to various types of
structures, This is shown in the declaration of the atom by using the
word STRUCTUXE in place of the type name of a structure:

ATCB GABBAGE [STRUCTURE);

a, GRAPHS AND TERKINOLCGY OF SPL TREES

Each declared SPL structure type forms a tree, if the COntents of
structure-pointing atoms are ignored. Each instance of a structure also
terms a tree, which is closely related to the tree formed by the
structure type declaration. Where it is necessary to distinguish
between them, we may call them type-trees and instance-trees.

Pig. 8-l shows a graph of the type-tree for the example
structure declared in Fig- U-l- In Fig. R-1, STREET NUMBER,
S'IREET NARE, COLCFi, RATERIAL, FRONTAGE, ROCKS, SIDE OF STREET, HOUSE ON
LEFT, ROUSE ON RIGHT, and,GARAGE are called "siblings" of each other.
USE, LENGTH, YIDTH, FURNITURE, and PEOPLE IN ROOM are siblings of each
other. ITEfl NABE and COST are siblings of each other, but not siblings
ot OCCUPANl. The "first-order ancestorm of COST is ELEMENT Eps
FURNITURE, the "second-order ancestor" of COST is FURNITURE, the
"third-order ancestor" of COST is ELEMENT Eps ROOKS, etc. The "first-
order descendant" of ROOHS is ELEMENT Eps ROORS, etc. The structure
pointed to by a structure-pointing atom is not considered a descendant
of the atom-

Referring back to Fig. U-l for a graph of an instance-tree, the
atoms containing LIVING, 35, and 25, and the two complexes dravn
beneath them, all are siblings of each other, but are not siblings of
the atom containing KITCHEN. Elements of the same complex, drawn
connected together with arrows, are siblings of each other.

It can be seen that a type-tree is isomorphic to an instance-tree
in which each complex has exactly one element.

9, STAYING IN CCNTEXT

It an SPL programmer does not fully qualify a data reference in his
source code, the SPL translator still may he able to fill in the
remaining qualification needed to make the reference unique. For
exaffiple, ii the source code is:

STREET NUflBER Eps HOME <-- 107;
STREET NARE <-- 'NAIN ST.' ;
COLOR <-- 'RED';
MATEEIAL <-- 'BRICK';
FRONTAGE <-- 65 ;

the translator interprets the code as:

STREET NUMEER Eps HOME <-- 107;
STREET NAME Eps HO#E <-- 'NAIN ST.‘;
COLC6 Eps HCME <-- 'RED';
8ATEBIAL Eps HOME <-- 'BRICK';
PAONTbGE Eps HOME <-- 65;

The ability of the SPL translator to stay in context uith its
source code allows the programmer to use a more concise notation than
fully qualiried data references. The concise notation is allowed only
in data references vhose meanings are "obvious", making any additional
qualification ~4s"perfl"ousn,
"s"pecfl"o"s"

The exact interpretations of "obviousn and
are described below, but the general approach taken in the

desiyn of SPL is to be rather conservative.
in simple situations,

SPL attempts to be helpful
vithout interpreting the "obviousn so liberally as

to introduce spurious source code errors.
SPL maintains a first-in, first-out list, of limited length,

containing the names of constructs most recently scanned in the source
code. If an inCOmpletely qualified name appears in the source code, the
translator tries to match it with the names
descendants,

of siblings and first-order
taken from the type-trees of the construct names already

appearing ia the list. Although the storage of construct names into the
list is first-in, first-out, the searching of type trees is performed
first on the construct name most recently stored into the list.

Also, if intermediate qualification is missing but the type can be
determined uniquely,
tion, For example,

SPL automatically supplies the missing qualifica-
if the source code is:

COST Eps HONE <-- 200;

the translator interprets the code as:

COST Eps ELEMENT Eps PUBNITURE Eps ELEPlENT Eps ROORS Eps HOME <--
200;

10. ISOLATED CELLS

At certain places within a program, it is convenient to store data
temporarily in some buffer area that is not associated with any
stsuctv1Te. The locations used for this mode of storage are called
"isolated cells", They may be used for the storage of numeric, alpha-
numeric, or Boolean data, but they nay not be used for the storage of
pointers to other constructs. Local names and structure-pointing atoms
are used for this purpose.

The duration ot existence of isolated cells is determined by the
program block structure. Each isolated cell is created when program
execution enters the outermost block in which the cell is mentioned, and
destroyed when program execution leaves that block-

Isolated cell names are unqualified (that is, they do not use
"Eps") , since isolated cells do not belong to any other construct. The
compiler decides that a name appearing in the source code refers to an
isolated cell, if the name is unqualified, not a local name,
and the search for additional context (described in Section 9) fails.

A type declaration may appear with the first use of an isolated
cell- Example:

PI := REAL <-- 3-1416;

In the absence of a declaration, the isolated cell assumes the type of
the first data stored into it. Example:

RUG LENGTH <-- LENGTH Eps ELENENT EFS ROONS Eps HORE;

Consistent with the declaration in Fig. 4-1, the isolated cell RUG
LENGTH assumes the type UNSIGNED INTEGER with a maximum value of 40.

'Ihe possible types of isolated cells depend to some extent on the
hardware implementation of SPL, but include at least:

UNSIGNED INTEGER
INTEGER
BOOLEAN
ALPHANUMERIC
REAL
CONPLEX

It the hardware permits, they also may include:

LONG REAL
LONG COMPLEX
DECIRAL

11. ACCESS CHAINS

Source code FhraSeS such as:

LENGTH Eps CURRENT ROOM := ELEIENT Eps ROOMS Eps HOME

are called "access chains". The example above is the access chain "for"
a particular instance of atom LENGTH.

Access chains have slightly differing forms, depending upon where
they appear in SPL code. As specifications of formal parameters to a
procedure, they must have a local name assignment on the left, no other
local name assignnents vithin the access chain, the type name of a
structure on the right, and they must not "pass throuyh" any structure-
pointing atoms. Example:

PROCEDURE FRCCl := USE Eps FLEKENT Eps ROOMS Eps HOUSE
(FURN := FURNITURE Eps ELEIIENT EFS ROOMS Eps HOUSE;
HORE := HCUSE);

Uhen used for the access of some instance of a construct, without
creating any new constructs, access chains must have a local
name on the right. Example:

LENGTH Eps CURRENT ROOR := LLEl'lENT Eps ROOMS Eps HONE <-- 23;

when used for the simultaneous creation of a structure and the access of
scme construct vithin the structure, access chains must have the type
name of the structure on the right. Example:

HUE := COLOR Eps HONE := HOUSE <-- 'GRAY';

1.2, STORAGE ASSIGNBENT

The usual syntax for data storage assignment is:

However, SPL has alternative syntaxes for certain frequently occurring
special cases. The syntax:

~DESXINATION] +c- /EXPRESSION] -

may be used if the programmer can guarantee that the destination field
contains 0 (if it is numeric) or blanks (if it is alphanumeric), SPL
can compile better code for the double left arrow than for the single
left arrow, since it is not necessary to compile the instructions for
masking and saving the contents of fields adjacent to the destination
tield. Since double left arrows restrict the flexibility for future
recoding, they are recommended only tar improving the efficiency of the
innermost nested loops.

Another alternative syntax:

indicates a swap of the contents of the two destination fields. The
fields must contain the same type data and be of the same size.

The word SANE may be used in place of the expression in a storage
assignment statement, if the immediately preceding statement also is a
storage assignment statement containing an exPression or SAME. Example:

LENGTH Eps CURRENT ROOR := ELEMENT Eps ROOMS Eps HOME <-- 20;
YICTH EFS CURRENT ROOf9 <-- SAIIE;

The previously evaluated expression is stored a second time as a result
of using SAME.

13- INITIAL VALUES

Data atoms may be declared to have constant initial values.
Example:

ALPHANUMERIC ATOM COLOR INITIALLY 'YHITE' (6) ;
ALPHANURERIC ATOM BATERIAL INITIALLY 'VI000 (5);
ATOM FRONTAGE INITIALLY 50 (200);

In the absence of declared initial values, the default initial values
are 0 for numeric atoms, all blanks for alphanumeric atoms, and FALSE
fcr Boolean atoms. Structure-pointing atomm
value 0.

can have only the initial

14, CREATING, COPYING, ERASING,. AND DESTROYING CONSTRUCTS .

14.1. CREATING CGNSTRUCTS

Creating new instances of data structures, or nev elements in a
complex, is the responsibility of the SPL programmer. Atoms and
complexes cannot be created individually. Isolated cells are created
automatically, as a conseguence of the program block structure,

A new instance of a structure is created implicitly during
execution of any access,
in the access chain.

if the type name of the structure is rightmost
Example:

HUE := COLOR Eps HOME := HOUSE <-- 'GRAY';

Note that declarations and SPecifications do not cause accesses to be
executed; therefore, no new structure is created.

A new instance of an element is created if the access chain
contains the word PREFACE, or the word APPEND, or the words INSERT and
either BEFORE or AFTER, The particular choice of words designates where
among the other existing elements
placed,

of a complex the new element is to be
Examples:

11)
(2)

LENGTH Eps PREFACE ELEMENT EFS ROOflS Eps HONE <-- 23;
LENGTH EF.5 CURRENT ROOM := <--

23;
APPEND ELEMENT EPs ROOMS Eps HOBE

(3) LENGTH Eps INSERT ELEHENT AFTER ELEMENT (4) Eps ROOMS Eps HOME
<-- 23;

(4) LENGTH Eps INSERT ELENENT BEFOfiE CURRENT ROOM <-- 23;

In example (3), the new element is inserted after the previously
existing 4th element ot the complex.

Newly created constructs automatically are assigned their declared
or default initial values,

14-2, COPYING CONSTRUCTS

COPY is a pre-declared SPL system procedure which interpretively
copies a given structure or element and all the descendant constructs of
that structure or element. The actual output value of COPY is the
identity of the newly created copy. It may be assigned a local name,
stored in a structure-pointing atom, inserted into a complex, etc., as
aPpropriatea The actions which may be performed depend on the declared
type ot structure or element being copied. Example:

APPEND COPY (ELEMENT Eps ROOfiS Eps HONE) Eps BOONS Eps HONE;

In the above example, a copy of the first element of complex ROOMS is
appended to become the last element of cornFlex ROOMS.

14-3. ERASING CONSTRUCTS

Erasing data is the responsibility of the SPL programmer. An
entire structure, or any construct within a structure, is erased when an
ERASE statement is executed. Data in isolated cells cannot be erased,
except by storage assignment statements which put the desired values
into the isolated cells.

Erasing an atom is the same as assigning it its declared or default
initial value. Erasing a structure or an element is the same as
individually erasing all the atoms and CornFlexes within that structure
or element, Erasing a complex is the same as erasing all of its
elements. In no case does erasure cause the destruction of any
construct; it merely changes the data content of the construct being
erased. Examples:

(1) ERASE HONE;
(2) ERASE CURRENT ROON := ELEMENT Eps ROOMS Eps HORE;
(3) ERASE HOUSE GN LEFT Eps HOME;
(4) ERASE m HOUSE ON LEFT Eps HONE;

AS in SeCtiOn 7, a dot is used to distinguish between erasing a
structure-pointing atom, in example (3), and erasing the structure
pcinted to by the atom, in example (4).

14.4, DESTROYING CCNSTRUCTS \
Destroying instances of data structures, or elements in a complex,

is the responsibility of the SPL programmer. Atoms and complexes cannot
be destroyed individually. Isolated cells are destroyed automatically,
as a consequence of the program block structure.

Destroying a structure or element Completely frees all the storage
used by that structure or eleeent- EXalOFlfs of DESTROY statements:

(1) DESTROY HONE:
(2) DESTROY ELEBENT Eps ROONS Eps HONE;
(3) DES'IiiOY . HOUSE ON LEFT Eps HONE;

No new local names may be assigned in the access chain of
a DESTROY statement. If the named construct (HONE in the examples
above) is destroyed, the local name automatically is released.
This would occur in example (1). Other than this last possible
remaining name (HONE), there must not be any local names still
in effect which point to the construct being destroyed, or to any
descendant of that construct. If a structure is being destroyed while
local names still are in effect, SPL detects this error by a
positive activity count. But if an element is being destroyed, SPL
cannot detect the error. The consequences of the error may not appear
until some later time when the local name either is used or
released,

iihen a structure is destroyed, it is the responsibility of the SPL
programmer to erase, destroy, or alter all structure-pointing atoms
which point to the structure. If an unaltered reference to the
structure subsequently is used, the error possibly may not be detected
immediately by SPL. Detection of the error depends upon whether the
index in the table of structure locations has been reused.

When an element is destroyed, its sibling elements (if any)
automatically are relinked, The element is removed from the complex
without damaging the integrity of the rest of the complex.

15. PRCGRAN BLOCK STRUCTURE, "EEGIN" AND "END"

In ALGOL, program blocks are bracketed by BEGIN and END. All the
statements uithin a black are treated from outside as though they were a
single statement, Variables and arrays automatically are created when
program execution enters the block, and destroyed when program execution
leaves the block-

In SPL, the two functions of program block structure are assigned
to separate types of program blocks. Explicit program blocks, which
consist of several statements bracketed by BEGIN and END, cause all the
enclosed statements to be treated from outside as though they were a
single statement. But explicit program blccks have no effect on the
duration of validity of local names, or the duration of existence of
isolated cells.

Implicit program blocks are recognized by SPL as a consequence of
procedure calls or loop statements. The way procedure calls and loops
are coded, and the resulting implicit program blocks, are described in
Sections 16 and 17. The duration of validity of local names is
bounded by the outermost implicit program block in which the local names
are reserved. The duration of existence of isolated cells is bounded by
the outermost iaplicit program block in which the isolated cells are
aentioned.

Each procedure call or loop statement may result in more than one
implicit program block. The executable statements in the body of the
procedure OK in the scope of the loop are confined to a particular
one of the possibly several implicit program blocks, Prom outside that
block, all the statements
were a sinyle statement.

within the block are treated as though they

Explicit program blocks and implicit program blocks all must be
either disjoint or properly nested within each other,

Since isolated cells need not be declared explicitly, a naming
conflict might arise if several separate programs are merged into a
single program. Local names also might be subject to a naming
conflict. To avoid these conflicts, a NEN NAME statement appearing in
any program block forces a reinterpretation within that block of the
specified names. Example:

NEW NAME JOE, PETE, CURRENT ROOCI, HOME;

All other types of names (besides isolated cells and local names) are
required to have sufficient declaration for other reasons, that SPL
incidentally is atle to resolve naming conflicts.

76. PROCEDURES

A procedure declaration COnSiStS of a procedure declaration head, a
body of executable code, and finally END PROCEDURE. An example of a
procedure declaration head is:

PROCEDURE P6OCl := USE Eps ELEMENT Eps ROOMS Eps HOUSE
(FUHN := FURNITURE Eps ELEMENT Eps ROONS Eps HOUSE;
HOME := HOUSE);

In the example, PROCl is the name of the procedure. The name of a
procedure must be unique within the program block in which the procedure
is declared.

USE Eps BLEHENT Eps ROOMS Eps HOUSE is the type declaration of the
value of the procedure- The type of value a procedure may have may be
the type of some construct (USE EFS ELEMENT Eps -.._ in the example), or

.any of the types of isolated cells, or LOCATION, or no value at all.
The access chains for FUAN and HORE are the formal parameter

specifications for the procedure.
Execution starts at the first statement in the body of the

procedure. If the procedure has a formal value, then somewhere within
the body of the procedure must be the code to assign an actual value to
the procedure. The statement RETURN, appearing in the body of the
procedure, acts as a special purpose GO TO statement which transfers
execution back to the code which called the procedure.

A procedure can be called only within the same program block in
which it is declared, A procedure call consists of the procedure name,
followed by parentheses enclosing the actual parameters to the
procedure. It the procedure has a value, the procedure call may be used
in any way that that particular type of value can be used.

Example procedure declaration:

(l-1)
(l-2)
(l-3)
(l-4)
(l-5)
(l-61
(l-7)
(1-B)
(l-9)
(l-10)
(l-11)
(l-12)

PROCEDURE ERICK HOUSE := HOUSE (GIVEN HOUSE := HOUSE);
IF MATERIAL Eps GIVEN HOUSE = 'BRICK'
THEN PRINT ('BRICK HOUSE AT ';

STREET NUflBER Eps BRICK HOUSE := GIVEN HOUSE)
ELSE BEGIN

BRICK HOUSE := BRICK HOUSE (NEIGHBOR := .
HOUSE ON LEFT Eps GIVEN BOUSE);

PRINT ('TO THE BIGHT OF '; STREET NUMBER Eps NEIGHBOR;
' IS '. STREET NUNBER Eps GIVEN HOUSE;
', MAD; OF '; MATERIAL Eps GIVEN HOUSE)

END
END PROCEDURE;

Example procedure call:

(2-f) IF COLOR Eps BRICK HOUSE (- HOUSE ON LEFT Eps HOHE) =
(i-2) COLO6 Eps HORE
(2-3) THEN PRINT ('COLORS MATCH');

In the examples above, BRICK HOUSE is a recursive procedure which finds
the nearest brick house to the left of a given house, and prints some
information about its search. In the example procedure call, the dot
indicates that the actual parameter is a structure of type HOUSE, rather
than a structure-pointing atom of type HOUSE ON LEFT. Had the dot been
omitted from the source code,
dct,

SPL automatically would have supplied a
in order to match the formal parameter specifications.

Fig- 16-1 shows a typical implicit progran block structure
resulting from a procedure call. In the following discussion, various
teatures in Fig, 16-l will be related to lines of code in examples (1)
and (2) above, although Pig. 16-l does not exactly correspond with
either of the code examples.

The procedure call for Pig- 16-1 appears in the source code in
block A. All the other program blocks in Pig. 16-1 are created
implicitly for the processing of the procedure call- In general, the
statement containing the procedure call also vi11 contain other
executable phrases, perhaps even other procedure calls- These other
phrases are executed in block A, either before or after the procedure
call, depending upon the processing order appropriate to the statement.

If the source code shows any local names are to be assigned during
evaluation of the actual parameters (such as NEIGHBOR in code example
line (l-6)), these local names are reserved in block A, Reserving the
local names is necessary so they vi11 remain valid for later use in
block A (line (l-B)), even though the assignment of constructs must
occur in an inner block, block 8.

If the source code shows a local name assigned to the actual value
of a procedure, the local name is reserved in block A. If the source
code does not show a local name assigned to the actual value (line
(2-l)), then SPL reserves a dummy local name. The dummy local name
serves to keep the named construct active during execution of the
remainder of the statement after the procedure has returned. The dummy
name is released immediately tolloviny the statement. Had the formal
value of the procedure (the first occurrence of HOUSE in line (l-l))
been declared of type REAL, INTEGER, etc., instead of being declared a
type of construct, then an isolated cell wculd have substituted for the
local name or dumay local name.

If the local name for an actual parameter or for the actual value
of the procedure already exists in blcck A or some outer block (the
tirst occurrence of BRICK HOUSE in line (l-6)), there is no need for SPL
to reserve the'local name.

Proyram block B acts as an interface between the environment of the
procedure call (block A and the outer program blocks), and the body of
the procedure (block D), A storage location is reserved in block B for
the Keturn branch address of the procedure call. Dummy local names, OK
isolated cells as appropriate, are created in block B for all the
parameters and the value of the procedure. These dummy names appear in
the physical order that aatches the FrOCedUKe'S specifications. The
actual parameters to the procedure are evaluated in block B, from left
to right. The evaluated constructs are assigned to the dummy names, and
those which vere given local names in the source code (NEIGHBOR in line
(l-6)) also are assigned to their reserved local names. Assigning at
least dummy local names to all the constructs guarantees that the
constructs remain active during execution of the body of the procedure.

The access chains for some of the actual parameters may pass
through structure-pointiny atoms (lines (l-7) and (2-l)). The
structures which contain these atoms are activated during evaluation of
the actual parameters, but they do not necessarily have to remain active
during execution cf the procedure. Blocks Cl, C2, --.., Cn show the
brief activation of these structures.

After the actual parameters have been evaluated, the procedure is
called and executes in block D. The procedure assigns the actual output
value to the reserved dummy local name in block B, the interface block.
When the FKOCedUre returns, code in block B copies this assignment into
the local name OK dummy local name reserved in block A, for use in
executiny the remainder of the statement containiny the prOCedtlKe call.

If the procedure has no input parameters and no output value, then
block B is omitted and the procedure call is executed tree block A.

17. LOCFS

The critical facility in the coding of complicated decision-making
processes is the ease with which associations among data items can be
described. Where the underlying organization of data is hash coding,
languages like LEAP may be used to describe associations as Boolean
relations among the bound variables of associative triples. In SPL the
underlying oryanization of data is a network of pointers, in which
associations are described as search loops among ordered sets, to find
the members which have the desired properties, Thus such of the
language emphasis or SFL is in the concise description of loops, and
much of the proyraamatic emphasis of SPL is in the optimization of those
loops,

This section introduces the various notational forms for loops,
including Boolean search and select loops. Boolean search and select
loops are the most frequently used form for describing associations,
The translation from the concise notation of Section 17.3 into the
equivalent basic notation of Section 17.1 is not immediately obvious.
Section 18 describes that translation, which constitutes one of the
major contributions of this paper,

In addition to the loops described below, loops also may be
generated by the use of collection names. See Section 20.2-

77-l- EXPLICIT LCOFS

There are several ways of coding SPL loop statements, The most
basic of these are explicit loop statements. All other ways of coding
loop statements are defined in terms of equivalent explicit loop
statements.

The syntax of explicit loop statements is to a large extent context
free. Fig. 17-1 shows the syntax in the metalanguage “Box Syntax”.
As can be seen in Fig. 17-1, more than one generator may be coded for
a single loop. Each of the generators is advanced after every cycle of
the lOOF. The first generator to terminate causes termination of the
entire loop.

In the phrase

the expression may be any of the types allowable for isolated cells,
described in Section 10, as long as all replications of the expression
are of the same type. In the phrase

all the access chains must be for the same type of elements. In the
phrase

ILQR ALL FOCAL NABE 1E E.Lz.K%T STARTDG XT [ACCESS CHAIN]

the access chain must be for the element of a complex, Backward looping
is not allowable in complexes declared to have forward links only. See
Section 19 for a discussion of the various types of links. In the
phrase FOB= FROfl ._._ STEP ..-- UNTIL -..., the left arrow and
parentheses surrounding arithmetic expressions indicate that the
expressions are to be evaluated once only, before executing any cycles
of the loop. Without the left arrow and parentheses, the expressions
following STEP and UNTIL are re-evaluated before execution of each cycle
of the loop.

17.2. IMELICIT LOOPS

If a loop over all the elements cf some complex contains only a
single executable statement, it may be coded as an implicit loop. An
implicit loop uses the word ALL in the access chain to indicate that a
loop is desired, and eliminates the words LOOP, FOR, DO, and END LOOP,
and the local name for the elements being generated.
implicit loop is the statement in which it appears.

The SCOpe Of an

implicit loop
For example, the

LENGTH Eps AIL ELENENTS Eps ROORS Eps HOME <-- 10;

is equivalent to the explicit loop

LOOP FOR ALL DUfiMYl := ELEMENT Eps ROOHS Lps RONE
DO LENGTH Eps DUMMY1 <-- 10
END LOOP;

where DUNflY is a local name automatically created by SPL, and assigned
successively to each element as it is generated,

A second example, where PRICE is an isolated cell,

FRICE <-- 0;
PRICE <-- PRICE + COST Eps ALL ELENENTS Eps FURNITURE Eps

AIL ELERENTS EFS ROOMS Eps HOME;

is equivalent to

PRICE <-- 0;
LOOP FOR ALL DUMNYl := ELENENT Eps FURNITURE Eps ALL ELEMENTS Eps

ROOMS Eps HCME
DO PRICE <-- PRICE + COST Eps DUHHYl
END LOOP:

which in turn is equivalent to

PRICE <-- cl;
LOOP POR ALL DUHMY2 := ELEMENT EFS ROOHS Eps HOME
DO LCOP FOR ALL DUilMYl := ELEMENT Eps PURNITURE Eps DUMNYZ

DO FGICE <-- PRICE + COST Eps DUNMY
END LOOP

END LOOP;

A third example is to create a list of the costs of all the
furniture in HOBE. The list will be the elements of a new structure
whose declaration is:

SIRIJCTUHE PRICE LIST (
CCRPLEX PRICES (

ATOM COST (1000))) ;

The code to create an instance of PRICE LIST, create one new element of
PRICES for each item of furniture in HOHE, and store the cost of that
item of furniture into the new element, is:

HOME PRICE LIST := PRICE LIST;
CCST Eps PREFACE ELEtiENT Eps PRICES Eps HOIE PRICE LIST <--

COST Eps ALL ELEMENTS Eps PURNITURE Eps ALL ELEMENTS Eps ROONS
Eps HONE;

In the above example, the costs are stored in elements of HONE PRICE
LIST in inverse order of their appearance in AORE. They would have been
stored in direct order of their appearance in HONE, had APPEND ELEMENT
been coded instead of PREFACE ELEMENT, Por the simplest types of
cornFlexes, where the elements are connected by forward links only,
appending elements in the above example would be a computation of order
nL steps. Prefacing elements would be of order n steps. Nith more
elaborate linking among the elements, the number of steps in appending
elements can be reduced to order n.. See Section 19,

SPL creates an implicit loop for each occurrence of the word ALL in
an access chain. If ALL occurs several places in a single access chain,
the leftmost occurrence corresponds to the innervost loop, as in the
second eramPle above. If ALL occurs in several separate access chains
within a single statement, the implicit loops are created in the
Processing order appropriate to the statement- Each implicit loop
created includes all the previously created loops within its scope,
These rules do not necessarily apply if the statement contains any
Boolean search and select loops, described in Section 17.3.

17-3. SEARCH AND SELECT LOOFS

If an access chain contains the word ELEMENT followed by
parentheses enclosing an arithmetic expression, such as:

THIS ROCM := ELEMENT (7*Lt2) Eps ROOMS Eps HOHE;

then the arithmetic expression is the index of the particular element
selected. In the above example, local name THIS ROOK is assigned to the
(7*L+2)th element in the complex. SPL creates a numeric search and

select loop, which sequences along the elements of the complex ROOFIS
until the proper element is selected. In order to avoid possible side
effects, the arithmetic expression is not evaluated until immediately
before the execution of the loop. The code for the explicit loop
equivalent of the above example is:

THIS AOOII := ELEMENT EpS ROOMS Eps HONE;
LOCP EN'IIER (7*2+2) -1 TINES
DO THIS ROOfl := ELEMENT AFTER THIS ROCN
END LOOP;

If the arithnetic expression does not evaluate to an integer, it is
truncated to an integer. The truncated value must be strictly positive.

The equivalent explicit lcop statement takes an error exit if the
complex ROOMS does not have at least the specified number of elements.
The code shown below is not equivalent to the source statement, because
the code below does not take an error exit if there are an insufficient
numtec of elements.

RESERVE THIS ROOM;
LOCP FOR ALL THIS ROOM := ELEMENT Eps ROOMS Eps HONE;

ENTIER (7*L+2) 'IIMES
DO
END LCOP;

If an access chain contains the word EIEMENT followed by
parentheses enclosing a Boolean expression, such as:

THIS ROOM := ELEMENT (LENGTH Eps THIS ROOM > 20) Eps ROOHS Eps
HCME;

then SPL creates a Eoolean search and select loop, which sequences along
the elements of the complex ROONS until the first element is found for
which the Boolean expression has the value TRUE. An error exit is
taken if no element of the complex satisfies the Boolean expression.

Boolean search and select loops provide a means of selecting one
element among the possibly many elements of a complex, based on some
property of that element. In the example above,the selected element
must have the property that the LENGTH field contains a number > 20.
The Boolean expression describing this property may be arbitrarily
COmpIiCated, but of course it ultimately must depend on some property of
the element being selected- It would be meaningless to attempt to
select an element, if the selection were net based on any property of
that element.

Other examples of Boolean search and select loops are:

HONE PBICE LIST := PRICE LIST;
CCST EFS PREFACE ELEHENT Eps PRICES EFS HOME PRICE LIST <--

COST Eps ALL EXPENSIVE := ELENEN'I (CCST EFS EXPENSIVE > 200)
Eps FUBNI'IUEE Eps ALL BIG ROOM := ELEMENT
(LENGTH Eps BIG ROOM * UIDTH Eps BIG RCOM > 400)
Eps AOONS Eps HCME;

HCNE FBICE LIST := PBICE LIST;
COST Eps PREFACE ELERENT Eps PRICES EFS HOME PRICE LIST <--

COST Eps ALL ELEHENTS Eps FURNITURE Eps
GUEST ROON := ELEMENT (USE Eps GUEST ROOM = 'BEDBOOR')
BACKUARD STARTING AT SMALL ROCN := ELEMENT
(LENGTH EFS SMALL EOCM * YIDTH EFS SMALL ROCM < 150)
Eps ROOMS Eps BCNE;

The translation from the source code of Boolean search and select
loo&s into the eyuivalent explicit loop statements is a fairly involved
&rocess. Section 18 is devoted entirely to describing this process.
As shown in Section 18, SPL translates statements which select the
first element which has some desired PrOpeCty, or all the elements Which
have that property, or the tirst element which has that property
provided that there exist any elements which have that property.

17.4, INPLICIT PBOGRAH BLOCK STRUCTUBE OF EXPLICIT LOOPS

Fig. 17-2 shows a typical implicit program block structure
resulting frcm an explicit loop statement. The loop statement appears
in the source code in block A. All the other program blocks in Fig.
17-2 are created implicitly for the processing of the loop statement.

The access chains fcr some of the element generators may pass
through structure-pointing atoms. The structures which contain these
atoms are activated during the initial evaluation of the first-order
ancestor complexes of the elements to be generated, but the structures
containing these atoms do not necessarily have to remain active during
execution of the loop. Blocks Cl, C2, -.--, Cn show the brief
activation of these structures.

17.5. "CYCLE" AND "LEAVE"

A CYCLE statement consists of the uord CYCLE, optionally followed
by an arithmetic exL.ression. A LEAVE statement consists of the vord
LEAVE, optionally followed by an arithmetic expression. If the arith-
metic expression is omitted, the value 0 is assumed. CYCLE and LEAVE
may appear only within loops.

CYCLE statements and LEAVE statements act as special purpose GO TO
statements tar terminating executicn of a cycle of a loop, or for
terminating execution of a lcop entirely. CYCLE is the same as GO TO
which branches to a fictitious location just before the end of the loop.
Example:

LCOP 5-e.
DC e---

CYCLE:

END LOCP;

is equivalent to:

LOOP ------_
cc ----_.--

GO !Ic DUWMYl;
~W_.

------. _
DUMbYl:

LID LOOP;

where DUnflY is a dummy statement label automatically supplied by SPL.
LEAVE is the same as GC TO which branches to a fictitious location just
alter the end of the 1ccP. Example:

LOOP --.-----
D 0 -_.-----\._

LEAVE;

---__-
END LOOP;

is equivalent tc:

Lcop ------
DC -. -- --

GO 'IO DUMMYl;
~-- -.---

END LOOP;
DUMbYl:

where DUMMY1 is a dummy statement label automatically supplied by SPL.

If an expression follows CYCLE or LEAVE, its value is truncated to
an integer uhich nust be nonnegative. SPL leaves that many inner nested
lOOFS, and then cycles or leaves an outer loop- Example:

LCOP -
DO-------

LOOP -y-e
DO ------___

CYCLE 1;

END LOOP;
-

END LOOP; --

is equivalent to:

LCOP -
DO----

GO TC DUfiMYl;
.-----.- _...._
---.-.._

END LOOP;
--- -.

DUfiMYl:
END LOOP;

les In the above example, execution leaves the 1 inner loop, and then cyc
the outer loop. It is an error for the truncated value of the
exPression to be greater than the number of inner nested loops.

The SPL translator converts all implicit loops into their _ _. _ equivalent expllclt loop statements. All the%! lOOp.3 are COUUted In the
determination of how many inner nested loops to leave, before cycling or
leaving an cuter loop.

17.6. HCOLEAN IEFLICII LOOPS

The pronoun Phrases ANY OF, ALL OF, or NONE OF may appear in a
Boolean exFressicn that includes an implicit loop, thereby forming a
Boolean implicit loop. Example:

IF ANY OF LENGTH Eps ALL ELEMENTS EFS ROONS Eps HORE = 20
THEN C <-- c l 1;

is equivalent to:

LOOP FOK ALL DUMMY1 := ELEMENT Eps ROCMS EFS HCME
CC IF LENGTH EFS DlJflMYl = 20

THEN GO TC DUMMY2
END LOOP:
GO TO DlJMMY3;
DUMMY2: c <-- c + 1;
DUflHY3:

A local name may be assigned to the elements. SPL automatically
reserves the local name, for subsequent use. After execution of the
loop. the element (if any) assigned to the local name depends on the
pronoun phrase, the Boolean expression, and whether there exist any
elements in the complex. Listed below are the translated equivalents of
the various Boolean implicit loops.

Exam&le (1) source code:

IF ANY OF A Eps ALL D := ELEMENT EFS C = K
THEN <<code l>>
ELSE <<code 2>>;

Example (1) translated equivalent:

RESERVE E;
LCCP FOh ALL E := ELEMENT Eps C
CO IF A EFS E = K

THEN GO 'IO ClJMHY1
END LOOP;
<<code 2>>;
GO TC DIINMY2;
0UMtiY 1:
<<code l>>;
DunnY2:

EXamFle (2) source code:

1F ALL CF A Eps ALL B := ELEMENT EFS C = K
THEN <<code l>>
ELSE <<code 2>>;

Example (2) translated equivalent:

RESERVE E;
LOCP FOE ALL B := ELEHENT Eps C
DO IF - (A EFS B = K)

1HEN GO 1C DUBflY
END LOOP;
<<code 2>>;
GO TO DUMRY2;
DUHMYl:
<<code l>>;
DUMHYZ:

Example (3) source code:

IF NONE OF A Eps ALL B := ELEHENT Eps C = K
TREN <<code l>>
ELSE <<code 2>>;

Example (3) translated equivalent:

RESEEVE E;
LCCE FCE ALL B := ELEHENT Eps C
DO IF A Eps E = K

THEN GO TO DUMHYl
END LOOP;
<<code l>>;
GO 10 DUCIHYZ;
DUHHYl:
<<code 2>>;
DDHHY2:

Example (4) source code:

IF - ALL OF A Eps ALL B := ELEIENT Bps C = K
THEN <<code l>>
ELSE <<code 2>>;

Example (4) translated equivalent:

RESERVE E;
LCCF FOh ALL B := ELEflENT Eps C
GO IF -. (A Eps El = K)

THEN GO TO DURHYl
END LOOP;
<<code I>>;
GO 10 DUMMYi;
DUHMYl:
<<code 2>>;
DUMHYZ:

The word ALL must occur at least once in the access chain for each
Eoolean isplicit loop. Each occurrence of the word ALL indicates
another nested 10~~.

Example (5) source code:

IF ANY CF A Eps ALL B := ELEMENT Eps C Eps ALL D := ELEflENT Eps E
= K

THEN <<code l>>
ELSE <<code 2>>;

Example (5) translated equivalent:

RESERVE E;
EESERVE D;
LCCF FCS ALL D := ELEMENT Eps E
CC LCOF FOE AIL B := ELEHENT Eps C Eps D

DO IF A EFS B = K
THEN CC TO DUMMY1

END LOOP
END LOOP;
<<code 2>>;
GO TC DOPIMYI;
DUHfiYl:
<<code l>>;
DUflBY2:

Several Boolean implicit loops may be combined in a single Boolean
expression.

Example (6) source code:

IF ANY OF A Eps ALL B := ELEMENT EFS C
= AIL CF D Eps ALL E := ELEMENT Eps P

THEN <<code 7>>
ELSE <<code 2>>;

Example (6) first translated equivalent:

RESERVE B;
LOOP FOk ALL B := ELENENT Eps C
DC IF A EFS E = ALL OF D Eps ALL E := ELEMENT Eps F

IhEN GO TO DUMMY1
END LOOP;
<<code 2>>:
GO TC DUNNY2;
CUrlMYl:
<<code l>>;
DUMEIYZ:

Example (6) second translated equivalent:

RESERVE B;
RESERVE E;
LGCF FCR ALL B := ELECIENT Eps C
DC LCOF FOR ALL E := ELEBENT Eps P

DO IF 1 (A Eps E = D EFS E)
THEN GO TO DUClfiY3

END LOOP;
GO TO DURMYI(;
DUHMY3:
GO TO DUflflYl;
DUBhYU:

END LOOP;
<<code 2>> ;
GG 'IO DUMW
DUMMYI:
<<code I>>
CUMMYZ:

Y2:

As can be seen in the above examples, the final assignment of
elements to the reserved local names is somewhat erratic. Boolean
inplicit loops provide a convenient way of performing tests, but an
inconvenient vay of selecting elements. On the other hand, Boolean
search and select loops provide a convenient wag of selecting elements,
but an inconvenient way of performing tests,

17.7. CCUNTXRG ELEBEN'IS

SPL has the built-in function COUNT, uhich counts all the elements
of a camplex, or a selected subset of those elements. The resulting
value is of type UNSIGNED INTEGER. Examples:

(1) NUBBER <-- COUNT ELEMENTS Eps ROOHS Eps BCNE;
(2) NUMBER <-- COUNT LONG ROOfi := ELEHENT (LENGTH Eps LONG ROOR > 20)

Eps ROOMS Eps HCHE;

The translated equivalent of example (1) is:

COUNT <-- 0;
LOOP FOR ALL DUMBYl := ELEHENT EFS ROOM Eps HOBE
DO COUNT <-- COUNT + 1
END LOOP;
NUMBER <-- COUNT:

18, TRANSLATING BOOLEAN SEARCH AND SELECT LOOPS

18.1. DEFIBITICN OF THE PROBLEM

section 18 is an extension of Section 17.3, in which Boolean
search and select loops were introduced. A Boolean search and select
lcop appears in SFL source code as an access chain, containing somewhere
within it the word ELEBENT followed by parentheses enclosing a Boolean
expression. The Eoclean expression may be arbitrarily complicated,
perhaps itself containing Boolean search and Select loops. From this
source code, SPL compiles an effective procedure for searching among the
elements of a cornFlex, and selecting the first element or all elements
for which the Boolean expression has the value TRUE. The only
restriction is that the Boolean expression somehow depend on some
property of the element or elements it is supposed to select.

'Ihis section is vritten for two audiences. First, it is directed
to the programmer writing SPL code. It shows him the expansion of his
source code into the effective search and select procedure, written as
explicit loop statements. This allows him to resolve any questions
atout the interpretation of his source code, and to pinpoint any
ambiguities or inconsistencies. Second, this section is directed to the
person inplementing SPL, as a possible means of performing the
inplementation. The translation process described here has as input SPL
source code including Boolean search and select loops, and as output SPL
source code from which all Boolean search and select loops have been
eliminated. The translation process also detects all ambiguities and
inconsistencies, and detects when the Boolean expression does not depend
on any Property of the elements being searched. One approach to
iaplementiny an SPL compiler is to implement compilation of explicit
locp statements only, and to include an extra pass which translated
implicit loop statements and search and select loop statements into
their equivalent explicit loop statements.

The translation process described here uses the type-tree formed
from the structure declarations (see Secticr 8) in conjunction with
the source code statement, to determine the appropriate sequence and
nesting at the loops so that the required chain of data accesses can be
performed. Where several sequences or nesting arrangements of the loops
are possible, it shcws all possible arrangements and indicates an
optimal arranyement, in the absence of statistical information about the
data.

'Ihe description of the translation process is itself composed of
two steps. The first step is the development of a 'Ochartn suitable for
ccmputer processing, which characterizes the Boolean search and select
loops. The second step is the interpretation of that chart as explicit
loop statements in SPL source code, for the next pass of the SPL
ccmpiler. 'The chart is isomorphic to the type-trees of the constructs
wnich participate in the loops, with some auxiliary edges and with
directions assiyned to all the edges. This collection of type-trees and
auxiliary edyes is called the ngraph" of the loops. It is not suitable
for computer processing, but is included as an aid to human
ccmkrehension.

The notational conventions used throughout Section 18 are that
the upper case letters A, B, C, ..-. represent local names or type names
of constructs uhich appear in the source code, and that DUflflYl, DDflMYZ,
*a... represent local names, isolated cells, or statement labels auto-
matically supplied by SPL. No declarations are shown in this section:
the appropriate declarations can be inferred frcm the source code. The
distinction between local names and type names also can be interred from
their position in the source code. For example, if the source code is

A Eps B <-- C Eps D := ELEHENT (E Eps C = 1) Eps G Eps Ii;

then A. C. E, and G must be type names and 8, D, F, and H must be local
names.

18.2. EXANPLES DEMGNSTEATING SCfiE OF THE PEOBLENS INVOLVED IN
TRANSLATION

Note the similarity in source code between examples (2) and (3),
and between examples (3) and (4).

Example (1) source code:

A Eps B <-- C Eps D := ELEMENT (E Eps D = F) Eps G Eps H;

Example (1) translated equivalent:

RESERlE D;
LCOP FOR ALL D := ELEMENT Eps G Eps H
DO IF E Eps C = F

THEN GO TG DUMflYl
END LOOP;
ERROR; <<required element does not exist>>
DUHMYI:
A Eps B <-- C EFS D;

Example (2) source code:

A Eps 0 <-- C Eps D := ELEMENT (E Eps D = F) Eps G Eps
H := ELEMENT (I Eps H = J) Eps X EFS L;

Example (2) translated equivalent:

BESERVE D;
NESEEVE H;
LOOP FOG ALL H := ELEMENT Eps K Eps I
CO IF I Eps H = J

THEN GO TO DUMMY1
END LOOP;
ERROR;
DlJNMVl:
LCCP FOE ALL 0 := ELEBENT Eps C Eps H
DO IF E Eps L = F

THEN GO TO DUMMY2
END LOOP;
ERROR;
DUMNYZ:
A EFS B <-- C Eps D;

Example (3) source code:

A Eps B <-- c zps D := ELEMENT (E EF+ II = F) Eps G Eps
H := ELEUENT (I Eps H = J Eps D) Eis K Eps L;

Example (3) translated equivalent:

RESERVE JZ;
RESEBVE H;
LGOF FC8 ALL H := ELEHENT Eps K Eps L
CC LCCF FOE ALL C := ELENENT Eps C Eps H

DO IF E EFS D = F
THEN GC 20 DUNflY

END LOOP;
EREOR;
DUfiNYl:
IF I Eps B = 3 Eps D
THEN GO TC DUNRYZ

ENC LOOP;
ERROL;
DUNMYZ:
A Eps B <-- C Eps D;

Example (11) source code:

A Eps B <-- C Eps D := ELEHENT ((E EFS D = P) G
(I Eps H = J Eps D)) Eps G EF.5
H := ELEIIEN'I [EXISTS D) EFS K Eps L;

Example (4) translated equivalent:

RESERVE D;
RESERVE ii;
LOOP POE ALL H := ELEHENT Eps K Eps L
DG LCOP POE ALZ D := ELEMENT Eps G Eps H

DO IF (E EFS D = F) & (I E&s A = J Eps D)
THEN GO TO DlJf'lfiYl

END LOOP
END LOOP;
EAR06;
DUflHYl:
A Eps B <-- C Eps D;

18.3. DEVELOPING A CHART

The translation of Boolean search and select statements into their
equivalent explicit 100~ statements is based on interpretation of a
chart. The chart characterizes the lcops by describing the various
dependencies involved in the search and selection process. There are
six types or dependencies, two of which are discussed here, two are
discussed in Section 18.11, and two are discussed in Section
18.16.3,

The sequence of accesses described by an access chain starts with
some kncvn construct which is identified by its local name. The next
access is of the first-order descendant of the known construct, and the
next access is of its descendant, etc. In this context, the descendant
of a structure-Fainting atom is the structure to vhich it points. Each
construct after the known construct is said to "depend for access" on
its first-order ancestor, Dependence for access is one of the
dependencies shown in the chart.

The selection of one element among the many elements of a complex
is based on some Froperty of that element, The properties of an element
are the values stored in the atoms vithin the element. The atoms may be
either first-order or higher-order descendants of the element. The
element is said to "depend for selection" an some of its descendant
atoms. Dependence for selection is another of the dependencies shown in
the chart.

Source code from example (1) of Secticn 18-2 is used in
describing the development of the chart. The source code is repeated
here, as follows:

A EFS 8 <-- C Eps D := ELEHENT (E Eps D = F) Eps G EPS H;

A depends on B for access, C depends on D for access, D depends on G for
access, and G depends on H for access. D also depends on E and P for
selection.

In the chart, each of the names A,B,C,C,E,P,G,R is used as a
heading ror a row R(i) and for the column C(i) with the same subscript.
The chart subsequently may be rearranged so that the names head
different rows and columns, but all rearrangements are performed such
that a name always heads a rou and column with equal subscripts. If
name Nl depends on name N2 for access, then the letter A is entered in
the chart in the intersection of row R(N1) and column C(N2). If name
Nl depends on name N2 for selection, then the letter S is entered in the
chart in the intersection of row R (Nl) and column C(N2), Fig. 18-l
illustrates the chart for the example source code.

Each row in a properly formed chart contains either no letter A or
one letter A. If the name heading the row appears only in the rightmost
Position of one or more access chains, then the row will contain no
letter A. If the name heading the row appears in some access chain as a
descendant construct, the row vi11 contain exactly one letter A, because
in the trees formed by structures each construct can have only one first
order ancestor, and therefore depend on only one other construct for
access, A single statement in the source code may contain several
access chains which mention different instances of the same type of
construct. Althouyh the type names are identical, the different
instances are distinguished (by examination of the local names at the
rightmost ends of the access chains) and each instance heads a separate
row and column in the chart. It any row cantains more than one letter
A, and if the name heading the row is the type name of a construct, then
that type name refers to different instances of the construct. The
instances should be distinguished. If any row contains more than one
letter A, and if the name headiny the row is the local name of a
construct, then there is an inconsistency in the source code. If two
separate rows R(i) and R(j) are headed by identical type names and the
letter A is in the same column for both revs, then the two identical
type names Possibly may refer to a Single instance of a construct. A
ccepile-time warning messaqe should be issued. The rows R(i) and R(j)
and columns C(i) and C(j) should be merged if they correspond to a
complex or to an atom- But they should not be merged if they correspond
to an element. The SPL programmer may want to select different elements
of the same complex in several different loops within a single
statement.

If any row-column intersection of the chart contains more than one
letter (either A or S), or it the main diagonal is not empty, then the
scurce code is inconsistent.

Once formed, there must exist at least one arrangement of the chart
(simultanecusly rearranging row R(i) to R(j) and column C(i) to C(j)) in
which all the A's lie in the upper-right triangle. Fig. 18-2 shows
such a rearrangement of the chart of Fig. 18-l. This arrangement must
exist because SPL structures are trees: the sequence of accesses from
ancestor to descendant constructs is mirrored in the chart as a sequence
of accesses from the name heading the bottcm row (or rightmost column)
to the name heading the top row (or leftmost column). The arrangement
of all A's in the upper-right triangle is a consequence of the ancestor-
descendant relaticn being nonreflexive. If no such arrangement exists
for some particular chart, the source code from which the chart was
tormed is inconsistent. In the subsequent discussion, the only chart
arrangements considered are those in which the A's lie in the upper-
right triangle.

The chart is derived in several steps, An original chart is drawn
showiny all the dependencies for access and dependencies for selection
which appear in the source code. In succeeding steps the dependencies
which are not relevant to the loops gradually are eliminated from the
chart, until tinally an irreducible chart is obtained. The equivalent
explicit 100,~ statements are deternined frcm an interpretation of this
irreducible chart,

The charts following the original chart are der-ived successively
from their predecessors by deleting both a row and its corresponding
cclumn if either the row is empty or the cclumn is empty. The process
is reFeated until no more deletions are possible. Figs. 18-3(a) and
18-3(b) show two steps in reducing the chart of Fig. 18-2. The
chart of Fig.. 18-3(b) is irreducible.

A row being empty means that the construct does not depend on the
other constructs, either for access or selection. The construct is
ccnstant relative to the search and select loops; therefore its
inclusion in the chart is not relevant to the goal of characterizing the
ICOFS. A column teiny empty means that no other construct depends on
this one. While the construct itself is dependent on the result of the
search and select Loops, its inclusion in the chart is not relevant to
the goal of characterizing the 100~s.

Even for an irreducible chart, several arrangements may be possible
without violating the restriction that the A's remain in the upper-right
triangle, Fig. 18-4 shovs an example.

The interpretation of a letter lying in the upper-right triangle of
a chart is that the named construct heading the column can be determined
before the named construct heading the row. Each row containing at
least one letter S corresponds to an element of a complex for which a
search and select loop is needed. Each row containing at least one
letter S must have at least one letter S in the lower-left triangle, if
the source code is errcr-tree. Otherwise. the selection of the elements
could be determined before the elements were accessed, so the search and
select 100~ would be unnecessary. Similarly, if a row containing at
least one letter S is deleted during the derivation of an irreducible
chart, the search and select loop corresponding to the row is
unnecessary, indicatiny an error in the source code.

18-U. DEVELOPING A GRAPH

Fig. 18-5 shous the development cf both the chart and graph for
the source code from example (3) of Section 18.2. Fig. 18-5(a)
shows the original chart formed from the source code, rearranged so that
all the A's lie in the upper-right triangle. Fig. 18-5(b) shows the
type-trees associated with the source code, The type-trees are drawn
with heavy lines. Also shown in Fig. 1&5(b) are some auxiliary edges
drawn with light lines, The auxiliary edges represent the connection
between the elements of a complex and the atoms which participate in
determininy the selection of the elements- A direction is assigned to
each of the edges, going from a given construct to another construct on
which it depends. Thus the direction alvays is upvard on the edges of
the type-trees, indicating that the lower ccnstruct depends on the upper
construct for accessr The direction always is from an element to an
atom on the auxiliary edges, indicating that the element depends on the
atom for selection.

Fig. 18-5(c) shows the irreducible chart de%ived from Fig.
18-5(a). After all irrelevant rows and columns have been eliminated,
only the central part of (a) remains in (c). Fig. la-S(d) shows those
portions of the type-trees and auxiliary edges which still remain in the
irreducible chart (c). The irrelevant portions of (b) were eliminated
to form (d), Fig. 1+5(d) is called the graph of the search and
select loops generated by the source code.

Each row or column in the chart COrreSFOndS to a node in the graph.
Each letter A or S in the chart corresponds to an edge in the graph.
The letter A corresponds to an edge in the type-tree. The letter S
COrEeSFOndS to an auxiliary edge. If the letter A or S is in the
intersection or row R(i) and column C(j), the direction of the
corresponding edge is from node i to node j.

One of the requirements tor well-formedness of each Boolean search
and select loop is that the selection depends on some property of the
elements being searched, Except where the source code uses EXISTS
[discussed in Section 18.11). this reguirement is shown in the graph
by reyuiring that there exist at least one auxiliary edge pointing from
the element-node to a descendant node.

18.5. INTERFRETING A CHART TO DETERMINE LOOPS

Each row containiny at least one letter S corresponds to a
Boolean search and select 1001;. The score and nesting requirements of
the loop are shown by drawing an isoscelrs right triangle on the chart.
The base of the triangle lies on the main diagonal, and the apex
includes the leftmost letter S in the row. Fiy. 18-6 shovs the same
chart .as Fig. 18-5(c), redrawn with the triangles included. In Fig.
lb-6, the D-E look of Fiy. 18-5(d) is seen to be nested within the
H-I-J loop. This Corresponds with the translated equivalent code in
exanFle (3) of Section 18.2.

Since the row headings and column headings appear in the same
order, the triangles merely are a geometric way of projecting forward
the scope of a 100~. A loop determining the selection of an element
appears as some S's in the row headed by the name of the element. The
maximum scope of the loop is the column containing the leftmost S in the
ILOW. The column is projected to its corresponding row by travelling up
the column to the main diagonal.

Sometimes when the irrdeucible chart first is developed, the
arrangement indicates nesting of the loops. A rearrangement of the
chart may show that nesting actually is unnecessary, but that disjoint
loops executed seyuentially are sufficient. See Fig. 18-7 for an
example. Disjoint sequential loops are more economical than nested
100Rs. and should be used wherever possible. Rearranging the chart is
discussed in the sections following Section 18.5.

If the selection of elements is determined entirely by the contents
OS data atoms (not structure-pointing atoms, or other elements or
constructs), then it always is possible to arrange the chart so that the
triangles are either disjoint or properly nested. Rearrangement to
achieve proper nesting is possible because data atoms terminate their
access chains. so there is no constraint preventing a data atom from
being shifted u&zuard-leftward in the chart. Fig. 18-8 shows two
arrangements of a chart, one with improper nesting and one with proper
nesting. Atom P is shifted to achieve FroFer nesting.

However, if the selection of elements is determined partly by the
contents of structure-Fainting atoms, Froper nesting of the triangles
sometimes may not be possible. Proper nesting always is possible if the
contents of the structure-pointing atoms are used as data only -- names
to be tested and compared with other names. But if the contents of the
structure-pointing atoms are used both as data in selecting elements of
one cornFlex, and as part of the access chain to another complex which
must be searched simultaneously, then proFer nesting may not be
Fcssible.

Fig.
Fig.

18-9 shows an example Where proper nesting is possible, and

both
18-10 shovs an example vhere proper nesting is not possible. In
examples, the content of a structure-pointing atom is used both as

data and as part of an access chain.
The impossibility of proper nesting of the triangles can be used to

detect an obscure source code error which ctheruise would be undetect-
able. Although the graph in Fig. 18-10 seems to indicate that each
selection of an element depends on some property of that element, this
actually is not so.
select loop.

The source code has an unnecessary search and
The error may be seen in the source code of Fig. 113-10

by observiny that, when D is selected, the content of the structure-
pcinting atom E = DUMMY2 = the content of structure-pointing atom I.
Therefore, F Eps E could just as well have been written
But L is a Constant relative to the loops, so

F Eps I.
F Eps I also is a

constant relative to the loops, and there is no basis on which to select
an element DUBMY EFS H- The error is mere obvious in Fig. 18-11.
where the same source code is used, except that F Eps E is rewritten
as F Ep‘s I.

Improper nesting also may arise if the Boolean predicate EXISTS,
applied to an element, is used to determine the selection of an element
in another complex. This use of EXISTS is discussed in Section 18.11.

18-8,
Proper nesting not only involves the triangles shown in Fig.

but also subsidiary triangles with apexes including the other
S's in the lower-left trianyle of the chart. The chart arrangements of
Fig. 18-8 are redrawn in Fig- 18-12, showing the subsidiary
triangles drawn with light dotted lines.

18.6. CLUSTEHING S'S AEOUT THE MAIN DIAGONAL

After each rearranyement of the chart for any reason other than the
one discussed here, the chart should be rearranged again to improve the
clusteriny of the S's in the lover-left triangle. Shifting the S's in
the lower-left triangle of the chart closer to the main diagonal, has
the effect of reducing the number of accesses performed during each
cycle ot the corresponding loop.

The shittiny described here has limited goals, to keep this part of
the operation simple. Cnly minor local performance improvements can be
expected from this shiftiny; other rearrangement techniques described in
the following sections produce the major performance improvements,

Fig. 18-13 shows an example of poorly clustered and well
clustered chart arrangements. Only rows which do not contain S's are
rearranged. The chart is partitioned by the rows which contain S's.
Each partition of consecutive rows, none of which contain S's, is
rearranyed internally. The partition as a rhole maintains its same
position in the chart. In Fig. 18-13(a) there are two partitions,
(H,I,E.J,F,G) and (N,K,N).

In addition to confining rearranyement within a partition, no
change is made in the relative order of the columns containing S'S. The
relative order or columns H, E, fl, and N is the same in Figs. lfl-13(a)
and 18-13(b).

18.7. PROPAGATING CEPENDENCY

The original chart formed tram the source code does not, in
general, have all the A's in the upper-right triangle. If there are
~LIOES in the source code, they should be detected as soon as possible,
in order to make the error messages most meaningful to the SPL
programmer. Theretore the chart should be rearranged immediately to put
all the A's in the upper-right triangle, so that a source code error
which prevents this rearrangement can be detected before the irreducible
chart is derived-

Once the irreducible chart has been derived, the arrangement still
may not permit &roper nesting of the triangles. Proper nesting always
can be achieved by shifting data atoms upward-leftward, as described in
Section 18.5.

The question then arises: What other chart arrangements are
possible? The tirst derived arranyemfnt of the irreducible chart may
not be the mcst desirable arrangement. Rearrangement may produce
greater efficiency of execution, or a different order in which elements
are selected-

An exhaustive search for all valid rearrangements of the chart
would be a very expensive ccmFutation at compile time, of the order of
N! if there are N rows or columns. This section describes how to obtain
the relevant information without any actual rearrangement, using an
invariant Groperty of the chart.

A letter A OI S in the chart, say at coordinates (i,j), indicates
that construct i depends directly cn construct j, This dependency can
be &rOpayated to all the constructs on which construct j depends
directly, etc- Eventually one or more Faths are created leading from
ccnstruct i to all the ather constructs on which it depends, either
directly OI indirectly.

In this section we are interested in Fropagating dependencies only
to other constructs whose identities already have been determined by
access and selection. Accordingly, paths in the upper-right triangle of
the chart aLe restricted to remaining in the upper-right triangle. Fig.
16-14 shows an example of the FroLagation of dependencies. Arrows in
the chart trdce the paths of Fropagation.

A path is initiated from each letter A or S in the chart. The path
stdrts propagation along the colulrn ccntaining the letter.

When propagating along a column C(i), follow the column to the main
diagonal, and then start propagation rightrard along row R(i). The
presence ot other letters in that column is a coincidence which has no
effect on the kath of Fropagation.

Uhen propagatiny along a row R(i), start a path propagating along
each cclumn C(j) such that i C j and such that there is a letter A or S
at coordinates (R(i).C(j)).

18-H. SHIFTING DATA ATCMS TO ELIMINATE UNNECESSARX NESTING OF LOOPS

Fig. 18-15 shol;s tuo chart arrangements which differ only in the
Position or data atom H. In Fig. 18-15(a), the loops are nested
unnecessarily, since shitting H downward-rightward permits the
sequential loop execution shown in Fig. 18-15(b). Shitting H does not
chanye the order in which elements are selected, but does produce
greater etficiency of execution.

This situation can be detected by observing that the path of
dependency Propagation, starting from the letter S at coordinates (G,H),
travels above the upper loop corresponding to row D, yet does not depend
tn loop D. Therefore data atcm H can be shifted downward-rightward.

H is shifted to a new Position such that column H is immediately to
the le1t of column C(j), where C(j) is the leftmost column such that
there is a letter A or S at coordinates (H,C(j)). In the example,
C(j) = column G; column H is shifted immediately to the left of column
G, and row H immediately above row G. Finally, H is shitted upward-
leftward the minimal number of positicns necessary to reestablish proper
nesting. ProPer nesting must be established for the subsidiary
triangles, as well as for the triangles indicating loops. The final
upward-lettuard shift is not necessary in the example of Fig. 18-15.

18-Y- INDEPENCEECE OF LCOPS EXECUTED SEQUENTIALLY

As described in Section 18.5, two disjoint triangles in a chart
correspond to two separate search and select loops which are executed
sequentially. If the loops are independent, either one can be executed
before the other, If one of the loops depends on the other for
the selection of an element, then either the dependent
1ooP is executed second or else a wasteful nesting of the loops must be
used. These conditions may be determined from the chart as follovs.
Two independent loops A and B produce two arrangements of the chart with
disjoint triangles. In one arrangement triangle A is above triangle 8,
in the other arranqement triangle B is above triangle A. But one loop
dependent on the other produces one chart arrangement with disjoint
triangles (the starting assumption of this discussion) and one chart
arrangement with nested triangles.

Given a chart arrangement with tuc disjoint triangles, independence
or the loops can be determined from the paths of dependency propagation.
The loop corresponding to the lower triangle cannot possibly depend on
the loop corresponding to the upper triangle. Therefore the loops are
independent if and only if the upper loop does not depend on the lower
lOOF.

Let B(upper) be the row corresponding to the upper loop, and let
R(lower) be the row corresponding to the lower loop. Follow the paths
ot dependency propagation from each-of the letters A or S in row
R (upper) - If any of these paths intersect the main diagonal at
coordinates (R(louer),C(louer)), then the upper loop depends on the
lower lOOF.

Pig. la-14 shows an example of one loop depending on another
loop. Fig. YE-16 shows an example of indePendent loops.

18.10. MUTUAL DEEEHDENCY ANONG NESTED LCOFS

After data atoms have been shifted dcunvard-rightward as described
in Section 18.8, any nested triangles remaining in the chart
CCKKeSFOnd to nested lOCpS, where the inner loop depends on the outer
loop. The inner loop may depend on the outer loop for access, for the
selection of eleaents, or for both.

If the inner loop depends on the outer loop for access, it is
impossible to rearrange the chart such that the relative positions of
the two loops are interchanged. Fig. 18-6 shows an example where the
inner loop depends on the outer lcop tor access- The path of dependency
starting from the letter A in row D eventually intersects the main
diagonal at coordinates (H,H).

If the inner loop does not depend on the outer loop for access, the
relative Fositicns of the two 1~0~s can be interchanged. The resulting
chart arrangement shows disjoint loops vhich are executed sequentially,
if what formerly was the outer loop does not depend on vhat formerly was
the inner loop- Rearranging Fig. 1&-14(b) to Fig- 18-14(a) is an
example.

The resulting chart arrangement again shows nested loops, if the
two loops are mutually dependent. Interchanging the inner and outer
nested 100~s alters the order in which elements are selected. Fig.
18-17 shows a simple example of mutual dependency, and Figs. 18-18
and 18-19 show some more complicated examples.

Hutual dependency of nested loops is detected by a slight modifica-
tion of the method of following dependency Fropagation. The method
described in Section 18.7 avoids loops in the paths of propagation by
restricting all Fath extensions to the upper-right triangle of the
chart. All Laths starting from the upper-right triangle must trend
downward, so no loops can be formed. Similarly, all paths starting from
the lower-left triangle must trend upward, all Faths ending in the
upper-right triangle must trend rightward, and all Laths ending in the
lower-left trianyle must trend leftward. This is a simple consequence
of the fact that vertical paths are directed toward the main diagonal,
while hcrizontal paths are directed avay from the main diagonal.

There are tuo modifications to the method described in Section
10-l- The first is to allow loops in the Faths of dependency
Eropayation, by allowing the Faths to extend leftuard from the main
diagonal alcny rows which contain S's in the lover-left triangle. The
second modification is to separate those paths which happen to coincide.
Coincident Faths are distinguished by redrawing them as smooth arcs, an
arc from each letter A or S in a column C(i) to each letter A or S in
the corresponding row R(i), for all i. Fig. 18-20 shows some of the
Frevious charts redrawn with smooth arcs-

The chart shows mutually dependent nested loops vhich can be
interchanged, if there exists a closed uniformly-minimal-S path which
Fasses through tuo or more S's, A minimal-S path from a starting letter
A or S to an ending letter A or S is defined as a path from the starting
letter to the ending letter, such that no other path passes through
fever S's, A closed minimal-S path is defined as a minimal-S path which
starts and ends at the same letter. A closed unitormly-minimal-S path
is defined as a closed minimal-S path starting (and ending) at any
letter A or S through which the path passes-

Fig. 18-20(c) shows a closed uniformly-minimal-S path. Fig.
JR-20(b) shows a closed minimal-S Eath which is not uniformly-minimal-
5, The path starting at the letter S at coordinates (G,E) is minimal-s.
But if the other letter S at (D,F) or if either of the A’s is considered
the starting letter, the path is not minimal-s. In this example, the
lco&s corresponding to rows G and D are mutually dependent, but they
cannot be interchanged because looR G depends on loop D for access.

l&11. "EXISTS"

The Boolean predicate EXISTS may be used to test for a nonzero
value in a structure-pointing atom, or for the existence of an element
in a complex.. Referring back to the example declaration of Fig. u-l,

IP EXISTS NEIGHBOfi := - HCUSE ON LEFT Eps HOME
'IhEN GC TG ALPHA;

conditionally assigns the locan name NEIGHECR and branches, if the
structure-pointing atom HGUSE ON LEFT contains a nonzero value.

EXISTS may be used in two ways to test for the existence of an
element, The first ot these,

IP EXISTS A := ELERENT (B EFS A = C) Eps C Eps E
THEN --_I
ELSE ---.---

Prevents the system error exit ERROR from being executed, in the event
that the Boolean expression has the value FALSE for all elements of
ccmplex D. Local name A is assigned only if the specitied element
exists,

Fig. 18-21 shows an example of the seccnd way in which EXISTS may
te used. This is another form of mutual dependency, where the selection
of an element or one complex [element K of complex r: in the example)
depends on the existence of a specified element ot another complex
(element L cf coaPlex P in the example). The second element (L) must in
turn depend on the first element (K) either for access or selection, in
order that there ultimately be an etfective selection criterion tar the
first element. In Fig. 18-21, K depends on the existence of L, and L
is accessed throuyh K. In Fig. 18-22, K depends on the existence of
L, and the selection of L depends on the ccntents of atom N belonging to
K. ln Fiy. 18-23, the selection of elements never can te resolved,
because the selection ot each element depends on the previous selection
ot the ether element.

The letter E has been introduced into the chart in these examples,
tc indicate that the selection of an element of one complex depends on
the existence of a specified element ot another complex. The E may be
in the lower-left triangle, as in Fig. 18-22(a), or in the Upper-right
triangle, as in Fig- 1&22(b). The scope cf the loop corresponding to
the E must be expanded until it includes stme other loop with an
etfective selecticn criterion. The scope is expanded upward in the
chart if the E is in the lower-left triangle, or downward in the chart
if the E is in the upper-right triangle. In either case, the column
C(j) containing the E is projected to its corresponding row R(j).

Fig. 18-24 shows an example which mill be used to describe the
method ot expandinJIscopes. A square is drawn on the chart for each E,
such that the E is in one corner of the square and the square is
bisected by the main diagonal, Say the E is located at coordinates
(B(i),C(j)) corresponding to a loop cn row R(i). Row R(j) also
corresponds to a loop. unless there is an error in the source code.

If there are no E's in row R(j), then R(j) must contain at least
one S which is strictly to the left of the square. This guarantees that
there is an effective selection criterion, which can be propagated back
to row E(i). The square should be expanded the minimal amount necessary
to achieve l.roper nesting, and include the S in row R(j).

If there are E's in rev R(j), their squares should be expanded
first, and then the given square on row R(i) should be expanded the
minimal amount necessary to include (or coincide with) all the expanded
squares on row R(j). When expanded, the square on row R(i) must include
at least one column to the left oi its original boundaries, unless there
is an error in the source code.

finally, the scope of the 100~ corresponding to row R(i) is
determined by a square of the minimal size necessary to include any S's
in row R(i) in the lover-left triangle of the chart, and to include all
the expanded squares corresponding to E's in row R(i). This square,
like all the squares described above, must be drawn so that it is
bisected by the main diagonal.

An exception to this method is the case where a numeric search and
select loop Frovides the effective selecticn criterion. Numeric search
and select loops deEend only on themselves for selection: other loops
which depend on them for existence do not necessarily require expansion
leftward of their scopes. Fig. 18-25 shows an example, with an N on
the main diagonal indicating a numeric search and select loop.

Yhen tracing paths of propagated dependency or searching the chart
fcr clcsed uniformly-minimal-S paths, E's are treated the same as Sls.
N's are a special case. Since they lie in the main diagonal, they
terminate all Raths leading to them. Charts really are not helpful in
the translation of numeric search and select loops. Numeric loops can
be oaitted from the charts if the exception mentioned in the paragraph
above is recognized.

18,12, S'IARTING TRE SEARCH AT SCflE OTHER EIERENT

Fig- 18-26 shows an example where the search does not necessarily
start at the first element of the cornFlex. The search for element D
starts after selecting element G of the same complex. The effect on the
relative order in which the loops must be executed is the same as though
element D depended for access on element G. Therefore the chart
contains the letter A at coordinates (D,C). The graph shows the
simulated access as a broken line.

18-13. SGURCE CLCE ZhhCRS hCT DElECTAFLE EY CHAHT

Atheists ill1 be Gratified to learn tbat lOOF dnalysis by chart is
ret omniscient. 'Ibert are some source code errors for which no
detection method has (yet) teen develcPed. Fig. 18-27 shows an
rrdmPle knere loyically inaependent Eooledn search and select 1ooPs have
teen coded ii; sucii a manner that they are mutually dependent. Fig.
lb-2d shows an txdm[.lc ubere one of the Roclean ractors in a Boolean
term does not depend on any Property of the element being selected. A
tnird example, as rollobs, is self-contradictory.

A Eps I! <-- c r-p" c := ELEbfNT (E Eps D = I) Eps G
EPS ELEhENT (- EXISTS II) Eps H Eps I;

Special tests could be devised to detect each of these simple examples
ot source code errors, but not general tests to detect the savie type
errors entedded in very complicated source code.

lti. 14. SPECIEYIHG CRDER OF EXECUTION

The relative order in which numeric or Boolean search and se
loops are to be executed can be specified by the SPL programmer.
crdec of some or all or the loops in a single statement is specif
unsiyned inteyers, enclosed in parentheses and preceding the word
ELEMENT.. Fig.. 18-29 shows an exam&le.

The loots whose order is specified need not be well-ordered.

lect
The

ied by

Several of the unsigned inteyers may be equal. The order of executing
these loo&s is unspecified with respect to each other, but all these
Icops must follow any loops specified with a lower integer, and precede
any loops specified with a hiyher integer. The loops whose order is not.
skeciried in the source code may be executed before, between, or after
the specitied 1ooPs. subject of course to accessing restrictions,

In the absence of any of the Previously discussed constraints, the
loops are executed in the order imPosed by other considerations in the
source code: heirarchy ot phrases in parsing an expression, left-to-
right order, etc.

18.15. TRANSLA'IEL CODE

Examination of the chart is made for the purpose of translating SPL
source code containing Boolean search and select loop statements, into
equivalent SPL source code containing only explicit loop statements.
lhe relative positicns of trianyles in the chart determine the relative
order of execution and the nesting of the explicit loops. Other
statements appear in the translated equivalent code, as well as the loop
statements; Section lf3.2 contains some examples. This section
describes what other statements are needed, and where they are
positioned with respect to the explicit loop statements.

18.15. 1. SIfiPLE 1GCPS

Section 18.15.1 describes the code to select d single element of
d cornFlex. The selected element is the first for which the Boolean
exPression in the source code has the value TRUE. There must not he
mutually dependent intercnangeable loops, and the source code must not
contain the word EXISTS. Translation of source code containing mutually
dependent interchangeable loops or containing the word EXISTS is
described in following sections.

Fig. lb-30 shows example source code of the kind described in
this section. The outer triangle in the chart corresponds to the outer
nested look statement. The two inner disjoint triangles correspond to
the two inner nested loops, which are executed sequentially. The loop
corresponding to the lower-right triangle is executed betore the loop
corresponding to the upper-left triangle.

The local names of the selected elements are used as bound
variables for describing the Properties of the elements. But they also
may be used in sutsequent code in the same manner as any other local
names: to name instances of constructs (elements, in this case) whose
identities already have been detersined. Therefore these local names
are reserved outside the outermost loop statement.

The code within the scope of each of the loop statements consists
of all the inner nested loop statements (if any), followed by the
Boolean test- If the Boolean test is successful, a branch is executed
to code outside the scope of the loop- Immediately following the end of
the loop is an ERRCh statement, indicating a programming error if none
of the elements have the Property specified in the Boolean test.
Following the ERROR statement is the branch destination for the Boolean
test, and then whatever subsequent code is appropriate. The executable
code of the source statement (A Eps 6 <-- C Eps D in the example)
follows the last outermost loop statement-

38-15.2. MUTUAL DEPENDENCY FOR SELECTION

If several nested loops are mutually dependent in a manner such
that the selection of elements from each lcop dePends on the selection
of elements from all the other loops, yet ncne dePends for existence on
any of the others, then the Boolean tests and ERROR statements of the
loops are merged. Fig. 18-31 shows an example. The two Boolean tests
are "anded" together inside the innermost nested loop, and only a single
EhRCfi statement occurs outside the outermost nested loop.

The Boolean test corresponding to the innermost loop is executed
before the Boolean test corresponding to the outermost loop. This is
the same crder of execution as the order shown in Fig. 18-30. It
reduces possible side effects resulting frcm executing the tests.

18.15.3. "EXISTS" AS A SELECTICN CRITERIOK

If the selection of an element of one complex uepends on the
existence of a specitied element of another complex, there is no Boolean
test for existenca- The only Boolean test within the nested loops is of
the ettective selecticn criterion tar the element of the second complex.
Except for the absence of one Boolean test, the translated equivalent
code is the same as tar mutual dependency with interchangeable loops.

Fig. 18-32 shows an example using EXIS'IS. The only Boolean test
inside the innermcst nested loop is tof the selection of element L. If
the test succeeds, execution branches outside both loops, thereby
etfectively selecting element K. Fig. 18-33 shows a more complicated
example.

1.3.15.4, CONCITICNAL S'IATEHENTS USING "EXISTS"

If a conditicnal statement tests tar the existence of a specified
element, the code tar the ELSE condition substitutes tar the ERROR
statement following the last outermost loop. In other respects the
translated equivalent code is the same as Previously described. Fiy.
lB-34 shovs dn example,

18.16. SELLClING ALL ELEMENTS

lb. 16.1, 1NTERPRETATICN CF THE WORC "ALL"

The word ALL aPpeariny in an access chain imPlies the existence of
a loop for sequencing over the elements cf a complex. If no loop would
be compiled in the absence of the word ALL, then SPL compiles a loop
specitically in response to recogniziny the word ALL. This is called an
implicit loop. It is descrited in Section 17.2.

But if the word ALL is applied tC elements chosen by a Boolean
search dnd select loop, SPL does not compile ancther loop in response to
recognizin9 the word ALL. The 1006 which performs the selection of
elements also is used to seguence over nil the selected elements. The
scope ot the lock is exPanded to include all the operations (accesses,
tests, stores, other loops, etc.) which de&end on the elements selected
ty the lOOF.

Fiy. lb-35 shows d simple exdmtle ot Poolean search and select
1OOL'. wnere nil ttie elements dre selected rather than just the tirst
element. Altnotijl? the triangles in the chart ale disjoint, the loops
are ncstec!. l'ne local names of the elements are not reserved (as they
ace in Fq. ld-3C), there drt no EbiiOti statements, no branches, and
the exGcutdl.le ccjo is inside the in-nermcst nested loop.

l&16,2- RESTRICTIONS CN THE USE OF "ALL"

Some uses of the word ALL in access chains are intrinsically
meaningless. These source code errors occur in situaticns like the
following.

First, observe that:

(1) A Eps PREFACE ELEMENT Eps B
<-- C Eps C := ELENENT (E Eps C = F EFS G) Eps H
Eps G := ELEMENT (I Eps G = J) Eps K EFS L;

is completely synonymous with:

(2) A Eps FBEFACE ELEHENT Eps B
<-- C EFS C := ELEMENT
(E tks C = F Eps G := ELEBENT (I EF" G = J) Eps K Eps L)
Eps H EFS G;

Next, modify the Source code to select all elements G. Then:

(3) A Eps PREFACE ELEBENT Eps B
<-- C Ep" C := ELEMENT (E Eps 0 = I Eks G) Eps H
Eps ALL G := ELEMENT (I EFS G = J) Eps K Eps L:

is completely synonymous with:

(U) A EFS PREFACE ELEMENT Eps B
<-- C EFS C := ELEMENT
(E Eks D = F Eps G := ELEMENT (I EF" G = J) Eps K Eps L)
ENS ti Eps ALL G:

In examples (3) and (4), the word ALL appears in the access chain for C.
The access chains tcr C and F coincide, staztiny at G. But to the left
of G, the access chains are distinct. Examples (3) and (4) are not
synonymous rith:

15) A E&s PREFACE ELEMENT Eps B
(-- C Eps 1: := ELEMENT
(E E&S 0 = F Eps ALL G := ELE?IENT (I Eps G = J) EpS K Eps L)
Eps i: EFS G;

Example (5) iS &eaninJlesS; the source code is in error.

By n,oditying the source code ot example (5) into a Boolean implicit
loop, the source code once again is meaningful:

(bJ A Eps PhEIALE ELEMENT EFS B
<-- C EtS C := ELEMENT (E Eps D =
AhY Of' 1 El's ALL ti := ELEMENT (I EF" G = J) Eps K Eps L)
EFS h EcS ti;

which is colrhletely synonymous with:

(7) A EFS PhEFACE ELEMENT Eps B
<-- C EFS G := ELEMENT (E Eps D = ANY CF F Eps ALL C) Eps H
Eps G := ELEMENT (I Eps G = J) EFS K E&S L;

Further modiricdtion of examples (6) and (7) may lead to two more
errors. The word ALL in example (6) or (7) cannot be moved to precede
the other occurrence of the letter G, as io:

(8) A EFS PREFACE ELEMENT Eps B
<-- C E&d C := ELENEN'I (E Epd D = ANY CF F Eps C) Eps H
E@? ALL G := ELENENT (I EF" C = J) Eps K Eps L;

The error in eramkle (8) is siailar tc the error in example (5).
Example (8) has no word ALL in the access chain for the Boolean implicit
lcot on F, since the access chains for C and F do not coincide until G.

The other error arises if the source code of example (6) or (7) is
modified so that the word ALL precedes both occurrences ot the letter G,
as in:

(9) A Eps PREFACE ELEBENT Eps B
<-- C EFS C := ELEMENT (E Eps C =
Eps ALL G := ELEMENT (I EFS G = J)

ANY CF F Eps ALL G) Eps H
Eps K Eps L;

icglf local name tor elements,
, the two occurrences of the
he word ALL. It is

meaningless to attempt to use more than one criterion for the selection

At most one word ALL can be applied to a s
within a sinyle statement. In example (9)
sinyle local name G each are Freceded by t

of elements G. of elements G.
However, However, the elements ot a single cornFlex nay be selected by the elements ot a single cornFlex nay be selected by

several criteria, several criteria, it the resulting selections are assigned different it the resulting selections are assigned different
lccal names. lccal names. Erarile: Erarile:

(10) A Eps PREPACE ELEMENT Eps B
<-- C Eps C := ELEHENT (E EpS C =
ANY OF F Eps ALL X := ELEMENT (Y EiS X = Z) Eps K Eps L)
E&s H EpS ALL G := ELEMENT (I Eps G = J) Eps K Eps L;

lb.16.3. RLPRESENTING "ALL" IN CHART ANG GhAPH

AS a computational did in translatiny the word ALL into its
equivalent code, using the chart aFkears to be of marqinal benefit.
Once a chart has teen developed as described in the preceding sections,
with the word ALL iynored, the moditicdtions necessary to account for
the word ALL can be computed in a straiyhtfcrward manner by direct
examination cf the source code.

However, both the graph and the chart are used in this section to
helk describe the required modificaticns. Fig. 18-36 shows the graph
and several charts of the example source code used in this section. The
example has three occurrences of the word ALL, for selecting all
elements named P, 'I, and Al. Each occurrence of the word ALL must be
distinguished. We vi11 do so by dssiyning them subscripts: ALL (a) ,
ALL (b) , and ALL(c).

The graph shown in Fig. 18-36(a) depicts the entire source code
statement, rather than just the loops involved. The various reiations
01 operations upon the constructs have been superimposed on the graph,
to help clarify the complicated trocessrs described in the source code.
Each occurrence of the word ALL is included as a separate node on the
graph, as though it were part of the access chain for the descendant
ccnstructs. The elements selected by the loops, P, T, and AI, are aoove
the nodes la&led ALL. Each element selected and assigned local name P,
'I, or AI causes krocessiny to be kerfcrmed on its descendant constructs.
The word ALL causes selection of many instances of Q, V, and AJ as well
as many instances of the constructs directly descending from ALL.

Each occurrence of the word ALL also is included in the original
chart, shown in Fig, 1&36(b). The dots in the chart are just a
visual aid. The oriyinal chart is rearranged in Fig. 18-36(c), so
that all the A's lie in the upper-right triangle. The error described
in example (9) of Section 18-16-2 would show in the chart as two rows
headed by the word AiL, both containing A's in the same column.

Fig. 18-36(c) also shows some paths of dependency propagation, as
described in Section 18.7. The paths are drawn with solid lines.
Cnly those paths are shown which intersect the main diagonal at a row
and column headed by an occurrence of the word ALL. Each intersection
of these kaths with the nain diagcnal corresponds to some construct
which depends on all the specified elements of. a complex being selected,
rather than just one of the elements of the complex. If the path bends
downward (going frcm row to column) only at letters A, then the
construct is accessed through the word ALL, The upper-leftmost such
constructs in the chart are the leftmost constructs of their respective
access chains,

For example, consider the path starting at the main diagonal at
coordinates (fi,M). The bath bends downward at the letter A at
coordinates (6,L). At row L it diverges irto tro Faths. One of these
Laths leads to the main diagonal at coordinates (ALL(b),ALL(b)) only
through A's. Theretore there is an access chain from construct M to
word ALL(t). 'The other path bfnds downward at the letter s at
coordinates (L,N). Theretore the ether Fath does not correspond to an
access chain.

Since there is no pdth which bends downward only at A'S and which
leads to the main diagonal at coordinates (M,M), ccnstruct N must be
leftmost in Its dccess Chain- This cdn be verified by examination of
the source code ot Fiy. 18-36 and the graph in Fig. 18-36(a).

So tar, we have used the chart cnly tc find the leftmost constructs
ot all access chains which pass throuyh the word ALL. It would be
equally easy to dc this by direct examination of the source code. For
each of these constructs, a digit 1 is marked in the chart at the
intersection ot the row headed by the word ALL and the column headed by
the construct narf. Light vertical broken lines have been drawn in the

,columns a5 d visual aid.
Next, for each digit 1 in a rcw, mark a digit 2 in the same row, in

the column ot each construct Which FarticiEates in the same expression.
Fcr exaaple, row ALL(b) contains d digit 1 in column C, fieferring to
the source code, C is a member of the expression: A <-- 2 + C * AD.
This is easifr to see in the graph, Fig. 18-36(a). Constructs A, 2,
and AD participate in the same expression as C. Therefore a digit 2 is
&arked in row ALL(b) in columns A, 2, and AC. If the row-column inter-
section already ccntdins a digit, then the digit 2 is not marked. We
now have markea each row headed by the word ALL with a digit 1 for the
leftmost member (call it '*LEN") ot each access chain passing through the
word ALL, dnd with a digit 2 for each construct participating in the
came expression as LflM.

Next, the irreducible chart is derived, as in Fig. 18-36(d). The
optimization methods described in the preceding sections dre used to
tind the best chart arrangement, and the triangles are drawn on the
Chart, The diyits 1 and 2 are considered to be significant when
deriviny the lrrcducible chart, but are iyncred when traciny katts ot
dependency yro[agation-

Each occurrtnce of the word ALL depends for access on the elements
Ct some COUii lex, as shown by the arrcws in Fiy. lb-36(d). For
eXdE&le, ALL(b) depends on the elements named 'I. The triangle
ccrres;ondiLq tc LOW 'I must te expanded ukuard-lcftward enough so that
it includts the ltrtlrost drgit 1 or 2 in row ALL(b). The triangles
ccrresi!ondin'J to rows P and Al also must be expanded, and proper nesting
must be malntarned.

Expdnsion stdrts kith the Upper-lettmcst of these triangles,
CorrespondinLj to row P. It 1s exbandcd enough to include the leftmost
diyit in ro‘i ALL(a). The r.ext trlanyle to tr expanded corresponds to
ICY 'I. It n.ust tc fxl anded all the way to the upper-left corner ot the
chart. This tortes the tridnjle ccrresiondiny to row Y to be expanded
dlS0, in ortier to maintain Frober nesting. finally, the triangle
cc.rrespondrcy to rok AI 1s eXpdnjed all the way to the upper-left corner
ot tne chdrt, 1n crder to lncluoe the diyit 2 at coordindtes IALL Cc) ,C) .
'Ihe rcsbltir,g expanded tllanyles dLe shown in Fly- 18-36(e).

18.17. EXTENSION OF SOURCE CODE SYNTAX FCfi EOOLEAN SEARCH AND SELECT
LOOFS

The strongest criticism or the source code syntax is that the
desired operations are not immediately obvious to a person reading the
source code. Long strings or code describing the selection criteria
have the visual effect of separating the access chain. Operands which
are logically related in an expression appear physically distant on the
Printed page.

To some extent this problem is unavoidable where many complicated
operations are described in a single statement. For example, the
Problem arises in ordinary mathematical nctation, such as the polynomial

3*X1+25*X5*(5*XU*X3+X~*[7*X2+X4)*(xi-3*Xl)*2)-S*X2

The terms 3*X1 and -5*X2 are closely related in the logical sense, but
Physically distant.

Ihe problen in SPL can be relieved someuhat by an extension of the
syntax, to allow an optional alternative fcrm ot writing Boolean search
and select statements. The selection criterion may be assigned a name,
and then the ndmt derined following the remainder of the statement.
Example:

A Eps h! <-- L Eps D := ELEflENT (E Eps C = F) Eps G Eps H;

also may be written as:

A Eps B <-- C Eps D := ELEMENT (TFSTL) Eps G Eps H
WHERE TESTC = (E Eps D = F):

Using the alternative syntax ctfers no advantage unless the
statement of the selection criterion is lengthy, causing visual
separation of the access chain, The alternative syntax introduces an
additional name for a bound vdriaLle into the source code, which merely
increases contusioc in simple situations like the example ahove.
However, the alternative syntax can reduce confusion in more complicated
situations- The examples below are taken tram Fig. 18-19 and Fig.
18-24.

Example (1) source code:

A EPs R <-- C Eps D := ELEMENT (E Eps D = F Eps C := ELEMENT
(H Eps I := ELEMENT (J Eps I = K) Eps L EFS G = !t Eys D)
Eps N EPs F) EPs (; Eps R;

Example (1) alternative syntax:

A E&s B <-- C Eps C := ELEMENT (TESTC) Eps u Eps R
WhERK TESTD = (E Eps D = F Eps G := ELEKEK'P (TESTG) Eps N Eps

P)
WHERE IES'IG = (II EPs I := ELEMENT (.I EPs I ; K) Eps L Eps G =

M Eps L);

A EFS ti := ELEMENT (EXISTS C := ELEUEHT (D '2~s C = E) Eps F Eps B)
I i,S G EF H

<-- 1 zps u := ELEHENT (K ELS J = L Eps M := ELEVENT
((EXISTS N := ELE3EN'Z (EXISTS F t= ELEMENT (Q E[:s P = R Eps N)

Eks 5 Eks t?) Ei,s T Eps U) F,
(EXISTS V := ELF.V,ENT (ii EF" V = X) Eps Y Eps fl)) Eps 1. Eps J)
ELS kh Eps kB;

ExamLie (2) alterndtive syntax:

A Ecs E := ELLKEEIT (TES'IB) EFS G Eps H
;-- I Eps ; := ELErlENT (
NHLHF TESTE = (EXISTS C
iHERE TESTJ = (K EpS J =
ktiEi?E TESTM = ((EXISTS N

(EXISTS V := ELEHENT 1
kHEFE TEST& = (EXISTS P

fli ;

ifSTJ) -Ebs AA Ep.5 AB
= ELEflENT (0 EFS C = E) Eps F Eps B)
L Eps ?I := ELENENT (TESTN) Eps 2 Eps J)
:= ELEMENT (TESTN) Eps T Eps U) E
k' Eps V = X) Eps Y Eps M))
= ELEMENT (Cj Eps P = t? Eps N) Eps 5 EpS

?he essential feature of the alternative syntax is that names are
assigned to the tests themselves. Even though the tests are described
at the end of the statement, the appearance of the names within the
Boolean search and select statement unambiguously identifies each test
with the elements selected ty the test.

19. CCNNEC'IING THE ELEMELTS OF A CCMFLEX

Elements of a complex normally are linked together with forward-
pointing links only, as shown in Fig. 4-l. This provides the
yreatest space economy while allowing the number at elements to vary
dynamically at run time. It also constrains accesses to being
sfyuential -- elements 1 through 14 must be accessed before element 15
can be accessed. 1n some cases the insertion and deletion of elements
is computationally awkward because only forrard links are available.

5PL programmers may declare other methods of ccnnectiny,the
elements, which may be more appropriate to the intended processing
applications-

Ihe complex mdy he dimensioned,
consecutive stcraye.

in which case the elements occupy
Access to the element: is accomplished by

ccmputation ot relative locations,
pointers,

rather than by following paths of
A dimensioned complex,

are dimensioned,
all of uhcse descendant complexes also

is the equivalent of an ALGOL array. All the elements
of a dimensioned ccmplex are created simultaneously with the creation of
the complex itself, so it is an error t0 attempt t0 PBEFACE, APPEND,
INSERT, or DESTBGY any elements. The dimension declaration appears as
part of the declaration of the complex. ExacFle:

CCMFLEX FUBNITURE, 5 ELEMENTS, (
ALPHANUMEBIC ATCM ITEM NAME (10):
AlCM COST (1000)) ;

Bidirectional linking, CORAL-type linking (alternate backward and
upward links), or the normal forward linking also may he declared.
Examples:

CCfiPLEX FURNITURE, HIDIRECTIGNAL LINKS, (
ALPHANUMERIC ATCtl ITEM NAME (10);
AlCfi COST (1000)):

CCRFLEX FURNITURE, CORAL LINKS, (
ALPHANUMEBIC ATCU ITEM NAHE (10);
A'ICM COSl (1000)) ;

CCflFLEX FUBNIIURE, FCBWAED LINKS, (
ALPHANUNERIC AT011 ITEM NAilE (10);
ATCM COSl (1000));

It also is Possitle to declare a multilevel tree of links, each level
having its own linking convention. The approximate number of descendant
constructs (either lower-level links tr elements) must be declared for
all but the highest and lowest levels- ExaUple:

CCKPLEX FURNITUBE, ((COfiAL LIEIKS) (UICIBECTIONAL LXNKS,7)
(FCAWAKL LINKS)), (

ALPHANUEERIC ATCM ITEM NAME (lo);
ATCM COST (1000)) :

In the above examElf, the top-level links are of the COBAL type, with as
many descendant links as are necessary to ultimately point to all the
elements of the complex. The second-level links are bidirectional, each
Pointing to apprcriaately 7 third-level links. The third-level links
Pcint rcruard only, and each is identified with some particu1a.r element
(stored consecutively with the element).

Another possibility is to declare an arbitrary number of levels Of
links. A neu level of linking is formed whenever the number of
descendant links exceeds the declared average. A level of linking is
ccllapsed whenever the number of descendant links is reduced below the
declared average. The formation and collapsing of levels of linking is
only approximate; some links may Faint to slightly more or fever
descendant links than the declared average. All levels ot linking must
te cf the same type. ExamFler

CCNPLZX FUfiNITUhF, (CCRAL LINKSJO), (
ALFHANUKLHIC ATCN ITEM NARE (10);
ATCN COST (1000)) ;

If the declaration appears in an inner program block, the declared
dimension or the declared average number or descendant constructs may be
the contents ct some variable whose value was set in an outer block.

20. EXTENSICNS 10 XHE CEcLAhATxaNs

Several extensions to the declarative capabilities in SPL are
uiscussed in this section. The extencions do not allow the declaration
ot additional tyFfs of constructs, but instead enable the previously
described declardtions to be more concise and better documented. ThC?.Se
extensions provide rudimentary ccncordance (IBM calls it "cross-
reference'l), abbreviation, macro,
declarations.

and suhrcutine capabilities for the

20-l. DEFINITIONS

Numbers, strings. and Boolean truth values are called "self-
deiining constants". SFL allows the definition of "compile-time
ccnstants" in terms ot self-defininy constants and previously defined
comprle-time constants. Compile-time Constants are valid only within
the program tlcckz in which they are defined. Their names must be
unique in those blocks. Cnce defined, they may be used in the same
manner as self-defining constants. They assume the types and sizes of
the terms used in their definitions, unless declared othertiise.
Exantplec:

CEFINE CAHC LENGTH <-- 80;
CEFIfiE FI := REAL <-- 3.1416;
DEFIhE PIE <-- 'BREACEO COO':

20.2. CCLLEC1ICLS

collectionS are oraered sets whose members all are detincd at
compile time. Collections are valid cnly within the program blocks in
which thei are declared. Their naues must te unique in those blocks.

All the memters of a collection must te ot the same tyke. The
collection assumes tnn type of its members,
ot its members.

and the size ot the larqest
The use ot the collccticn came results in the implicit

generation or a loop. Each merrber of the collection, in order, is
substituted for the collection name in successive cycles of the loop.
'Ihe scope of the locp includes every ccnstruct which participates in the
same expression with the collection name. The scope of the loop is
determined 1c a manner similar to that described in Section 18.15.3.

Eramile collection declaration:

COLLECTION UCES ('LIVING'; 'DINING'; 'KITCHEN'; 'BREAKFAST';
'IIALL'; 'EECRCCI?'; 'L'EDRCCR': 'PECRCO?'; 'aATHRCCM'; 'BATHRCCM';
'LAllNI)EY') ;

Example use ot a collection:

USi Ek" APFthC ELEl!ELT Eps PCGMS Eps ECME c-- IISES;

2C"3. DECLARATICN LACfiCS

often several diiferect types of structures *ill ccntain constructs
which have identical declarations. FOE example, the declaration of
structure type HLUSt TRAILER might ccatain the same complex ROOMS as the
declaration cf structure type HOUSE:

SIRUC'IURE HCLSE TRAILER (
ALPHANU.YE&IC ATGM LLCENSE NUfiHER (6):
ALLHANUMERIC A'ICM STATE (5);
ALPHANUMERIC ATCM CCLCR (6);
ALFHANUl'lEhIC A'ICM MODEL (8):
ALFHANUMERlL ATCM MAKE (8);
CCMfLEX RCCMS (SAME AS RCCNS EFS HCUSE));

Ihe words SAME AS indicate that the declaration of ROOMS Eps HOUSE
also is to te used as the declaration of RCOMS Eps HOUSE TRAILER.

SPL pro,,rdrmers mdy choose to declare some types of structures, not
so they can create instdnces of the structure types, but for use as
Parameterless macrch in the declarations of ether structure types.

2c.4. MCLECULES

Often several atoms and complexes will be logically related within
a u6er’s Frcgram, and yet they may comprise only Part ot a structure or
element- Ihese atcms and complexes may be grouped into a 9vmolecule*',
either for the purpose of macro declaration or macro call using SAME AS.
Example:

STRUCTURE HCUSE 'IRAILER (
MLLECULE VEHICLE IDEN'IIFICATION (

AIFHAhUMERIC AT08 LICENSE NUMBER (6);
ALPHANUMERIC ATOH STATE (5);
ALPHANUMERIC ATCM COLOR (6);
ALFHANUMERlC ATCM MODEL (8);
ALPHAhUMERIC AlCN MAKE (8)):

COMPLEX RCDMS (SAME AS ROOMS Eps HCUSE));

S'IRUC'IURE AU'IOMOHILE (
A'ICM DRIVER (PERSON);
CGMFLEX FEOFLE IN CAR (

ATOM OCCUPANT (PERSCN));
ROLECULE VEHICIE IDENTIFICATION

(SABE. AS VEhICLE IDENTIFICATION Eps HOUSE TRAILER);
ATCM THAILER (HCUSE TRAILEh));

If two instances of molecules have identical declarations, and if
the molecules dc not contain any complexes, then (1) storage assignment
statements using t , t+- , and N may cause the transfer or
suap of the entire contents of one molecule into the other molecule, and
(23 conditional statements may test whether the molecules are equal.
Example:

IF VEHICLE ICENTIFICATICN Eps THIS CAR =
VEHICLE ILENTIPICATICN EFS STOLEN CAR

'IHEN BLOWgHISTlE (LOUD);

20.5. CO&PILE-TIME PROCEDURES

Procedures declared outside a given program block may be called
within the declarations of the given block. These Frocedures are
executed at compile time. Therefore the actual parameters can be only
self-derining constants or previously defined compile-time constants.
The output values of the procedures are compile-time constants, The
procedures may create and use isolated cells for internal temporary
storage, but they cannot use structures or externally created isolated
cells because Frogram execution has not yet begun. Example:

DEFINE LINE LEHGTH <-- RAX (CARD LENGTH; PRINTER COLUHNS);

In the above exaakle, procedure MAX must have been declared in an outer
nested program tlcck.

21. INFC'I/OUTFUI

SPL does not include the specificaticn of formatted input/output
procedures, although various SFL implementations may have formatted
input/output caFarilities. The only I/O capabilities basic to sPL,
rather than to a Farticular implementation of SFL, are the procedures
FACE and PRINT-

PAGE causes form ejection to the top of the next page.
The intent of PRINT is to provide a minimum output capability for

debugy.iny use. It permits the printing of constant strinqs or the
contents of any construct. Ihe formats fcr printing the contents of
constructs depend on the declarations of the constructs. The standard
foraats are:

CECLARA’IION PBINT FCBMAT

UHSIGNED INTEGER Enough decimal digits to print all significant
fiyures, with leading zeroes omitted. At least one
digit is printed.

INTEGER Sign followed by UNSIGNED INTEGER,
ECOLEAN THUE or FALSE.
ALPHANUMERIC Leadiny characters UF to the last nonblank.

Trailiny blanks are omitted. Nothing printed if
entire striny is blank,

REAL Signed mantissa fallowed by siyned exponent, the
number of digits deFendin on the implementation.

CCMELEX meal and imaginary Farts, each Printed in BEAL
format, separated by ccrma and enclcsed in
parentheses.

LGNG BEAL Same ds hEAL, with more diyits or siynificance.
LCNC CCEFLEX Sasr as CCXFLEX, with xore digits of siynificance.
CECIfiAL Same as INTEGER.
pointers octal or hexadecimal unsigned inteyer, depending on
[structure-pointing the implementation. Leading zeroes are printed.
atcms. links between
elements, etc.)
and addresses

If a parameter to PRINT is an atcm or isolated cell, only the
contents are printed. If the parameter is a structure, cornFlex,
element, or oolecule, the type names ot the atoms, elements, etc. and
their contents are printed in tabular focr. The order of printout is
the order in which they are declared, not necessarily the order ir: which
they are packed into the computer memory.

22- ICFLhMtNTAlICN

'Ihe following sections of this paper discuss various aspects of the
inplementation cf SFL. Cnly those aspects are discussed which are
leculiar to SPL; thr reader is presumed to have a general backyround in
inplementiny algchraic compilers. One particular implementation is
described, which may serve as a guide for subsequent implementations.
'Lhe iatlementation as done on the CDC (originally Bendix) G-21
ccmFuter,

lranslation ot SFL source code requires at least two passes, and
preferatly three cr more passes,
naviny listed the results

Users should be given the oFtion of
of each translation pass, as a debugging aid.

Debugying facilities should be available in the source language and in
any intermediate languages used during translation,

Cne translation pass should te dedicated solely to translating
inklicit loo& statements of various types into their equivalent
explicit look statements. Some pass before the final translation into
orject code is needed to determine the declared type or each local name,
since the local name may be used for access earlier in the source code
(but later in exscution) than its assignment.

At run time the primary core storage cf the computer contains the
object code of the Lrogram and models built from the structure
declarations, a stack for local names and isolated cells, a table of
structure locations, an auxiliary storage table for the virtual memory,
and a large structure storage area. In addition, there is an auxiliary
storage area on some direct-access device such as disk or drum.

23, MODEQ

Declarations Of SPI structure types result in the creation of
models of the declared structures.
time.

Tne models are created at compile
They are used at compile tive fcr compiling code to access fields

within the structures, and for staying in context with incompletely
gualified construct names.
run time,

The models remain in the computer memory at
stored with the compiled program. They are used by the

interpretive Procedures within SPL: creating, copying, erasing,
destroying, and Printing the contents of structures and their descendant
constructs; linearizing inactive structures for writing to auxiliary
storage and reconstitutiny them when they are read back again; and
miscellaneous debugging operations.

Since several constructs belcnying to different structure types may
have the same declared type name, each declared type name is stored only
once and is pointed to by the construct models. The type names are
retained at run time for use by PRINT and ty the debugging operations.

The model or each declared structure or element type (not including
the model of any descendant element types) occupies consecutive storage,
with pointers to the models at any descendart element types. The model
contains one entry for the structure or element as a unit, and entries
for each of the descendant atcms, complexes, and molecules. The model
or each molecule is just part of the model of its ancestor structura,
element, or molecule, with an additional entry for the molecule as a
unit. The model of each molecule cccupies consecutive storage.

The model entries for descendant atoms, complexes, and molecules
are stored in the crder in which they were declared. This does not
necessarily correspond to the relative positions of the tields within
instances of the declared constructs.

Each instance of a structure, element, or molecule within a
structure or element, also occupies consecutive storage. The model
shows the relative positions of the fields tor the various descendant
atoms and complexes. The actual positioning of the fields is determined
by an inplementation-dependent program, which optimizes the placement
for the particular computer hardware. For simplicity in writing the SPL
interpretive Procedures, the private bookkeeping information is given
uniform placement in all structure types, the links are given uniform
placement in all element types, and the anchor links and dimension (if
any) for each coupler are partly standardized (for example, they may
occupy the rightmost bits within a vord).

The fields in each entry of the niodels are described below. some
of the displacement and size figures must be expressed as words or bytes
and remaining bits.

structure entries:
('1 Indication that this is the model of a structure.

13;
Pointer to the type name of the structure-
Number of entries in the model for molecules and first-order
descendant atoms and complexes-

(4) Amount or consecutive storage required Ear the structure.

Element entries:
(1) Indication that this is the model of an element.
(2) Number of entries in the model for molecules and first-order

descendant atoms and complexes.
13) Amount of consecutive storage required for the element.

fiolecule entries:
(1) Indication that this is the model of a molecule.

I:;
Pointer to the type name of the molecule.
Number of entries in the model for molecules and first-order
descendant atcms and complexes.

(4) Amount of consecutive storage required for the molecule.
15) Displacement of the start of the molecule from the start of its

ancestor structure or element,

Atom entries:
(1) Indication that this is the model of an atom.
(2) Pointer to the type name of the atom.
(3) Amount or consecutive storage required for the atom.
(4) Displacement of the start of the atom from the start of its

ancestor structure or element.
(5) Indication or the type of atom: UNSIGNED INTEGER, BOOLEAN, etc.
(6) Pointer to the constant initial value, if it is a data atom.

Initial values are stored with the type names of the declared
constructs. Pointer to the model of the structure type, if it is a
structure-pointing atom,

Complex entries:
('1 Indication that this is the model of a complex.
(2) Pointer to the type name of the comyler.
(3) Displacement of the start of the anchor link from the start of the

complexVs ancestor structure or element. The position of a field
containing the dimension is fixed relative to this displacement.

(4) Pointer to the code segment fcr determining the dimension of the
complex, if any.

(5) Count of the number of fields described in (6) below. There is one
such field for each level of linking, if the number of levels is
fixed. There is exactly one field (6) if the number of levels is
variable, and no field (6) if the CowFlex is dimensioned.

(6a) A bit indicating whether this field is for a single level of
linkiny or for all levels of linking.

(bb) Indication of the type of links: FOkWARD, BIDIRECTIONAL, or CORAL.
(6~) Average number of descendant links. This number always is 1 for

the bottom-level links, vhich are part or the consecutive storage
of the elements. This number always is 0 tar the top-level links,
meaning as many links as necessary.

(7) Pointer to the model or the elements of the complex.

iu, STACK

Local names, isolated cells, temporary storage for evaluating
exFressions, and temporary storage for the interpretive procedures are
kept in a stack at run time. For each program tlcck, the number of
local names, isolated cells, and temporary storage locations for
evaluating erFressions, can be determined at compile time. The stack
expands by this amount when the Frogram blcck is entered, and contracts
by this amount when the program block is left. The stack also expands
dDd contracts d variable amount, depending on the needs of the
interpretive procedures, when these Frocedcres are executed.

The stack expands downward in memory, with a register pointing to
the current end of the stack. Therefore all entries in the stack for
lccal names, etc-. are addressable by some fixed positive displacement
rrom the contents or the register. All the interpretive procedures
expand the stack by decrementing the contents of the register, but when
they have finished execution they restore the fcrmer contents of the
register. It never is necessary to access any or the stack entries for
lccal ndmes, etc. while the interpretive prccedures are executing, so
their alteration of the register dces not violate the stack addressing
capability. Furthermore, no two ot the interpretive procedures ever
execute simultaneously, with the exception that the free storage
recovery procedure may be called while any of the others are executing.
Cnce called, the free storage recovery prccedure runs to completion
tcfore relinquishing control, so it does not viclate the stack
addressing capability of the other interpretive Frocedures.

Ibe local ndmes declared xn any one Frogram block are kept in
consecutive ritoraje within the stack, to siaFlity the execution of a
rcutine which releases all the local names lust before program execution
leaves the block.

25. FIELDS k;ITHIii LOCAL lAflES

Whenever a lccal name of an instance of a structure or any of its
descendant constructs is valid, the entire etructuce is active.
this time nc part of the structure can be relocated,

During
Therefore the

local name can Feint to absolute addresses of any constructs within the
Etructure.

The local name or any descendant construct has a field pointing to
the named construct, and a second field pointing to the private book-
keeping area within the structure. The second field is used tor
incrementing the activity count of the structure when the local name is
assigned, dnd for decrementing the activity count when the local name
subsequently is released. A local name of the structure itself contains
the entry nulrber for the structure, in the table of structure locations,
in place of the pcinter in the first field. The pointer in the second
field to the private bookkeeLing area is sufficient to address the
structure, The entry number must be stored in the local name, so it is
available fcr copying into structure-Feinting atoms,

In some si.ecial cases it is net nece **ary
count when d local name is assigned.

to increment the activity
These cases are discussed in

Section 26. dbenever a local name is assigned and the activity count
is incremented, a one-bit field is set in the local name. The field is
reset when the local name is released. The local name may be released
any time betore Grogram execution leaves the block, eitber because a
RELEASE statement vd* executed or because a DESTROY statement was
executed. This bit is examined by the RELEASE and DESThOY statement
Erocessors, to ensure that a local name actually was assigned and to
prevent the local name from being released xoxe than once. A second
attempt to release a lccal name causes a run-time error. The bit also
is examined by the routine which releases all local ndses just before
program execution leaves the block- Only those local name* for which
the bit is set are released; the cthecs are ignored by this routine.

26. kHtN NC2 'IO ACTIVATE SIRtlC'IUhES

Normally a structure is activated uhfnever a local name is assiqned
to it or any of its descendant constructs. Under certain circumstances,
activating the structure is not necessary because other code quarantess
that
This
(1)

(2)

(31

the structure will remain active while the local name is-valid.
occurs when:
within the body or a procedure, a local name is assigned to an
actuai karamtter or a descendant of an actual parameter;
within a loch, a local name is assigned to an element or to the
descendant of an elemeot selected for the current cycle by one of
the look generators:
within an inner nested program block, a local name is assigned to a
construct or the descendant of a ccnstruct which was assigned a
local name In an outer nested program hlcck, provided that none of
the intervening statements are labeled.

In any of the above circumstances, the structure must be activated if a
RELEASE or BESTRCY statement is applied to any of the constructs between
the named construct and its ancestor which already was assigned a local
name.

It also is unnecessary to inactivate and then reactivate a
structure when reassigning a local name to the next element of a
ccmplex, between cycles of a loop -- once again, unless the element may
have been destroyed within the code body of the look.

2-l. BGCKKEEFING EIELCS YITHIN S'IRUCTUHES

Each instance of a structure contains a private bookkeeping area
whose location is fixed relative tc the beginning of the structure.
There are two rields in the Frivate bookkeeping area: the location of
the model of the structure, and the current activation count of the
structure,

In addition, each complex has several fields. A one-bit field
indicates whether or not the complex is dinensioned. If the complex is
dimensioned, another tield contains the dimension. If the complex is
not diaensicned, there are sufficient pointer fields to match the
declared linking arrangement. See Section 19 for a discussion ot the
declarations. These fields are stored in the consecutive memory region
or the ancestor structure or element which contains the complex. If the
complex is dimensioned, all its elements also are stored in this
consecutive memory region. If the complex is not dimensioned, its
elements are stored elsewhere in the structure storage area, and the
pointers in the consecutive memory region ct the ancestor structure or
element are called the "anchor" of the cou~lex.

it?. IABLE OF STRUC?UBE LOCATIONS

A single table is used to lccate all structures in existence at any
given time. Uhen each structure is created, it is assigned an entry in
the table. It keeps the entry until it is destroyed, at which tine the
entry is free to be reassigned. The entry Faints to the current
location of the structure, in primary core storage or in auxiliary
storage,

Structure-Feinting atoms refer to the structure by containing its
entry number.. An upper bound must be placed on the number of structures
which can exist simultaneously, in order to determine the number of bits
required tar the field of a structure-pointing atom, This upper bound
also may be used to determine the maximum size of the table of structure
locations.

There is a tradeoff between sFdce and speed in the design of the
table- It the entire table is allocated as a single consecutive region,
the access through the table will be very fast, but the entire table
.sGace is unavailatle for other uses. If several smaller regions are
linked together tc form the table, the accesses will be slower, but
initially at least some of the talle space is available to hold
structures. Additional regions for the tatle can be taken from the
structure storage area, since they are easily relocated. But once
allocated, it is very unlikely that their space can be relinquished
later. Only the last region of the table can be freed at any given
time, and then only if all its entries haFEen tc be free.

The tree entries in the table of structure locations are linked
together, to speed the assiynment ot a tree entry to a newly created
structure. The free entries also are distinguishable by their contents
from the entries in use. During the tree storage recovery process, all
the entries in the table are scanned. Free entries and entries for
structures located in auxiliary storage are ignored. Entries for
structures located in Frimary core storage are used to access the
structures, in order to determine whether the structures are active.
With careful planting ct the table, it is rot necessary to dedicate a
bit in eacn entry merely to indicate whether the entry is free.

is. SIkUCTlJkE SICkAGE. AHEA

All active ctructures are located in the structure storage area.
Inactive structures may be located either in the structure storage area
01 in the auxiliary storage area. Whenever a structure is used in the
program, it 1s moved into the Structure storage area if it is not there
already. The slate it requires in the structure storage area is taken
from free storaye, and the space it previously occupied in the auxiliary
stocaje area is made available,.

When tree storage in the structure storage area is exhausted,
ncrrral program execution is delayed for a tree storage recovery pass.
During this pass, a sweep is made through all entries in the table of
structure locations. The entries are examined for structures which are
located in the sttucture storage area, but whose activity count equals
zero. As they are round, these inactive structures are moved out ot the
structure storage area, and the space they occupied is returned to free
Storaije. When this has been completed, tree storage is coalesced in the
manner descrited below, and then normal Frogram execution resumes.

During free storage recovery, the only data being transferred are
structures of kncvn types, since each structure contains in its private
bookkeeliny area the address of its model. This makes free storage
recovery a much mere orderly process than garbage collection, where all
of the structure storage area would have tc be searched for random odds
and ends or unused storaye.

All or the structure storage area is subdivided into "storage area
cellsta of eyual size. The storage area cells are the smallest units of
space ailocation. They are of the smallest convenient size determined
ty the computer hardware, such that they can contain the bookkeeping
intormaticn required for the free storage list%

There are N separate free storage lists for contiguous regions of
tree storage ot lenyth 1 cell, 2 cells, U cells, ..-., 2N-'cells. The
reyions in any one or these lists point to each other with bidirectional
links. Each reyicn on one of these lists also has a field ot length
rlog, (~)l kits, identiryiny the list it is on. The size of the storage
area cell must be adequate to contain the bidirectional links and the
field for iaentifying a tree storage list, ~1~s possibly one more bit.
This bit indicates whether the storage area cell is tree or in use. In
ccmputers such as the CDC G-21, which have flag bits in every word, the
bit cdn be located in the cell itself. In computers such as S/360, the
hit must he located in a separate table of such bits.

Zach reyion of lenyth ZK
intejrdl multiFlc cr 2" cells.

cells hegins at an address which is an
For example, a storage area cell in

S/360 is ti bytes long and stdrts on a doublegord boundary. Each region
oi length 2K nas a unique l'mateV' or length 2
coalesced into a region of length iK".

, such that they can be
Regions or fcee storage are

coalesced only during free stocaje recovery lasses, after all inactive
structures nave teen moved to aurilrary storage. Coalescing is perform-
ed by exanining all the regions on a tree storage list, starting with
the iist ror the smallest regions. If a region and its mate both are
cn the sdme list, they are removed from the list, coalesced into a
single larjer regron, and the new region is placed on its free storaqe
list, In this manner, coalescin; is attempted when the probability of
tat11 ZK regions being free is greatest.

Fl9S. 29-l and 29-L show a rriethod of assigning and recovering
storage.
ot JK,

Ihe method places construct boundaries at integral multiples
tar the largest possible K vhich does not force the fragmentation

ot large regions cr free storage. This method maximizes the prohability
or being arie to codlesce free storage during a free storage recovery
Fass.

3c. hECURSIVE GhNEEATGR

Ihe interpretive procedures within SPL need the ability to process
all the dfsctn<act constructs or any qiven input ccnstruct. A single
ycnerdtor routine for lccating and identifying descendant constructs is
called by dll the interpretive procedures. The generator has an exit
for additional ~Kccessln~j peculidr to the Procedure which called it. An
"exit subroutine" is executed each time a descendant element is located
and identrtied, ?hc generator uses the stack for all its storage, so
the exit subroutine rrdy call the yenerator recursively.

fn;;uts to the yenerdtor are the location of the given construct,
the location of the model of the yiven ccnstruct, and the location of
the exit subroutine. Lutputs from the yencrator which act as inputs to
the exit suiroutine are tne location of the output construct (either the
given ccnstruct or any of its descendant elements), and the location of
the model of the cutput construct.

31. AUXILIAnY STCRAGE

fixed
This aspect ct SPL operates under the assumption that a record of

lecgth may te written at any one of a large number of tired
lccations on the auxiliary storaye device, without requiring the
rewriting of ail auxiliary storage. Certain IBM tapes, for example,
fail in this respect because a new record may be written only at the end
of the written portion of the tape.

The auxiliary storaqe table ccnsists of a single bit for each
record ;;osXtion in the auxiliary storage area. The bit indicates
whether OK not the record position is free,

All record pcsitions in the auxiliary
tixed lenyth.

storage area are of the same
NC more than one structure is written on any one record.

The structure is linearized before it is written to auxiliary storage,
and reconstituted after it is read back trcm auxiliary storage. If the
structure 1s tot large to fit into one record, it is written on several
records which possibly are nonconsecutive, Space is reserved in each
record for a pointer to a possible successor record.

lhe chosen length of auxiliary storage records depends on many
factors, including the relative sleeds of the comPuter vs. the auxiliary
storage device, the fixed cost or each I/O operation, the amount of
tufter space available, and the expected statistical distribution of the
lengths cf the structures in the problem being solved. Storing pointers
to successor records in the records themselves, rather than in core
memory, is costly only when a structure in auxiliary storage is
destroyed..
tutters,

Then the entire structure must be read into core memory
merely tc determine which auxiliary storage record positions

become free.
activating

Presumably this is an intreguent operation, compared with
and inactivating structures.

-32. CCLLECTIONS

Collections ace represented internally as tables which exist both
at conpile time and at run time. They must be implemented so that new
collections can te generated from already existiny collections.

33. EXTENSIONS AND MODIFICATIONS

SPL lacks two facilities which possibly could greatly extend its
usefulness in its intended application areas. First, SPL does not have
the ability to process strings of arbitrary length. The string
processing desccited in this paper is restricted to strings of declared
dimensions, and the storage space used always is the maximum. Second,
SPL structure-pointing atoms are restricted to pointing either to a
single declared type of structure, or to any possible type of structure.
Very fev operations are allowable on structure-pointing atoms which may
point to any possible type of stcuctuce- In some cases it would be
convenient to allow a structure-pointing atcm to point to any one of a
small number of declared structure types, which have some properties in
common, A greater variety of operations cculd be allowed on these
common properties-

At the present time, I do not see how either of these facilities
can be incorporated into SPL, without secicusly degrading the quality of
the object code. much of the code which now can be compiled would have
to be interpreted instead, because of storage allocation requirements in
the case of strings, and because of the necessity for detecting
structure types in the case of structure-pointing atoms. (In general,
detection of structure types in necessary since not all properties of
the different structure types are identical.) Also, string processing
would require the introduction of garbage collecting into the free
storage recovery process- At best, garbage collecting is highly
inefficient.

On the other hand, if the amount of data storage required for a
particular application is small enough to fit entirely within primary
core memory, the indirect addressing and virtual memory features of SPL
could be eliminated. This includes elimination of activity counts, the
table of structure locations, the auxiliary storage table, and the
auxiliary storage area. There no longer would be any distinction
between structures and elements of a complex. Nevertheless, the
appearance of the SPL source code uould remain virtually unchanged.

One such application for SPL is the writing of system monitors,
New facilities would have to be introduced, for the processing of
blocked data, to allow assembly language subroutines for direct
interaction with interrupt registers and the like, and to describe such
parallel Processing concepts as multitasking. It also would be
necessary to segment primacy core storage into classes for memory
protection, and to create atoms which contain program points for
execution,

34, ACKNCWLEDGEKENTS

I would like to express my gratitude to Robert T. Bcaden for his
help in designiny the SFL syntax, David Cm Cooper for his help vith
Boolean search and select loops, and Allen Newell for his help with free
storage cecovecy- The suggestions of many other persons, at Carnegie
'Tech and Stanford Unlv,, have found their way into this paper.

35. BIBLIOGRAPHY

Program block structure:
(1) Naur, P., et&, "Revised Repcrt on the Algorithmic Language

ALGOL 60’1, C&mm. ACM 6,1 (Jan. 1963), pp. 1-17.
Data structures and pointers:

(2) PL/l Lanquaqe Speciticationp, IEM System/360 SRL Form
C28-6571.

(31 Hoberts, L. G., "Graphical Communication and control
Lanyuayes", Froc. Second Ccnpress CD Information System
Sciences, Hot~>xngs. Va. (1964).

~etalanquaqe notaticn:
(4i -Gorn, S., "Specification Languages for Mechanical Languages

and Their Processors -- A Eaker’s Dozen”, ~o~JJ.J._A_CH 4,12
(Ccc. 19Cl).

(5) Ross, Dan, B_ox>yntax -- A 2-Dimensional IletalanquIiw, SLAC
CGTCI NO. 16, Stanford Univ.(June-isa~',-----------.

Associative data processing:
(6) Rovner, P. D., and Feldman, J. A., The LEAP Language and

Data Structure, Beport DS-5997, MIT Lincoln Lab., Lexington,
Bass. (Jan. 1968).

More general list processing languages:
(7) Standish, T. A., A Data Definition Facility for Programming ____ ----.-.- . ..-...._.. -.-- _ ._. - - . .

h.nguag.es, Comb Ctr., Carnegie Inst. of Tech., Pittsburgh,
Pa. (May 1967).

(8) McCarthy, J., et&. LISP 1.5 Proqrammer's Manual. HIT Press,
Cambridge, Nass. (1962).

(9) Newell, A., et al, ___. Information Processing Language-V manual,
2nd ed., Presx Hall, Inc., Enylevood Cliffs, 8. J. (1964).

Froyrams which maintain a history of their actions:
(10) Floyd, R. W., **Nondeterministic Algorithms", J. ACM 14,4 __ .---

(Oct. 1967), pp. 636-b44.
(11) Ross, Can, p.t .x4, EB-.z.--.--___ A Text Editor with Time Rever.s.al

Qpphility, SLAC-PUB-504, Stanford Univ. (Sept. 1968).
Compilers with cede optimization:

(12) FOATEA~+~~-_IV (ii) Proqrameer's Guide, IBM System/360 SRL Form
C28-66Ci, pp. 62-66.

STRUClUREHomE(
ATaM STREET NUMEER (9%) ;
ALPAAMMERICATOMS~TNAKE(20);
-1C ATOM COLOR (6);
-C Al'OMMATfXRIAL (5);
ATonFRONTAGE(XKI);
COMPLM BoohE (

SC ATOM USE (10);
ATOM IBiYGTH (40);
ATOM !KlZTH (40);
c-FuRNITuRE(

-1C ATM ITEM NABS8 (10);
ATCM CCX3T (1OCO));

CaMPLEXPEOPLEmRooM(
ATOM WXPANT (PERSON)));

-1C ATOM SIDFJ OF STREET (1);
A'KM HOUSE ON LEFT (HOUSE);
ATOM HousE m RIGS (HOUSE);
AToM GARAGE (1));

Fl6. \
Example declaration of structure type ROUSE,

4-1
and 8x1 instance of a house.

J

STREET STREET COLOR MATERIAL FRONl’AGE ROOMS SIDE OF HOUSE ON HOUSE ON GARAGE
NUMEER NAUE STREET LEFT RIGRT

Ir

LENGTH WIDTH f PEOPLE
FURNlTURR IN ROOl

II

ELRURM

A graph of the type-tree for the example structure HOUSE declared in Fig. 4-l.
ROWS, FURNITURE, and PKOPLE IN ROCN are complexes. A typical element is shown
beneath each complex. The X's Indicate the eeparation between complexes and
their elements. All the remaining nodes under HOUSE are atoms.

3LOCK A
Dther statements prior to the procedure call

execute the beginning of the statement containing the procedure call
reserve any local names which are to be assigned during evaluation o
the actual input parameters or for the actual output value; if
necessary, reserve a dummy local name for the actual output value

1 BLOCK B 1
evaluate the actual parameters
from left to right; assign each IBLOCK Cl 1
evaluated actual parameter a activate and deactivate
dummy local name, as well as a structure containing
any local names which appear in an atom which Doints to
the source code; the d&y an actual parameter
names amear in the same order

J
. .

as the corresponding formal
parameters in the procedure BLOCK C2
declaration; reserve a dmy

I

local name for the actual
output value BLOCK Cn
call the procedure

I

BLOCK D
body of executable code in the procedure; assign an
actual output value to the reserved dummy local name
in block B

assign the actual output value to the dummy local name in
block A; dummy local names in block B for the actual
parameters and actual value are released implicitly when
program execution leaves block B

xecute the remainder of the statement containing the procedure call
.elease the dummy local name for the actual output value; program
:ontinues

Typical implicit program block structure resulting from a procedure call.

LOCK A
ther statements prior to the loop statement

aserve any local names which are to be assigned during
valuation of the generator access chains

BLOCK B
evaluate the starting values
of numeric generators and the BLOCK Cl
first-order ancestor complexes activate and deactivate
of element generators

r-l

a structure containing
an atom which points to
another structure in
the access chain of a
generator I

IBLOCK C2 I

BLOCK Cn I

start a cycle of the loop: advance and test the generators;
store numeric iteration variables in isolated cells; assign
local names to generated elements

body of executable code within the scope of the loop
statement

branch to the start of the next cycle of the loop I

program continues

FIG. 17-a
Typical implicit program block structure resulting from an explicit
loop statement.

A

B
C

P

E
F

0

H

ABCDEFBU

FIG. 18-l

A

A

s SA

A

A

Griginal chart formed from the example source code:

A Eps B <-- C EF.S D := ELEMENT (E Eps D = P) Eps G Eps H;

A
B
C

&
D
F
G
H

FIG. 18-2

Rearrangement of the chart so that all the A's lie in the upper-right
triangle.

Charts derived by successively deleting rows and columns where either is
empty. Chart (b) is irreducible-

EDFHli

E A
P s 5
F A
H

4 c

A
s

FIG, 18-4

Iwo arrangements cf the irreducible chart derived from:

A EFS B <-- C EFS 0 := ELEMENT
(E Epd D = F Epd G :=
EFS L EFS M;

ELEflENT (H Eps G = I) Eps J Eps K)

ABcJEPGIHKLF ABcJEPGIHKLF

A A A
5
c A A
J A A

& A A
P s A s A S S

4 A A

I A A
H S S s A s A
K A A
L
F

JEDGIH

FIG. 18-5

L

5

A

I

F c E J

H

4

/f?

I

D

E J

(d)

Development cf bcth chart and graph of:

A Eps 8 <-- C EFS D := ELENENT (E Eps D = F) Eps G
Eps H := ELEMENT (I EFS H = J E&S C) EFS K Eps L:

JEDGLH

FIG. 18-6

Fig. 18-5(c) redrawn with triangles included tc show the loops.

E DFHG

FIG. 18-7

F HGhD

Fig- 18-4 redrawn shoving disjoint and nested loop arrangements, and
corresponding graph-

FI KJMHSNED

FIG. 18-8

'Iwo arrangements ct a chart, one showing ieFroper nesting and the other
shoving proper nesting. Cnly the Fosition of F differs between the two
arrangements, The yraph and source code are applicable to both
arrangements ot the chart, Source code:

A EFS E <-- C EFd D := ELEMENT (k Ebs D = F EFS G := ELE!lENT
(H E&s G = I Eps 2 := ELEEENT (K Eps J = L) EFS M Eps G)
EPS x ECS C) Eks P EFs Q;

F

4

H

PUMM Yf

E
D

FIG. 18-9

t
M”

FCHIED

D

E

DUMMY1

H

4

F El

Proper nesting where the contents of a structure-pointing atom is used
both as ddta and as part ot an access chain. Scurce code:

r EFS B <-- C E&s D := ELEREN'I
(E Ek.5 D = F Eps G := ELEHPNT (E Eps I = F Eps G) Fps H Eps F)
EFS I Eps J;

E and F are structure-feinting atcms, both of which .must contain the
name ot the same structure after the selection has teen made. DUilOYl is
the nane of the stEuctuze in atom E of the selected element D.

DUMMY!

D

H

c

F 6

DWMYa

FIG. 18-10

Im~cuper nesting where the contents oi a structure-pointing atom is used
both as data and as part of an access chain- Scurce code:

A Eks P <-- C EFS D := ELEMENT
(E Eps ELLNEfl'I (F t~s E = G) 451-s H El;s L = I)
Eks J Eks K;

E is d structure-Lointiny atom, containiny the name of structure DUMMYZ.
Element UUMMYl is selected on the basis of the contents of atom F. The
e~roc in the bource code is described in Section 18.5.

A
B
c

D

E
F
6
H
I
J

K

DVYMY 1
DWMYZ

A
s S A

A
A

A

A

5 S A
A

FIG. 18-11

Original chart and irreducible chart of the source code of Pig. 18-10,
except that F EFS E is reuritten as F Eps I. Source code:

A EFS B <-- C EFS D := ELEHENT
(E Eps ELENEMT [F EFS I = G) EFS H Eps C = I)
Eps J Eps R;

'Ihe error is more apparent here, since the original chart shows two
loops and the irreducible chart shcus only one loop.

t
H
9

l.
F

D

E

FIG, 18-15

Nested chart arrangement due to the pcsition of atom H

CC)
The upper lco~ depends on the Isuer loop via two paths:
Graph.

Source code:

A Eps B <-- C EFS C := ELEMENT
(E Eps D = F Eps G :=
Eps L Eps G;

ELEMENT (H EFS G = I) Eps 3 Eps K)

EGFIJLKND

El. A i‘\\
JLKNE~FID

Jf& A 1

FIG. 18-16

4 E J L

Two chart arrangements and graph showing independent inner loops.
Arrows in charts indicate propagation of deFenderIcy. Propagation stops
at column D, since column D is to the right of the lower loop. source
code:

A Eks B <-- C EFS D := ELEMENT
(E Eps F := ELEMENT (G Eps F = A) Eps I Eps D =
J EFS X := ELEMENT (L Eps K = 1) Eps N Eps I!)

Eps P EFs Q;

d F 4 D F E D 6

FIG. 18-17

luo chart arrangements and graph showing mutual dependency. source
code:

A EFS B <-- C EFS D := ELEMEN’I
(E Eps C = F Eps G := ELEMEN’I (E Eps I = F EFS G) EFS ti Eps I)
EFS J Eps K;

FIG. 18-18

(b>

E 1 F H

M

TYO chart arranyeaents and graph showing mutual dependency. source
code:

A EFS E <-- C EFS D := ELEHEN'I
(E EpS D = F EFS G := ELEHENI-(H EFS G = I EFS D) EFS .I Eps I()
EFS L EFS I;

E M F

PIG. 18-19

Mutual dependency and independence,
selection of elements D and G,

There is mutual dependency in the

eleoent G is outermost,
In arrangements (a) and (b) the loop for

and the loops for elements D and I are
independent, In arrangement (c) the loop for element D is outermost.
Sousce code:

A Eps B <-- c Eps D := ELE~EbiP IE Eps D = F EFS G := ELEMENT
[H Eps I := ILEtlENT (J Eps I = R) EpS L fps G = n Eps D)
Eps N EES P) E&s C EFS R;

EDLFh’G

(a) Fig. 16-r516)

F
4
H

DUH 1
E
D

Ec$FM/fJILD

lb) Fig. 18-9

IEDFHG

MEDFHJIL4

FIG, 38-20

Some previous charts redrawn, showing detection of mutual dependency.
Paths of special interest are emphasized.

MLPK
K

P

L

M 1

FlG. 18-21

Selection of element K depends on the existence of element L. Source
code:

H Eps I <-- J EFS K := ELEHENT
(EXISTS L := ELEMENT (il EFS L = N) Eps F Eps K)
Eps c Eps 8;

K

m

L

N M

FIG. 18-22

Selection of element X depends on the existence of element L. Source
code:

H EFS I <-- J EFS K := ELEMENT
(EXISTS L := ELEfiEBT (H Eps L = N Eps K) Eps P EFS T)
Eps C Eps R;

EFD
E A E
F q A
D E

FIG. 18-23

D

F

E D

Each loop deEends on the previous selection of an element from the other
loop. No first selection is possible, Source code:

A Eps E <-- C EFS D := ELEMENT
(EXISTS E := ELENENT (EXISTS D) Eps P EFS D)
Eps G Eps A;

L

Q
P
5

bJ
V

Y
M

I

K
J
R
El
v
C

F

B

A

.--.___ --.--_.- ____
K if

L

8

F

C

D P

J

1
c

M

li-1

y s N

V P R

w P

FIG. 18-2r(

Expanding the sccFe of loops containing E's. Several other chart
arrangements are Fossible. Source code:

A EFS B := ELEBENT (EXISTS C :=
Eps G Eps H

ELEHENT (D Eps C = E) Eps F Eps 8)

<-- 1 Eps .I := ELEi-lENT (K Eps J = L Eps fl := ELERENT
((EXIS'IS N := ELENENT (EXISTS P := ELEHENT (G Eps P = R Eps N)

Eps S EFS al Eps T EPS U) &
(EXISTS V := EiEfl%NT (W-Eps.V = X) Eps Y Eps H)) Eps 2 Eps J)
Eps AA EFS 118;

DUMMY1

G

F
H
D

DUMMY1

FIG. 18-25

Expanding the sccFe of loops containing E's. A numeric search and
select loop provides the effective selecticn criterion. source code:

A Eps B <-- C 8~s D := ELENENT
(EXISTS F := ELENENT (EXISTS ELEMENT (10) Eps G Eps F) Eps H EFS D)
EFS I Eps J;

EDHG

FIG. 18-26

?he search for element D starts after selecting element G of the same
ccmclex.. Source code:

A ENS B <-- C EFS C := ELENEN'I (E Eps D = F)
BACKWARD STARTING AT G := ELIMENT (H fps G = I) Eps J Eps K;

EtFP

FIG. 18-27

Logically indfFendent
code:

D

c;cl

F

G E

loops coded to be mutually dependent.

A EFS B <-- C EFS D := ELEMENT
(E Eps F := ELEHENT (G Bps D = H) Eps I Eps J = K)
Eps L Eps M;

Source

EFGD

D

@a

F

4 E

FIG, 18-28

The second Boolean factor for selecting element D does not depend on any
Froperty of c. Source code:

A EFS B <-- C EFS D := BLEBENT
((G Eps D = H) E (E Eps F := E L
Eps L Eps H;

ELlENT (E Bps F = K) Eps I Eps J = K)) I

c BJ KL I HNPM

C

B

J

K
1
I

H
N

P
M

.-.

M

B

l

P N

IQ

L

c H K

I J

FIG. 18-29

One ot the many Fossible chart arrangements
code.

and the graph of the source

must t;e
The numbers (1) and (2) in the source code specify that row ii

below row B, Source code:

A EFS B :=
<--

(2) ELERENT (C Eps B = D) E&S E Eps F
G EFS H := ELEMENT

(I Eps R = J Eps K :=
ENS 1v Eps B :=

ELEMENT (EXISTS tl) Eps L Eps N)
(1) ELEMENT (P EFS H = 0) EFS R Eps s;

FlG. 18-30

source code:

A Eps E <-- C EF~ D := ELEMENT (E Eps C = F) Eps G Eps H := ELENENT
(I Eps H = .I) Eps K Eps L := ELENENT (II EFS L = N Eps D) Eps P EFS Q;

Translated equivalent:

EESERVE C;
SESEHVE H;
BESERVE L;
LCOP FC6 ALL L := ELEMEEjT Eys P Eps Q
CC LCCF POR ALL H := ELEMENT EFS K Eps L

DO IF I EFS H = J
1HEN GO 'TO CUMMYl

END LCCP;
ERROL;
DUNIlYl:
LCCE Fcfi ALL r := ELENENT EFS G Eps H
CO IF E EFS C = F

THEN tiU 'IO CUNHY2
END LCCP;
ERRCR;
DUMMYi:
IF PI Eps L = N Eps D
'IHEN GO TO DUNflY?

ELD LCCF;
EBHCR;
CUMMY3:
A EFS ti <-- C EC'S 0;

D 6

-
E I F H

FIG, 18-31

Fig- 18-18 (a) and (c) redrawn. Source code:

A Eps B <-- C Eps D := ELERENT
(E Eps D = F Eps G := ELEHENT (H Eps G = I Eps D) Eps J Eps K)
fps L EFS II;

Translated equivalent:

BESEAVE D:
KLSERVE G;
LOOP FOB ALL G := ELEPIENT Bps 3 EpS K
EC LOCF FOB ALL C := ELEMENT Eps L Eps Cl

DO IP (E Eps C = P Eps G) E (H Eps G = I Eps D)
THEN GO TO DUHflYl

END LOOP
END LOOP;
EHRCR ;
GUnRYl:
A Eps E <-- C EFS D;

.I

FiLPK
u

P

I.

M i;

FIG. 18-32

Fig. 18-21 redrawn.. Source code:

H EFS I <-- J EFS K := ELEMENT
(EXISTS L := ELEMENT (!'I EFS L = N) Eps F Eps K)
Eps C Eps A;

Translated equivalent:

RESERVE K:
fiESERVE L;
LCCF FCfi ALL K := ELEMENT Eps C Eps R
CC LOCE FOR ALL L := ELEMENT Eps P Eps K

DO IF II EFS L = N
'IHEN GU TO CUMNYl

END LOOP
END LOCF;
ERROS;
CtiMMY 1:
H EFS I <-- J EFS K;

MJILFEh’D
M $\ A

FIG. YE-33

Source code:

A Eps I? <-- C EFS D := ELEMENT
(EXISTS E := ELENENT (P EFS E = G) Eps H Eps D I
(EXISTS I := ELEriENT (J Eps I = K) Eps L EpS D 6 (M Eps D = N)))
E&x P Eps Q;

Translated equivalent:

BESERVE C;
RESERVE 6;
SESERVE I;
LCOF FCE ALL II := ELENENT Eps P Eps Q
CC LOCE FC6 ALL E := ELEHENT EpS H Eps C

DO IF F EFS E = C
THEN GO TO DUMNYl

END LOOP;
LCCP FOR ALL I := ELEMENT Eps L Eps C
CO IF J EFS I = K

THEN GO TO CUfiMY2
END LOOP;
GC 'IC CUMRY3;
DUMNYZ:
IF fl k-F.5 C = N
THEN GC TC DUENYl;
DUtlNY3:

END LCCF;
ERROR;
DUNMYl:
A EFS E <-- C EFS D;

/

I

!

BRDFE E

F D

9

A

0

FIG. 18-34

Source code:

IF EXISTS A := ELEflENT (B Eps A = C) Eps I:
Eps E := ELEMENT (P Eps E = C) Eps 8 EF~ I

THEN J EFS A <-- K Eps L
ELSE M Eps N <-- F Eps 2;

Translated equivalent:

HESERVE A;
6ESERVE E;
LCCf FC6 ALL E := ELEBENT Eps H Eps I
CC IF F EFS E = G

THEN GO TO DUMNYl
EUD LOOP;
EkliOB;
DUMCIYI:
LCOP FOR ALL A := ELENENT Eps D Eps E
DC IF B Eps A = C

THEN GO TO DUNBY
END LOOP;
M Eps N <-- I: Eps 9:
GC TO DUHNY3;
DUMWY2:
J Eps A <-- K Eps L;
DUMMY3:

FIG. 18-35

A simple exdmFle of selectiny all elements. Source code:

A Eps PREFACE ELEBENT EFs B
<-- C ENS ALL 'C := ELEMENT (E Eps D = E) Eps H
Eps ALL G := ELEMENT (I Eps G = J) EFS K Eps I;

'Iranslated equivalent:

LCOF FOB ALL G := ELEBENT Eps K Eps L
CC IP I Eps G = J

THEN LCOP FOR ALL C := ELEMENT Eps H Eps G
CO IF E Eps I: = P

THEN A Eps PREFACE ELEMEN'I Eps F! c-- C Eps D
END LOOP

END LOOP;

FIG. lb-36 (on tollcwing Fages.)

Charts and grak:h shcu use of ALL.
(a) Graph shows source code.
it1 Oriyinal chart.
(C) Rearrdnyement of original chart with A's in u:Fer-right triangle.
(0) Irreducible chart. several ether arrangements are possible. SOIIIC

Laths ot dt,cndency ; ropajation shown.
(e) irrt?ducltle chart with expanded stoles.

Source code:

A Eps PBEFACE ELEf?E?;T E[:s B
c-- 2
+ c EC" c := ELEIiEEtT (E Epd D = F) Eps G

EFS H := ELECIENT (I Eps H = J) Eps K
Eps L := ELEMENT (M Eps L = ANY OF N Eps ALL P := ELE?IENT
(6 EFS F = Fi) Eps s Eps T) EFs u
Eps ALL T := ELEMtNT (V EL'S 1 = U) Eps X
Eps Y := ELEMENT (Z Fps Y = AA Eps H) EFS AB Eps AC

* AI: E:s At := ELEVENT (AF Eps AE = AG) Eps AH
Eps ALL Al := ELEflENT (AJ EpS AI = AK) Eks A!4 Eps AN:

AM

Al

k, AK = AJ
nLL (4

FZC. 18-36 (“1

Graph shous source code.

FIG, la-3C(b)

Original chart.

T
w
x
L
Y

FIG. la-3tlc)

Rearran~~ement of oriyinal chart with A’S in upper-right triangle.

C

E

D

4
AA

I
H
K
Y
L
u

nu lb]

N

ALL (a:

Q
P

S

V

T

x

L

Y

AD

AF

AE

fiw
Al&

AJ

RI

PIG, l&3-36(d)

Irreducible chart. Several other arrangements are p0ssibl.e.
of dependency prcpgation shown,

Some paths

c

E

D

4
AA

I

H

K

M

L

u
ALL lb)

Al

ALL (r)

Q
P
5
V
l-

%

2
Y

AD

AF

AS

Al

ALL k:

A”

Al

1

S : 5 ..\
.___________.____ _ ____________.________ _ ------_------------------------------ 2 ------ 1\.\

‘\
‘1

A
I’. A
: l.

E
P
4
A
A
I
H
K
M
L

0

EU
N

:,Q,
Q
P
5
V
T

X
L

Y
A
P

AF

i s .‘\ A A
L ______ i E

‘l.\\ A A
H

1 1 *
2 ‘y ‘f :k)

“‘<\,lj “J
A 5 ’ r ---_-___-..-.---.___--~------------------~------------~-----------------.

CED~~IHKMLU~N~QP~VTX~Y~~~~~~~

&I (4 h

FIG. 18-36 (e)

Irreducible chart with expanded scopes,

I=>; Enter
Examine the free storage lists in order of ascending region size.

ind the first ncnempty list L such that its region size = 2L & C,
LllT L w45 FO"UP

Remove the first 1
region tram list 2.
Let its address be
called A.

4

1
Execute a
free storage
recovery pass-

Supply the C consecutive cells from address A to address A+C-1 to the
calling Frocedure. I

Put the region of length 2‘ on list L.
Its address is from B-(2L-1) to B.

FIG. 29-1

Get d region ot C consecutive cells.

[=x Enter

4
Exdmine the free storage lists in order of ascending cegion size.
Pind the first list L such that its region size = 2C) C,

PIG. 29-2

Free a region of c consecutive cells, from address A to address A+C-1.

	slac-r-094a.pdf
	slac-r-094b.pdf
	slac-r-094c.pdf

