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ABSTRACT 

A compiler source language and internal organization are 

described, which utilize program block structure to provide a 

virtual memory capability for linked-list hie.rarchically struc- 

tured data. A nonprocedural source language notation is intro- 

duced, resembling conventional mathematical set notation, for 

describing the search and selection of the members of subsets 

of ordered sets. An algorithm is presented for the translation 

of these statements into conventional compiler loop statements. 

Some convenience features in compiler source language nota- 

tion are introduced, including the ability for the compiler to 

%tay in contexttl with the programmer. One partial implemen- 

tation of the compiler is outlined. 
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1. INTRODUCTION 

SPL is a compiler designed for the processing of heirarchically 
structured data, The overall appearance of SPL source language, and the 
internal representation or data formats, both are somevhat similar to 
those of PL/l- But the detailed differences between the two source 
languages and between the two data representations allow for 
significant improvements and extensions of the data handling capability 
of SPL over PL/l. 

The applications for which SFL is particularly useful are those 
vhich require a large amount of "pointer chasing". SPL originally was 
designed as a language in which to write school class scheduling 
prograns. In this application, the types of data structures needed (for 
descrihiny the properties of students, classes, rooms, instructors, 
etc.) are known beforehand, and may be declared at compile time. The 
total amount of data that must be processed is nearly overwhelming -- 
perhaps 100 times the primary memory storage capacity of the computer. 
Both bit-packing to conserve memory space, and a virtual memory 
capability are imperative. But the conceptually difficult part of an 
application program is expected to be the choice and understanding of 
the complicated decision-making processes involved in the application. 
SPL allows the user to concentrate his efforts on the decision-making 
processes, by simplifying as much as possible the source code statement 
of these processes, and by automating the system overhead considerations 
such as bit-packing and virtual memory. 

Same of the unique features of SPL are: 
(1) Automatic control of all data constructs, even those which are used 

in list Processing applications, via the program block 
structure. 

(2) A virtual memory scheme using some auxiliary storage device, such 
as disk or drum. The scheme employs the program block 
structure of (1) to predict vhen data should be retained in 
primary core storage, 

(3) A co-nciso source language notation for the programming of loops. 
The loops may range over all the elements of a linked list, or 
over a selected subset of those elements. 

(4) A unified source language notation for data stored in either 
tabular fcrm or linked list form, or in any one of the many 
composite forms which include some table structuring and some 
linked list structuring. The SPL programmer has the freedom to 
change the organization of his data merely by changing a few 
declarations at the beginniny of his program. 

(5) Ability of the SPL compiler to **stay in context" with the source 
lanyuage code being supplied to it, much as a person might 

(6) 
retain context between sentences of English prose. 

Free storage recovery is performed in an orderly, directed manner. 
It is known in advance the location and length of regions of 
consecutive memory which are to be freed. 



It is typical of applications such as class scheduling that the 
rate at which data is created or destroyed is lov compared with the rate 
at uhich the program shifts its "focus of attention" among existing data 
constructs. The shifts of attention correspond yuite closely uith the 
program block structure (1 above), whereas data creation and destruction 
are relatively independent of program block structure. For these 
reasons, sPL program block structure is used to control the focus of 
attention automatically, while the user is given the responsibility of 
creating and destroying data. See Section 6. 

In addition to the above features, the design of the SPL compiler 
led to an interesting theoretical study of a translation process: from 
a nonprocedural source language statement of a search and selection 
operation, into the backtrack code procedure necessary to execute the 
search operation. The method developed here enables the translation of 
a new class of compiler source language statements. 

One of the major design considerations of SPL vas the development 
of a very concise source language notation, which still would not 
restrict the flexibility inherent in the use of linked list structures, 
nor sacritice efficiency in program execution. New notations mere 
devised to describe some of the most frequently occurring special cases 
of more general operations. These special cases also could have been 
described at yreater length without the neu notations. The concise 
notation is most valuable where it allows a complicated process to be 
described in a single source language statement. For example, an entire 
loop usually can be described in a single statement, if the action to 
be performed within the loop can be described in a single statement. 

The goal has been to reduce confusion by reducing the number of 
statements in the source code. However, every effort was taken to avoid 
introduciny cryptic abbreviations of common English words, merely to 
reduce the number of source string characters that must be typed. Each 
implementation ot SPL is free to adopt its own set of abbreviations, as 
long as the unabbreviated words also remain valid. The declaration 
NO ABBREVIATION appearing in the source code prevents SPL from 
recognizing the abbreviations peculiar to a particular implementation. 
The strings which otherwise would be translated as abbreviated reserved 
words, then may be used as names. 

A sufficiently large part of the grammar of SPL is context- 
sensitive, so that it is inappropriate to describe SPL in a metalanguage 
such as Backus-Naur Form. ho metalanguage has been developed to date 
which achieves the required goals of accuracy, clarity, and economy of 
notation in describing context-sensitive grammars. The only 
alternative, and the one taken in this paper, is to describe the 
language by exaaFle. 



2. COBHENT CONVENTION 

Comments may be embedded anyuhere within SPL 
comments are delimited by two "less than" symbols 
"greater than** symbols on the right. Example: 

<<This is a comment.>> 

source code. The 
on the left, and two 

Source code containing comments is translated by deleting the 
comments and the "less than" and "greater than" symbols. The character 
immediately to the left of the first "less than" and the character 
immediately to the right of the last "greater than" are translated as 
though they were adjacent. 

3. DATA STOBAGE 

SPL data may be stored in either of two organizations of memory. 
One of these organizations consists of "data structures", the other of 
V1isolated cellsqO. The ditference between the two organizations lies in 
the way they respond to the SPL program block structure (the equivalent 
of BEGINS and ENC.5 in ALGOL-60). 

Data structures must be created and destroyed explicitly by the SPL 
programmer. The duration of existence of data structures is independent 
ot the program block structure, but the number of paths by which data 
within structures can be accessed, is determined implicitly by the 
program block structure. Any type ot data for numerical or nonnumerical 
processing, including arrays, may be held in data structures. All data 
used in list processing must be held in data structures. The virtual 
memory capabiiity of SPL applies only to data structures. 

Isolated cells are created and destroyed as program execution 
enters and leaves the outermost blocks in which the isolated cells are 
mentioned. In this respect, isolated cells correspond to the variables 
of ALGOL. 

Where there is no possibility of contusion between data structures 
and program block structure, data structures sometimes may be called 
just i'structures*~. 



4. DATA STRUCTURES 

The format of each type of data structure to be used in a program 
must be declared at the beginning of the program. During execution of 
the program, there may simultaneously exist several instances of each 
declared type of data structure, For example, if a data structure of 
type HOUSE has been declared, there may exist instances of houses at 
107 Main St., 221 Elm St., and 999 Skid Row. The amount of variability 
allowed between instances of the same declared structure type is shown 
by example. Fig. 4-1 shows the declaration of structure type HOUSE 
and the conceptual representation of an instance of a house. 

Referring to Fig. 4-1, a structure consists of V*atomst8 and 
*tcomplexeslq, Each atom in the structure is a single-valued attribute. 
Its value may be a number [STREET NUBBER), an alphanumeric string 
(STREET NAFlE), a Boolean truth value (GARAGE), or a pointer to an 
instance of some declared structure type (HOUSE ON LEFT). The 
declaration or an atom includes the maximum size for the data contained 
in the atom, except for those atoms which point to other structures. 
The declaration ot a structure-pointing atom includes specification of 
the type of structure being pointed to. See Section 7. 

Each complex in the structure is a multi-valued attribute, all of 
whose values are of the same declared type. Each one of the values of a 
complex is called an "element" of the complex, The declaration of a 
complex consists or the word COMPLEX, followed by the type name of the 
complex, followed by the declaration cf an element, in parentheses. The 
number of elements in a complex may vary dynamically during program 
execution -- for example, the number of elements in PEOPLE IN ROON. It 
can be seen that an array, as used in ALGOL, is a special case of an SPL 
complex, Further discussion of complexes appears in Section 19, 

It is necessary to distinguish between structures and elements for 
reasons of storage allocation. This is explained in Section 6, 



5” 3. RELEASING AND RESERVING NA?lES 

Local names may be released explicitly by RELEASE 
statements. Example: 

RELEASE CURRENT RCOfi 

Any local name which has not been released explicitly, is released 
implicitly when program execution leaves the block in which it was 
assigned- See Section S-2. 

If a local name must be used outside the block in which it was 
assiyned, it must be reserved in an outer block. The reserved local 
name is not implicitly released until program execution leaves the block 
where it vas reserved. Example: 

:::?:{ E{ &RENT "Of'! := ELEMENT Eps ROOMS Eps HONE; 

L ---- 

c- 
LENGTU Eps CURRENT ROOM <-- 23; 

-I___ 
Programmers vriting SPL code should rarely, if ever, have occasion 

to reserve local names. However, the SPL compiler itself often causes 
local names to be reserved. Programmers must understand the meaning of 
reserving a local name, in order to understand the semantics of certain 
other source language statements. 



6. STRUCTURE ACTIVITY, AND VIRTUAL MEHORY 

Typically, computer programs are considered well-organized if they 
are divided into some sort of functional segments, uhere any one segment 
does not need to access all the data *'simultaneously". During execution 
of some functional segment, only the data accessed by that segment need 
be in core memory. The remaininy data can be stored on some auxiliary 
memory device, such as disk, where direct processing of the data is not 
possible. This opens the possibility of a program processing more data 
than can be stored in core memory, provided that (1) there is a way of 
bringing the data into core memory when it must be processed, and of 
freeing the core memory space that the data occupied when that 
processing is ComPleted, and (2) there is an access function which can 
address every existing item of data uniquely. If storage allocation and 
addressing can be accomplished automatically, so that a programmer never 
explicitly writes code for these functions, then the program may be 
written as though the computer had a "virtual** memory which is larger 
than its actual core memory. 

‘ihe virtual memory scheme in SPL is accomplished by introducing the 
concept ot "activity", which is applied to data structures. Data 
structures are the basic units of storage allocation, in the sense that 
any given instance of a structure either is entirely in core memory or 
entirely in auxiliary storaye (disk), It is this property which 
necessitates distinguishing a structure trcm an element of a complex. 

iihenever a structure or any construct within a structure is 
accessed, the entire structure automatically is brought into core 
memory, if it is not there already. The core memory space which the 
structure occupies is taken from some other structure which is not being 
processed by the currently executing functional segment of the program. 
The other structure is moved to auxiliary memory and its core memory 
space is freed autcmatically by SPL. SPL decides which structures to 
move by classifyiny the structures in core memory as either active or 
inactive; inactive structures may be moved when their space is needed. 

Stored in a special bookkeeping area in each structure is an 
activity count, which is incremented by 1 each time a local name is 
assigned tc any construct within the structure, and decremented by 1 
uben the local name is released. Any structure with a positive activity 
count is active. 

The activity count also may be incremented and subsequently 
decremented automatically by SPL, when for certain reasons it becomes 
necessary to hold a structure in core memory, even though the programmer 
did not assign a local name. 

Since the location where a structure is stored may be changed from 
time to time, all references to the structure are indirect; they index 
into a table of structure locations which is an intrinsic part of SPL. 
Every currently existing structure is uniquely identified by its index 
number in the table of structure locations. 

The assignment ot a local name makes the structure 
active, and consequently immovable; accesses via local names 
Point directly to core memory locations. 



7. STRUCTUi3E-PCIHlING ATCMS 

An atom belonging to one structure may contain a pointer to another 
structure. The pointer consists of the index number of the structure 
being pointed to, It is independent of structure activity. There does 
not exist in SPL any type of atom which points to constructs other than 
structures; this restriction is imposed by the SPL storage allocation 
scheme, Except as stated at the end of this section, instances of any 
one type of structure-pointing atom are restricted to pointing either to 
instances of a sirgle type of structure, or to nothing at all. A 
structure-pointing atom which points to nothing at all contains the 
constant 0. In Fig. U-1, OCCUPAN'I, HOUSE ON LEFT, and HOUSE ON RIGHT 
are structure-pointing atoms. An example of a data reference using a 
structure-pointing atom is: 

IF COLG6 Eps HOUSE ON LEFT Eps HONE = COLOR Eps HONE 
TBEN GO TO TRACTHOUSES: 

In the absence of further notation, an ambiguity would arise in the 
interpretation of 

NEIGHBCR := HOUSE ON LEFT Eps HONE 

Is the local name NEIGHBOR assigned to the structure-pointing atom, or 
tc the structure pointed to by that atom? The question is significant 
only in determining which structure becomes active. The possible 
aab-iguity is resolved by saying that, in the above situation, the local 
name is assigned to the structure-pointing atom, A dot meaning 
"contents of structure-pointing atom" indicates that a local name is 
assigned to a structure: 

NEIGHBOR I= . HODSE ON LEFT Eps HORE 

The restriction that all instances of a single type of structure- 
pointing atom must point to a single type of structure, enables the 
compilation of accesses to the structure. Uhere compilation of accesses 
is not necessary, the restriction may be relaxed. Certain system 
functions provided by SPL are rundamentally interpretive in nature. 
These functions cttain the information about the type of a structure 
from a private bookkeeping area within the structure itself. Included 
among these functions are copying, erasing, destroying, and printing the 
entire contents of a structure- If an SPL programmer can guarantee that 
the only accesses of the contents of some declared type of structure- 
pointing atom (let it have type name GARBAGE, for example) are for 
interpretive functions, then he may let instances of this single type 
(GAHBAGE) of structure-pointing atom- point to various types of 
structures, This is shown in the declaration of the atom by using the 
word STRUCTUXE in place of the type name of a structure: 

ATCB GABBAGE [STRUCTURE); 



a, GRAPHS AND TERKINOLCGY OF SPL TREES 

Each declared SPL structure type forms a tree, if the COntents of 
structure-pointing atoms are ignored. Each instance of a structure also 
terms a tree, which is closely related to the tree formed by the 
structure type declaration. Where it is necessary to distinguish 
between them, we may call them type-trees and instance-trees. 

Pig. 8-l shows a graph of the type-tree for the example 
structure declared in Fig- U-l- In Fig. R-1, STREET NUMBER, 
S'IREET NARE, COLCFi, RATERIAL, FRONTAGE, ROCKS, SIDE OF STREET, HOUSE ON 
LEFT, ROUSE ON RIGHT, and,GARAGE are called "siblings" of each other. 
USE, LENGTH, YIDTH, FURNITURE, and PEOPLE IN ROOM are siblings of each 
other. ITEfl NABE and COST are siblings of each other, but not siblings 
ot OCCUPANl. The "first-order ancestorm of COST is ELEMENT Eps 
FURNITURE, the "second-order ancestor" of COST is FURNITURE, the 
"third-order ancestor" of COST is ELEMENT Eps ROOKS, etc. The "first- 
order descendant" of ROOHS is ELEMENT Eps ROORS, etc. The structure 
pointed to by a structure-pointing atom is not considered a descendant 
of the atom- 

Referring back to Fig. U-l for a graph of an instance-tree, the 
atoms containing LIVING, 35, and 25, and the two complexes dravn 
beneath them, all are siblings of each other, but are not siblings of 
the atom containing KITCHEN. Elements of the same complex, drawn 
connected together with arrows, are siblings of each other. 

It can be seen that a type-tree is isomorphic to an instance-tree 
in which each complex has exactly one element. 



9, STAYING IN CCNTEXT 

It an SPL programmer does not fully qualify a data reference in his 
source code, the SPL translator still may he able to fill in the 
remaining qualification needed to make the reference unique. For 
exaffiple, ii the source code is: 

STREET NUflBER Eps HOME <-- 107; 
STREET NARE <-- 'NAIN ST.' ; 
COLOR <-- 'RED'; 
MATEEIAL <-- 'BRICK'; 
FRONTAGE <-- 65 ; 

the translator interprets the code as: 

STREET NUMEER Eps HOME <-- 107; 
STREET NAME Eps HO#E <-- 'NAIN ST.‘; 
COLC6 Eps HCME <-- 'RED'; 
8ATEBIAL Eps HOME <-- 'BRICK'; 
PAONTbGE Eps HOME <-- 65; 

The ability of the SPL translator to stay in context uith its 
source code allows the programmer to use a more concise notation than 
fully qualiried data references. The concise notation is allowed only 
in data references vhose meanings are "obvious", making any additional 
qualification ~4s"perfl"ousn, 
"s"pecfl"o"s" 

The exact interpretations of "obviousn and 
are described below, but the general approach taken in the 

desiyn of SPL is to be rather conservative. 
in simple situations, 

SPL attempts to be helpful 
vithout interpreting the "obviousn so liberally as 

to introduce spurious source code errors. 
SPL maintains a first-in, first-out list, of limited length, 

containing the names of constructs most recently scanned in the source 
code. If an inCOmpletely qualified name appears in the source code, the 
translator tries to match it with the names 
descendants, 

of siblings and first-order 
taken from the type-trees of the construct names already 

appearing ia the list. Although the storage of construct names into the 
list is first-in, first-out, the searching of type trees is performed 
first on the construct name most recently stored into the list. 

Also, if intermediate qualification is missing but the type can be 
determined uniquely, 
tion, For example, 

SPL automatically supplies the missing qualifica- 
if the source code is: 

COST Eps HONE <-- 200; 

the translator interprets the code as: 

COST Eps ELEMENT Eps PUBNITURE Eps ELEPlENT Eps ROORS Eps HOME <-- 
200; 



10. ISOLATED CELLS 

At certain places within a program, it is convenient to store data 
temporarily in some buffer area that is not associated with any 
stsuctv1Te. The locations used for this mode of storage are called 
"isolated cells", They may be used for the storage of numeric, alpha- 
numeric, or Boolean data, but they nay not be used for the storage of 
pointers to other constructs. Local names and structure-pointing atoms 
are used for this purpose. 

The duration ot existence of isolated cells is determined by the 
program block structure. Each isolated cell is created when program 
execution enters the outermost block in which the cell is mentioned, and 
destroyed when program execution leaves that block- 

Isolated cell names are unqualified (that is, they do not use 
"Eps") , since isolated cells do not belong to any other construct. The 
compiler decides that a name appearing in the source code refers to an 
isolated cell, if the name is unqualified, not a local name, 
and the search for additional context (described in Section 9) fails. 

A type declaration may appear with the first use of an isolated 
cell- Example: 

PI := REAL <-- 3-1416; 

In the absence of a declaration, the isolated cell assumes the type of 
the first data stored into it. Example: 

RUG LENGTH <-- LENGTH Eps ELENENT EFS ROONS Eps HORE; 

Consistent with the declaration in Fig. 4-1, the isolated cell RUG 
LENGTH assumes the type UNSIGNED INTEGER with a maximum value of 40. 

'Ihe possible types of isolated cells depend to some extent on the 
hardware implementation of SPL, but include at least: 

UNSIGNED INTEGER 
INTEGER 
BOOLEAN 
ALPHANUMERIC 
REAL 
CONPLEX 

It the hardware permits, they also may include: 

LONG REAL 
LONG COMPLEX 
DECIRAL 



11. ACCESS CHAINS 

Source code FhraSeS such as: 

LENGTH Eps CURRENT ROOM := ELEIENT Eps ROOMS Eps HOME 

are called "access chains". The example above is the access chain "for" 
a particular instance of atom LENGTH. 

Access chains have slightly differing forms, depending upon where 
they appear in SPL code. As specifications of formal parameters to a 
procedure, they must have a local name assignment on the left, no other 
local name assignnents vithin the access chain, the type name of a 
structure on the right, and they must not "pass throuyh" any structure- 
pointing atoms. Example: 

PROCEDURE FRCCl := USE Eps FLEKENT Eps ROOMS Eps HOUSE 
(FURN := FURNITURE Eps ELEIIENT EFS ROOMS Eps HOUSE; 
HORE := HCUSE); 

Uhen used for the access of some instance of a construct, without 
creating any new constructs, access chains must have a local 
name on the right. Example: 

LENGTH Eps CURRENT ROOR := LLEl'lENT Eps ROOMS Eps HONE <-- 23; 

when used for the simultaneous creation of a structure and the access of 
scme construct vithin the structure, access chains must have the type 
name of the structure on the right. Example: 

HUE := COLOR Eps HONE := HOUSE <-- 'GRAY'; 



1.2, STORAGE ASSIGNBENT 

The usual syntax for data storage assignment is: 

However, SPL has alternative syntaxes for certain frequently occurring 
special cases. The syntax: 

~DESXINATION] +c- /EXPRESSION] - 

may be used if the programmer can guarantee that the destination field 
contains 0 (if it is numeric) or blanks (if it is alphanumeric), SPL 
can compile better code for the double left arrow than for the single 
left arrow, since it is not necessary to compile the instructions for 
masking and saving the contents of fields adjacent to the destination 
tield. Since double left arrows restrict the flexibility for future 
recoding, they are recommended only tar improving the efficiency of the 
innermost nested loops. 

Another alternative syntax: 

indicates a swap of the contents of the two destination fields. The 
fields must contain the same type data and be of the same size. 

The word SANE may be used in place of the expression in a storage 
assignment statement, if the immediately preceding statement also is a 
storage assignment statement containing an exPression or SAME. Example: 

LENGTH Eps CURRENT ROOR := ELEMENT Eps ROOMS Eps HOME <-- 20; 
YICTH EFS CURRENT ROOf9 <-- SAIIE; 

The previously evaluated expression is stored a second time as a result 
of using SAME. 



13- INITIAL VALUES 

Data atoms may be declared to have constant initial values. 
Example: 

ALPHANUMERIC ATOM COLOR INITIALLY 'YHITE' (6) ; 
ALPHANURERIC ATOM BATERIAL INITIALLY 'VI000 (5); 
ATOM FRONTAGE INITIALLY 50 (200); 

In the absence of declared initial values, the default initial values 
are 0 for numeric atoms, all blanks for alphanumeric atoms, and FALSE 
fcr Boolean atoms. Structure-pointing atomm 
value 0. 

can have only the initial 

14, CREATING, COPYING, ERASING,. AND DESTROYING CONSTRUCTS . 

14.1. CREATING CGNSTRUCTS 

Creating new instances of data structures, or nev elements in a 
complex, is the responsibility of the SPL programmer. Atoms and 
complexes cannot be created individually. Isolated cells are created 
automatically, as a conseguence of the program block structure, 

A new instance of a structure is created implicitly during 
execution of any access, 
in the access chain. 

if the type name of the structure is rightmost 
Example: 

HUE := COLOR Eps HOME := HOUSE <-- 'GRAY'; 

Note that declarations and SPecifications do not cause accesses to be 
executed; therefore, no new structure is created. 

A new instance of an element is created if the access chain 
contains the word PREFACE, or the word APPEND, or the words INSERT and 
either BEFORE or AFTER, The particular choice of words designates where 
among the other existing elements 
placed, 

of a complex the new element is to be 
Examples: 

11) 
(2) 

LENGTH Eps PREFACE ELEMENT EFS ROOflS Eps HONE <-- 23; 
LENGTH EF.5 CURRENT ROOM := <-- 

23; 
APPEND ELEMENT EPs ROOMS Eps HOBE 

(3) LENGTH Eps INSERT ELEHENT AFTER ELEMENT (4) Eps ROOMS Eps HOME 
<-- 23; 

(4) LENGTH Eps INSERT ELENENT BEFOfiE CURRENT ROOM <-- 23; 

In example (3), the new element is inserted after the previously 
existing 4th element ot the complex. 

Newly created constructs automatically are assigned their declared 
or default initial values, 



14-2, COPYING CONSTRUCTS 

COPY is a pre-declared SPL system procedure which interpretively 
copies a given structure or element and all the descendant constructs of 
that structure or element. The actual output value of COPY is the 
identity of the newly created copy. It may be assigned a local name, 
stored in a structure-pointing atom, inserted into a complex, etc., as 
aPpropriatea The actions which may be performed depend on the declared 
type ot structure or element being copied. Example: 

APPEND COPY (ELEMENT Eps ROOfiS Eps HONE) Eps BOONS Eps HONE; 

In the above example, a copy of the first element of complex ROOMS is 
appended to become the last element of cornFlex ROOMS. 

14-3. ERASING CONSTRUCTS 

Erasing data is the responsibility of the SPL programmer. An 
entire structure, or any construct within a structure, is erased when an 
ERASE statement is executed. Data in isolated cells cannot be erased, 
except by storage assignment statements which put the desired values 
into the isolated cells. 

Erasing an atom is the same as assigning it its declared or default 
initial value. Erasing a structure or an element is the same as 
individually erasing all the atoms and CornFlexes within that structure 
or element, Erasing a complex is the same as erasing all of its 
elements. In no case does erasure cause the destruction of any 
construct; it merely changes the data content of the construct being 
erased. Examples: 

(1) ERASE HONE; 
(2) ERASE CURRENT ROON := ELEMENT Eps ROOMS Eps HORE; 
(3) ERASE HOUSE GN LEFT Eps HOME; 
(4) ERASE m HOUSE ON LEFT Eps HONE; 

AS in SeCtiOn 7, a dot is used to distinguish between erasing a 
structure-pointing atom, in example (3), and erasing the structure 
pcinted to by the atom, in example (4). 



14.4, DESTROYING CCNSTRUCTS \ 
Destroying instances of data structures, or elements in a complex, 

is the responsibility of the SPL programmer. Atoms and complexes cannot 
be destroyed individually. Isolated cells are destroyed automatically, 
as a consequence of the program block structure. 

Destroying a structure or element Completely frees all the storage 
used by that structure or eleeent- EXalOFlfs of DESTROY statements: 

(1) DESTROY HONE: 
(2) DESTROY ELEBENT Eps ROONS Eps HONE; 
(3) DES'IiiOY . HOUSE ON LEFT Eps HONE; 

No new local names may be assigned in the access chain of 
a DESTROY statement. If the named construct (HONE in the examples 
above) is destroyed, the local name automatically is released. 
This would occur in example (1). Other than this last possible 
remaining name (HONE), there must not be any local names still 
in effect which point to the construct being destroyed, or to any 
descendant of that construct. If a structure is being destroyed while 
local names still are in effect, SPL detects this error by a 
positive activity count. But if an element is being destroyed, SPL 
cannot detect the error. The consequences of the error may not appear 
until some later time when the local name either is used or 
released, 

iihen a structure is destroyed, it is the responsibility of the SPL 
programmer to erase, destroy, or alter all structure-pointing atoms 
which point to the structure. If an unaltered reference to the 
structure subsequently is used, the error possibly may not be detected 
immediately by SPL. Detection of the error depends upon whether the 
index in the table of structure locations has been reused. 

When an element is destroyed, its sibling elements (if any) 
automatically are relinked, The element is removed from the complex 
without damaging the integrity of the rest of the complex. 



15. PRCGRAN BLOCK STRUCTURE, "EEGIN" AND "END" 

In ALGOL, program blocks are bracketed by BEGIN and END. All the 
statements uithin a black are treated from outside as though they were a 
single statement, Variables and arrays automatically are created when 
program execution enters the block, and destroyed when program execution 
leaves the block- 

In SPL, the two functions of program block structure are assigned 
to separate types of program blocks. Explicit program blocks, which 
consist of several statements bracketed by BEGIN and END, cause all the 
enclosed statements to be treated from outside as though they were a 
single statement. But explicit program blccks have no effect on the 
duration of validity of local names, or the duration of existence of 
isolated cells. 

Implicit program blocks are recognized by SPL as a consequence of 
procedure calls or loop statements. The way procedure calls and loops 
are coded, and the resulting implicit program blocks, are described in 
Sections 16 and 17. The duration of validity of local names is 
bounded by the outermost implicit program block in which the local names 
are reserved. The duration of existence of isolated cells is bounded by 
the outermost iaplicit program block in which the isolated cells are 
aentioned. 

Each procedure call or loop statement may result in more than one 
implicit program block. The executable statements in the body of the 
procedure OK in the scope of the loop are confined to a particular 
one of the possibly several implicit program blocks, Prom outside that 
block, all the statements 
were a sinyle statement. 

within the block are treated as though they 

Explicit program blocks and implicit program blocks all must be 
either disjoint or properly nested within each other, 

Since isolated cells need not be declared explicitly, a naming 
conflict might arise if several separate programs are merged into a 
single program. Local names also might be subject to a naming 
conflict. To avoid these conflicts, a NEN NAME statement appearing in 
any program block forces a reinterpretation within that block of the 
specified names. Example: 

NEW NAME JOE, PETE, CURRENT ROOCI, HOME; 

All other types of names (besides isolated cells and local names) are 
required to have sufficient declaration for other reasons, that SPL 
incidentally is atle to resolve naming conflicts. 



76. PROCEDURES 

A procedure declaration COnSiStS of a procedure declaration head, a 
body of executable code, and finally END PROCEDURE. An example of a 
procedure declaration head is: 

PROCEDURE P6OCl := USE Eps ELEMENT Eps ROOMS Eps HOUSE 
(FUHN := FURNITURE Eps ELEMENT Eps ROONS Eps HOUSE; 
HOME := HOUSE); 

In the example, PROCl is the name of the procedure. The name of a 
procedure must be unique within the program block in which the procedure 
is declared. 

USE Eps BLEHENT Eps ROOMS Eps HOUSE is the type declaration of the 
value of the procedure- The type of value a procedure may have may be 
the type of some construct (USE EFS ELEMENT Eps -.._ in the example), or 

.any of the types of isolated cells, or LOCATION, or no value at all. 
The access chains for FUAN and HORE are the formal parameter 

specifications for the procedure. 
Execution starts at the first statement in the body of the 

procedure. If the procedure has a formal value, then somewhere within 
the body of the procedure must be the code to assign an actual value to 
the procedure. The statement RETURN, appearing in the body of the 
procedure, acts as a special purpose GO TO statement which transfers 
execution back to the code which called the procedure. 

A procedure can be called only within the same program block in 
which it is declared, A procedure call consists of the procedure name, 
followed by parentheses enclosing the actual parameters to the 
procedure. It the procedure has a value, the procedure call may be used 
in any way that that particular type of value can be used. 

Example procedure declaration: 

(l-1) 
(l-2) 
(l-3) 
(l-4) 
(l-5) 
(l-61 
(l-7) 
(1-B) 
(l-9) 
(l-10) 
(l-11) 
(l-12) 

PROCEDURE ERICK HOUSE := HOUSE (GIVEN HOUSE := HOUSE); 
IF MATERIAL Eps GIVEN HOUSE = 'BRICK' 
THEN PRINT ('BRICK HOUSE AT '; 

STREET NUflBER Eps BRICK HOUSE := GIVEN HOUSE) 
ELSE BEGIN 

BRICK HOUSE := BRICK HOUSE (NEIGHBOR := . 
HOUSE ON LEFT Eps GIVEN BOUSE); 

PRINT ('TO THE BIGHT OF '; STREET NUMBER Eps NEIGHBOR; 
' IS '. STREET NUNBER Eps GIVEN HOUSE; 
', MAD; OF '; MATERIAL Eps GIVEN HOUSE) 

END 
END PROCEDURE; 

Example procedure call: 

(2-f) IF COLOR Eps BRICK HOUSE (- HOUSE ON LEFT Eps HOHE) = 
(i-2) COLO6 Eps HORE 
(2-3) THEN PRINT ('COLORS MATCH'); 

In the examples above, BRICK HOUSE is a recursive procedure which finds 
the nearest brick house to the left of a given house, and prints some 
information about its search. In the example procedure call, the dot 
indicates that the actual parameter is a structure of type HOUSE, rather 
than a structure-pointing atom of type HOUSE ON LEFT. Had the dot been 
omitted from the source code, 
dct, 

SPL automatically would have supplied a 
in order to match the formal parameter specifications. 



Fig- 16-1 shows a typical implicit progran block structure 
resulting from a procedure call. In the following discussion, various 
teatures in Fig, 16-l will be related to lines of code in examples (1) 
and (2) above, although Pig. 16-l does not exactly correspond with 
either of the code examples. 

The procedure call for Pig- 16-1 appears in the source code in 
block A. All the other program blocks in Pig. 16-1 are created 
implicitly for the processing of the procedure call- In general, the 
statement containing the procedure call also vi11 contain other 
executable phrases, perhaps even other procedure calls- These other 
phrases are executed in block A, either before or after the procedure 
call, depending upon the processing order appropriate to the statement. 

If the source code shows any local names are to be assigned during 
evaluation of the actual parameters (such as NEIGHBOR in code example 
line (l-6)), these local names are reserved in block A, Reserving the 
local names is necessary so they vi11 remain valid for later use in 
block A (line (l-B)), even though the assignment of constructs must 
occur in an inner block, block 8. 

If the source code shows a local name assigned to the actual value 
of a procedure, the local name is reserved in block A. If the source 
code does not show a local name assigned to the actual value (line 
(2-l)), then SPL reserves a dummy local name. The dummy local name 
serves to keep the named construct active during execution of the 
remainder of the statement after the procedure has returned. The dummy 
name is released immediately tolloviny the statement. Had the formal 
value of the procedure (the first occurrence of HOUSE in line (l-l)) 
been declared of type REAL, INTEGER, etc., instead of being declared a 
type of construct, then an isolated cell wculd have substituted for the 
local name or dumay local name. 

If the local name for an actual parameter or for the actual value 
of the procedure already exists in blcck A or some outer block (the 
tirst occurrence of BRICK HOUSE in line (l-6)), there is no need for SPL 
to reserve the'local name. 

Proyram block B acts as an interface between the environment of the 
procedure call (block A and the outer program blocks), and the body of 
the procedure (block D), A storage location is reserved in block B for 
the Keturn branch address of the procedure call. Dummy local names, OK 
isolated cells as appropriate, are created in block B for all the 
parameters and the value of the procedure. These dummy names appear in 
the physical order that aatches the FrOCedUKe'S specifications. The 
actual parameters to the procedure are evaluated in block B, from left 
to right. The evaluated constructs are assigned to the dummy names, and 
those which vere given local names in the source code (NEIGHBOR in line 
(l-6)) also are assigned to their reserved local names. Assigning at 
least dummy local names to all the constructs guarantees that the 
constructs remain active during execution of the body of the procedure. 

The access chains for some of the actual parameters may pass 
through structure-pointiny atoms (lines (l-7) and (2-l)). The 
structures which contain these atoms are activated during evaluation of 
the actual parameters, but they do not necessarily have to remain active 
during execution cf the procedure. Blocks Cl, C2, --.., Cn show the 
brief activation of these structures. 

After the actual parameters have been evaluated, the procedure is 
called and executes in block D. The procedure assigns the actual output 
value to the reserved dummy local name in block B, the interface block. 
When the FKOCedUre returns, code in block B copies this assignment into 
the local name OK dummy local name reserved in block A, for use in 
executiny the remainder of the statement containiny the prOCedtlKe call. 

If the procedure has no input parameters and no output value, then 
block B is omitted and the procedure call is executed tree block A. 



17. LOCFS 

The critical facility in the coding of complicated decision-making 
processes is the ease with which associations among data items can be 
described. Where the underlying organization of data is hash coding, 
languages like LEAP may be used to describe associations as Boolean 
relations among the bound variables of associative triples. In SPL the 
underlying oryanization of data is a network of pointers, in which 
associations are described as search loops among ordered sets, to find 
the members which have the desired properties, Thus such of the 
language emphasis or SFL is in the concise description of loops, and 
much of the proyraamatic emphasis of SPL is in the optimization of those 
loops, 

This section introduces the various notational forms for loops, 
including Boolean search and select loops. Boolean search and select 
loops are the most frequently used form for describing associations, 
The translation from the concise notation of Section 17.3 into the 
equivalent basic notation of Section 17.1 is not immediately obvious. 
Section 18 describes that translation, which constitutes one of the 
major contributions of this paper, 

In addition to the loops described below, loops also may be 
generated by the use of collection names. See Section 20.2- 



77-l- EXPLICIT LCOFS 

There are several ways of coding SPL loop statements, The most 
basic of these are explicit loop statements. All other ways of coding 
loop statements are defined in terms of equivalent explicit loop 
statements. 

The syntax of explicit loop statements is to a large extent context 
free. Fig. 17-1 shows the syntax in the metalanguage “Box Syntax”. 
As can be seen in Fig. 17-1, more than one generator may be coded for 
a single loop. Each of the generators is advanced after every cycle of 
the lOOF. The first generator to terminate causes termination of the 
entire loop. 

In the phrase 
------ 

the expression may be any of the types allowable for isolated cells, 
described in Section 10, as long as all replications of the expression 
are of the same type. In the phrase 

all the access chains must be for the same type of elements. In the 
phrase 

ILQR ALL FOCAL NABE 1E E.Lz.K%T STARTDG XT [ACCESS CHAIN] 

the access chain must be for the element of a complex, Backward looping 
is not allowable in complexes declared to have forward links only. See 
Section 19 for a discussion of the various types of links. In the 
phrase FOB . ...= FROfl ._._ STEP ..-- UNTIL -..., the left arrow and 
parentheses surrounding arithmetic expressions indicate that the 
expressions are to be evaluated once only, before executing any cycles 
of the loop. Without the left arrow and parentheses, the expressions 
following STEP and UNTIL are re-evaluated before execution of each cycle 
of the loop. 



17.2. IMELICIT LOOPS 

If a loop over all the elements cf some complex contains only a 
single executable statement, it may be coded as an implicit loop. An 
implicit loop uses the word ALL in the access chain to indicate that a 
loop is desired, and eliminates the words LOOP, FOR, DO, and END LOOP, 
and the local name for the elements being generated. 
implicit loop is the statement in which it appears. 

The SCOpe Of an 

implicit loop 
For example, the 

LENGTH Eps AIL ELENENTS Eps ROORS Eps HOME <-- 10; 

is equivalent to the explicit loop 

LOOP FOR ALL DUfiMYl := ELEMENT Eps ROOHS Lps RONE 
DO LENGTH Eps DUMMY1 <-- 10 
END LOOP; 

where DUNflY is a local name automatically created by SPL, and assigned 
successively to each element as it is generated, 

A second example, where PRICE is an isolated cell, 

FRICE <-- 0; 
PRICE <-- PRICE + COST Eps ALL ELENENTS Eps FURNITURE Eps 

AIL ELERENTS EFS ROOMS Eps HOME; 

is equivalent to 

PRICE <-- 0; 
LOOP FOR ALL DUMNYl := ELENENT Eps FURNITURE Eps ALL ELEMENTS Eps 

ROOMS Eps HCME 
DO PRICE <-- PRICE + COST Eps DUHHYl 
END LOOP: 

which in turn is equivalent to 

PRICE <-- cl; 
LOOP POR ALL DUHMY2 := ELEMENT EFS ROOHS Eps HOME 
DO LCOP FOR ALL DUilMYl := ELEMENT Eps PURNITURE Eps DUMNYZ 

DO FGICE <-- PRICE + COST Eps DUNMY 
END LOOP 

END LOOP; 



A third example is to create a list of the costs of all the 
furniture in HOBE. The list will be the elements of a new structure 
whose declaration is: 

SIRIJCTUHE PRICE LIST ( 
CCRPLEX PRICES ( 

ATOM COST (1000))) ; 

The code to create an instance of PRICE LIST, create one new element of 
PRICES for each item of furniture in HOHE, and store the cost of that 
item of furniture into the new element, is: 

HOME PRICE LIST := PRICE LIST; 
CCST Eps PREFACE ELEtiENT Eps PRICES Eps HOIE PRICE LIST <-- 

COST Eps ALL ELEMENTS Eps PURNITURE Eps ALL ELEMENTS Eps ROONS 
Eps HONE; 

In the above example, the costs are stored in elements of HONE PRICE 
LIST in inverse order of their appearance in AORE. They would have been 
stored in direct order of their appearance in HONE, had APPEND ELEMENT 
been coded instead of PREFACE ELEMENT, Por the simplest types of 
cornFlexes, where the elements are connected by forward links only, 
appending elements in the above example would be a computation of order 
nL steps. Prefacing elements would be of order n steps. Nith more 
elaborate linking among the elements, the number of steps in appending 
elements can be reduced to order n.. See Section 19, 

SPL creates an implicit loop for each occurrence of the word ALL in 
an access chain. If ALL occurs several places in a single access chain, 
the leftmost occurrence corresponds to the innervost loop, as in the 
second eramPle above. If ALL occurs in several separate access chains 
within a single statement, the implicit loops are created in the 
Processing order appropriate to the statement- Each implicit loop 
created includes all the previously created loops within its scope, 
These rules do not necessarily apply if the statement contains any 
Boolean search and select loops, described in Section 17.3. 



17-3. SEARCH AND SELECT LOOFS 

If an access chain contains the word ELEMENT followed by 
parentheses enclosing an arithmetic expression, such as: 

THIS ROCM := ELEMENT (7*Lt2) Eps ROOMS Eps HOHE; 

then the arithmetic expression is the index of the particular element 
selected. In the above example, local name THIS ROOK is assigned to the 
(7*L+2)th element in the complex. SPL creates a numeric search and 

select loop, which sequences along the elements of the complex ROOFIS 
until the proper element is selected. In order to avoid possible side 
effects, the arithmetic expression is not evaluated until immediately 
before the execution of the loop. The code for the explicit loop 
equivalent of the above example is: 

THIS AOOII := ELEMENT EpS ROOMS Eps HONE; 
LOCP EN'IIER (7*2+2) -1 TINES 
DO THIS ROOfl := ELEMENT AFTER THIS ROCN 
END LOOP; 

If the arithnetic expression does not evaluate to an integer, it is 
truncated to an integer. The truncated value must be strictly positive. 

The equivalent explicit lcop statement takes an error exit if the 
complex ROOMS does not have at least the specified number of elements. 
The code shown below is not equivalent to the source statement, because 
the code below does not take an error exit if there are an insufficient 
numtec of elements. 

RESERVE THIS ROOM; 
LOCP FOR ALL THIS ROOM := ELEMENT Eps ROOMS Eps HONE; 

ENTIER (7*L+2) 'IIMES 
DO 
END LCOP; 

If an access chain contains the word EIEMENT followed by 
parentheses enclosing a Boolean expression, such as: 

THIS ROOM := ELEMENT (LENGTH Eps THIS ROOM > 20) Eps ROOHS Eps 
HCME; 

then SPL creates a Eoolean search and select loop, which sequences along 
the elements of the complex ROONS until the first element is found for 
which the Boolean expression has the value TRUE. An error exit is 
taken if no element of the complex satisfies the Boolean expression. 



Boolean search and select loops provide a means of selecting one 
element among the possibly many elements of a complex, based on some 
property of that element. In the example above,the selected element 
must have the property that the LENGTH field contains a number > 20. 
The Boolean expression describing this property may be arbitrarily 
COmpIiCated, but of course it ultimately must depend on some property of 
the element being selected- It would be meaningless to attempt to 
select an element, if the selection were net based on any property of 
that element. 

Other examples of Boolean search and select loops are: 

HONE PBICE LIST := PRICE LIST; 
CCST EFS PREFACE ELEHENT Eps PRICES EFS HOME PRICE LIST <-- 

COST Eps ALL EXPENSIVE := ELENEN'I (CCST EFS EXPENSIVE > 200) 
Eps FUBNI'IUEE Eps ALL BIG ROOM := ELEMENT 
(LENGTH Eps BIG ROOM * UIDTH Eps BIG RCOM > 400) 
Eps AOONS Eps HCME; 

HCNE FBICE LIST := PBICE LIST; 
COST Eps PREFACE ELERENT Eps PRICES EFS HOME PRICE LIST <-- 

COST Eps ALL ELEHENTS Eps FURNITURE Eps 
GUEST ROON := ELEMENT (USE Eps GUEST ROOM = 'BEDBOOR') 
BACKUARD STARTING AT SMALL ROCN := ELEMENT 
(LENGTH EFS SMALL EOCM * YIDTH EFS SMALL ROCM < 150) 
Eps ROOMS Eps BCNE; 

The translation from the source code of Boolean search and select 
loo&s into the eyuivalent explicit loop statements is a fairly involved 
&rocess. Section 18 is devoted entirely to describing this process. 
As shown in Section 18, SPL translates statements which select the 
first element which has some desired PrOpeCty, or all the elements Which 
have that property, or the tirst element which has that property 
provided that there exist any elements which have that property. 

17.4, INPLICIT PBOGRAH BLOCK STRUCTUBE OF EXPLICIT LOOPS 

Fig. 17-2 shows a typical implicit program block structure 
resulting frcm an explicit loop statement. The loop statement appears 
in the source code in block A. All the other program blocks in Fig. 
17-2 are created implicitly for the processing of the loop statement. 

The access chains fcr some of the element generators may pass 
through structure-pointing atoms. The structures which contain these 
atoms are activated during the initial evaluation of the first-order 
ancestor complexes of the elements to be generated, but the structures 
containing these atoms do not necessarily have to remain active during 
execution of the loop. Blocks Cl, C2, -.--, Cn show the brief 
activation of these structures. 



17.5. "CYCLE" AND "LEAVE" 

A CYCLE statement consists of the uord CYCLE, optionally followed 
by an arithmetic exL.ression. A LEAVE statement consists of the vord 
LEAVE, optionally followed by an arithmetic expression. If the arith- 
metic expression is omitted, the value 0 is assumed. CYCLE and LEAVE 
may appear only within loops. 

CYCLE statements and LEAVE statements act as special purpose GO TO 
statements tar terminating executicn of a cycle of a loop, or for 
terminating execution of a lcop entirely. CYCLE is the same as GO TO 
which branches to a fictitious location just before the end of the loop. 
Example: 

LCOP 5-e. 
DC e--- 

CYCLE: 

END LOCP; 

is equivalent to: 

LOOP ------_ 
cc ----_.-- 

GO !Ic DUWMYl; 
~W_. 

------. _ 
DUMbYl: 

LID LOOP; 

where DUnflY is a dummy statement label automatically supplied by SPL. 
LEAVE is the same as GC TO which branches to a fictitious location just 
alter the end of the 1ccP. Example: 

LOOP --.----- 
D 0 -_.-----\._ 

LEAVE; 

---__- 
END LOOP; 

is equivalent tc: 

Lcop ------ 
DC -. -- -- 

GO 'IO DUMMYl; 
~-- -.--- 

END LOOP; 
DUMbYl: 

where DUMMY1 is a dummy statement label automatically supplied by SPL. 



If an expression follows CYCLE or LEAVE, its value is truncated to 
an integer uhich nust be nonnegative. SPL leaves that many inner nested 
lOOFS, and then cycles or leaves an outer loop- Example: 

LCOP - 
DO------- 

LOOP -y-e 
DO ------___ 

CYCLE 1; 

END LOOP; 
- 

END LOOP; -- 

is equivalent to: 

LCOP - 
DO---- 

--- 
GO TC DUfiMYl; 
.-----.- _...._ 
---.-.._ 

END LOOP; 
--- -. 

DUfiMYl: 
END LOOP; 

les In the above example, execution leaves the 1 inner loop, and then cyc 
the outer loop. It is an error for the truncated value of the 
exPression to be greater than the number of inner nested loops. 

The SPL translator converts all implicit loops into their _ _. _ equivalent expllclt loop statements. All the%! lOOp.3 are COUUted In the 
determination of how many inner nested loops to leave, before cycling or 
leaving an cuter loop. 



17.6. HCOLEAN IEFLICII LOOPS 

The pronoun Phrases ANY OF, ALL OF, or NONE OF may appear in a 
Boolean exFressicn that includes an implicit loop, thereby forming a 
Boolean implicit loop. Example: 

IF ANY OF LENGTH Eps ALL ELEMENTS EFS ROONS Eps HORE = 20 
THEN C <-- c l 1; 

is equivalent to: 

LOOP FOK ALL DUMMY1 := ELEMENT Eps ROCMS EFS HCME 
CC IF LENGTH EFS DlJflMYl = 20 

THEN GO TC DUMMY2 
END LOOP: 
GO TO DlJMMY3; 
DUMMY2: c <-- c + 1; 
DUflHY3: 

A local name may be assigned to the elements. SPL automatically 
reserves the local name, for subsequent use. After execution of the 
loop. the element (if any) assigned to the local name depends on the 
pronoun phrase, the Boolean expression, and whether there exist any 
elements in the complex. Listed below are the translated equivalents of 
the various Boolean implicit loops. 

Exam&le (1) source code: 

IF ANY OF A Eps ALL D := ELEMENT EFS C = K 
THEN <<code l>> 
ELSE <<code 2>>; 

Example (1) translated equivalent: 

RESERVE E; 
LCCP FOh ALL E := ELEMENT Eps C 
CO IF A EFS E = K 

THEN GO 'IO ClJMHY1 
END LOOP; 
<<code 2>>; 
GO TC DIINMY2; 
0UMtiY 1: 
<<code l>>; 
DunnY2: 



EXamFle (2) source code: 

1F ALL CF A Eps ALL B := ELEMENT EFS C = K 
THEN <<code l>> 
ELSE <<code 2>>; 

Example (2) translated equivalent: 

RESERVE E; 
LOCP FOE ALL B := ELEHENT Eps C 
DO IF - (A EFS B = K) 

1HEN GO 1C DUBflY 
END LOOP; 
<<code 2>>; 
GO TO DUMRY2; 
DUHMYl: 
<<code l>>; 
DUMHYZ: 

Example (3) source code: 

IF NONE OF A Eps ALL B := ELEHENT Eps C = K 
TREN <<code l>> 
ELSE <<code 2>>; 

Example (3) translated equivalent: 

RESEEVE E; 
LCCE FCE ALL B := ELEHENT Eps C 
DO IF A Eps E = K 

THEN GO TO DUMHYl 
END LOOP; 
<<code l>>; 
GO 10 DUCIHYZ; 
DUHHYl: 
<<code 2>>; 
DDHHY2: 

Example (4) source code: 

IF - ALL OF A Eps ALL B := ELEIENT Bps C = K 
THEN <<code l>> 
ELSE <<code 2>>; 

Example (4) translated equivalent: 

RESERVE E; 
LCCF FOh ALL B := ELEflENT Eps C 
GO IF -. (A Eps El = K) 

THEN GO TO DURHYl 
END LOOP; 
<<code I>>; 
GO 10 DUMMYi; 
DUHMYl: 
<<code 2>>; 
DUMHYZ: 



The word ALL must occur at least once in the access chain for each 
Eoolean isplicit loop. Each occurrence of the word ALL indicates 
another nested 10~~. 

Example (5) source code: 

IF ANY CF A Eps ALL B := ELEMENT Eps C Eps ALL D := ELEflENT Eps E 
= K 

THEN <<code l>> 
ELSE <<code 2>>; 

Example (5) translated equivalent: 

RESERVE E; 
EESERVE D; 
LCCF FCS ALL D := ELEMENT Eps E 
CC LCOF FOE AIL B := ELEHENT Eps C Eps D 

DO IF A EFS B = K 
THEN CC TO DUMMY1 

END LOOP 
END LOOP; 
<<code 2>>; 
GO TC DOPIMYI; 
DUHfiYl: 
<<code l>>; 
DUflBY2: 

Several Boolean implicit loops may be combined in a single Boolean 
expression. 

Example (6) source code: 

IF ANY OF A Eps ALL B := ELEMENT EFS C 
= AIL CF D Eps ALL E := ELEMENT Eps P 

THEN <<code 7>> 
ELSE <<code 2>>; 

Example (6) first translated equivalent: 

RESERVE B; 
LOOP FOk ALL B := ELENENT Eps C 
DC IF A EFS E = ALL OF D Eps ALL E := ELEMENT Eps F 

IhEN GO TO DUMMY1 
END LOOP; 
<<code 2>>: 
GO TC DUNNY2; 
CUrlMYl: 
<<code l>>; 
DUMEIYZ: 



Example (6) second translated equivalent: 

RESERVE B; 
RESERVE E; 
LGCF FCR ALL B := ELECIENT Eps C 
DC LCOF FOR ALL E := ELEBENT Eps P 

DO IF 1 (A Eps E = D EFS E) 
THEN GO TO DUClfiY3 

END LOOP; 
GO TO DURMYI(; 
DUHMY3: 
GO TO DUflflYl; 
DUBhYU: 

END LOOP; 
<<code 2>> ; 
GG 'IO DUMW 
DUMMYI: 
<<code I>> 
CUMMYZ: 

Y2: 

As can be seen in the above examples, the final assignment of 
elements to the reserved local names is somewhat erratic. Boolean 
inplicit loops provide a convenient way of performing tests, but an 
inconvenient vay of selecting elements. On the other hand, Boolean 
search and select loops provide a convenient wag of selecting elements, 
but an inconvenient way of performing tests, 

17.7. CCUNTXRG ELEBEN'IS 

SPL has the built-in function COUNT, uhich counts all the elements 
of a camplex, or a selected subset of those elements. The resulting 
value is of type UNSIGNED INTEGER. Examples: 

(1) NUBBER <-- COUNT ELEMENTS Eps ROOHS Eps BCNE; 
(2) NUMBER <-- COUNT LONG ROOfi := ELEHENT (LENGTH Eps LONG ROOR > 20) 

Eps ROOMS Eps HCHE; 

The translated equivalent of example (1) is: 

COUNT <-- 0; 
LOOP FOR ALL DUMBYl := ELEHENT EFS ROOM Eps HOBE 
DO COUNT <-- COUNT + 1 
END LOOP; 
NUMBER <-- COUNT: 



18, TRANSLATING BOOLEAN SEARCH AND SELECT LOOPS 

18.1. DEFIBITICN OF THE PROBLEM 

section 18 is an extension of Section 17.3, in which Boolean 
search and select loops were introduced. A Boolean search and select 
lcop appears in SFL source code as an access chain, containing somewhere 
within it the word ELEBENT followed by parentheses enclosing a Boolean 
expression. The Eoclean expression may be arbitrarily complicated, 
perhaps itself containing Boolean search and Select loops. From this 
source code, SPL compiles an effective procedure for searching among the 
elements of a cornFlex, and selecting the first element or all elements 
for which the Boolean expression has the value TRUE. The only 
restriction is that the Boolean expression somehow depend on some 
property of the element or elements it is supposed to select. 

'Ihis section is vritten for two audiences. First, it is directed 
to the programmer writing SPL code. It shows him the expansion of his 
source code into the effective search and select procedure, written as 
explicit loop statements. This allows him to resolve any questions 
atout the interpretation of his source code, and to pinpoint any 
ambiguities or inconsistencies. Second, this section is directed to the 
person inplementing SPL, as a possible means of performing the 
inplementation. The translation process described here has as input SPL 
source code including Boolean search and select loops, and as output SPL 
source code from which all Boolean search and select loops have been 
eliminated. The translation process also detects all ambiguities and 
inconsistencies, and detects when the Boolean expression does not depend 
on any Property of the elements being searched. One approach to 
iaplementiny an SPL compiler is to implement compilation of explicit 
locp statements only, and to include an extra pass which translated 
implicit loop statements and search and select loop statements into 
their equivalent explicit loop statements. 

The translation process described here uses the type-tree formed 
from the structure declarations (see Secticr 8) in conjunction with 
the source code statement, to determine the appropriate sequence and 
nesting at the loops so that the required chain of data accesses can be 
performed. Where several sequences or nesting arrangements of the loops 
are possible, it shcws all possible arrangements and indicates an 
optimal arranyement, in the absence of statistical information about the 
data. 

'Ihe description of the translation process is itself composed of 
two steps. The first step is the development of a 'Ochartn suitable for 
ccmputer processing, which characterizes the Boolean search and select 
loops. The second step is the interpretation of that chart as explicit 
loop statements in SPL source code, for the next pass of the SPL 
ccmpiler. 'The chart is isomorphic to the type-trees of the constructs 
wnich participate in the loops, with some auxiliary edges and with 
directions assiyned to all the edges. This collection of type-trees and 
auxiliary edyes is called the ngraph" of the loops. It is not suitable 
for computer processing, but is included as an aid to human 
ccmkrehension. 



The notational conventions used throughout Section 18 are that 
the upper case letters A, B, C, ..-. represent local names or type names 
of constructs uhich appear in the source code, and that DUflflYl, DDflMYZ, 
*a... represent local names, isolated cells, or statement labels auto- 
matically supplied by SPL. No declarations are shown in this section: 
the appropriate declarations can be inferred frcm the source code. The 
distinction between local names and type names also can be interred from 
their position in the source code. For example, if the source code is 

A Eps B <-- C Eps D := ELEHENT (E Eps C = 1) Eps G Eps Ii; 

then A. C. E, and G must be type names and 8, D, F, and H must be local 
names. 

18.2. EXANPLES DEMGNSTEATING SCfiE OF THE PEOBLENS INVOLVED IN 
TRANSLATION 

Note the similarity in source code between examples (2) and (3), 
and between examples (3) and (4). 

Example (1) source code: 

A Eps B <-- C Eps D := ELEMENT (E Eps D = F) Eps G Eps H; 

Example (1) translated equivalent: 

RESERlE D; 
LCOP FOR ALL D := ELEMENT Eps G Eps H 
DO IF E Eps C = F 

THEN GO TG DUMflYl 
END LOOP; 
ERROR; <<required element does not exist>> 
DUHMYI: 
A Eps B <-- C EFS D; 

Example (2) source code: 

A Eps 0 <-- C Eps D := ELEMENT (E Eps D = F) Eps G Eps 
H := ELEMENT (I Eps H = J) Eps X EFS L; 

Example (2) translated equivalent: 

BESERVE D; 
NESEEVE H; 
LOOP FOG ALL H := ELEMENT Eps K Eps I 
CO IF I Eps H = J 

THEN GO TO DUMMY1 
END LOOP; 
ERROR; 
DlJNMVl: 
LCCP FOE ALL 0 := ELEBENT Eps C Eps H 
DO IF E Eps L = F 

THEN GO TO DUMMY2 
END LOOP; 
ERROR; 
DUMNYZ: 
A EFS B <-- C Eps D; 



Example (3) source code: 

A Eps B <-- c zps D := ELEMENT (E EF+ II = F) Eps G Eps 
H := ELEUENT (I Eps H = J Eps D) Eis K Eps L; 

Example (3) translated equivalent: 

RESERVE JZ; 
RESEBVE H; 
LGOF FC8 ALL H := ELEHENT Eps K Eps L 
CC LCCF FOE ALL C := ELENENT Eps C Eps H 

DO IF E EFS D = F 
THEN GC 20 DUNflY 

END LOOP; 
EREOR; 
DUfiNYl: 
IF I Eps B = 3 Eps D 
THEN GO TC DUNRYZ 

ENC LOOP; 
ERROL; 
DUNMYZ: 
A Eps B <-- C Eps D; 

Example (11) source code: 

A Eps B <-- C Eps D := ELEHENT ((E EFS D = P) G 
(I Eps H = J Eps D)) Eps G EF.5 
H := ELEIIEN'I [EXISTS D) EFS K Eps L; 

Example (4) translated equivalent: 

RESERVE D; 
RESERVE ii; 
LOOP POE ALL H := ELEHENT Eps K Eps L 
DG LCOP POE ALZ D := ELEMENT Eps G Eps H 

DO IF (E EFS D = F) & (I E&s A = J Eps D) 
THEN GO TO DlJf'lfiYl 

END LOOP 
END LOOP; 
EAR06; 
DUflHYl: 
A Eps B <-- C Eps D; 



18.3. DEVELOPING A CHART 

The translation of Boolean search and select statements into their 
equivalent explicit 100~ statements is based on interpretation of a 
chart. The chart characterizes the lcops by describing the various 
dependencies involved in the search and selection process. There are 
six types or dependencies, two of which are discussed here, two are 
discussed in Section 18.11, and two are discussed in Section 
18.16.3, 

The sequence of accesses described by an access chain starts with 
some kncvn construct which is identified by its local name. The next 
access is of the first-order descendant of the known construct, and the 
next access is of its descendant, etc. In this context, the descendant 
of a structure-Fainting atom is the structure to vhich it points. Each 
construct after the known construct is said to "depend for access" on 
its first-order ancestor, Dependence for access is one of the 
dependencies shown in the chart. 

The selection of one element among the many elements of a complex 
is based on some Froperty of that element, The properties of an element 
are the values stored in the atoms vithin the element. The atoms may be 
either first-order or higher-order descendants of the element. The 
element is said to "depend for selection" an some of its descendant 
atoms. Dependence for selection is another of the dependencies shown in 
the chart. 

Source code from example (1) of Secticn 18-2 is used in 
describing the development of the chart. The source code is repeated 
here, as follows: 

A EFS 8 <-- C Eps D := ELEHENT (E Eps D = F) Eps G EPS H; 

A depends on B for access, C depends on D for access, D depends on G for 
access, and G depends on H for access. D also depends on E and P for 
selection. 

In the chart, each of the names A,B,C,C,E,P,G,R is used as a 
heading ror a row R(i) and for the column C(i) with the same subscript. 
The chart subsequently may be rearranged so that the names head 
different rows and columns, but all rearrangements are performed such 
that a name always heads a rou and column with equal subscripts. If 
name Nl depends on name N2 for access, then the letter A is entered in 
the chart in the intersection of row R(N1) and column C(N2). If name 
Nl depends on name N2 for selection, then the letter S is entered in the 
chart in the intersection of row R (Nl) and column C(N2), Fig. 18-l 
illustrates the chart for the example source code. 



Each row in a properly formed chart contains either no letter A or 
one letter A. If the name heading the row appears only in the rightmost 
Position of one or more access chains, then the row will contain no 
letter A. If the name heading the row appears in some access chain as a 
descendant construct, the row vi11 contain exactly one letter A, because 
in the trees formed by structures each construct can have only one first 
order ancestor, and therefore depend on only one other construct for 
access, A single statement in the source code may contain several 
access chains which mention different instances of the same type of 
construct. Althouyh the type names are identical, the different 
instances are distinguished (by examination of the local names at the 
rightmost ends of the access chains) and each instance heads a separate 
row and column in the chart. It any row cantains more than one letter 
A, and if the name heading the row is the type name of a construct, then 
that type name refers to different instances of the construct. The 
instances should be distinguished. If any row contains more than one 
letter A, and if the name headiny the row is the local name of a 
construct, then there is an inconsistency in the source code. If two 
separate rows R(i) and R(j) are headed by identical type names and the 
letter A is in the same column for both revs, then the two identical 
type names Possibly may refer to a Single instance of a construct. A 
ccepile-time warning messaqe should be issued. The rows R(i) and R(j) 
and columns C(i) and C(j) should be merged if they correspond to a 
complex or to an atom- But they should not be merged if they correspond 
to an element. The SPL programmer may want to select different elements 
of the same complex in several different loops within a single 
statement. 

If any row-column intersection of the chart contains more than one 
letter (either A or S), or it the main diagonal is not empty, then the 
scurce code is inconsistent. 

Once formed, there must exist at least one arrangement of the chart 
(simultanecusly rearranging row R(i) to R(j) and column C(i) to C(j)) in 
which all the A's lie in the upper-right triangle. Fig. 18-2 shows 
such a rearrangement of the chart of Fig. 18-l. This arrangement must 
exist because SPL structures are trees: the sequence of accesses from 
ancestor to descendant constructs is mirrored in the chart as a sequence 
of accesses from the name heading the bottcm row (or rightmost column) 
to the name heading the top row (or leftmost column). The arrangement 
of all A's in the upper-right triangle is a consequence of the ancestor- 
descendant relaticn being nonreflexive. If no such arrangement exists 
for some particular chart, the source code from which the chart was 
tormed is inconsistent. In the subsequent discussion, the only chart 
arrangements considered are those in which the A's lie in the upper- 
right triangle. 



The chart is derived in several steps, An original chart is drawn 
showiny all the dependencies for access and dependencies for selection 
which appear in the source code. In succeeding steps the dependencies 
which are not relevant to the loops gradually are eliminated from the 
chart, until tinally an irreducible chart is obtained. The equivalent 
explicit 100,~ statements are deternined frcm an interpretation of this 
irreducible chart, 

The charts following the original chart are der-ived successively 
from their predecessors by deleting both a row and its corresponding 
cclumn if either the row is empty or the cclumn is empty. The process 
is reFeated until no more deletions are possible. Figs. 18-3(a) and 
18-3(b) show two steps in reducing the chart of Fig. 18-2. The 
chart of Fig.. 18-3(b) is irreducible. 

A row being empty means that the construct does not depend on the 
other constructs, either for access or selection. The construct is 
ccnstant relative to the search and select loops; therefore its 
inclusion in the chart is not relevant to the goal of characterizing the 
ICOFS. A column teiny empty means that no other construct depends on 
this one. While the construct itself is dependent on the result of the 
search and select Loops, its inclusion in the chart is not relevant to 
the goal of characterizing the 100~s. 

Even for an irreducible chart, several arrangements may be possible 
without violating the restriction that the A's remain in the upper-right 
triangle, Fig. 18-4 shovs an example. 

The interpretation of a letter lying in the upper-right triangle of 
a chart is that the named construct heading the column can be determined 
before the named construct heading the row. Each row containing at 
least one letter S corresponds to an element of a complex for which a 
search and select loop is needed. Each row containing at least one 
letter S must have at least one letter S in the lower-left triangle, if 
the source code is errcr-tree. Otherwise. the selection of the elements 
could be determined before the elements were accessed, so the search and 
select 100~ would be unnecessary. Similarly, if a row containing at 
least one letter S is deleted during the derivation of an irreducible 
chart, the search and select loop corresponding to the row is 
unnecessary, indicatiny an error in the source code. 



18-U. DEVELOPING A GRAPH 

Fig. 18-5 shous the development cf both the chart and graph for 
the source code from example (3) of Section 18.2. Fig. 18-5(a) 
shows the original chart formed from the source code, rearranged so that 
all the A's lie in the upper-right triangle. Fig. 18-5(b) shows the 
type-trees associated with the source code, The type-trees are drawn 
with heavy lines. Also shown in Fig. 1&5(b) are some auxiliary edges 
drawn with light lines, The auxiliary edges represent the connection 
between the elements of a complex and the atoms which participate in 
determininy the selection of the elements- A direction is assigned to 
each of the edges, going from a given construct to another construct on 
which it depends. Thus the direction alvays is upvard on the edges of 
the type-trees, indicating that the lower ccnstruct depends on the upper 
construct for accessr The direction always is from an element to an 
atom on the auxiliary edges, indicating that the element depends on the 
atom for selection. 

Fig. 18-5(c) shows the irreducible chart de%ived from Fig. 
18-5(a). After all irrelevant rows and columns have been eliminated, 
only the central part of (a) remains in (c). Fig. la-S(d) shows those 
portions of the type-trees and auxiliary edges which still remain in the 
irreducible chart (c). The irrelevant portions of (b) were eliminated 
to form (d), Fig. 1+5(d) is called the graph of the search and 
select loops generated by the source code. 

Each row or column in the chart COrreSFOndS to a node in the graph. 
Each letter A or S in the chart corresponds to an edge in the graph. 
The letter A corresponds to an edge in the type-tree. The letter S 
COrEeSFOndS to an auxiliary edge. If the letter A or S is in the 
intersection or row R(i) and column C(j), the direction of the 
corresponding edge is from node i to node j. 

One of the requirements tor well-formedness of each Boolean search 
and select loop is that the selection depends on some property of the 
elements being searched, Except where the source code uses EXISTS 
[discussed in Section 18.11). this reguirement is shown in the graph 
by reyuiring that there exist at least one auxiliary edge pointing from 
the element-node to a descendant node. 



18.5. INTERFRETING A CHART TO DETERMINE LOOPS 

Each row containiny at least one letter S corresponds to a 
Boolean search and select 1001;. The score and nesting requirements of 
the loop are shown by drawing an isoscelrs right triangle on the chart. 
The base of the triangle lies on the main diagonal, and the apex 
includes the leftmost letter S in the row. Fiy. 18-6 shovs the same 
chart .as Fig. 18-5(c), redrawn with the triangles included. In Fig. 
lb-6, the D-E look of Fiy. 18-5(d) is seen to be nested within the 
H-I-J loop. This Corresponds with the translated equivalent code in 
exanFle (3) of Section 18.2. 

Since the row headings and column headings appear in the same 
order, the triangles merely are a geometric way of projecting forward 
the scope of a 100~. A loop determining the selection of an element 
appears as some S's in the row headed by the name of the element. The 
maximum scope of the loop is the column containing the leftmost S in the 
ILOW. The column is projected to its corresponding row by travelling up 
the column to the main diagonal. 

Sometimes when the irrdeucible chart first is developed, the 
arrangement indicates nesting of the loops. A rearrangement of the 
chart may show that nesting actually is unnecessary, but that disjoint 
loops executed seyuentially are sufficient. See Fig. 18-7 for an 
example. Disjoint sequential loops are more economical than nested 
100Rs. and should be used wherever possible. Rearranging the chart is 
discussed in the sections following Section 18.5. 

If the selection of elements is determined entirely by the contents 
OS data atoms (not structure-pointing atoms, or other elements or 
constructs), then it always is possible to arrange the chart so that the 
triangles are either disjoint or properly nested. Rearrangement to 
achieve proper nesting is possible because data atoms terminate their 
access chains. so there is no constraint preventing a data atom from 
being shifted u&zuard-leftward in the chart. Fig. 18-8 shows two 
arrangements of a chart, one with improper nesting and one with proper 
nesting. Atom P is shifted to achieve FroFer nesting. 

However, if the selection of elements is determined partly by the 
contents of structure-Fainting atoms, Froper nesting of the triangles 
sometimes may not be possible. Proper nesting always is possible if the 
contents of the structure-pointing atoms are used as data only -- names 
to be tested and compared with other names. But if the contents of the 
structure-pointing atoms are used both as data in selecting elements of 
one cornFlex, and as part of the access chain to another complex which 
must be searched simultaneously, then proFer nesting may not be 
Fcssible. 



Fig. 
Fig. 

18-9 shows an example Where proper nesting is possible, and 

both 
18-10 shovs an example vhere proper nesting is not possible. In 
examples, the content of a structure-pointing atom is used both as 

data and as part of an access chain. 
The impossibility of proper nesting of the triangles can be used to 

detect an obscure source code error which ctheruise would be undetect- 
able. Although the graph in Fig. 18-10 seems to indicate that each 
selection of an element depends on some property of that element, this 
actually is not so. 
select loop. 

The source code has an unnecessary search and 
The error may be seen in the source code of Fig. 113-10 

by observiny that, when D is selected, the content of the structure- 
pcinting atom E = DUMMY2 = the content of structure-pointing atom I. 
Therefore, F Eps E could just as well have been written 
But L is a Constant relative to the loops, so 

F Eps I. 
F Eps I also is a 

constant relative to the loops, and there is no basis on which to select 
an element DUBMY EFS H- The error is mere obvious in Fig. 18-11. 
where the same source code is used, except that F Eps E is rewritten 
as F Ep‘s I. 

Improper nesting also may arise if the Boolean predicate EXISTS, 
applied to an element, is used to determine the selection of an element 
in another complex. This use of EXISTS is discussed in Section 18.11. 

18-8, 
Proper nesting not only involves the triangles shown in Fig. 

but also subsidiary triangles with apexes including the other 
S's in the lower-left trianyle of the chart. The chart arrangements of 
Fig. 18-8 are redrawn in Fig- 18-12, showing the subsidiary 
triangles drawn with light dotted lines. 

18.6. CLUSTEHING S'S AEOUT THE MAIN DIAGONAL 

After each rearranyement of the chart for any reason other than the 
one discussed here, the chart should be rearranged again to improve the 
clusteriny of the S's in the lover-left triangle. Shifting the S's in 
the lower-left triangle of the chart closer to the main diagonal, has 
the effect of reducing the number of accesses performed during each 
cycle ot the corresponding loop. 

The shittiny described here has limited goals, to keep this part of 
the operation simple. Cnly minor local performance improvements can be 
expected from this shiftiny; other rearrangement techniques described in 
the following sections produce the major performance improvements, 

Fig. 18-13 shows an example of poorly clustered and well 
clustered chart arrangements. Only rows which do not contain S's are 
rearranged. The chart is partitioned by the rows which contain S's. 
Each partition of consecutive rows, none of which contain S's, is 
rearranyed internally. The partition as a rhole maintains its same 
position in the chart. In Fig. 18-13(a) there are two partitions, 
(H,I,E.J,F,G) and (N,K,N). 

In addition to confining rearranyement within a partition, no 
change is made in the relative order of the columns containing S'S. The 
relative order or columns H, E, fl, and N is the same in Figs. lfl-13(a) 
and 18-13(b). 



18.7. PROPAGATING CEPENDENCY 

The original chart formed tram the source code does not, in 
general, have all the A's in the upper-right triangle. If there are 
~LIOES in the source code, they should be detected as soon as possible, 
in order to make the error messages most meaningful to the SPL 
programmer. Theretore the chart should be rearranged immediately to put 
all the A's in the upper-right triangle, so that a source code error 
which prevents this rearrangement can be detected before the irreducible 
chart is derived- 

Once the irreducible chart has been derived, the arrangement still 
may not permit &roper nesting of the triangles. Proper nesting always 
can be achieved by shifting data atoms upward-leftward, as described in 
Section 18.5. 

The question then arises: What other chart arrangements are 
possible? The tirst derived arranyemfnt of the irreducible chart may 
not be the mcst desirable arrangement. Rearrangement may produce 
greater efficiency of execution, or a different order in which elements 
are selected- 

An exhaustive search for all valid rearrangements of the chart 
would be a very expensive ccmFutation at compile time, of the order of 
N! if there are N rows or columns. This section describes how to obtain 
the relevant information without any actual rearrangement, using an 
invariant Groperty of the chart. 

A letter A OI S in the chart, say at coordinates (i,j), indicates 
that construct i depends directly cn construct j, This dependency can 
be &rOpayated to all the constructs on which construct j depends 
directly, etc- Eventually one or more Faths are created leading from 
ccnstruct i to all the ather constructs on which it depends, either 
directly OI indirectly. 

In this section we are interested in Fropagating dependencies only 
to other constructs whose identities already have been determined by 
access and selection. Accordingly, paths in the upper-right triangle of 
the chart aLe restricted to remaining in the upper-right triangle. Fig. 
16-14 shows an example of the FroLagation of dependencies. Arrows in 
the chart trdce the paths of Fropagation. 

A path is initiated from each letter A or S in the chart. The path 
stdrts propagation along the colulrn ccntaining the letter. 

When propagating along a column C(i), follow the column to the main 
diagonal, and then start propagation rightrard along row R(i). The 
presence ot other letters in that column is a coincidence which has no 
effect on the kath of Fropagation. 

Uhen propagatiny along a row R(i), start a path propagating along 
each cclumn C(j) such that i C j and such that there is a letter A or S 
at coordinates (R(i).C(j)). 



18-H. SHIFTING DATA ATCMS TO ELIMINATE UNNECESSARX NESTING OF LOOPS 

Fig. 18-15 shol;s tuo chart arrangements which differ only in the 
Position or data atom H. In Fig. 18-15(a), the loops are nested 
unnecessarily, since shitting H downward-rightward permits the 
sequential loop execution shown in Fig. 18-15(b). Shitting H does not 
chanye the order in which elements are selected, but does produce 
greater etficiency of execution. 

This situation can be detected by observing that the path of 
dependency Propagation, starting from the letter S at coordinates (G,H), 
travels above the upper loop corresponding to row D, yet does not depend 
tn loop D. Therefore data atcm H can be shifted downward-rightward. 

H is shifted to a new Position such that column H is immediately to 
the le1t of column C(j), where C(j) is the leftmost column such that 
there is a letter A or S at coordinates (H,C(j)). In the example, 
C(j) = column G; column H is shifted immediately to the left of column 
G, and row H immediately above row G. Finally, H is shitted upward- 
leftward the minimal number of positicns necessary to reestablish proper 
nesting. ProPer nesting must be established for the subsidiary 
triangles, as well as for the triangles indicating loops. The final 
upward-lettuard shift is not necessary in the example of Fig. 18-15. 

18-Y- INDEPENCEECE OF LCOPS EXECUTED SEQUENTIALLY 

As described in Section 18.5, two disjoint triangles in a chart 
correspond to two separate search and select loops which are executed 
sequentially. If the loops are independent, either one can be executed 
before the other, If one of the loops depends on the other for 
the selection of an element, then either the dependent 
1ooP is executed second or else a wasteful nesting of the loops must be 
used. These conditions may be determined from the chart as follovs. 
Two independent loops A and B produce two arrangements of the chart with 
disjoint triangles. In one arrangement triangle A is above triangle 8, 
in the other arranqement triangle B is above triangle A. But one loop 
dependent on the other produces one chart arrangement with disjoint 
triangles (the starting assumption of this discussion) and one chart 
arrangement with nested triangles. 

Given a chart arrangement with tuc disjoint triangles, independence 
or the loops can be determined from the paths of dependency propagation. 
The loop corresponding to the lower triangle cannot possibly depend on 
the loop corresponding to the upper triangle. Therefore the loops are 
independent if and only if the upper loop does not depend on the lower 
lOOF. 

Let B(upper) be the row corresponding to the upper loop, and let 
R(lower) be the row corresponding to the lower loop. Follow the paths 
ot dependency propagation from each-of the letters A or S in row 
R (upper) - If any of these paths intersect the main diagonal at 
coordinates (R(louer),C(louer)), then the upper loop depends on the 
lower lOOF. 

Pig. la-14 shows an example of one loop depending on another 
loop. Fig. YE-16 shows an example of indePendent loops. 



18.10. MUTUAL DEEEHDENCY ANONG NESTED LCOFS 

After data atoms have been shifted dcunvard-rightward as described 
in Section 18.8, any nested triangles remaining in the chart 
CCKKeSFOnd to nested lOCpS, where the inner loop depends on the outer 
loop. The inner loop may depend on the outer loop for access, for the 
selection of eleaents, or for both. 

If the inner loop depends on the outer loop for access, it is 
impossible to rearrange the chart such that the relative positions of 
the two loops are interchanged. Fig. 18-6 shows an example where the 
inner loop depends on the outer lcop tor access- The path of dependency 
starting from the letter A in row D eventually intersects the main 
diagonal at coordinates (H,H). 

If the inner loop does not depend on the outer loop for access, the 
relative Fositicns of the two 1~0~s can be interchanged. The resulting 
chart arrangement shows disjoint loops vhich are executed sequentially, 
if what formerly was the outer loop does not depend on vhat formerly was 
the inner loop- Rearranging Fig. 1&-14(b) to Fig- 18-14(a) is an 
example. 

The resulting chart arrangement again shows nested loops, if the 
two loops are mutually dependent. Interchanging the inner and outer 
nested 100~s alters the order in which elements are selected. Fig. 
18-17 shows a simple example of mutual dependency, and Figs. 18-18 
and 18-19 show some more complicated examples. 

Hutual dependency of nested loops is detected by a slight modifica- 
tion of the method of following dependency Fropagation. The method 
described in Section 18.7 avoids loops in the paths of propagation by 
restricting all Fath extensions to the upper-right triangle of the 
chart. All Laths starting from the upper-right triangle must trend 
downward, so no loops can be formed. Similarly, all paths starting from 
the lower-left triangle must trend upward, all Faths ending in the 
upper-right triangle must trend rightward, and all Laths ending in the 
lower-left trianyle must trend leftward. This is a simple consequence 
of the fact that vertical paths are directed toward the main diagonal, 
while hcrizontal paths are directed avay from the main diagonal. 

There are tuo modifications to the method described in Section 
10-l- The first is to allow loops in the Faths of dependency 
Eropayation, by allowing the Faths to extend leftuard from the main 
diagonal alcny rows which contain S's in the lover-left triangle. The 
second modification is to separate those paths which happen to coincide. 
Coincident Faths are distinguished by redrawing them as smooth arcs, an 
arc from each letter A or S in a column C(i) to each letter A or S in 
the corresponding row R(i), for all i. Fig. 18-20 shows some of the 
Frevious charts redrawn with smooth arcs- 

The chart shows mutually dependent nested loops vhich can be 
interchanged, if there exists a closed uniformly-minimal-S path which 
Fasses through tuo or more S's, A minimal-S path from a starting letter 
A or S to an ending letter A or S is defined as a path from the starting 
letter to the ending letter, such that no other path passes through 
fever S's, A closed minimal-S path is defined as a minimal-S path which 
starts and ends at the same letter. A closed unitormly-minimal-S path 
is defined as a closed minimal-S path starting (and ending) at any 
letter A or S through which the path passes- 

Fig. 18-20(c) shows a closed uniformly-minimal-S path. Fig. 
JR-20(b) shows a closed minimal-S Eath which is not uniformly-minimal- 
5, The path starting at the letter S at coordinates (G,E) is minimal-s. 
But if the other letter S at (D,F) or if either of the A’s is considered 
the starting letter, the path is not minimal-s. In this example, the 
lco&s corresponding to rows G and D are mutually dependent, but they 
cannot be interchanged because looR G depends on loop D for access. 



l&11. "EXISTS" 

The Boolean predicate EXISTS may be used to test for a nonzero 
value in a structure-pointing atom, or for the existence of an element 
in a complex.. Referring back to the example declaration of Fig. u-l, 

IP EXISTS NEIGHBOfi := - HCUSE ON LEFT Eps HOME 
'IhEN GC TG ALPHA; 

conditionally assigns the locan name NEIGHECR and branches, if the 
structure-pointing atom HGUSE ON LEFT contains a nonzero value. 

EXISTS may be used in two ways to test for the existence of an 
element, The first ot these, 

IP EXISTS A := ELERENT (B EFS A = C) Eps C Eps E 
THEN --_I 
ELSE ---.--- 

Prevents the system error exit ERROR from being executed, in the event 
that the Boolean expression has the value FALSE for all elements of 
ccmplex D. Local name A is assigned only if the specitied element 
exists, 

Fig. 18-21 shows an example of the seccnd way in which EXISTS may 
te used. This is another form of mutual dependency, where the selection 
of an element or one complex [element K of complex r: in the example) 
depends on the existence of a specified element ot another complex 
(element L cf coaPlex P in the example). The second element (L) must in 
turn depend on the first element (K) either for access or selection, in 
order that there ultimately be an etfective selection criterion tar the 
first element. In Fig. 18-21, K depends on the existence of L, and L 
is accessed throuyh K. In Fig. 18-22, K depends on the existence of 
L, and the selection of L depends on the ccntents of atom N belonging to 
K. ln Fiy. 18-23, the selection of elements never can te resolved, 
because the selection ot each element depends on the previous selection 
ot the ether element. 

The letter E has been introduced into the chart in these examples, 
tc indicate that the selection of an element of one complex depends on 
the existence of a specified element ot another complex. The E may be 
in the lower-left triangle, as in Fig. 18-22(a), or in the Upper-right 
triangle, as in Fig- 1&22(b). The scope cf the loop corresponding to 
the E must be expanded until it includes stme other loop with an 
etfective selecticn criterion. The scope is expanded upward in the 
chart if the E is in the lower-left triangle, or downward in the chart 
if the E is in the upper-right triangle. In either case, the column 
C(j) containing the E is projected to its corresponding row R(j). 

Fig. 18-24 shows an example which mill be used to describe the 
method ot expandinJIscopes. A square is drawn on the chart for each E, 
such that the E is in one corner of the square and the square is 
bisected by the main diagonal, Say the E is located at coordinates 
(B(i),C(j)) corresponding to a loop cn row R(i). Row R(j) also 
corresponds to a loop. unless there is an error in the source code. 



If there are no E's in row R(j), then R(j) must contain at least 
one S which is strictly to the left of the square. This guarantees that 
there is an effective selection criterion, which can be propagated back 
to row E(i). The square should be expanded the minimal amount necessary 
to achieve l.roper nesting, and include the S in row R(j). 

If there are E's in rev R(j), their squares should be expanded 
first, and then the given square on row R(i) should be expanded the 
minimal amount necessary to include (or coincide with) all the expanded 
squares on row R(j). When expanded, the square on row R(i) must include 
at least one column to the left oi its original boundaries, unless there 
is an error in the source code. 

finally, the scope of the 100~ corresponding to row R(i) is 
determined by a square of the minimal size necessary to include any S's 
in row R(i) in the lover-left triangle of the chart, and to include all 
the expanded squares corresponding to E's in row R(i). This square, 
like all the squares described above, must be drawn so that it is 
bisected by the main diagonal. 

An exception to this method is the case where a numeric search and 
select loop Frovides the effective selecticn criterion. Numeric search 
and select loops deEend only on themselves for selection: other loops 
which depend on them for existence do not necessarily require expansion 
leftward of their scopes. Fig. 18-25 shows an example, with an N on 
the main diagonal indicating a numeric search and select loop. 

Yhen tracing paths of propagated dependency or searching the chart 
fcr clcsed uniformly-minimal-S paths, E's are treated the same as Sls. 
N's are a special case. Since they lie in the main diagonal, they 
terminate all Raths leading to them. Charts really are not helpful in 
the translation of numeric search and select loops. Numeric loops can 
be oaitted from the charts if the exception mentioned in the paragraph 
above is recognized. 

18,12, S'IARTING TRE SEARCH AT SCflE OTHER EIERENT 

Fig- 18-26 shows an example where the search does not necessarily 
start at the first element of the cornFlex. The search for element D 
starts after selecting element G of the same complex. The effect on the 
relative order in which the loops must be executed is the same as though 
element D depended for access on element G. Therefore the chart 
contains the letter A at coordinates (D,C). The graph shows the 
simulated access as a broken line. 



18-13. SGURCE CLCE ZhhCRS hCT DElECTAFLE EY CHAHT 

Atheists ill1 be Gratified to learn tbat lOOF dnalysis by chart is 
ret omniscient. 'Ibert are some source code errors for which no 
detection method has (yet) teen develcPed. Fig. 18-27 shows an 
rrdmPle knere loyically inaependent Eooledn search and select 1ooPs have 
teen coded ii; sucii a manner that they are mutually dependent. Fig. 
lb-2d shows an txdm[.lc ubere one of the Roclean ractors in a Boolean 
term does not depend on any Property of the element being selected. A 
tnird example, as rollobs, is self-contradictory. 

A Eps I! <-- c r-p" c := ELEbfNT (E Eps D = I) Eps G 
EPS ELEhENT (- EXISTS II) Eps H Eps I; 

Special tests could be devised to detect each of these simple examples 
ot source code errors, but not general tests to detect the savie type 
errors entedded in very complicated source code. 

lti. 14. SPECIEYIHG CRDER OF EXECUTION 

The relative order in which numeric or Boolean search and se 
loops are to be executed can be specified by the SPL programmer. 
crdec of some or all or the loops in a single statement is specif 
unsiyned inteyers, enclosed in parentheses and preceding the word 
ELEMENT.. Fig.. 18-29 shows an exam&le. 

The loots whose order is specified need not be well-ordered. 

lect 
The 

ied by 

Several of the unsigned inteyers may be equal. The order of executing 
these loo&s is unspecified with respect to each other, but all these 
Icops must follow any loops specified with a lower integer, and precede 
any loops specified with a hiyher integer. The loops whose order is not. 
skeciried in the source code may be executed before, between, or after 
the specitied 1ooPs. subject of course to accessing restrictions, 

In the absence of any of the Previously discussed constraints, the 
loops are executed in the order imPosed by other considerations in the 
source code: heirarchy ot phrases in parsing an expression, left-to- 
right order, etc. 

18.15. TRANSLA'IEL CODE 

Examination of the chart is made for the purpose of translating SPL 
source code containing Boolean search and select loop statements, into 
equivalent SPL source code containing only explicit loop statements. 
lhe relative positicns of trianyles in the chart determine the relative 
order of execution and the nesting of the explicit loops. Other 
statements appear in the translated equivalent code, as well as the loop 
statements; Section lf3.2 contains some examples. This section 
describes what other statements are needed, and where they are 
positioned with respect to the explicit loop statements. 



18.15. 1. SIfiPLE 1GCPS 

Section 18.15.1 describes the code to select d single element of 
d cornFlex. The selected element is the first for which the Boolean 
exPression in the source code has the value TRUE. There must not he 
mutually dependent intercnangeable loops, and the source code must not 
contain the word EXISTS. Translation of source code containing mutually 
dependent interchangeable loops or containing the word EXISTS is 
described in following sections. 

Fig. lb-30 shows example source code of the kind described in 
this section. The outer triangle in the chart corresponds to the outer 
nested look statement. The two inner disjoint triangles correspond to 
the two inner nested loops, which are executed sequentially. The loop 
corresponding to the lower-right triangle is executed betore the loop 
corresponding to the upper-left triangle. 

The local names of the selected elements are used as bound 
variables for describing the Properties of the elements. But they also 
may be used in sutsequent code in the same manner as any other local 
names: to name instances of constructs (elements, in this case) whose 
identities already have been detersined. Therefore these local names 
are reserved outside the outermost loop statement. 

The code within the scope of each of the loop statements consists 
of all the inner nested loop statements (if any), followed by the 
Boolean test- If the Boolean test is successful, a branch is executed 
to code outside the scope of the loop- Immediately following the end of 
the loop is an ERRCh statement, indicating a programming error if none 
of the elements have the Property specified in the Boolean test. 
Following the ERROR statement is the branch destination for the Boolean 
test, and then whatever subsequent code is appropriate. The executable 
code of the source statement (A Eps 6 <-- C Eps D in the example) 
follows the last outermost loop statement- 

38-15.2. MUTUAL DEPENDENCY FOR SELECTION 

If several nested loops are mutually dependent in a manner such 
that the selection of elements from each lcop dePends on the selection 
of elements from all the other loops, yet ncne dePends for existence on 
any of the others, then the Boolean tests and ERROR statements of the 
loops are merged. Fig. 18-31 shows an example. The two Boolean tests 
are "anded" together inside the innermost nested loop, and only a single 
EhRCfi statement occurs outside the outermost nested loop. 

The Boolean test corresponding to the innermost loop is executed 
before the Boolean test corresponding to the outermost loop. This is 
the same crder of execution as the order shown in Fig. 18-30. It 
reduces possible side effects resulting frcm executing the tests. 



18.15.3. "EXISTS" AS A SELECTICN CRITERIOK 

If the selection of an element of one complex uepends on the 
existence of a specitied element of another complex, there is no Boolean 
test for existenca- The only Boolean test within the nested loops is of 
the ettective selecticn criterion tar the element of the second complex. 
Except for the absence of one Boolean test, the translated equivalent 
code is the same as tar mutual dependency with interchangeable loops. 

Fig. 18-32 shows an example using EXIS'IS. The only Boolean test 
inside the innermcst nested loop is tof the selection of element L. If 
the test succeeds, execution branches outside both loops, thereby 
etfectively selecting element K. Fig. 18-33 shows a more complicated 
example. 

1.3.15.4, CONCITICNAL S'IATEHENTS USING "EXISTS" 

If a conditicnal statement tests tar the existence of a specified 
element, the code tar the ELSE condition substitutes tar the ERROR 
statement following the last outermost loop. In other respects the 
translated equivalent code is the same as Previously described. Fiy. 
lB-34 shovs dn example, 

18.16. SELLClING ALL ELEMENTS 

lb. 16.1, 1NTERPRETATICN CF THE WORC "ALL" 

The word ALL aPpeariny in an access chain imPlies the existence of 
a loop for sequencing over the elements cf a complex. If no loop would 
be compiled in the absence of the word ALL, then SPL compiles a loop 
specitically in response to recogniziny the word ALL. This is called an 
implicit loop. It is descrited in Section 17.2. 

But if the word ALL is applied tC elements chosen by a Boolean 
search dnd select loop, SPL does not compile ancther loop in response to 
recognizin9 the word ALL. The 1006 which performs the selection of 
elements also is used to seguence over nil the selected elements. The 
scope ot the lock is exPanded to include all the operations (accesses, 
tests, stores, other loops, etc.) which de&end on the elements selected 
ty the lOOF. 

Fiy. lb-35 shows d simple exdmtle ot Poolean search and select 
1OOL'. wnere nil ttie elements dre selected rather than just the tirst 
element. Altnotijl? the triangles in the chart ale disjoint, the loops 
are ncstec!. l'ne local names of the elements are not reserved (as they 
ace in Fq. ld-3C), there drt no EbiiOti statements, no branches, and 
the exGcutdl.le ccjo is inside the in-nermcst nested loop. 



l&16,2- RESTRICTIONS CN THE USE OF "ALL" 

Some uses of the word ALL in access chains are intrinsically 
meaningless. These source code errors occur in situaticns like the 
following. 

First, observe that: 

(1) A Eps PREFACE ELEMENT Eps B 
<-- C Eps C := ELENENT (E Eps C = F EFS G) Eps H 
Eps G := ELEMENT (I Eps G = J) Eps K EFS L; 

is completely synonymous with: 

(2) A Eps FBEFACE ELEHENT Eps B 
<-- C EFS C := ELEMENT 
(E tks C = F Eps G := ELEBENT (I EF" G = J) Eps K Eps L) 
Eps H EFS G; 

Next, modify the Source code to select all elements G. Then: 

(3) A Eps PREFACE ELEBENT Eps B 
<-- C Ep" C := ELEMENT (E Eps 0 = I Eks G) Eps H 
Eps ALL G := ELEMENT (I EFS G = J) Eps K Eps L: 

is completely synonymous with: 

(U) A EFS PREFACE ELEMENT Eps B 
<-- C EFS C := ELEMENT 
(E Eks D = F Eps G := ELEMENT (I EF" G = J) Eps K Eps L) 
ENS ti Eps ALL G: 

In examples (3) and (4), the word ALL appears in the access chain for C. 
The access chains tcr C and F coincide, staztiny at G. But to the left 
of G, the access chains are distinct. Examples (3) and (4) are not 
synonymous rith: 

15) A E&s PREFACE ELEMENT Eps B 
(-- C Eps 1: := ELEMENT 
(E E&S 0 = F Eps ALL G := ELE?IENT (I Eps G = J) EpS K Eps L) 
Eps i: EFS G; 

Example (5) iS &eaninJlesS; the source code is in error. 



By n,oditying the source code ot example (5) into a Boolean implicit 
loop, the source code once again is meaningful: 

(bJ A Eps PhEIALE ELEMENT EFS B 
<-- C EtS C := ELEMENT (E Eps D = 
AhY Of' 1 El's ALL ti := ELEMENT (I EF" G = J) Eps K Eps L) 
EFS h EcS ti; 

which is colrhletely synonymous with: 

(7) A EFS PhEFACE ELEMENT Eps B 
<-- C EFS G := ELEMENT (E Eps D = ANY CF F Eps ALL C) Eps H 
Eps G := ELEMENT (I Eps G = J) EFS K E&S L; 

Further modiricdtion of examples (6) and (7) may lead to two more 
errors. The word ALL in example (6) or (7) cannot be moved to precede 
the other occurrence of the letter G, as io: 

(8) A EFS PREFACE ELEMENT Eps B 
<-- C E&d C := ELENEN'I (E Epd D = ANY CF F Eps C) Eps H 
E@? ALL G := ELENENT (I EF" C = J) Eps K Eps L; 

The error in eramkle (8) is siailar tc the error in example (5). 
Example (8) has no word ALL in the access chain for the Boolean implicit 
lcot on F, since the access chains for C and F do not coincide until G. 

The other error arises if the source code of example (6) or (7) is 
modified so that the word ALL precedes both occurrences ot the letter G, 
as in: 

(9) A Eps PREFACE ELEBENT Eps B 
<-- C EFS C := ELEMENT (E Eps C = 
Eps ALL G := ELEMENT (I EFS G = J) 

ANY CF F Eps ALL G) Eps H 
Eps K Eps L; 

icglf local name tor elements, 
, the two occurrences of the 
he word ALL. It is 

meaningless to attempt to use more than one criterion for the selection 

At most one word ALL can be applied to a s 
within a sinyle statement. In example (9) 
sinyle local name G each are Freceded by t 

of elements G. of elements G. 
However, However, the elements ot a single cornFlex nay be selected by the elements ot a single cornFlex nay be selected by 

several criteria, several criteria, it the resulting selections are assigned different it the resulting selections are assigned different 
lccal names. lccal names. Erarile: Erarile: 

(10) A Eps PREPACE ELEMENT Eps B 
<-- C Eps C := ELEHENT (E EpS C = 
ANY OF F Eps ALL X := ELEMENT (Y EiS X = Z) Eps K Eps L) 
E&s H EpS ALL G := ELEMENT (I Eps G = J) Eps K Eps L; 



lb.16.3. RLPRESENTING "ALL" IN CHART ANG GhAPH 

AS a computational did in translatiny the word ALL into its 
equivalent code, using the chart aFkears to be of marqinal benefit. 
Once a chart has teen developed as described in the preceding sections, 
with the word ALL iynored, the moditicdtions necessary to account for 
the word ALL can be computed in a straiyhtfcrward manner by direct 
examination cf the source code. 

However, both the graph and the chart are used in this section to 
helk describe the required modificaticns. Fig. 18-36 shows the graph 
and several charts of the example source code used in this section. The 
example has three occurrences of the word ALL, for selecting all 
elements named P, 'I, and Al. Each occurrence of the word ALL must be 
distinguished. We vi11 do so by dssiyning them subscripts: ALL (a) , 
ALL (b) , and ALL(c). 

The graph shown in Fig. 18-36(a) depicts the entire source code 
statement, rather than just the loops involved. The various reiations 
01 operations upon the constructs have been superimposed on the graph, 
to help clarify the complicated trocessrs described in the source code. 
Each occurrence of the word ALL is included as a separate node on the 
graph, as though it were part of the access chain for the descendant 
ccnstructs. The elements selected by the loops, P, T, and AI, are aoove 
the nodes la&led ALL. Each element selected and assigned local name P, 
'I, or AI causes krocessiny to be kerfcrmed on its descendant constructs. 
The word ALL causes selection of many instances of Q, V, and AJ as well 
as many instances of the constructs directly descending from ALL. 

Each occurrence of the word ALL also is included in the original 
chart, shown in Fig, 1&36(b). The dots in the chart are just a 
visual aid. The oriyinal chart is rearranged in Fig. 18-36(c), so 
that all the A's lie in the upper-right triangle. The error described 
in example (9) of Section 18-16-2 would show in the chart as two rows 
headed by the word AiL, both containing A's in the same column. 

Fig. 18-36(c) also shows some paths of dependency propagation, as 
described in Section 18.7. The paths are drawn with solid lines. 
Cnly those paths are shown which intersect the main diagonal at a row 
and column headed by an occurrence of the word ALL. Each intersection 
of these kaths with the nain diagcnal corresponds to some construct 
which depends on all the specified elements of. a complex being selected, 
rather than just one of the elements of the complex. If the path bends 
downward (going frcm row to column) only at letters A, then the 
construct is accessed through the word ALL, The upper-leftmost such 
constructs in the chart are the leftmost constructs of their respective 
access chains, 



For example, consider the path starting at the main diagonal at 
coordinates (fi,M). The bath bends downward at the letter A at 
coordinates (6,L). At row L it diverges irto tro Faths. One of these 
Laths leads to the main diagonal at coordinates (ALL(b),ALL(b)) only 
through A's. Theretore there is an access chain from construct M to 
word ALL(t). 'The other path bfnds downward at the letter s at 
coordinates (L,N). Theretore the ether Fath does not correspond to an 
access chain. 

Since there is no pdth which bends downward only at A'S and which 
leads to the main diagonal at coordinates (M,M), ccnstruct N must be 
leftmost in Its dccess Chain- This cdn be verified by examination of 
the source code ot Fiy. 18-36 and the graph in Fig. 18-36(a). 

So tar, we have used the chart cnly tc find the leftmost constructs 
ot all access chains which pass throuyh the word ALL. It would be 
equally easy to dc this by direct examination of the source code. For 
each of these constructs, a digit 1 is marked in the chart at the 
intersection ot the row headed by the word ALL and the column headed by 
the construct narf. Light vertical broken lines have been drawn in the 

,columns a5 d visual aid. 
Next, for each digit 1 in a rcw, mark a digit 2 in the same row, in 

the column ot each construct Which FarticiEates in the same expression. 
Fcr exaaple, row ALL(b) contains d digit 1 in column C, fieferring to 
the source code, C is a member of the expression: A <-- 2 + C * AD. 
This is easifr to see in the graph, Fig. 18-36(a). Constructs A, 2, 
and AD participate in the same expression as C. Therefore a digit 2 is 
&arked in row ALL(b) in columns A, 2, and AC. If the row-column inter- 
section already ccntdins a digit, then the digit 2 is not marked. We 
now have markea each row headed by the word ALL with a digit 1 for the 
leftmost member (call it '*LEN") ot each access chain passing through the 
word ALL, dnd with a digit 2 for each construct participating in the 
came expression as LflM. 

Next, the irreducible chart is derived, as in Fig. 18-36(d). The 
optimization methods described in the preceding sections dre used to 
tind the best chart arrangement, and the triangles are drawn on the 
Chart, The diyits 1 and 2 are considered to be significant when 
deriviny the lrrcducible chart, but are iyncred when traciny katts ot 
dependency yro[agation- 

Each occurrtnce of the word ALL depends for access on the elements 
Ct some COUii lex, as shown by the arrcws in Fiy. lb-36(d). For 
eXdE&le, ALL(b) depends on the elements named 'I. The triangle 
ccrres;ondiLq tc LOW 'I must te expanded ukuard-lcftward enough so that 
it includts the ltrtlrost drgit 1 or 2 in row ALL(b). The triangles 
ccrresi!ondin'J to rows P and Al also must be expanded, and proper nesting 
must be malntarned. 

Expdnsion stdrts kith the Upper-lettmcst of these triangles, 
CorrespondinLj to row P. It 1s exbandcd enough to include the leftmost 
diyit in ro‘i ALL(a). The r.ext trlanyle to tr expanded corresponds to 
ICY 'I. It n.ust tc fxl anded all the way to the upper-left corner ot the 
chart. This tortes the tridnjle ccrresiondiny to row Y to be expanded 
dlS0, in ortier to maintain Frober nesting. finally, the triangle 
cc.rrespondrcy to rok AI 1s eXpdnjed all the way to the upper-left corner 
ot tne chdrt, 1n crder to lncluoe the diyit 2 at coordindtes IALL Cc) ,C) . 
'Ihe rcsbltir,g expanded tllanyles dLe shown in Fly- 18-36(e). 



18.17. EXTENSION OF SOURCE CODE SYNTAX FCfi EOOLEAN SEARCH AND SELECT 
LOOFS 

The strongest criticism or the source code syntax is that the 
desired operations are not immediately obvious to a person reading the 
source code. Long strings or code describing the selection criteria 
have the visual effect of separating the access chain. Operands which 
are logically related in an expression appear physically distant on the 
Printed page. 

To some extent this problem is unavoidable where many complicated 
operations are described in a single statement. For example, the 
Problem arises in ordinary mathematical nctation, such as the polynomial 

3*X1+25*X5*(5*XU*X3+X~*[7*X2+X4)*(xi-3*Xl)*2)-S*X2 

The terms 3*X1 and -5*X2 are closely related in the logical sense, but 
Physically distant. 

Ihe problen in SPL can be relieved someuhat by an extension of the 
syntax, to allow an optional alternative fcrm ot writing Boolean search 
and select statements. The selection criterion may be assigned a name, 
and then the ndmt derined following the remainder of the statement. 
Example: 

A Eps h! <-- L Eps D := ELEflENT (E Eps C = F) Eps G Eps H; 

also may be written as: 

A Eps B <-- C Eps D := ELEMENT (TFSTL) Eps G Eps H 
WHERE TESTC = (E Eps D = F): 

Using the alternative syntax ctfers no advantage unless the 
statement of the selection criterion is lengthy, causing visual 
separation of the access chain, The alternative syntax introduces an 
additional name for a bound vdriaLle into the source code, which merely 
increases contusioc in simple situations like the example ahove. 
However, the alternative syntax can reduce confusion in more complicated 
situations- The examples below are taken tram Fig. 18-19 and Fig. 
18-24. 

Example (1) source code: 

A EPs R <-- C Eps D := ELEMENT (E Eps D = F Eps C := ELEMENT 
(H Eps I := ELEMENT (J Eps I = K) Eps L EFS G = !t Eys D) 
Eps N EPs F) EPs (; Eps R; 

Example (1) alternative syntax: 

A E&s B <-- C Eps C := ELEMENT (TESTC) Eps u Eps R 
WhERK TESTD = (E Eps D = F Eps G := ELEKEK'P (TESTG) Eps N Eps 

P) 
WHERE IES'IG = (II EPs I := ELEMENT (.I EPs I ; K) Eps L Eps G = 

M Eps L); 



A EFS ti := ELEMENT (EXISTS C := ELEUEHT (D '2~s C = E) Eps F Eps B) 
I i,S G EF H 

<-- 1 zps u := ELEHENT (K ELS J = L Eps M := ELEVENT 
((EXISTS N := ELE3EN'Z (EXISTS F t= ELEMENT (Q E[:s P = R Eps N) 

Eks 5 Eks t?) Ei,s T Eps U) F, 
(EXISTS V := ELF.V,ENT (ii EF" V = X) Eps Y Eps fl)) Eps 1. Eps J) 
ELS kh Eps kB; 

ExamLie (2) alterndtive syntax: 

A Ecs E := ELLKEEIT (TES'IB) EFS G Eps H 
;-- I Eps ; := ELErlENT ( 
NHLHF TESTE = (EXISTS C 
iHERE TESTJ = (K EpS J = 
ktiEi?E TESTM = ((EXISTS N 

(EXISTS V := ELEHENT 1 
kHEFE TEST& = (EXISTS P 

fli ; 

ifSTJ) -Ebs AA Ep.5 AB 
= ELEflENT (0 EFS C = E) Eps F Eps B) 
L Eps ?I := ELENENT (TESTN) Eps 2 Eps J) 
:= ELEMENT (TESTN) Eps T Eps U) E 
k' Eps V = X) Eps Y Eps M)) 
= ELEMENT (Cj Eps P = t? Eps N) Eps 5 EpS 

?he essential feature of the alternative syntax is that names are 
assigned to the tests themselves. Even though the tests are described 
at the end of the statement, the appearance of the names within the 
Boolean search and select statement unambiguously identifies each test 
with the elements selected ty the test. 



19. CCNNEC'IING THE ELEMELTS OF A CCMFLEX 

Elements of a complex normally are linked together with forward- 
pointing links only, as shown in Fig. 4-l. This provides the 
yreatest space economy while allowing the number at elements to vary 
dynamically at run time. It also constrains accesses to being 
sfyuential -- elements 1 through 14 must be accessed before element 15 
can be accessed. 1n some cases the insertion and deletion of elements 
is computationally awkward because only forrard links are available. 

5PL programmers may declare other methods of ccnnectiny,the 
elements, which may be more appropriate to the intended processing 
applications- 

Ihe complex mdy he dimensioned, 
consecutive stcraye. 

in which case the elements occupy 
Access to the element: is accomplished by 

ccmputation ot relative locations, 
pointers, 

rather than by following paths of 
A dimensioned complex, 

are dimensioned, 
all of uhcse descendant complexes also 

is the equivalent of an ALGOL array. All the elements 
of a dimensioned ccmplex are created simultaneously with the creation of 
the complex itself, so it is an error t0 attempt t0 PBEFACE, APPEND, 
INSERT, or DESTBGY any elements. The dimension declaration appears as 
part of the declaration of the complex. ExacFle: 

CCMFLEX FUBNITURE, 5 ELEMENTS, ( 
ALPHANUMEBIC ATCM ITEM NAME (10): 
AlCM COST (1000)) ; 

Bidirectional linking, CORAL-type linking (alternate backward and 
upward links), or the normal forward linking also may he declared. 
Examples: 

CCfiPLEX FURNITURE, HIDIRECTIGNAL LINKS, ( 
ALPHANUMERIC ATCtl ITEM NAME (10); 
AlCfi COST (1000)): 

CCRFLEX FURNITURE, CORAL LINKS, ( 
ALPHANUMEBIC ATCU ITEM NAHE (10); 
A'ICM COSl (1000)) ; 

CCflFLEX FUBNIIURE, FCBWAED LINKS, ( 
ALPHANUNERIC AT011 ITEM NAilE (10); 
ATCM COSl (1000)); 



It also is Possitle to declare a multilevel tree of links, each level 
having its own linking convention. The approximate number of descendant 
constructs (either lower-level links tr elements) must be declared for 
all but the highest and lowest levels- ExaUple: 

CCKPLEX FURNITUBE, ((COfiAL LIEIKS) (UICIBECTIONAL LXNKS,7) 
(FCAWAKL LINKS)), ( 

ALPHANUEERIC ATCM ITEM NAME (lo); 
ATCM COST (1000)) : 

In the above examElf, the top-level links are of the COBAL type, with as 
many descendant links as are necessary to ultimately point to all the 
elements of the complex. The second-level links are bidirectional, each 
Pointing to apprcriaately 7 third-level links. The third-level links 
Pcint rcruard only, and each is identified with some particu1a.r element 
(stored consecutively with the element). 

Another possibility is to declare an arbitrary number of levels Of 
links. A neu level of linking is formed whenever the number of 
descendant links exceeds the declared average. A level of linking is 
ccllapsed whenever the number of descendant links is reduced below the 
declared average. The formation and collapsing of levels of linking is 
only approximate; some links may Faint to slightly more or fever 
descendant links than the declared average. All levels ot linking must 
te cf the same type. ExamFler 

CCNPLZX FUfiNITUhF, (CCRAL LINKSJO), ( 
ALFHANUKLHIC ATCN ITEM NARE (10); 
ATCN COST (1000)) ; 

If the declaration appears in an inner program block, the declared 
dimension or the declared average number or descendant constructs may be 
the contents ct some variable whose value was set in an outer block. 



20. EXTENSICNS 10 XHE CEcLAhATxaNs 

Several extensions to the declarative capabilities in SPL are 
uiscussed in this section. The extencions do not allow the declaration 
ot additional tyFfs of constructs, but instead enable the previously 
described declardtions to be more concise and better documented. ThC?.Se 
extensions provide rudimentary ccncordance (IBM calls it "cross- 
reference'l), abbreviation, macro, 
declarations. 

and suhrcutine capabilities for the 

20-l. DEFINITIONS 

Numbers, strings. and Boolean truth values are called "self- 
deiining constants". SFL allows the definition of "compile-time 
ccnstants" in terms ot self-defininy constants and previously defined 
comprle-time constants. Compile-time Constants are valid only within 
the program tlcckz in which they are defined. Their names must be 
unique in those blocks. Cnce defined, they may be used in the same 
manner as self-defining constants. They assume the types and sizes of 
the terms used in their definitions, unless declared othertiise. 
Exantplec: 

CEFINE CAHC LENGTH <-- 80; 
CEFIfiE FI := REAL <-- 3.1416; 
DEFIhE PIE <-- 'BREACEO COO': 

20.2. CCLLEC1ICLS 

collectionS are oraered sets whose members all are detincd at 
compile time. Collections are valid cnly within the program blocks in 
which thei are declared. Their naues must te unique in those blocks. 

All the memters of a collection must te ot the same tyke. The 
collection assumes tnn type of its members, 
ot its members. 

and the size ot the larqest 
The use ot the collccticn came results in the implicit 

generation or a loop. Each merrber of the collection, in order, is 
substituted for the collection name in successive cycles of the loop. 
'Ihe scope of the locp includes every ccnstruct which participates in the 
same expression with the collection name. The scope of the loop is 
determined 1c a manner similar to that described in Section 18.15.3. 

Eramile collection declaration: 

COLLECTION UCES ('LIVING'; 'DINING'; 'KITCHEN'; 'BREAKFAST'; 
'IIALL'; 'EECRCCI?'; 'L'EDRCCR': 'PECRCO?'; 'aATHRCCM'; 'BATHRCCM'; 
'LAllNI)EY') ; 

Example use ot a collection: 

USi Ek" APFthC ELEl!ELT Eps PCGMS Eps ECME c-- IISES; 



2C"3. DECLARATICN LACfiCS 

often several diiferect types of structures *ill ccntain constructs 
which have identical declarations. FOE example, the declaration of 
structure type HLUSt TRAILER might ccatain the same complex ROOMS as the 
declaration cf structure type HOUSE: 

SIRUC'IURE HCLSE TRAILER ( 
ALPHANU.YE&IC ATGM LLCENSE NUfiHER (6): 
ALLHANUMERIC A'ICM STATE (5); 
ALPHANUMERIC ATCM CCLCR (6); 
ALFHANUl'lEhIC A'ICM MODEL (8): 
ALFHANUMERlL ATCM MAKE (8); 
CCMfLEX RCCMS (SAME AS RCCNS EFS HCUSE)); 

Ihe words SAME AS indicate that the declaration of ROOMS Eps HOUSE 
also is to te used as the declaration of RCOMS Eps HOUSE TRAILER. 

SPL pro,,rdrmers mdy choose to declare some types of structures, not 
so they can create instdnces of the structure types, but for use as 
Parameterless macrch in the declarations of ether structure types. 

2c.4. MCLECULES 

Often several atoms and complexes will be logically related within 
a u6er’s Frcgram, and yet they may comprise only Part ot a structure or 
element- Ihese atcms and complexes may be grouped into a 9vmolecule*', 
either for the purpose of macro declaration or macro call using SAME AS. 
Example: 

STRUCTURE HCUSE 'IRAILER ( 
MLLECULE VEHICLE IDEN'IIFICATION ( 

AIFHAhUMERIC AT08 LICENSE NUMBER (6); 
ALPHANUMERIC ATOH STATE (5); 
ALPHANUMERIC ATCM COLOR (6); 
ALFHANUMERlC ATCM MODEL (8); 
ALPHAhUMERIC AlCN MAKE (8)): 

COMPLEX RCDMS (SAME AS ROOMS Eps HCUSE)); 

S'IRUC'IURE AU'IOMOHILE ( 
A'ICM DRIVER (PERSON); 
CGMFLEX FEOFLE IN CAR ( 

ATOM OCCUPANT (PERSCN)); 
ROLECULE VEHICIE IDENTIFICATION 

(SABE. AS VEhICLE IDENTIFICATION Eps HOUSE TRAILER); 
ATCM THAILER (HCUSE TRAILEh)); 

If two instances of molecules have identical declarations, and if 
the molecules dc not contain any complexes, then (1) storage assignment 
statements using t , t+- , and N may cause the transfer or 
suap of the entire contents of one molecule into the other molecule, and 
(23 conditional statements may test whether the molecules are equal. 
Example: 

IF VEHICLE ICENTIFICATICN Eps THIS CAR = 
VEHICLE ILENTIPICATICN EFS STOLEN CAR 

'IHEN BLOWgHISTlE (LOUD); 



20.5. CO&PILE-TIME PROCEDURES 

Procedures declared outside a given program block may be called 
within the declarations of the given block. These Frocedures are 
executed at compile time. Therefore the actual parameters can be only 
self-derining constants or previously defined compile-time constants. 
The output values of the procedures are compile-time constants, The 
procedures may create and use isolated cells for internal temporary 
storage, but they cannot use structures or externally created isolated 
cells because Frogram execution has not yet begun. Example: 

DEFINE LINE LEHGTH <-- RAX (CARD LENGTH; PRINTER COLUHNS); 

In the above exaakle, procedure MAX must have been declared in an outer 
nested program tlcck. 



21. INFC'I/OUTFUI 

SPL does not include the specificaticn of formatted input/output 
procedures, although various SFL implementations may have formatted 
input/output caFarilities. The only I/O capabilities basic to sPL, 
rather than to a Farticular implementation of SFL, are the procedures 
FACE and PRINT- 

PAGE causes form ejection to the top of the next page. 
The intent of PRINT is to provide a minimum output capability for 

debugy.iny use. It permits the printing of constant strinqs or the 
contents of any construct. Ihe formats fcr printing the contents of 
constructs depend on the declarations of the constructs. The standard 
foraats are: 

CECLARA’IION PBINT FCBMAT 

UHSIGNED INTEGER Enough decimal digits to print all significant 
fiyures, with leading zeroes omitted. At least one 
digit is printed. 

INTEGER Sign followed by UNSIGNED INTEGER, 
ECOLEAN THUE or FALSE. 
ALPHANUMERIC Leadiny characters UF to the last nonblank. 

Trailiny blanks are omitted. Nothing printed if 
entire striny is blank, 

REAL Signed mantissa fallowed by siyned exponent, the 
number of digits deFendin on the implementation. 

CCMELEX meal and imaginary Farts, each Printed in BEAL 
format, separated by ccrma and enclcsed in 
parentheses. 

LGNG BEAL Same ds hEAL, with more diyits or siynificance. 
LCNC CCEFLEX Sasr as CCXFLEX, with xore digits of siynificance. 
CECIfiAL Same as INTEGER. 
pointers octal or hexadecimal unsigned inteyer, depending on 
[structure-pointing the implementation. Leading zeroes are printed. 
atcms. links between 
elements, etc.) 
and addresses 

If a parameter to PRINT is an atcm or isolated cell, only the 
contents are printed. If the parameter is a structure, cornFlex, 
element, or oolecule, the type names ot the atoms, elements, etc. and 
their contents are printed in tabular focr. The order of printout is 
the order in which they are declared, not necessarily the order ir: which 
they are packed into the computer memory. 



22- ICFLhMtNTAlICN 

'Ihe following sections of this paper discuss various aspects of the 
inplementation cf SFL. Cnly those aspects are discussed which are 
leculiar to SPL; thr reader is presumed to have a general backyround in 
inplementiny algchraic compilers. One particular implementation is 
described, which may serve as a guide for subsequent implementations. 
'Lhe iatlementation as done on the CDC (originally Bendix) G-21 
ccmFuter, 

lranslation ot SFL source code requires at least two passes, and 
preferatly three cr more passes, 
naviny listed the results 

Users should be given the oFtion of 
of each translation pass, as a debugging aid. 

Debugying facilities should be available in the source language and in 
any intermediate languages used during translation, 

Cne translation pass should te dedicated solely to translating 
inklicit loo& statements of various types into their equivalent 
explicit look statements. Some pass before the final translation into 
orject code is needed to determine the declared type or each local name, 
since the local name may be used for access earlier in the source code 
(but later in exscution) than its assignment. 

At run time the primary core storage cf the computer contains the 
object code of the Lrogram and models built from the structure 
declarations, a stack for local names and isolated cells, a table of 
structure locations, an auxiliary storage table for the virtual memory, 
and a large structure storage area. In addition, there is an auxiliary 
storage area on some direct-access device such as disk or drum. 



23, MODEQ 

Declarations Of SPI structure types result in the creation of 
models of the declared structures. 
time. 

Tne models are created at compile 
They are used at compile tive fcr compiling code to access fields 

within the structures, and for staying in context with incompletely 
gualified construct names. 
run time, 

The models remain in the computer memory at 
stored with the compiled program. They are used by the 

interpretive Procedures within SPL: creating, copying, erasing, 
destroying, and Printing the contents of structures and their descendant 
constructs; linearizing inactive structures for writing to auxiliary 
storage and reconstitutiny them when they are read back again; and 
miscellaneous debugging operations. 

Since several constructs belcnying to different structure types may 
have the same declared type name, each declared type name is stored only 
once and is pointed to by the construct models. The type names are 
retained at run time for use by PRINT and ty the debugging operations. 

The model or each declared structure or element type (not including 
the model of any descendant element types) occupies consecutive storage, 
with pointers to the models at any descendart element types. The model 
contains one entry for the structure or element as a unit, and entries 
for each of the descendant atcms, complexes, and molecules. The model 
or each molecule is just part of the model of its ancestor structura, 
element, or molecule, with an additional entry for the molecule as a 
unit. The model of each molecule cccupies consecutive storage. 

The model entries for descendant atoms, complexes, and molecules 
are stored in the crder in which they were declared. This does not 
necessarily correspond to the relative positions of the tields within 
instances of the declared constructs. 

Each instance of a structure, element, or molecule within a 
structure or element, also occupies consecutive storage. The model 
shows the relative positions of the fields tor the various descendant 
atoms and complexes. The actual positioning of the fields is determined 
by an inplementation-dependent program, which optimizes the placement 
for the particular computer hardware. For simplicity in writing the SPL 
interpretive Procedures, the private bookkeeping information is given 
uniform placement in all structure types, the links are given uniform 
placement in all element types, and the anchor links and dimension (if 
any) for each coupler are partly standardized (for example, they may 
occupy the rightmost bits within a vord). 

The fields in each entry of the niodels are described below. some 
of the displacement and size figures must be expressed as words or bytes 
and remaining bits. 



structure entries: 
('1 Indication that this is the model of a structure. 

13; 
Pointer to the type name of the structure- 
Number of entries in the model for molecules and first-order 
descendant atoms and complexes- 

(4) Amount or consecutive storage required Ear the structure. 

Element entries: 
(1) Indication that this is the model of an element. 
(2) Number of entries in the model for molecules and first-order 

descendant atoms and complexes. 
13) Amount of consecutive storage required for the element. 

fiolecule entries: 
(1) Indication that this is the model of a molecule. 

I:; 
Pointer to the type name of the molecule. 
Number of entries in the model for molecules and first-order 
descendant atcms and complexes. 

(4) Amount of consecutive storage required for the molecule. 
15) Displacement of the start of the molecule from the start of its 

ancestor structure or element, 

Atom entries: 
(1) Indication that this is the model of an atom. 
(2) Pointer to the type name of the atom. 
(3) Amount or consecutive storage required for the atom. 
(4) Displacement of the start of the atom from the start of its 

ancestor structure or element. 
(5) Indication or the type of atom: UNSIGNED INTEGER, BOOLEAN, etc. 
(6) Pointer to the constant initial value, if it is a data atom. 

Initial values are stored with the type names of the declared 
constructs. Pointer to the model of the structure type, if it is a 
structure-pointing atom, 

Complex entries: 
('1 Indication that this is the model of a complex. 
(2) Pointer to the type name of the comyler. 
(3) Displacement of the start of the anchor link from the start of the 

complexVs ancestor structure or element. The position of a field 
containing the dimension is fixed relative to this displacement. 

(4) Pointer to the code segment fcr determining the dimension of the 
complex, if any. 

(5) Count of the number of fields described in (6) below. There is one 
such field for each level of linking, if the number of levels is 
fixed. There is exactly one field (6) if the number of levels is 
variable, and no field (6) if the CowFlex is dimensioned. 

(6a) A bit indicating whether this field is for a single level of 
linkiny or for all levels of linking. 

(bb) Indication of the type of links: FOkWARD, BIDIRECTIONAL, or CORAL. 
(6~) Average number of descendant links. This number always is 1 for 

the bottom-level links, vhich are part or the consecutive storage 
of the elements. This number always is 0 tar the top-level links, 
meaning as many links as necessary. 

(7) Pointer to the model or the elements of the complex. 



iu, STACK 

Local names, isolated cells, temporary storage for evaluating 
exFressions, and temporary storage for the interpretive procedures are 
kept in a stack at run time. For each program tlcck, the number of 
local names, isolated cells, and temporary storage locations for 
evaluating erFressions, can be determined at compile time. The stack 
expands by this amount when the Frogram blcck is entered, and contracts 
by this amount when the program block is left. The stack also expands 
dDd contracts d variable amount, depending on the needs of the 
interpretive procedures, when these Frocedcres are executed. 

The stack expands downward in memory, with a register pointing to 
the current end of the stack. Therefore all entries in the stack for 
lccal names, etc-. are addressable by some fixed positive displacement 
rrom the contents or the register. All the interpretive procedures 
expand the stack by decrementing the contents of the register, but when 
they have finished execution they restore the fcrmer contents of the 
register. It never is necessary to access any or the stack entries for 
lccal ndmes, etc. while the interpretive prccedures are executing, so 
their alteration of the register dces not violate the stack addressing 
capability. Furthermore, no two ot the interpretive procedures ever 
execute simultaneously, with the exception that the free storage 
recovery procedure may be called while any of the others are executing. 
Cnce called, the free storage recovery prccedure runs to completion 
tcfore relinquishing control, so it does not viclate the stack 
addressing capability of the other interpretive Frocedures. 

Ibe local ndmes declared xn any one Frogram block are kept in 
consecutive ritoraje within the stack, to siaFlity the execution of a 
rcutine which releases all the local names lust before program execution 
leaves the block. 



25. FIELDS k;ITHIii LOCAL lAflES 

Whenever a lccal name of an instance of a structure or any of its 
descendant constructs is valid, the entire etructuce is active. 
this time nc part of the structure can be relocated, 

During 
Therefore the 

local name can Feint to absolute addresses of any constructs within the 
Etructure. 

The local name or any descendant construct has a field pointing to 
the named construct, and a second field pointing to the private book- 
keeping area within the structure. The second field is used tor 
incrementing the activity count of the structure when the local name is 
assigned, dnd for decrementing the activity count when the local name 
subsequently is released. A local name of the structure itself contains 
the entry nulrber for the structure, in the table of structure locations, 
in place of the pcinter in the first field. The pointer in the second 
field to the private bookkeeLing area is sufficient to address the 
structure, The entry number must be stored in the local name, so it is 
available fcr copying into structure-Feinting atoms, 

In some si.ecial cases it is net nece **ary 
count when d local name is assigned. 

to increment the activity 
These cases are discussed in 

Section 26. dbenever a local name is assigned and the activity count 
is incremented, a one-bit field is set in the local name. The field is 
reset when the local name is released. The local name may be released 
any time betore Grogram execution leaves the block, eitber because a 
RELEASE statement vd* executed or because a DESTROY statement was 
executed. This bit is examined by the RELEASE and DESThOY statement 
Erocessors, to ensure that a local name actually was assigned and to 
prevent the local name from being released xoxe than once. A second 
attempt to release a lccal name causes a run-time error. The bit also 
is examined by the routine which releases all local ndses just before 
program execution leaves the block- Only those local name* for which 
the bit is set are released; the cthecs are ignored by this routine. 



26. kHtN NC2 'IO ACTIVATE SIRtlC'IUhES 

Normally a structure is activated uhfnever a local name is assiqned 
to it or any of its descendant constructs. Under certain circumstances, 
activating the structure is not necessary because other code quarantess 
that 
This 
(1) 

(2) 

(31 

the structure will remain active while the local name is-valid. 
occurs when: 
within the body or a procedure, a local name is assigned to an 
actuai karamtter or a descendant of an actual parameter; 
within a loch, a local name is assigned to an element or to the 
descendant of an elemeot selected for the current cycle by one of 
the look generators: 
within an inner nested program block, a local name is assigned to a 
construct or the descendant of a ccnstruct which was assigned a 
local name In an outer nested program hlcck, provided that none of 
the intervening statements are labeled. 

In any of the above circumstances, the structure must be activated if a 
RELEASE or BESTRCY statement is applied to any of the constructs between 
the named construct and its ancestor which already was assigned a local 
name. 

It also is unnecessary to inactivate and then reactivate a 
structure when reassigning a local name to the next element of a 
ccmplex, between cycles of a loop -- once again, unless the element may 
have been destroyed within the code body of the look. 

2-l. BGCKKEEFING EIELCS YITHIN S'IRUCTUHES 

Each instance of a structure contains a private bookkeeping area 
whose location is fixed relative tc the beginning of the structure. 
There are two rields in the Frivate bookkeeping area: the location of 
the model of the structure, and the current activation count of the 
structure, 

In addition, each complex has several fields. A one-bit field 
indicates whether or not the complex is dinensioned. If the complex is 
dimensioned, another tield contains the dimension. If the complex is 
not diaensicned, there are sufficient pointer fields to match the 
declared linking arrangement. See Section 19 for a discussion ot the 
declarations. These fields are stored in the consecutive memory region 
or the ancestor structure or element which contains the complex. If the 
complex is dimensioned, all its elements also are stored in this 
consecutive memory region. If the complex is not dimensioned, its 
elements are stored elsewhere in the structure storage area, and the 
pointers in the consecutive memory region ct the ancestor structure or 
element are called the "anchor" of the cou~lex. 



it?. IABLE OF STRUC?UBE LOCATIONS 

A single table is used to lccate all structures in existence at any 
given time. Uhen each structure is created, it is assigned an entry in 
the table. It keeps the entry until it is destroyed, at which tine the 
entry is free to be reassigned. The entry Faints to the current 
location of the structure, in primary core storage or in auxiliary 
storage, 

Structure-Feinting atoms refer to the structure by containing its 
entry number.. An upper bound must be placed on the number of structures 
which can exist simultaneously, in order to determine the number of bits 
required tar the field of a structure-pointing atom, This upper bound 
also may be used to determine the maximum size of the table of structure 
locations. 

There is a tradeoff between sFdce and speed in the design of the 
table- It the entire table is allocated as a single consecutive region, 
the access through the table will be very fast, but the entire table 
.sGace is unavailatle for other uses. If several smaller regions are 
linked together tc form the table, the accesses will be slower, but 
initially at least some of the talle space is available to hold 
structures. Additional regions for the tatle can be taken from the 
structure storage area, since they are easily relocated. But once 
allocated, it is very unlikely that their space can be relinquished 
later. Only the last region of the table can be freed at any given 
time, and then only if all its entries haFEen tc be free. 

The tree entries in the table of structure locations are linked 
together, to speed the assiynment ot a tree entry to a newly created 
structure. The free entries also are distinguishable by their contents 
from the entries in use. During the tree storage recovery process, all 
the entries in the table are scanned. Free entries and entries for 
structures located in auxiliary storage are ignored. Entries for 
structures located in Frimary core storage are used to access the 
structures, in order to determine whether the structures are active. 
With careful planting ct the table, it is rot necessary to dedicate a 
bit in eacn entry merely to indicate whether the entry is free. 



is. SIkUCTlJkE SICkAGE. AHEA 

All active ctructures are located in the structure storage area. 
Inactive structures may be located either in the structure storage area 
01 in the auxiliary storage area. Whenever a structure is used in the 
program, it 1s moved into the Structure storage area if it is not there 
already. The slate it requires in the structure storage area is taken 
from free storaye, and the space it previously occupied in the auxiliary 
stocaje area is made available,. 

When tree storage in the structure storage area is exhausted, 
ncrrral program execution is delayed for a tree storage recovery pass. 
During this pass, a sweep is made through all entries in the table of 
structure locations. The entries are examined for structures which are 
located in the sttucture storage area, but whose activity count equals 
zero. As they are round, these inactive structures are moved out ot the 
structure storage area, and the space they occupied is returned to free 
Storaije. When this has been completed, tree storage is coalesced in the 
manner descrited below, and then normal Frogram execution resumes. 

During free storage recovery, the only data being transferred are 
structures of kncvn types, since each structure contains in its private 
bookkeeliny area the address of its model. This makes free storage 
recovery a much mere orderly process than garbage collection, where all 
of the structure storage area would have tc be searched for random odds 
and ends or unused storaye. 

All or the structure storage area is subdivided into "storage area 
cellsta of eyual size. The storage area cells are the smallest units of 
space ailocation. They are of the smallest convenient size determined 
ty the computer hardware, such that they can contain the bookkeeping 
intormaticn required for the free storage list% 

There are N separate free storage lists for contiguous regions of 
tree storage ot lenyth 1 cell, 2 cells, U cells, ..-., 2N-'cells. The 
reyions in any one or these lists point to each other with bidirectional 
links. Each reyicn on one of these lists also has a field ot length 
rlog, (~)l kits, identiryiny the list it is on. The size of the storage 
area cell must be adequate to contain the bidirectional links and the 
field for iaentifying a tree storage list, ~1~s possibly one more bit. 
This bit indicates whether the storage area cell is tree or in use. In 
ccmputers such as the CDC G-21, which have flag bits in every word, the 
bit cdn be located in the cell itself. In computers such as S/360, the 
hit must he located in a separate table of such bits. 

Zach reyion of lenyth ZK 
intejrdl multiFlc cr 2" cells. 

cells hegins at an address which is an 
For example, a storage area cell in 

S/360 is ti bytes long and stdrts on a doublegord boundary. Each region 
oi length 2K nas a unique l'mateV' or length 2 
coalesced into a region of length iK". 

, such that they can be 
Regions or fcee storage are 

coalesced only during free stocaje recovery lasses, after all inactive 
structures nave teen moved to aurilrary storage. Coalescing is perform- 
ed by exanining all the regions on a tree storage list, starting with 
the iist ror the smallest regions. If a region and its mate both are 
cn the sdme list, they are removed from the list, coalesced into a 
single larjer regron, and the new region is placed on its free storaqe 
list, In this manner, coalescin; is attempted when the probability of 
tat11 ZK regions being free is greatest. 

Fl9S. 29-l and 29-L show a rriethod of assigning and recovering 
storage. 
ot JK, 

Ihe method places construct boundaries at integral multiples 
tar the largest possible K vhich does not force the fragmentation 

ot large regions cr free storage. This method maximizes the prohability 
or being arie to codlesce free storage during a free storage recovery 
Fass. 



3c. hECURSIVE GhNEEATGR 

Ihe interpretive procedures within SPL need the ability to process 
all the dfsctn<act constructs or any qiven input ccnstruct. A single 
ycnerdtor routine for lccating and identifying descendant constructs is 
called by dll the interpretive procedures. The generator has an exit 
for additional ~Kccessln~j peculidr to the Procedure which called it. An 
"exit subroutine" is executed each time a descendant element is located 
and identrtied, ?hc generator uses the stack for all its storage, so 
the exit subroutine rrdy call the yenerator recursively. 

fn;;uts to the yenerdtor are the location of the given construct, 
the location of the model of the yiven ccnstruct, and the location of 
the exit subroutine. Lutputs from the yencrator which act as inputs to 
the exit suiroutine are tne location of the output construct (either the 
given ccnstruct or any of its descendant elements), and the location of 
the model of the cutput construct. 

31. AUXILIAnY STCRAGE 

fixed 
This aspect ct SPL operates under the assumption that a record of 

lecgth may te written at any one of a large number of tired 
lccations on the auxiliary storaye device, without requiring the 
rewriting of ail auxiliary storage. Certain IBM tapes, for example, 
fail in this respect because a new record may be written only at the end 
of the written portion of the tape. 

The auxiliary storaqe table ccnsists of a single bit for each 
record ;;osXtion in the auxiliary storage area. The bit indicates 
whether OK not the record position is free, 

All record pcsitions in the auxiliary 
tixed lenyth. 

storage area are of the same 
NC more than one structure is written on any one record. 

The structure is linearized before it is written to auxiliary storage, 
and reconstituted after it is read back trcm auxiliary storage. If the 
structure 1s tot large to fit into one record, it is written on several 
records which possibly are nonconsecutive, Space is reserved in each 
record for a pointer to a possible successor record. 

lhe chosen length of auxiliary storage records depends on many 
factors, including the relative sleeds of the comPuter vs. the auxiliary 
storage device, the fixed cost or each I/O operation, the amount of 
tufter space available, and the expected statistical distribution of the 
lengths cf the structures in the problem being solved. Storing pointers 
to successor records in the records themselves, rather than in core 
memory, is costly only when a structure in auxiliary storage is 
destroyed.. 
tutters, 

Then the entire structure must be read into core memory 
merely tc determine which auxiliary storage record positions 

become free. 
activating 

Presumably this is an intreguent operation, compared with 
and inactivating structures. 



-32. CCLLECTIONS 

Collections ace represented internally as tables which exist both 
at conpile time and at run time. They must be implemented so that new 
collections can te generated from already existiny collections. 

33. EXTENSIONS AND MODIFICATIONS 

SPL lacks two facilities which possibly could greatly extend its 
usefulness in its intended application areas. First, SPL does not have 
the ability to process strings of arbitrary length. The string 
processing desccited in this paper is restricted to strings of declared 
dimensions, and the storage space used always is the maximum. Second, 
SPL structure-pointing atoms are restricted to pointing either to a 
single declared type of structure, or to any possible type of structure. 
Very fev operations are allowable on structure-pointing atoms which may 
point to any possible type of stcuctuce- In some cases it would be 
convenient to allow a structure-pointing atcm to point to any one of a 
small number of declared structure types, which have some properties in 
common, A greater variety of operations cculd be allowed on these 
common properties- 

At the present time, I do not see how either of these facilities 
can be incorporated into SPL, without secicusly degrading the quality of 
the object code. much of the code which now can be compiled would have 
to be interpreted instead, because of storage allocation requirements in 
the case of strings, and because of the necessity for detecting 
structure types in the case of structure-pointing atoms. (In general, 
detection of structure types in necessary since not all properties of 
the different structure types are identical.) Also, string processing 
would require the introduction of garbage collecting into the free 
storage recovery process- At best, garbage collecting is highly 
inefficient. 

On the other hand, if the amount of data storage required for a 
particular application is small enough to fit entirely within primary 
core memory, the indirect addressing and virtual memory features of SPL 
could be eliminated. This includes elimination of activity counts, the 
table of structure locations, the auxiliary storage table, and the 
auxiliary storage area. There no longer would be any distinction 
between structures and elements of a complex. Nevertheless, the 
appearance of the SPL source code uould remain virtually unchanged. 

One such application for SPL is the writing of system monitors, 
New facilities would have to be introduced, for the processing of 
blocked data, to allow assembly language subroutines for direct 
interaction with interrupt registers and the like, and to describe such 
parallel Processing concepts as multitasking. It also would be 
necessary to segment primacy core storage into classes for memory 
protection, and to create atoms which contain program points for 
execution, 
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STRUClUREHomE( 
ATaM STREET NUMEER (9%) ; 
ALPAAMMERICATOMS~TNAKE(20); 
-1C ATOM COLOR (6); 
-C Al'OMMATfXRIAL (5); 
ATonFRONTAGE(XKI); 
COMPLM BoohE ( 

SC ATOM USE (10); 
ATOM IBiYGTH (40); 
ATOM !KlZTH (40); 
c-FuRNITuRE( 

-1C ATM ITEM NABS8 (10); 
ATCM CCX3T (1OCO)); 

CaMPLEXPEOPLEmRooM( 
ATOM WXPANT (PERSON))); 

-1C ATOM SIDFJ OF STREET (1); 
A'KM HOUSE ON LEFT (HOUSE); 
ATOM HousE m RIGS (HOUSE); 
AToM GARAGE (1)); 

Fl6. \ 
Example declaration of structure type ROUSE, 

4-1 
and 8x1 instance of a house. 

J 



STREET STREET COLOR MATERIAL FRONl’AGE ROOMS SIDE OF HOUSE ON HOUSE ON GARAGE 
NUMEER NAUE STREET LEFT RIGRT 

Ir 

LENGTH WIDTH f PEOPLE 
FURNlTURR IN ROOl 

II 

ELRURM 

A graph of the type-tree for the example structure HOUSE declared in Fig. 4-l. 
ROWS, FURNITURE, and PKOPLE IN ROCN are complexes. A typical element is shown 
beneath each complex. The X's Indicate the eeparation between complexes and 
their elements. All the remaining nodes under HOUSE are atoms. 



3LOCK A 
Dther statements prior to the procedure call 

execute the beginning of the statement containing the procedure call 
reserve any local names which are to be assigned during evaluation o 
the actual input parameters or for the actual output value; if 
necessary, reserve a dummy local name for the actual output value 

1 BLOCK B 1 
evaluate the actual parameters 
from left to right; assign each IBLOCK Cl 1 
evaluated actual parameter a activate and deactivate 
dummy local name, as well as a structure containing 
any local names which appear in an atom which Doints to 
the source code; the d&y an actual parameter 
names amear in the same order 

J 
. . 

as the corresponding formal 
parameters in the procedure BLOCK C2 
declaration; reserve a dmy 

I 

local name for the actual 
output value BLOCK Cn 
call the procedure 

I 

BLOCK D 
body of executable code in the procedure; assign an 
actual output value to the reserved dummy local name 
in block B 

assign the actual output value to the dummy local name in 
block A; dummy local names in block B for the actual 
parameters and actual value are released implicitly when 
program execution leaves block B 

xecute the remainder of the statement containing the procedure call 
.elease the dummy local name for the actual output value; program 
:ontinues 

Typical implicit program block structure resulting from a procedure call. 





LOCK A 
ther statements prior to the loop statement 

aserve any local names which are to be assigned during 
valuation of the generator access chains 

BLOCK B 
evaluate the starting values 
of numeric generators and the BLOCK Cl 
first-order ancestor complexes activate and deactivate 
of element generators 

r-l 

a structure containing 
an atom which points to 
another structure in 
the access chain of a 
generator I 

IBLOCK C2 I 

BLOCK Cn I 

start a cycle of the loop: advance and test the generators; 
store numeric iteration variables in isolated cells; assign 
local names to generated elements 

body of executable code within the scope of the loop 
statement 

branch to the start of the next cycle of the loop I 

program continues 

FIG. 17-a 
Typical implicit program block structure resulting from an explicit 
loop statement. 
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FIG. 18-l 

A 

A 

s SA 

A 

A 

Griginal chart formed from the example source code: 

A Eps B <-- C EF.S D := ELEMENT (E Eps D = P) Eps G Eps H; 

A 
B 
C 

& 
D 
F 
G 
H 

FIG. 18-2 

Rearrangement of the chart so that all the A's lie in the upper-right 
triangle. 

Charts derived by successively deleting rows and columns where either is 
empty. Chart (b) is irreducible- 
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E A 
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F A 
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4 c 

A 
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FIG, 18-4 

Iwo arrangements cf the irreducible chart derived from: 

A EFS B <-- C EFS 0 := ELEMENT 
(E Epd D = F Epd G := 
EFS L EFS M; 

ELEflENT (H Eps G = I) Eps J Eps K) 
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FIG. 18-5 
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E J 

(d) 

Development cf bcth chart and graph of: 

A Eps 8 <-- C EFS D := ELENENT (E Eps D = F) Eps G 
Eps H := ELEMENT (I EFS H = J E&S C) EFS K Eps L: 



JEDGLH 

FIG. 18-6 

Fig. 18-5(c) redrawn with triangles included tc show the loops. 

E DFHG 

FIG. 18-7 

F HGhD 

Fig- 18-4 redrawn shoving disjoint and nested loop arrangements, and 
corresponding graph- 
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FIG. 18-8 

'Iwo arrangements ct a chart, one showing ieFroper nesting and the other 
shoving proper nesting. Cnly the Fosition of F differs between the two 
arrangements, The yraph and source code are applicable to both 
arrangements ot the chart, Source code: 

A EFS E <-- C EFd D := ELEMENT (k Ebs D = F EFS G := ELE!lENT 
(H E&s G = I Eps 2 := ELEEENT (K Eps J = L) EFS M Eps G) 
EPS x ECS C) Eks P EFs Q; 
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FIG. 18-9 

t 
M” 

FCHIED 

D 

E 

DUMMY1 

H 

4 

F El 

Proper nesting where the contents of a structure-pointing atom is used 
both as ddta and as part ot an access chain. Scurce code: 

r EFS B <-- C E&s D := ELEREN'I 
(E Ek.5 D = F Eps G := ELEHPNT (E Eps I = F Eps G) Fps H Eps F) 
EFS I Eps J; 

E and F are structure-feinting atcms, both of which .must contain the 
name ot the same structure after the selection has teen made. DUilOYl is 
the nane of the stEuctuze in atom E of the selected element D. 
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F 6 

DWMYa 

FIG. 18-10 

Im~cuper nesting where the contents oi a structure-pointing atom is used 
both as data and as part of an access chain- Scurce code: 

A Eks P <-- C EFS D := ELEMENT 
(E Eps ELLNEfl'I (F t~s E = G) 451-s H El;s L = I) 
Eks J Eks K; 

E is d structure-Lointiny atom, containiny the name of structure DUMMYZ. 
Element UUMMYl is selected on the basis of the contents of atom F. The 
e~roc in the bource code is described in Section 18.5. 
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FIG. 18-11 

Original chart and irreducible chart of the source code of Pig. 18-10, 
except that F EFS E is reuritten as F Eps I. Source code: 

A EFS B <-- C EFS D := ELEHENT 
(E Eps ELENEMT [F EFS I = G) EFS H Eps C = I) 
Eps J Eps R; 

'Ihe error is more apparent here, since the original chart shows two 
loops and the irreducible chart shcus only one loop. 
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FIG, 18-15 

Nested chart arrangement due to the pcsition of atom H 

CC) 
The upper lco~ depends on the Isuer loop via two paths: 
Graph. 

Source code: 

A Eps B <-- C EFS C := ELEMENT 
(E Eps D = F Eps G := 
Eps L Eps G; 

ELEMENT (H EFS G = I) Eps 3 Eps K) 
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FIG. 18-16 

4 E J L 

Two chart arrangements and graph showing independent inner loops. 
Arrows in charts indicate propagation of deFenderIcy. Propagation stops 
at column D, since column D is to the right of the lower loop. source 
code: 

A Eks B <-- C EFS D := ELEMENT 
(E Eps F := ELEMENT (G Eps F = A) Eps I Eps D = 
J EFS X := ELEMENT (L Eps K = 1) Eps N Eps I!) 

Eps P EFs Q; 
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FIG. 18-17 

luo chart arrangements and graph showing mutual dependency. source 
code: 

A EFS B <-- C EFS D := ELEMEN’I 
(E Eps C = F Eps G := ELEMEN’I (E Eps I = F EFS G) EFS ti Eps I) 
EFS J Eps K; 



FIG. 18-18 

(b> 

E 1 F H 

M 

TYO chart arranyeaents and graph showing mutual dependency. source 
code: 

A EFS E <-- C EFS D := ELEHEN'I 
(E EpS D = F EFS G := ELEHENI-(H EFS G = I EFS D) EFS .I Eps I() 
EFS L EFS I; 



E M F 

PIG. 18-19 

Mutual dependency and independence, 
selection of elements D and G, 

There is mutual dependency in the 

eleoent G is outermost, 
In arrangements (a) and (b) the loop for 

and the loops for elements D and I are 
independent, In arrangement (c) the loop for element D is outermost. 
Sousce code: 

A Eps B <-- c Eps D := ELE~EbiP IE Eps D = F EFS G := ELEMENT 
[H Eps I := ILEtlENT (J Eps I = R) EpS L fps G = n Eps D) 
Eps N EES P) E&s C EFS R; 
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FIG, 38-20 

Some previous charts redrawn, showing detection of mutual dependency. 
Paths of special interest are emphasized. 
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FlG. 18-21 

Selection of element K depends on the existence of element L. Source 
code: 

H Eps I <-- J EFS K := ELEHENT 
(EXISTS L := ELEMENT (il EFS L = N) Eps F Eps K) 
Eps c Eps 8; 

K 

m 

L 

N M 

FIG. 18-22 

Selection of element X depends on the existence of element L. Source 
code: 

H EFS I <-- J EFS K := ELEMENT 
(EXISTS L := ELEfiEBT (H Eps L = N Eps K) Eps P EFS T) 
Eps C Eps R; 
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FIG. 18-23 

D 

F 

E D 

Each loop deEends on the previous selection of an element from the other 
loop. No first selection is possible, Source code: 

A Eps E <-- C EFS D := ELEMENT 
(EXISTS E := ELENENT (EXISTS D) Eps P EFS D) 
Eps G Eps A; 
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FIG. 18-2r( 

Expanding the sccFe of loops containing E's. Several other chart 
arrangements are Fossible. Source code: 

A EFS B := ELEBENT (EXISTS C := 
Eps G Eps H 

ELEHENT (D Eps C = E) Eps F Eps 8) 

<-- 1 Eps .I := ELEi-lENT (K Eps J = L Eps fl := ELERENT 
((EXIS'IS N := ELENENT (EXISTS P := ELEHENT (G Eps P = R Eps N) 

Eps S EFS al Eps T EPS U) & 
(EXISTS V := EiEfl%NT (W-Eps.V = X) Eps Y Eps H)) Eps 2 Eps J) 
Eps AA EFS 118; 
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FIG. 18-25 

Expanding the sccFe of loops containing E's. A numeric search and 
select loop provides the effective selecticn criterion. source code: 

A Eps B <-- C 8~s D := ELENENT 
(EXISTS F := ELENENT (EXISTS ELEMENT (10) Eps G Eps F) Eps H EFS D) 
EFS I Eps J; 
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FIG. 18-26 

?he search for element D starts after selecting element G of the same 
ccmclex.. Source code: 

A ENS B <-- C EFS C := ELENEN'I (E Eps D = F) 
BACKWARD STARTING AT G := ELIMENT (H fps G = I) Eps J Eps K; 
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Logically indfFendent 
code: 

D 

c;cl 

F 

G E 

loops coded to be mutually dependent. 

A EFS B <-- C EFS D := ELEMENT 
(E Eps F := ELEHENT (G Bps D = H) Eps I Eps J = K) 
Eps L Eps M; 

Source 
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FIG, 18-28 

The second Boolean factor for selecting element D does not depend on any 
Froperty of c. Source code: 

A EFS B <-- C EFS D := BLEBENT 
((G Eps D = H) E (E Eps F := E L 
Eps L Eps H; 

ELlENT (E Bps F = K) Eps I Eps J = K)) I 



c BJ KL I HNPM 

C 

B 

J 

K 
1 
I 

H 
N 

P 
M 

.-. 

M 

B 

l 

P N 

IQ 

L 

c H K 

I J 

FIG. 18-29 

One ot the many Fossible chart arrangements 
code. 

and the graph of the source 

must t;e 
The numbers (1) and (2) in the source code specify that row ii 

below row B, Source code: 

A EFS B := 
<-- 

(2) ELERENT (C Eps B = D) E&S E Eps F 
G EFS H := ELEMENT 

(I Eps R = J Eps K := 
ENS 1v Eps B := 

ELEMENT (EXISTS tl) Eps L Eps N) 
(1) ELEMENT (P EFS H = 0) EFS R Eps s; 



FlG. 18-30 

source code: 

A Eps E <-- C EF~ D := ELEMENT (E Eps C = F) Eps G Eps H := ELENENT 
(I Eps H = .I) Eps K Eps L := ELENENT (II EFS L = N Eps D) Eps P EFS Q; 

Translated equivalent: 

EESERVE C; 
SESEHVE H; 
BESERVE L; 
LCOP FC6 ALL L := ELEMEEjT Eys P Eps Q 
CC LCCF POR ALL H := ELEMENT EFS K Eps L 

DO IF I EFS H = J 
1HEN GO 'TO CUMMYl 

END LCCP; 
ERROL; 
DUNIlYl: 
LCCE Fcfi ALL r := ELENENT EFS G Eps H 
CO IF E EFS C = F 

THEN tiU 'IO CUNHY2 
END LCCP; 
ERRCR; 
DUMMYi: 
IF PI Eps L = N Eps D 
'IHEN GO TO DUNflY? 

ELD LCCF; 
EBHCR; 
CUMMY3: 
A EFS ti <-- C EC'S 0; 
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FIG, 18-31 

Fig- 18-18 (a) and (c) redrawn. Source code: 

A Eps B <-- C Eps D := ELERENT 
(E Eps D = F Eps G := ELEHENT (H Eps G = I Eps D) Eps J Eps K) 
fps L EFS II; 

Translated equivalent: 

BESEAVE D: 
KLSERVE G; 
LOOP FOB ALL G := ELEPIENT Bps 3 EpS K 
EC LOCF FOB ALL C := ELEMENT Eps L Eps Cl 

DO IP (E Eps C = P Eps G) E (H Eps G = I Eps D) 
THEN GO TO DUHflYl 

END LOOP 
END LOOP; 
EHRCR ; 
GUnRYl: 
A Eps E <-- C EFS D; 

.I 
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FIG. 18-32 

Fig. 18-21 redrawn.. Source code: 

H EFS I <-- J EFS K := ELEMENT 
(EXISTS L := ELEMENT (!'I EFS L = N) Eps F Eps K) 
Eps C Eps A; 

Translated equivalent: 

RESERVE K: 
fiESERVE L; 
LCCF FCfi ALL K := ELEMENT Eps C Eps R 
CC LOCE FOR ALL L := ELEMENT Eps P Eps K 

DO IF II EFS L = N 
'IHEN GU TO CUMNYl 

END LOOP 
END LOCF; 
ERROS; 
CtiMMY 1: 
H EFS I <-- J EFS K; 
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Source code: 

A Eps I? <-- C EFS D := ELEMENT 
(EXISTS E := ELENENT (P EFS E = G) Eps H Eps D I 
(EXISTS I := ELEriENT (J Eps I = K) Eps L EpS D 6 (M Eps D = N))) 
E&x P Eps Q; 

Translated equivalent: 

BESERVE C; 
RESERVE 6; 
SESERVE I; 
LCOF FCE ALL II := ELENENT Eps P Eps Q 
CC LOCE FC6 ALL E := ELEHENT EpS H Eps C 

DO IF F EFS E = C 
THEN GO TO DUMNYl 

END LOOP; 
LCCP FOR ALL I := ELEMENT Eps L Eps C 
CO IF J EFS I = K 

THEN GO TO CUfiMY2 
END LOOP; 
GC 'IC CUMRY3; 
DUMNYZ: 
IF fl k-F.5 C = N 
THEN GC TC DUENYl; 
DUtlNY3: 

END LCCF; 
ERROR; 
DUNMYl: 
A EFS E <-- C EFS D; 

/ 
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Source code: 

IF EXISTS A := ELEflENT (B Eps A = C) Eps I: 
Eps E := ELEMENT (P Eps E = C) Eps 8 EF~ I 

THEN J EFS A <-- K Eps L 
ELSE M Eps N <-- F Eps 2; 

Translated equivalent: 

HESERVE A; 
6ESERVE E; 
LCCf FC6 ALL E := ELEBENT Eps H Eps I 
CC IF F EFS E = G 

THEN GO TO DUMNYl 
EUD LOOP; 
EkliOB; 
DUMCIYI: 
LCOP FOR ALL A := ELENENT Eps D Eps E 
DC IF B Eps A = C 

THEN GO TO DUNBY 
END LOOP; 
M Eps N <-- I: Eps 9: 
GC TO DUHNY3; 
DUMWY2: 
J Eps A <-- K Eps L; 
DUMMY3: 



FIG. 18-35 

A simple exdmFle of selectiny all elements. Source code: 

A Eps PREFACE ELEBENT EFs B 
<-- C ENS ALL 'C := ELEMENT (E Eps D = E) Eps H 
Eps ALL G := ELEMENT (I Eps G = J) EFS K Eps I; 

'Iranslated equivalent: 

LCOF FOB ALL G := ELEBENT Eps K Eps L 
CC IP I Eps G = J 

THEN LCOP FOR ALL C := ELEMENT Eps H Eps G 
CO IF E Eps I: = P 

THEN A Eps PREFACE ELEMEN'I Eps F! c-- C Eps D 
END LOOP 

END LOOP; 



FIG. lb-36 (on tollcwing Fages.) 

Charts and grak:h shcu use of ALL. 
(a) Graph shows source code. 
it1 Oriyinal chart. 
(C) Rearrdnyement of original chart with A's in u:Fer-right triangle. 
(0) Irreducible chart. several ether arrangements are possible. SOIIIC 

Laths ot dt,cndency ; ropajation shown. 
(e) irrt?ducltle chart with expanded stoles. 

Source code: 

A Eps PBEFACE ELEf?E?;T E[:s B 
c-- 2 
+ c EC" c := ELEIiEEtT (E Epd D = F) Eps G 

EFS H := ELECIENT (I Eps H = J) Eps K 
Eps L := ELEMENT (M Eps L = ANY OF N Eps ALL P := ELE?IENT 
(6 EFS F = Fi) Eps s Eps T) EFs u 
Eps ALL T := ELEMtNT (V EL'S 1 = U) Eps X 
Eps Y := ELEMENT (Z Fps Y = AA Eps H) EFS AB Eps AC 

* AI: E:s At := ELEVENT (AF Eps AE = AG) Eps AH 
Eps ALL Al := ELEflENT (AJ EpS AI = AK) Eks A!4 Eps AN: 
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FZC. 18-36 (“1 

Graph shous source code. 



FIG, la-3C(b) 

Original chart. 
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Rearran~~ement of oriyinal chart with A’S in upper-right triangle. 
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Irreducible chart. Several other arrangements are p0ssibl.e. 
of dependency prcpgation shown, 

Some paths 
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Irreducible chart with expanded scopes, 



I=>; Enter 
Examine the free storage lists in order of ascending region size. 

ind the first ncnempty list L such that its region size = 2L & C, 
LllT L w45 FO"UP 

Remove the first 1 
region tram list 2. 
Let its address be 
called A. 

4 

1 
Execute a 
free storage 
recovery pass- 

Supply the C consecutive cells from address A to address A+C-1 to the 
calling Frocedure. I 

Put the region of length 2‘ on list L. 
Its address is from B-(2L-1) to B. 

FIG. 29-1 

Get d region ot C consecutive cells. 



[=x Enter 

4 
Exdmine the free storage lists in order of ascending cegion size. 
Pind the first list L such that its region size = 2C ) C, 

PIG. 29-2 

Free a region of c consecutive cells, from address A to address A+C-1. 
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