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I. INTRODUCTION

It was recently emphasizedl’ 2 that the role played by Lie algebras in
particle physics is by no means restricted to the conventional notion of an in-
variance group of the Hamiltonian. The most fruitful among the other proposed
applications has been, so far, that of an algebra of integrated current components3
(or more generally, an algebra of some physically meaningful transition
operators) which satisfy the required commutation relations without necessarily
implying that particle states fall in a simple way into the irreducible representa-
tions of the algebra. The generators of such an algebra may, in general, connect
any two physical states, provided that the '"old-fashioned" selection rules
{isolopic spin, strangeness, etc.) are satisfied. It is, however, expected1 that
a clever choice of the algebra may lead to a situation in which the generators
connect every state only to a few nearby states, while all other transitions are
relatively small and may be neglected.4 In some cases we may even find a
finite set of states which are connected among themselves by the generators of
the algebra, but {to a certain approximation) are not connected to any other state.
Such a situation inevitably leads to the classification of these particle states in
a finite, though not necessarily irreducible, representation of the algebra. The
Wigner-Eckart theorem can then be used for deriving relations between matrix
elements of operators whose commutation relations with the generators are known.

On the other hand, it has been suggested that a non-compact algebra may

generaie an infinite sequence of physical states2' 5,6

(similar to those encountered
in atomic or nuclear physics), while its maximal compact subalgebra connects
only states within a given "level" of the infinite sequence and may serve as an
approximate symmetry of the problem. It is interesting to try to extrapolate the
known spectrum of mesons or baryons and to expect many more states to be
discovered. Such states, which may have higher spins, isotopic spins and
strangeness, could then form infinjte ladders, defined by the unitary represen-
tations of some non-compact group. We do not reqﬁire or assume that the non-
compact group is an approximate symmetry of the strong interactions, as this
would lead to an approximate mass degeneracy of all states in the infinite ladder.
We may find, however, that a certain finite set of states within the infinite

ladder forms a representation of our compact algebra of currents in the sense

that transitions between any two states which are, respectively, inside and
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outside the given set of states are extremely weak and can be neglected. L
such a case it may even be reasonable to assume approximate mass degeneracy
within this finite set of states which, in general, might include more than one
16V618 of the infinite ladder.

In this paper we discuss the possible relations between various proposed
current algebras and some non-compact groups which may generate infinite
ladders of particle states. In particular, the attractive possibility of identifying
the compact algebra of currents with the compact version of the non~compact
spectrum-generating algebra is studied. Some examples based on the SU(3),
SU#4) and SU(6) current algebras and, respectively, on the SU(2,1), SL4,R)
and SL(6,R) non-compact algebras, are considered, and it is shown that the
particles within the first few '"levels' of the obtained infinite ladders approxi-

mately fall into finite representations of the relevant current algebras.

II. CURRENT ALGEBRAS AND NON-COMPACT GROUPS

We now consider the possible relations between the proposed non-compact
algebra G, its maximal compact subalgebra K , and the compact algebra of
integrated current components G'. The simplest possible reilation is obtained
when G' is identified with K (the maximal compact subalgebra of G), which is
expected to be an approximate symmetry of the problem. 9 In this case, the
integrated currents generating G' connect only states which are in the same
representation of K. If the particle states can be approximately identified with
the basis vectors of the representations of K, we are essentially led to a
sequence of multiplets of a symmetry group K, arranged in infinite ladders of
G, while no transitions between different rungs of a given ladder can be induced
by the integrated currents. If we want to use such a scheme while assuming an
SU(3) algebra of currents, we will obtain SL(3,C) |or possibly SU(3,1)| as
the non-compact algebra. Similarly, an SU(3) x SU(3) algebra of currents
will lead to SU(3, 3) as the spectrum-generating algebra.

We suggest, however, a different possibility which leads to a more

attractive classification of the known particles and is consistent with experimental

facts such as the absence of positive strangeness baryons. It is also consistent
with the usual results of SU(3), SU(6), etc., while it allows infinite multiplets

of particles.



We first observe the following interesting property of some ladder repre-
sentations of non-compact groups: In many cases (including most known
physical applications such as the hydrogen atom or the harmonic oscillator) the
first n "levels" of a given ladder representation of a non-compact group G
form an irreducible representation of the compact version of G, i.e., the
compact algebra obtained from G by appropriately changing the signs of the
structure constants.l? A 'level” is defined, for this purpose, as a set of one

11 jrreducible representations of the maximal compact subalgebra K

or more
such that:

1. Every level in the ladder contains the same number of irreducible
representations of K.

2. A one-to-one correspondence exists between the representations of

K in two adjacent levels. Any transition between the corresponding represen-

tations in these levels involves the operation of the '"non-compact operators"
of G (those generators of G which do not belong to K).

A simple example of this structure is provided by some of the ladder
representations of SO(4,1). For any positive integral or half-integral value
of S there exists an infinite dimensional irreducible unitary representation of
SO(4,1), the first level of which consists of!2.

(5,0) (S =%, %) (5-1,1)...(3,8 = 3) (0,8) ;

(k,£) is a representation of the maximal compact subgroup SO(4) and is
characterized by the two orthogonal "spins' which form an SO(4) algebra.
The next levels of the same ladder representation of SO(3,1) are:

S+%%) 6,16 -2%)..01,5 (S +3)3
(S+1,1) (S+3,3) (5,2)...(3 S+ (L, S+1)...

For every value of n, the first n levels form an irreducible representa-
tion of SO(5) for which A= 2S; p =n=1 in the usual (\u) nota’cion.13 Note that
each level of the ladder contains 28 +1 irreducible representations of S0(4),
every one of which is obtained by applying the four non-compact operators of
SO¢4,1) to the appropriate representations of SO(4) in the previous level.
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Using this mathematical structure we suggest that, in some cases, the
following relation may exist between the non-compact algebra G and the compact

g ¥ ang

algebra of intégrated currents G'. G' is the compact version of
its generators may consequently connect only pairs of states which belong

either to the same level or to adjacent levels. Every state is then automatically

connected only to a few nearby states, although it is not necessarily clear that

an ""isolated" finite set of states exists. In some cases we may find, however,
that if we "cut" the infinite ladder after a finite number of levels, we obtain a
set of states which form an irreducible representation of G', while transitions
connecting these states to higher levels in the ladder are negligibly small. 7

It is clear that such a '""miracle'" can cccur only as a consequence of a certain
underlying dynamical structure, which we are not able to describe at present.
However, any proposal of an approximate symmetry involves the assumption
that a finite set of states is "isolated" by the operations of the integrated
currents, and if such a situation occurs at all, it may well apply to the first n

levels of some infinite ladder.

TiI. SL#,R) AND THE STRONG COUPLING THEORY

We now proceed to some examples. It was recently pointed out5’ 15 that
the old strong coupling theory16 leads to an infinite dimensional representation
of SL(4,R) as a classification scheme for a sequence of nucleon resonances
with (1, J) = (3, 3); (3,2); (2, 2)s. -+

The maximal compact subalgebra of SL(4,R) is SO{) or SU(2) ¥ SU(2)
which includes the spin and isospin operators ¢ and 7. The compact
"version'" of SL(4,R) is, or course, SU(4).

We now assume that the following integrated current components form
an SU®4) algebra:17

a) Space integrals of the space components of the isovector, axial vector

current fAi(l) (i ,t)dgx(i= 1,2,3)

b) Space integrals of the space components of the isoscalar, axial vector

current [ A{P&,t)a3x(i=1,2,3)

c) Space integrals of the space components of the isoscalar, vector

current fvgl)& ,t)d?’x .



It follows immediately that these integrals connect only adjacent levels in
any given SL(4,R) ladder representation. Moreover, if we assume that the
transitions among the foizr spin-isospin states of the nucleon are much stronger
than the N «— N* transitions, we are led to the classification of the nucleon
in a 4-dimensional representation of SU(4),18 consistent with the classification

of Wigner's supermultiplet theoryl9

as applied to problems in which no N*

is expected to be involved. If, however, dynamics teils us that the transitions
to the N*(1238) are important (and as far as we can tell this is really the case),
the nucleon states are no more "isolated" and the N* and the nucleon will be

in the same SU(4) multiplet. Note that the assumption that all sum rules based
on evaluating the commutation relations of integrated currents between nucleon
states are saturated by the N and N* immediate states is not sufficient for
specifying the SU{4) representation of the nucleon. Consequently, this
assumption does not lead to unique values for quantities such as the axial-vector
cbupling constant or the magnetic moments ratio for the nucleon. The assump-
tion is consistent with any classification which is based on grouping the first n
levels {n > 2) of the SL{4,R) ladder into an (n;3)—dimensional irreducible
representation of SU(4). Each value of n will lead to a different value for

Gp /Gy and p(n)/u(p) . We obtain:

A _m+1

GV 3
pmy _ _ 2n2-2
#(p) 2n2+ 1

If we now want to suggest that the nucleon and N*(1238) form a 20-
representation of SU(4) (the classification implied by the usual SU(6) assignment),
we must assume that transitions between the (3,3) state and the (%-,"%) state can
be neglected and that sum rules which are evaluated between N* states are
saturated in all cases by the N and N¥* intermediate states. This assumption
sets n =2 and leads to the usual results of GA/GV = 3— and pm)/u(p) = —-?7 .

It is, again, clear that only the dynamics is capable of dictating where we
should “cut" the infinite ladder and in this case it looks as if the second stage
is the right place to do so, although even this is, at best, only a crude

approximation.



With some slight modifications we may carry this SI(4,R) analysis to the
strange baryons or to other nucleon resonances. In the case of baryons with
non-zero strangeness we must introduce a "strange spin"Q‘O which is carried with
Lin su)| . The
SL(4,R) ladder for S = -1 baryons will then be (0, 0); (1,1); (2,2);... The first

level describes an I = 0 state with a zero "non-strange" spin which, together

every unit of strangeness [similar to the N-quark spin2

with the strange spin, forms an =0, J =3, S = -1 particle: A(1115) . The
second level includes the £(1190) and the Yj (1385), which have I =1, "strange
spin" = 3 and "non-strange spin" = 1. They differ in the total value of J. In
the T case, the two spins are coupled to J =% while for YI they are cougled+
to J :% . The next states in this § = -1 ladder will have I = 2 and JP = %—; %
We can assign the A to a scalar representation of the SU(4) algebra (and
assume that A -5 and A - Y{ transitions are negligible) or classify A, T
and Y{ into a 10 representation. This last possibility coincides with the usual
SU(6) classification.

Note that the existence of SL(4,R) ladders does not necessarily depend
on the validity of the strong coupling theory which is usually used, in this connec-
tion, only as an example of a dynamical structure which may lead to a non=-

compact spectrum-generating algebra.

IV. 8SU¢2,1) AS AN "INTERNAL" NON-COMPACT ALGEBRA

A more interesting example is provided by the groups SU(2,1) and SU(3).
The baryons can be assigned to infinite ladder representations of the non-
compact SU(2,1)6 whose maximal compact subalgebra is the isospin-strangeness
U(2). If we consider only those SU(3,1) representations which have a bounded
spectrum of S-values, we find that these can be characterized®: 22 by the
maximal (or minimal) weight (I,S) where I and S are, respectively, the total
isotopic spin and sirangeness of a U(2) multiplet, The first level of such a

representation includes the following U(2) multiplets:

LA -5, S - =1, 8-2)...(0,S = 21) ;



The next levels are:
a+%,s-na,s-aa—%,S—BL.w%,S~ZI—D;

T+1,5-2)+5, S -3)(I, S=4)...(L, S - 21 - 2);

a+%,s-mu+1,s-@a+l,s-m”.é,s-ﬂ-sn.“

For every value of n, the first n levels form an irreducible representa-
tion of the compact SU(3), provided that the isosinglet operator of SU(3) is
properly defined. In the usual (j,4) notation, the SU(3) representation con-
structed by the first n levels of an SU(2,1) ladder is (21, n - 1) where I is
the maximal isoto_Pic spin of the first level.

The JP = 12— baryons will clearly fit into the following representation:

&, 00, -1); (1, -1)(G 4 -2); (3, -2)(L, -3); ...

The first level includes the nucleon and A; the second level £ and = .

In the third level, yet to be experimentally discovered, = *(I = -g—) and @ *(I =1).
If we now assume an SU(3) algebra of integrated currents, including the space
integrals of the time components of the eight vector currents, we find again that
all allowed transitions in the ladder occur either within a given level or between
adjacent levels. Moreover, dynamics may tell us that the first level is "isolated, "
forming a Sakata-type 3 representation or, preferably, that the first two levels
are "isolated,'" thus constructing the usual SU(3) octet. The ‘inclusion of the next
two hypothetical =% and 0¥ states might lead to a 15 representation of SU(3).
However, we have at least two reasons to believe that the best approximation is
to "cut" the ladder after the second level. These are the success of the octet
assignments for the baryons, with respect to various electromagnetic and weak
phenomena, and the apparently large mass difference between states in the

23 The known JP = %t resonances fit into the first

level of another SU(2,1) infinite ladder:

second and third levels.

G+ O, -1, -2)(0,-3) (2 -1)G,-2)(L, 3)&, 4.



The first level is an SU(3) decuplet. The first two levels may form a 24 represen-
tation, including Y% =* (I =3), a*(I=1) and X(5 = 4, I=2).

The mesons can be assigned to an unbounded representation which allows
an ordinary octet at its center, 6 while higher states include S =+2, +3, ...
I1=1, %, 2 ... mesons.

Higher baryon resonances fit nicely into nucleon-type representations.
In both the JF = —2— and the JF = —5;_ cases the only well estabhshed states
have the internal quantum numbers of N and A. For J §2-* we find
N*(1510) and YZ2*(1520} in the first level of a nucleon-type representa_tlon,
P %— in the next level. For JP 52 ,
N*(1688) and Y¥*(1815) may be assigned to the first level of another nucleon-

type representation.

predicting a Yl and a =* with J

Note that all these assignments allow us to predict more and more states
with decreasing strangeness without requiring that positive strangeness baryon
resonances exist. The nonexistence of such states is, so far, one of the most
striking regularities of the baryon spectrum. In ordinary SU(3), any repre-
sentation higher than 8 or 10 will predict such 8§ > 0 states and every
1= %, I1=2 or 8= -4 baryon resonance will immediately lead?* to such a
prediction. On the other hand, the SU(2, 1) classification is consistent with the

absence of S > 0 baryons, although such states are by no means forbidden.

V. AN SU{(6)~-TYPE LADDER

We may incorporate both the SU(2,1) and the SL(4,R) infinite ladders
into an SU(6)-type scheme in the following sirriple way: We assign the baryonic
states into infinite ladders of SL(6,R) while assuming an SU(6) algebra of
currents. The integrated currents included in this SU(6) algebra are the space
components of the octet and singlet axial vector currents and the time components
of the octet vector currents. 25,1

The maximal compact subalgebra of SL(6,R) is SO(6) (isomorphic to
the SU(4) algebra) and the baryon ladder representation is constructed from the
following SO(6) representations:26 6; 50; 196; 540, ... The first level
accommodates the six spin states of p, n and A and it is easy to verify that
the states of the 50 representation of SO(6) have the correct quantum numbers

of ¥z, =, N*¥, Yl ,=*% and . If we '"cut” the ladder after the first level,
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assuming that transitions such as N «— N* or A «— & can be neglected, we
again get a Sakata-type assignment of p, n, A into a 6 of SU(6). If, however,
dynamics tells us that the first two levels are "isolated" from the rest of the
ladder (i.e., neglecting N* ., N** (% ,%) and similar transitions) we have the
usual 56 of SU(6) as the basic baryon multiplet. The third level of the SL(6 R)
ladder mcludes the following 196 spin states: =* and X 3 with JF = 12--;

four J P —2— states which formed the second level of the SU(2 1) ladder of the
decuplet: Y§, :*, * andan S=-4,1I= %state and six JP = ~2- resonances,
including the (2 2) state from the SL{4,R) ladder of the nucleon.

We can apply similar methods to the full SU(3) x SU(3) or SU(6)x SU(6)
algebra of currents (including both vector and axial vector currents). The
corresponding non-compact groups are, respectively, SL(3,C) and SL(6,C). In
the SL(6,C) case, for example, the baryons may be classified into a 56; 700;
4536; ... ladder and the mesons are in 1; 35; 405; 2695; ... The corresponding
SU(6) x SU(6) representations obtained by 'cutting' the ladders after the first,
second or third level will then be: for baryons - (56, 1); (126, 6); (252, 21)...
and for mesons - (1,1); (6, 6); (21, 21); (56, 56); ... These should not be
confused with the similar sequences suggested by Dothan, Gell-Mann and

Ne'eman> as the components of U(6,6) ladders.

VI. SOME FINAL COMMENTS

The assumption that the integrated currents satisfy the exact commutation
relations of a given algebra is clearly much weaker, and probably closer to
reality, than the assignment of physical states to the irreducible representations
of the algebra. However, we cannot ignore many successful results which have
been obtained by classifying particles into the representations of SU(3) or SU(6),
and we should not abandon this way of describing various processes. Although
we cannot explain why the same assumption of an approximate symmetry some-
times leads to accurate predictions while it fails completely in other cases, we
feel that the classification of particles into finite multiplets of the algebra of
currents can provide, in many cases, a reasonable first approximation to the
physical situation.

On the other hand, an infinite spectrum of states as described by non-
compact groups appears natural both from the point of view of the analogy to

-9 -



atomic and nuclear systems and from the apparent abscence of an upper bound for
the masses of resonant states. Knowing that the classification of an infinite
number of particles in one representation of a non-compact group cannot lead,
in any meaningful way, to an approximate symmetry based on this group, we are
Ied to speculations on the possible relation between the algebra of currents (or
the finite multiplets to which it may approximately lead) and the non-compact
algebra,

The possibility pointed out in this paper may provide a good example of
such a relation, leading to a scheme in which both the approximate symmetry
and the algebra of currents are built into the structure of the non-compact
spectrum-generating algebra. It remains to be seen, however, if the next states
to be discovered will fit into the next levels of the proposed infinite ladders.

It should also be pointed out that the only way of constructing a fully
covariamnt ''vertex symmetry" (i.e., a symmetry of the interaction part of the
Lagrangian) which includes the Lorentz group as a subgroup in a non-trivial
way, must be based on classifying the physical states according to infinite
dimensional representations, without necessarily assigning an infinite number
of physical states to every representation. The infinite SO(4,1) ladders discussed
as a mathematical example in Section II (and footnote 13) may be a suitable
starting point for such a theory, avoiding the unitarity difficulties and the

27

limitations on the number of derivatives“' which are present in symmetry

schemes such as the U(2, 2) subgroup of U{(6, 6). 28
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