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ABSTRACT

Three aspects of supersymmetric theories are discussed: electroweak

symmetry breaking, the issues of 
avor, and gauge uni�cation. The

heavy top quark plays an important, sometimes dominant, role in

each case. Additional symmetries lead to extensions of the Standard

Model which can provide an understanding for many of the outstand-

ing problems of particle physics. A broken supersymmetric extension

of spacetime allows electroweak symmetry breaking to follow from the

dynamics of the heavy top quark; an extension of isospin provides

a constrained framework for understanding the pattern of quark and

lepton masses; and a grand uni�ed extension of the Standard Model

gauge group provides an elegant understanding of the gauge quantum

numbers of the components of a generation. Experimental signatures

for each of these additional symmetries are discussed.
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I. Symmetries and Symmetry Breaking

I.1 Symmetries

Much progress in particle physics has been made possible by understanding phe-

nomena in terms of symmetries, which can be divided into four types: global

or local action in spacetime or in an internal space. A symmetry of any of these

types can be further classi�ed as exact or broken, according to whether any break-

ing has been measured in experiments, as illustrated by well-known examples in

Table 1. In these lectures, I discuss three of the four symmetry types, leaving out

the gauging of spacetime symmetries which is expected to occur at the Planck

scale.

An interesting feature of Table 1 is that of the six entries, only �ve have

been discovered in nature: there is no experimental evidence for a broken, global

symmetry of spacetime, hence the blank entry.

Table 1. Symmetries

Exact Broken

Local SU(3)QCD SU(2)� U(1)Y

Internal U(1)EM

Global Baryon number: B Isospin: SU(2)I

Internal Individual lepton numbers: Li

Global Displacements: P

Spacetime Angular momentum: J

Lorentz boosts: K

I.2 Flavor Symmetries

With one exception, the entries of Table 1 provide a complete list of what has

been discovered experimentally for these categories, ignoring the discrete space-

time symmetries such as parity. The exception is provided by global internal

symmetries. Including color and weak degrees of freedom, 45 species of quarks

and leptons have been found; experiments have therefore uncovered a U(45) global

internal, or 
avor, symmetry, which is broken to B�Li by the known gauge inter-
actions and particle masses. The existence and masses of these 45 states, together

with the way the known gauge forces act on them, is the 
avor puzzle of particle

physics. It is instructive to consider separately the breaking of U(45) by gauge

interactions and by masses. The known gauge interactions divide the 45 states

into three identical periods, or generations, each of which contains �ve multiplets



transforming irreducibly under the gauge group: q; u; d; l; and e, as shown in Ta-

ble 2. I have chosen to write each fermion as a left-handed spinor of the Lorentz

groups, so that u; d, and e are left-handed antiquarks and antileptons. In Table 2,

the number of states for each of the �ve representations is shown in parenthesis,

the total being 15 for each of the three generations.

Table 2. The Aperiod Table

SU(3) SU(2) U(1)Y

q(6) 3 2 1

6

u(3) 3 | �2

3

d(3) 3 | 1

3

l(2) | 2 �1

2

e(1) | | 1

The known gauge interactions distinguish between the 15 states of a generation,

but do not distinguish between the three generations; they break the 
avor sym-

metry group from U(45) to U(3)5, with one U(3) factor acting in generation space

on each of the �ve multiplets q; u; d; l; and e.

This U(3)5 symmetry is broken in hierarchical stages by the quark and lepton

mass matrices. For example, the up quark matrix provides an explicit breaking of

U(3)q �U(3)u transforming as a (3, 3). The largest entry in the matrix is clearly

the top quark mass, which strongly breaks this group to U(2)q�U(2)u�U(1)q3�u3 .
The fermion mass problem, which is part of the 
avor puzzle, is the question of

why the quark and lepton mass matrices break U(3)5 in the hierarchical fashion

measured by experiment. Since we are dealing with matrices, a solution of this

problem would provide an understanding of both quark and lepton masses and

the Kobayashi-Maskawa mixing matrix. All questions about the quark and lepton

masses and mixings can be rephrased in terms of U(3)5 breaking. For example,

\why is mt � mb?" becomes \why is the breaking U(3)u ! U(2)u stronger than

that of U(3)d ! U(2)d?" In the context of the Standard Model, this rephrasing

does not seem very important; however, in the context of supersymmetry, it is of

great importance.

I.3 The Major Problems of the High-Energy Frontier

All physicists should spend a great deal of time debating and deciding what are

the most important issues in their sub�eld. At the high-energy frontier, I think

the four most important puzzles are:



1. What breaks SU(2)� U(1)?

The weak interactions appear weak and are short range, because they, alone

among the known forces, are generated from a symmetry group which is

broken. Perturbative gauge forces do not break themselves|new interactions

are required to break them. Such a �fth force must exist and be accessible

to experiments designed to probe the weak scale. It is guaranteed to be

exciting: it has a dynamic which is di�erent from any of the known forces,

and it should shed light on the fundamental question of what sets the mass

scale of weak symmetry breaking. I will call this mass scaleMZ, even though

the weak symmetry breaking mechanism of the �fth force is responsible for

the dominant contribution to the mass of all of the known massive elementary

particles.

2. What breaks the U(3)5 
avor symmetry?

We know that this 
avor symmetry is broken at least to B � Li because of

the observed quark and lepton masses and the Kobayashi-Maskawa mixing

matrix. However, such masses and mixings cannot simply be inserted into

the theory because they break SU(2); they must originate from some new in-

teractions which break U(3)5. In the Standard Model, these new interactions

are the Yukawa couplings of the Higgs boson, but there are other possibilities.

We might call these U(3)5 breaking interactions the \sixth force." I think

that future experiments will uncover this force also, at least the pieces of it

which are strong and are responsible for the large top quark mass. What-

ever the description of U(3)5 breaking at the weak scale, there is still the

puzzle as to why U(3)5 is hierarchically broken. I think that physics at the

weak scale could shed light on some aspects of this; but this is much more

uncertain. It is likely that some, and perhaps all, of the understanding of


avor physics occurs at some very much higher energy scale. Nevertheless,

at the very minimum, experiments must be done which uncover the weak

scale description of U(3)5 breaking, i.e., the sixth force. I �nd a sense of

excitement building up in our �eld as experiments enter the domain where

signals of the �fth and sixth forces will be discovered.

3. Why are the symmetries and fundamental constants of nature what they

are?

The most basic properties of nature can be summarized in terms of a set of

gauge, 
avor, and spacetime symmetries, and a set of fundamental param-

eters, such as the gauge couplings and the quark and lepton masses. The



next question is embarrassingly obvious: Why these symmetries and why

these values of the parameters? The anthropic argument, that without them

we could not exist to make the observations, is fraught with problems; it

seems to me better to look boldly for a true theory. A complete answer to

these questions requires going beyond four-dimensional, point particle quan-

tum �eld theory, and at the moment, superstring theory provides the unique

such direction. However, string theory is very ambitious, and despite excit-

ing developments, the time scale for making de�nitive connections to physics

is completely unknown. The central thesis of these lectures is that we may

already have the basic tools required to make considerable progress in fur-

thering our understanding of nature. The familiar tools of uni�ed gauge

symmetries, 
avor symmetries, and the properties of supersymmetry and

the renormalization group can carry us very far and can be tested by exper-

iment. The gauge group SO(10) explains the quantum numbers of Table 2.

If the 15 known states of a generation, together with a right-handed neu-

trino, are placed in the 16 dimensional spinor representation of SO(10), then

every entry of Table 2 follows from the simple group theoretic embedding of

SU(3) � SU(2) � U(1) into SO(10). This is an extraordinary achievement.

The vertical uni�cation of a generation also reduces the 
avor symmetry

group from U(3)5 to U(3), which is much more constraining. Such grand

uni�ed theories can reduce the number of free parameters on which all of

low-energy physics depends. Several supersymmetric theories based on the


avor group U(3), or on one of its subgroups, have been developed recently

and make many predictions for the 
avor-changing interactions of the super-

partners. Such grand uni�ed theories of 
avor are not the ultimate theory,

but they can explain a great deal very simply. For grand uni�ed and 
avor

symmetries, the real question is: how can they be subjected to experimental

tests? I will begin the answer to this question in these lectures.

4. How is a quantum theory of gravity to be constructed?

Superstring theory provides the only known direction for progress.



I.4 Supersymmetry

The current interest in supersymmetry is largely because it o�ers interesting new

directions for attacking each of the above problems. In summary, these new

directions are:

1. Supersymmetry is the only symmetry which can give rise to a light, elemen-

tary Higgs boson for electroweak symmetry breaking. The puzzle of the scale

of weak interactions is replaced with the puzzle of the origin of the scale of

supersymmetry breaking.

2. The hierarchical breaking of U(3)5 governs not only the form of the Yukawa

interactions of the Higgs, but also the squark and slepton mass matrices.

Since the latter are severely constrained by 
avor-changing phenomenology,

severe restrictions are placed on the group theoretic structure of the pattern

of U(3)5 breaking. In addition, supersymmetry allows for the possibility that

above the weak scale, some of the U(3)5 breaking which generates the quark

and lepton masses arises from the scalar mass matrices rather than from the

Higgs-Yukawa interactions.

3. Supersymmetric grand uni�cation provides a successful prediction, at the

percent level, of the weak mixing angle. Although less signi�cant, mb=mt

and mt can also be successfully predicted in supersymmetric uni�ed models.

With further simplifying assumptions, such as the nature and breaking of

the 
avor group, other predictions can also be obtained.

4. A supersymmetric string theory o�ers the prospect of a quantum theory of

gravity, uni�ed with the other forces.

In these lectures, I will elaborate on the �rst three of the above: SU(2)�U(1)
breaking, 
avor symmetry breaking, and supersymmetric grand uni�cation, in

Chaps. II, III, and IV, respectively.

There are many excellent books and review articles on supersymmetry,1 the

supersymmetric extension of the Standard Model,2 and supersymmetric grand

uni�cation. The aim of the present lectures is not to re�ne or update these works,

but to explain why I think the study of supersymmetry is interesting, why the

direct search for superpartners is of crucial importance, and what may be learned

from a variety of other measurements. Nevertheless, it may be useful to say a few

words about supersymmetry and the supersymmetric extension of the Standard

Model.



Supersymmetry is an extension of the Poincar�e group of spacetime transfor-

mations. Spinorial generators, Q and Q, are added to the usual generators p; J ,

and K of translations, rotations, and boosts. The only nontrivial extension of the

Poincar�e algebra involving Q or Q is the anticommutation fQ;Qg = p. Consider

the evolution of our understanding of the spacetime properties of the electron.

When discovered nearly a century agoy by J. J. Thompson, it was conceived as a

negatively charged particle with just two properties: its mass and electric charge.

We view the charge as a consequence of the behavior with respect to the electro-

magnetic U(1) charge generator, and the mass as a consequence of the translation

generator p. The discoveries of Stern and Gerlach dictated that it should be given

another attribute, intrinsic spin, which describes its properties with respect to the

angular momentum generator, J . The splitting of an atomic beam by an inhomo-

geneous magnetic �eld, which they discovered in 1922, is caused by the doubling

of the number of electron states which follows from their nontrivial properties

under the angular momentum generator: e
J�! (e"; e#). In the relativistic case,

this description is inadequate. The Lorentz boost generator K requires a further

doubling of the number of particle states; we call the resulting Lorentz-partners

the antiparticles: e
K�! (e; e). Their properties are dictated by Lorentz symmetry,

having equal mass and opposite charge to the particles.

The extension of spacetime symmetries which results from the introduction

of the supersymmetry generator, Q, causes a further doubling of the particles:

e
Q�! (e; ee); while e is the Lorentz-partner of the electron, ee is the supersymmetry-

partner, or superpartner, of the electron. It has properties which are determined

by the supersymmetry algebra: the mass and charge are identical to that of the

electron, but because Q is spinorial, it has intrinsic spin which di�ers by 1/2 rel-

ative to the electron; it is a Lorentz scalar. Many people laugh when they hear

about supersymmetry and how it leads to the introduction of a new hypothetical

particle for each of the observed particles. However, it is just history repeat-

ing itself; perhaps physicists of old laughed at the prospect of antielectrons and

antiprotons, but the sniggering soon stopped.

The super-electron is not degenerate with the electron; supersymmetry, if it

exists, must be su�ciently broken that the s-electron mass is larger than about

65 GeV. The discovery of supersymmetry would be doubly exciting: not only

would it herald an exciting new era of spectroscopy, but it would represent the

yI expect we will have celebrations in 1997 for the centenary of the discovery of the �rst particle

which, as far as we know today, is elementary.



discovery of a completely new type of symmetry: a broken spacetime symmetry.

The empty box of Table 1 would be �lled by Q; nature would have provided

examples of all six varieties of symmetries. What could be more interesting?

I.5 Summary

Three types of symmetries are shown in Table 1: local internal, global internal,

and global spacetime, which I shall frequently call gauge, 
avor, and spacetime

symmetries, respectively. Each of these types of symmetry may be broken at

scales beneath the Planck scale MP l. In these lectures, I consider the breaking of

a uni�ed group

Gunified
MG�! SU(3)� SU(2)� U(1)

MZ�! SU(3)� U(1); (I:1)

the breaking of the 
avor symmetry group Gf � U(3)5

Gf
MF�! B � Li; (I:2)

and the breaking of supersymmetry

(p; J;K;Q;Q)
MS�! (p; J;K): (I:3)

The mass scales represent the scales of the vacuum expectation values of �elds

which break the symmetry. There could be several stages of breaking of the

uni�ed gauge group, and there will almost certainly be several stages in the se-

quential breaking of the 
avor group, so MG and MF represent a set of scales.

Assuming that only one supersymmetry survives beneath MP l, MS is unique. In

the limit that MS ! 0, the superparticle and particle masses become degener-

ate; however, in most schemes of supersymmetry breaking, the mass scale ms of

the superpartners of the known particles is not given by MS. For example, in

supergravity ms = M2
S=MP l, and in dynamical supersymmetry breaking models

ms = �M2
S=MX, where MX is some other mass scale larger than MS. The scale

MX or MP l is known as the messenger scale, Mmess; it is the energy scale be-

low which the superpartners possess local supersymmetry breaking masses and

interactions.

There is no guarantee that MF is less than MP l. The physics of 
avor may

be understood only at the Planck scale. Indeed, of all the mass scales introduced

in this subsection, MF is perhaps the most uncertain. If MF � MP l, then Gf

breaking interactions must occur explicitly at the boundary at MP l, with small

dimensionless coe�cients. An advantage to having MF beneath MP l is that the



small dimensionless fermion mass ratios can then appear as ratios of these scales.

In Chap. III, we will explore the case of MF < MP l, which allows for an under-

standing of at least some aspects of 
avor beneath MP l.

II. SU(2)� U(1) Breaking and the Weak Scale

II.1 A Symmetry Description

In the Standard Model, the SU(2) � U(1) electroweak symmetry is broken by

introducing a Higgs sector to the theory, which involves an electroweak scalar

doublet, h. The mass squared parameter for this �eld, m2
h, determines the order

parameter of the symmetry breaking: if it is negative, the electroweak symme-

try breaks, while if it is positive, all the elementary particles are massless. The

Higgs sector certainly provides an economical description of electroweak symmetry

breaking, but it is inadequate for two reasons. There is no dynamical understand-

ing of why symmetry breaking occurs; one simply inserts it into the theory by

hand by making m2
h negative. Secondly, there is no symmetry understanding of

the scale of the breaking, which I refer to as the Z mass, MZ.

In physics, we have learned that mass scales should be both described and

understood in terms of symmetries. Great progress has been made in provid-

ing symmetry descriptions of phenomena, but understanding the origin of the

symmetry behavior at a deeper level often eludes us, as we illustrate with a few

examples.

Why is the photon massless? The symmetry description is clear: electromag-

netic gauge invariance is unbroken. However, the deeper question is: why is it

unbroken? This brings us back to the breaking of SU(2)�U(1) electroweak sym-

metry. Why is it accomplished by a single doublet, reducing the rank by one but

not by two?

Why are the neutrinos massless? A symmetry description is that nature pos-

sesses lepton number as an exact global symmetry. At a deeper level, however,

many questions arise: why are there no right-handed neutrinos, why is the lep-

ton number exact? If the neutrinos do have small masses, why are the lepton

numbers such good approximate symmetries? An interesting feature of supersym-

metric theories is that the standard answers to these questions are inadequate, as

discussed in Secs. II.2 and III.7.

Why do the quark and charged leptons have their observed masses? Since the

masses break the electroweak symmetry, they can be written as �v, where v is the

dimensionful order parameter of the symmetry breaking and � is a dimensionless



parameter, di�erent for each quark and lepton. The overall scale of the masses is

determined by v, while the mass ratios are determined by ratios of � couplings.

Many of the � are small, which we describe in Chap. III in terms of approximate


avor symmetries. But what is the origin for these symmetries and their breaking?

Why are there three generations? Why is the up quark so much lighter than the

top quark: �up=�top � 10�5?

What is the origin of the hadronic mass scale of the proton and neutron? This

scale is the scale at which the QCD coupling constant, �s, becomes large and non-

perturbative. It arises, through renormalization, as a dimensional transmutation

of this gauge coupling, and hence, is described in terms of the QCD symmetry

group, SU(3).

These examples illustrate how we turn to symmetries for both a description

and a deeper understanding of the phenomena. This applies to all phenomena of

particle physics, but here I stress the application to masses.

Now we can better appreciate the inadequacy of the Standard Model Higgs

sector description of electroweak symmetry breaking. What symmetry description

or understanding does it proscribe for the order parameter v which determinesMZ

and the fermion masses? None. The crucial point is that it does not even provide a

symmetry description for the scale v, let alone any deep understanding. Because

the Standard Model Higgs sector is so economical, and because the Standard

Model provides an accurate description of so much data, many have concluded

that the Standard Model will be the �nal story|there will be no physics beyond

the Standard Model. I strongly disagree with this viewpoint. First, there is not

a shred of evidence for the Standard Model Higgs sector, but, more importantly,

our experience in physics tells us that the physics responsible for electroweak

symmetry breaking will, at the very least, allow a description of the mass scale in

terms of a symmetry.

What will this new symmetry be? There are many possibilities, but it is useful

to group them according to the fate of the hypothetical Higgs boson. There are

three logical possibilities:

1. There is no Higgs boson.

2. The Higgs boson is composite (at a scale close to the weak scale).

3. The Higgs boson is elementary.

The �rst option is realized in technicolor theories where the weak scale arises by

dimensional transmutation from a gauge coupling, just like in QCD. The second



option can also be realized by having a new strong gauge force. In this case,

the new strong force �rst produces a composite scalar bound state, which then

becomes the Higgs boson of electroweak symmetry breaking. In both of these

examples, the symmetry description of the weak scale is in terms of the symmetry

group of some new gauge force.

The third option is quite di�erent. The only known symmetry description for a

fundamental Higgs boson involves supersymmetry. The lightness of the Higgs may

be related to a chiral symmetry acting on its fermionic superpartner, or it may be

due to the Higgs being a pseudo-Goldstone boson. In either case, the weak scale is

the scale at which supersymmetry is broken. To get a deeper understanding of the

weak scale, one must then address the question of how supersymmetry is broken.

Presumably, the reason for why the weak scale is much less than the Planck

scale is the same as for the technicolor and composite Higgs options: it occurs

as a dimensional transmutation due to the strong dynamics of a new interaction.

Whereas in the technicolor case, one can simply appeal to the analogy with QCD;

in the supersymmetry case there is no analogy|nature has not provided us with

other examples of broken spacetime symmetries|hence, there is no substitute for

understanding the dynamics of the �eld theory.

II.2 Matter vs. Higgs

In the Standard Model, it is obvious what distinguishes matter �elds, the quarks

and leptons, from the Higgs �eld: matter �elds are fermions, while Higgs �elds

are bosons. In supersymmetry, this distinction disappears! Once superpartners

are added, there is no spacetime distinction between quarks (q; eq), leptons (`; è),
and Higgs (eh; h) supermultiplets, since each contains a fermion (q; `, or eh) and
a boson (eq; è, or h). Indeed, the distinction between the lepton doublet and the

Higgs doublet becomes a puzzle of fundamental importance. Since these have the

same gauge quantum members, what is the theoretical distinction between the

Higgs and the lepton super�eld?

Supersymmetry apparently allows us to do without a Higgs supermultiplet:

why not identify the Higgs boson with one of the sneutrino �elds, e�? If there are

three generations of matter, then this is not possible: a sneutrino vev he�i leads
to a Dirac mass of size MZ coupling the corresponding � state to the eZ. Such

a theory would only have two neutrinos of mass less than MZ . The sneutrino as

Higgs idea is so attractive, that it is worth considering the Higgs to be the sneu-

trino of a fourth generation. In this case, it is the fourth neutrino which marries the



eZ to acquire mass MZ , which has the added advantage of explaining why only

three neutrinos are seen in the Z width. The problem with this scheme is that

supersymmetry forbids a tree-level coupling of the sneutrino to the up type quarks:

the t and t0 masses would have to occur via radiative corrections. Given these large

masses, this would necessarily involve new nonperturbative interactions. With just

four generations of chiral super�elds, and the known gauge interactions, the only

interactions which could break the chiral symmetry on uR is the trilinear scalar

interaction ~q~u ~̀y. Such nonholomorphic supersymmetry breaking interactions are

not usually considered|however, they do not introduce quadratic divergences.

This interaction is asymptotically free, so that it could become nonperturbative

at low energies. However, it is very unclear whether it could give rise to su�ciently

large masses for t and t0 quarks.

Perhaps the above line of reasoning has not been developed further because

the uni�cation of gauge couplings in supersymmetric theories suggests that there

are two light Higgs supermultiplets at the weak scale which are distinct from

the matter. The conventional picture of weak scale supersymmetry has Higgs

super�elds, h1 and h2, which are distinct from the lepton super�elds, although

the origin of the distinction indicates that there must be yet another symmetry.

The nature of this symmetry is discussed in Sec. III.7.

II.3 A Heavy Top Quark E�ect

As mentioned in Sec. II.1, supersymmetry is the only known tool that allows a

fundamental Higgs boson at the electroweak scale to be understood in terms of

symmetries. This understanding has two aspects:

� The size of jm2
hj is controlled by the scale of supersymmetry breaking, which

is presumably determined by some strong dynamics leading to a dimensional

transmutation. Candidate �eld theories for this exist, but we are far from

having a standard picture for the origin of supersymmetry breaking, and I

will not discuss it further in these lectures.

� The sign of m2
h is controlled by the dynamics which connects the particles of

the Standard Model to the supersymmetry breaking interactions, and also

by radiative corrections to m2
h. A given model makes this dynamics explicit,

and, if it is perturbative, the sign of m2
h is calculable.

In the most popular schemes for giving mass to the superpartners, the su-

pergravity and gauge messenger schemes mentioned in Sec. I.5, the messenger



dynamics is perturbative and leads to positive mass squareds for all scalars in

the theory. This makes the issue of how SU(2)� U(1) breaks, i.e., of why m2
h is

negative, particularly pressing. In particular, what distinguishes the Higgs boson

from the other scalars in the theory, the scalar quarks and leptons, which must

have positive mass squareds?

The answer to this puzzle is made plausible by its simplicity. There are two

important radiative corrections to any scalar mass, m2:

� gauge contributions, which increase m2, and

� Yukawa contributions, which typically decrease m2.

The only important Yukawa radiative corrections are induced by the large

top Yukawa coupling �t.
z Hence, all m2 are kept positive by the gauge radiative

corrections, with the possible exceptions of m2
h and m

2
~t
, since only h and ~t couple

to �t. The �
2
t radiative correction is more powerful for m2

h than for m2
~t
, meaning

that it is m2
h which has the greater tendency to go negative. This is due to the

fact that colored triplets have a larger multiplicity than weak doublets: SU(2)

breaks rather than SU(3) because it is a smaller group. Once m2
h is negative,

the Yukawa corrections to m2
~t
actually change sign, preventing m2

~t
from becoming

negative. In addition, m2
~t
has QCD radiative corrections which also make it more

positive than m2
h.

Electroweak symmetry breaking is therefore understood to be a large top quark

mass e�ect; a result which was obtained before the top quark was known to be very

heavy.3,4 Keeping other parameters of the theory �xed, �t is the order parameter

for electroweak symmetry breaking in supersymmetric models. For low values of

�t, SU(2) � U(1) is unbroken, whereas for high values of �t, it is broken. The

critical value for �t does depend on other parameters of the theory, for example,

the superpartner masses. However, now that we know that the top quark is about

175 GeV, �t is above the critical value for a very wide range of parameters. I am

tempted to say that electroweak symmetry breaking is hard to avoid, but such a

statement would require a detailed numerical study.

The size of jm2
hj, and therefore MZ , and the superpartner masses are both

determined by the scale of supersymmetry breaking. Does this allow a prediction

of the masses of the superpartners? Since there is more than one supersymmetry

breaking parameter, the answer is no. Nevertheless, the understanding of the

weak scale from symmetry principles requires that the superpartners not be much

zThe b and � Yukawa couplings could also be large, in which case the conclusions of this section

are strengthened.



heavier than MZ. Denote the set of supersymmetry breaking parameters by the

scale ms and the dimensionless parameters a. For example, ms could be de�ned

to be the mass of the lightest chargino, and one of the a parameters would be the

ratio of the top squark mass to this chargino mass. Since MZ has its origin in

supersymmetry breaking, it is necessarily given by a formula of the form M2
Z =

m2
sf(a). The scale of the superpartner masses,ms, can be made much larger than

MZ only at the expense of a �ne tuning amongst the a parameters to make f(a)

small. Hence:

� We cannot predict the mass of the superpartners. (Certain superpartner

mass ratios are predicted in given messenger schemes, and in certain theories

with 
avor symmetries, and are important tests of these theories.)

� The superpartner mass scale, ms, can be made much larger than MZ only

by a �ne tune between dimensionless parameters which increases as m2
s=M

2
Z .

The amount of �ne tuning can be characterized by the sensitivity of M2
Z to

small changes in the a parameters: ca = (a=M2
Z)�M

2
Z=�a (Ref. 5). A re�ned

de�nition of the sensitivity parameter, 
a = ca=�ca, has been advocated, where �ca

is an average of ca (Ref. 6). Although there are no rigorous, mathematical upper

bounds on the superpartner masses, it is possible to give upper bounds on the

superpartner masses if the amount of �ne tuning, taken to be ~
, the largest of the


a, is restricted to be less than a certain value. Such naturalness bounds are shown

for the Higgs scalar masses as well as the superpartner masses in the �gure. The

upper extent of the line corresponds to ~
 = 10, the error bar symbol to ~
 = 5, and

the squares give values of the masses for which the �ne tuning is minimized. This

plot applies to the case of universal boundary conditions on the scalar masses at

very high energies. Relaxing this condition will allow some superpartner masses,

for example, the scalars of the �rst two generations, to increase substantially.

However, there will still be several superpartners, such as the lighter charginos

(�+), the lighter neutralinos (�0), and the top squarks, which will prefer to be

lighter than 300 GeV. The absence of any superpartners beneath 1 TeV would

mean that the understanding of the weak scale described in this chapter has very

serious problems. LEP II and the Fermilab Main Injector are well-positioned to

discover supersymmetry, although the absence of superpartners at these machines

would not be conclusive.



III. Flavor in Supersymmetric Theories

III.1 The Fermion Mass and Flavor-Changing Problems

In nature, fermions exist in 45 di�erent helicity states. What is the origin of these

states, and why do they assemble into three generations of quarks and leptons

with such diverse masses, mixings, gauge, and global quantum numbers? This is

the 
avor problem. Two important aspects of the 
avor problem are:

1. The fermion mass problem. What is the origin of the observed hierarchy of

quark and lepton masses and mixings?

Models of particle physics can be divided into two groups. Descriptive models

are those which describe the observed quark and lepton masses and mixings

with 13 free parameters and make no attempt to understand the hierarchies.

The Standard Model is a descriptive model. Predictive models are those

which either describe the 13 observed masses and mixings with fewer than

13 parameters, or which provide some understanding of the mass and mixing

angle hierarchies.

2. The 
avor-changing problem. Why are processes which involve 
avor-changing

neutral currents (FCNC) so rare? Three such highly suppressed quantities

are �mK ; �K , and the rate for �! e
.

Coupling constants which distinguish between generations are called 
avor

parameters, and include the parameters which generate the observed quark and

lepton masses and mixing. In the Standard Model, there are 13 
avor parame-

ters, precisely one for each of the 13 observed fermion masses and mixings, and

they all originate from the Yukawa coupling matrices. In extensions of the Stan-

dard Model, there may be more 
avor parameters, so that they cannot all be

experimentally determined from the quark and lepton masses and mixings.

A model is considered natural if it suppresses FCNC processes for generic

values of the 
avor parameters, i.e., for a wide range of the parameters that is

consistent with the observed fermion masses and mixing. The Standard Model

is natural in this sense: all the Yukawa parameters are determined from the

experimentally measured fermion masses and mixings, and the GIM mechanism7

ensures the smallness of FCNC processes. For models with more 
avor parameters,

we must address the question of what values of the parameters are generic.

In this chapter, I assume that below some high scale �, physics is described by

a softly broken, supersymmetric SU(3)� SU(2)� U(1) gauge theory of minimal

�eld content: three generations of quark and lepton super�elds qi; ui; di; li, and ei,



and two Higgs doublet super�elds h1 and h2. Assuming invariance under R parity,

the 
avor parameters of this theory can be written as 11 matrices in generation

space. Three of these are Yukawa coupling matrices of the superpotential

W = q�Uuh2 + q�Ddh1 + `�Eeh1: (III:1)

The supersymmetric interactions have identical 
avor structure to the Standard

Model and lead to a supersymmetric GIM mechanism suppressing FCNC e�ects.

The other eight matrices contain soft supersymmetry breaking parameters

Vsoft = ~q�U ~uh2 + ~q�D
~dh;+~̀�E~eh1 + h:c:

+ ~qm2
q ~q

y + ~uym2
u~u+

~dym2
d~u+

~̀m2
`
~̀y + ~eym2

e~e: (III:2)

If these eight matrices are given values which are \generic," that is, the size of any

entry in a matrix is comparable to the size of any other entry, then loop diagrams

involving superpartners lead to very large FCNC e�ects, even for superpartners

as heavy as 1 TeV (Ref. 8). For example, the quantities �K and �(� ! e
) are

about 107 larger than allowed by experiment. This is the 
avor-changing problem

of supersymmetry.

Over the last few years, an interesting new development has occurred. Progress

has been made simultaneously on the fermion mass and 
avor-changing problems

of supersymmetry by introducing 
avor symmetries which constrain the forms of

both the Yukawa couplings of Sec. III.1 and the scalar masses and interactions of

Sec. III.2. In the symmetry limit, many of the Yukawa coupling entries vanish,

and the form of the scalar masses are strongly constrained. Small hierarchical

breakings of the 
avor symmetry introduce small parameters that govern both

the small masses and mixings of the fermions, and the small violations of the

superGIM mechanism which give small contributions to FCNC processes. This

linking of two problems is elegant and constraining; it is so simple that it is hard

to understand why it was not explored in the early '80s. Perhaps we are taking

supersymmetry more seriously these days.

In Sec. III.5, I will discuss the literature on this subject, which began in 1990

and has grown into a minor industry recently. Each of the papers to date studies

a particular 
avor symmetry, Gf , and a particular breaking pattern. Many of the

models illustrate a special point or aim for a particular fermion mass prediction.

In Secs. III.2 and III.3 below, my aim is to demonstrate the generality and power

of this approach. In fact, from this viewpoint, I argue that the 
avor-changing

problem has arisen because of an unreasonable de�nition of \generic." We know



from the observed masses and mixings of quarks that �D12
and �D21

are very

small. A solution to the fermion mass problem would give us an understanding

of why this is so, but no matter what the understanding, the 
avor symmetries

acting on the down and strange quarks are broken only very weakly. Experiment

has taught us that approximate 
avor symmetries (AFS) are a crucial aspect of


avor physics. It is therefore quite unreasonable to take m2
q12
� m2

q11
; the former

breaks strange and down 
avor symmetries and hence should be very suppressed

compared to the latter, which does not. (A crucial di�erence between scalar and

fermion mass matrices is that the diagonal entries of fermion mass matrices break

Abelian 
avor symmetries, while diagonal entries of scalar mass matrices do not.)

In this chapter, I explore the consequences of linking the 
avor-changing prob-

lem to the fermion mass problem. I require that all 
avor parameters of the

theory are subject to the same approximate 
avor symmetries. I take this to be an

improved meaning of the word \generic" in the statement of the 
avor-changing

problem. With this new viewpoint, it could be that there is no 
avor-changing

problem in supersymmetry. Perhaps if one writes down the most generic soft

parameters at scale �, the FCNC processes are su�ciently suppressed.

Let Gf be the approximate 
avor symmetry group of the theory below scale �,

and suppose that Gf is explicitly broken by some set of parameters f�(R)g, which
transform as some representation R of Gf , and take values which lead naturally

to the observed pattern of fermion masses and mixings. We will discover that for

someGf and f�(R)g, the 
avor problem is solved, while for others it is not. Hence,

the 
avor-changing problem of supersymmetry is transformed into understanding

the origin of those Gf and f�(R)g which yield natural theories.

Below scale �, models are typically (but not always) descriptive; they do

not provide an understanding of the fermion masses. However, knowing which

Gf ; f�(R)g solve the 
avor-changing problem serves as a guide to building predic-

tivemodels above �. The theory above � should possess an exact 
avor symmetry

Gf that is broken spontaneously by �elds f�g, which transform as R under Gf

and have vacuum expectation values h�i = ��.

In Sec. III.2, I introduce the ideas of Approximate Flavor Symmetries (AFS),

and in Sec. III.3, I give a set of simple conditions which are su�cient for an

AFS to solve the 
avor-changing problem. In Sec. III.4, I show that the 
avor-

changing problem is solved when Gf is taken to be the maximal 
avor symmetry.

I delay a discussion of previous work on this subject until Sec. III.5. In Sec. III.6,

I discuss the case Gf = U(2), where the 
avor-changing constraints dictate a



special and interesting texture for the fermion mass matrices. In Sec. III.7, I show

that R parity �nds a natural home as a subgroup of the 
avor symmetry. Sections

III.5 and III.7 are taken from Ref. 27. This chapter is the most technical of these

lectures; a brief statement of the conclusions is given in Sec. III.8.

III.2 Approximate Flavor Symmetries

Using approximate 
avor symmetries to describe the breaking of 
avor is hardly

new, but it is certainly powerful. QCD with three 
avors has an approximate 
a-

vor symmetry Gf = SU(3)L � SU(3)R, explicitly broken by a various parameter

f�(R)g, which includes the quark mass matrixM(3; �3), and electric-charge matri-

ces QL(8; 1) and QR(1; 8). Below �QCD, the 
avor symmetries are spontaneously

broken to the vector subgroup and Gf is realized nonlinearly. The interactions

of the Goldstone bosons can be described by constructing an invariant chiral La-

grangian (L) for �(3; �3) = exp(2i�=f). For our purposes, the crucial point is

that the 
avor symmetry breaking beneath �QCD can be described by construct-

ing the chiral Lagrangian to be a perturbation series in the breaking parameters

f�g = fM;QL; QR:::g. Thus, L = L0 + L1 + L2 + ::: where LN contains terms of

order �N . For example,

L1 = a1�
3
QCDTr(M�y) + :::: (III:3a)

L2 = a2�
2
QCDTr(M�yM�y) + a3�

4
QCDTr(QL�QR�

y) + ::: (III:3b)

where all the unknown dynamics of QCD appear in the set of dimensionless strong

interaction parameters fag, which are O(1). This illustrates the basic tool which

we use in this chapter.

The full-
avor symmetry of the 45 fermions of the Standard Model is U(45).

This is broken to the group U(3)5 by the Standard Model gauge interactions. Each

U(3) acts in the three-dimensional generation space and is labeled by A, which

runs over the �ve types of fermion representation (q; u; d; `; e).

The U(3)5 
avor symmetry of the Standard Model gauge interactions is bro-

ken explicitly by the Yukawa couplings of the Standard Model, which have the

transformation properties

�U (�3; �3; 1; 1; 1)

�D (�3; 1; �3; 1; 1)

�E (1; 1; 1; �3; �3): (III:4)



In this section, we speculate that these Yukawa parameters result from some new

physics above scale �, which possesses an AFS Gf , broken explicitly by a set of

parameters f�(R)g. The theory beneath � can be written as a perturbation series

in the �. The Standard Model gauge Lagrangian appears at zeroth order, while

the 
avor-violating fermion masses appear at higher order.

Such a picture is not new: the composite technicolor standard models were

based on this picture.9 In this case, the theory above � was taken to be a pre-

onic theory with strong dynamics which leaves a U(3)5 
avor symmetry unbroken.

The strong dynamics produces composite quarks, leptons, and Higgs bosons. The

preonic theory contains parameters f�(R)g which explicitly break U(3)5; in fact,

these parameters are assumed to be preon mass matrices MU;D;E with the same

transformation properties as �U;D;E . At �rst order in perturbation theory, �U;D;E

are generated proportional to MU;D;E . At higher order, various phenomenologi-

cally interesting four-quark and four-lepton operators are generated. For example,

the operator 1=�6(qMUM
y
Uq)(qMUM

y
Uq) leads to an additional contribution to �K .

This picture is very close to that adopted here, except that:

(a) The theory beneath � is one with softly broken supersymmetry, and con-

tains eight 
avor matrices in the soft supersymmetry breaking interactions

in addition to the three supersymmetric Yukawa matrices.

(b) A large variety of AFS groups Gf and explicit symmetry breaking parameters

f�(R)g are of interest. In Sec. III.4, we consider the obvious possibility that

Gf = Gmax = U(3)5, and f�(R)g = �U ; �D; �E transforming as �U;D;E are the

only symmetry breaking parameters.

(c) The more fundamental theory above � need not involve strong, nonpertur-

bative dynamics. Each possible term in the low-energy theory will be given

an arbitrary dimensionless coe�cient (labelled by fag), which we think of

as being O(1) if the dynamics at � is strong. However, if the dynamics at

� is perturbative, then fag will be less than unity, and the 
avor-changing

e�ects will be milder.

As a �nal example of the previous use of AFS, we consider the Standard Model

extended to contain several Higgs doublets. It was frequently argued that these

theories had a 
avor-changing problem. Those doublets orthogonal to the one

with a vev could have Yukawa matrices unconstrained by fermion masses. With

all such couplings of order unity, the tree-level exchange of such Higgs bosons

generates large FCNC for fermion interactions, such as (1=m2
h)(q1d2)

2 for �mK



and �K . For theories with several Higgs doublets at the weak scale, this 
avor

problem was frequently solved by imposing a discrete symmetry which allowed

only a single Higgs to couple to the ui and only a single Higgs to the di quarks.
10

From the viewpoint of AFS, however, such discrete symmetries are unneces-

sary.11,12 Suppose the Higgs doublet which acquires a vev is labelled h1. The

hierarchical pattern of quark masses implies that the Yukawa interactions of h1

possess an AFS. It is unreasonable that h2;3::: should have interactions which are

all O(1) and are unconstrained by these AFS. If one set of interactions possesses

an AFS, it is only natural that the entire theory is constrained by the same AFS.

One possibility is that the AFS of the quark sector GQ = U(1)9, a U(1) factor

for each of qi; ui, and di (Refs. 11 and 12), with each U(1) having its own sym-

metry breaking parameter. Thus �qi transforms under U(1)qi but not under any

other U(1), etc. In this case, all Yukawa couplings of ha to up quarks would have

the structure (�aU )ij � �qi�uj and to down quarks (�aD)ij � �qi�dj . The nine pa-

rameters f�qi; �ui ; �dig can be estimated from the six quark masses and the three

Euler angles of the Kobayashi-Maskawa matrix. The 
avor-changing problem of

these multi-Higgs models is solved by such a choice of AFS, if the masses of the

additional scalars are several hundred GeV. This simple Abelian symmetry is in-

su�cient to solve the supersymmetric 
avor-changing problem. It provides for

no approximate degeneracy between ~d and ~s squarks, and allows Cabibbo-sized

mixing between them, which, as shown in the next section, leads to a disastrously

large contribution to �MK.

III.3 The Flavor-Changing Constraints

A brief, somewhat heuristic, view of the general conditions required to solve the

supersymmetric 
avor-changing problem will be given in this section. The results

will allow us to understand whether AFS's are likely to be of use in solving this

problem. My aim is to provide a set of su�cient conditions which I �nd to be

both simple and useful; I do not attempt to determine the necessary conditions.

Consider the case when �U;D;E = O. Unitary transformations are performed

on the fermion �elds to diagonalize �U;D;E and on the scalar �elds to diagonal-

ize m2
a; a = q; u; d; `; e. In this mass basis, there will be unitary mixing matrices

at the gaugino vertices, which, for the neutral gauginos, we write as W � where

� = uL; uR; dL; dR; eL; eR. Flavor and CP-violating e�ects are induced by Feyn-

man diagrams involving internal gauginos and scalar superpartners. These are box

diagrams for �mK ; �K ;�mB ... and penguin-type diagrams for �! e
; de; b!



s
 .... The exchange of a scalar of generation k between external fermions (of

given �) of generations i and j leads to a factor in the amplitude of

X�
ij = m2

s

X
k

W�
kiW

��
kj P

�
k ; (III:5)

where P�
k is the propagator for the scalar of mass m�

k . X
� is made dimensionless

by inserting a factorm2
s, wherems describes the scale of supersymmetry breaking.

Studies of 
avor and CP-violating processes allows bounds to be placed on the

magnitudes and imaginary parts of X�
ij of the form

X�
ij �< X�

oij

�
ms

mso

�P
; (III:6)

where the bound is X0 when ms is taken to be the reference value mso. The

quantity p is a positive integer, so that the bounds become weaker for higher ms.

For box diagram contributions, p = 1, while for penguin-like diagrams, p = 2.

Useful results for these bounds are tabulated in Refs. 13{15, as are references to

earlier literature. For our purposes, we extract the following results:

If W � are \KM-like," that is, if

jW�
ij j �< jVij j(i 6= j); (III:7)

where V is the Kobayashi-Maskawa matrix, important limits only result for pro-

cesses where the external fermions are of the �rst two generations (i.e., neither i

nor j is three).

The most important 
avor-changing limits arise when (i; j) = (1; 2). For

example, taking the relevant phases to be of order unity, �K implies

jX�
12j = m2

sjW �
21W

��
22 (P

�
2 � P�

1 ) +W�
31W

��
32 (P

�
3 � P�

1 )j �< 10�4: (III:8)

Here and below, I take ms = 1 TeV. For W� KM-like, jW�
31W

��
32 j �< jVtdj jVtsj �

4 � 10�4, so there is no constraint from the last term of Eq. (8) even if there is

large nondegeneracy between the scalars of the �rst and third generation. It is

the �rst term which is typically the origin of the supersymmetric 
avor-changing

problem. This �rst term I call the \1{2" problem; while the second term I call

the \1, 2{3" signature, because if the W� are CKM-like this contribution is close

to the experimental value. One way to solve the problem is to make W �
21 small

jW�
21j �< jVtdj jVtsj : (III:9a)



Another is to make the scalars ~�1 and ~�2 degenerate:

jD�
21j �<

jVtdj jVtsj
jVusj

; (III:9b)

whereD�
ij = (m�2

i �m�2

j )=m�2

i , and in the limit of near degeneracyD�
12 � m2

s(P
�
2 �

P�
1 ). In fact, the condition (8) and (9a) or (9b) need only be applied for � =

dL; dR; eL, and eR. The limits to 
avor-changing processes in the up sector are

much weaker and are not problematic. Of course, the 
avor problem can also be

solved by having smaller suppressions of both W �
21 and D

�
21. Nevertheless, I �nd

it useful to keep in mind that, for �U;D;E = 0, the 
avor problem is solved if:

I. All W � are KM-like.

II. Either Eq. (III.9a) or Eq. (III.9b) holds in the d and e sectors.

Since the X�
12 quantities are small, it is often convenient to work in the gaugino

basis. In this basis, super�eld unitary transformations are performed to diagonal-

ize �U;D;E so that the neutral gaugino vertices are 
avor conserving. The scalar

mass matrices now have o�-diagonal entries which, assuming they are small, can

be treated in perturbation theory as 
avor-violating interactions. In this basis,

Eq. (III.8) and Eq. (III.9a) or Eq. (III.9b) are replaced by�����m
�2

12

m2
s

����� �< 4� 10�4: (III:9c)

Until now, we have avoided discussing the 
avor matrices �U;D;E of Eq. (III.1).

Inserting the Higgs vev induces mass mixing between left and right scalars; hence

6 � 6 rotations are required to reach the mass basis. It is easier to use the gaugino

basis and treat these masses in perturbation theory, writing them as:

�U;D;E =W 0uL;dL;eL�U;D;EW
0uR;dR;eR; (III:10)

where �U;D;E are diagonal matrices. Experiments place many limits on the ele-

ments �U;D;Eii. For our purposes, it is useful to know that all these limits are

satis�ed if:

III. All W 0� are KM-like.

IV. �U;D;Eii are of order ms�U;D;Eii.

The basic reason for this is that the only large contributions to 
avor-

changing processes involving the �rst two generations then come from terms of

order jW 0�L
31 W 0�R

32 j�b;t which are �< jVtdVtsj :
Now that we have argued that the four statements I{IV are su�cient to solve

the supersymmetric 
avor problem, we can ask whether it is reasonable to expect



that AFS will be of use. It should be apparent that the general expectation is

that any AFS which leads to the hierarchy of fermion masses, as parameterized

by �U;D;Ei , and to the KM pattern of 
avor violation, described by Vij , will au-

tomatically lead to I, III, and IV being satis�ed. The only remaining question

is whether AFS can satisfy II, i.e., whether they can produce either Eq. (III.9a)

or Eq. (III.9b) [or Eq. (III.9c) in the insertion approximation]. The Abelian Gf

discussed earlier (U(1)9 in the quark sector) is clearly insu�cient since it gives

D�
21 � 1 and W �

21 � Vus. In the next section, I show that the maximal AFS is

easily su�cient.

III.4 The Maximal Approximate Flavor Symmetry

We assume that below some high scale, �, physics is described by a softly bro-

ken, supersymmetric SU(3)�SU(2)�U(1) gauge theory with minimal �eld con-

tent. The 
avor interactions are those of the superpotential and soft supersym-

metry breaking interactions shown in Eqs. (III.1) and (III.2). We assume that

the dynamics above �, which may be strong, possesses an approximate 
avor

symmetry Gf . Below �, the breaking of this AFS is characterized by a set of

parameters f�(R)g transforming as R under Gf . In this section, we take Gf to

be Gmax = U(3)5, the maximal AFS which commutes with the Standard Model

gauge group. Although strong dynamics could preserve a larger AFS, the break-

ing parameters f�(R)g cannot violate SU(3) � SU(2) � U(1), so that Gmax is

the largest group under which the set f�g form complete representations. Each

factor of Gmax is labelled as U(3)a where a = q; u; d; l; or e. We assume that

the f�g �ll out three irreducible representations: �U � (3q; 3u); �D � (3q; 3d), and

�L � (3l; 3e). In the case of QCD with approximate SU(3)L � SU(3)R broken

explicitly by the quark mass matrix M , there is no loss of generality in choosing

a basis for the quark �elds in which M is real and diagonal. Similarly, we may

choose a basis for the lepton �elds in which �E is real and diagonal �E . We may

choose the quark basis so that �U = �U is diagonal and �D = V ��D, where �D is

diagonal and V is a unitary matrix. All 
avor-changing e�ects of this theory are

described by a single matrix, which to high accuracy is the KM matrix. Criteria I

and III of the previous section are satis�ed. This theory has no violation of the

lepton numbers.

To zeroth order in f�g, the only interactions of the quarks and leptons are the

gauge interactions and the zeroth order supersymmetry breaking potential

V0 = qm2
q1q

y + uym2
u1u+ dym2

d1d+ `m2
`1`

y + eym2
e1e: (III:11)



We see that the non-Abelian nature of Gf enforces squark and slepton degeneracy

at zeroth order in �. However, Eq. (III.11) di�ers from the universal boundary

condition of supergravity because the �ve parameters m2
a are all independent and

are not constrained to be equal. Similarly, they can di�er from the Higgs mass

parameters. Equation (III.9b), and therefore criterion II, is satis�ed at zeroth

order, but corrections appear at higher order.

At �rst order in �, superpotential interactions are generated:

W1 = a1 q�Uuh2 + a2 q�Ddh1 + a3 `�Leh1; (III:12)

where a1;2;3 are \strong interaction" parameters of order unity. The U(3) trans-

formations are shown explicitly in Appendix A at the end of this chapter.

The assumed transformation properties of the f�g are su�cient to guarantee

thatW preserves R parity invariance to all orders in �. There is no need to impose

R parity as a separate exact symmetry. The Yukawa couplings can be written as

expansions in �, for example, �U = a1�U + a4�U �
y
U�U + a5�D�

y
D�U + :::: If we work

only to second order, we can simply take �U = a1�U , etc. Even if we work to

higher order, we can rearrange the perturbation series as an expansion in �U;D;E

rather than �U;D;E . Either way, to second order in the expansion:

W1 = q�Uuh2 + q�Ddh1 + `�Eeh1 (III:13a)

W2 =
a1

�2
(q�Uu)(q�Dd) + ::: (III:13b)

V1 = ms(aUq�Uuh2 + aDq�Ddh1 + aE`�Eeh1) (III:13c)

V2 = m2
s

�
q(a2�U�

y
U + a3�D�

y
D)q

y + a4d
y�

y
D�Dd+ a5u

y�
y
U�Uu+ a6`�E�

y
E`

y

+ a7e
y�

y
E�Ee) +

m2
s

�2
a8(q�U�

y
Uq

y)(uyu) +
m2

s

�2
a9(q�Uu)(q�Dd): (III:13d)

Given the nonrenormalization theorems, one might question whether the interac-

tions in W really are generated. In general, the answer is yes: they are generated

by integrating out heavy particles at tree level and by radiative corrections to

D-terms followed by �eld rescalings. However, in speci�c simple models, one

discovers that the structure of the supersymmetric theory is such that not all

interactions allowed by the symmetries of the low-energy theory are generated.

Hence, if the symmetry structure of the low-energy theory is insu�cient to solve

the 
avor-changing problem, it may still be that a theory above � with this sym-

metry can be constructed which does not generate the troublesome interactions.



In QCD, the strong interaction parameters are real|the strong dynamics of

QCD preserves CP. Also, the strong dynamics is well-separated from the origin

of the explicit breaking parameters � = M;Q. The \strong" dynamics of the

supersymmetric theory above � may conserve CP so that a1:::a9 are real. This

would explain the smallness of the neutron electric dipole moment which has

contributions from Im(au) and Im(ad) (Ref. 16). However, it may be that the

dynamics above � which generates these coe�cients is not very separate from

that which generates the f�g. Since the KM phase comes from f�g, in this case

there would also be phases in fag.
Does the boundary condition of Eq. (III.11) and Eq. (III.13) at scale � solve

the 
avor-changing problem? In the lepton sector, the answer is obviously yes:

�E can be made real and diagonal so there is no lepton-
avor violation.

In the quark sector, the only mixing matrix is the KM matrix, so that criteria I

and III are satis�ed. In fact, the only unitary transformations needed to reach

the mass basis are a rotation of V on dL quarks, and a rotation of q squarks. This

latter rotation is awkward; it is more convenient to make the V rotation on dL to

be a super�eld rotation, and to treat the remaining scalar mass 
avor violation

as a perturbation:

�m
d2
L

21

m2
s

= a2(V
T�

2

UV
�)21 � a2 jVtsVtdj� �2t � 4� 10�4: (III:14)

We can see that the condition of Eq. (III.9c), and therefore criterion II, is satis�ed.

Finally, the trilinear scalar interactions of V1 in Eq. (III.13c) clearly satisfy the

criterion IV. The matrices W 0� = I +O(�2) so that criterion III is also satis�ed.

The 
avor structure of this theory with Gf = Gmax = U(3)5 is very similar

to that which results from the universal boundary conditions of supergravity dis-

cussed below. In that theory, the terms a2:::a9 are assumed to be absent at the

boundary, but are generated via renormalization groups scalings from � = MP l

to ms, and end up being of order unity. What features of this 
avor sector are

crucial to solving the 
avor-changing problem?

(i) At zeroth order in �, the scalars of each A are degenerate and the soft operators

have no 
avor violation.

(ii) At linear order in �, the super�eld rotations which diagonalize the quark

masses also diagonalize the soft scalar trilinear couplings. Hence, at this

order, the soft operators contain no 
avor-changing neutral currents.



(iii) The corrections to m2
a, induced at second order in �, induce 
avor-changing

e�ects proportional to �U�
y
U and �D�

y
D. If we restrict �U and �D to their

light 2 � 2 subspaces, then all contributions are less than 10�4. Hence, we

need only consider contributions involving the heavy generation. For external

light quarks, this gives small contributions because Vts and Vtd are small.

We �nish this section by brie
y comparing the AFS method to several well-

known solutions of the supersymmetric 
avor-changing problem. The low-energy

structure of these theories can be understood as examples of the AFS technique.

The most popular treatment of the supersymmetric 
avor-changing problem is

to assume that at some high scale, usually taken to be the reduced Planck mass,

the 
avor matrices possess a \universal" form17,18:

m2
a = m2

0I (III:15a)

�U;D;E = A �U;D;E ; (III:15b)

which generalizes the idea of squark degeneracy.8 This form is the most gen-

eral which results from hidden sector supergravity theories, provided the K�ahler

potential is U(N) invariant, where N is the total number of chiral super�elds.18

However, imposing this U(N) invariance as an exact symmetry on one piece of

the Lagrangian is ad hoc because it is broken explicitly by the gauge and super-

potential interactions.

We advocate replacing this U(N) idea with an approximate 
avor symmetry

Gf acting on the entire theory, broken explicitly by a set of parameters f�(R)g,
allowing the Lagrangian to be written as a power series in �: L0+L1+ :::. At each

order, the most general set of interactions is written which is consistent with the

assumed transformation properties of f�(R)g. Taking G = U(3)5, we have found

that a modi�ed universal boundary condition emerges. At zeroth order in �, we

found Eq. (III.15a) to be replaced by

m2
a = m2

aI; (III:16a)

and at �rst order in �, Eq. (III.15b) is replaced by

�U;D;E = AU;D;E�U;D;E : (III:16b)

These boundary conditions are corrected at higher orders by factors of (1+O(�2))

but are su�cient to solve the supersymmetric 
avor-changing problem. While

Eq. (III.15) was invented as the most economical solution to the 
avor-changing



problem, the symmetry structure of the theory demonstrates that it is ad hoc,

and from the phenomenological viewpoint, it is overkill. The 
avor structure of

the low-energy theory provides a motivation for Eq. (III.16), together with the

1 +O(�2) correction factors. Phenomenological results, which follow from assum-

ing the boundary condition (15) but do not result from Eq. (III.16), should be

considered suspect. For example, the 
avor-changing problem provides no moti-

vation for the belief that the squarks of the lightest generation (~qL; ~dR; and ~uR)

are degenerate (up to electroweak renormalizations and breaking). Similarly, the


avor-changing problem provides no motivation for a boundary condition where

m2
h1

and m2
h2

are both set equal to squark and slepton masses.

Perhaps the most straightforward idea to solve the 
avor-changing problem is

to assume that supersymmetry breaking is transferred to the observable sector by

the known gauge interactions.4 Suppose this happens at scale �, and that below �

the observable sector is the minimal �eld content supersymmetric SU(3)�SU(2)�
U(1) theory. At scale �, the dominant soft supersymmetry breaking operators are

the three gaugino mass terms, which are generated by gauge mediation at the one-

loop level. At higher loop levels, at scale �, the eight 
avor matricesm2
a and �U;D;E

are generated. However, since the only violation of the U(3)5 
avor symmetry is

provided by �U;D;E , the most general theory of this sort is described at scale � by

Eqs. (III.11) and (III.13), and hence, possesses the boundary condition (III.16).

The parameters fag are now each given by a power series in the Standard Model

gauge couplings, �i, with coe�cients which depend on the representation structure

of the supersymmetry breaking sector. The gaugino masses Mi are very large,

and at low energy, the parameters m2
A of Eq. (III.11) receive contributions /P

iCiA�iM
2
i ln�=ms, where CiA involve quantum numbers. This may dominate

m2
a boosting the importance of V0, and thereby decreasing the 
avor-violating

e�ects induced by V1;2.

The AFS technique is su�ciently general that it can be used no matter how

supersymmetry is broken and transmitted to the observable sector. This almost

guarantees that it will be a useful tool in studying the 
avor questions of super-

symmetry. It may be that nature chooses a more complicated Gf and � than the

above example. At scale �, the observable sector may involve additional �elds,

and there may be additional 
avor-breaking matrices. Simple group theory can be

used to determine the additional terms which these induce in V1 and V2, allowing

an easy estimation of potential 
avor-changing di�culties.



In the previous section, we argued that approximate 
avor symmetries which

lead to the observed hierarchy of quark and lepton masses and mixings are very

likely to give supersymmetric theories where all mixing matrices are KM like,

and the eigenvalues of �U;D;E possess a hierarchy similar to the eigenvalues of

�U;D;E . Hence, the criteria I, III, and IV are easily satis�ed, and the real 
avor

problem is that either Eqs. (III.9a) or (III.9b) must be imposed. This means

that either the mixing in the �rst two generations, W �
21, is much smaller than

expected from the Cabibbo angle, or the squarks of the �rst two generations must

be highly degenerate. This degeneracy can be understood as the consequence

of a non-Abelian symmetry, continuous or discrete, which acts on the �rst two

generations. The low-energy limit of any such theories can be analyzed using

AFS. An alternative possibility is to seek Abelian symmetries, allowing squark

nondegeneracies, which lead to the suppression of W �
21A.

It is well-known that the experimental constraints on FCNC imply that W �
21

need be suppressed only in the d and e sectors (� = dL; dR; eL; eR): W uL
21 �

W uR
21 � Vus leads to interesting D0D

0
mixing but is not a problem. This opens

the possibility that symmetries can be arranged so that Cabibbo mixing originates

in the u sector, while mixing of the generations is highly suppressed in the d

and e sectors. This idea has been used to construct models with Abelian 
avor

symmetries and nondegenerate squarks.21

III.5 A Brief Introduction to the Literature

In supersymmetric models of particle physics, there are two aspects to the 
avor

problem. The �rst is the problem of quark and lepton mass and mixing hierarchies:

why are there a set of small dimensionless Yukawa couplings in the theory? The

second aspect of the problem is why the superpartner gauge interactions do not

violate 
avor at too large a rate. This requires that the squark and slepton mass

matrices not be arbitrary; rather, even though all eigenvalues are large, these

matrices must also possess a set of small parameters which suppresses 
avor-

changing e�ects. What is the origin of this second set of small dimensionless

parameters?

An extremely attractive hypothesis is to assume that the two sets of small

parameters, those in the fermion mass matrices and those in the scalar mass ma-

trices, have a common origin: they are the small symmetry breaking parameters

of an approximate 
avor symmetry group Gf . This provides a link between the

fermion mass and 
avor-changing problems; both are addressed by the same sym-

metry. Such an approach was �rst advocated using a 
avor group U(3)5, broken



only by the three Yukawa matrices �U;D;E in the up, down, and lepton sectors,19 as

discussed in the previous section. This not only solved the 
avor-changing prob-

lem, but suggested a boundary condition on the soft operators which has a more

secure theoretical foundation than that of universality. However, this framework

did not provide a model for the origin of the Yukawa matrices themselves and left

open the possibility that Gf was more economical than the maximal 
avor group

allowed by the Standard Model gauge interactions.

The �rst explicit models in which spontaneously broken 
avor groups were used

to constrain both fermion and scalar mass matrices were based on Gf = SU(2)

(Ref. 20) and Gf = U(1)3 (Ref. 21). In the �rst case, the approximate degeneracy

of scalars of the �rst two generations was guaranteed by SU(2). In retrospect,

it seems astonishing that the 
avor-changing problem of supersymmetry was not

solved by such a 
avor group earlier. The well-known supersymmetric contribu-

tions to the KL �KS mass di�erence can be rendered harmless by making the ~d

and ~s squarks degenerate. Why not guarantee this degeneracy by placing these

squarks in a doublet of a non-Abelian 
avor group ( ~d; ~s)? Perhaps one reason

is that SU(2) allows large degenerate masses for d and s quarks. In the case

of Abelian Gf , the squarks are far from degenerate; however, it was discovered

that the 
avor-changing problem could be solved by arranging for the Kobayashi-

Maskawa mixing matrix to have an origin in the up sector rather than the down

sector.

A variety of supersymmetric theories of 
avor have followed, including ones

based on Gf = 0(2) (Ref. 22), Gf = U(1)3 (Ref. 23), Gf = �(75) (Ref. 24),

Gf = (S3)
3 (Refs. 25-27), and Gf = U(2) (Refs. 28, 29). Progress has also been

made on relating the small parameters of fermion and scalar mass matrices using

a gauged U(1) 
avor symmetry in a N = 1 supergravity theory, taken as the low-

energy limit of superstring models.30 Development of these and other theories of


avor is of great interest because they o�er the hope that an understanding of the

quark and lepton masses, and the masses of their scalar superpartners, may be

obtained at scales well beneath the Planck scale, using simple arguments about

fundamental symmetries and how they are broken. These theories, to varying

degrees, provide an understanding of the patterns of the mass matrices, and may,

in certain cases, also lead to very de�nite mass predictions. Furthermore, 
avor

symmetries may be of use to understand a variety of other important aspects of

the theory.

The general class of theories which address both aspects of the supersymmetric




avor problem have two crucial ingredients: the 
avor group, Gf , and the 
avor

�elds, �, which have a hierarchical set of vacuum expectation values allowing a

sequential breaking of Gf . These theories can be speci�ed in two very di�erent

forms. In the �rst form, the only �elds in the theory beyond � are the light matter

and Higgs �elds. An e�ective theory is constructed in which all gauge and Gf

invariant interactions are written down, including nonrenormalizable operators

scaled by some mass scale of 
avor physics, Mf . An example of such a theory,

with Gf = U(3)5, was discussed in Sec. III.4. The power of this approach is

that considerable progress is apparently possible without having to make detailed

assumptions about the physics at scaleMf which generates the nonrenormalizable

operators. Much, if not all, of the 
avor structure of fermion and scalar masses

comes from such nonrenormalizable interactions, and it is interesting to study how

their form depends only on Gf , Gf breaking, and the light �eld content.

A second, more ambitious approach is to write a complete, renormalizable

theory of 
avor at the scaleMf . Such a theory possesses a set of heavy �elds which,

when integrated out of the theory, lead to the e�ective theory discussed above.31

However, it is reasonable to question whether the e�ort required to construct

such full theories is warranted. Clearly, these complete theories involve further

assumptions beyond those of the e�ective theories, namely the Gf properties of

the �elds of mass Mf , and it would seem that the low-energy physics of 
avor

is independent of this, depending only on the properties of the e�ective theory.

In nonsupersymmetric theories, such a criticism may have some validity, but in

supersymmetric theories it does not. This is because in supersymmetric theories,

on integrating out the states of mass Mf , the low-energy theory may not be

the most general e�ective theory based on 
avor group Gf . Several operators

which are Gf invariant, and could be present in the e�ective theory, are typically

not generated when the heavy states of mass Mf are integrated out. Which

operators are missing depends on what the complete theory at Gf looks like. This

phenomena is well-known and is illustrated, for example, in Refs. 24, 29, and 32,

and it casts doubt on the e�ective theory approach to building supersymmetric

theories of 
avor. Finally, one might hope that a complete renormalizable theory

of 
avor at scaleMf might possess a simplicity which is partly hidden at the level

of the e�ective theory.



III.6 The Minimal U(2) Theory of Flavor

The largest 
avor group which acts identically on each component of a genera-

tion, and is therefore consistent with grand uni�cation, is U(3), with the three

generations forming a triplet. This is clearly strongly broken to U(2) by whatever

generates the Yukawa coupling for the top quark. Hence, the largest such 
avor

group which can be used to understand the small parameters of the fermion and

scalar mass matrices is U(2). In this section, I brie
y mention aspects of the U(2)

theory constructed in Ref. 29.

While the third generation is a trivialU(2) singlet,  3, the two light generations

are doublets,  a:

qa =

 
q1

q2

!
ua =

 
u1

u2

!
da =

 
d1

d2

!
`a =

 
`1

`2

!
ea =

 
e1

e2

!
: (III:17)

In the symmetry limit, only the fermions of the third generation have mass, while

the scalars of the �rst two generations are degenerate: clearly a promising zeroth

order structure.

The dominant breaking of U(2) is assumed to occur via the vev of a doublet:

h�ai. If we study the most general theory beneath some 
avor scaleMf , then the

nonrenormalizable operators for fermion masses are:

1

Mf

[ 3�
a ah]F ; (III:18)

which generates Vcb, and
1

M2
f

[ a�
a�b b h]F ; (III:19)

which generates a 22 entry in the Yukawa matrices. An immediate di�culty is

that U(2) also allows the supersymmetry breaking scalar mass

1

M2
f

[ ya�ya�
b b z

yz]D; (III:20)

where z is a supersymmetry breaking spurion, taken dimensionless, z = m�2,

which leads to a splitting of the degeneracy of the scalar masses of the �rst two

generations:
m2

~e �m2
~�

m2
~e +m2

~�

� O (
m�

m�
) (III:21)

in the lepton sector, and
m2

~d
�m2

~s

m2
~d
+m2

~s

� O ( ms

mb
) (III:22)



in the down quark sector. These lead to violations of the 
avor-changing con-

straints of Sec. III.3 (Ref. 28). However, if these operators are generated by

Froggatt-Nielsen type theories,31 one discovers that Eq. III.21 and Eq. III.22 are

not generated if the exchanged heavy vector generations transform as U(2) dou-

blets.

If the �nal breaking of U(2) occurs via a two-indexed antisymmetric tensor,

hAabi, then the �nal operator contributing to fermion masses is

1

Mf

[ aA
ab bh]F : (III:23)

It is remarkable that theories of 
avor can be based on the two interactions of

Eq. III.18 and Eq. III.23, in addition to the third-generation coupling [ 3 3h]F .

The Yukawa matrices take the form

� =

0
BB@

0 �0 0

��0 0 �

0 � 1

1
CCA ; (III:24)

where � = h�2i =Mf and �
0 = hA12i =Mf , and the scalar mass matrices are

m2 =

0
BB@
m2

1 + �02m2 0 ��0m2

0 m2
1 + �02m2 0

��0m2 0 m2
3 + �2m2

1
CCA : (III:25)

The splitting between the masses of the scalars of the lightest two generations is

m2
~e �m2

~�

m2
~e +m2

~�

� O (
mem

2

�

m3
�

) (III:26)

in the lepton sector, with similar equations in the quark sector. The \1-2" aspect

of the supersymmetric 
avor-changing problem is completely solved. However,

because �22 vanishes, the mixings to the third generation are larger than those

of the CKM matrix, so that the conditions of Sec. III.3 are not immediately

satis�ed. The splittings between the third-generation scalar mass and the lightest

two generations should not be of order unity, or the contribution to �K from the

\1, 2-3" e�ects in this model will be too large. This splitting cannot be computed

within a U(2) theory but will be an important constraint on U(3) theories.

This U(2) theory of 
avor has a signi�cant economy of parameters. Two of

the Standard Model 
avor parameters are predicted:

����VtdVts
���� = s1 =

s
md

ms

= 0:230� 0:008 (III:27a)



����VubVcb

���� = s2 =

s
mu

mc

= 0:063� 0:009: (III:27b)

As measurements of these quantities improve, it will be interesting to see whether

they remain within the uncertainties of the above predictions. There are six

unitary 3 � 3 
avor-mixing matrices at neutralino vertices; in the U(2) theory,

they are real and given by six angles sIij and s
c
Iij where I = U;D;E labels the up,

down, and lepton sectors, and ij = 12; 23; 31 labels the generations being mixed.

These angles are predicted in terms of just three free parameters rI

sI12 = �scI12 =
 s

m1

m2

!
I

(III:28a)

sI23 =

 s
r
m2

m3

!
I

(III:28b)

scI23 =

 s
1

r

m2

m3

!
I

; (III:28c)

where (m1;2;3)I are the fermion mass eigenvalues of generations (1,2,3), renormal-

ized at the 
avor scale Mf .

Further aspects of this U(2) theory of 
avor can be found in Ref. 29, on which

this section was based.

III.7 The Suppression of Baryon and Lepton Number Violation

The Standard Model, for all its shortcomings, does provide an understanding for

the absence of baryon and lepton number violation: the �eld content simply does

not allow any renormalizable interactions which violate these symmetries. This

is no longer true when the �eld content is extended to become supersymmetric;

squark and slepton exchange mediate baryon and lepton number violation at un-

acceptable rates, unless an extra symmetry, such as R parity, is imposed on the

theory. It is worth stressing that some new symmetry, which in general we label

by X, really is required: the known gauge and spacetime symmetries are insu�-

cient. The need for X was �rst realized in the context of a supersymmetric SU(5)

grand uni�ed theory.33 As will become clear, there are a wide variety of possi-

bilities for the X symmetry. Matter parity,8 ZN symmetries other than matter

parity,34,35 and baryon or lepton numbers36 provide well-known examples; each

giving a distinctive phenomenology. One of the most fundamental questions in

constructing supersymmetric models is Ref. 37. What is the origin of this extra

symmetry needed to suppress baryon and lepton number-violating processes?



The X symmetry must have its origin in one of the three categories of sym-

metries which occur in �eld theory models of particle physics: spacetime symme-

tries, gauge (or vertical) symmetries, and 
avor (or horizontal) symmetries. The

X symmetry is most frequently referred to as R parity,x Rp, which is a Z2 parity

acting on the anticommuting coordinate of superspace: � ! ��. We view this as

unfortunate, since it suggests that the reason for the suppression of baryon and

lepton number violation is to be found in spacetime symmetries, which certainly

need not be the case. Rp can be viewed as a superspace analogue of the familiar

discrete spacetime symmetries, such as P and CP . In the case of P and CP ,

we know that they can appear as accidental symmetries in gauge models which

are su�ciently simple. For example, P is an accidental symmetry of QED and

QCD, while CP is an accidental symmetry of the two-generation Standard Model.

Nevertheless, in the real world P and CP are broken. This suggests to us that

discrete spacetime symmetries are not fundamental and should not be imposed on

a theory, so that if Rp is a good symmetry, it should be understood as being an

accidental symmetry resulting from some other symmetry. These arguments can

also be applied to alternative spacetime origins for X, such as a Z4 symmetry on

the coordinate � (Ref. 34).{ Hence, while the symmetryX could have a spacetime

origin, we �nd it more plausible that it arises from gauge or 
avor symmetries.

In this case, what should we make of Rp? If it is a symmetry at all, it would be

an accidental symmetry, either exact or approximate. If Rp is broken by operators

of dimension 3, 4, or 5, then a weak-scale, lightest superpartner (LSP) would

not be the astrophysical dark matter. The form of the Rp breaking interactions

will determine whether the LSP will decay in particle detectors or whether it

will escape leaving a missing energy signature. The realization that X may well

have an origin in gauge or 
avor symmetries has decoupled the two issues of the

suppression of B and L violation, due to X, and the lifetime of the LSP, governed

by Rp.
35,39

At �rst sight, the most appealing origin for X is an extension of the Standard

Model gauge group, either at the weak scale37 or at the grand uni�ed scale.40 An

interesting example is provided by the crucial observation that adding U(1)B�L

(Ref. 40), or equivalently U(1)T3R , is su�cient to remove all renormalizableB and

xRp was �rst introduced in a completely di�erent context.38

{Clearly, these arguments need not be correct: for example, it could be that both P and CP

are fundamental symmetries, but they have both been spontaneously broken. However, in this

case the analogy would suggest that Rp is also likely to be spontaneously broken.



L violation from the low-energy theory. Matter parity is a discrete subgroup of

U(1)B�L�U(1)T3R . This is clearly seen in SO(10) (Ref. 41), where the requirement

that all interactions have an even number of spinor representations immediately

leads to matter parity, generated by the Z2 element

X(SO(10)) = ei�(2T3L+2T3R) = ei�(N16+N144 :::); (III:29)

where N16;144;::: is 1 for a 16, 144, ... representation.

However, this example has a gauge group with rank larger than that of the

Standard Model, and the simplest way to spontaneously reduce the rank, for ex-

ample, via the vev of a spinor 16-plet in SO(10), leads to a large spontaneous

breaking of the discrete matter parity subgroup of SO(10) (Refs. 42, 43). Thus,

theories based on SO(10) need a further ingredient to ensure su�cient suppres-

sion of B and L violation of the low-energy theory. One possibility is that the

spinor vev does not introduce the dangerous couplings, which typically requires

a discrete symmetry beyond SO(10). Alternatively, the rank may be broken by

larger Higgs multiplets,42 for example, the 126 representation of SO(10). Finally,

if the reduction of rank occurs at low energies, the resulting Rp-violating phe-

nomenology may be acceptable43; however, the weak mixing angle prediction is

then lost. The 
ipped SU(5) gauge group allows for models with renormalizable

L violation, but highly suppressed B violation44; however, these theories also lose

the weak mixing angle prediction.

There are other possibilities for X to be a discrete subgroup of an enlarged

gauge symmetry. Several ZN examples from E6 are possible.
35 Such a symmetry

will be an anomaly-free discrete gauge symmetry, and it has been argued that ifX

is discrete, it should be anomaly free in order not to be violated by Planck scale

physics.45 With the minimal low-energy �eld content, there are only two such

possibilities which commute with 
avor: the familiar case of matter parity, and a

Z3 baryon parity,46 which also prohibits baryon number violation from dimension

�ve operators. While the gauge origin of X remains a likely possibility, we are

not aware of explicit compelling models which achieve this.

Finally, we discuss the possibility that the X symmetry is a 
avor symme-

try: the symmetry which is ultimately responsible for the small parameters of

the quark and lepton mass matrices, and also of the squark and slepton mass

matrices, might provide su�cient suppression for B and L violation. Indeed, this

is an extremely plausible solution for the suppression of L violation since the ex-

perimental constraints on the coe�cients of the L-violating interactions are quite



weak, and would be satis�ed by having amplitudes suppressed by powers of small

lepton masses. However, the experimental constraints involving B violation are so

strong that suppression by small quark mass factors are insu�cient.47 Hence, the

real challenge for these theories is to understand the suppression of B violation.

Some of the earliest models involving matter parity violation had a discrete

spacetime34 or gauge44 origin for B conservation, but had L violation at a rate

governed by the small fermion masses. This distinction between B and L arises

because left-handed leptons and Higgs doublets are not distinguished by the Stan-

dard Model gauge group, whereas quarks are clearly distinguished by their color.

This provides a considerable motivation to search for supersymmetric theories

with matter parity broken only by the L-violating interactions.

It is not di�cult to understand how 
avor symmetries could lead to exact

matter parity. Consider a supersymmetric theory, with minimal �eld content and

gauge group, which has the 
avor group U(3)5 broken only by parameters which

transform like the usual three Yukawa coupling matrices. The Yukawa couplings

and soft interactions of the most general, such e�ective theory can be written as a

power series in these breaking parameters, leading to a theory known as weak scale

e�ective supersymmetry.19 The 
avor group and transformation properties of the

breaking parameters are su�cient to forbid matter parity-violating interactions

to all orders: each breaking parameter has an even number of U(3) tensor indices,

guaranteeing that all interactions must have an even number of matter �elds.k To

construct an explicit model along these lines, it is perhaps simplest to start with a

U(3) 
avor group, with all quarks and leptons transforming as triplets, but Higgs

doublets as trivial singlets. The X symmetry is generated by the Z2 element

X(U(3)) = ei�NT ; (III:30)

where NT is the triality of the representation. An exact matter parity will result

if the spontaneous breaking of this 
avor group occurs only via �elds with an even

triality.

III.8 Conclusions

The use of 
avor symmetries to study both the fermion and scalar masses leads to a

new viewpoint. While fermion mass hierarchies remain a very fundamental puzzle,

the 
avor-changing constraints are de�nitely not a problem for supersymmetry;

kThis point was missed in Ref. 19 where Rp was imposed unnecessarily as an additional as-

sumption. We believe that the automatic conservation of Rp makes this scheme an even more

attractive framework as a model-independent low-energy e�ective theory of supersymmetry.



rather they are an advantage. Instead of a 
avor-changing problem, we have a tool

that allows us to identify which 
avor symmetries are acceptable. Furthermore,

many acceptable 
avor symmetries lead to 
avor-changing phenomena beyond the

Standard Model which should be discovered in the not too distant future. Such

discoveries provide the best hope for progress on the fermion mass puzzle.

In this chapter, I have pursued the idea that both fermion and scalar masses

should be constrained by the same approximate 
avor symmetries. However,

fermion masses are supersymmetric while the soft scalar masses are not, so that

some decoupling of their symmetry behavior is possible. Suppose that fermion

masses are understood in terms of physics at some 
avor scaleMf . IfMf < Mmess,

the messenger scale of supersymmetry breaking discussed in Sec. I.5, then both

fermion and scalar masses are subject to the same 
avor symmetries. However,

if Mmess < Mf , as in models with low-energy gauge mediation of supersymmetry

breaking,4 the soft operators can be protected from the physics of fermion mass

generation, leading to 
avor-changing e�ects which are milder than those dictated

by approximate 
avor symmetries.

Broken 
avor symmetries are the natural way to describe 
avor sectors of su-

persymmetric theories. For this reason, the MSSM with universal boundary con-

ditions is badly 
awed. We advocate replacing the universal boundary condition

of Eq. (III.15) with the modi�ed boundary condition of Eq. (III.16) which results

from the minimal necessary breaking of Gmax = U(3)5 (Ref. 19). Any relations

between AU;D;E or between m2
a should be viewed as probes of gauge uni�cation

in the vertical direction. In general, corrections to Eq. (III.16) are expected, as

shown in Eq. (III.13d). Finally, in the simplest schemes, the Higgs doublets are

not related by 
avor symmetries to the three generations of matter, so the Higgs

mass parameters should be taken to be independent of m2
a.

III.9 Appendix A

As an example of the U(3) transformation conventions used in this chapter, I

consider the �rst interaction of Eq. (III.12). Making the transposition explicit,

this is

W = a qT �Uu h2: (A1)

Under U(3)q I take

q ! L�q: (A2)

Under U(3)u I take

u! Ru: (A3)



Hence, if I assign the transformation property

�U ! L�UR
y ; (A4)

(A1) transforms to qTLyL �U RyRu h2 and is therefore invariant. I say that �U

transforms as (3; 3) under (U(3)q; U(3)u).

I write the scalar masses as

V = qTm2
qq

� + uym2
uu (A5)

so that m2
q ! Lm2

qL
y;m2

u ! Rm2
uR

y. In building invariant terms, it is useful to

notice that �U�
y
U ; �D�

y
D transform like m2

q, while �
y
U�U transforms like m2

u.

IV. Supersymmetric Grand Uni�cation

IV.1 Introduction

How will we ever be convinced that grand uni�cation, or string theory, or some

other physics at very high energies, is correct? Two ways in which this could

happen are:

1. The structure of the theory is itself so compelling and tightly constrained,

and the links to observed particle interactions are su�ciently strong, that

the theory is convincing and is accepted as the standard viewpoint. String

theory is a candidate for such a theory, but connections to known physics will

require much further understanding of the breaking of its many symmetries.

2. The theory predicts new physics beyond the Standard Model, which is dis-

covered. If the structure of the theory is not very tightly constrained, several

such predictions will be necessary for it to become convincing. Grand uni�ca-

tion is a candidate for such a theory, but as yet there have been no discoveries

beyond the Standard Model. Supersymmetric grand uni�ed theories do have

a constrained gauge structure, and this has led to the successful prediction of

the weak mixing angle at the percent level of accuracy.8,48{50�� While signif-

icant, this is hardly convincing. Nevertheless, supersymmetric grand uni�ed

��While giving the lectures at SLAC, a bright spark in the audience asked why I chose to quote

sin2 � = 0:231� 0:003, which suggests a signi�cance of 1%, rather than using the well-measured

weak mixing angle as input and quoting a prediction for the less well-measured strong coupling

�s = 0:126�0:013, which looks to only have a signi�cance of 10%. This is an excellent question.

The reason I believe that the signi�cance is 1% rather than 10% is as follows. Consider the

sin2 �=�s plane, with sin2 � varying from zero to one, and �s varying from zero to some large

value �c

s
which is still perturbative. The area of this plane is �c

s
, and it could have been that the



theories o�er the prospect of many further tests. In this talk, I make the

case that experiments of this decade, and the next, allow for the possibility

that we might become convinced that grand uni�cation is correct.

Any grand uni�ed theory must have at least two sectors: the gauge sector,

which contains the gauge interactions, and the 
avor sector containing the inter-

actions which generate the quark and lepton masses. In supersymmetric versions,

there are also the supersymmetry breaking interactions. I include the gaugino

masses in the gauge sector, the supersymmetry breaking squark, slepton and Higgs

masses, and interactions in the 
avor sector. There are no known direct observ-

able consequences of the interactions of the superheavy gauge bosons: they are

predicted to be too heavy even to mediate proton decay at an observable rate.

I know of only one prediction in the gauge sector, other than sin2 �: ratios

of the gaugino mass parameters, Mi; i = 1; 2; 3 for U(1); SU(2), and SU(3). If

the supersymmetry breaking is hard up to scales above the uni�cation mass, MG,

and if the breaking of supersymmetry in the gauge kinetic function is dominantly

SU(5) preserving, then Mi will be independent of i at MG. Beneath MG, renor-

malizations induce splittings between the Mi; in fact, they scale exactly like the

gauge couplings: Mi = �iM . The prediction of two gaugino mass ratios is a

very important consequence of super uni�cation. These predictions occur in the

gauge sector; however, unlike the weak mixing angle, these predictions involve the

supersymmetry breaking sector, and even if the supersymmetry breaking is hard

at MG, there are situations when they are broken.51 Furthermore, these relations

can occur without grand uni�cation.yy

parameters lie anywhere in this plane. The condition that the three gauge couplings unify can

be represented as a band in this plane, with the width of the band representing the theoretical

uncertainties, such as the various threshold corrections. By sketching the plane, you can convince

yourself that the area of this band is given by �c

s
�, where � is the theoretical uncertainty in

sin2 �. Hence, the fraction of the area of the plane which the theory allows is �, which is of

order 1%, and this is a measure of the signi�cance of the prediction. This argument can be

rephrased by starting in some other basis for the parameters, e.g., the space of g1; g2, and g3

with � held �xed, but the conclusion will be the same.
yySuppose supersymmetry is broken in a sector which communicates with the observable sector

only via Standard Model gauge interactions. Then one expectsMi / �i as before. The constant

of proportionality is not guaranteed to be independent of i, although such an independence

follows if the particles communicating the supersymmetry breaking �ll out complete SU(5)

multiplets, as suggested by the weak mixing angle prediction.



IV.2 Flavor Signals Compared

Fortunately, the 
avor sector has many signatures, listed in Table 3 in �ve cate-

gories. Proton decay52,53 and neutrino masses54,55 are the earliest and most well-

known signatures of grand uni�cation. However, the theoretical expectation for

these classic signals is plagued by a power dependence on an unknown superheavy

mass scale. For neutrino masses, this is the right-handed Majorana mass MR. If

we naively set m�i = m2
ui
=MR with MR =MG = 2�1016 GeV, then all three neu-

trino masses are too small to be detected in any laboratory experiment, although

they could lead to MSW oscillations in the sun.

While the many hints for detection of neutrino oscillations are extremely in-

teresting, and theorists are full of ideas for suppressing MR, if we fail to detect

neutrino masses then we learn very little about grand uni�cation. On the other

hand, several observations hint at the presence of neutrino masses, and measure-

ments of neutrino mass ratios and mixing angles would provide a very important

probe of the 
avor structure of uni�ed models.

Requires \Present" Requires

BSM in all SUSY breaking

discovery models hard at MG

(I) p decay
p

No No

(II) � masses
p

No No

(III) u; d; e No No No

masses and mixings

(IV) ~u; ~d; ~e
p p p

masses

(V) Le;�;� and
p p p

CP violation

Table 3. Characteristic features of the �ve 
avor tests of supersym-

metric grand uni�cation.

The leading supersymmetric contribution to the proton decay rate is propor-

tional to M�2
H (Refs. 37 and 40), where MH is a model-dependent parameter,

which arises from the uni�ed symmetry breaking sector of the theory. The simple



expectation that MH ' MG is excluded as it produces too short a proton life-

time.37,40 There are many mechanisms that e�ectively allowMH to be enhanced,

thereby stabilizing the proton, but there is no argument, which I would defend,

demonstrating that proton decay will be within reach of future experiments. If we

are lucky, proton decay may be discovered, and the decay modes and branching

ratios will probe 
avor physics in an important way. However, as for neutrino

masses, if a signal is not seen, little of use is learned about the question of grand

uni�cation, hence the \No" in the middle column of Table 3.

The third signature of the 
avor sector of grand uni�ed theories is provided

by relations amongst the masses and mixings of the quarks and charged leptons,

which was also �rst studied in the 1970s (Ref. 56). This signature has the very

great advantage over all others that data exists: there is no need for discoveries

beyond the Standard Model. Since the late '70s, this �eld has developed consid-

erably, in step with our continually increasing knowledge of the quark and lepton

masses and the Kobayashi-Maskawa matrix elements. These signatures are based

on the hope that the 
avor interactions which generate the fermion masses are

relatively simple, involving few enough parameters that relations among the 13

observables can be derived. While there is no guarantee that this is true, it is

an assumption which is reasonable and which could have an enormous payo�. A

considerable fraction of high-energy physics experiments aim at extracting more

precise values for the quark masses and mixings; each time an error bar is reduced,

this probe of grand uni�cation becomes more incisive. Among the interesting re-

sults obtained so far are:

� Evolution of the b and � Yukawa couplings to high energies in the Standard

Model does not lead to their uni�cation, as expected from the simple SU(5)

boundary condition. Such a uni�cation does work well if evolution is done

with weak scale supersymmetry and a heavy top quark.57{60

� The uni�cation of the three Yukawa couplings of the heavy generation in

the MSSM,61 expected from a simple SO(10) boundary condition, can occur

perturbatively only if 165 GeV < mt < 190 GeV (Ref. 62).

� It is possible to construct SO(10) models where all observed fermion masses

and mixings are generated from just four interactions. Seven of the 13 
avor

parameters are predicted.32



� The observed quark masses and mixings may be consistent with several pat-

terns of the Yukawa matrices at the uni�cation scale in which many of the

entries are zero, suggesting they have a simple origin.63

I have discussed the �rst three signatures of Table 1, stressing that only for

fermion mass relations do we have any useful data, and stressing that none of these

signatures is a necessary consequence of grand uni�cation. These features are

shown in the �rst two columns of the table. We must now discuss supersymmetry

breaking, which is relevant for the third column of Table 3. The fundamental origin

of the �rst three signatures (baryon number violation, lepton number violation,

and Yukawa coupling relations) does not depend on supersymmetry breaking.

However, for the last two signatures, the supersymmetry breaking interactions of

the low-energy e�ective theory contain all the information relevant to the signals.

A crucial question for these two signatures is: at what scale do the interactions

which break supersymmetry become soft? This has nothing to do with the size

of the parameters which violate supersymmetry|they are of order of the weak

scale. At any energy scale, �, we can consider our theory to be a local e�ective �eld

theory. What is the \messenger scale," Mmess, above which the supersymmetry

breaking parameters, such as squark and gluino masses, do not arise from a single

local interaction? Consider models where supersymmetry is broken spontaneously

in a sector with a single mass scale, M , and is communicated to the observable

sector by the known gauge interactions.4,64 It is only when the particles of massM

are integrated out of the theory that local interactions are generated for squark

and gluino masses. Hence, for these models, the messenger scale is given by

Mmess =M , which is of order MW =�, or 10 TeV.

The breaking of supersymmetry in a hidden sector of N = 1 supergravity

theories17,18 has become a popular view (although it is not satisfactory in sev-

eral respects). The interactions which generate squark and slepton masses are

produced when supergravity auxiliary �elds are eliminated from the theory, and

hence are local at all energies up to the Planck scale, giving a messenger scale

Mmess = MP l. For signatures IV and V, the critical question is whether Mmess

is larger or smaller than MG, the uni�cation mass. If Mmess � MG, then the

local interactions which break supersymmetry are produced at energies beneath

MG, and hence these interactions are not renormalized by the interactions of the

uni�ed theory. On the other hand, if Mmess � MG, then the supersymmetry

breaking interactions appear as local interactions in the grand uni�ed theory it-

self. At energies above MG, they take a form which is constrained by the uni�ed



symmetry. Furthermore, they are modi�ed by radiative corrections induced by

the uni�ed theory, giving low-energy signals which are not power suppressed by

MG (Ref. 65).

For example, in any grand uni�ed theory in which ~u; ~uc, and ~ec are uni�ed in the

same irreducible representation, the uni�ed theory will possess m2
~u = m2

~uc = m2
~ec.

When the uni�ed gauge symmetry is broken, such relations can be modi�ed both

radiatively and at tree level. However, it has been shown that in all models where

the weak mixing angle is a signi�cant prediction of the theory, there will be two

scalar superpartner mass relations for each of the lightest generations.66

It is possible that the gauge forces are uni�ed, but the low-energy matter

particles are not; for example, ~u; ~uc, and ~ec could lie in di�erent irreducible repre-

sentations of the uni�ed group. In this case, the uni�ed gauge group clearly does

not lead to scalar mass relations amongst the light states. While this situation is

a logical possibility, I do not �nd it very plausible. It is not straightforward to

construct such theories and maintain an understanding for the smallness of the


avor-mixing angles of the Kobayashi-Maskawa mixing matrix. Much more likely

is the possibility that the light mass eigenstate �elds ~u; ~uc, and ~ec lie dominantly

in one irreducible representation, but have small components in other represen-

tations.67 This happens automatically in Froggatt-Nielsen theories of fermion

masses31 which rely heavily on mass mixing between heavy and light states. Such

small mixings will lead to corresponding small deviations from the exact uni�ed

scalar mass relations of Ref. 66. In principle, these shifts in the scalar mass eigen-

values would allow s-particle spectroscopy to be used as a probe of the uni�ed

theory.67 However, I doubt they will be big enough to be directly seen in spec-

troscopy. This is because the mass mixings also induce 
avor-changing e�ects in

the scalar sector, and these are powerfully constrained by experiment. Since this

phenomenon occurs at tree level, it is likely to dominate over the 
avor-changing

e�ects that the uni�ed theory will induce at the loop level,65 and hence will become

one of the most important constraints on building theories of fermion masses using

the Froggatt-Nielsen method. Hence, I think that simple scalar mass relations are

likely to result in uni�ed theories, while the 
avor-changing phenomenology will

probe details of the 
avor structure of the uni�ed theory.

IV.3 Flavor-Changing and CP-Violating Signals

Riccardo Barbieri and I have recently shown that a new class of signatures arises

in supersymmetric theories which unify the top quark and � lepton, and which

have a high messenger scale Mmess > MG (Ref. 68). These e�ects are induced



by radiative corrections involving the large top Yukawa coupling of the uni�ed

theory, �tG. The most promising discovery signatures are lepton 
avor violation,

such as � ! e
 (Refs. 68 and 69) and electric dipole moments for the electron

and neutron, de and dn (Refs. 69 and 70).

These signatures are complementary to the classic tests of proton decay and

neutrino masses, as shown in the last two columns of Table 1. We believe that

these new signatures are much less model dependent than the classic tests: they

are present in a very wide range of models with Mmess > MG. A second crucial

point, when comparing with the classic tests, is the size of these signals, which

does not depend on the power of an unknown superheavy mass.

A complete calculation in the minimal SU(5) and SO(10) models69 concludes

that searches for the Li and CP-violating signatures provide the most powerful

known probes of supersymmetric quark-lepton uni�cation with supersymmetry

breaking generated at the Planck scale. For example, an experiment with a sen-

sitivity of 10�13 to B.R. (� ! e
) would probe (apart from a small region of

parameter space where cancellations in the amplitude occur) the SU(5) model to

�tG = 1:4 and m~eR = 100 GeV, and would explore a signi�cant portion of pa-

rameter space for m~eR = 300 GeV. In the SO(10) case, where the present bound

on �! e
 is already more stringent than the limits from high-energy accelerator

experiments, a sensitivity of 10�13 would probe the theory to �tG = 1.25 and m~eR

close to 1 TeV.

Which search probes the theory more powerfully: rare muon processes or the

electric dipole moments? In the minimal SU(5) theory, the electric dipole moments

are very small so that the rare muon processes win. In the minimal SO(10) theory,

the electric dipole moments are proportional to sin� where � = �d � 2�, where

�� is the phase of the Kobayashi-Maskawa matrix element Vtd, and where �d is

a new phase. There is a simple relation between B.R. (�! e
) and de:

jdej
10�27e cm

= 1:3 sin�

s
B.R.(�! e
)

10�12
: (IV:1)

For sin� = 0:5, the present limits imply that the processes have equal power to

probe the theory. The analysis of the data from the MEGA experiment should put

the rare muon decay ahead, but eventually de may win because it falls only as the

square of the superpartner mass, whereas the rare muon decay rate falls as the

fourth power. At some point, these processes could force the s-electronmasses to be



higher than is reasonable from the viewpoint of electroweak symmetry breaking,

discussed in Sec. II.3.

Similar new 
avor-changing tests of supersymmetric quark-lepton uni�cation

occur in the hadronic sector, where the best probes are nonstandard model con-

tributions to �; b ! s
 and to CP violation in neutral B meson decays.71 These

signals could provide a powerful probe of the 
avor sector of uni�ed theories.

However, unlike the lepton 
avor-violating and electric dipole signatures, they

must be distinguished from the Standard Model contribution, and they are small

when the gluino is heavy due to a gluino focusing e�ect on the squark masses.

Uni�ed 
avor sectors which are more complicated than the minimal ones lead

to a larger range of predictions for these signals. There may be additional sources

of 
avor and CP violation other than those generated by the top Yukawa coupling.

While cancelling contributions cannot be ruled out, they are unlikely to lead to

large suppressions. Many other sources could provide e�ects which are larger than

those generated by �tG, and hence, it is reasonable to take the top contribution

as an indication of the minimum signal to be expected.

IV.4 The Top Quark Origin of New Flavor and CP Violation

At �rst sight, it is surprising that the top quark Yukawa coupling should lead to

any violation of Le or L�. What is the physical origin of this e�ect, and why is

it not suppressed by inverse powers of MG? The answer lies in new 
avor-mixing

matrices, which are analogous to the Kobayashi-Maskawa matrix.

In the Standard Model, the quark mass eigenstate basis is reached by mak-

ing independent rotations on the left-handed up and down type quarks, uL and

dL. However, these states are uni�ed into a doublet of the weak SU(2) gauge

group: Q = (uL; dL). A relative rotation between uL and dL therefore leads to


avor mixing at the charged W gauge vertex. This is the well-known Cabibbo-

Kobayashi-Maskawamixing. With massless neutrinos, the Standard Model has no

analogous 
avor mixing amongst the leptons: the charged lepton mass eigenstate

basis can be reached by a rotation of the entire lepton doublet L = (�L; eL).

How are these considerations of 
avor mixing altered in supersymmetric uni-

�ed theories? There are two new crucial ingredients. The �rst is provided by

weak-scale supersymmetry, which implies that the quarks and leptons have scalar

partners. The mass eigenstate basis for these squarks and sleptons requires ad-

ditional 
avor rotations. As an example, consider softly broken supersymmetric

QED with three generations of charged leptons. There are three arbitrary mass

matrices, one for the charged leptons, eL;R, and one each for the left-handed and



right-handed sleptons, ~eL and ~eR. To reach the mass basis therefore requires a

relative rotation between eL;R and ~eL;R, resulting in a 
avor-mixing matrix at the

photino gauge vertex. These matrices were called W eL;eR in Sec. III.3.

In supersymmetric extensions of the Standard Model, these additional 
avor-

changing e�ects are known to be problematic. With a mixing angle comparable

to the Cabibbo angle, a branching ratio for � ! e
 of order 10�4 results. In

the majority of supersymmetric models which have been constructed, such 
avor-

changing e�ects have been suppressed by assuming that the origin of supersymme-

try breaking is 
avor blind. In this case, the slepton mass matrix is proportional

to the unit matrix. The lepton mass matrix can then be diagonalized by identical

rotations on eL;R and ~eL;R, without introducing 
avor-violating mixing matrices

at the gaugino vertices. Slepton degeneracy renders lepton 
avor-mixing matrices

nonphysical.

The uni�cation of quarks and leptons into larger multiplets provides the second

crucial new feature in the origin of 
avor mixing. The weak uni�cation of uL and

dL into qL is extended in SU(5) to the uni�cation of qL with uR and eR into

a ten-dimensional multiplet T (qL; uR; eR). Since higher uni�cation leads to fewer

multiplets, there are fewer rotations which can be made without generating 
avor-

mixing matrices.

In any supersymmetric uni�ed model, there must be at least two coupling

matrices, �1 and �2, which describe quark masses. If there is only one such

matrix, it can always be diagonalized without introducing quark mixing. One of

these coupling matrices, which we take to be �1, must contain the large coupling

�t, which is responsible for the top quark mass. We choose to work in a basis in

which �1 is diagonal. The particles which interact via �t are those which lie in

the same uni�ed multiplet with tL and tR. In all uni�ed models, this includes a

right-handed charged lepton, which we call eR3
. This cannot be identi�ed as the

mass eigenstate �R, because signi�cant contributions to the charged lepton masses

must come from the matrix �2, which is not diagonal.

The assumption that the supersymmetry breaking mechanism is 
avor blind

leads to mass matrices for both ~eL and ~eR, which are proportional to the unit

matrix at the Planck scale, MP l. As we have seen, without uni�ed interactions,

lepton super�eld rotations can diagonalize the lepton mass matrix without intro-

ducing 
avor-mixing matrices. However, the uni�cation prevents such rotations:

the leptons are in the same multiplets as quarks, and the basis has already been



chosen to diagonalize �1. As the theory is renormalization group scaled to lower

energies, the �t interaction induces radiative corrections which suppress the mass

of ~eR3
beneath that of ~eR1

and ~eR2
. Beneath MG, the superheavy particles of

the theory can be decoupled, leaving only the interactions of the minimal super-

symmetric Standard Model. Now that the uni�ed symmetry which relates quarks

to leptons is broken, a lepton mass basis can be chosen by rotating lepton �elds

relative to quark �elds. However, at these lower energies, the sleptons are no

longer degenerate, so that these rotations do induce lepton 
avor-mixing angles.

Radiative corrections induced by �t lead to slepton nondegeneracies, which render

the lepton mixing angles physical.

This discussion provides the essence of the physics mechanism for Le;�;� vi-

olation in superuni�ed models. It shows the e�ect to be generic to the idea of

quark-lepton uni�cation, requiring only that supersymmetry survive unbroken to

the weak scale, and that supersymmetry breaking be present at the Planck scale.

The imprint of the uni�ed interactions is made on the soft supersymmetry break-

ing coe�cients, including the scalar trilinears, which are taken to be universal at

the Planck scale. Eventually, this imprint will be seen directly by studying the

superpartner spectrum, but it can also be probed now by searching for Le;�;� and

CP-violating e�ects.

The above discussion assumed a universal scalar mass at high energies. We

argued in Chap. III that it is preferable to replace this ad hoc form with scalar

masses that are the most general allowed by an appropriate 
avor group, Gf . This

group solves the \1{2" 
avor problem, as discussed in Sec. III.3, but the \1, 2{

3" 
avor signature discussed here, which results from the large splitting between

the scalars of the third generation and those of the lighter two generations, will

persist.

IV.5 Summary

Supersymmetric grand uni�ed theories are a leading candidate for physics beyond

the Standard Model because:

� They provide an elegant group theoretic understanding of the gauge quantum

numbers of a generation.

� sin2 � is the only successful prediction of any parameter of the Standard

Model at the percent level of accuracy.

I have not yet mentioned the most crucial experimental hurdle which these

theories must pass: superpartners must be discovered at the weak scale. Without



this, I will never be convinced that these theories are correct. As I write, I imagine

the skeptics who may read this (I dare to hope!) saying \suppose by 2010 we

have measured neutrino masses and mixing angles, seen proton decay and other

rare processes such as � ! e
, de and dn, found nonstandard CP violation in

B meson decays, and that we have even discovered superpartners and measured

their masses. This still will not convince me that the theory behind this physics

is quark-lepton uni�cation." My reply is:

� These discoveries will not necessarily make quark-lepton uni�cation convinc-

ing, but they will make it the standard picture.

� These discoveries might make a particular model of quark-lepton uni�cation

completely convincing.

There is certainly no guarantee of the latter point, but let me illustrate it

with an optimistic viewpoint. There are millions of possible 
avor sectors of

uni�ed models. Some are so complicated that, if this is the way nature is, we

are unlikely to ever uncover this structure from low-energy experiments alone.

Others are very simple with few interactions and parameters. Why should nature

be kind to us and provide a simple 
avor sector with few interactions? Quite

apart from our general belief that the underlying laws of physics will be simple,

I think that the answer is illustrated by the U(2) model of Sec. III.7. A 
avor

symmetry provides a convincing solution to the 
avor-changing problem. Since

it must severely constrain the scalar sector, it is expected to also severely restrict

the fermion mass operators. The most constrained scheme which I know has ten

parameters (eight 
avor and two supersymmetry breaking) to describe all the


avor physics signals. As an example, consider something in between with, say,

15 parameters (e.g., 12 
avor and three supersymmetry breaking). This has two

parameters more than the 
avor sector of the Standard Model. Suppose that

we discover such a uni�ed model with these two parameters correctly describing

the entire superpartner spectrum, the neutrino masses and mixing angles and the

magnitudes of the nonstandard model signals for �! e
; de; dn and B meson CP

violation, and the masses of the two Higgs bosons, the pseudoscalar boson and

the charged Higgs boson. It is certainly an optimistic scenario, but it is one which

I would �nd convincing.

V. The High-Energy Frontier

What are the liveliest debates at the high-energy frontier today? Particle physics,

like other branches of physics, is driven �rst and foremost by experimental discov-



eries. Many experimental discoveries laid the groundwork for the development of

the gauge structure of the Standard Model, and we will need many further exper-

iments to guide us beyond. Hence, it is not surprising that the dominant debate

of the �eld is about which accelerators should be built and which experiments

should be done.

The phenomena uncovered by experiments have led to a stunning array of

theoretical developments over the last 30 years. These theoretical tools allowed

the construction of the Standard Model. A dominant debate in theoretical circles

is whether the tools of point particle �eld theories and their symmetries will take

us much further, or whether further tools, such as string theory, are necessary.

There is no doubt that there are limits to point particle gauge theory, the

clearest of which is that they cannot describe gravity. Nevertheless, point parti-

cle gauge theories and their symmetries are an extraordinarily rich and powerful

tool. In these lectures, I have explored the possibility that they provide a deeper

understanding of many of the outstanding questions of particle physics.

� A dynamical origin of electroweak symmetry breaking as a heavy top quark

e�ect.

� A 
avor symmetry origin for the pattern of fermion masses and mixing.

� A uni�ed gauge symmetry|allowing for a highly constrained and predictive

theory of 
avor, in addition to the well-known picture of a uni�ed family and

uni�ed gauge couplings.

It is extraordinary that such a comprehensive vision of particle interactions

has been developed. It seems unlikely that a complete picture of particle physics

can be constructed without nonperturbative dynamics entering at some point;

but what is that point? It is possible that the failure to develop a comprehensive

vision of particle physics beyond the Standard Model based on either techni-

color or a composite Higgs is because in these cases, the issue of nonperturbative

dynamics provides a barrier at the very �rst step. The vision developed here is

largely perturbative and is based on weak-scale supersymmetry, a heavy top quark

leading to perturbative dynamics for electroweak symmetry breaking, and pertur-

bative uni�cation. The only new nonperturbative dynamics beneath the Planck

scale occurs in the supersymmetry breaking sector, which I have not discussed.

Fortunately, there are many experimentally testable aspects of the theory which

follow from a few minimal assumptions, and no detailed understanding, about

how supersymmetry breaking occurs. Measurements of the superpartner masses



will provide a crucial guide as to how the supersymmetry breaking interactions

should be generated.

The vision of weak scale supersymmetry and perturbative uni�cation receives

considerable motivation from precision electroweak measurements, but only fur-

ther experiments will prove whether these ideas are correct. The discovery of

supersymmetry at the weak scale would be a revolution for High-Energy Physics,

as important as any the �eld has seen, heralding a new era. Decades of experimen-

tation would be needed to fully elucidate the rami�cations of this new symmetry;

for example, measurements of the many new 
avor observables would provide a

new handle on the 
avor problem.
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Figure Caption

Upper bounds on superpartner and Higgs boson masses which follow from requir-

ing a limit to the amount of �ne tuning among parameters. This �gure applies to

the supersymmetric extension of the Standard Model with minimal �eld content,

with all scalar masses taken equal at the uni�cation scale, and similarly for the

three gaugino masses. The upper extent of the lines for each particle correspond

to ~
 = 10, the error bar symbol to ~
 = 5, and the squares to the masses which

result from minimizing the amount of �ne tuning. This �gure was supplied to me

by Greg Anderson; for further �gures, see Ref. 6.


