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ABSTRACT

A method for solving variable permeability two-dimensional
and axially symmetric magnetostatic problems will be discussed and
the implementation of this method in the computer code NUTCRACKER

explained.
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I. INTRODUCTION

The computer code NUTCRACKER has been used in the design studies of
iron bound and iron core magnets with complicated geometries, such as C and
H type beam transport magnets, spark chamber magnets, and bubble chamber
magnets. The program is able to solve the following problems:

(a) Vector potential in and outside the iron body.

(b) Distribution of relative permeability in a

two-dimensional area.

(¢) Quasi-linear partial differential equations arising in two-

dimensional magnetostatic field problems.

(d) Field distribution in and outside the iron body.

In general, any problem to which the following assumptions may be applied
can be solvéd by the computer program:

(a) Zero or constant vector potential on the boundary, which can be

chosen arbitrarily.

(b) Rectangular region of interest.

(c) Square mesh in finite difference equation.

(d) Either axial symmetry or doubly infinite symmetry.

For many applications the above assumptions are not restrictive. However,

in case of curved boundaries the present code needs further improvement.

A. Problem Formulation

At present several computer codes for solving magnetostatic problems are

1,2,4,5,6,12,13 i

in operation. These codes fall into two categories:



(a) Iron permeability is assumed to be constant over the entire iron. 1,2

This assumption leads to the solution of the Poisson equation:
2, _
VA = -uS . (D

This calculation leads to errors in the computation of the magnetic fields in
excess of 10% and if the iron is nearly saturated the effect of these errors \
may prove to be disturbing. However, the code is eificient and the
approximation is quite useful if po>> 1.
(b) Iron permeability is variable throughout the magnet return path. The
deficiency of category (a) for highly saturated ferromagnetic materials
is corrected. The assumption of variable permeability as a function

of magnetic vector potential leads to:

VX = VXA =-8§ . (2)

|~

This equation is solved best numerically and the different numerical methods
currently being used are given below in brief. Nonlinear successive overrelaxation
is proposed by Schector3 and discussed by Concus. 4 The method does not use
permeability values in iron based on actual measurement data, but on the variational

equation
1= [f {g(/VAI %) -878A | dxdy . (3)
R

The magnetic vector potential A(x,y), twice differentiable in the region R,
should satisfy the assumed boundary condition and minimize the integral I in Eq. (3)
The function g (! VA Iz) is proportional to the magnetostatic energy and

is related to the permability by:

= _Tc}_g_z_ ' (4
d(IVA|D

=i



The variational equation based on this assumption leads to:

1+ (1Y AF)
1074+ (|7 a1%)

K (|€A|2) = (5)

A linearization of the nonlinear di.fférential equation (2) and scaling the vector
potential by:
applied
is reported by Ahmad. 5,6
This method is suitable for magnets with low field strength where the flux density
in iron is far from saturation. However, as a first guess it yields a good approxi-
mation to high field problems.

The method of solving Eq. (2) dex}eloped at SLAC in the code "NUTCRACKER"
is to solve the quasi-Poisson Eq. (2) by successive overrelaxation of the magnetic
vector potential and underrelaxation of the permeability in iron.

The method of Ahma.d5 is used in the SLAC code as an initial guess in order

- to reduce computation time. The outline of the SLAC computer code is described
below.

Inthe case of variable permeability throughout the ferromagnetic body and

double infinite symmetry, a quasi-Poisson equation of the form

o (1 B\, o (1 B @
x \ p ox oy \ u Oy z

must be solved. The solution from the NUTCRACKER program uses

Maxwell's equation:

VxH=8+ 5

(8)
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we get
1 - -
VXIVXA=S (9)

as the basis of our approach.

B. Derivation in Rectangular Coordinates

If ’i\, Ij\, and & are the unit vectors, doubly infinite symmetry may be

expressed by the following two vector equations:
8 = Sz (X,2) ﬁ s (10)
— A
A = AZ (x,z2) k . (11)

Equation (9) can be given in the form:

A A
i 4 k
1owE - |2 2 B
VX-L—VXA = = dy o7 (12)
1% 1 %y 5
p oy poo B

which, evaluated, is



—

As A is independent of z,

(1 Bl e 1 Byl
8z {u o9x 9z |u oy |~
we get:
—- oA 8A
1 2 R 3 f1 %y
VXP,VXA_ Bxp,ax +8—y E—Bx—' (14)
Combining Eqs. (9) and (14) yields,
2 (1 ) o 1 M\a o oa 5
ox \ u 9y Oy tu Oy ™ (15)

which is the quasi-Poisson equation for the magnetic vector potential as shown

in Eq. (7).

C. Derivation in Cylindrical Coordinates

If ?1, é 9? and & q are the base vectors in the cylindrical coordinate
system, using the transformation equations from Cartesian to cylindrical

coordinate, the curl of the vector potential can be given in the form:

1 4 A 1A
r €1 €2 1S3
— 0 a o
V X A —8}- 38 -a;
0 rAe 0




and
1a A A
r €1 62 €3
Loxa = | 2 2 2
VXE VXA = 5 50 5% (16)
1 9 1 0
-—* — (rA e
pr 9z ( 9) 0 ur Br(rAG)
which gives:
1 T _1 8 1 9 A 811 8 a1 9
VE VXA = T %0 (pr or (rAe)>e1 Br [pr ar (rAa)] *oz [ﬁ 52 (I'Ae)}ez
l 311 @ A
+ = 2 1= 2
jur Be[p,r oz, (rAG)] €3 " (17)

As A 0 is independent of 8, Eq. (17) reduces to:

1 oo 3 |1 8 8|11 o0 /s
VXEVXA = - ﬁ'f[ﬁ-r_ —ﬁ_(rAe)] +t 5 [E 32 (1AG)] €y -

Combining Eqgs. (9) and (17), we get

3 1 3 8[1 o -
37 [ ur or (rAg)]+ ) [Ifr— W (rAG)} ==-8, (18)
= /o - h
S F eel LG



. COMPUTATION METHODS USED IN THE PROGRAM

When solving a partial differential equation by numerical methods, one
discretizes the space and uses a finite difference approximation to the partial
differential equation.

For linear equations, relaxation may be used with good results. Since the

permeability is given by

M= (lVXK(X, Y)I) (19)
Eqgs. (15) and (18) are not linear and a modification of the method of Ahmads’ 6
has been chosen.
The method of solving the partial differential equations given in Egs. (15)
and (18) is divided into two phases:
Phase I
(2) Overrelaxation of the magnetic vector potential in every point
in the net using the finite different equivalent to Eq. (15) or
Eq. {18).

(b) Calculation of the ratio

c = J4lS5:ds (20)

o fH-dT
and scaling potential values in the net by Cn if appropriate.
(¢) Underrelaxation of the permeability at each point in the net.
Phase I linearized the problem. Its convergence is speeded up by a factor
of 5 to 10 compared to other methods, and fairly accurate results are obtained,

as will be shown later.



Phase II

In this Phase the solution proceeds as follows:

(a) Successive overrelaxations of every vector potential value in
the mesh,

(b) The simultaneous underrelaxation of every permeability corre-
sponding to'a specific potential value.

If Phase I of the solution is used, we observe that after 30-50 iterations the
convergence rate is slowed down. This can be seen by examining the magnitude
of the absolute value of residuals, which either remain constant, or oscillate
around some fixed value.

At this time Phase II begins to operate and the solution starts to converge

to any set value and accuracy desired.

A. Successive Overrelaxation

The vector potential at any point in space may be expressed by a linear
combination of m adjoining points. The general form of the equation is:

Ay = Do CiA (21)
i=1

m

with Ao as the vector potential at an arbitrary point in the net. If superscripts

denote the number of iterations in Eq. (21), we rewrite the equation:

1 m
=
2 n
A = C A 22
i=1
The overrelaxation equation is then
1
s
n+l _ n 2
Ao = (1~w) A0+ on (23)

-8 -



for

l1<w<?2 .

Equation (23) is applied to each net point successively.
Now if p and q denote the number of nodes in the x and y directions
for a specific net, we may write as a good approximation7:
1
w=2- |5 + L|?2 (24)
|4 q

for p>15, q>15 .

B. Acceleration of Convergence

Acceleration of convergence is achieved by scaling the vector potential

throughout the area S by a factor Cm’ defined as:

- . (25)
m ﬁH

Equation (25) is a modification of Ampere's law:

$HAI=/[Sds . (26)

The number of ampere-turns used as initial input in the system determines
i) S ds but gﬁﬁd? is calculated separately using VX A and the numerical
values of the vector potential.

If the calculated values of H are too large, Cm will be smaller than unity
(Cm< 1) and the potentials are automatically reduced, carrying a drop in

V x A and hence in $HAT .



Ideally Cm should be unity, but numerous difficulties arise due to
oscillation around the true solution and Cm =1 is hardly ever achieved.
It may be seen that as the computation progresses, Cm will vary in the
region 0.96<C<1. 04 for most problems solved.

After each SOR"the line integral of field intensity is integrated around
a suitable path. If 0.01 < Cm < 100, the potential values are multiplied by
Cm. One may choose several paths for line integrals and use a different Cm

for each integral.

C. Underrelaxation of Permeabilities

Due to the non-linear properties of u, the overrelaxation Eq. (23) was

not applied for u. Instead we used:

n+1

n n+ 12
= (l1-w + w
K ( “)n #” s

(27)

where “n is the value of permeability, after the n-th iteration, at some point

+1/2

in the net. The term u" is obtained from measured permeability curves
suitably fitted for the program.

If the p-H curve is represented by G,u [see Fig. (8)], then

5 (28)

n+1/2=G v x:‘:n+1, V><“A'n+1
© i ] .

Empirically w“ is found to be about 0.15 to 0,25. For each point in the

net a new permeability yn+ 1 is calculated.

*
SOR = Successive over relaxation.

- 10 -



D. Convergence Test

To judge how close one has come to the true solution has been always a
difficult task. Binns8 gives a few practical criteria for satisfactory solutions,
which have been applied in the NUTCRACKER program:

(a) The residual of each mode is less than 0.1% of the mean potential value.

(b) The algebraic sum of all residuals is of the same order of magnitude

as each residual.

(c) The residuals are "uniformly mixed" with regard to sign and magnitude

over the whole region.

Criteria (a) and (c¢), although very important, are rather time consuming,
if applied to the computer program. At any iteration there are actually four
solutions to the problem:

(1) The "true" or actually measured values of the field after the magnet

is tested.

(2) The analytic solution to the quasi-Poisson equation with imposed

boundary ya.lues.

(3) The solution of the finite difference equation as an approximation to

the partial differential equation (which occurs when all residuals are

Zero).

(4)  The solution to the finite difference equation after n iterations.
A good approach is to express (4) in terms of (3).

Binns8 gives a solution for a five-node molecule:

5, = (29)

- 11 -




with &

It

a measure of the error,

=
]

maximum residual at the end of the n-th iteration

k=]
1]

radius of a circle, which contains the field region.

The program switches from Phase I to Phase II when 6n_<,; 61 and |1 - Cm| <0.05.
If 5n < 511, then Phase II is complete and the magnetic field, the vector

potential, and the permeability values are printed for any mesh point in the network.
Both 61 and 6II are specified in the program.

II. FINITE DIFFERENCE EQUATIONS IN RECTANGULAR COORDINATES

The finite difference approximation to Eq. (15) is obtained to the con-
tinuous function Az(x,y) by a discrete function A. The correspondence
between Az(x,y) and A with respect to an arbitrary point (x,y) is given by

the following six expressions:

A (%) = Ay
Az(x+ h,¥y) = AE s
Az(x—h,y) = AW s
A(x,y+h) = Ay (30)
A_(x,y-h) = Ay
A _(x,y+2h) = Ay -

The discrete function is represented graphically in Fig. 1. Points midway
between the nodes are noted by subscripts.
The first partial derivatives, multiplied by the inverse permeability between

nodes, are approximated by:

He

u ox 2 h ’ (31)



FIG. -- DISCRETE VECTCR POTEN-
TIAL IN RECTANGULAR CO-
CORDINATES .

FIG.3 --DISCRETE VECTOR POTEN-
TIAL IN CYLINDRICAL CO-
ORDINATES.,

- 13 -
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FIG.2--DISCRETE VECTOR POTEN-
TIAL.
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FIG.4 --DISCRETE VECTOR POTEN-
TIAL ON THE AXIS OF
SYMMETRY.




1 %y . [#o Hw) (2o Aw 32)
’

L.u 8x_3 2 h

1,1
- ] 1,1 )
1 %, . (Po Pn){An7A0 a3
U oy 2 2 h ! (33)
L. "

1 .1
r - + =
1 __aAZW (P fs ) (Pots ) (34)
BBy |, 2 h

oA |
s [1 9B, .1 [ 1,1 11
— = ===+ =) JA_-A \~f—+-——\[A_ -A ’
ox \u By o on? (“o uE) (E 0) (,uo “vs)(o W) (39)
2A '

z 1 {/1 1 1.1
-5 SN [ SN 4 A N+ 2V\A -a X

2 (“o . “W) (AW O) (”0 “S>(AO S) (36)
0

Replacing the left-hand side of Eq. (15) by the finite difference approximations

}

o
T =

and solving for A_, one obtains

o

-+

0 ' 1 1 1 1

(—- + L)AW-" oh? S
Ho

E
—_—+ = f -~ 4 _ﬂ‘_
(37

Equation (37) represents the finite difference equation to be satisfied by the

successive overrelaxation methods discussed in Sec. IL.

- 14 -



A. Magnetic Field Intensity in Rectangular Coordinates

The magnetic field intensity is obtained from the finite difference solution

by an approximation to the curl. Recalling that
-_— 1 ‘ A
H = 0 VXA, kK, (38)

we may express the magnetic field intensity in rectangular coordinates as

iy .
—,U. ay ij . ()

=)

Thus, at the center node, H is given by

. A -A, . A_-A. .
=+ | A 2§ B W . (40)
o

On the boundary (see Fig. 2) the field is given by the equation

- 1 3AL + 4A - Apy . Ap - Ay .

Lo 2h 2h

e
.

(41)

The numerical approximation to 3‘3— at y=0 is given by Salvadors and Baron. 9

IV. FINITE DIFFERENCE EQUATIONS IN CYLINDRICAL COORDINATES

As in the case of rectangular coordinates, a continuous function is usually

approximated by a discrete function. This approximation is represented graphically

in Fig. 3.

- 15 -




With respect to an arbitrary point (r,z) the correspondence between A and

the approximation is expressed in Egs. (42).

AG (r,z) = AO ,
A‘9 (r+ h,z) = AN .
Ag (r~- h, z) = AS ) a2
Ag (r, z+h) = AE ,
AB (r, z~h) = AW R
Ae (r, z+ 2h) = ANN .

The first partial derivatives multiplied by the inverse value of permeability

times radial distance are

1 1
+
1 8 L HE'E Pofo  \[FEPE To*o
ur oz (TAG) - (43)
H 1 2 h
1 1
1 9 AMEN oo | AN T Toto
o Br (FAyp) (44)
H 2 2 h
, 1 1
1 8 A Hofo  Mwtw ([ FoPo Twtw
"? 'é'E (rAe) = (4:5)
K 3 2 h
1 1
AT pt r A_ -r A
1raz(rA) N 0’0 s's oo Tg's (46)
¥ 4 2 h

The second partial derivatives at the center node are respectively

9 {1
ar\pur ar

&

1

(A))]0

1
oh? (’U‘N N ”0 o}

S

1 1
) ~<“Or0 i uSrS>GOAO“ rgh S) (47)

- 16~



and

1 1 1 \ 1 1
= + A_-r A - + r A - rWA (48)
2h2 (‘uErE uOrO/éE E @) O) (].LOI‘O ‘uWrW>( O 0 W) .

Replacing the left~hand side of Eq. (18) with the approximations to the second

partial derivatives and solving for AO’ one obtains

1 1 1 1 1 1 ) ( 1 1 ) 2
— T Hf—— + ——r + =T A [+ T + 2h"s
- L‘NrN “or0> NN <“s’s “oro) s (”ErE to'o/ EE \Pwtw  FoTg whw e
(o]
ok (49
N HSTs METE Mw'w HoYo

The iterative solution to Eq. (49) is the z-axially symmetric magnetic vector
potential in cylindrical coordinates.
On the axis of symmetry, the magnetic vector potential is zero. One mesh

unit away from the axis (see Fig. 4), Eq. (49) must be void of poles; with

Tp STy =g~ h, Iy 2h, and rg = 0, Eq. (49) becomes
:4__1;+_}_A+_]'_+_1_.. A +__]; +_}_ AW+2hZS
3 \u M N \u p E \u L 0
A = N 0 E ) W 0] 50
0 2 . 2 1 . 1 14 (50)
Ty
By Mg Bp My ko
A. The Magnetic Field Intensity in Cylindrical Coordinates
The magnetic field intensity is given by
H=2 vxa,e (51)
Ji § "2

- 17 -



or,
F=1- 2.6 +18aye (52)
i oz 1 r or 0) '

The finite difference approximation to H at the center node in Fig. 3 is

therefore;

=3 5 €, . (59
o 1 2T \ h 3

At r =0, H is obtained by the limiting process and L'Hospital's rule. The

field intensity is then

go_ 1 e, 2 e
H——“ = €1tn o ¢3 - (54)
In finite difference form it may be expressed as:
gL 1 Ap - Ay, 1 [8Ap T Ay -Agy
= % R “ 7 h 3 *
o) 0
(55)

V. GENERAL CONSIDERATIONS

A. Two~Dimensional Problems and Boundary Considerations

Three-dimensional magnetic configurations are reduced to twe-dimensional
problems by assuming symmetry conditions in one dimension.

In rectangular Cartesian coordinates, one usually assumes doubly infinite
symmetry, i.e., the magnetic vector potential is independent of the z coordinate
(see Fig. 5).

In axially symmetric cases, the magnetic vector potential is independent of

the 6 coordinate (Fig. 6).
- 18 -
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y _A+(r,8,z) = Ae(r,z)’e\2

IRON
\\ 8
U |

FIG. 6-- AXIALLY SYMMETRIC CASE

489-9-4
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A futher reduction in atwo-dimensional case will take place in rectangular -
coordinates in the form of a two-dimensional anti-symme&ic problem (see Fig. 1),
where the x-z plane is the surface of zero magnetic vector potential. When this
condition is applied to finite difference equations, special consideration must be
given to the x-axis (z =0, y = 0).

Consider the molecule with the center node on the x-axis; then, anti-symmetry
requires that AN =~ AS and AE = AW = AO = 0.

The x-axis is chosen as a boundary and a line of zero potential. The flux

density is parallel to the x-axis because

_ 9A _ Ay —(FAY Ay

Bx "y 5 =5 e (56)
and
9A
= e — = O .
B, 5 (57)

In the case of axial symmetry, hyper-rectangular shapes with two square

faces are usually used.

The magnetic vector potential along the z-axis is AG(O 2y = 0

B. Potential Boundaries

A magnetic system to he approximated by the method stated in this paper is
enclosed in a rectangular area.

The magnetic vector potential is assumed to be zero or a constant along this
boundary. An alternative assumption would allow Neumann conditions or the
specification of Cauchy conditions.. Newmann conditions require that the tangential
flux component be zero and Cauchy conditions may add considerable computing

time.

- 21 -
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C. Flux Dernsity in Iron-Air Boundaries

Several approaches to the specification of boundary values were investigated.

1. Internal Conditions

From elementary theory, the relationships between B and H

across an interface are (Fig. 8)

Bin T Box

Hip= Hypo

where the subscripts refer to the normal and tangential components

of the field. In terms of the angles o, and «

1 o8 these conditions

become

B, cos (11=BZCOS C!z s

— B, sina@, = — B, sino
U 1
Dividing Eq. (59) by Eq. (58), one obtains

tan o tan o, and
e 2

Hy 1 Ho

tan o, = tan o

Fe
2. External Boundary Conditions
These conditions may be of three {ypes:
(a) Dirichlet conditions, A =g(x,y) ,
(b) Neumann conditions, g—ﬁ = f(x,y) and

(c) Cauchy conditions, either %% or A specified.

- 923 -

(58)

(59)




489-15-A

FIG. 8-- FLUX DENSITY ACROSS BOUNDARIES
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The best approach would be to use any one of these three types where appropriate.
To do this, however, raises very complicated pr.ogramming problems and it is
found that type (a) is easiest to employ.

By using the Dirichlet condition A =0 on our problems and allowing about
four nodes of air between the iron and this boundary, we achieved reasonable
results. For example, the internal conditions (a) were examined to see if they

heldin the region of the pole face. An angular discrepancy of about 1° was found.

D. u-H Curve

The nonlinear aspect of the quasi-Poisson equation is due to the variation of
p with H. An accurate functional form for this relationship was found by a curve-
fitting program which incorporated data from a number of sources.

Throughout the lower portion of the u~H curve, a function with a small additive
term was quite satisfactory for expressing p in terms of H. In the region
H <700 amp-meter_l and H> 28,000 amp—meter-l the data are subject to a
wide margin of error. The u-H curve is very critical for large H, due to
the saturation effects in iron. Our best fits in these regions were linear and
adjusted to make the entire curve continuous in the following manner:

The magnetization curve for ferromagnetic materials is expressed as
B = 4tM+p H, (60)

with 47M = 2.1 volts/ meter” the saturation value. The relative permeability is

calculated from the expression:

p-l= —= (61)

-~ 925 -



For various H values the permeability values are fitted from the magnetization

curve by the following expressions:

0 < H< 250 amps- meter - = (250 + TH) (62)
250 <H < 350 amps- meter . B = 2000 p, (63)
350 < H < 700 amps- meter - 4 = 2000 ~ 1,868 (H-350) g (64)
700 < H < 28,000 amps- meter” ¥ u= 1988 - +4.31x 1031 (65)
[exp(3354 )+ 1.243
- *
28,000 < H amps- meter 1 po= .u(28,00(g>< 28,000 Ky - (66)

Experimental data for B and p values are shown in Fig. 9.
The convergence of the problem is definitely affected by the shape of the
magnetization curve. The regions of the magnet where u changes rapidly with

H are relatively unstable during the initial iterations of the problem.

E. Lines of Equal Vector Potential

The interpretation of data from a two-dimensional problem, due to the sheer
bulk, presenté a problem. To circumvent this, contour plots of equal vector
potential are usually presénted.

Consider a curve C :y = y(X) in two-dimensional space along which the
vector po'tentialr A is constant. A is represented parametriéally with respect
to x, by

K (x,y) = A[xy(x)] . (67)

*
4(28,000).isthe value of u for H = 28,000. This is
done by recursion in the computer program.
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Since A is constant in magnitude along C, one has

oA BAZ
dAz = -é-'-i-dx+ Ty dy = 0 . (68)
oA, aAz
Now Bx=-§y—and By=--§x-'-.; (69)
thus —Bydx + Bxdy =0 . (70)

Therefore, the slope of the curve C represents the tangent of the angle of the

flux density. This may be seen by the following equation:

(71)

i
e

In cylindrical coordinates, one is concerned with a curve where rx (r,z) is
constant in magnitude. Consider d(rA 9)'= 0 along the curve C; the obvious

conclusion then is 5— = == .
dz B

F. Current Distribution

The current density over the entire coil cross section is assumed to be
uniform. The effect of conductor shape, cooling passages, and insulation is

taken into account by introducing a space factor A.
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Thus the basic assumption on the current density §, over a rectangular

cross-sectional s, is |
§(x,y) = AS f{, (X,y) €5 or §'(r,z) =AS€2, (r,z) €8, |

G. Practical Applications of the Mathematical Model

The analysis and computer code were undertaken to solve general magnetic
problems which are encountered in the design of large magnets.

As in most systems, pure symmetry cannot be expected, because of the
shapes and requirements on the various types of magnets, However, approximations
to pure symmetry have been used in a 2-meter spark chamber magnet, 10 and in
the SLAC l-meter bubble chamber magnet. Model measurements have shown that
an accuracy better than 5% between calculations and measurement had been achieved
for the spark chamber magnet with axial symmetry.

The approximation of a beam transport ma\gnetl1 in a two~dimensional

configuration is shown in the next section.

V1. COMPARISON OF CALCULATION AND MEASUREMENTS
FOR THE SLAC 3° BENDING MAGNET

To determine the efficiency and accuracy of the NUTCRACKER program,
the SLAC 3° bending magnet showa in Fig. 10 was recalculated. Experimental |
data at various flux densities in the gap were available. The calculation
assumed doubly infinite symmetry, and magnetization curves were obtained
experimentally for pure ingot iron containing 0.08% carbon and 0.1% S8i in the
ladle analysis.

- 29



UOI}D2UUOD 19}DM |39}S SS|UIDS JIWDIBD { | (10D 2
OA uiNjas uold| ¢ sdi} 9|0d |

LINOVIN ONIAN3E o JVIS-0l 914

¥-9/-68%

-30 -



Symmetry in the x-y plane allows us to consider only half of the magnet.
Figure 11 shows the distribution of the nodes, where each mark is the center
ofalx1 cm2 mesh. The boundary line with A = 0 is assumed arbitrarily,
primarily due to computer limitations. In our case the B 5500 computer was
used. The print-outs of the equipotential lines and the relative permeability
lines are shown in Figs. 12 and 13. The measured and calculated y component
of the flux density along the median plane and 1 cm below the pole surface is
given in Figs, 14-16.

As mentioned previously, the NUTCRACKER program is still not usable
for curved boundaries; however, a 45° line approximating the shimming at the
pole ends is assumed for calculation.

At the pole center the calculated maximum field value is 14,35 kG, which
may be compared with the measured value of 14.5 kG. The maximum deviation
occurs at the pole ends due to the assumption of the 90° pole edge in our calculation.
The deviation 1cm below the pole surface is 1.5% at the pole ends and the fall-off
of the fringing field does not correspond to the measurement, Over the median
plane the fringing field calculation extends the measurement, as can be expected

for the 90° pole edge.

VII. NUTCRACKER -- THE COMPUTER CODE

This section of the paper may be considered as a computer user's manual for
the computer code NUTCRACKER. It is intended to help the engineer orphysicist
use the computer to solve magnet problems. No experience in computer coding is

necessary.

-31 -




BOUNDARY LINE

Ay

!
4
*
t
¥
¥
¥
+
¥
+
¢
L
¥
+
¥
M
¥
¥
+
t
¥
t
t
¥
+
4
+
+
t
¥
¥
+
+
+
t
*
M
+
+
¥
+
¥
¥
+
4
4
i
]
L]
4
¥

IR A R R R R R R R S R R R R R R

A~

£

o

<
w

N A R AL s a2 2 S R L R RS R R XS SR )

489-14-8

Ry E A R E TR RN RS RAS NS R 22
223 R SRR RN RN REE
I ZEE RS SRR RS SRRES R RS
222222 R RSN RNREEERESSRRSR SRR
IFESES 2222 RS SRR RS RSN RN N2
IE IR RN R SRR RS RE
FEEEXESRR RSS20 R R 20,
PR S EER RS RS ASR RS SRS S A L
EE NSRS R AR RERR LSRR IR SRR
2RSS F R RS ESERES AR REEERE RS
LY EER SRR RS SRR RS RE R RSN
FERERG LRSI AARDARANER AN LI
I E SRR E SRR R RS ERS S
I3 E s R R R P RS R EE R R TR
S SRS FR R RS R R AR R R R RERR S,
HAHBR PSRRI R E PR EYH AR R H AN GBS L o

IZES SR F RS RS RN RS RS RRRREET]
BL AR LN B AN IR AR ANB LR IN ISR YA
RELAPFF AN S ABE QAR AR RUL ML L 22N
REX AR RSP RSAFN R R B A BN NEN RN R
IS FERI SRS RN RS RRSSFR SRR 2D
IEEEXELES SRR RS RS R0 SR L 22
PR RS SES NSRS NSRS
phaguropdin Sttt R R n bt nnds
tERENS RS ENEES SRS SRR E NS
IR RS F R R R R RS R RS2SRRSR F 2
FEAJ A FRER B ARG AR IR YR APy
‘RS E RS R RS ITESSSRRE T ]
NS RAA RS NIRB AR SRRSO QU NN REL RS
RYy Aok ap e ndeeesy
gaiaasA RN RIROLRIANRE R NSRS 2Y
HE BRSO SENAE RSN IR AR ERNI PO LD

eande B NNAR SRS
rRUNPE IR IS
EEH RIS IBBE s err e

ERN RSB LRI L2 IO N wanvrnnys
[EEIXEZTEERERZT YL IN
I LR E 2L 0T | R VY A
PEREEERREEEEEEEE § | MU VA SR
IZEEEZEEESSAEEEE LN
sEuprsegaaAOLRN LY,
aasersEgRnsLaNe L,
PR R TR RN EE R L] A N
CERERETE R 22 T T X T 1 N AV
FERETIELTEET T 27T T 1Ny SR Y
RABERSAREAROHRNRE, S e de
ISESXESRRREREEEE ¥ 1N A

FraN R A HEAR R A AN
gagnaRz YRR N
PEa PR A RO Y S AR AR DN |
X R R R R EE TR AR R
FANYORL NS MR AR H S AP N WA
graandprsappedoad e bp At
gretpEyY RN B PAEER ARy
[(EFZE SR TSRS LRSS R L]
I ¥R EE R SRR RSN R LE R
X R SRR E RN SRR TN 2]
RERAAE LR SR B pRA S R ARG RIS e N
I EE3SREENES SRR SRR RSRE 2]
praganEraRaN e A B R Y AR Y
BESAAREREL IO B ENIBLINGROETAL
PERAA RS RE NS BA PP TR AR
PEAR AR B RS AN RIS GRS S N E DAL
CHEASREG AR AN IO SRR OSSR DAL kD
BESRANT PNAAS PR ARE RS S A SRS 208

.
-
.
-
.
-
™
.

.« .
. .
.
-

Py
P
P
.

-
-
.
-
-
-
.
-

ERRLARROBLINLELEY
HIXLRBBRAINLERBEL
erasscec JANURRUFAAREYR YIRS
AN 2223222 2228 2 2 8
etesnassyealtitegatstery g2
P Y A XTI ST FEEETEES
ce et afr o JURNELRNDHRBIEANLES
AP ENERAY RSN PO RE
PP SN 2 X2 TR T IR RS
P AN FE X I EFI R RS RS
s oot pdadstdnerys
eaaferneeeafif RSO ARSI S
e ha i HEHERASTONL OB OLS

ch e raes el dUBRASAEI I RN OS]
reevrassraEREREFRLRL RSN Y Y
ISR ETERREEE AT
IEEE R ERES RS SRR RS
|-ﬁ‘.nnnuunannu-&n~qan-uau-‘nqa
(JEE MRS SRR NI O XD NG IS O R 2 S
FERHEESARB AR SO O RN A RN AR LN
R s SRR R AR R RET
R R R E R R RS SRR A SR RS2 S/
n‘g‘uun.nauuu.-=nnam-na*-=nL
EASHRCERNLRRAN YA G RIRNLIOI X2 N 2
FUAH AR NB IR R U RIS E 2B R AR R AP Y
ENRE RN BN BN ENR Y AR E A AR YA Y
EARAP ORI IR YN AERE S RE NN B Y
SABHSBR BN AR SRS N R RIS N R 2 Y
EALARRA AR S AR AR R RO SN A A
FAXAARAIHERLALADRURA SIS RUNY
XSRS RSN SR SRS RS RD R,
FraNpCNBERELRY RS L R SOROE L NLE

15cm

tEERERE SRR EERRERRREE NSNS R R

10 15 20 25 30 35 40 45 50
[ L R T B

o i o B it T e e e e e R e T e e e R el L S S S e e S S L L Al el el

o
]
!

48 cm

R 2 3 g

S Q °©

.
|

0

IS THE CENTER

EACH MARK

Fig.11-SLAC 3° BENDING MAGNET
OF A 1x1 cm?

MESH

- 32 ~



64 cm

48 cm

FIG.12--SLAC 3°BENDING MAGNET. LINE OF CONSTANT
VECTOR POTENTIAL
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NUTCRACKER was written in Extended ALGOL 60 for the Burroughs B5500
computer and runs in 16K of memory, The B5500's computing speed is comparable
to one-third the IBM 7090 speed. All computing times mentioned in this report
must be scaled by a factor of 3 toget a rdugh 7090 equivalent time.

Often in a program outline, important concepts are concealed in words, and
not until a mistake is made are they uncovered. For this reason the necessary
concepts are stated as rules to underline their importance.

All data are input in free-field format, i.e., relatively independent of position
on the card. (For a more exact definition of Free Field Input see B5500 notes,
Computation Center, Stanford University, California, Oct. 1964.)

Rule 1: All data are in free-field format.

In preparing a problem for NUTCRACKER one must first consider the mesh
size and the number of nodes to be matched to the capacity of the computer. A
square mesh was used to minimize computing time. The finite difference equations
become more complicated as the mesh becomes more irregular. 12 Thus a mesh
unit inthe x or z direction must be the same as a mesh unit in the y or r direction.
This can be obtained by the proper choice of’ the number of nodes in the x or z and
y or r directions. | |

Rule 2: The mesh must be square.

The number of nodes must be limited due to memory limitations and the rate
of convergence. A 50 X 60 mesh requires 6000 words of memory just to represent
the vector potential and permeability. Due to properties of the B5500 (data descriptors),
the 30 X 70 mesh problem (where the first number represents the number of nodes
in the x or z direction and the second the y or r direction) runs faster than the 70 X 30
mesh problem. |

With the choice of the size of the mesh unit completed, one must lay out the

approximation on graph paper, with nodes at the intersection of graph lines.
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The outer nodes represent boundary conditions (K = 0), With the exception
of these nodes, each node represents an h-h square in two-dimensional space.
The air, iron, and coil boundaries lie between the nodes (see Fig.l17).

Rule 3; The outer boundary is dislocated half a mesh unit

from the boundary of the first square. (See Fig. 18.)
A rectangular block of iron or current-carrying conductor is specified by
two sets of coordinates. The first is the coordinate of the lower left-hand node
of the rectangle and the second, the upper right-hand node.

Rule 4: Blocks are specified by the lower left-hand and
upper right-hand coordinates of a node.
When a block is a current-carrying conductor, the current is assumed to be
uniformly distributed. Hence, current density is constant over the rectangle.
-ST is positive out of the paper and negative into the paper. A fill factor should

be included when specifying the current density. Thezor 6 direction is assumed.

Rule 5; Current density is positive outward, negative

inward, and should include a fill factor.

The line integral ﬁﬁd? is used to increase the convergence rate and should
be chosen with care. Magnet corners should be avoided, and when the path runs
parallel to a magnet boundary there should be at least two nodes between the magnet
boundary and the path. |

The line integral is split into two components, and the path must run parallel
to one of the axes. The reason for this is clear when the line integral over a path

T is written as

$ H-dL = fﬁ'xd§+ [H dy (73)
T r r’

or in cylindrical coordinates
$Hedl = [H dz+ [H.dr . (74)
r r I
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The integration is done by the trapezoidal rule and each section of the path
requires a minimum of three nodes. A minimum of four sections specified by
five sets of coordinates are needed to define the closed positive path.

Rule 6: The closed line integral follows a counter-clockwise
path specified by a minimum of five sets of coordinates

(four sections) with each section parallel to one axis,
The calculation of the line integral is used to scale the vector potentials as
mentioned earlier. The scaling factor Cm is calculated from the known ampere-

turns in the system, IN, and the field intensity as follows:

c. .= S . - (75)

Only the vector potentials in a rectangular region are scaled. This region is
known as the area of influence and is specified by the lower left-hand and upper
right-hand nodes of the rectangle. The path of the line integral must be
within the area of influence and cannot lie on the boundary of the area of influence.

Rule 7: The path of the line integral is properly contained
in the area of influence.

If the previous seven rules are followed, the errors in program setup will
be minimized.

The data is input on cards and if necessary may be continued onto an extra card,

but the data must start on a new card when specified. For a list of input parameters,

associated identifiers and meaning, see Table I.

The order of data on cards is specified in Table II. As many cases as desired
may be input.

The condition for the appearance of a data card or the repetition of a group of
cards will be noted next to the cards with conditional appearance. The order of the

items on a card must be preserved.
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TABLE I

LIST OF INPUT PARAMETERS TO NUTCRACKER

Identifier

Physical Meaning or

Operation Controlled

Value

Unit

C@URDINATESYSTEM coordinate system

XMESH number of nodes on x axis
YMESH number of nodes on y axis
ERR@R tolerance on relaxation
NIRGN number of iron blocks
NC@IL number of coils
ITERATIQNLIMIT iteration limit
PRINTREQUESTED intermediate print requested
PHASEIREQUESTED phase 1 requested

CYNTPURREQUESTED contour plot of A requested

initjal solution in air requested

initial guess at uand A requested

number of points in the curve

INITS@L

NAME1

UNITIN logical input unit

NAME2 output of 1 and A requested
UNIT@UT logical output unit

X1 X coordinate

Y1 Y coordinate

X2 X coordinate

Y2 Y coordinate
CdNTGiURMIN minimum value of potential
DELTACUNTQ@UR difference between potential
C@NTQ@URMAX maximum value of potential
NCURVES number of curves
NP@INTS

J current density

Orectangular 1cylindrical
3 to 80

3 to 80
1%=10,01

0 or greater

1 or greater
greater than 0
0,1*

0,1*

0,1*

0,1

0,1*

0,1,2,3, 4%
0,1*
0,1,2,3,4,5%**
0 to 80

0 to 80

0 to 80

0 to 80

any value Cmin
any value AC<C C
any value Cma.x>c min
1to 10

5to 20

any value

max —min

meters, mesh units
meters, mesh units
meters, mesh units

meters, mesh units

amperes/meter z

Ak

Aok

0 not requested, 1 requested

0 card reader
1, 2, 3, 4 tapes
tape 1 is released for output

0 card punch
1, 2, 3, 4 tapes
5 line printer
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PLANNED FURTHER ADDITIONS TO THE NUTCRACKER PROGRAM

1. The present code is slow. Computation time for large magnets takes several
hours on the B5500. Rewriting the code in PL/1 on a fast computer will speed
up the process.

2. The NUTCRACKER program exclusively uses the solution of quasi-Poisson
equations. In areas with constant permeability the use of PoiSSOn]'3 and
even Laplace equations seems to be appropriate. The revised codification
will comply with this requirement.

3. Appropriate use of Neuman and Cauchy boundary conditions where p, > 1.

4. Different mesh distance and variable mesh size over the entire area to cut
down computation time and improve resolution.

5. Solution for curved boundaries with variable p values.

These improvements and the achieved results will be reported at a later date.
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