SLAC-94 |
UC-32, Mathematics and

Computers
{MISC)

SPL COMPILER
by

Daniel Ross

December 1968

Technical Report
Prepared Under
Contract AT(04-3)-515
for the USAEC
San Francisco Operations Office
Also supported in part by The Advanced Research Projects Agency of the
the Department of Defense and by Cérnegie—MelIon University, Pittsburgh,

Pennsylvania.

Printed in USA. Available from CF¥FSTI, National Bureau of Standards,
U.S. Department of Commerce, Springfield, Virginia 22151
Price: Printed Copy $3.00; Microfiche $0.65.

ABSTRACT

A compiler source language and internal organization are
described, which utilize program block structure to provide a
virtual memory capability for linked-list hierarchically struc-
tured data. A nonprocedural source language notation is intro-
duced, resembling conventional mathematical set notation, for
deseribing the search and selection of the members of subsets
of ordered sets. An algorithm is presented for the translation
of these statements into conventional compiler loop statements.,
Some convenience features in compiler source language nota-
tion are introduced, including the ability for the compiler to
"'stay in context'" with the programmer., One partial implemen-

tation of the compiler is outlined.

CONTERTS
S —_—t

Introcduction

Comment Convention

Data Storage

Data Structures

Names ot Data Constructs

Type Nanmes

Local Names

Releasiny and Reserving Names
Structure Activity, and Virtual Memory
Structure-Pointing Atons

Graphs and Terminology of S5PL Trees
Staying in Context

wmqmm}nu‘mkumu
Wi =

10 Isolated Cells

11 Access Chains

12 Storaye Assignment

13 Initial values

4 Creating, Erasing, and Destroying Constructs

1401 Creating Constructs

4.2 Copying Constructs

4.3 Erasing Constructs

14. 4 Destroying Constructs

15 Program Elock Structure, BEGIN and END

16 Procedures

17 Loops

17.1 Explicit Loops

17.2 Implicit Loops

17.3 Search and Select Loops

174 Implicit Program Block Structure of Expiicit Loops

17.5 CICLE and LEAVE

17.6 Boolean Implicit Looaps

17.7 Counting Elements

18 Translating Booclean Search and Select Loops

18.1 bDefiniticn of the Problen

18.2 Examples Demonstrating Some of the Problems Involved in
Tzranslation

18.3 Developing a Chart

18. 4 bevelogring a Graph

8.5 Interpreting a Chart to Determine Loops

18.6 Clustering S's About the Main Diagonal

18.7 Propagating Dependency

18.8 Shifting Data Atoms to Eliminate Unnecessary Nesting of Loops

18.9 Independence of Loops Executed Sequentially

18.10 Mutual Dependency Among Nested Loogs

18. 11 EXISTS -

18.12 Starting the Search at Scome Other Element

18.13 Scurce Ccde Errors Not Detectable by Chart

18. 14 Specitying Order of Execution

18.15 Translated Code

18.15.1 Sinmple Loops -

18.15.2 Mutual Dependency for Selection

18.15.3 EXISTS as a Selection Criterion

18.15.4 Conditional Statements Using EXISTS

18. 16 Selecting All Elements

18.16.1 Interpretation of the Word ALL

18.16.2 Restrictions omn the Use cf ALL

18.16.3 FHRepresenting ALL in Chart and Graph

18.17 Extension of Source Code Syntax for Boolean Search and Select
Loogs

Connecting Elements of a Complex
Extensions to the Declarations
Definitions

Collections

pDeclaration Macros

Molecules

Compile-Time Procedures
Input/Output

Inplenentation

Models

Stack

Fields Within Local Names

When Not to Activate Structures
Bookkeeping Fields Within Structures
Table of Structure Locations
Structure Storage Area
Recursive Generator

Auxiliary Storage

Callections

Extensions and Mcdificatioms
Acknowledgements

Bibliograrhy

1. INTRODUCTION

SPL is a compiler designed for the processing of heirarchically
structured data. The overall appearance ot SPL source language, and the
internal representation of data formats, both are somewhat similar to
those of PL/1. But the detailed differences between the two source
languages and between the two data representations allow for
significant improvements and extensions of the data handling capability
of SPL over PL/1.

The applications for which SFL is particularly useful are those
which require a large amount of "pointer chasing®. SPL originally was
designed as a language in which to write school class scheduling
programs. In this application, the types of data structures needed ({for
describiny the fproperties of students, classes, rooms, imstructors,
etc.) are known beforeband, and may be declared at compile time. The
total amount of data that must be processed is nearly overwhelming --
perhaps 100 times the primary memory storage capacity of the computer.
Both bit-packing to conserve memory space, and a virtual memory
capability are imperative. But the conceptually difficult part of an
applicaticn program is expected to be the choice and understanding of
the complicated decision-making processes involved in the applicatien.
SPL allows the user to concentrate his efforts on the decision-making
processes, by simplifying as much as possikle the source code statement
of these processes, and by autcomating the system overhead considerations
such as bit-packing and virtual memory.

Some of the unique features of SPL are:

{1) Automatic control of all data constructs, even those which are used
in list frocessing applications, via the program block
structure.

{2) A virtual memory scheme using some auxiliary storage device, such
as disk or drum. The scheme employs the program block
structure of (1) to predict when data should be retained in
primary core storage.

(3) A concise source language notation for the programming of loops.
The loops may range over all the elements of a linked list, or
over a selected subset of those elements.

{4) A unified source language notation for data stored in either
tabular feorm or linked list form, ¢r in any one of the many
composite forms which include some table structuring and sonme
linked list structuring. The SPL programmer has the freedonm to
change the organization of his data merely by changing a few
declarations at the begianing of his progranm.

(5) Ability of the SPL compiler to "stay in context® with the source
language code belng supplied to it, much as a person might
retain context between sentences of English prose.

{6) Free storage recovery is performed in an orderly, directed manner.
It is known in advance the location and length of regioms of
consecutive memory which are to be freed.

It is typical of applications such as class scheduling that the
rate at which data is created or destroyed is lov compared with the rate
at which the program shifts its "focus of attention” among existing data
censtructs. The shifts of attention correspond yuite closely with the
ptogram block structure (1 above), whereas data creation and destruction
are relatively independent of program block structure. For these
Teasons, SPL program block structure is used to control the focus of
attention automatically, while the user is given the responsibility of i
creating and destroying data. See Section 6. .

In addition to the above features, the design of the SPL compiler
led to an interesting theoretical study of a translation process: from
a nonprocedural source language statement of a search and selectijon
operation, into the backtrack cocde procedure necessary to execute the
search operation. The method developed here enables the translation of
a new class of compiler source language statements.

One of the major design considerations of SPL was the development
of a very concise source language notation, which still would not
restrict the flexibility inherent in the use of linked list structures,
por sacritice efficiency in program execution. New notations vere
devised tc describe some of the most fregquently occurring special cases
of more general operations. These special cases also could have been
descrited at greater length without the new notations. The concise
notation is most valuable where it allcows a complicated process to be
described in a single scurce language statement. For example, an entire
loop usually can be described in a single statement, if the action to
te performed within the loop can be described in a single statement.

The goal has teen to reduce confusion by reducing the number of
statements in the source code. However, every effort was taken to avoid
introducing cryptic abbreviations of common English words, merely to
reduce the number of source string characters that sust be typed. Each
irplementation of SPL is free to adopt its own set of abbreviations, as
long as the unabbreviated words also remain valid. The declaration
NO ABBREVIATION appearing in the scurce code prevents SPL from
recognizing the akbbreviations peculiar to a particular implementation.,
The strings which otherwise would be translated as abbreviated reserved
words, then may he used as names.

L sufficiently large part of the grammar of SPL is context-
sensitive, so that it is inappropriate to describe SPL in a metalanguage
such as Backus—-Naur Form. Ko metalanguage has been developed to date
which achieves the reguired goals of accuracy, clarity, and economy of
notation in describing context-sensitive grammars. The only
alternative, and the one taken in this paper, is to describe the
language by example.

2. COMMENT CONVENTION

Conments may be embedded anywhere within SPL source code. The
ccmments are delimited by two "less than" symnbols on the left, and two
"greater than" sycbols on the right. Example:

<<{This is a comment,>>

Source code containing comments is translated by deleting the
comments and the "less than"™ and "greater than"™ symbols. The character
irmediately to the left of the first "less than" and the character
immediately to the right of the last "greater than" are traanslated as
though they were adjacent.

3. DATA STORAGE

SPL data may be stored in either of two organizations of memory.
One of these organizations consists of "™data structures", the other of
"isolated cells". The ditference tetween the two organizations lies in
the way they respond to the SPL program block structure (the eguivalent
of BEGINs and ENDs in ALGCL-60).

Data structures must be created and destroyed explicitly by the SPL
programmer. The duration of existence of data structures is independent
of the program block structure, but the number of paths by which data
within structures can be accessed, is determined implicitly by the
program block structure. Any type ot data for numerical or nonnumerical
processing, including arrays, may be held in data structures. All data
used in list processing must be held in data structeres. The virtual
memory capability of SPL applies only to data structures.

Isolated cells are created and destroyed as program execution
enters and leaves the outermost blocks in which the isolated cells are
pentioned. In this respect, isolated cells correspond to the variables
of ALGOL.

Where there is no possibility of conrtusion between data structures
and program block structure, data structures sometimes may be called
just "structures®.

4. DATA STRUCTURES

The format of each type of data structure tc be used in a program
must be declared at the beginning of the program. During execution of
the program, there may simultaneously exist several instances of each
declared type of data structure. For example, if a data structure of
type HOUSE has been declared, there may exist instances of houses at
107 Main St., 221 Elm St., and 999 Skid Row. The amount of variability
allowed between instances of the same declared structure type is showun
by example. Fig. 4-1 shows the declaration of structure type HOUSE
and the conceptual representation of an instance of a house,

Referring to Fig. 4-1, a structure consists of "atoms" and
“complexes™. FEach atom in the structure is a single-valued attribute.
Its value may be a number (STREET NUMBER), an alphanumeric string
{STREET NAME), a Boolean truth value (GARAGE), or a pointer to an
instance of some declared structure type (ROUSE ON LEFT}. The
declaration of ap atom includes the maximum size for the data contained
in the atem, except for those atoms which point to other structures.

The declaration ot a structure-pointing atom includes specification of
the type of structure being pointed to. See Section 7.

Each complex in the structure is a multi-valved attribute, all of
vhose values are of the same declared type. Each one of the values of a
complex is called an "element" ot the complex- The declaration of a
complex consists of the word COMPLEX, followed by the type name of the
comglex, followed by the declaraticn cf an element, in parentheses. The
number of elements in a complex may vary dynamically during progran
execution -~ for example, the number of elements in PEOGPLE IN ROOM. It
can be seen that an array, as used in ALGOL, is a special case of an SPL
complex. Further discussion of corglexes appears in Section 19.

It is necessary to distinguish betwveen structures and elements for
reasons of storage allocation. This is explained in Section 6.

5.3. RELEASING AND RESERVING NAMES

Local names may be released explicitly by RELEASE
statements. Example:

RELEASE CURRBRENT RCCH

Any local name which has not been released explicitly, is released
implicitly when program execution leaves the block in which it was
assigned. See Section 5.2.

If a local name must be used cutside the block in which it was
assigned, it must be reserved in an outer hlock. The reserved local
namre is not implicitly released until program execution leaves the block
where it was reserved. Example:

s
RESERVE CURRENT RCCHM;
—————

——— —

SCOPE OF ,
PROGRAM scepg cF | T
BLOCK A gueﬁﬁ; CURBENT BROOM := ELEMENT Eps ROOMS Eps HOME;
[N)4
[—
A —
LENGTH Eps CURRENT ROOM <-- 23;

Programmers writing SPL code should rarely, if ever, have occasion
to reserve local names. However, the SPL compiler itself often causes
local names to be reserved. Programmers must understand the meaning of
reserving a local name, in order to understand the semantics of certain
other source language statements.

6. STRUCTURE ACTIVITY, AND VIRTUAL MEMORY

, Typically, computer programs are considered well-organized if they
are divided into some sort of functional segments, where any one segment
does not need to access all the data "simultaneously". During execution
of some functional segment, only the data accessed by that segment need
be in core memory. The remaining data can be stored on some auxiliary
memory device, such as disk, vhere direct processing of the data is not
possible. This opens the possibility of a program processing more data
than can be stored in core memory, provided that (1) there is a way of
bringing the data into core memory when it must be processed, and of
freeing the core memory space that the data occupied when that
processing is completed, and (2) there is an access function which can
address every existing item of data uniquely. If storage allocation and
addressing can te accomplished automatically, so that a programmer never
explicitly writes code for these functions, then the program may be
written as though the computer had a "virtual" memory which is larger
than its actual core memory-

The virtual memory scheme in SPL is accomplished by introducing the
concept of "actjivity", which is applied to data structures. Data
structures are the basic units of storage allocation, in the sense that
any given instance of a structure either is entirely in core memory or
entirely in auxiliary storage (disk). It is this property which
necessitates distinguishing a structure frcm an element of a complex,

Whenever a structure or any construct within a structure is
accessed, the entire structure automatically is brought into core
memory, if it is not there already. The core memory space which the
structure occupies is taken trom soke other structure which is not being
processed by the currently executing functional segment of the progran.
The other structure is moved to auxiliary memory and its core memory
space is treed autcmatically by SPL. SPL decldes which structures to
move by classifying the structures in core memory as either active or
inactive; inactive structures may be moved when their space is needed.

Stored in a special bookkeeping area in each structure is an
activity count, which is incremented by 1 each time a local name is
assigned tc any construct within the structure, and decremented by 1
when the local name is released. Any structure with & positive activity
ccunt is active.

The activity count also may be incremented and subsequently
decremented automatically by SPL, when for certain reasocns it becomres
necessary to hold a structure in core memory, even though the programmer
did not assign a local name.

Since the lgcation where a structure is stored may be changed from
time to time, all references to the structure are indirect; they index
into a table of structure locations which is an intrinsic part of SPL.
Every currently existing structure is uniquely identified by its index
number in the table of structure locations.

The assignment of a local name makes the structure
active, and consequently immovable; accesses via local names
point directly tc core memory locations.

7. STBRUCTURE~-PCINTIING ATCMS

An atom belchyging to one structure may contain a pointer to ancther
structure. The fpointer consists of the index number of the structure
being pointed to. It is independent of structure activity. There does
not exist in SPL any type of atom which points to constructs other than
structures; this restriction is jimposed by the SPL storage allocation
schene. Except as stated at the end of this section, instances of any
one type cf structure-pointing atom are restricted to pointing either to
instances of a sirgle type of structure, or to nothing at all. a
structure-pointing atom which polnts to nothing at all contains the
constant 0. In Fiyg. 4-1, OCCUPANT, HOUSE CN LEFT, and HOUSE ON RIGHT
are structure-pointing atoms. An example cf a data reference using a
structure-peinting atom is:

1F COLOH Eps HQUSE ON LEFT Eps HOME = COLOR Eps HOME
THEN GO TO TRACTHQUSES;

In the absence of further notation, an ambiguity would arise in the
interpretaticn of

NREIGHBCR := HCUSE CON LEFT Eps HOME

Is the local name NEIGHBOR assigned to the structure-pointing atom, or
tc the structure fpointed to by that atom? The question is significant
only in determining which structure becomes active. The possible
-awbiguity is resolved by saying that, in the above situation, the local
nape is assigned to the structure-pointing atom. A dot meaning
“"contents of structure-pointing atom"™ indicates that a local name is
assigned to a structure:

NEIGHBOR = . HQUSE ON LEFT Eps HOME

The restriction that all instances of a single type of structure-
pointing atonm must point to a single type of structure, enables the
compilation of accesses to the structure. Where compilation of accesses
is not necessary, the restriction may be relaxed. Certain systen
functions provided by SPL are fundamentally interpretive in nature.
These tunctions chttain the information about the type of a structure
from a private bookkeeping area within the structure itself. 1Included
among these tunctions are copying, erasing, destroying, and printing the
entire contents of a structure. If an SPL programmer can guarantee that
the only accesses of the contents of some declared type of structure-
Fointing atom (let it have type name GARBAGE, for example) are for
interpretive tunctions, then he may let instances of this single type
(GARBAGE) of structure-pointing atom point to various types of
structures. This is shown in the declaration of the atcom by using the
word STRUCTURE in place of the type name of a structure:

ATCM GARBAGE (STRUCTURE} ;

8. GRAPHS AND TERMINOLCGY OF SPL TREES

Each declared SPL structure type forms a tree, if the contents of
structure—pointing atoms are ignored. Each instance of a structure also
torms a tree, which is closely related to the tree formed by the
structure type declaration. Where it is necessary to distinguish
between them, we may call thea type-trees and instance-trees.

Fig. 8- 1 shows a graph of the type—tree tor the example
structure declared in Fig. 4-1. In Fig. 8~1, STREET NUMBER,

STREET MNAMNE, COLCR, MATERIAL, FRONTAGE, ROCMS, SIDE OF STREET, HOUSE ON
LEFTI, HOUSE ON EIGHT, and GARAGE are called “siblings" of each other.
USE, LENGTH, WIDTIB, FURNITURE, and PEOPLE IN ROOM are siblings of each
other. ITEM NAME and COST are sitlings of each other, but not siblings
of OCCUPANT. The "tirst-order ancestor™ of COST is ELEMENT Eps
FURNITURE, the "second~order ancestor™ ot COST is FURNITURE, the

nthird-order ancestor® of COST is ELEMENT Eps ROOMS, etc. The "first-

order descendant™ of ROOMS is ELEMENT Eps ROOMS, etc. The structure

pointed to bty a structure—pointing atom is not considered a descendant

of the aton.

Referring back to Fig. U4-1 for a graph of an instance-tree, the
atoms containing LIVING, 35, and 25, and the twc complexes drawn
beneath them, all are siblings of each other, but are not siblings of
the atom containing KITCHEN. Elements of the same complex, drawn
connected together with arrows, are siblings of each other.

It can be seen that a type—~tree is isomorphic to an instance-tree
in which each complex has exactly one element.

9. STAYING IN COCHTEXT’

If an SPL proyrammer dces not fully qualify a data refereace in his
scurce code, the SPL translator still may ke able to fill in the
remaining qualification needed to make the reference unique. For
example, it the source code is:

STREET NUMBER Eps HOME <-- 107; ‘
STREET NAME <-— 'MAIN ST.V; ‘
COLOF <-- 'RED';

MATERIAL <-~ ¢BRICK';

FRONTAGE <-- 65;

the translator interprets the code as:

STRBEET NUMEER Eps HOME <-- 107;

STREET NAME Eps HOBE <-- fHAIN ST.';

COLCE Eps HOME <-- 1RED';

MATEEIAL Eps HOME <-- 'BRICK';

FRONTAGE Eps HOME <-— 65; i

The ability of the SPL translator to stay in context with its
source code allows the programmer to use a more cohcise notation than
fully gualified data reterences. The concise notation is allowed only
in data references whose meanings are "obviocus", making anry additional
gualification "superfluous™. The exact interpretations of "obvious" and
"superfluous" are described below, but the general approach taken in the
desiyn ot SPL is to be rather comservative. SPL attempts to be helpful
in simple situations, without interpreting the "obvious" so liberally as
to introduce spurious source code errors.

SPL maintains a first-in, first-out list, of limited length,
containing the rames of constructs most recently scanned in the source
code. If an incompletely qualified name appears in the source code, the
translator tries to match it with the names of siblings and first-order
descendants, taken from the type-trees of the construct names already
appearing in the list. Althouyh the storage of construct names into the
list is first-in, first-out, the searching of type trees is performed
first on the construct name most recently stored into the list.

Also, if intermediate qualification is missing but the type can be
determined uniguely, SPL automatically supprlies the missing qualifica-
tion. For exawple, if the source code is:

COST Eps HOME <-- 200;
the translator interprets the code as:

COST Eps ELEMENT Eps FURNITURE Eps ELEMENT Eps ROOKS Eps HOME <--
200;

10. ISOLATED CELLS

At certain places within a program, it is convenient to store data
temporarily in scome buffer area that is not associated with any
structure. The locations used ftor this mode of storage are called
"isolated cells". They may be used for the storage of numeric, alpha-
numeric, or Boolean data, but they may not be used for the storage of
pointers to other constructs. Local names and structure-pointing atoms
are used for this purpose.

The duration ot existence of isolated cells is determined by the
proyram block structure. Each isoclated cell is created when program .
execytion enters the outermost block in which the cell is mentioned, and
destroyed when prograr execution leaves that block.

Isolated cell names are ungualified (that is, they do not use
“"Eps"), since isolated cells do not belong to any other construct, The ‘
compiler decides that a name appearing in the source code refers to an
igolated cell, if the name is unqualified, not a local name,
and the search for additional context (described in Section 9) fails.

A type declaration may appear with the first use of an isolated
cell. Examfple:

PI := REAL <=~ 3.17416;

In the absence of a declaration, the isolated cell assumes the type of
the first data stored into it. Example:

BUG LENGTH <-- LENGTH Eps ELEMENT Eps BOCMS Eps HOME;

Consistent with the declaration in Fig. 4-1, the isolated cell RUG
LENGTH assumes the type UNSIGNED INTEGER with a maximum value of 40.

1he possible types of isolated cells depend to some extent on the
hardvware implementation of SPL, but include at least:

UNSIGNED INTEGER)
INTEGER !
BOGCLEAN

ALPHANUMERIC

REAL

CCBPLEX :

It the hardware permits, they also may include:
LONG REAL

LONG COMPLEX
DECIMAL

11. ACCESS CHAINS

Source code phrases such as:
LENGTH Eps CURRENT ROCM := ELEMENT Eps ROOMS Eps HOME

are called "access chains". The exanple above is the access chain "for"
a particular instance ot atom LENGTH.

Access chains have slightly differing forms, depending upon where
they appear in SPL code. As specifications of formal parameters to a
procedure, they must have a local name assignment on the left, no other
local name assigngents within the access chain, the type name of a
structure on the right, and they must not "pass through" any structure-
Fointing atoms. Example:

PROCEDURE PFRCC1 := USE Eps FLEMENT Eps ROOMS Eps HOUSE
(FURN := FURNITURE Fps ELEMENT Eps ROOMS Eps HOUSE;
HGME := HQUSE) ;

When used for the access of some instance of a construct, without
creating any new constructs, access chains pust have a local
name on the right. Example:

LENGTH Eps CURRENT RCOM := ELEMENT Eps RCOMS Eps HONE <-- 23;
When used for the simultaneous creation of a structure and the access of
scme construct within the structure, access chains must have the type

name of the structure on the right. Example:

HUE := COLGCR Eps HOME := HOUSE <-— ‘*GRAY';

1. STORAGE ASSIGNMENT

The usual syntax for data storage assignment is:

[(DESTINATION] €— [EXPRESSION

However, SPL has alternative syntazes for certain fregquently occurring
special cases. The syntax:

|DESTINATION] € EXPRESSION

may be used if the programmer can guarantee that the destination field
contains O (if it is numeric) or blanks (if it is alpharumeric). SPL
can compile better code for the double left arrow than for the single
left arrow, since it is not necessary to compile the instructions for
masking and saviny the contents of fields adjacent to the destination
tield. Since doukle left arrows restrict the flexibility for future
recoding, they are recommended only for improving the efficiency of the
innermost nested loops.
Ancther alternative syntax:

IDESTINATION] <~——> {DESTINATION]

indicates a swap of the contents of the two destination fields. The
fields must contain the same type data and ke of the same size.

The word SAME may be used in place of the expression in a storage
assignment statement, if the immediately preceding statement alsoc is a
storage assignment statement containing an expression or SAME. Example:

LENGTH Eps CURRENT RCOM := ELEMENT Eps ROOMS Eps HOME <-- 20;
WIDTH Eps CURRENT ROGM <~-- SAME;

The previously evaluated expression is stored a second time as a result
of using SAME.

13. INITIAL VALUES

Data atoms may be declared to have constant initial values.
Example:

ALPHANUMERIC ATOM COLOR INITIALLY 'WHITE' (6);
ALEHANUMERIC ATOM MATERIAL INITIALLY *WQOD' (5);
ATCM FRONTAGE INITIALLY 50 (200);

In the absence of declared initial values, the default initial values
are 0 for numeric atowms, all blanks for alphanumeric atoms, and FALSE
ter Boolean atems. Structure-pointing atoms can bave only the initial
value 0.

l4. CREATING, COPYING, ERASING, AND DESTROYING CONSTRUCTS

14.1. CREATING CGNSTRUCTS

Creating new instances of data structures, or nev elements in a
complex, is the responsibility of the SPL programmer. Atoms and
complexes cabnot be created individually. Isolated cells are created
automatically, as a consequence of the program block structure.

A new instance of a structure is created implicitly during
execution of any access, if the type name of the structure is rightmost
in the access chain. Example:

BUE := COLOB Eps HOME := HOUSE <-- ¥GRAY';

Note that declarations and specifications do not cause accesses to be
executed; therefore, nc new structure is created.

A new instance of an element is created if the access chain
contains the word PREFACE, or the word APPEND, or the words INSERT and
either BEFORE or AFTER. The particular chcice of words designates where
awong the other existing elements of a confplex the new element is to be
placed. Examples:

{1) LENGTH Eps PREFACE ELEMENT Eps ROOMS Eps HOME <—- 23;

{(2) LENGTH Eps CURRENT ROOM := APEPEND ELEMENT Eps ROOMS Eps HOME <--
23;

{3) LENGTH Eps INSERT ELEMENT APTER ELEMENT (4) Eps ROOMS Eps HOME
<~= 23

{4) LENGIH Eps INSERT ELEMENT BEFCEE CURRENT ROOM <-- 23;

In example (3), the new element is inserted after the previously
existing 4th element of the complex.

Newly created constructs automatically are assigned their declared
or default initial values.

14.2. COPYING CUNSTRUCTS

COPY is a pre-declared SPL system procedure which interpretively
copies a given structure or element and all the descendant constructs of
that structure or element. The actual output value of COPY is the
identity ot the mnewly created copy. It may be assigned a local nane,
stored in a structure-pointing atom, inserted into a complex, etc., as
appropriate. The actions which may be pertormed depend on the declared
type of structure or element being copied. Exaumple:

APPEND COPY (ELEMENT Eps ROCMS Eps HOME) Eps BCOMS Eps HOME;

In the above example, a copy of the first element of complex ROOMS is
appended to Lecome the last element of complex ROOMS.

14.3. ERASING CONSTIRUCIS

Erasing data is the responsibility of the SPL programmer. An
entire structure, or any construct within a structure, is erased when an
ERASE statement is executed. Data in isolated cells cannot be erased,
except by storage assignment statements which put the desired values
into the isoclated cells.

Erasing an atom is the same as assigning it its declared or default
initial value. Erasing a structure or an element is the same as
individually erasing all the atoms and complexes within that structure
or element. Erasing a conmplex is the same as erasing all of its
elements. 1In no case does erasure cause the destruction of any
construct; it merely changes the data content of the construct being
erased. Examples:

(1) EEASE HOME;

(2) ERASE CURKENT ROCM := ELEMENT Eps RCOMS Eps HOME;
(3) ERASE HOUSE ON LEFT Eps HOME;

(4) ERASE . HOUSE ON LEFT Eps HOME;

As in Section 7, a dot is used to distinguish between erasing a
structure—-pointing atom, in example (3), and erasing the structure
pcinted to by the atom, in example (4).

14. 4. DESTROYING CCNSTEUCTS

Destroying instances of data structures, or elements in a coaplex,
is the responsibility of the SPL programmer. Atoms and complexes cannot
te destroyed individually. 1Isclated cells are destroyed automatically,
as a consequence of the program block structure.

Destroying a structure or element cormpletely frees all the storage
used by that structure or element. Examples of DESTROY statements:

{1) DESTRCY HOME;
(2) DESTROY ELEMENT Eps RCOMS Eps HOME;
(3) DESTHEOY . HOUSE ON LEFT Eps HOME;

No new local names may be assigned in the access chain of
a DESTROY statement. If the pamed construct (HOME in the examples
above) is destroyed, the local name automatically is released.

This would occur in example (1). Other than this last possible
remaining name (HOME), there must not be any local names still

in effect which point to the construct being destroyed, or to any
descendant ot that construct. If a structure is being destroyed while
local names still are in effect, SPL detects this error by a

positive activity ccunt. But if an element is being destroyed, SPL
cannot detect the error. The consequences of the error may not appear
until some later time when the local nare either is used or

released.

Wwhen a structure is destroyed, it is the responsibility of the SPL
proyrammer to erase, destroy, or alter all structure-pointing atoas
which point to the structure. If an unaltered reference to the
structure subsequently is used, the error possibly may not be detected
immediately by SPL. Detection of the error depends upon vhether the
index in the table of structure locations has been reused.

When an element is destroyed, its sibling elements (if any)
automatically are relinked. The element is removed from the complex
without damaging the integrity of the rest of the complex.

15. PRCGRAM BLOCK STRUCTURE, "BEGIN™ AND "ENDY

In ALGOL, progyrae blocks are bracketed by BEGIN and END. All the
statements within a block are treated from outside as though they were a
single statement. Variables and arrays autcmatically are created when
frogram execytion enters the block, and destroyed when program execution
leaves the block.

In SPL, the two functions of program block structure are assigned
to separate tyres ot program blocks. Explicit program blocks, which
cansist of several statements bracketed by BEGIN and END, cause all the
enclosed statements to be treated fror outside as though they were a
single statement. But explicit program blccks have no effect on the
duration of validity of local names, or the duration of existence of
isclated cells.]

Implicit program blocks are recognized by SPL as a consequence of
procedure calls or loop statements. The way procedure calls and loops
are coded, and the resulting implicit program blocks, are described in
Sections 16 and 17. The duration of validity of local names is
bounded by the outermost implicit program block in which the local names
are reserved. The duration of existence of isolated cells is bounded by
the outermost implicit program block in which the isolated cells are
zentiocned.

Each procedure call or loop statement may result in more than omne
implicit program klock. The executable statewents in the body of the
procedure or in the scope of the loop are confined to a particular
cne of the possibly several implicit program blocks. From outside that
block, all the statements within the block are treated as though they
were a single statement.

Explicit program blocks and implicit program blocks all must be
either disjoint cr progerly nested within each other.

Since isolated cells need not be declared explicitly, a naming
conflict might arise if several separate programs are merged into a
single program. Local rames also pight be subject to a naming
conflict. 7To avoid these conflicts, a NEW NAME statement appearing in
any program block forces a reinterpretation within that block of the
specitied names. Exawmple:

NEW NAME JOE, FPETE, CURRENT RCOM, HOME;
211 other types of names [besides isolated cells and local names) are

required to have sufficient declaration for other reasons, that SPL
incidentally is akle to resolve paming conflicts.

16. PRCCEDURES

A rrocedure declaration consists of a procedure declaration head, a
btody of executable code, and finally END PROCEDURE. An example of a
trocedure declaraticn head is:

PROCEDURE PBOC1 := USE Eps ELEMENT Eps ROOMS Eps HOUSE
(FURN := FURNITURE Eps ELEMENT Eps ROOMS Eps HOUSE;
HOME := HOUSE);

In the example, PROC1 is the name cf the procedure. The name of a
frocedure pust te unigue within the program block in which the procedure
is declared.

USE Eps ELEMENT Eps ROCMS Eps HOUSE is the type declaration of the
value of the procedure. The type of value a procedure may have may be
the type of some construct (USE Eps ELEMENT Eps in the example), or

-any of the types of isolated cells, or LOCATION, or no value at all.

The access chains for FURN and HOME are the formal parameter
specifications tor the fprocedure.

Execution starts at the ftirst statement in the body of the
frocedure. If the procedure has a fcrmal value, then somewhere within
the body of the procedvre must be the code to assign an actual value to
the procedure. The statement BETURN, appearing in the body of the
Frocedure, acts as a special purpose GO TO statement which transfers
execution back to the code which called the procedure.

A procedure can be called omly within the same program block in
vhich it is declared. A procedure call consists of the procedure name,
followed by parentheses enclosing the actual parameters to the
procedure. If the procedure has a value, the procedure call may be used
in any way that that particular type of value can be used.

Exazple procedure declaration:

{1-1) PROCEDURE ERICK HOUSE := HGUSE (GIVEN HOUSE := HQUSE);

{1-2) IF KATERIAL Eps GIVEN HOUSE = YBRICK®

(1-3) THEN PRINT ('BRICK HOUSE AT *;

{1-4) STREET NUMBER Eps BRICK HOUSE := GIVEN HOUSE)

{1-5) ELSE BEGIN

{1-6) BRICK HOUSE := BRICK HOUSE {NEIGHBOR := .

(1~7) HOUSE ON LEPFT Eps GIVEN HOUSE);

{1~8) BRINT ('TC THE RIGHT OF '; STREET NUMBER Eps NEIGHBOR;
(1=9) ' IS '; STREET NUMBER Eps GIVEN HOUSE;

{1-10) *, MADE OF '; MATERIAL Eps GIVEN HOUSE)

(=11 END

(1-12) END PROCEDURE;
Example procedure call:

(2= 1) IF COLOR Eps BRICK HOUSE (. HOUSE ON LEFT Eps HOME) =
{<~2) COLOE Eps HOME
{2-3) THEN PRINT {*CCLGRS MATCH');

In the examples above, BRICK HOUSE is a recursive procedure which finds
the nearest brick house toc the left of a given house, and prints some
infermation about its search. In the example procedure call, the dot
irdicates that the actual parameter is a structure of type HOUSE, rather
than a structure-pointing atom of type HOUSE ON LEFT. Had the dot been
omitted from the scurce code, SPL antomatically would have supplied a
dct, in order to match the formal farameter specifications.,

Fig. 16-1 shows a typical implicit program block structure
resulting from a procedure call. In the following discussion, various
teatures in Fig. 16-1 will be related to lines of cocde in examples (1)
and (2) above, although Fig. 16-1 does not exactly correspond with
either of the code examples.

The procedure call for Fig- 16-1 appears in the source code in
block A. All the cother program blocks in Fig. 16-1 are created
implicitly tor the processing of the procedure call. In general, the
statement containing the procedure call also will contain other
executable phrases, perhaps even other procedure calls. These other
phrases are executed in block A, either before or after the procedure
call, depending upon the processing crder appropriate to the statement.

If the source code shows any local names are to be assigned during
evaluation of the actual parameters (such as NEIGHBOR in code example
line (1-6)), these local names are reserved in block A. Reserving the
local names is necessary so they will remain valid for later use in
block A (line (1-8)), even though the assignment of constructs must
occur in an inner block, block B.

If the source code shows a local name assigned to the actual value
cof a procedure, the local name is reserved in block A. TIf the source
code does not show a local name assigned to the actual value {line
{2-1)), then SPL reserves a dumny local name. The dummy local nanme
serves to keep the named construct active during execution of the
remainder of the statement after the procedure has returned. The dunmny
name is released immedjately following the statement. Had the formal
value cof the procedure (the first occurrence of HOUSE in line {(3i-1))
been declared of type REAL, INTEGEE, etc., instead of being declared a
type of construct, then an isclated cell wculd have substituted for the
local name or dumry local nanme.

If the local name for an actual parameter or for the actual value
of the procedure already exists in blcck A or some outer block (the
tirst cccurrence of BRICK HOQUSE in line {1-6)), there is no need for SPL
to reserve the 'local name.)

Program block B acts as an interface Lbetween the environment of the
procedure call (block A and the ocuter program blocks), and the body of
the procedure (block D). A storage locaticn is reserved in block B for
the return btrawmch address of the grocedure call. Dummy local names, orU
isclated cells as appropriate, are created in block B for all the
farameters and the value of the procedure. These dummy names appear in
the physical order that ratches the procedure's specifications. The
actual parameters to the procedure are evaluated in block B, from left
tc right. The evaluated constructs are assigned to the dummy names, and
those which were given local names in the scurce code (NEIGHBOR in line
{1-6)) alsoc are assigned to their reserved local names. Assigning at
least dummy local names to all the constructs guarantees that the
constructs remain active during execution of the body of the procedure.

The access chains for some of the actual parameters may pass
through structure-pointing atoms (lines (1-7) and (2-1)). The
structures which contain these atoms are activated during evaluation of
the actual parameters, but they do not necessarily have to remain active
during execution c¢f the procedure. Blocks C1, C2, «..., Cnh show the
briet activation of these structures.

After the actual parameters have been evaluated, the procedure is
called and executes in block D. The procedure asgigns the actual output
value to the reserved dummy local name in klock B, the interface blocke.

When the procedure returns, code in block B copies this assignment into
the local name or dumny local name reserved in block A, for use in
executing the remainder of the statement containing the procedure call.

If the procedure has no input parameters and no output value, then
block B is omitted and the procedure call is executed froam block A.

17. LOCEFES
R —————

The critical facility in the coding of complicated decision-making
frocesses is the ease with which associations among data items can be
descrited. Where the underlying corganization of data is hash coding,
languages like LEAP may be used to describe associations as Boolean
relations among the bound variables of associative triples. 1In SPL the
underlying -oryanization of data is a network of pointers, in which
associations are described as search loops among ordered sets, to find
the members which have the desired properties. Thus much of the
language emphasis ot SPL is in the concise description of loops, and
much ot the programmatic emphasis of SPL is in the optimization of those
loops.

This section introduces the varicus notational forms for loops,
including Boolean search and select loops. Boolean search and select
loops are the most frequently used form for describing associations.
The translation from the concise notation of Section 17.3 intc the
equivalent basic notation of Section 17.1 is not immediately obvious.
Section 18 describes that translation, which constitutes one ot the
major contributicns of this parer.

In addition to the loops described below, loops also may be
generated by the use of collection names. See Section 20.2.

17.%. EXPLICIT LCOES

There are several ways of coding SPL loop statements. The most
kasic of these are explicit loop statements. All other ways of coding
loop statements are defiped in terms of equivalent explicit loop
Statenments.

The syntax of explicit loop statements is to a large extent context
free. Fig. 17-1 shows the syntax in the metalanguage "Box Syntax".

As can be seen in Fig. 17-1, pore than one generator may be coded for

a single loop. Each of the generators is advanced after every cycle of
the loop. The first generator to terminate causes termination of the
entire looga.

In the phrase

FCR [ITERATIGN VARIABLE NAWE| «— [EXPRESSION} ., *

the exrression may be any of the types allowable for isclated cells,
described in Section 10, as long as all replications of the expression
are of the same type. In the phrase

FCRWARD
EACKWARD

i
(=]

OB ALL := ELEMENT | Eps [ACCESS CRAIN] | .} =

all the access chains must be for the same type of elements. In the
Ehrase

FORWARD |
EACKWARD| FOR ALL [LGCAL NANE] := ELEMENT STARTING AT [ACCESS CHAIN]

the access chain must be for the element of a complex. Backward looping
is not allowable in coaplexes declared to have forward links only. See
Section 19 for a discussion of the varicus types of links. 1In the
phrase FOF -... FROM STEP ...~ UNTIL, the left arrowv and
parentheses surrounding arithmetic exfpressions indicate that the
expressions are to be evaluvated once only, before executing any cycles
of the loop. Without the left arrow and parentheses, the expressions
following STEP and UNTIL are re-evaluated before execution of each cycle
of the loop.

17.2. IMELICIT LOOES

If a loop over all the elements cf some complex contains only a
single executakle statement, it may be coded as an implicit loop. An
implicit loop uses the word ALL in the access chain to indicate that a
loop is desired, and eliminates the words LCOP, FCR, DO, and END Loop,
and the local name for the elements being generated. The scope of an
implicit loop is the statement in which it appears. For example, the
izplicit loogp

LENGTH Eps AlL ELEMENTS Eps RCOMS Eps HOME <~- 10;
is egquivalent to the explicit loog

LOCP FOR ALL DUMMY1 := ELEMENT Eps ROOMS Eps BOME
DO LENGTH Eps DUHMY1 <-— 10
END LOOE;

where DUMMY1 is a local name automatically created by SPL, and assigned
successively to each element as it is generated.
A second exarple, where PRICE is an isclated cell,

FFICE <-- 0;
PRICE <-- PRICE + COST Eps ALL ELEMENTS Eps FURNITURE Eps
ALL ELEMENTS Eps ROOMS Eps HOME;

is eguivalent to

PRICE <-- 0;

LOCP FOR ALL DUMMY1 := ELEMENT Eps FUBNITURE Eps ALL ELEMENTS Eps
ROOMS Eps HCME

DO PRICE <-- PRICE + COST Eps DUMMY1

EXD LOGE;

which in turn is equivalent to

BRICE <-- Q;

LOOP FOR ALL DUMMY2 := ELEMENT Eps ROOMS Eps HOME

DO LCOP FOR ALL DUMMY1 := ELEMENT Eps FURNITURE Eps DUMMY2
DO PRICE <-- PRICE + COST Eps DUMMY1
END LOOP

END LOOP;

A third example is to create a list of the costs of all the
furpiture in HOME. The list will be the elements of a nev structure
whose declaration is:

STRUCTURE PRICE LIST (
CCHPLEX ERICES (
ATCM COST (1000)));

The code to create an instance of PRICE LIST, create one new element of
PBICES for each iter of furniture in HOME, and store the cost of that
item of furrniture into the new element, is:

HOME PRICE LIST := PRICE LIST;

CCST Eps PREFACE ELEMENT Eps PRICES Ips HOME PRICE LIST <--
COST Eps ALL ELEMENTS Eps FURKITURE Eps ALL ELEMENTS Eps RCONMS
Eps HOME;

In the above example, the costs are stored in elements of HOME PRICE
LIST in inverse order of their appearance in KEOME. They would have been
stored in direct order of their appearance in HOME, had APPEND ELEMENT
been coded instead of PREFACE ELEMENT. For the simplest types of
complexes, where the elements are connected by forward links only,
appending elements in the above example would be a computation of order
n* steps. Fretacing elements would be of order n steps. With more
elaborate linking among the elements, the number of steps in appending
elewents can be reduced to order n. See Section 19.

SPL creates an implicit lcop for each occurrence of the word ALL in
an access chain. If AllL occurs several places in a single access chain,
the lettrwost occurrence corresgonds to the innerrost locp, as in the
second example above. If ALL occurs in several separate access chains
within a single statement, the implicit loogs are created in the
processing order appropriate to the statement. Fach implicit loop
created includes all the previously created loops within its scope.
These rules do not necessarily apply if the statement contains any
Boolean search and select loops, described in Section 17.3.

17-3. SEARCH ANL SELECT LCOES

If an access chain contains the word ELEMENT followed by
parentheses enclosing an arithmetic expression, such as:

THIS ROCM := ELEMENT (7*L+2) Eps ROOMS Eps HOME;

then the arithemetic expression is the index of the particular element
selected. In the above example, lccal name THIS ROOM is assigned to the
(7*L+2)th element in the complex. SPL creates a numeric search and
select loop, which sequences along the elepents of the complex ROOMS
-until the proper element is selected. 1In order to aveid possible side
effects, the arithmetic expression is not evaluated until immediately
before the execution of the loop. The code for the explicit loop
equivalent of the above exanple is:

TBIS ROOM ;= ELEMENT Eps ROOMS Eps HOME;
LOCP ENTIER (7%L+2) -1 TIMES

DC THIS ROCM := ELEMENT AFTER THIS ROCH
END LOGP;

It the arithgetic expression does not evaluvate to an integer, it is
truncated to an integer. The truncated value must be strictly positive.

The equivalent explicit lcop statement takes an error exit if the
complex ROOMS does not have at least the specified number of elements.
The code shown hbelow is not equivalent to the source statement, because
the code telow does not take an error exit it there are an insufficient
numkter of elements.

RESERVE THIS ROOM;

LOCP FOK ALL THIS RCCOM := ELEMENT Eps ROOMS Eps HOME;
ENTIER (7*L+2) TIMES

DG

END LCOP;

If an access chain contains the word ELEMENT followed by
Farentheses enclosing a Boolean exjiressiom, such as:

THIS RCCM := ELEMENT (LENGTH Eps THIS ROOM > 20) Eps ROOMS Eps
HCME ;

then SPL creates a Eoolean search and select loop, which sequences along
the elements of the complex ROOMS until the first element is found for
which the Boolean expression has the value TRUE. An error exit is

taken if no element of the complex satisfies the Boolean expression.

Boolean search and select loops provide a means of selecting one
element among the possibly many elements of a conplex, based on sonme
pIoperty ot that element. 1In the example above,the selected element
must have the property that the LENGTH field contains a number > 20.
1he Boolean expression describing this property may be arbitrarily
complicated, but of course it ultimately must depend on some property of
the element being selected. It would be meaningless to attempt to
select an element, if the selection were nct based on any property of
that element.

Other examples of Boclean search and select loops are;

HOME PRICE L1IST := PRICE LIST;

CCST Eps PREFACE ELEMENT Eps FRICES Eps HOME PRICE LIST <—-
COST Eps ALL EXPENSIVE := ELEMENT (CCST Eps EXPENSIVE > 200)
Eps FURNITURE Eps ALL BIG ROOM := ELEMENT
(LENGTH EFps BIG ROOM * WIDTH Eps BIG RCOM > 400)

Eps BOOMS Eps HCME;

HCKE FRICE LIST := PBRICE LIST;

COST Eps PREFACE ELEMENT Eps PRICES Fps BOME PRICE LIST <--
COST Eps ALL ELEMENTS Eps FURNITURE Eps
GUEST ROCM := ELEMENT (USE Eps GUEST ROOM = *BEDBOOM®)
BACKWARD STARTING AT SMALL ROCM := EFLEMENT
(LENGTH Eps SMALL BOCM * WIDTHE Eps SMALL ROGM < 150)
Eps ROOMS Eps HCME;

The translation from the source code of Boolean search and select
loors into the eguivalent explicit loop statements is a fairly involved
pTocess. Section 18 is devoted emtirely tc describing this process.

As shovwn in Section 18, SPl translates statements which select the

first element which has some desired property, or all the elements which
have that property, or the f£irst element which has that property
frovided that there exist any elements which have that property.

17.4. JIMPLICIT PROGRAM BLOCK STRUCTURE OF EXPIICIT LOOPS

Fig. 17-2 shows a typical implicit program block structure
resulting frcm an explicit loop statement. The loop statement appears
in the source code in block A. A1l the cther program blocks in Fig.
17-2 are created implicitly for the processing of the loop statement.

The access chains fcor some of the element generators may pass
through structure-pointing atoms. The structures which contain these
atoms are activated during the initial evaluation of the first-order
ancestor complexes of the elements to be generated, but the structures
containing these atoms do not necessarily bave to remain active during
execution of the loop. Blocks C1, C2, -..., Cn show the brief
activation of these structures. ’

17.5. "“CYCLE'" AND "LEAVE"

A CYCLE statement consists of the word CYCLE, opticnally followed
by an arithmetjc expression. A LEAVE statement consists of the word
LEAVE, optionally followed by an arithmetic expression. If the arith-
metic expression is omitted, the value 0 is assumed. CYCLE and LEAVE
may appear only within loops.

CYCLE statements and LEAVE statements act as special purpose GO TO
statements tor terminating executicn cf a cycle of a loop, or for
terminating execution of a lcop entirely. CYCLE is the samc as GO TO

which kranches to a fictitious location just before the end of the loop.
Example:

LCQgPp ——me—
e

CYCLE;

END LOCP;

is equivalent to:

R
60 1C DUMMY1;

DUMKYT:
END LOOP;

where DUMMY' is a dummy statement label autcmatically supplied by SPL.
LEAVE is the same as GC T0Q which branches to a fictitious location just
arter the end of the lccp. Example:

LOOP -—mmer .

DC -

LEAVE;

END LOCE:

is equivalent tc:

LCQF -
DO e

GO TG DUMMY?;

— -

END LOQP;
pUMMYi:

where DUMMY1 is a dummy statement label autcratically supplied by SPL.

If an expression follows CYCLE or LEAVE, its value is truncated to
an integer which must be nonnegative. SPL leaves that many inner nested
loops, and then cycles or leaves an outer loop. Example:

CYCLE 1,
— e

END 1LOOP;

END LOOP;
is equivalent to:

LOgP ———
DC

LCOP - .
Do -

e

GO TC DUKMY1;

END LOOP;

DUMMY 12
EXD LOOP:

In the above exawmple, execution leaves the 1 inper loop, and then cycles
the cuter loop. It is an error for the truncated value of the
expression to ke greater than the number of inner nested loops.

The SPL translator converts all implicit loops into their
equivalent explicit loocp statements. All these loops are counted in the
determination of how many inner nested lcops to leave, before cycling or
leaving an cuter loop.

17.6. BGOLEAN INFLICIT LOOPS

The pronoun phrases ANY CF, ALL OF, or NCONE OF may appear in a
Boolean exgressicn that includes an implicit loop, thereby forming a
Boolean implicit loop. Example:

IF ANY OF LENGTH Eps ALL ELEMENTS Eps ROCMS Eps HOME = 20
THEN ¢ <-- C + 1;

is equivalent to:

LOGP FOF ALL DUMMY?1 := ELEMENT Eps BROCMS Eps HCHME

LC IF LENGTH Eps DUMMY! = 20
THEN GO TG DUMMY2

END LOOP;

GO TG DUMMYJ;

DUBMY2: C <=—- € + 1;

DUMMY3:

A local name may be assigned to the elements. SPL automatically
reserves the local name, for subsequent use. After execution of the
loop, the element (if any) assigned tc the local name degends on the
pronoun phrase, the Boolean expression, and whether there exist any
elements in the complex. Listed below are the translated equivalents of
the various Booclean implicit loops.

Fxample (1) source code:
IF ANY CGF R Eps ALL D ;= ELEMENT Egs C = K
THEN <<cocde 1>>
ELSE <<code 2>>;

Example (1) translated equivalent:

RESERVE B;
LCGP FOB ALL B := ELEMENT Egs C
0O IF A Eps B = K
THEN GO 10 DUMMY)
END LOCP;

<<code 2>>;
GO TC DUMMYZ;
DUMMY:
<<code 1>>;
DUMMY2:

Example (2) source code:
IF A1L CF A Eps ALL B := ELEMENT Eps C = K
THEN <<code 1>>
ELSE <<code 2>>;

Example (2) translated equivalent:

RESERVE E;
LOCF FOF ALL B := ELEMENT Eps C
DO IF = (A Egs B = K)
THEN GO 1C DUMMY1
END LOCOP;

<{Lcode 2>>;
GO TC DUMMY2:
PUMNMY1:
<<code 1>>;
DUMMY2:

Example (3) source code:
IF NONE OF A Eps ALL B 2= ELEMENT Eps € = K
THEN <<code 1»>
ELSE <<code 2>>;

Example (3) translated equivalent:

BESERVE E;

LOCE FCHF ALL B := ELEMENT Eps C
PC IF A Eps E = K

THEN GO TO DUMMYD
END LOGCE;

<<code 1>>;
GO TG DUMMYZ;
DutiMyt:
<<code 2>>;
DOMMYZ2:

Example (4) source code:
IF ~ ALL OF A Eps ALL B := ELEMENT Eps C = K
TEEN <<code 1>>
ELSE <<code 2>>;

Example (4) translated equivalent:

RESERVE B;
LCCF FOF ALL B := ELEMENT Eps C
DO IF - (A Eps B = K)

THEN GO T0O DUMMY1
END LOOP;

<Kcode 1>>;
GO TO DUMMYZ;
DUMMY1:
<Lcode 2>>;
DUMMY2:

The word ALL must occur at least once in the access chain for each

Boolean implicit loop. Each occurrence of the word ALL indicates
ancother nested lccg.

Example {5) source code:

IF ANY CF A Eps ALL B := ELEMENT Eps € Eps AlL D := ELEMENT Eps E
= K

THEN <<code 1>>

ELSE <<code 2>>;

Example (S) translated equivalent:

RESERVE E;
BESERVE D;
LCCF FCF ALL D :=
CC LCOF FOF ALL B ELEMENT Eps C Eps D
DO IF A Eps B K
THEN GC TO DUMMY
END 1LOGP
END LOOP;
<<code 2>>;
GO TC DUNMYZ;
DUMMY1:
<Lcode 1>>;
DUMMYZ2:

ELEMENT Eps E

Several Boolean implicit loops may be combined imn a single Boolean
expression.

Exanple (6) source code:
IF ANY OF A Eps ALL B := ELEMENT Eps C
= ALL CF D Eps ALL E := ELEMENT Eps F
THEN <<code 1>>
ELSE <<code 2>>;
Example (6) first translated eguivalent:

RESERVE B;

LOOP FOF ALL B := ELEMENT Eps C

DC IF A Egs B = ALL OF D Eps ALL E := ELEMENT Eps F
THEN GC TO DUMMY?

END LOOP;

<<code 2>>;
GO TC DUMMYZ;
CUMMY1:
<<code 1>>;
DUMMYZ:

Example (6) second translated equivalent:

RESEEVE B;
BRESERVE E;
LGCE FCE ALL B := ELEMENT Eps C
DC LCQF FOERK ALL E := ELEMENT Eps F
DO IF -~ (A Eps E = ©D Eps E)
THEN GG TO DUMMY3
END LOOP;
GO TC DUMMYWU;
DUMMY3:
GO TO DUNMMY?;
DOMNY4:
EXD LOQE;
<<code 2>>;
GC TO DUMMY2;
DUMMY1:
<<code 1>>;
DUOMMY2:

As can be seen in the above examples, the final assignment of
elements to the reserved local narmes is scopevhat erratic. Boolean
izmplicit loops rrovide a convenient way of performing tests, but an
inconvenient vay ct selecting elements. On the other hand, Boolean
search and select loops provide a convenient way of selecting elements,
tut am inconverient way of performing tests.

17.7. CCUNTING ELEMENTS

SPL has the built—-in function CQUNT, which counts all the eleuments
of a complex, or a selected subset of those elements. The resulting
value is of type UNSIGNED INTEGER. Examples:

(1) NUMBEE <~— COUNT ELEMENTS Eps ROCMS Fps HCME;
(2) NUMBER <—- COQUNT LONG ECOM := ELEMENT (LENGTH Eps LONG ROONM > 20)
Eps ROOMS Eps HCME;

The translated equivalent of example (1) is:

COUNT <-- O3

LOOP FOF ALL DUMMY1 := ELEMENT Eps ROCMS Eps HOME
DO COUNT <-- COUNT + 1

END LOOP;

NUMBER <=-- COUNT;

18. TRANSLATING BOOLEAN SEARRCH AND SELECT LOOPS

18.1. DEFINITICN OF THE FROELEM

Section 18 is an extension of Section 17.3, in which Boolean
search and select lcops were introduced. A Boolean search and select
lcop appears in SFL source code as an access chain, containing somewhere
within it the word ELEMENT followed by parentheses enclosing a Boolean
expression. The Boclean expression may be arbitrarily complicated,
perhaps itself containing Boolean search and select loops. From this
scurce code, SPL ccmpiles an eftfective procedure for searching among the
elements of a complex, and selecting the first element or all elements
for which the Boolean expression has the value TRUE. The only
restriction is that the Boolean exfression somehow depend on some
property of the element or elements it is surposed to select.

This section is written for two audiences. First, it is directed
tc the programner writing SPL code. It shows him the expansion of his
source code into the effective search and select procedure, written as
explicit lcoop statements. This allows him to resolve any guestions
afout the interpretaticn of his source code, and to pinpoint any
ambiguities or inconsistencies. Second, this section is directed to the
person irrlementing SPL, as a possible means of pertorming the
isplementaticn. 1The translation process described here has as input SPL
source code including Boolean search and select loops, and as output SPL
scurce code from which all Boolean search and select loops have been
elipinated. The translation process also detects all ambiguities and
inconsistencies, and detects when the Boolean expression does not depend
on any property of the elements being searched. One approach to
inplementing an SPL compiler is to implement compilation of explicit
loor statements only, and to include an extra pass which translated
implicit loop statements and search and select loop statements into
their equivalent explicit loop statements.

The translation process described here uses the type-tree formed
from the structure declarations {see Secticr 8) in conjunction with
the source code statement, to determine the appropriate sequence and
nesting ot the loops so that the required chain of data accesses can be
perforred. Where several seyuences or nesting arrangements of the loops
are possible, it shcws all rpossible arrangerents and indicates an
optimal arranyement, in the absence of statistical information about the
data.

The description of the translation preocess is itself composed of
two steps. The tirst step is the development of a "chart" suitable for
ccmputer processing, which characterizes the Boolean search and select
loops. The second step is the interpretation ot that chart as explicit
loop statements in SPL source code, for the next pass of the SPL
ccmpiler. The chart is isomcrphic to the type-trees of the constructs
wnich participate in the loops, with some auxiliary edges and with
directlons assigned to all the edges. This collection of type-trees and
auxiliary edyes is called the "graph" of the loops. It is not suitable
fer computer processing, but is included as an aid to human
ccmprehension.

The notational conventions used throughout Section 18 are that

the upper case letters A, B, C, ..». represent local names or type names
-0t constructs which aprear in the source ccde, and that DUMMY1, DUMMY2,
aoas Iepresent local names, isolated cells, or statement labels auto-
matically supplied by SPLl. No declarations are shown in this section;
the appropriate declarations can be inferred frcm the source code. The
distinction between local names and type names also can be interred from
their pecsition in the source code. For exanmple, if the source code is

A Eps B <~ (C Eps D := ELEMENT (E Egs T = F) Eps G Eps H;
then 4, C, E, and G must be type names and B, D, F, and H must be local .
names. i
18.2. EXAMPLES DEMCNSTRATING SCME OF THE PROBLEMS INVOLVED IN

TRANSLATICN

Note the sirilarity in source code between examples (2) and (3},
and between examples (3) and (4).

Example (1) source code:

A Eps B <-- <€ Eps D := ELEMENT (E Egs D = F) Eps G Eps H;

Example (1} translated equivalent:

RESERVE D;
LCOF FOER ALL b := ELEMENT Eps G Eps H
DO IF E Egs D = F
THEN GO TG DUMMY1
EKD LOOP;
ERFROR; <<required element does not exist>>
DUMKY 1:

A Eps B <~— C Eps D;
Fxample (2) source code:

A Eps B <=- CC Eps D := ELEMENT (E Egps D = F) Eps G Eps
B := ELEMENT (I Eps B = J) Eps K Egs L;

Examgle {2) tramslated eguivalent:

BESERVE D; _
HESERVE H; !
LOCP FOER ALL H := ELEMENRT Eps K Eps L
PC IF I Eps H = J ;
THEN GO TO DUMMY? i
END LOOP; :
ERRGE:
DUMMY1:
LCCP FOB ALL D := ELEMENT Eps G Eps H
DO IF E Eps L = F
THEN GO TO DUMMY2 i
END LOOP; '
ERROF;
DUMMY2:

A Eps B <= (C Eps D;

Exarple (3) source code:

A Eps B <~ C Eps D :
H =

Example (3) translated equivalent:

BRESERVE L;
RESERVE H;
LGCOF FCE ALL H :=
DO LCCP FOER ALL T ELEMENT Eps G Eps H
DO IF E Ers D F
THER GC 90 DUMMYIA
END LOOP;
ERROR;
DUMMYT:
IF I Eps 8 = J Eps D
THEN GO IC DUMMY2
ENC LOGP:
ERRCE;
DuMMYZ:
A Eps B <~ <(Eps D;

ELEMENT Eps K Eps L

Example (4} source code:

A Eps B <—- C Eps D := ELEMENT {(E Eps D

(I Eps H = J Eps D)) Eps G Efs
H = ELEMENT (EXISTS D} Eps K Eps L;

Exanmple (4) translated equivalent:

RESERVE Dj

BRESERVE H;

LOCP FOF ALL H :=

DG LCGOP FCE ALl D
bo IF (E Eps D

THEN GG TO DUMNY)

END LOOP

END LOCE;

ERROE;

DUMMY 1z

A Eps B <~- (C Eps D;

ELEMENT Eps K Eps L
:= ELEMENT Eps G Eps H

= ELEMENT (E Eps D
ELEMENT (I Eps H = J Eps D) Efs K Eps L;

F) & (I Bgs B = 3 Eps D}

E)

F)

Eps G Eps

g

18.3. DEVELQPING A CHART

The translation ot Boolean search and select statements into their
eguivalent explicit loop statements is based on interpretation of a
chart. The chart characterizes the lcops ty describing the various
dependencies involved in the search and selecticn process. There are
six types ot dependencies, two of which are discussed here, two are
discussed in Section 18.11, and two are discussed in Section
18. 16. 3.

The sequehce of accesses described by an access chain starts with
some kncvn censtruct which is identified by its local name. The next
access is of the first-order descendant of the known construct, and the
next access is of its descendant, etc. In this context, the descendant
of a structure-pointing atom is the structure to which it points. Each
construct after the known construct is said to "depend for access" on
its first-crder ancestor., Dependelice for access is one of the
dependencies shown in the chart.

The selection of one element among the many elements of a complex
is based on sorme property of that element. The properties of an element
are the values stored in the atoms within the element. The atoms may be
either first-order or higher-order descendants of the element. The
elepent is said to "depend for selection" ¢n some of its descendant
atoms. Derendence tor selection is another of the dependencies shown in
the chart.

Source code from example {1) cf Secticn 18.2 is used in
describing the development of the chart. The source code is repeated
here, as follows:

A Egs B <~ C Eps D := ELEMENT (E Egs D = F) Eps G Eps H;

A derends on B for access, C depends on D for access, D depends on G for
access, and G derends on H for access. D also depends on E and F for
selection.

In the chart, each of the napes 3,B,C,L,E,F,G,R is used as a
heading ror a row R(i) and for the column C({i) with the same subscript.
The chart subsequently may be rearranged so that the names head
different rows and columns, but all rearrangements are performed such
that a name alvays heads a row and coclumn with equal subscripts. If
name N1 depends on name K2 for access, then the letter A is entered in
the chart in the intersection of row R(N1) and column C{(N2). If nanme
N1 depends on name N2 for selection, then the letter S is entered in the
chart in the intersection of row R(N1) and column C{N2). Fig. 18-1
illustrates the chart for the example source code.

Fach row in a properly formed chart contains either no letter A or
ope letter A. If the name heading the row aprears only in the rightmost
Fosition of one or more access chains, then the row will contain ne
letter A. If the name heading the row arppears in some access chain as a
descendant construct, the row will contain exactly one letter A, because
in the trees formed by structures each construct can have only one first
crder ancestor, and therefore deperd on ornly one other construct for
access. A single statement in the source code may contain several
access chains which mention different instances of the same type of
construct. Althouygh the type names are identical, the different
instances are distinguished {by examination of the local names at the
rightmost ends of the access chains}) and each instance heads a separate
row and column in the chart. If any row cantains more than cone letter
A, and if the narme heading the row is the type name of a construct, then
that type name reters to different instances of the construct. The
instances should te distinguished. If any row contains more than one
letter A, and if the name heading the row is the local name of a
construct, then there is an inconsistency in the source code. If two
separate rows R(i) and R(Jj) are headed by identical type names and the
letter A is in the same column for both rows, then the two identical
type names possikly may refer to a single instance c¢f a construct. A
ccmpile-time warning message should be issued. The rows R{i) and R(J)
and columns C{i) and C{j) should be merged if they correspond to a
ccmplex or to an atom. But they should not ke merged if they correspond
to an element. The SPL programmer may want to select different elements
ot the same complex in several different loops within a single
statement.

If any row-column intersection of the chart contains more than one
letter (either A cr S), or if the main diagonal is not empty, then the
scurce code is inconsistent.

Once tormed, there must exist at least one arrangement of the chart
{simultanecysly rearranging row R(i) to R({j) and coclumn C(i) to C({j)) in
which all the A's lie in the upper-right triangle. Fig. 18-2 shows
such a rearrangement of the chart of Fig. 18-1. This arrangement nust
exist because SPL structures are trees: the sequence of accesses from
ancestor to descendant constructs 1s mirrored in the chart as a sequence
of accesses from the name heading the bottem row (or rightmost column)
to the name heading the top row (cr leftmost column). The arrangement
of all A's in the upper—right triangle is a consequence of the ancestor-
descendant relaticn being nonreflexive. If no such arrangement exists
for some particular chart, the scurce code from which the chart was
formed is inconsistent. 1In the subseguent discussion, the only chart
arrangements considered are those in which the A's lie in the upper-
right triangle.

The chart jis derived in several steps. An original chart is drawn
showing all the dependencies for access and dependencies for selection
which appear in the source code. In succeeding steps the dependencies
which are nct relevant to the loops gradually are eliminated from the
chart, until tinally an ictreducible chart is chtained. The equivalent
explicit loop statements are deterrined frcm an interpretation of this
irreducible chart.

The charts tcllowing the original chart are derived successively
fror their predecessors by deleting both a row and its corresponding
cclumn it either the row is empty or the cclumn is empty. The process
is repeated until no more deletions are possible. Figs. 18-3(a}) and
18~3(b) show two steps in reducing the chart of Fig. 18-2. The
chart of Fig. 18-3(b) is irreducible.

A row Lkeing empty means that the construct does not depend on the
cther constructs, either for access or selection. The construct is
ccnstant relative to the search and select loops; therefore its
inclusion in the chart is not relevant to the goal of characterizing the
lcops. A column fteing empty means that no other construct depends on
this one. While the construct itself is derendent con the result of the
search and select loops, its inclusicn in the chart is not relevant to
the goal of characterizing the loogs.

Even for an irreducible chart, several arrangements may be possible
without violating the restriction that the A's remain in the upper-right
triangle. Fig. 18~4 shows an examgple,

The interpretation of a letter lying in the upper-right triangle of
a chart 1s that the named construct heading the column can be deternined
betore the named construct heading the row. Each row containing at
least one letter S5 corresponds to an element ot a complex for which a
search and select loop is needed. Each row containing at least one
letter S must have at least one letter S in the lower-left triangle, if
the source code is errcr-tfree, OQOtherwise, the selection of the elements
could ke determined before the elements were accessed, so the search and
szelect loop would be unnecessary. Similarly, if a row containing at
least one letter S is deleted during the derivation of an irreducible
chart, the search and select loop corresponding to the row is
unnecessary, indicating an error in the source code.

18.4. DEVELCPING A GKAPH

Fig. 18-5 shows the development cf bcth the chart and graph for
the source code from example (3} of Section 18.2. Fig. 18-5{(a)
shows the original chart formed from the source code, rearranged so that
all the A's lie in the upper-right triangle. Fig. 18-5(b) shows the
type-trees associated with the source code. The type-trees are drawn
with heavy lines. Also shown in Fig. 18-5(b) are some auxiliary edges
drawn with light lines. The auxiliary edges represent the connectjon
between the elements of a complex and the atoms which participate in
determining the selection of the elements. A direction is assigned to
€ach of the edges, going from a given construct to another construct on
which it depends. Thus the direction always is upward on the edges of
the type-trees, indicating that the lover ccnstruct depends on the upper
construct for access. The direction always is from an element to an
atom on the auxiliary edges, indicating that the element depends on the
atonm for selection.

Fig. 18-5(c) shows the irreducible chart detived from Fig.

18-5{a). After all irrelevant rows and columns have been eliminated,
only the central part of (a) remains in (c). Fig. 18-5(d) shows those
portions of the type-trees and auxiliary edges which still remain in the
jrreducible chart (¢). The irrelevant portions of (b) were eliminated
tc form (d)-. Fig. 18-5(d) is called the graph of the search and

select loops generated by the source code.

Each row or cclumn in the chart corresgponds to a ncde in the graph.
Each letter A or S in the chart corresgonds to an edge in the graph,

The letter A corresponds to an edge in the type~-tree. The letter $
ccrresponds to an auxiliary edge. If the letter A or S is in the
intersection of row R(i) anpd cclumn C(j), the direction of the
corresponding edge is from node i to node 1.

Cne of the requirements for well-formedness of each Boolean search
and select loop is that the selection depends on some property of the
elements being searched. Except where the source cocde uses EXISTS
(discussed in Section 18.11), this reguirement is shown in the graph
by requiring that there exist at least one auxiliary edge pointing fronm
the element-node to a descendant node.

18.5. INTERFRETING A CHART TO DETERMINE LOOPS

Each row containing at least one letter 5 corresponds to a
Boolean search and select loop. The scope and nesting reguirements of
the loop are shown by drawing an isosceles right triangle on the chart.
The base of the triangle lies on the main diagonal, and the apex
includes the leftmost letter S in the row. Fig. 18-6 shows the same
chartt as Fig. 18-5(c), redrawn with the triangles included. 1In Fig.
1&—-6, the D-E loep of Fig. 18-5(d) is seen to be nested within the
H~I~J loop. This corresponds with the translated equivalent code in
exarple (3) of Section 18.2.

Since the row headings and column headings appear in the sanme
crder, the triangles merely are a gecmetric way of projecting forward
the scope of a loagp. A loop determining the selection of an element
appears as some S$'s in the row headed by the name of the element. The
maximum scope of the loccp is the column containing the leftmwost S in the
rcw. The column is projected to its corresponding row by travelling up
the cclumn to the main diagonal.

Sometimes when the irrdeucible chart tirst is developed, the
arrangement indicates nesting of the loogs. A rearrangement of the
chart may show that nesting actually is unnecessary, but that disjoint
loops executed sequentially are sufticient. See Fig. 18-7 for an
example. Disjoint sequential loops are moIe economical than nested
loops, and should be used wherever possible. Rearranging the chart is
discussed in the sectiocns following Section 18.5.

If the selection of elements is determined entirely by the contents
ot data atoms (not structure-pointing atoms, or other elements or
ccnstructs), then it always is possible to arrange the chart so that the
triangles are either disjoint or properly nested. Rearrangement to
achieve proper nesting is possible because data atoms terminate their
access chains, SO there is no constraint preventing a data atom from
being shifted upward-leftward in the chart. Fig. 18-8 shous two
arrangements of a chart, one with improper nesting and one with proper
nesting. Atom F is shifted to achieve proper nesting.

However, if the selectjon of elenments is determined partly by the
contents of struycture-pointing atoms, proper nesting of the triangles
sometimes may not be possible. Proper nesting always is possible if the
contents of the structure-pointing atoms are used as data only —-- names
to he tested and ccmpared with other names. But if the contents of the
structure-pointing atoms are used both as data in selecting elements of
one complex, and as part of the access chain to another complex which
must be searched simultanecusly, then proper nesting may not be
rcssiblea

Fig. 18-9 shows an example where profer nesting is possible, and
Fig. 18-10 shovs ap example where [roper nesting is not possible. In
both examples, the content of a structure-pointing atom is used both as
data and as part of an access chain.

The impossibility of proper nesting of the triangles can be used to
detect an obscure scurce code error which ctherwise would be undetect-
able. Although the graph in Fig. 18-10 seems to indicate that each
selection of an element depends on some progerty of that element, this
actyally is not so. The source code has an unhecessary search and

select loop The error mav be seen

3 h a ~R ~E DI
...... loop. The error nay seen in the source code of

L ilYe 10— Ju

ty observing that, when D is selected, the content of the structure-
Fcinting atom E = DUMMYZ = the content of structure-pointing atom I.
Therefore, F Eps £ could just as well have been writter F Eps I.

But I is a ccnstant relative to the loops, so F Eps I also is a
constant relative to the loops, and there is no basis on which to select
an element DUMMY1 Eps H. The errcr is mcre obvious in Fig. 18-11,
where the same source code is used, except that F Eps E is rewritten
as [Eps I.

Imnproper nesting also may arise if the Boolean predicate EXISTS,
applied to an element, is used to determine the selection of an element
in another complex. This use of EXISTS is discussed in Section 18.11.

Proper nesting not only involves the triangles shown in Fig.

18-8, but also sutsidiary triangles with afpexes including the other

S's in the lower—lett triangle of the chart. The chart arrangements of
Fig. 18-8 are redrawn in Fig. 18-1Z, showing the subsidiary

triangles drawn with light dotted lines.

18.6. CLUSTERING S's ABOUT THE MAIN DIAGONAL

After each rearrangement of the chart for any reason other than the
one discussed here, the chart should be rearranged again to improve the
clusteriny of the S's in the lower-left triangle. Shifting the S's in
the lower-left triangle of the chart closer to the main diagonal, has
the etfect of reducing the number of accesses performed during each
cycle of the corresponding loop.

The shittiny described here has limited goals, to keep this part of
the operation sicple. Cnly minor lccal performance improvements can be
expected from this shifting; other rearrangement techniques described in
the following sections produce the major performance improvements.

Fig. 18-13 shows an exarple of poorly clustered and well
clustered chart arrangements. Only rows which dc¢ not contain S's are
rearranged. The chart is partitioned by the rows which contain S's.
Each partition ot consecutive rows, none of which contain S's, is
rearranged internally. The partition as a uwhole maintains its same
position in the chart. In Fig. 18-13(a) there are two partitions,
{¢,1,E,J,F,G) and (M,K,N). -

In addition to contining rearrangement within a partition, no
change is made in the relative order of the columns containing S's. The
relative order otf columns H, E, M, and N is the same in Figs. 18~13{a)
and 18-13(h).

18.7. PROPAGATING CEPENDENCY

The original chart formed trom the source code does not, in
general, have all the A°s in the upper-right triangle. 1If there are
errors in the scurtce code, they should be detected as soon as possible,
in order to make the error messages most meaningful to the SPL
programser. Therefore the chart should be rearranged immediately to put
all the A's in the vpper—right triangle, so that a source code error
which prevents this rearrangement can be detected before the irreducible
chart is derived.

Once the irreducible chart has been derived, the arrangement still
pay not permit pi1cper nesting of the triangles. Proper nesting always
can be achieved by shifting data atoms upward-leftward, as described in
Secticn 18.5.

The guestion then arises: What other chart arrangements are
possible? The first derived arrangement of the irreducible chart may
not be the mest desirable arrangempent. Rearrangement may produce
greater efficiency of execution, or a different order in which elements
are selected.

An exhaustive search for all valid rearrangements cf the chart
would be a very expepsive ccmputation at compile time, of the order of
N! if there are N rows or columnns. This section describes how to obtain
the reievant information without any actual rearrangement, using an
invariant groperty of the chart.

A letter A or 5 in the chart, say at coordinates (i,j), indicates
that construct i depends directly cn construct j. This depepdency can
be propagated to all the constructs on which construct j depends
directly, etc. Eventually one or more paths are created leading from
ccnstruct i to all the other constructs on which it depends, either
directly or indirectly.

In this section we are interested in fropagating dependencies only
to other constructs whose identities already have been determined by
access and selection. Accordingly, paths in the upper-right triangle of
the chart are restricted to remaining in the upper-right triangle. Fig.
16~-14 shows an example of the projagation of dependencies. Arrows in
the chart trace the paths of fpropagation.

A path 1s inpitiated from each letter A or 5 in the chart. The patbh
starts propagation along the columr ccontaining the letter.

Wwhen propagating along a column C{i), follow the column to the main
diagopal, and then start propagation rightward along row R(i). The
presence ot other letters in that column is a cocincidence which has nc
effect on the path of fpropagation.

when propagating along a row R{i), start a path propagating along
each cclumn C(j) such that i < j and such that there is a letter A or S
at coordinates (R{i),C(3)).

18.8. SHIFTING DATA ATCMS TO ELIMINATE UNNECESSABY NESTING OF LOOPS

Fig. 18-15 shows twc chart arrangements which differ only in the
position ot data atcm H. In Fig. 18-15(a), the loops are nested
unnecessarily, since shifting H downward-rightward permits the
sequential loop executicn shown in Fig. 18-15(b). Shifting Y does not
changye the order in which elements are selected, but does produce
greater etficiency of execution.

This situation can be detected by observing that the path of
dependency propagation, starting from the letter S at coordinates (G,bH),
travels above the upper lcop corresponding to row D, yet does not depend
cn loop D. Therefore data atcm H can be shifted downward-rightward.

H is shifted to a new fposition such that column H is immediately to
the left ot column C(j), where C(Jj) is the leftmost column such that
there is a letter & or S at coordinates (H,C(j)). In the example,

C(jy = column G; column H is shifted immediately to the left of column
G, and row H immediately above Tow G. Finally, H is shitted upward-
leftward the minimal number of positicns necessary to reestablish proper
nesting. Proper nesting must be established for the subsidiary
triangles, as well as for the triangles indicating loops. The final
upward-lettward shift is not necessary in the example of Fig. 18-15.

18.9. INDEPENDENCE OF LCOPS EXECUTED SEQUENTIALLY

As described in Section 18.5, two disjcint triangles im a chart
correspond to two separate search and select loops which are executed
sequentially. If the loops are independent, either one can be executed
before the other. If one ot the lcops depends on the other for
the selection of an element, then either the derendent
loop is executed second or else a wasteful nesting of the loops must be
used. These conditions may be determined from the chart as follows.

Iwo independent loops A and B produce two arrangements of the chart with
disjoint triangles. In one arraungement triangle A is above triangle B,
in the other arranqgement triangle B is above triangle A. But one lcop
dependent on the cther produces one chart arrangement with disjoint
triangles (the starting assumption of this discussion} and one chart
arrangement with nested triangles.

Given a chart arrangement with twc dis=joint triangles, independexnce
ot the loops can be determined from the paths of dependency propagation.
The loop corresponding to the lower triangle cannot possibly depend on
the loop corresponding to the upper triangle. Therefore the loops are
independent if and only if the upper loop does not depend on the lover
loog.

lLet E(upper) be the row corresponding to the upper loop, and let
R{lower) be the row corresponding to the lower loop. Follow the paths
ot dependency propagation from each of the Jletters A or S in row
R {upper). If any of these paths intersect the main diagonal at
coordinates (R{lower),C(lower)), then the upper loop degends on the
lower 1lGOF.

Fig. 18-14 shows an example of one loop depending con another
locop. Fig. 18-16 shows an example of independent loops.

18.10. MUTUAL DEEENDENCY AMONG NESTEL LCOES

After data atoms have been shifted dcwnward-rightward as described
in Section 18.8, any nested triangles remainirg in the chart
ccrrespond to mested locps, where the inner loop derends on the outer
loop. The inner loop may depend on the ocuter loop for access, for the
selection of elerents, or for both.

If the ipper loop depends on the outer loop for access, it is
impossitle to rearrange the chart such that the relative positions of
the two lcops are interchanged. Fig. 18-6 shows an example where the
inner loop depends on the outer lcop for access. The path of dependency
starting from the letter A in row [eventually intersects the main
diagonal at coordinates (H,B).

If the inner lcop does not depend on the outer leoop for access, the
relative positicns of the two lcops can be interchanged. The resulting
chart arrangement shows disjoint loops vhich are executed seguentially,
if what tormerly was the outer loop does not depend on what formerly was
the inner lcop. Rearranging Fig. 18-14(b) to Fig. 18-14(a} is an
exanmple.

The resulting chart arrangement again shows nested loops, if the
two loops are mutually dependent. Interchanging the inner and outer
nested loops alters the order in which elewents are selected. Fig.
18-17 shows a sinple example of mutual dependency, and Figs. 16-18
and 18-19 show some more copplicated examples.

Mutual dependency of nested loops is detected by a slight modifica-
tion of the method of following dependency propagation. The method
described in Section 18.7 avoids loops in the paths of propagation by
restricting all path extensions to the ugpper—-right triangle of the
chart. All paths starting from the upper-right triangle must trend
downward, so no loops can be formed. Similarly, all paths starting from
the lower—-lett triangle must trend upward, all paths ending in the
upper—-right triangle must trend rightward, and all paths ending in the
lower-left triangle must trend leftward. This is a simple conseguence
of the fact that vertical paths are directed toward the main diagonal,
while hcrizonta]l paths are directed away from the main diagonal.

There are two modifications to the method described in Section
18.7-. 1he first is to allow loops in the fpaths of dependency
propayation, by allowing the paths to extend leftward from the main
diagonal alcng rows which contain S's in the lover-lett triangle. The
second modification is to separate those paths which happen to coincide.
Coincident paths are distinguished by redrawing ther as smooth arcs, an
arc from each letter A or S in a column C{i) to each letter A or $ in
the ccrresgonding row B(i), for all i. Fig. 18-20 shows some of the
previous charts redrawn with smooth arcs.

The chart shows mutually dependent nested loops which can be
interchanged, if there exists a closed uniformly-minimal-S path which
passes through two or more S*'s. A minipal-S path from a starting letter
A or S to an ending letter A or $§ is defined as a path from the starting
letter to the ending letter, such that no other path passes through
fever S*'s. A closed minimal-S path is defined as a minimal-S path which
starts and ends at the same letter. A closed unitormly-minimal-S path
is defined as a closed minimal-S path starting (and ending) at any
letter A or S through which the path rasses.

Fig. 18-20{c) shows a closed uniformly-minimal-S path. Fig.

16-20 (b} shows a closed miniwmal-S path which is not uniformly-minimal-
5. The path starting at the letter S at coordinates (G,E) is minirmal-s.
But if the other letter S at (D,F) or if either of the A's is considered
the starting letter, the path is not minimal-S. In this example, the
lcops corresponding to rows G and D are mutually dependent, but they
cannot be interchanged because loop G depends on loop D for access.

18.11. "EXISTIS"

The Boolean predicate EXISTS may ke used to test for a nonzero
value in a structure-pointing atom, cr for the existence of an element
in a complex. Referring back to the example declaration of Fig. 4-1,

IF EXISTS NEIGHBOF := . HCUSE ON LEFT Eps HOME
THEN GG TGO BLEHA;

conditionally assigns the locan name NEIGHECR and tranches, if the
structure~-pointing atom HCUSE ON LEFT contains a nonzero value.

EXISTS may be used in two ways to test for the existence of an
element. The first of these,

IF EXISTS A := ELEMENT (B Eps A = C) Eps D Eps E
THEN -
ELSE — "

Frevents the system error exit ERFOR ftrom keing executed, in the event
that the Boolean exfpression has the value FALSE for all elements of
ccmplex D. Lecal name A is assigned only it the specified element
exists.

Fig. 18~-21 shows an example of the seccend way in which EXISTS may
Ee used. This is another form of wmutual dependency, where the selection
of an element of one complex (element K of complex ¢ in the example)
depends on the existence of a specified element ot another complex
{(element L cf complex P in the example). The second element {L) must in
turn depend on the tirst element (K) either for access or selection, in
order that there ultimately be an eifective selection criterion for the
first element. In Fig. 18-21, XK depends on the existence of L, and L
is accessed through K. 1In Fiy. 18-22, K depends on the existence of
1, and the selection of L depends on the ccntents of atem ¥ belonging to
K. In Fig. 18-23, the selection of elements never can fte resoclved,
because the selection ot each element depends on the previous selection
ot the cther element.

The letter E has been introduced into the chart in these examples,
tc indicate that the selection of an element of one complex depends on
the existence of a specified element of ancther complex. The E may be
in the lower—left triangle, as in Fig. 18-22(a), or in the upper-right
triangle, as in Fig. 18-22(b). The scope c¢f the loop corresponding to
the E must te expanded until it includes scme other loop with an
etfective selecticn criterion. The scope is expanded upward in the
chart if the E is in the lower—left triangle, or downward in the chart
it the E is in the upper-right triangle. 1In either case, the column
C{j} containing the E is projected to its corresponding row R(j)-

Fig. 18-24 shows an exawmple which will be used to describe the
method of expanding, scopes. A square is drawn on the chart for each E,
such that the E is in one corner of the square and the square is
bisected by the main diageopal. Say the E is located at coordinates
{E(i),C(j)) corresponding to a loor cn row R{i). Row R(j) also
correstonds to a lecop, unless there is an error in the source code.

If there are no E's in row R(j), then R{j) must contain at least
one S which is strictly to the left of the square. This guarantees that
there is an effective selection criterion, which can be propagated back
to row R(i). The square should be expanded the minimal amount necessary
to achieve proper nesting, and include the S in row R(j).

If there are E's in rov R(Jj), their squares should be expanded
first, and then the given square on row R(i) should be expanded the
rinimal amount necessary to include {or coincide with) all the expanded
sguares con row R(j). When expanded, the square on row R({i) must include
at least one column to the left of its original boundaries, unless there
is an error in the source code.

Finally, the scope of the loof ccrresponding to row R{i) is
determined by a square of the minimal size necessary to include any S's
in row R{i) in the lower—-left triangle ¢f the chart, and tc include all
the expanded sguares corresponding -te E's in row R({i). This square,
like all the squares described above, must ke drawn so that it is
tisected Ly the main diagonal.

An exception to this method is the case where a numeric search and
select loop provides the effective selecticn criterion. Numeric search
and select loops depend only on themselves for selection; other lecops
which depend on them for existence do not necessarily require expansion
leftward of their scopes. TFig. 18-25 shows an example, with an N on
the main diagonal indicating a numeric search and select loop.

When tracing paths of propagated deipendency or searching the chart
tcr clcsed unitorsly-minimal-S paths, E's are treated the same as S's.
N's are a special case., Since they lie in the main diagonal, they
terminate all paths leading to them. Charts really are not helpful in
the translation of pumeric search and select loops. Numeric loops can
te omitted trom the charts if the exception mentioned in the paragraph
above 1is recognized.

18.12. STARTING THE SEARCH AT SCME OTIHER EIEMENT

fig. 18-26 shows abp exanmple where the search does not necessarily
start at the first element of the complex. The search for element D
starts after selecting element G of the same complex. The effect on the
relative order in which the loops must be executed is the same as though
e¢lement D depended for access on element G. Therefore the chart
contains the letter A at coordinates (D,G). The graph shows the
simulated access as a Lkroken line.

18.13. SCUBCE CCULE EKKCES NCT DETECTAFLE BY CHART

Atheists will be yratiried to learn that loop analysis by chart is
¢t owniscient. T1here are some source code errors tor which no
detection method has (yet) Leen develcped., Fig. 18-27 shows an
exarple wnere logicelly independent Boolean search and select loops have
Leen coded in such a manner that they are wutually dependent. Fig.
18~%8 shows an example where one of the Boclean ractors in a Boolean
term does not depend on any property of the element being selected. A
third example, as rollows, is selt-contradictory.

A Fps B <-- (Eps D

:= ELEMENT (E Eps D = F) Eps G
Eps ELEMENT (-~ EXISTS D

) Eps H Eps I;
Special tests could be devised to detect each of these simple examples

ot souyrce code errors, but not general tests to detect the same type
errors epkedded in very complicated source code.

18.1d4. SFECIFYING CRDEEK OF EXECUTICN

The relative order in which numeric or Boolean search and select
loops are to be executed can be specified Ly the SPL programmer. The
crder of some or all ot the loops in a sinyle statement is specified by
unsiyned inteyers, enclosed in parentheses and rreceding the word
ELEMENT. Fiy. 18-29 shows an exanmile.

The loops whose order is specified need not ke well-ordered.
Several of the unsigned integers may be egual. The order of executing
these locps is unspecified with respect to each other, kut all these
lcops must follow any loops specified with a lower integer, and precede
any loops specified with a higher integer. The loops whose order is not
specitied in the source code may be executed before, between, or after
the specitied loops, subject of course to accessing restrictions.

In the absence of any of the Lreviously discussed constraints, the
loops are executed in the order imposed by other considerations in the
source code: heirarchy ot phrases in parsing an exgression, left-to-
right order, etc.

18.15. TRANSLATEL CODE

Examination of the chart is made for the purpose of translating SPL
source ccde containing Boolean search and select loop statements, into
equivalent SPL source code containing only explicit loop statements.

The relative positicns of triangles in the chart determine the relative
crder of executicn and the nesting of the explicit loops. Other
statements appear in the translated equivalent code, as well as the loop
statements; Secticn 18.2 contains some examjples. This section

descrilbes what other statements are needed, and where they are
(csitioped with respect to the explicit locp statements.

18.15. 1. SIKPLE LGCPS

Section 18.15.1 describes the code to select a single element ot
a complex. The selected element is the tirst for which the Boolean
expression in the source code has the value TRUE. There must not bhe
mutually dependent interchangeakble loops, and the source code must not
contain the ward EYISTS. Tramslation of source code containing mutually
dependent interchangeakble loops or containing the word EXISTS is
descrited in following sections.

Fig. 18-30 shows example source code of the kind described in
this section. The outer triangle in the chart corresponds to the outer
nested loop statement. The two inner disjoint triangles correspond to
the two inner nested locps, which are executed sequentially. The loop
corresponding to the lower-tright triangle is executed betore the loop
corresponding teo the uprer—-left triangle.

The local names of the selected elements are used as bound
variables for describing the properties of the elements. But they also
pay be used in sulseguent code in the same manner as any other local
names: to name instances of constructs (elements, in this case) whose
identities already have been deterrined. Therefore these local names
are reserved outside the outermost lcop statement.

The code within the scope cf each of the loop statements consists
ot all the inner nested loop statements (if any), followed by the
Boolean test. If the Boclean test is successful, a branch is executed
tc code outside the scope of the loop. Immediately following the end of
the loop is arp ERRCK statement, indicating a programming error if none
of the elenents have the property specified in the Boolean test.
Following the ERROR statement is the tranch destination for the Boolean
test, and then whatever subseguent code is appropriate. The executable
code of the source statement (A Eps B <-- C Eps D 1in the example)
fcllows the last outermost loop statement.

18.15.2. MUTUAL DEPENLDENCY FOR SELECTION

If several nested loops are mutually dependent in a manner such
that the selection cf elements from each lcop depends on the selection
ot elewments rrom all the other loops, yet ncne derends for existence on
any ot the others, then the Boolean tests and ERROR statements of the
loops are merged. Fig. 18-31 shows an examile. The two Boolean tests
are "anded" toyether inside the innerwest nested loop, and only a single
ERXRCE statement occurs outside the outermost nested loop.

The Boolean test corresponding to the innermost loop is executed
before the Boolean test corresponding to the outermost loop. This is
the same crder of execution as the order shown in Fig. 18-30. It
reduces possible side eftects resulting frcm executing the tests,

18.15.3. M"EXISTS"™ AS A SELECTICN CRITERION

If the selection of an element of one complex depends on the
existence of a specitied element of another complex, there is no Boolean
test for existence. The only Boolean test within the nested loops is of
the etfective selecticn criterion tor the element of the second complex.
Except tor the altsence of one Boolean test, the tramrslated equivalent
code is the same as tor mutual dependency with interchangeable loops.

Fig. 18-32 shows an example using EXISTS. The only Boolean test
inside the innermcst nested loop is tcor the selection of element L. If
the test succeeds, execution branches outside both loops, thereby

etfectively selecting element K. Fig. 18-33 shows a more complicated
example.

16,15. 4, CONCDITICNAL STATEMENTS USING WEXISTS"

If a conditicnal statement tests for the existence of a specified
element, the code tor the ELSE condition substitutes tor the ERROEK
statement following the last outermest loopr. In other respects the
translated equivalent code is the same as previously described, Fig.
14-34 shcws an exanmple.

18,16, SELFC1ING ALL ELEMENTS

T6.16. 1. INTEEPBETATICN CF THE WORLD "“ALLY®

The weord ALL appearing in an access chain implies the existence of
a loop for seguerncing over the elements cf a complex. If no loop would
ke compiled in the absence of the word ALL, then SPL compiles a loop
specitically in response to recognizing the word ALL. This is called an
implicit loop. It is describted in Section 17.2.

But it the word ALl is applied tc elements chosen by a Boolean
search and select loop, SPL does not complle ancther loop it response to
recoyniziny the word ALL. The loop which performs the selection of
elements also is used to sequence over all the selected elements. The
scope of the locp is expanded to include all the cperations (accesses,
tests, stores, other loops, etc.) which depend on the elements selected
by the lcog.

Fig. 18-35 shows a simple exanmple cof Poolean search and select
laops, wnere all the elements are selected rather than just the tirst
elerent. Althotyh the trianyles in the chart are disjoint, the loops
are nested. Tne local names ot the elements are not reserved (as they
are in Fig. 18-3C), there are no EkROR statements, no branches, and
the executalle ccde 15 inside the innermest nested loop.

18. 16. 2. RESTRICTIONS CN THE USE CF "ALL"

some uses of the word ALL in access chains are intrinsically
meaningless. These souzce code errors occut in sitcaticns like the
folliowing.

First, observe that:

(1) A Eps PREFACE ELEMENT Eps B
<—=— € Eps P := ELEMENT (E Eps L = ¥ Eps G) Fps H
Eps G := ELEMERT (I Eps G = J) Eps K Eps L;

is completely synhonymous with:

(2y A Eps PREFACE ELEMENT Eps B
== C Eps I := ELEMENT
(E Egs T = F Eps G := ELEMENT (I Eps G = J) Eps K Eps L)
Eps K Eps G;

Next, modify the source code to select all elements G. Then:

{3) A Eps PREFACE ELEMENT Eps B
<-- € Eps [:= ELEMENT (E Eps D = F Eps G) Eps H
Eps ALL G := ELEMENT (I Ers G = J) Eps K Eps L;

is completely synonymous with:

() A Eps FREFACE ELEMENT Eps B
== C Eps [:= ELEMENT
(E E3s D = F Eps G := ELEMENT (I Eps G = J)} Eps K Eps L)
Eps H Eps ALL G;

In examples (3) and (4), the word ALL appears in the access chain for C.
The access chains tcr € and F coincide, starting at G. But to the lett
01 G, the access chains are distinct. Examples (3) and (4) are not
syncnymous with:

(5) A Eps PEEFACE ELEMENI Eps B
<-- € Eps [:= ELEMENT
(E Exs b = F Eps ALL G := ELEMENT (I Eps G = J) Eps K Eps L}
Epys E Eps G,

Example (5) is meaningless; the socurce code is in error.

By nodifyinhg the source code ct example (5) into a Boolean implicit
loop, the source code once ayain 1is meaningful:

{6) A Eps PHEFACE FLEMENT Eps B
== C Eps I := ELEMENT (E Eps D =
ANY OF F Eps ALL G := ELEMENT (I Eps G = J} Eps K Eps L)
Eps H Eps G,

which 1s comgletely synonymous with:

(7) A Eps PREFACE ELEMFNT Eps B
{~- C Ers [:= ELEMENT (E Eps U = ANY GF F Eps ALL G) Eps H
Eps G := ELEMENT (I Eps G = J) Eps K Eps L;

Further moditication of examples (6) and (7) may lead to two more
errors. The wotd ALL in examgle {6) or (7) cannot be moved to precede
the other occurrence of the letter G, as in:

{8) A Eps PREFACE ELEMENT Eps B
-~ € Efd C := ELEMENT (E Epd D = ANY CF F Eps G) Eps H
Eps ALL G := ELEMENT (I Efs G = J) Eps K Eps L;

The error in examjple {8) is sirmilar tc the error in examrle (95).

Example (B) has nc word ALL in the access chain for the Boolean implicit

lcop on F, since the access chains for C and ¥ do not coincide until G.
The other error arises if the source code of example (6) or (7) is

modified so that the word ALL precedes both occurrences of the letter G,
as in:

(9) A Eps PREFACE ELEMENT Eps B
<-- ¢ Eps L[:= ELEMENT (E Eps [= ANY CF F Eps ALL G) Eps H
Eps ALL G := ELEMENT (I Eps G = J) Eps K Eps L;

At most cone word ALL can be applied to a sirgle local name for elements,
within a single statement. In example (9), the two cccurrences of the
singyle local name G each are preceded by the word ALL. It is
meaningless to attempt to use more than one criterion for the selection
of elements G.

However, the elements ot a single complex may be selected by
several criteria, if the resulting selecticns are assigned different
lccal names. Exasple:

(10) A Eps PREFACE ELEMENT Eps B
<~-- { Eps [:= ELEKENT (E Eps T =
ANY OF F Eps ALL X := ELEMENT (Y Ers X = 2) Eps K Eps L)
Ers H Eps ALL G := ELEMENT (I Eps G = J) Eps K Eps L;

16.16.3. KEPRESENTING "ALL" IN CHART AND GEKAPH

As a computational aid in translating the word ALL into its
equivalent code, using the chart appears to be of marginal benetfit.

Unce a chart has teen developed as described in the preceding sections,
with the word ALl ignored, the modifications necessary to account for
the word ALL can ke computed in a straiyhtfcrwaxd manner by direct
exarmination cf the scurce code.

However, both the graph and the chart are used in this section to
help descrilte the required modificaticns. Fig. 18-36 shows the graph
and several charts of the example source code used in this section. The
exawmple bas three cccurrences of the word ALL, for selecting all
elements named P, T, and Al. Each occurrence of the word ALL must be
distinguished. We will do so by assigning them subscripts: ALL(a).,
ALL(b), and ALL (c). :

The graph shown in Fig. 18-3¢€(a} depicts the entire source code
statement, rather than just the loops invoulved. The various relations
of operations ugpon the constructs have been superimposed on the graph,
tc help clarify the complicated processes describted in the source code.
Each occurrence of the word ALL is included as a separate node on the
graph, as though it were part of the access chain for the descendant
ccnstructs. The elements selected by the loops, P, T, and Al, are abpove
the nodes lateled ALL. Each element selected and assigned local nare P,
T, or Al causes [rocessing to be perfcocrmed on its descendant constructs.
The word ALL causes selection of many instances of @, V, and AJ as well
as many instances ot the constructs directly descending from ALL.

Each occurrence of the word ALL also is included in the original
chart, shcwn in Fig. 18-36(b). The dots in the chart are just a
visual aid. The criginal chart is rearranged in Fig. 18-36(c), so
that all the A's lie in the upper—-right triangle. The erxor described
in example (9) of Section 18.16.2 would show in the chart as two rows
headed by the word ALL, both containirg A*'s in the same column.

Fig. 18-36(c} alsc shovws some paths of dependency propagation, as
descrikted in Section 18.7. The paths are drawn with solid lines.

Crly those paths are shown which intersect the main diagonal at a row
and column headed by an occurrence of the word ALL. Each intersecticn
of these paths with the main diagcnal correspronds tc some construct
which depends on all the specified elements ot a complex being selected,
rather than just cne of the elements of the complex. If the path bends
downward (going frcm row to column) only at letters A, then the
construct is accessed through the word ALL. The upper-leftmost such
constructs in the chart are the lefimost constructs of their respective
access chains.

Fcr example, consider the path starting at the main diagonal at
cocrdinates (M,M). The path bends downward at the letter A at
coordinates (k,L). At row L it diverges irto two paths. One of these
fFaths leads to the main diagonal at coordinates (ALL(b),ALL(b)) only
through A's., Theretore there is an access chain trom construct M to
word ALL (k). The other path bends downward at the letter S at
coordinates (L,N). Theretore the cther path does not correspond to an
access chain.

Since there is no path which tends downward only at A's and which
leads to the main diagonal at coordinates (M,M), censtruct M must be
leftmost in its dccess chain. This can be veritftied by examination of
the source ccde cf Fig. 18-36 and the graph in Fig. 1718-36(a).

S0 tar, we nave used the chart cnly t¢ find the leftmost constructs
ot all access chains which pass through the word ALL. It would be
equally easy to dc this by direct examination of the source code, For
each of these constructs, a digit 1 is marked in the chart at the
intersection ot the row headed by the word ALL and the column headed by
the ccnstruct nare. Light vertical tkrcken lines have been drawn in the

columns as a visual aid.

Next, for each digit 1 in a rcw, mark a digit 2 in the same row, in
the column of each construct which participates in the same expression.
Fecr example, row ALL(b) contains a digit 1 in column C. FkKeferring to
the scurce code, C 1s a member of the expression: A <-— 2 + C * AD.
This is easier to see in the graph, Figy. 18-36(a). Constructs a, 2,
and AD participate in the same expression as C. Therefore a digit 2 is
marked in row ALL{b) in columns A, 2, and ACL. If the row-column inter-
section already ccntains a digit, then the digit 2 is not marked. \We
now have marked each row headed by the word ALL with a digit 1 for the
leftrost member ({call it "LMM") of each access chain passing through the
word ALL, and vwith a digit 2 for each construct participating in the
Same expression as LAM.

Next, the irreducible chart is derived, as in Fig. 18-36(d). The
optimization methods described in the preceding sections are used to
tind the best chart arrangement, and the triangles are drawn on the
chart., The digits 1 and 2 are considered to be signiticant when
deriving the irreducitle chart, but are igncred when tracing pathks ot
derendency rropagation.

Each ccecurrence of the word ALL depends tor access on the elements
cr some ccmplex, as shown by the arrcws in Fig. 16-36(d). For
exaxple, ALI(b) depends on the elements nared T. The triangle
corresgonding tc row 1T must be expanded upward-leftward enough so that
it includes the lettmost digit 1 or 2 in row ALL(b). The triangles
ccrresponding to rows P and Al alsc must be expanded, and proper nesting
must ke malntained.

Expansion starts with the upper-lettmcst ot these triangles,
corresponding to 1ow P. It is expanded encugh to include the leftmost
digyit ip row ALL{#). The rnext trianyle to te expanded corresponds to
rcw T. It nust Le expanded all the way tc the upper-left corner of the
chart. This teorces the triangle cerresponding to row Y to be expanded
alse, in order to raintain proper npesting. Finally, the triangle
cerresponding to row Al 1s expanded all the way to the upper—letft corner
ot the chart, 1in crder to incluade the digit 2 at coordinates (ALL (c),C).
The resulting expanded triangles are shown in Fig., 18-3€(e).

18.17. EXTENSION COF SQURCE CODE SYNTAX FCRE BOOLEAN SEARCH AND SELECT
LOOES

The stronyest criticism ot the source code syntax is that the
desired operations are not immediately obvicus to a person reading the
source code. Long strings of code describing the selection criteria
have the visual ettect of serarating the access chain. Operands which
are logically related in an expression apgear physically distant on the
frinted gpage.

To some exteut this problem is unavcidakle where many complicated
orerations are described in a single statement. For example, the

froblem arises in ordinary mathematical nctation, such as the polynomial

FEYXT+25H 5% (S*LUXI+X T4 (T*X2+X8) ¥ {X-32X1) +2) -5%X2

The terms 3*X1 and ~5*X2 are closely related in the logical sense, but
physically distart.

The gproklem in SPL can be relieved somewhat by an extension of the
syntax, to allow an optional alternative fcrm ot writing Boolean search
and select statements. The selection criterionr may be assigned a name,
and thep the pame detined tolleowing the rerainder of the statement.
Example:

A Eps B <~ C Eps D := ELEMENT (E Eps L = F) Eps G Eps H;
also may be written as:

A Eps B <~ C Eps D := ELEMENT (TFS1L) Egs G Eps H
WHERE TESTIC = (E Eps D = F);

Using the alternative syntax ctfers no advantage unless the
statement of the selection criterion is lengthy, causing visual
separation of the access chain. The alternative syntax introduces an
additional name for a bournd varialtle into the source code, which merely
increases confusior in simple situations like the example above.
However, the alternative syntax can reduce confusion in more complicated
situations. 1The examples below are taken trom Fig. 18-19 and Fig.
18-24.

Exanple (1) source code:
A Eps B <~- C Eps D := ELEMENT (E Eps D = F Eps G := ELEMENT
{H Eps I := ELEMENT (J Eps I = K) Eps L Epgs G = Y Eps D)
Eps N Egs F) Eps ¢ Eps R;

Example (1) alternative syntax:

A Eps B <-- C Eps D := ELEMENT (TESTL) Eps ¢ Eps B
WHERE TESTD = (E Eps D = P Eps G := ELEMENT (TESTG) Eps N Eps
P)
WHERE TESIG = (K Eps I := FLEMENT (J Eps I = K) Eps L Eps G =

M Egs L)

Exangple (2) source code:

A Eps ¥ = FLEMENT (EXISTS5 C := ELEMENT (D Eps C = E) Eps F Eps B)
[;s G Eps H
<-- I Eps < := ELEMENT (K Eps J = I Zps M := ELEMENT
{(EXISTS N := ELEMENT (EXISTS P := ELEMENT (Q Eps P = R Eps N)
Fps § Eps M) Lps T Eps U) &

I
i

(EXISTS Vv ELEMENT (W Eps V
Eps Ad Eps AB;

X) Eps Y Eps M)) Eps Z Eps J)

Example (2) alternative syntax:

A Eps B := ELENENT (TESIB) Eps G Eps H
¢-- I Eps < = ELEMENT (1ES5TJ) Eps AA Eps AB
WHERE TESTE = (EXISTS C := ELEMENT (D Eps C = E) Eps F Eps B)
wWHERE TESTJ = (K Eps J = L Eps ¥ := ELEMENT (TESTM} Eps Z Eps J)
WHERE TESTM = ((EXISTS N := ELEMENT (TESTN) Eps T Eps U) &
(EXISTS Vv := ELEMENT (W Eps V = X) Eps Y Eps M))
WHEERE TESTNM = (EXISTS P := ELEMENT (¢ Eps P = K Eps N) Eps 5 Eps

M

The essential feature of the alternative syntax is that names are
assigned to the tests themselves. Even though the tests are described
at the end ot the statement, the appearance of the names within the
Boolean seaich and select statement unambiguously identifies each test
with the elements selected Ly the test.

19. CCNNECTING THE ELEMENTS GF A CCMPLEX

Elewents of a complex norreally are linked together with torward-
Fointing links only, as shown in Fig. 4-1. This provides the
yreatest space eccnomny while allowing the number ot elements to vary
dynamically at run time. It also constrains accesses to being
sequential —— elements 1 through 14 must be accessed before element 15
can be accessed. Ip some cases the insertion and deletion of elements
is computaticnally awkward because only forward links are available.

SPL programmers may declare other methods of ccnnecting. the
lezents, which ®ay be more appropiiate to the intended processing
prlicaticns.

The complex may be dimensicned, in which case the elements occupy
consecutive storage. Access to the elements is accomplished by
cemputation ot relative locations, rather than ty following paths of
pointers. A dimensicned complex, all ot whcse descendant complexes also
are dimensioned, is the eguivalent of an ALGOL array. All the elements
of a dizensioned ccmplex are created simultaneously with the creation of
the complex itself, so it is an error to attempt to PREFACE, APPEWND,
INSERT, or DESTRUY any elements. The dimension declaration appears as
rart of the declaration of the corplex. Exarple:

]

CCMPLEX FURNITURE, 5 ELEMENTS, |
ALPHANUMEEIC ATCM ITEM NAME (10);
ATCM COST (1000));

Bidirectional linking, CCRAL-type linking (alternate backward and
upward links), or the normal forward linking also may be declared.
Examples:

CCMPLEX FURNITURE, BIDIRECTIGNAL LINKS, (
ALPBANUMERIC ATCM ITEM NAME (10);
ATCM COST (1000));

CCHMPLEX FURNITURE, CORAL LINKS, |
ALPHANUMERIC ATCM ITEM NAME (10);
ATCH COST (1000));

CCMELEX FURNITURE, FCRWARD LINKS, (
ALPHANUMERIC ATOM ITEM NAME (10);
ATCM COST (1000));

It also it possitle to declare a rultilevel tree of links, each level
having its own linking convention. The aprroximate number of descendant
constructs (either lower—level links cr elerents) must be declared for
all but the highest and lowest levels. Exarple:

CCHPLEX FURNITURE, ({COGAL LINKS) (BIDIFECTIONAL LINKS,7)
(FCRWAKL LINKS)), (
ALPHANUMERIC ATCM ITEM NAME (10);
ATCM COST {1000)):

In the above exarple, the top-level links are of the CORAL tyre, with as
pany descendant links as are necessary tc ultimately point to all the
elements ot the complex. The second-level links are bidirectional, each
rointing to apprcximately 7 third-level links. The third-level links
peint fecrward only, and each is identified with some particular element
{stored consecutively with the element).

Another possibility is to declare an arbitrary number of levels of
links. A new level of linkiang i1s formed whenever the number of
descendant links exceeds the declared average. A level of linking is
ccllapsed whenever the number of descendant links is reduced below the
declared averaye. The formation and collapsing of levels ot linking is
only approximate; some links may foint to slightly more or fewer
descendant links than the declared average. All levels ot linking must
te ¢f the same type. Example:

CCMPLEX FUENITURE, (CCRAL LINKS,20),
ALEHANUFEKIC ATCH ITEM NAME (10);
ATCH COST [1000)):

1f the declaration appears in an inner program block, the declared
dimension or the declared average punber ot descendant constructs may be
the contents cf scme variable whose value was set in an outer block,

20, EXTENSICNS TQ THE CECLAKATIQNS

Several extensions to the declarative capakbilities in SPL are
discussed in thic section. The extensions dc not allow the declaration
ot additional types ot constructs, but instead enable the previously
described declarations to be more concise and better documented. These
extensions provide rudimentary ccncordance (IBM calls it "“cross-
reference”"), abbreviation, macro, and subhrcutine capabilities tor the
declarations.

20.1. DEFINITIONS

Numbers, strings, and Boolean truth values are called "self-
detining constants”. SPL allows the definitien of “compile-time
constants™ in terass ot self-defining constants and previously defined
campile-time constants. Compile-time constants are valid only within
the program tlecks in which they are detiped. Their names must bhe
unigue in those rclocks. Cnce defined, they may be used in the sanme
manner as self-defining constants. They assume the types and sizes ot
the terass used in their deftinitions, unless declared otherwise.
Examples:

DEFINE CAKRE LENGTH <-- 80;
DEFINE FI := REAL <-- 3.1416;
DEFINE PIE <~- 'BREADED GQO';

20.%Z. CCLLECTICNS

Collections are ordered sets whase wmenbers all are detined at
compile time. Collections are valid coly within the program blocks in
which they are declared., Their nares nust fe unique in those blocks.

All the pemiers of a collecticpn must ke ot the same type. The
collection assumes the type of its mepbers, and the size ot the largest
ot its members. 1he use of the collecticn tame results in the implicit
generation of a lcop. EFach megker of the cecllection, in order, is
substituted for the collection name in successive cycles of the loop.
The scope of the locp includes every censtruct which participates in the
same expression with the collection name. The scope of the loop is
determined irn a sanner similar to that described in Section 18.156. 3.

Examrle collection declaration:

COLLECTION USES ('LIVING'; 'DINING'; 'KITCHEN'; 'BREAKFAST';
"HALL'; *EELCRGCH'; 'REDRCCM'; 'EECRCOM'; *3ATHRQCM'; *BATHECCM®;
"LAUNDEY ") ;

Example use ot a collection:

USE Eps APPENC ELEMENT Eps ROCMS Eps BCME <-- USES;

£C~3, DECLARATICN MACEGS

Ctten several ditferent types of structures will ccntain constructs
which bave identical declarations. For example, the declaration of
structure type HUUSE TRAILER right ccrtain the same complex ROOMS as the
declaration cf structure type HOUSE:

STRUCTURE HCLSE TRAILER ({
ALPHANUMEEIC ATGM LICENSE NUMEER {6);
ALEBANUMERIC ATCM STATE (5);
ALEHANUMERIC ATCM COLCR (6);
ALEBANGMERIC ATCHM MODEL (8):
ALEHANUMERIC ATCM MAKE (8);
CCMELEX ECCMS (SAME AS RCCMS Eps HCUSE));

T1he words SAME AS indicate that the declaration of ROOMS Eps HOUSE
also is to te used as the declaraticn af RUOMS Eps HOUSE TRAILER.

SPL proyranners may choose to declare some types of structures, not
50 they can create instances of the structure types, but for use as
rarameteriess macros in the declarations of cther structure types.

20.4. MOLECULES

Often several atoms and complexes will be logically related within
a user's prcgrar, and yet they ray corprise only part of a structure or
element. These atcms and complexes may be grouped into a "molecule",
either for the purpose of macro declaraticn or macro call using SAME AS.
Example:

STRUCTURE HCUSE TRAILER |

MCLECULF VEHICLE IDENTIFICATION (
AIFBAMUMERIC ATOM LICENSE NUMBER (6);
ALPHANUMERIC ATOM STATE (5);
ALEHANUMERIC ATCM CCLOR (6);
ALFHANUMERIC ATCM MGDEL (8);
ALPHANUMERIC ATCM MAKE (8));

COMELEX KCOMS (SAME AS ROCMS Eps HCUSE));

STRUCTURE AUTOMOBILE (
AICM DEIVEE (PERSON);
CGMFLEX FECBLE IN CAR (
ATOM OCCUPANT (PEEKSCN));
MOLECULE VEHICIE IDENTIFICATION
(SAME AS VEFICLE IDENTIFICATION Eps HOUSE TRAILER) ;
AICM TRAILER (HCUSE TERAILEE));

If two instances of molecules have identical declarations, and if
the molecules dc not contain any complexes, then (1) storage assignment
statements using ¢— , &—€— , and <&-——> pay cause the transfer or
swap of the entire contents of cne molecule into the other molecule, and
(2) conditional statements may test whether the sclecules are equal.
Examgple:

IF VEHICLE ICENTIFICATICN Eps THIS CAEF =
VEHICLE ICENTIFICATICN Eps STGLEN CAR
THENX BLOWWHISTLE (LOUD) ;

20.5. COMPILE-TIME PROCEDURES

Proceduies declared outside a given program block may be called
within the declarations of the given block. These procedures are
executed at compile time. Theretore the actual parameters can be only
self-detining constants or previously defined compile-time constants.
The output values of the procedures are cowpile-time constants. The
Frocedures pay create and use isolated cells for internal temporary
storage, but they cannot use structures or externally created isolated
cells because prograp execution has not yet begun. Example:

DEFINE LINE LENGTH <-- MAX (CARD LENGTH; PRINTER COLUMNS} ;

In the apove example, procedure MAX must have been declared in an outer
nested program tleck.

21. INFUI/OUTEUT

5PL dces not include the specificaticn of formatted input/output
procedures, although various SFL implementations may have formatted
inputseoutput capakilities. The only I/0 capabilities basic to 5PL,
rather than to a rarticular implementation of SFL, are the procedures
EAGE and PRINT.

PAGE causes form ejection to the top of the next page.

The intent cf PRINT is to provide a minimum output capability for
debuyying use. It permits the printing of constant strings or the
cantents of any construct. The formats for printing the contents of
constructs depend on the declarations of the constructs., The standard
foermats are:

DECLARATION PRINT FCRMAT

UNSIGNED INTEGER Enough decimal digits to print all significant
figures, with leading zeroes omitted. At least one
digit is printed.

INTEGER Sign followed Ly UNSIGNED INTEGER.
ECOLEAN TRUE or FALSE.
ALPHANUMERIC Leading characters up to the last nonblank.

Trailing tlanks are omitted. Nothing printed if
entire string is blank.

REAL Signed mantissa fcellowed by signed exponent, the
numker of digits dependingy on the implementation,

CCMELEX Real and imaginary parts, cach printed in REAL
format, serarated by cecrma and enclesed in
parentheses.

LGNG REAL Same as KEAL, with mcre digite ot significance.

LONG CCMELEX Sare as CCMFLEX, with rmore digits of significance.

CECIMAL Same as INTEGER.

pocinters octal or hexadecimal unsigned integer, depending on

|structure-pointing the implementation. Leading zerces are printed.
atcms, links Lketween

elepents, etc.)

and addresses

If a parameter to PRINT is an atcm or jsolated cell, only the
contents are printed. If the parameter is a structure, complex,
elerent, or rolecule, the type names of the atoms, elements, etc., and
their ccntents are printed in tabular forr. The crder ot printout is
the order in which they are declared, not necessgarily the order in which
they are racked into the computer memory.

22- INELEMENTATICN

The following sections of this paper discuss various aspects of the
irplementation cf SEL. Cnly those aspects are discussed which are
Feculiar to $PL; the reader is presumed to have a general bpackyreund in
isplementing algelraic compilers. One particular implementation is
described, which may serve as a guide for subseguent implementations.
The isplementation as done on the CDC {originally Bendix) G-21
ccoputer.

1ranslation ot SFL source code requires at least tuwo passes, and
rreterarly three cr more passes. Users should be given the option of
naving listed the results of each translationm pass, as a debugging aid.
Debugging facilities should be available in the source language and in
any intermediate languages used during translationa

Cne translaticn pass should te dedicated solely to translating
ipplicit loop statements of various types into their equivalent
explicit loop statements. Some pass before the final translation into
ctject code is needed to determine the declared type ot each local name,
since the local name may be used for access earlier in the source code
{(cut later in execution) than its assignment.

At run time the primary core storage cf the computer contains the
object code ¢t the grogram and models built from the structure
declarations, a stack for lacal nrawes and isclated cells, a table of
structure locations, an auxiliary storage table for the virtual memory,
and a large structurle storage area. In addition, there is an auxiliary
storage area cn some direct-access device such as disk or drum.

23. MGDELS

Declarations of Spl structure types result in the creation of
nodels of the declared structures. The models are created at conmpile
time. They are used at compile time fcr corpiling code to access fields
within the structures, and tor staying in context with incompletely
gualifijed construct names. The models repain in the computer memory at
run time, stored with the compiled program. They are usged by the
interpretive procedures within $PL: creating, copying, erasing,
destroying, and printing the contents ot structures and their descendant
constructs; linearizing inactive structures for writing to auxiliary
storage and reconstituting them when they are read back again; and
miscellaneous detugging cperations.

Since several constructs belcnging to different structure types may
have the sare declared type name, each declared type name is stored only
once and is pointed to by the ccnstruct models. The tyre names are
retained at run time for use by PRINT and ty the debugging operatians.

The model or each declared structure or element type (not including
the model of any descendant element types) occuries consecutive storage,
with pointers to the models ot any descendart elepent types. The model
contains one entry ftor the structure or element as a unit, and entries
tor each of the descendant atcms, complexes, and mcolecules. The model
ot each molecule is just part of the model of its ancestor structure,
element, or molecule, with an additional entry for the molecule as a
unit. The wodel of each molecule cccuries consecutive storage.

The model entries for descendant atoms, complexes, and molecules
are stored in the crder in which they were declared. This does not
necessarily correspond to the relative positions of the tields within
instances of the declared constructs.

Each instance ¢of a structure, element, or molecule within a
structure or element, also occupies consecutive storage. The model
shows the relative positions of the fields for the various descendant
atoms and conplexes. 7The actual positioning of the fields is determined
by an inplewmentation-dependent proyram, which optimizes the placement
tor the particular computer hardware. For simplicity in writing the SPL
interpretive procedures, the private bookkeeping information is given
uniform placerent in all structure types, the links are given uniform
placement in all element types, and the anchor links and dircension (if
any} for each cowplex are partly standardized {for example, they may
occupy the rightmost bits within a word).

The fields in each entry of the rodels are described below. Sone
ot the displacement and size figures nmust Le exfpressed as words or bytes
and remaining bits.

Structure entriecs:

(M
(2}
(3)

(4}

indication that this is the model of a structure.

Pointer to the type name of the structure.

Number of entries in the model for molecules and first-order
descendant atcms and complexes.

Amount of consecutive storage requitred for the structure.

Elewent entries:

(N
(2)

(3

Indication that this is the model of ap element.

Number of entries in the model for molecules and first-order
descendant atoms and complexes.

Amount of consecutive storage regquired for the element.

Molecule entries:

(1)
(2)
(3)

{4)
(3)

Atom
1
{<)
{3)
{4)

(3)
(6)

Indication that this is the pmodel of a molecule.

Pointer to the type name of the molecule.

Number of entries in the model for molecules and first-order
descendant atcms and complexes,

dmrount of consecutive storage required fcr the solecule,
Displacement of the start of the molecule from the start of its
ancestor structure or elemept.

entries:

Indication that this is the model of an aton.

Pointer to the type nage of the atonm.

Admount ot consecutive storage required for the atorm.
Displacement of the start of the atom from the start of its
ancestor structure or elenment.

Indication of the type of atom: UNSIGNED INTEGER, BOOLEAN, etc.
Pointer to the constant initial valuve, if it is a data atom.
Initial valves are stored with the tyfre names of the declared
constructs. Pointer to the model of the structure type, if it is a
structuyre-peinting atom.

Complex entries:

(1
{2)
(3
{u)
(%)

{6a)

(bk)
(€c)

(7

Indication that this is the model of a complex.

Pointer to the typre name of the conmplex.

Displacement of the statt of the anchor link from the start of the
complex's apcestor structure or elesent. The position of a field
containing the dimension is fixed relative to this displacement.
Pointer to the code segment fcr determining the dimension of the
complex, if any.

Count of the number of fields described in (6} below. There is one
such field for each level of linking, if the number of levels is
tixed. There is exactly one field (6) if the nusber of levels is
variable, and no tield {6) if the complex is dimensioned.

A tit indicating wvhether this tield is for a single level of
linking ot for all levels of linking.

Indication of the type of links: FOQRWARD, BIDIRECTICNAL, or CORAL.
Average number of descendant links. This nurber always is 1 for
the bottom-level links, which are part ot the consecutive storage
of the elements. This number always is 0 for the top-level links,
peaning as many links as necessary.

Fointer to the model ctf the elements of the conmplex.

4. STACK

Local names, isolated cells, temporary storage for evaluating
expressions, and temporary storage for the interpretive procedures are
kept in a stack at run tire. For each fprogram tlcck, the number of
local names, iscolated cells, and temporary storage locations for
evaluating expressions, can be determined at compile time. The stack
expands by this amcount when the program blcck is entered, and contracts
Ly this awmount when the program tlock is lett. The stack also expands
and contracts a variable amount, depending on the needs of the
interpretive procedures, when these procedures are executed.

The stack exjpands downward in memory, with a register pointing to
the cucrent end of the stack. Therefore all entries in the stack for
lccal names, etc., are addressable by some fixed positive displacement
trom the contents of the register. All the intergretive procedures
expand the stack Ly decrementing the contents of the register, but when
~they have finished execution they restore the fcocrmer contents of the
register. It never is necessary to access any ot the stack entries for
lccal names, etc. while the interpretive prccedures are executing, so
their alteration of the register dces mnot viclate the stack addressing
capability. Furthermore, no two ct the interpretive procedures ever
execute simultanecusly, with the exception that the free storage
recovery procedure nay be called while any of the others are executing.
Gnce called, the free storage recovery prccedure runs to completion
tefore relinquishing control, so it does not viclate the stack
addressing capability ot the other interpretive fprocedures.

The local names declared in any cone prcgram blcck are kept in
consecutive storaye within the stack, to sieplify the execution of a
rcutine which releases all the local names just befcore program execution
leaves the Llock.

25, FIELDS WITHIN LOCAL KNAMES

Whenever a lccal name of an instance of a structure or any of its
descendant ccnstructs is valid, the entire structure is active. During
this time nc part of the structure can be relocated. Therefore the
local name can peint to absolute addresses of any constructs within the
structure.

The local name ot any descendant construct has a field pointing to
the named construct, and a second field pointing to the private book-
keeping area within the structure. The second field is used tor
incrementing the activity count of the structure when the local name is
agsigned, and for decrementing the activity count when the local name
subsequently is released. A local pnawe of the structure itself contains
the entry nusber for the structure, in the table of structure locations,
ip place of the pecinter in the tirst field. The pointer in the second
tield to the private bookkeeping area is sufficient toc address the
structure. The entry number must te stored in the local name, so it is
available fcr copying into structure-pointing atoms.

In scme special cases it is nct necessary to increment the activity
count shen a local name is assigned. These cases are discussed in
Section 26. Whenever a local name is assigned and the activity count
is incremented, a one-bjit field is set in the local name. The field is
reset when the local name is released. The local name may be released
any time betore pgrogram execution leaves the block, either because a
RELEASE statement was executed or recause a DESTROY statement was !
executed. This bit is examined by the RELFASE and DESTHOY statement
trocessors, to ensure that a local name actuyally was assigned and to
ptevent the local pame from being released egore than once. A second
attempt to release a lccal name causes a run-time error. The bit also
is examined by the routine which releases all local names just hefore
proyram execution leaves the block. Only those local names tor which
the bit is set are released; the cthers are ignored by this routine.

26. WHEN NCT TO ACTIVATE STRUCTULRES

Normally a structure is activated whenever a local name is assigned
to it or any of its descendant constructs. Under certain circumstances,
activating the structure is not necessary kecause cther code guarantees
that the structure will remain active Wwhile the local name is valid.
This occurs when:

{1) within the hody ot a procedure, a local name is assigned to an
actual parameter or a descendant of ap actual parameter;

{2) within a loci, a lccal name is assigned to an element or to the
descendant of an element selected for the current cycle by one of
the loop generators;

{3) within an inner nested program block, a local name is assigned to a
construct or the descendant of a ccnstruct which was assigned a
lccal nawge in an cuter nested prcyram tleck, provided that none of
the intervening statements are labeled.

In any ot the above circumstances, the structure must be activated if a

RELEASE or DESTRCY statement is applied to any of the constructs between

the named construct and its ancestor which already was assigned a local

pamne.

It also is unnecessary to inactivate and then reactivate a
structure when reassigning a local name to the next elewment of a
ccmplex, between cycles of a loop -- once again, unless the element may
bave been destroyed within the code body cf the loog.

27. BCCKKEEFING FIELDS WITHIN STRUCTURES

Pach instance of a structure contains a private bookkeeping area
whose location is fiyed relative tc the beginning of the structure.
There are two tields in the private bookkeefping area: the location of
the model ot the structure, and the current activation count of the
structure.

In addition, each complex has several fields., A one-bit field
indicates whether or not the complex is dirensioned. TIf the conmplex is
dimensioned, ancother tield contains the dirension. If the complex is
not disensicned, there are sufticient pointer fields to match the
declared linking arrangement. See Secticn 19 for a discussion ot the
declarations. These fields are stored in the consecutive memory region
ot the ancestor structure or element which contains the complex. If the
complex is dimensioned, all its elements alsc are stored in this
consecutive memcry region. If the complex is not dimensioned, its
elements are stored elsewhere in the structure storage area, and the
pointers in the consecutive memcry region ¢t the ancestor structure or
element are called the “anchor" of the conplex.

28. T1ABLE OF 3STRUCTURE LCCATIONS

A single talble is used to lccate all structures in existence at any
given time. When each structure is created, it is assigned an entry in
the table. It keeps the entry until it is destroyed, at which time the
entry is free to Le reassigned. The entry fpoints to the current
location ot the structure, in primary core storage or in auxiliary
storage.

Structure-pointing atoms refer to the structure by containing its
entry number. An upper bound must be placed on the number of structures
which can exist simultaneously, in order tc determine the numrber of bits
required tor the field of a structure-gointing atom. This upper bound
also may be used to determine the maximum =ize of the table of structure
locations.

There is a tradeotff between space and speed in the design of the
table- It the entire table is allccated as a single consecutive region,
the access through the table will ke very fast, but the entire table
space is unavailatle for other uses. If several smaller regions are
linked together tc form the table, the accesses will be slover, but
iritially at least some of the talle space is availalble to hold
structures. Additional regions for the takle can be taken from the
structure storage area, since they are easily relocated. But once
allocated, it is very unlikely that their stace can be relinquished
later. ©Only the last region of the table can be freed at any given
time, and then only it all its entries harfpen tc ke free.

The free entries in the table of structure locations are linked
together, to speed the assignzent of a frec entry to a newly created
structure. The free entries also are distirguishable by their contents
from the entries in use. During the free storage recovery process, all
the entries in the table are scanned. Free entries and entries for
structures located in auxiliary storage are ignored. Entries for
structures located in primary core storage are used to access the
structures, in order to determine whether the structures are active.
With careful planning cf the takle, it is rot necessary to dedicate a
tit in each entry merely to indicate whether the entry is free.

<9. STKUCTUKE STCHAGE AREA

All active c=structures are located in the structure storage area.
Inactive structures may be located either in the structure storage area
or in the auxiliary storage area. Whenever a structure is used in the
Froyranm, it is moved intc the structure storage area if it is not there
already. The space it requires in the structure storage area is taken
from free storage, and the space it previously occupied in the auxiliary
storaye area is rade available.

Wherp tree storage in the structure storage area is exhausted,
ncrral program execution is delayed tor a tree stcrage recovery pass.
During this pass, a sweep is made through all entries in the table of
structure locations., The entries are examined for structures wvhich are
located in the structure storage area, but whose activity count egquals
z€ro. As they are tound, these inactive structures are moved out of the
structure storage area, and the space they occupied is returned to free
storagye. When this has been completed, tree storage is coalesced in the
mranner descrited kelow, and then normal fprogram execytion resumes.

During free storage recovery, the only data being transterred are
structures of kncwn types, since each structure contains in its private
beocokkeepiny area the address of its model. This makes free storage
recovery a much mcre orderly process than garbage collection, where all
of the structure storage area would have tc be searched for random odds
and ends ot unused storage.

All ot the structure storage area is subdivided into "storage area
cells" ot egual size. The storage area cells are the swallest units of
space allocation. They are of the smallest convenient size determined
ty the computer hardware, such that they can contain the bookkeeping
informaticn required tor the free stcrage lists.

There are N separate free storage lists for contiguous regions of
tree storagye ot length 1 cell, 2 cells, 4 cells,, 2Y'cells. The
regions in any one ot these lists fpoint to each other with bidirecticnal
links. Each regicn on cne of these listes also has a field ot length
[loj, (M7 tits, identitying the list it is cn. The size of the storage
areas cell nust be adequate to contain the bhidirectional links and the
field for identifying a free storage list, plus pessibly one more bit.
This tit indicates whether the stotage area cell is tree or in use. In
cecmputers such as the CDC 6-21, which have flag kits in every vord, the
bit can be located in the cell itself. 1In computers such as S/360, the
Fit must be located in a separate table of such bits,

Each region of lenyth 2¥ cells begins at an address which is an
integral wultiple ct 2% cells. For example, a storage area cell in
5,360 is 8 bytes long and starts on a doubleword boundary. Each region
ot length 25 nas a unijue "mate" ot length ZK, such that they can be
ccalesced into a region of length PR Regions cf free storage are
coalesced only during free storage recovery prasses, after all inactive
structures have t€en moved to auxiliary stcrage. Coalescing is perform-
€ed by exazining all the regyions on a tree storage list, starting vith
the list tor the smallest regions. If a region and its mate both are
¢h the same list, they are removed from the list, coalesced into a
single larger region, and the new region is placed on its free storage
list, 1In this manner, ccoalescingy is attempted when the probability of
toth 2" reyions keing tree is greatest.

Figys. 29-1 and 29-2 show a method of assigning and recovering
storaje. The methcd places construct boundaries at integral nultiples
ot 2K, tor the largest possible K which does not force the fragmentation
et large regicns ct tree storage. This methcd raximizes the probability
ol beinqg atle to coalesce tree storage during a free storage recovery
Fass.

3C. KECURSIVE GENEEATGE

The interpretive procedures within SPI need the ability to process
all the descendant constructs ot any given input construct. A& single
generator rcouting ror lecating and identifying descendant constructs is
called Ey all the interpretive procedures. The generator has an exit
tor additicnal processing peculiar to the procedure which called it. An
"exit subroutine" is executed each tire a descendant element is located
and identified. The yenerator uses the stack for all its storage, so
the exlit subroutine may call the generator recursively.

inputs to the generator are the location of the given construct,
the location of the nodel of the given censtruct, and the location of
the exit sukroutine. Cutputs frow the generator which act as inputs to
the exit suiroutine are tne location of the output construct (either the
given ccnstruct or any of its descendant elements), anrd the location of
the model ot the cutput construct.

31. AUXILIARY STCRAGE

This aspect c¢f SPL operates under the assumption that a record of
tixed lernyth may Le written at any one of a large number of fixed
locations on the auxiliary storage device, without requiring the
revriting ot all auxiliary storage. Certain IBM tapes, for example,
tail in this respect because a new record may be written only at the end
of the written portion of the tape.

The auxiliary storage table ccusists of a single bit for each
record position in the auxiliary storage area. The kit jndicates
whether or neot the record position is free.

A11 record pesitions in the auxiliary storage area are of the same
tixed length. Nc more than one structure is written on any cne record.
The structure is lipearized before it is written to auxiliary storage,
and reconstituted atter it is read back trom auxiliary storage, If the
structure is toc¢ large to fit into one record, it is written on several
records which pecssikly are honconsecutive. Space is reserved in each
record for a pointer to a possible successor record.

The chosen length of auxiliary storage records depends on rany
tactors, including the relative speeds of the computer vs. the auxiliary
storage device, the fixed cost ot each I/0 gperation, the amount of
bufter space avallable, and the exrected statistical distribution of the
lengths cf the structures in the problem being solved. Storing pointers
tc successor reccrds ih the records themselves, rather than in core
mepory, is costly only when a structure in auxiliary storage is
destroyed. Then the entire structure must be read into core Bemory
tutters, merely tc determine which auxiliary storage record positions
become free. Presumably this is an intrequent operatijon, compared with
activating and ipactivating structures.

-32. CCLLECTIONS

Collecticns are rerresented internally as takles which exist both
at compile time and at run time. 7They must be implemented so that new
collections can ke generated from already existing collectiomns.

33, EXTENSICNS AND MODIFICATIONS

SFL lacks two facilities which possibly could greatly extend its
usetulness in its intended applicaticn areas. First, SPL does not have
the ability to process strings of arbitrary length. The string
processing described in this paper is restricted to strings of declared
dimensions, and the storage space used always is the maximum. Second,
SPL structure-pointing atcoms are restricted to pointing either to a
single declared type of structure, or to any possible type of structure.
Very few operations are allowable on structure-rointing atoms which may
point to any possible type of structure. In some cases it would be
convenient to allow a structure-pointing atchd to point to any one of a
small nunmter of declared structure types, which have sonme properties in
common. A greater variety of operations cculd be allowed con these
CCERCN [IOp€rties.

At the present time, I do not see how either of these facilities
can be ipcorporated into SPL, without sericusly degrading the guality of
the obiject code. Much of the code which new can be compiled would have
to be interpreted instead, because of storage allocation requirements in
the case of strings, and because of the necessity for detecting
structure types in the case of structure-pointing atoms. (In general,
detection of structure types in necessary since not all properties of
the difterent structure types are identical.) Also, string processing
would require the introduction of garbage collecting into the free
storage recovery frocess. At best, garbage collecting is highly
inetficient.

Cn the other hand, if the amount of data storage required for a
particular application is small encugh to fit entirely within primary
core memory, the indirect addressing and virtual memory features of SPL
cculd be eliminated. This includes elimination of activity counts, the
table of structure locations, the auxiliary storage table, and the
auxiliary storage area. There no longer would be any distinction
between structures and elements of a complex. Nevertheless, the
appearance of the SPL source code would remain virtually unchanged.

One such application for SPL is the writing of systemr monitors.
New facilitjes would have to be introduced, for the processing of
blocked data, to allow assemnbly language sukroutines for direct
interaction with interrupt registers and the like, and to describe such
parallel processing concepts as multitasking. It also would be
necessary to segment primary core storage into classes for memory
protection, and to create atoss which contain program points for
execution.

34. ACKNCWLEDGEMENTS

I would like to express my gratitude to Robert T. Braden for his
help in designing the SFL syntax, David C. Cooper for his help with
Boolean search and select loops, and Allen ¥ewell for his help with free
storage recovery. The suggestions of many other persons, at Carnegie
Tech and Stanford Univ., have found their way into this paper.

35. BIBLIOGRAPHY

Program block structure:
{(h Naur, P., et al, "Revised Repcrit on the Algorithmic Language
ALGOL 60", Comm. ACM 6,1 (Jan. 1963), pp. 1-17.
Cata structures and pocinters:
{2) PLls1 Language Specifications, IBM System/360 SRL Fornm
C28-6571.
{3) Hoberts, L. G., "Graphical Comzunication and Control
Lanyuayes", Proc. Second Ccngress cn Information System
Sciences, Hot Springs, Va. (1964).
Metalanguaye notatian:

{u) Gorn, S., "Specification Languages for Mechanical languages
and Their Processors —- A Baker's Dozen", Comm. ACM 4,12
{Cec. 1907).

5 Ross, Dan, Box Syntax ——- A 2-Dimensional Metalanguage, SLAC

CGTH Nec. 16, Stanford Univ. (Jure 1967).
Associative data processing:
{(6) Rovner, P. D., and Feldman, J. A., The LEAP Language and
Data Struycture, Report DS-5997, MIT lincoln Lab., Lexington,
Mass- {Jan. 1968).
Mcre general list processing languages:
(7 Standish, T. A., A Data Definition Facility for Programming
Lanquages, Comp. Ctr., Carnegie Inst. of Tech., Pittsburgh,
Pa. {May 1967).
{8} McCarthy, J., et al, LISP 1.5 Progtammer's Manyal, MIT Press,
Cambridge, Mass. [1962).
(9 Newell, A., et al, 1Informaticn Processing Language-¥ Manual,
2nd ed., Prentice Hall, Inc., Englewood Cliffs, N. J. (1964).
Frograms which maintain a history cf their actions:
{10} Floyd, R. W., "“Nondeterministic Algorithss", J. ACM 14,4
(0ct. 1967), pp. 636044,)
{11) BRoss, Dan, et al, DSM - A Text Editor with Time Reversal
Capability, SLAC-PUB~-504, Stanford Oniv. (Sept. 1968).
Compilers with ccde optimization:
{12} FORTRAN-IV (H)} Programmer's Guide, IBM Systemn /360 SRL Form
C28-6602Z, pp. 62-66.

STRUCTURE HOUSE (
ATOM STREET NUMBER (9999);
ALPHANUMERIC ATOM STREET NAME (20);
ALPHANUMERIC ATOM COLOR (6);
ALPEANUMERIC ATOM MATERIAL (5);
ATOM FRONTAGE (200);
COMPLEX ROOMS (
ALPHANUMERIC ATOM USE (10);
ATOM LENGTH (40);
ATOM WIDTH (L0);
COMPLEX, FURNITURE (

ALPHANUMERIC ATOM ITEM NAME (10);

ATOM COST (1000)};

COMPLEX PEOFLE IN ROOM (

ATOM OCCUPANT (FERSON)));
ALPHANUMERIC ATOM SIDE OF STREET (1);
ATOM HOUSE ON LEF? (HOUSE);

ATOM HOUSE ON RIGHT (HOUSE);
ATOM GARAGE (1));

Fla. Example declaration of structure type HOUSE,
‘*‘_1 and an instance of a house.
Pl

LAMP)

Em Nota: These are ':‘_m Ejo

te oUher instonces
straclure Cype FRESON,
-
Nete: These gry pemlars

B other delances o
structore Uype HOUSE.

HOUSE

3TREET STREET COLOR MATERIAL FRONTAGE ROOMS SIDE OF HOUSE ON HOUSE ON GARAGE
NUMBER NAME STREET LEFT RIGHT
X

USE PEQPLE

ITEM COST OCCUPANT

FI&. -1

A graph of the type-tree for the example structure HOUSE declared in Fig. #4-1.
ROOMS, FURNITURE, and PEOPLE IN ROOM are complexes. A typical element 1s shown

beneath each complex. The X's indicate the separation between complexes and
their elements. All the remaining nodes under HOUSE are atoms.

BLOCK A
other statements prior to the procedure call

execute the beginning of the statement containing the procedure call;
reserve any local names which are to be assigned during evaluation of
the actual input parameters or for the actual output value; if
necessary, reserve & dummy local name for the actual output value

BLOCK B

evaluate the actual parameters

from left to right; assign each BLOCK Cl

evaluated actual parameter a activate and deactivate
dummy local name, as well as a structure containing
any local names which appear in an atom which points to
the source code; the dummy an actual parameter

names appear in the same order
as the corresponding formal

parameters in the procedure [BLOCK Cc2]
declaration; reserve a dummy .
local name for the actual .
output value [BLOCK o]

call the procedure

BLOCK D
body of executable code in the procedure; assignm an
actual output value to the reserved dummy local name
in block B

assign the actual output value to the dummy local name in
block A; dummy local names in block B for the actuel
parameters and actual value are released implicitly when
program execution leaves block B

execute the remainder of the statement containing the procedure call;
release the dummy local name for the actual output value; program
continues

.
.
-

ric. 16 -1

Typical implicit program block structure resulting from a procedure call.

«— BWIq

R
Lsxf‘ucn‘ LoOP smrem&ur] = LOOP 9 i po

anaand

nany
EXECUTARLE STATEMENﬂ ; E® END LCOP

FlG. 17-1

Synlax of explieit loop statements.

GENEEATOE

N
wHILE | 5227

2RI THMETIC
xPRession| TIMES

iavad

erdaie o RITHMET! ARITHMETIC
o ARIABLE ARV THMETIC
FoR ,54:\4’28 EXPRESS joN EXPRESS 10N
ARITHME TIC
FROM EXPRESSION STEP UNTIL.
AR ITHMETIC RRITHMETIC
- (ExPRESS 10) 4'(EXPRESS 0N)
-
AcceESS '
FORWARD € Ao)i
BACKWARD | FOR ALL [Lo°9°) = ELEMENT -
£S5
STARTING AT |Fiais

AR iy BTOES

e s e s 4 ek e e o

BLOCK A
other statements prior to the loop statement

reserve any local names which are to be assigned during
evaluation of the generator access chains

BLOCK B .

evaluate the starting values

of numeric generators and the BLOCK C1

first-order ancestor complexes activate and deactivate
of element generators a structure containing

an atom which points to
another structure in
the access chain of a

generator
1 BLOCK C2 i
{BLOCK Cn |

start a cycle of the loop: advance and test the generators;
store numeric iteration variables in isolated cells; assign
local names to generated elements

body of executable code within the scope of the loop
statement

branch to the start of the next cycle of the loop

program continues

riG. {7-~2
Iypical implicit program block structure resulting from an explicit

loop statement.

+— awrq

ABcCcDEF &M
A

I Hinmmuvn W
h

FIG. 18~1

Criginal chart formed from the exapple source code:

A Eps B <-— C Eps D := ELEMENT (E Eps D = F) Eps G Eps H; i

A B CEDPF §H i

Al A

Bl

¢ ~. A

£ A

p s ~. S A

F N

G LA
H
FIG. 18-2

Rearrangement of the chart so that all the A's lie in the upper-right
triangle.

E P &G E P
el & el a
pls 4| @ pls (b)
P
F1G. 18-3

Charts derived by successively deleting rows and columns where either is
erpty. Chart [b) is irreducible.

E PF H g FH ¢ EP

E A F A
P|s s H A

F A & $

H A E A
] s pls S

FIG. 18-y
S ————————

lwo arrangerents cf the irreducitle chart derived from:

A EEs B <=~ C Eps D := FLEMENT

(E Epd D = F Epd G := ELEMENT (H Eps ¢ = I) Eps J Eps K)
Eps L Eps M;

A Bc JEP GI HKLF
A

MECERXRIT HH TP Oon @
p

{a) (b)

X~ B U m
»
7

(c) 0

F1G. 18-5
Development cf bcth chart and graph of:

A Eps B <—- C Eps D := ELEMENT (E ips D= F) Eps G
Eps B := ELEMEXNT (I Eps H = J Epgs [) Eps K Eps L;

J A

El] ™ A

pl {5 A

G| N A
1} LA
HES S

FIGC. 18-6

Fig. 18-5(c) redrawn with triangles included tc show the loops,

EDFHG F HGED
Ef A Fi A b 4
pls™. s H F A

F A Gl 1§

H A E| A E F H
G R pls.__ S

FIG. 18-7
t—————

Fig. 18~4 redrawn showing disjoint and nested lcop arrangements, and
corresponding graghe

I K UMFEF HGg N ED FI KJMHNGNED

O N F . A

kKl A rf E\\ A

J ; meltﬁ KE i F\ A

Ml \\ A J ; | E__S:_\}A\A

Fi A Ml S A

My : A Hf | A

GES L84 Gl is 5 A

N | ~, A N . A

E { ~ A E| A

b S S PUS s
E

FIG6. 18-8

Iwoc arrangenents c¢f a chart, cone showing irproper nesting and the other
showing proper nesting. Cnly the position ot P differs between the two
arrangements. The graph and source code are applicable to both
arrangements ot the chart. Source code:

A Eps B <-— C Egd D := ELEMENT (E Egps T = F Eps G := ELEMENT
(KR E}s ¢ = I Eps J := ELEMENT (K Eps J = L) Eps M Eps G)
Eps N Egs D) Ers P Eps Q;

7
”M P
"
FG&H) ED £
F~A
IS nA S DUMMYL S
M " A ‘
MMY1 |
puMMmY1 | ﬁ N4
E : A
pls S
_____________________ &
E

FIG. 18-9

Proper pesting where the contents of a structure-pointing atom is used
koth as data and as part ot an access chain. Scurce code:

= ELEMENT

A Eps B <~- C Ers D :
s 6 := ELEMENT (E Eps L = F Eps G) Eps H Eps F)

(E Egs D = F Ep
Eps I Eps J;

E and F are structure-peointing atcoms, both of which must contain the
name ot the same structure after the selection has keen made. DUMMY1 is
the nare ot the structure in atom E of the selected element D.

p 4
v
oM ?
oM
FIegHp H
Fl A
UMMYZ | '
pUMMYZ | ‘»\A pUMM Y1
Ef i A
PUMMYLES | A £
H ; A
's
D e X bUMMY 2
E

FIG. 18-10

Inproper nesting where the contents of a structure-pointing atom is used
both as data and as part of an access chain. Scurce code:

A Eps B <~- C Eps D := ELEMENT

(E Eps ELEMENT (F Lkps E = G) Eps R Eps T = I)
Ers J Eps K;

E is a structure-jointing atom, containing the name of structure DUNMYZ.
Element DUMMY' is selected on the tasis of the contents of atom F. The
eIIor in the scurce code is descrited in Section 18.5.

p b
M b
MM
ABcpEFr GHIT JK I
A A
B
c A
D s S A
E A
F A
G
H A
I
J A
X
PUMMY 1 $ S A
pUMMY 2 A
E
M
BEE,
ef A
puMMYL | A
Wl A
Plt:(’. _________

FIG. 18-11
R —————————

Original chart and irreducible chart of the source code of Fig. 18-10,

except that F Ers E is revritten as F Eps 1. Source code:
A Eps B <-- C Eps D := ELEKENT
{E Eps ELEMENT (F Eps I = G) Eps H Eps L = I)

Eps J Eps K;

The error is more apparent here, since the original chart shows two
loops and the irreducitle chart shcws only obe loop.

H& DL F g EpLF N G
o TR £l
i 57 :',' s\\f A s 4 f Li--f‘.??:%u_’ A
b y i ¥
N f
' 4 3 RN/
Qs G TN

FilG. 18-15
A i ety

(a) Nested

@)

G

H L
F

b

E

(c)

chart arrangement due to the pesition of atom A.

(L) The upper lcog degends on the lower locp via two paths.

{C) Graph.
Source code:

A Eps B (-~
(E Eps D

Eps L Eps G

C Eps L := BLEMENT
= F Eps G := ELEMENT (H Eps ¢ = 1) Ers J Eps K)

.
»

E&aFI JLKND

El~. A
': \“\n-—bﬂ
IR
Fl 8§ A
L
IE ‘b:-» . -vﬁ
Jh A
L SN A
N : LA
pls. ... S .,

F1G. 18-16

Two chart arrangements and graph showing independent inner loops.
Arrows in charts indicate propagation of degendency.

O ammhm 2 X - O

at colymn D, since column D is to the right of the lower loop.

code:

A Egs B <(- C Egs D :=
LEMENT (G Eps F

(E Eps F 1=
J Eps K := ELEMENT
Eps P Eps Q;

Eps I Eps D =
Eps N Eps L)

Propagation stops

E ™ A F
L £
‘ ssﬂ b i ¢
pfss g]]
@)

FIG. 18-17

1wo chart arrangements and graph showing mutual dependency. Source
code:

A Eps B <~— (C Ekrs D :
{E Eps L F Eps G :

= ELEMENI
Ers J Eps K;

FLEMENT (E Eps [= F Eps G} Eps H Eps I)

IEDFHG FHGI1 ED
If~. A FIN, A
Ef A Hii A
P 1S .S 4l (3 .S
Fi A | N
H LA El A
aEs S pls s

() (b

D &
E I F H

(c)

FIG. 18-18

1wo chart arrangeients and graprh showing mutual dependency. Source
cede:

= ELEMENI

A Egs B <-- C Eps D :)
s G := ELEMENT (H Egs G = I Egs D) Eps J Eps K}

(E Eps D = F Ep
Eps L Eps H;

L FHrLeT Mg mh X

UMRIH -~

MEDFHUJIL G

-

i~ A

L

A

i 5._5_-._‘:,\ s

i A

! N

: A

! . [

! i A

! X ! S

: S i8S A

I . ~

: : A

1 . Y

'S) b

i e . T "

FHJIIL GMEDPD

[y

N A

: -". A

N]

N

IS A

ol

L S A

AN

| A

, .

Y N S

§ TTTETTEs o oTEEo e ‘\\

! N R
N

H AN

| N A
N Ay

S XN

FIG, 18-19

HJILMEDF G

Hi~ A
N EANY
1f is > A
Ly A
! .
M N A
£ A
b E ? i§m:}‘s
Fl § A
4lis S N
)
) G
E ~ F

@

Mutual dependency and independence. There is mutuyal dependency in the

selection of
€lepent G is
independent.

Saource code:

A

elements D and G. In arrangements (a) and (b) the loop for
outermost, and the loops for elements D and I are
In arrangement

(¢) the loop for element D is outermost.

Eps B <~— C Eps D := ELEMENT (E Eps D = F Eps G := ELEMENT
(B Eps I := ELEMENT (J Eps I = K) Eps L ¥ps G = M Eps D)

Eps N Eps P) Eps ¢ Eps R;

P
LFHAG FGH#MED 1 EDFHEG

E D
E| A Fl A I A

s 7
p|s” ?s 6|s i\s E féﬁé‘
L A H A p 1) S

\ &

F A puM{ A F A
H /,{A E /‘/}A H //Jéj
a s pls s~ G| $ s

(a) Fig. 18-15(b) (b) Fig. 18-9 () Fig. 18-18(3)

EGFMHJ I LD MeEDb FHJ I LG
E A M
N :

AN

Fil & A's p|
M Ay F
H NS, H
J m :
I S A I
L XA L
p|s—— G

(@) Fig. 18-14 (3} EF g () Fig. 18 =19 (2}

»|O

(F) Fig. 1817 @)

T LTMom

FIG. 18-20

Some previous charts redrawn, showing detection of mutual dependency.
Paths of special interest are emphasized.

K
M A
Lis A
P
P A
K E
L
M
F1G, 18-21

A ——————————

Selection of element K depends on the existence of element L. Source
code:

H Eps I <-- J Eps K := ELEMENT
(EXISTS L := ELEMENRT (M Eps L = N) Eps F Eps K)
Eps ¢ Eps R;

N ML K M N KL
N A M A < .
M A N A
Lis s K E N "
K E Lls S
(a) (b (c)
FIG. 18-22

Selection of element K depends on the existence of element L. Source
code: B

K := ELEMENT

H Egs I <-— J Efs
= ELEMENT (M Eps L = N Eps K) Eps P Egs T)

(EXISTIS L :
Eps ¢ Eps R;

E F D >
E A E
F A ¢
D|E
E

FIG. 18-23

Each lcop depends on the previous selection of an element from the other
loop. No first selection is possible. Source code:

A Eps B <-- & Eps D := ELEMENT
(EXISTS E := ELENENT (EXISTS D) Eps F Ers D)
Eps G Eps B;

LQPswv YMZzZKJRNPCFE

L , A &
Qf i~ A

Pl s A s F
s ;) \xh A .
Wi A

vi s~ A

Mi E [|N\A E

z| A

K| A

N S

Rl | T A

N E

] i A

¢ S|A

F A

B E

F1G. 18-24

Expanding the sccpe of loops containing E's. Several other chart
arrangements are fpossible. Source code:

A Eps B = ELEMENT (EXISTS C := ELEMENT (D Eps C = F) Eps F Eps B)
Ers G Eps B
<== 1 Eps J := ELEMENT (K Eps J = L Eps M := ELEMENT
((EXISTS N ;= ELEMENT (EXISTS P := ELEMENT (C Eps P = R Eps W)
Eps 5 Eps M) Eps T Eps U) &
(EXISTS V := ELEMENT (W Eps V =
Eps AA Eps AB;

X) Eps Y Eps M)) Eps Z Eps J)

Z <X X<V

D S
G F NP
DUMMY 2
A H
G A *
FlE A ¢
H A
P E
41
DUMMYY

F1G. 1B-2%8
AT ———————

Expanding the sccpe of loops containing E's. A numeric search and
select loop provides the effective selecticn criterion. Source code:

A Eps B <-- C Eps D := ELEMENT

{EXISTS F 1= ELEMENT (EXISTS ELEMENT (10) Eps G Eps F) Eps H Eps D)
Eps I Eps J;

IEEREaEE
-

DX g m

FIG. 18-26

The search for element D starts after selecting element G of the
ccmplex. Source code:

A EpsS B <-- € Eps D := ELEMENT (E Eps D = ¥)
BACKWARD STARTING AT G := ELEMENT (H Eps G = I) Eps J Eps K;

sane

FI1G. 18-27

logically indefpendent loops coded to be mutually dependent. Source
code:

M Eps B <-- C
({E Eps F 3=
Eps L Eps M;

Eps D =z= ELEMENT
ELEMENT (G Eps D = H) Eps I Eps 4 = K)

E F §g P
Ef~ A
F s v ‘
G| A
D L.S____-J"s___.‘: é €
F1G. 18-28

The second Boolean factor for selecting element D does not depend on any
property of C. Source code: -

A Fgs B <-- C Eps D :=
{{G Eps D = H) & (E Ep
Eps L Eps Y4;

ELEMENT
8 F :=

ELEMENT (E Eps F = K) Eps I Eps J

[

K})

|
Cc BJ RKLIHNPM |
cl A |
Bls ™ M
______ . |
A
K oA E ‘
| N B P N L
L ! A
I ': \\\\A C M X
H 'S5 A
N . A I J
P E \.\‘ﬁ [
M LS

FIG. 18-29
At ———— .

One of the many possible chart arrangements and the graph ¢f the source
code. The numbers (1) and (2) in the source code specify that row M
Bust be below row B. Scource code:

A Eps B := (2Z) ELEMENT (C Eps B = D) Eps E Eps P

== G Eps H := ELEMENT

(I Eps 8 = J Eps K := ELEMENT {EXISTS H) Eps L Eps M)
Eps ¥ Eps M := (1) ELEMENT (P Egys M = Q) Eps R Eps 5;

NEDGI HKML

N~ A

VO
E} I~ A
Pl is ™ A
G| N A

1)I‘_
I A
Myl S LA
K| A
M| . A
LES o S

N
F1G. 18-30
scurce code:
A Eps B <-- € Eps D := ELEMENT (E Eps D = F} Eps G Eps H := ELEMENT
{I Eps B = J) Eps K Eps L := ELEMENT (¥ Eps L = N Eps D) Eps P Egs Q;

Translated eguivalent:

FEESERVE [;
EESERVE H;
FESERVE L;
LCOP FGE ALL L == ELEMENT Eps P Eps C
DC LCOF FCE ALL H := ELEMENT Eps K Eps L

po IFr I Egs H = J

1HEN GO TO LUMMYD

END 1CCP;

ERRCE;

DuMRYI1:

LCCE FCEF ALL [:= ELEMENT Eps G Eps H

Qo IF E Eps £ = F

TEEN GU TO LUMMY2

END LCCPE;

ERRCR;

DUMMYZs

IF ¥ Eps L = N Eps D

THEN GC TO DUMHMY2
END LCCE;
ERRCR;
CUMMY3:
A Eps B <-- (C Eps D;

&L T Mg mH

FI1G. 18-31
Fig. 18-18(a) and (c) redrawn. Source code:

4 Fps B <=~ C Eps D := ELEMENT
(E Eps D = F Eps G := ELEMENT (H Eps G = I Eps D) Eps J Eps K)
Eps L Eps M;

Translated equivalent:

RESERVE D;
RESERVE G;
LCOP FOF ALL G := ELEMENT Eps J Eps K
DC LOGE FOF ALL T := ELEMENT Eps L Eps #
PO IF (E Eps b = F Eps G) & (H Eps 6 = 1 Eps D)
THEN GO TG DUMMY1
END LOCP
END LOCE;
EHRCRH;
DUMMYI:
A Eps B <-- < Eps D;

ML P K

-,,,_-__,
P
.
-
.
- -
[P
!

x v - X

FIG. 18-13Z

Fig. 18-21 redrawn. Source code:

H Eps I <-— J Eprs K t= ELEMENT
(EXISTS L := EFLEMENT (M Eps L = N) Eps
Eps ¢ Eps R;

Translated equivalent:

KRESERVE K;
RESERVE L;
LCCF FCF ALL K := ELEMENT Eps ¢ Eps R
DC LOCE FOF ALL L := ELEMENT Eps P Eps K
DO IF ¥ Egs 1 = N
THEN GO TO DUNMY1
END LOOP
END LOCE;
EKROE;
puMMY Iz

H Eps I <-- J Eps K;

F Eps

K)

MJ 1l LFEWHNWD
A

-

gxmm -~ « X

FI1G. 18-33
Source code:

gs D := ELEMENT

A Fps B <= C(C E
{EXISTS E := ELEMENT (F Eps E G}
{EXISTS I := E
Egs P Eps Q;

Translated equivalent:

RESERVE [;
RESERVE E;
FESERVE I;
LCOE FCE ALL D :

= ELEMENT Eps P Eps Q
CC LOCE FCE ALL E :=

DO IF ¥ Fgs E = G
THEN GO TO DUMNY1
END LOGP;
LGCP FOK ALL I := ELEMENT Eps L Eps D
CO IF J Egs I = K
THEN GO TO LUMMY2
END LOCP;
GC TIC CDUMMYZ;
DUMMYZ:
IF M Egs T = N
THEN GC TC DUMMYI;
DUMMY3:
END LCCE;
" ERRCE;
DUMMY 132

A Egs E <-- C Egs Dj

= Eps H Eps D
LEMENT (J Eps I = K} Eps L Eps D & (M Eps D = N)}}

FLEMENT Eps H Eps D

m T 9 >0

FIG. 18-34

S ——————————

Source code:

IF EXISTS A := ELEMENT (B Eps A = C) Eps T

Eps E : ELEMENT (P Eps E = G) Eps B Eps I
THEN J Eps 8 <-- K Eps L
ELSE M Eps N <= F Eps (;

Translated eguivalent:

RESERVE A;
EESERVE E;
LCCP FCF ALL E := ELEMENT Eps H Eps I
CC IF F Egs E = @&
THEN GO TO DUMNY?
END LOQP;
EbBKOE;
DUMMYI:
LCOP FOB ALL B := ELEMENT Eps D Eps E
CC IF B Eps A = C
THEN GO TG DUMMY2
END LCOE;
M Eps N <-- F Eps (;
GC TO DUMMY3;
DUMMY2:
J Eps A <-- K Eps L;

DuMMY3:

EDPHI! G G |
EJ. A |
PSS . A 1 H
H A
I LA P
G {5

E

F1G. 18-35
A simple example of selectiny all elements. Source code:
A Eps PREFACE ELEMENT Eps B

{-- C Eps 2LL T := ELEMENT (E Eps D = F) Eps H

Eps ALL G := FELEMERNT (I Eps G = J) Eps Kk Eps L;

Translated equivalent:

LCOF FCE ALL G := ELEMENT Eps K Eps L i
£e IF 1 Eps G = J :
THEN LCOP FOR ALL T := ELEMENT Eps H Eps G
fO IF E Eps T = F
THEN A Eps PREFACE ELEMENT Eps B <-- C Eps D
END LOOQP

END LOGE:

FIG. 1€-3¢€ (On folleowing pages,)

Charts and graph shcw use of ALL.

{a) Graph shows source code.

(t) Oriyinal chart.

(c) Rearrangement of original chart with A's in upper-right triangle.

(¢} Irreducitle chart. Several cther arrangements are possible, Sone
paths of dependency propagation shown,

(e} Irreducitle chart with expanded scores.

source code:

A Eps PREFACE ELEMENT EFps B

<-- 2

+ C Eps L[:= ELEMENT (E Epd = F)} Eps G
Eps H := ELEMENT (I Eps U = J) Eps K
Eps L :

{¢C Eps F = RBR) Eps S Eps E
Eps ALL T := ELEMENT (V T = W) Eps X
ELEMENT (Z Eps AA Eps R) Eps AB Eps AC
* AL Fps AL := ELEKENT (AF Eps AE = AG) Fps aH
Eps ALL Al := ELEWENT {AJ Eps Al = AK) Eps AM Eps AN;

D
= 4
= ELFMENT (M Eps L = ANY OF N Eps ALL P := ELEMENT
T
E
Y

)
ps

8 %
PREFACE § DYMMY1L

F1G. 18-36(a)

Graph shows source code.

AN

AM

A

ALL (¢}

AH

4 a
“ L f £
M i L L
Y & o AAAAAAAAUAAAAA
1BRZcDEFGHIIKIMNYP QRS TUYY vy wxYZABECPEFGHET J MmN
Al*.4
pommye] A DAY S
B - 3
= . . . 2
< A -
D S5 A I
£ A &
F ‘i + . . . F
G A S
H - 8§5A H
I A 1
J J
K A X
L S s A 1=
~ A m
& . . ~A . . N
ALLLD) A P
P S5 SA 14
] AL @
R . . ™, \ g
S A <
T B S3SA T
] A v
ALe{F) , . . A~) ace b)
Y A s v
W S w
X A X
Y \ . . . “S5sA . . Y
Z AL 2
ARA A N 44
AEB A A8
BC , AL
AD A 4D
RE SSA AE
AF A AE
AG, AG
AH “A A K
ALL{e) A ALL)
AL S SA |Ar
AS AT Ad
AK . AK
AM N Alam
AN S an
APBZCPEFGHIJVKIMNAPRRSTUAVWXYZAAAAAAAALAAAARA A
f i ¢ ABCDPEFGHEIIKMN
7 @ 2 é

FIG. 18-3€ (k)

Criginal chart.

S) T
~ ~ ¥
AMB:::.PF éMIHJKMLUMNMQPESVTWxZYM,M‘DnM,MMMMNMA MM
<z TN
<X < o xx
<X W, <N
) < LS
<% w <™
e ® Tl
<X Tx
o i
< W <
@ <
LN =&
T <N
< Tt
> >
M L]
! *x
3 x
- ~
S >
“ w
o e
N S
o Qr
T ® HLL\{.W
2 z
aud LN
= B
1 ~
¥ T
v x
- =
x X
—y -
x T T
Iy N
u W
o Q
| W
v : -
o N
wf o« 5
asTI~wiw,” EEY £t ote]
<] o o «
CTAMNUYUAL CaH T ¥y IR 2 UMY S L IM> VAL WO TE I~ T2
<« a4 0 CCTEELI 4T

w3
-~

ALL

18-3€ {c)
Rearrangement ¢t oriyinal chart with A's in upper-right triangle.

F1G.

Tu

A
‘
I HKMLUYUBONG@DRPS VT xzY)

A
L
L

A
A

¢ E P g

VUMWMAW <= TY X ad F2. 5080 n >k % > o e T -

llllllllll

T+ > > I'.AAVAHM‘\\

¥
£
+
*
4
4
ol
4
s

<+

AL (3)

I HKMLUVY

A
A

c E D 4

18=3¢€{d)

PIG.

Some paths

Several other arrangements are possible.

Irreducible chart.

of derendency prcpagation shown.

]
3
N@ePsvTxzyY

B

L & R R

1 HKML VY

A

C EP &6 A

= —_
WA TS T NTE 4 D2V > x>t MWeT g

Lol o
t Sm
v
s H
< - m
< 7 "
e H
.
T < m
v 1 H
. 1

\\ wy ! -4 h_
- 1
S i
of L - :
Py 1
< < !
R |
~N Wy !
AR | !
< - m !
A ! !
Q- - e *A.'A.J\ " “ !
! Tl m ”
v : |
|
¢ L. < H ' !
e 1 1 o

a y " 1
- ! m |
4 S i : '
Vs LU 1 1 !
e m m m “

”

= “ " “ "
- ! ! i i
vy N v | H H ¢
v " : __ :

- 1
< 7 “ ! “ !
e i ! | H
s ! 1 ! i
= " _ ' :
A i ' 1 H
< < /| | : “ .
S ' '
A al ! ' ! :
L - ~ i ! ! ;
\\n |||||||| dommmese e mm oo m oo B 1 H :
< . i ! H
" H i H
< « « | : ! :
R H : _
“al ' : i
2N - ; “ :
IIIIIIII o4 L} 1 1
-~ " v)
| : "

1
<) H !
\\ 1 1 H
A ! H H
y : :
o \\n_ ! ; :
\\ 1] 1 1 i
' n 1 1
P v | - ! : '
P S + | H i
- 1 | o |
F\ III b e e = e = 4

@~
<>

<

QPSYTXZY

—
LY

.)
L PR

I H KMLUV

A
A

CEPD g

18- 3€ (e)

F1G.

Irreducible chart with expanded scopes.

o>

Examine the free storage lists in order of ascending region size.
Find the first pcnempty list L such that its regiomr size = 2F » C.

LIST L wAS FOUND

NONE EXISTS

‘

Remove the first
region from list 1.
Let its address bhe
called A.

pass just executed?

Was a free storage rececverylw Execute a
free storage

YES

System error.

recovery pass.

¢alling procedure.

Supply the C consecutive cells from addresg A to address A+C-1 to the

W

R <~ 2L—cL
B <=— a+{2"-1)
o i IR -
le— - -IE o
1 <= 1-1

N
-]

g Y

FI1G, 29-1

ves

Put the region
Its address is

of 1engthL2L on list L.
from B—-(2°-1) to B.

Get a region of C consecutive cells.

Enter

Examine the free storage lists in order of
Find the first list L such that its region

ascending region size.
size = 2+ > C,

)

PIG. 29-2

R-2"
B+2"

Put the region
Its address is

of length 2" on list L.
from B to B+ (2"-1).

Free a region of C consecutive cells, from address A to address A+C-1.

	slac-r-094a.pdf
	slac-r-094b.pdf
	slac-r-094c.pdf

