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Abstract

Electromagnetic interaction between a charged particle beam and its surroundings causes
collective instabilities, which must be controlled if the new light sources and colliders are to
meet their design goals. Control requires a combination of passive damping and fast active
feedback on an unprecedented technological scale. Efficient instability diagnosis techniques
are aiso needed for machines with large numbers of bunches. This thesis describes new
methods of measuring and analyzing coupled-bunch instabilities in circular accelerators,
and demonstrates the existence of a new cure.

A new technique is demonstrated for simultaneous measurement of growth rates, damp-
ing rates and coherent tune shifts of all unstable coupled-bunch eigenmodes from a single
10-25-ms transient snapshot of beam motion. The technique has been used to locate and
quantify beam impedance resonances at PEP-II, ALS and SPEAR. This method is faster
than existing spectral scan methods by at least an order of magnitude, and has the added ad-
vantage of revealing coupled-bunch dynamics in the linear small-signal regime. A method is
also presented for estimating beam impedance from multi-bunch fill shape and synchronous
phase measurements.

Phase space tracking of multi-bunch instabilities is introduced as a “complete instability
diagnostic.” Digit ised multi-bunch data is analyzed offline, to estimate the phase space
trajectories of bunches and modes. Availability of phase space trajectories is shown to open
up a variety of possibilities, including measurement of reactive impedance, and diagnosis of
the fast beam-ion instability.

Knowledge gained from longitudinal measurements (all made using a digital longitudi-
nal feedback system) has been used to optimise cavity temperatures, tuner positions and
feedback parameters, and also to identify sources of beam noise at the three machines.

A matrix-based method is presented for analyzing the beneficial effect of bunch-to-bunch
tune variation on instability growth rates. The method is applicable to the calculation



of instability eigenvalues in machines with more than one unstable coupled-bunch mode.
This technique is useful in studying machines like PEP-II and KEK-B, which do not lend
themselves to tune spread analysis by conventional methods.

A similar mathematical formalism is used to understand the dynamics of azimuthally
asymmetric beams. Simple formulae are derived for asymmetry-induced growth rate reduc-
tion. “Optimal” fill shapes based on these ideas have been experimentally verified at the
ALS and SPEAR, where the longitudinal instability threshold has been raised by factors
of six and two, respectively. Thus we have a new, zero-cost, easily implementable cure for

coupled-bunch instabilities.
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Chapter 1

Introduction

Modern synchrotron light sources and circular colliders require the storage of high-current
charged particle beams for the attainment of their design goals. Colliders require intense
beams for frequent production of collision events, and radiation sources generate more
photons when they accelerate larger numbers of charged particles.

The storage of high-current charged particle beams presents a variety of challenges, such
as increased power requirements and increased heating of the vacuum chamber surrounding
the beam. The most serious consequence of high beam intensities is the possibility of
collective instabilities, which result from electromagnetic interaction between the beam and
its surroundings.

Collective instabilities can be understood as follows: The beam interacts with its en-
vironment to produce electromagnetic fields known as wake fields, which change the beam
trajectory. The perturbed trajectory modifies the wake field, which in turn changes the
beam trajectory yet again, and so on. If the beam intensity is below a certain thresh-
old, this cycle of interaction between the beam and its wake field reaches a stable steady
state. However, if successive disturbances enhance each other enough to steadily increase
in magnitude, the trajectory becomes unstable. If this happens, the beam is pushed into
nonlinear large-amplitude oscillations, or is lost by collision with the vacuum chamber. The
instability mechanism is a collective one, since it involves cooperative particle motion and
the collective electromagnetic field.

Collective instabilities are one of the main factors that limit the performance of high
energy accelerators. Even if nonlinear mechanisms avert beam loss, collision rates and

radiation quality are adversely affected by large-amplitude beam oscillations relative to the
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ideal trajectory. For this reason, various collective instability mechanisms have been studied
theoretically and experimentally over the last four decades, and a number of techniques have
been developed to allow stable high-current operation.

1.1 Coupled-Bunch Instabilities

Modern circular accelerators achieve high total currents by distributing the current among
large numbers of circulating bunches, so as to avoid single-bunch instabilities, improve the
beam lifetime, and reduce two-beam effects (in the case of colliders). In such cases, unstable
coupling between bunches through long-range wake fields is often the main current-limiting
factor.

The instability of longitudinal coupled-bunch oscillations in circular accelerators was
first studied by K. Robinson in 1964 [1). The fundamental resonance of radio frequency
accelerating cavities was found to cause beam bunches to oscillate coherently in energy
under certain conditions. Transverse coupled-bunch instabilities driven by the resistance of
vacuum chamber walls were identified by E. Courant and A. Sessler in 1966 [2]. The concept
of a beam impedance has since been developed, and more general approaches have been
used to study longitudinal and transverse coupled-bunch instabilities excited by long-range
wake fields of almost any origin (3, 4, 5]. The approach typically involves working out the
eigenmodes and eigenvalues of the system in the neighbourhood of equilibrium, where the
dynamics are linear. The objective is to calculate instability growth rates and threshold
currents in the presence of natural damping mechanisms and active feedback.

Recently, new kinds of transverse instabilities, excited by transient charged particles in
the vicinity of the beam, have been discovered [6, 7, 8.

1.2 Overview of Contributions

New generations of accelerators pose a formidable challenge to physicists and engineers
who study and combat coupled-bunch instabilities. The existence of unstable eigenmodes
at hundreds or thousands of possible frequencies makes instability diagnosis by conventional
techniques difficult, if not completely impractical. There is a real need for improved mea-
surement and analysis techniques, which must be followed by imaginative ways of damping
coherent motion.
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This thesis presents new experimental and theoretical methods for measuring and pre-
dicting coupled-bunch instabilities, and demonstrates the efficacy of a new cure. Although
the focus is on longitudinal rigid-bunch motion, some of the theoretical results are directly
applicable to longitudinal and transverse instabilities of any order. Measurements of trans-
verse dipole instabilities are also presented.

A programmable longitudinal feedback (LFB) system has been the primary beam ma-
nipulation and data collection tool at the ALS' [9], PEP-II? [10], and SPEARS? [11, 12,
because of its ability to record the oscillations of all stored bunches while controlling beam
motion.

The following subsections constitute an outline of the contributions of this thesis, in
the order of the chapters. Brief statements are included about historical background and
comparitive merits of older approaches. Those who are unfamiliar with the material are
encouraged to read Ch. 2, which introduces the basic ideas and equations that underlie
subsequent treatments of beam diagnostics, coupled-bunch instabilities and active feedback.

1.2.1 Bunch Currents and Synchronous Phases

The shape of a storage ring fill (bunch current vs. bunch number) has a significant effect on
coupled-bunch instabilities. Chapter 3 describes a technique for extracting bunch currents
from LFB system data. The method makes use of the fact that recorded signals are pro-
portional to the product of bunch current and longitudinal phase error. Results are shown
from PEP-II.

Knowledge of bunch currents allows the calculation of bunch synchronous phases from
LFB data. A simple formula is derived, for calculating the beam impedance from multi-
bunch currents and synchronous phases. The single-bunch variant of this method is already
well known. The multi-bunch approach yields more spectral information, since the wake
function is sampled at a higher frequency. This method has been used to identify inaccu-
rately parked idle cavities as the cause of a mode 3 longitudinal instability in the PEP-II
HER (High Energy Ring). Synchronous phase measurements are also important at colliders
like PEP-II, because of the need to match beam loading transients in the two rings.

! Lawrence Berkeley National Laboratory Advanced Light Source
*Stanford Linear Accelerator Center (SLAC) B Factory
3Stanford Synchrotron Radiation Laboratory Light Source
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1.2.2 Measuring Instability Growth and Damping Rates

A new “grow-damp” technique is shown to efficiently solve the problem of diagnosing
coupled-bunch instabilities in large accelerators. Growth rates are directly measured in
the linear small-signal regime by turning off feedback and recording the oscillations of all
bunches in the ring as the unstable modes grow out of the noise floor. Simultaneous char-
acterisation of all unstable modes from a single 10-25-ms transient is a unique feature of
such a measurement.

Grow-damp measurements based on LFB system data have been used to identify coupled-
bunch instabilities and measure their amplitudes and growth rates under a variety of beam
and cavity conditions at the ALS, PEP-II and SPEAR. The observations are compared
with estimates of the cavity impedance. This method has been used find the ALS cavity
temperatures most conducive to longitudinal stability, and to calculate the effective beam
impedance at SPEAR. The grow-damp technique has also been used to measure transverse
coupled-bunch instabilities. The impedance estimates from such measurements have been
used to create “optimal” fill shapes at the ALS and SPEAR [13, 14].

Damping rates of stable modes are measured by externally exciting them and observing
their natural decay rates.

LFB system data are also used to reconstruct beam “pseudospectra,” i.e. beam spectra
without revolution harmonics, from 10-25-ms pieces of data. These pseudospectra cover the
coupled-bunch eigenmode frequency range with a resolution of 100-40 Hz. A conventional
heterodyned spectrum analyzer would take more than half an hour to measure a beam
spectrum of comparable width and resolution.

Data analysis is performed using MATLAB programs to filter raw data, remove sam-
pling time offsets, calculate bunch and mode amplitudes as a function of time and fit expo-
nentials to modal transients. Other MATLAB tools look for correlations between even-fill
eigenmodes, check the quality of exponential fits, and calculate beam spectra from the data.

The “damp” portion of the grow-damp transients is used to measure feedback-induced
damping rates of all unstable modes. Damping rate measurements have been made at
various currents at ALS, SPEAR and PEP-II. Grow-damp measurements constitute a quick
and comprehensive test of feedback system performance. They have been used to optimise
feedback gain and phase and detect amplifier irregularities.
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1.2.3 Phase Space Tracking: A Complete Diagnostic

Chapter 5 describes an instability diagnostic that exploits the information contained in
the angular evolution of coupled-bunch oscillations in phase space. In addition to enabling
measurement of coherent tunes and bunch tunes with accuracy of a few Hz, phase space
tracking allows new kinds of comparisons between instability theory and experiment.

Phase space evolution of bunches participating in a low-threshold vertical instability in
the PEP-II High Energy Ring is used to distinguish between the fast beam-ion instability
and conventional instabilities. Tracking of longitudinal motion at the ALS and PEP-II is
used to measure coherent tunes and gain new insights into uneven-fill instabilities.

This technique has also been used to measure the reactive component of the beam

impedaace, and to measure and minimise the reactive component of longitudinal feedback.

1.2.4 A Matrix Formalism for Landau Damping

Existing methods of calculating the effect of bunch-to-bunch tune variation on longitudinal
coupled-bunch instability growth rates only address the problem of a single unstable eigen-
mode. In addition, they do not directly yield the growth rate reduction afforded by a given
tune distribution.

A more general approach is presented in Ch. 6, that involves computing the eigenvalues of
a state matrix of reduced size. The method is applied to the analysis of PEP-II longitudinal
coupled-bunch modes, a large number of which are unstable in the absence of feedback.

This technique can be used just as easily to analyse the effects of transverse bunch tune
variation.

1.2.5 Optimal Uneven Fills: A New Cure

As mentioned earlier, coupled-bunch instabilities in unevenly filled rings have not been
very well understood so far. R. Kohaupt has calculated an upper bound for the instability
growth rate in rings with a square-wave fill (even fill with one continuous group of bunches
removed) (15]. K. Thompson has derived expressions for the elements of the bunch coupling
matrix whose eigenvalues determine beam stability [16].

S. Bogacz calculated the longitudinal tune spread introduced by square-wave fills in
1994, and suggested that parasitic impedance resonances be tuned to increase the tune
spread effect {17]. The problem with such an approach is that it would simultaneously
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increase the bunch coupling that drives instability.

In many cases, these analyses fall short of a general, practically useful treatment of
coupled-bunch instabilities in unevenly filled (azimuthally asymmetric) rings. In practice,
however, empirically determined azimuthal asymmetries have been seen to have a significant
effect on instability growth rates.

Chapter 7 describes the physics of two mechanisms for the influence of uneven fills on
coupled-bunch instability growth rates. The resultant damping is calculated approximately
using back-of-the envelope formulae and a graphical look-up table. The first mechanism is
the one studied by Bogacz, generalised to the case of an arbitrary fill shape. The second
mechanism involves coupling of stable and unstable even-fill eigenmodes to each other by
means of spatial harmonics in the fill shape. A heuristic algorithm is presented for designing
easily implementable “optimal” fill shapes, that exploit tune spreads and mode coupling to
minimise instability growth rates.

Results are shown from the ALS and SPEAR, where specially tailored uneven fills
have raised the longitudinal instability threshold by factors of six and two, respectively.
A theoretical calculation of Landau damping from the PEP-II HER gap transient is also
shown to be in good agreement with experimental data.



Chapter 2
Basic Concepts, Feedback

This chapter introduces the basic ideas and equations that underlie subsequent treatments
of beam diagnostics, coupled-bunch instabilities and active feedback. The relevant elements
of a circular accelerator or storage ring are listed, and the concept of phase focusing is ex-
plained. Individual charged particles are shown to behave like damped harmonic oscillators,
when in the vicinity of equilibrium. The concept of wake fields and impedance is discussed,
and a brief derivation of the equations governing longitudinal coupled-bunch dynamics is
given.

Existing cures for coupled-bunch instabilities are mentioned, along with formulae de-
scribing the amount of damping that they provide. This is followed by some background
material on the digital bunch-by-bunch feedback system that was used to perform most of
the diagnostics.

2.1 Storage Rings, Single-Particle Dynamics

A storage ring contains lumps of charged particles injected into a vacuum chamber, which
encloses the subsequent particle trajectories. Dipole magnets bend the trajectories, and
guide the particles at the nominal beam energy E, along a closed orbit known as the
reference orbit, or design orbit. Various magnets along the circumference of the ring provide
transverse focusing, so that off-orbit particles are pushed back towards the design orbit.
This gives rise to betatron (transverse) oscillations about the reference, in the horizontal
and vertical planes.

During each revolution, the magnetic fields cause the particles to lose some energy
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Figure 2.1: Schematic diagram of a storage ring.

through radiation, known as synchrotron radiation. This is balanced by an energy kick
from accelerating cavities. The accelerating field has to be time-varying, since a DC field
would not give circulating charged particles any net energy gain. The cavities are usually
driven by high power microwave sources. Figure 2.1 shows the main components of a storage
ring, viewed from above.

The RF cavity field is periodic, so that successive bunches of charged particles traverse
the accelerating gap at intervals of roughly one period, i.e. Tr;. Thus, the stored beam can
consist of at most h bunches, where the harmonic number 4 is the ratio of the RF frequency

frf = wrp/27 to the revolution frequency f, = w,/2r. In other words,

wrr _ frr _ To
h=—="=_— 2.1
Wo fo Tr[ (1)
A synchronous particle is defined as a particle with energy E,, that samples the accelerat-
ing voltages so that it gains exactly as much energy (U,) as it loses through synchrotron
radiation, on each turn. The behaviour of the synchronous particle, as well as the longi-
tudinal focusing properties of the accelerating field in the RF cavity, can be understood

!This figure is from M. Sands’ note on electron storage rings [18].
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Figure 2.2: Example of energy gain from an RF system as a function of the starting time ¢
of a revolution.

from Fig. 2.2, which shows an example of the energy gain from an RF system as a func-
tion of the starting time ¢ of a revolution?. A particle arriving at the cavity a bit later
than the synchronous particle will receive less energy than U, from it. If the particle is
highly relativistic, the net energy loss will cause it to follow a shorter path around the ring,
without any significant change in speed (more bending in the bend magnet fields). Suc-
cessive revolutions of decreasing circumference will push the delayed particle back in the
direction of the synchronous particle. Conversely, particles sampling the RF waveform a
bit early receive more energy than U, thus delaying their next arrival at the cavity. In this
way, the accelerating field creates a longitudinal potential well, giving rise to synchrotron
(longitudinal) oscillations.

All particles within a certain neighbourhood of the synchronous particle in longitudinal
phase space will remain confined to that neighbourhood, due to phase focusing. This
neighbourhood is known as an RF bucket, since any particle placed inside it will remain
confined to it. Particles outside the bucket are usually lost, unless they are kicked into a
bucket by forces other than the accelerating field in the cavities. The energy loss per turn
by synchrotron radiation increases with the energy of the particle. In highly relativistic
machines, this gives rise to radiation damping of all oscillation amplitudes. The trajectory

*This figure is from M. Sands’ note on electron storage rings [18].
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of each particle spirals inwards in phase space. The inward spiral is balanced in the steady
state by quantum excitation from the stochasticity of synchrotron radiation [18].

For convenience, we shall refer specifically to high energy electron storage rings from
here on, with the understanding that most results apply equally well to any other storage
rings (with the exception of radiation damping being negligible, in the case of many hadron
machines).

To the first order, the revolution frequency of stored electrons varies linearly with the
energy error €. Thus, if 7 is the arrival time (time delay) of an electron relative to the

synchronous particle, then

. €
T=«x E, (2.2)

where the constant of proportionality c, known as the momentum compaction factor, is a
function of E, and the magnetic guide field. In the case of machines that are not highly
relativistic, a is replaced by 7 = a — 1/42, where v is the ratio of E, to the rest energy.

If we assume that the electron completes many revolutions around the ring and receives
many kicks from the accelerating cavities in one synchrotron (longitudinal) oscillation cycle,
then energy kicks from the cavities can be smoothed over an entire turn. Thus,

i= eVer (1) = Urad (€)
T, !

(2.3)

where V; is the total cavity voltage waveform shown in Fig. 2.2, U,.q(e€) is the energy lost
to synchrotron radiation in one turn, and T, is the revolution period.

If we ignore external perturbations and linearise these equations for small oscillations
about the synchronous electron, we get the following equation for a damped harmonic

oscillator.

F+2d,F+wlt =0, (2.4)
where the radiation damping rate d, equals U(0)/2T,, and

2_ _aeVes(0)
wi = —EoTo (2.5)

The resonance angular frequency w; of these oscillations is known as the synchrotron fre-
quency. The synchrotron tune v, is defined as ws/w,, where the revolution frequency w,
equals 27 /T,.

It is clear from the above equation that V; 1(0) is negative if the beam is highly relativistic
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(n = a > 0). In other words, high energy particles experience phase focusing only on the
negative slope of the cavity voltage. Iu most cases, the accelerating voltage V;;(r) in the

accelerating cavities is sinusoidal, and can be written as:
Ves(1) = Vesinfwes (s + 7)), (2.6)

where 7, is the arrival time of the synchronous particle. Thus, Eq. 2.5 is equivalent to:

s EoTo

Ve cos(wrf'rs) (2.7)

If the average total energy loss of the particle over one turn is U, then

eVesin(wyyrs) = U (2.8)
=Ty = LSi!l-'l (1) (29)
Wep eV,

Typically, 7, is slightly below T;;/2. Clearly, eV. has to be greater than U, for the beam
to be stable. The ratio eV;/U is known as the overvoltage factor. As the overvoltage is
increased, w, increases, 7, increases towards Trs/2, and the size of the RF bucket in phase
space increases. The overvoltage is limited by the peak power output of the klystrons
(microwave amplifiers) that drive the RF cavities. The klystrons need to be operated well
below saturation to allow RF feedback loops to function.

2.2 Wake Fields and Impedance

Charged particles leave behind electromagnetic fields as they fly through the vacuum cham-
ber [19]. These fields arise from discontinuities in the vacuum chamber, and the finite
resistivity of the vacuum pipe. If the particles move at about the speed of light, causality
dictates that the fields should be excited after the particle has passed by. The momentum
of trailing particles is affected by these “wake fields,” that introduce coupling between the
individual particle oscillations. The total wake force acting on a trailing charge is calculated
by integrating over the contributions of all the particles that preceded it.

If a highly relativistic test charge e follows a similar particle of unit charge at a distance z,
then it loses energy equal to eW!l(z) on every turn, due to the wake fields. The longitudinal
wake function Wl(2) is calculated by integrating the longitudinal component of the electric
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field experienced by the test charge over an entire turn. If the lead particle has a transverse
displacement z in the horizontal direction, then the integrated horizontal wake force equals
-ezW=(z), where WZ*(z) is the horizontal wake function.

The wake function is the aggregate impulse response of the vacuum chamber. It does
not depend upon properties of the charged particle beam. Due to causality, W!l(z) = 0 and
W<i(z) =0 when z < 0.

If the particles are highly relativistic, we can use the approximation z = ct to write the
wake functions as functions of the time lag t rather than the distance z, where c is the speed
of light. A more complete discussion of wake functions and impedances is given in [3].

Theoretical analyses of wake field perturbations of longitudinal and transverse dynamics
are simplified by the assumption that the wake fields from each element in the vacuum
chamber are smoothed over the entire ring, instead of being localised to the vicinity of the
source. On the other hand, simulations are conveniently performed if we assume that the
one-turn integrated wake is applied as a lumped kick at a single point in the ring. Thus, it
is often desirable to assume that the dynamics are not significantly affected by smoothing
of the wake forces, or their translation by less than a turn. This assumption is implicit
in the calculation of a wake function that does not depend on the longitudinal position of
the test particle in the ring. It is shown in the appendix to [20] that this is a reasonable
approximation, as long as the tune perturbation induced by wake fields is small.

The longitudinal beam impedance Z!l(w) is defined as the Fourier transform of the
longitudinal wake function Wl(¢):

Zl(w) = / * Wil e=it gy (2.10)

Similarly,
00 .
Zh(w) = j / W) et dt (2.11)
-o0

In general, the beam impedance is complex. Since the wake function is the impulse response
of the beam environment, the beam impedance is the transfer function from the beam
current to the wake voltage.

RF cavities are among the main sources of impedance in storage riugs. In addition
to the fundamental accelerating mode, they contain additional trapped modes, known as
parasitic modes or Higher-Order Modes (HOMs). The impedance of these resonances is
similar to that of an RLC (resistor-inductor-capacitor) band pass filter. The impedance of
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longitudinal monopole modes in the cavities is typically expressed as:

R,
1+ jQw/wr — wrfw]’

ZNw) = (2.12)
where w, is the resonance angular frequency of the mode and R; is the shunt impedance
[21]. Z¥(w) = Ry at resonance, i.e. at w = w,. The quality factor  determines the width
of the impedance. If @ > 1 (narrowband mode), then the 3-dB bandwidth of the resonant
mode is approximately wr/Q. A mode is considered to be broadband if Q = 1. The velocity
of a damped harmonic oscillator responds to the externally applied force through a similar
transfer function.

An inverse Fourier transform gives the corresponding longitudinal wake function

wilie)y = o t<o0
= TR,; t=0
= 2I'R,e Tt (cos(w,,t) - g— sin(wpt)); t>0, (2.13)
]

where the damping rate I is given by:

['=w./2Q, (2.14)

and

Thus, narrowband modes persist for a long time when excited, whereas broadband modes
are more rapidly damped. The ratio R,/Q for a given cavity mode is determined solely by
the cavity geometry, while the Q of the mode is determined by the resistance of the cavity
walls.

The magnitude and phase of a sample band pass impedance Z!|(w) are shown in Figs. 2.3(a)
and (b) respectively. In this example, Q = 10 and R, = 1. The approximate 3-dB frequen-
cies wr(1 + 1/2Q) are marked by vertical dashed lines. The angle of the impedance goes
from 90° at low frequencies to —90° at high frequencies, crossing zero exactly at w = wy.
As expected from Eq. 2.12, £ Zll ~ +45° when w = w,(1 T 1/2Q).

Figs. 2.3(c) and (d) show the real and imaginary parts of Zli(w). The real part of the
impedance reaches its maximum at w = w,, and drops to R,/2 at around w,(1 + 1/2Q). It
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Figure 2.3: Example longitudinal impedance and wake function of a resonant cavity mode
(RLC band pass filter) with Q@ =10 and R, = 1.

is always positive, since the cavity is a passive device. Im[Zll(w)] is positive below w, and
negative above it. It reaches its extreme values of +R,/2 at approximately w.(1 ¥ 1/2Q),
with a steep slope in between.

The longitudinal wake function (impulse response) corresponding to the resonator impedance
(second-order band pass transfer function) is shown in Fig. 2.3(e). It is an exponentially
decaying sinusoid whose frequency wy, is very close to w, when Q2 > 1. It is necessarily
positive at t = 0+, because the energy loss g?W1(0) of the charge that produces the wake

is necessarily positive.
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2.3 Coupled-Bunch Dipole Instabilities

Since this dissertation mainly addresses rigid (dipole) oscillations of bunches of charged
particles, it is sufficient to assume that each bunch behaves like a macroparticle with the
appropriate charge. More general approaches can be found in (3, 4, 5, 22].

Consider a stored beam that consists of N identical macroparticle bunches of charge g,
filled in N RF buckets, with a constant interbunch spacing T, = T,/N. Such a fill is known
as an “even fill.” N is necessarily a factor of h, i.e., N divides A evenly. The total beam

current J, is given by
Ic—N—l

Z q (2.16)

T k=0
Using a derivation similar to that of Eq. 2.4, we can write the following equation to describe
the effect of wake fields on the longitudinal oscillations of the n** bunch in the ring:

T+ 2y T + Wity = n=0,1,..,N=1, (2.17)

E T
where eV,*¥(t)/T, is the rate of energy loss of macroparticle n due to the superposition
of the wake forces of all preceding macroparticles. It is assumed that all sources of wake
field coupling are smoothed over the entire ring. The following equations also contain the
assumption that the wavelengths of the relevant wake fields are much larger than the bunch
length, so that the wake of a bunch is approximated by that of a point charge g, located at
the bunch centroid. Thus,

oo N-1
Vakt) =q Y Y WIh , + mlt) — (e = £2)], (2.18)
=00 k=0
where the time interval between bunch n, on the present turn, and bunch k, p turns ago, is
n & = (PN +n—k)T},. If 7 is small compared to the period of the highest relevant frequency
in the beam impedance, we can use the Taylor expansion

WIth ;. + ma(t) = et = 8 )] = WL ) + [alt) — 7ic(t — £ )IW (LD ;) (2.19)

The first term in the above expansion is a constant; it only shifts the equilibrium position
of the bunch, i.e., the arrival time of the synchronous particle. Since 7 is the bunch position
relative to equilibrium, and since the azimuthal (rotational) symmetry of the even fill forces
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the equilibrium positions of all bunches to shift by the same amount, we can ignore this
static term altogether. Later on, we will see that uneven fills (lacking azimuthal symmetry)
produce equilibrium shifts that vary from bunch to bunch. This variation will be used to
estimate the longitudinal impedance in Ch. 2. In Ch. 7, it will be assumed that this variation
has a negligible effect on beam stability, since the equilibrium shifts induced by wake fields
are typically small compared to the wavelengths of the significant beam impedances. Thus,

o

N-1
Vitkt) = ST Y qilmn — (e — £ )W (2R ) (2.20)
p==—00 k=0

By combining Eqgs. 2.17 and 2.20, we get
N-1

[ ]
Fu o+ 2y o+ w2 X — ge" Y Y-t =W, n=0,1,...,N-1 (2.21)

040 p=wo0 k=0

This is a system of coupled linear equations, with solutions of the form e*, or e/®. The
eigenvalue A is related to the coherent oscillation frequency Q by: A = Q.

Although it is not immediately obvious from the last equation, we know from the rota-
tional symmetry of the fill shape that the eigenvectors must remain unchanged, except for
multiplication by a scalar, when rotated by one bucket. Let this scalar be r. Rotation by
N buckets brings us back to the original eigenvector, so

=1 (2.22)
Thus, r must be one of the N** roots of unity:
r = e 2/¥, 1=0,1,..,N-1 (2.23)

These N roots of unity define the N eigenvectors of an N-bunch even-fill, which are merely
the Fourier vectors

u = [1e" . fN-139T//N; [=0,1,..,N-1
9 = 2x/N (2.24)

It is clear that a discrete Fourier transform is all that is required to project even-fill coupled-
bunch oscillations onto the even-fill eigenmodes (EFEMs). As we shall see in Ch. 7, the
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symmetry argument used here for even fill shapes can be extended to yield useful results
for periodic uneven fills. It will also be shown in the same chapter that the N EFEMs form
a convenient set of basis vectors for studying uneven-fill dynamics.

Since we now know the even-fill eigenvectors, we only need to plug them into Eqs. 2.21
to find the corresponding eigenvalues. If the bunches are oscillating in mode [, then?

Tk(t) = Aej21rkl/Neim
1-,,(t)e"’"‘"""""e"jmﬁ'k

= 7t —th ()

Ta(t)e I et Wins (2.25)
since w,Tp = 2r/N. If we use the substitution u = pN +n — k, then
Ti(t = 88 1) = Ti(t — uTy) = 7o (t)e™I(wo+ DT (2.26)

The analysis is further simplified by assuming that the radiation damping rate is small (d, <
ws), and that the effect of the wake fields can be treated as a small first-order perturbation
to the uncoupled bunch dynamics [|2 — ws] <« w,]. These are realistic approximations,
which can be checked after the first-order calculation has been performed. They allow us
to simplify the LHS (left-hand side) of Eq. 2.21 as follows:

Fo + 2dp Tn + w2 T = 2ws[Tn + (dr = jws)Tr] (2.27)

From Egs. 2.21, 2.26 and 2.27, we get

()

Jjaeq
Edrnv,

o+ (dr — jws)Tn = Tn 1 - e~ iUwotDuTo1pir (4T, ) (2.28)
Lo ]

u=-
Using Fourier identities and Eq. 2.16, the equation above can be transformed to:

Tat+(dr—jws)Th = -—‘r,,—afio— i h)NwoZ"(pr,,)
Eodmy, £=

~[(eN + Dw, + QZV[(pN + w, + Q) (2.29)
= T+ (dr—jws)Ta = NTn (2.30)

3The terms “mode {" and “EFEM [" will henceforth be used interchangeably, where the meaning is clear
from the context. A more clear distinction will be made while discussing the eigenmodes of unevenly filled
rings.
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If we treat the RHS of this equation as a first order perturbation by assuming that Q =~ w,,
then the coherent eigenvalue shift A; of mode [ is

A= __aefrﬂo [Z"d!(lwo + Us) - lee[f(o)]; (2’31)
2E,v,
o0
ZVerf(y) = ;1_ Y (pNw, + w)Z (pNw, + w) (2.32)
rfp:-&

We see that )\; is proportional to the product of I, and the effective impedance 2Zl¢/f. This
makes sense, since the coherent eigenvalue shift produced by wake fields must be propor-
tional to the wake voltage induced by the beam. Although Z¢// has the dimensions of
an impedance, it is actually an aliased and scaled version of wZ!l(w). Proportionality to w
reflects the fact that the bunch dynamics are coupled through the derivative of the longitu-
dinal wake voltage, rather than its actual value (this is not true for transverse coupled-bunch
instabilities).

Although the actual eigenvalue of mode [ is given by
At = (—dr + jws) + A1, (2.33)

the coherent eigenvalue shift A; will often be referred to as the “eigenvalue” of mode !, for
convenience, and because A contains all of the variation between eigenvalues of different
modes.

Since the eigenvectors evolve as eM!, the growth rate of mode ! is Re(A;) = Re()\;) - dy.
If the product of I, and the real part of the effective impedance at one of the modal
frequencies (lw, + w;) is large enough, the growth rate is positive, and bunch oscillations
will grow exponentially until they are limited by nonlinearities or beam loss. The threshold
value of the beam current I, is defined as the value at which the largest net growth rate
Re(A;) equals 0. Since instabilities degrade accelerator performance quite significantly, most
machines operate below their instability thresholds. The coherent frequency shift of mode {
is Q( —Ws = Im(Ag).

We see from Eq. 2.32 that Re(Z!*//) is an odd function of w and Im(Zll¢/f) is an
even function. Thus, if w, is much smaller than the widths of the peaks in the impedance
spectrum, then the EFEM eigenvalues come in pairs {\;, A\y—;}, where

AN = —z\; (2.34)
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The existence of a highly stabilised counterpart to every unstable mode will be exploited in
Ch. 7.

The exact contribution of an individual impedance resonance of the form of Eq. 2.12
depends on the location of w, with respect to the modal frequencies. However, it is possible
to draw some general conclusions from Eqs. 2.12 and 2.31. If an impedance resonance has
@ > 1, then we can use the approximation

wR, we Ry
- =+ - , 2.35
T+ 7QU e —wnfl ~ =1 7Qlwfr = wrfe] (239)
since the impedance is negligible far from w = +w,. Hence,
Y wrlo Ry (2.36)

x :tl + jQlw/wr — wr/w]

This equation indicates that the real and imaginary parts of A due to a high-Q resonator
behave like the real and imaginary parts of a second order band pass transfer function (see
Fig. 2.3). It is well known that the real and imaginary parts of a second order band pass
impedance trace out a circle in the complex plane. This implies that the possible values of
A due to a fixed high-Q resonator must also lie on circles, as illustrated in Fig. 2.4. This
is a very useful property of resonator eigenvalues, since it allows us to estimate the peak
resonator impedance R, from measurements of \. We can see from the figure that the
largest growth that an impedance resonance can produce is twice the largest tune shift.

Transverse coupled-bunch instabilities behave in a very similar way. The transverse
analog of Eq. 2.31 is [3]

Bfolo  ,icff :
M= sige 2w+ gk (2.37)
zt (W) = f: Z+(pNw, +w), (2.38)
p=—o0

where wy is the betatron (horizontal or vertical) oscillation frequency, and S is the beta
function. Note: wpg is typically greater than 1. As opposed to the longitudinal effective
impedance, the transverse effective impedance is simply an aliased version of Z L(w). The
resistance of vacuum chamber walls is one of the important sources of transverse coupled-
bunch instability [2].
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Figure 2.4: The locus of possible values of A, due to a fixed high-Q resonator.

2.4 Existing Cures

Coupled-bunch instabilities are conventionally cured using: a) Minimization of impedance
seen by the beam [23, 24]. b) Landau damping (25, 26]. c) Active feedback {27, 28, 29, 30].
For overviews of cures for instabilities, see [31, 32, 33, 34].

Miscellaneous cures that do not fall in any of the above categories include raising the
beam energy (to increase radiation damping), and changing the scaling from Z to A by
changing the oscillation frequency.

2.4.1 Impedance Minimization

Accelerators are generally designed within an impedance budget, which sets an upper limit
on the total impedance of the vacuum chamber. This sets an upper limit on the growth
rates of the various beam instabilities. Landau damping and/or feedback must take care of
the instabilities that remain after impedance minimization.

Techniques for reducing the beam impedance are too varied to discuss in detail here. The
impedance of the metallic pipe surrounding the beam can be reduced by using a material
such as copper, which has low resistivity, and by optimising the geometry of tube [35].
Discontinuities in the beam pipe, such as beam position monitors (BPMs), bellows, ion
pumps, etc., are minimised, and designed to reduce unwanted contributions to the beam
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impedance. RF cavities are among the main sources of coupled-bunch instabilities. Cavity
HOMs can be damped by means of damping ports {36, 37], which reduce the Q of the
modes by coupling high-frequency power out of the cavities and into resistive loads. Since
the beam only sees the impedance at sidebands of revolution harmonics, one commonly
used approach is to tune the worst cavity resonances so that they land in the gap between
consecutive sidebands {38, 39]. Tuning is accomplished by adjusting the depth of plungers
that intrude into the cavities, or by changing the temperatures of the cavities (thermal
expansion changes the mode frequencies). It is also sometimes useful to build cavities
with a systematic variation in geometry, so that the resonances of different cavities land at
slightly different frequencies [40].

2.4.2 Landau Damping

Landau damping is the damping of coherent oscillations by means of a spread in the resonant
frequencies of individual oscillators. The eigenvalue equations in the previous section are
derived under the assumption that the individual oscillators all have the same nominal tune.
If there is a spread in their tunes, it is clear that the instability growth rate will be smaller,
since they will not couple to each other as strongly.

The term “Landau damping” is most often used to describe damping of bunch motion by
means of a spread in the tunes of charged particles within a bunch (intrabunch tune spread).
Although damping from bunch-to-bunch (interbunch) tune spreads is often referred to by
the same name, opinion is divided on whether or not it qualifies as “Landau damping.” For
the purposes of this dissertation, however, the distinction is merely a semantic one, since
the two cases are described by the same mathematical equation.

Let us assume that N electrons/macrobunches are coupled to each other by a single
dominant impedance resonance, which gives their coherent motion an eigenvalue shift of A,
when the electron/bunch tunes are all identical. If the natural oscillation frequency w; (or
wg) of each electron/bunch k is now shifted by an amount 4, then the new Landau-damped
eigenvalue (shift) AL is given by the dispersion relation [26]

hY

1_, 1 bmax_p(3)
3=~ /6 55 46 (2.39)

min

where (.) denotes the mean over all values of k. The integral version of this equation is
based on the approximation that the dxs are closer to their neighbours than they are to AL,
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in which case we can replace the discrete averaging over k by an average over a fictitious
continuous distribution p(4). There are many ways of deriving Eq. 2.39. One of them will
be shown in Ch. 6.

Intrabunch tune spreads are generated by deliberately distorting the potential wells
occupied by the bunches [41, 42]. Interbunch tune spreads can be created by RF quadrupoles
in the transverse case [43] and RF drive modulation in the longitudinal case [44]. For
example, if the cavity voltage V;,(t) were amplitude modulated at f,, different bunches
would see different slopes V; 7(0), and d; would complete one sinusoidal cycle from & = 0 to
k=N-1.

2.4.3 Active Feedback

In most modern accelerators, active feedback is necessary for controlling coupled-bunch
instabilities induced by resistive beam pipe walls and parasitic trapped modes. The general
strategy of feedback is to sense the parameter of the system that must be controlled, perform
some operation on the sensed signal to produce a correction signal, and then apply the
correction signal back to the system through an actuator. For example, a longitudinal
feedback system might sense the longitudinal arrival time error 7 of a bunch by mixing
(multiplying) the beam position monitor (BPM) signal with a reference sinusoid that is
locked to the RF frequency. The low-pass-filtered output would go through an analog or
digital processing block that estimates 7 (i.e. ¢). This feedback signal would then be
amplified and fed to a longitudinal kicker, which would deliver the prescribed energy kick
to each bunch. See [45] for an overview of pickup electrodes and kickers.

Feedback systems for curing coupled-bunch instabilities can be divided into frequency-
domain (mode-by-mode) and time-domain (bunch-by-bunch) systems.

Mode-by-mode systems (27, 46] are sometimes used when the offending impedance res-
onances are narrowband, and small in number. The feedback front end has a narrowband
filter at the frequency of each unstable mode. Similarly, the processing block treats each
mode independently, while applying the required phase shift and gain. Thus, there are
as many parallel chaunels as there are modes to be damped. Clearly, the mode-by-mode
approach is cumbersome in machines with large broadband impedance resonances, or many
narrowband resonances.

Bunch-by-bunch systems resolve the individual bunch signals in the front end, and act
on each bunch individually. In other words, the feedback signal for a bunch depends only
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on it's own error signal. A full-bandwidth time-domain system would have to cover at least
N/2 revolution harmonics in its passband. It can be shown that a full-bandwidth time-
domain system with identical damping on all bunches is equivalent to a frequency-domain
system with identical damping on all modes [28].

The action of longitudinal bunch-by-bunch feedback can be explained with the help of
the following extension of Eq. 2.17:

ae

f _ypyw
EOTO[V,,"(t) Ve (e)], (2.40)

Fu 4 2 Fo + it =
where V;/%(t) is the feedback kick given to bunch n.

The problem of coupled-bunch instabilities would be completely solved if we could only
make V;f%(t) equal V;?%(¢). Of course, things are never that simple. Firstly, there is the
problem of detecting V*. The wake voltage is composed of contributions from all parts of
the storage ring, and it is clearly not feasible to put detectors everywhere, even if we take
for granted the ability to reconstruct wake fields from electrode signals. It is often the case,
though, that most of the troublesome wakes originate from a few well-known locations in
the ring, such as the RF cavities. A few strategically placed detectors could then be used to
sense the wake fields in the cavities. We are then faced with the problem of reconstructing
V,wk(t) fast enough to cancel it out, over a broad range of frequencies. Cable delays and the
speed of the electronics are limiting factors in this case. There is also the practical problem
of adding special couplers for delivering feedback signals to all the troublesome elements of
the vacuum chamber. In addition, we need feedback amplifiers with sufficient power, that
span the range of frequencies over which the impedance is significantly large.

Clearly, the approach of canceling V,*¥(t) out at the source is fraught with problems.
There is, however, one important band-limited implementation of this approach that is of-
ten used, namely, RF feedback [47, 48, 21]. With this exception, instabilities are usually
controlled by detecting the relevant beam oscillation signal, and applying a suitable correc-
tion through a kicker, as described at the beginning of this subsection. Such beam-based
feedback systems are limited by their group delay, bandwidth, detection noise, and ampli-
fier power. Broadband amplifiers are among the most expensive components of modern
feedback systems.
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If the magnitude of the feedback gain at the frequency w; is G/%, then

1b
Vit = —jGl 7, = _¢

Fa (2.41)

]

From Egs. 2.40 and 2.41, the feedback-induced damping rate is given by

d 1b ae G!b

= 2B, T, w, (2.42)

Note: The growth and damping rates from impedances, feedback, and radiation damping
are all assumed to be first order perturbations that add up linearly. Thus, a beam with no
Landau damping is stable only if the sum of radiation damping and feedback damping is
larger than the impedance-induced growth rate, i.e., if the net growth rate

Re(A) = Re(\) —d, -d/* <0 (2.43)

We know that A is proportional to [,. If there is no normalisation in the front end, and
time-domain feedback is used, d/® must be proportional to the bunch current i, = I,/N.
If frequency-domain feedback is used, dy, o« I,. Neglecting radiation damping for the
moment, we can therefore say that the beam must be stable at all currents, if it is stable at
any one current. In other words, damping coupled-bunch instabilities is simply a matter of
increasing the feedback gain G/? until the net growth rate becomes negative. This seems
simple enough to do. However, the maximum power output of the back end amplifiers
places a limit on G/°.

Rule of thumb: The feedback system is at it’s maximum achievable gain when sensor
noise (detection noise) in the front end causes saturation in the back end.

Once feedback is saturated, G/® is approximately inversely proportional to the beam
oscillation amplitude. Thus, for a given no-feedback growth rate Re()), the maximum
achievable kicker voltage determines the maximum oscillation amplitude at which Eq. 2.43
is still satisfied. The power amplifier is therefore selected so that the feedback actuator is
strong enough to damp the largest expected growth rate, even when the beam oscillates at
the worst-case amplitude expected from noise excitation and injection errors [49].

If the feedback system has a gain that scales with the bunch current, it is equivalent
to an additional beam impedance [50]. From Eqs. 2.31 and 2.42, the effective damping
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impedance of the feedback system is

g = G-

= 2.44
Lo (2.44)

This dissertation is mostly concerned with the longitudinal and transverse feedback
systems at the ALS and PEP-II. These are time-domain systems. The ALS transverse
system [51] calculates a weighted sum of the signals from two different BPMs and delays
the correction signal by the appropriate amount by means of a long cable. The PEP-II
transverse system [52] is slightly different, in that it has a digital delay.

2.5 Digital Bunch-by-Bunch Longitudinal Feedback System

The PEP-II/ALS/DA®NE longitudinal feedback (LFB) system [53, 54, 55] is the main
source of data presented in the following chapters. This digital, programmable, time domain
system has been installed at the ALS, PEP-II, DA®NE (56, 57], BESSY-II [58, 59|, and the
PLS [60, 61]. A block diagram of the main components of the system is shown in Fig. 2.5.

Programmability is a necessary feature of the DSP-based system, since beam parameters
can and do change with time. The LFB system has great utility as a diagnostic tool,
since it has the capacity to record the digitised oscillation coordinate of each bunch in the
ring, while simultaneously manipulating feedback parameters. The LFB user interface and
control software are described in [62].

2.5.1 General Approach, Downsampling

The LFB system has been designed for machines with up to a few thousand bunches,
circulating at revolution frequencies in the MHz or hundreds of kHz range. Conceptually,
a bunch-by-bunch system is equivalent to a system with N parallel channels for the N
bunches. For this reason, the correction signal is calculated in parallel by an array of digital
signal processors (DSPs). This makes the system scalable. The sequence of bunch oscillation
coordinates emanating from the front end is demultiplexed, and sent to the designated DSPs
in small packets. The correction signals calculated by the DSPs are written to addresses in
a hold buffer, which contains the latest correction values, in the order of the bunch numbers.

Scalability is limited by bottlenecks in the motion of data to and from the DSPs. The
data-handling problem is solved by downsampling the bunch signals. Since a synchrotron
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Figure 2.5: Block diagram of longitudinal bunch-by-bunch feedback system.

oscillation cycle usually takes tens or bundreds of revolutions, it is not necessary to compute
a correction signal on every turn. Instead, the system looks at the oscillation coordinate of
a bunch and updates its correction signal in the hold buffer only once every D turns, where
D is a programmable downsampling factor. Downsampling reduces data flow in and out of
the DSP farm, and also reduces the number of DSPs required to implement the feedback
algorithm. Note: The hold buffer is read continuously, so that bunches receive correction
kicks on every turn. :

2.5.2 Front End

The front end detects the sequence of arrival time errors 7,,, and digitises it at the bunch
crossing rate. [t must be broadband, to accept the entire range of modal frequencies.
Equivalently, there must be minimal cross talk between the signals of adjacent bunches
(63].

It is convenient to view the longitudinal oscillation coordinate as a phase error, where



CHAPTER 2. BASIC CONCEPTS, FEEDBACK 27

the phase of a bunch is defined by
p=wey T (2.45)

The front end is thus a phase detector.

As shown in Fig. 2.5, the sum signal from four button-type BPM electrodes is passed
through a comb generator. The comb generator converts the impulsive input from each
bunch traversal into a tone burst of a few cycles at H f,;, where H is the harmonic of the
RF frequency at which the phase is detected. The comb generator functions as a band
pass filter centered at H f.;. Interbunch cross talk is minimised by keeping the tone burst
shorter than the bunch spacing. The comb filter output is mixed with a signal at H frr
from a master oscillator that is locked to the ring RF clock. The mixer output contains the
baseband detected phase signal, together with a mixing product at 2H f, s, which is removed
by a low pass filter. The ouput of the low pass filter is digitised by an 8-bit analog-to-digital
convertor (ADC).

Let us assume that the master oscillator signal is proportional to cos{H (wrst + ¢m.o.)],
and the comb generator output is proportional to i, sin[H (wr st + ¢p)], where i} is the bunch
current, and ¢, is the bunch phase error. The low-pass-filtered mixer output can then be

described by
s(t) o 2 sin[H(¢dy — dm.o.)] (2.46)

$m.o. is adjusted by means of a phase shifter, so that it approximately equals the average

equilibrium bunch phase. Thus, for small oscillations about equilibrium,

s(t) o« iy (dp — Pm.o.) (2.47)
This proportionality holds as long as
H(db — $m.o.) K /2 (2.48)

These equations form the basis of techniques described in Ch. 3 for measuring bunch currents
and synchronous phase (equilibrium phase) transients.
2.5.3 Filter Algorithm

The DSPs implement a bunch-by-bunch discrete-time feedback algorithm. For the results
discussed in this dissertation, they were programmed to act as finite impulse response (FIR)
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filters (64, 65]:
N-1
uwi(n) = Y_ h(k)gi(n — k), (2.49)
k=0
This equation represents a discrete-time convolution in which the correction signal u; of the
i-th bunch at turn n is computed using a weighted average of the last N measurements*,
#i(n—N+1),-- -, ¢i(n), of the phase of bunch ¢. The bunch-by-bunch nature of this algorithm
is evident from the fact that u; is calculated from ¢; alone, without considering the phases
of other bunches. The filter coefficients, h(0),---,h(N —1), are selected to provide zero
DC response® and maximum gain G, at f,. Their phase shift is adjusted for net negative
feedback at f,.
More sophisticated infinite impulse response feedback filters are being tested, that op-
timise feedback performance under constraints that cannot be met by FIR filters [66, 67].

2.5.4 Back End

The back end consists of the portion of the feedback system downstream of the digital-
to-analog converter (DAC). It takes the baseband correction signal from the hold buffer,
modulates it, and passes it to the kicker through a broadband power amplifier (see Fig. 2.5).
The DAC runs at the bunch crossing frequency f,, with a resolution of 8 bits. The DAC
output must be impressed on the beam with a bandwidth of at least f,/2, if each bunch is to
receive an independent kick. High-power baseband (0 to f,/2) amplifiers with the required
bandwidth (hundreds of MHz) are hard to come by. It is also not easy to design a baseband
kicker with high shunt impedance and a flat response over the required frequency range.
For these reasons, the DSP output is made to amplitude modulate a quadrature phase shift
keyed (QPSK) carrier, before it is amplified and fed to the kicker. The carrier signal is a
sinusoid at n + 1/4 times the RF frequency. It is locked to the beam timing signal, so as
to maintain synchronisation between the peaks of the correction signal and the arrival of
bunches in the kicker. See [68] for a discussion of the merits of QPSK modulation in this
context. Kicker structures used with this feedback system are discussed in [69, 70}.

*Equation 2.49 seems to indicate that the calculation of the correction signal in the DSPs is instantaneous,
since u;(n) depends on ¢;(n). In reality, the calculation of u; takes roughly 1/n, samples, where n, is the
number of bunches handled by each DSP.

5The DC response of the filters contributes nothing to beam stability. It should be minimised, to avoid
saturation of the correction signal.



Chapter 3

Bunch Currents and Synchronous
Phases

Electron bunches in circular accelerators lose energy to synchrotron radiation and exchange
energy with wake fields on each turn. The average energy change of each bunch over a
turn is exactly compensated by the average kick it receives from the RF cavity holding
voltage. The synchronous phase of a bunch is the phase of the RF voltage at which the
energy kick equals this average. This is the equilibrium phase about which bunches oscillate
longitudinally.

If we increase the charge in a single bunch, its synchronous phase will ride up the RF
voltage waveform to keep up with the increasing loss of energy to wake fields. If we know
the slope of the RF voltage, we can easily calculate the energy lost to wake fields per unit
current from the synchronous phase increase. This gives us a measure of the integrated beam
impedance, as we shall see in the next section. In itself, the integral reveals nothing about
the shape of the impedance. However, some information about the frequency spectrum of
the impedance can be gleaned from repeating this measurement at various bunch lengths.

If there are many bunches in the ring, with varying charge or spacing, then each bunch
could see a different steady state wake voltage. Thus, the synchronous phase varies from
bunch to bunch, if the fill is not azimuthally symmetric.

This chapter describes a new method for measuring the longitudinal impedance spec-
trum Z(jw) using synchronous phase data from multi-bunch fills. Derivation of the neces-
sary transfer functions is followed by experimental results from PEP-II HER (High Energy
Ring) commissioning. The measurements suggest an explanation for the observation of

29
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coupled-bunch instabilities at beam currents of the order of 100 mA (Sep., Oct. 1997).
Multi-bunch synchronous phases are extracted from data taken using the HER longitudinal
feedback system, which can digitally sample and record the phase of all bunches in the ring
simultaneously [54, 55).

Synchronous phase transients need to be matched in the PEP-II HER and LER (Low
Energy Ring), to achieve high luminosity. Matching of gap transients is complicated by
incomplete knowledge of the impedance seen by the beam, or by distortions in the fill shape
(beam current profile). Measurement and analysis of multi-bunch synchronous phases is
therefore useful as a diagnostic tool during commisioning and normal operation of colliders.
Such measurements are also very useful as a feedback diagnostic, since bunches with large

synchronous phase offsets receive less than the nominal feedback gain.

3.1 Single-Bunch Synchronous Phase

As mentioned earlier, an electron bunch adjusts its synchronous phase ¢, so that the average
kick it receives from the RF voltage cancels the average energy loss over a turn due to wake
fields (V™) and synchrotron radiation (Uo). This gives the following equation:

Vesin(¢s) = Uo + V¥,

where V. is the peak RF cavity voltage. The synchronous phase ¢? in the absence of wake
fields is given by:
¢3 =sin™!(Uo/V)

If ¢2 is not very different from ¢, i.e., if V** is small compared to V., we can write:

0. yuk
A A=)
—ywk
=% Vel .

since the PEP-II beams are above transition. For a single bunch of charge ¢, we have the
following relations:

[« <
Ve = ¢) W(T,)
k=0
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= q /_ ooW(t)kz-: :(t —kT,) dt

= q/T, /_ :W(t) ie-f"%‘ dt

N=~-00

io 3 Z(jnu), (3.2)

n=-o00

= uk

where the longitudinal impedance Z(jw) is the Fourier transform of the longitudinal wake-
function W (t), T, is the revolution period, and i, is the bunch current. On combining
Eqgs. 3.1 and 3.2, we get:
) -1 =

Bfio = Vo cos(g8)] nzz_wZ(ano)a (3.3)
The above equations contain the assumption that the bunch is vanishingly small in length.
To take the finiteness of the bunch length into account we must replace Z(jw) in Eq. 3.3
with |F(jw)|?Z(jw), where F(jw) is the Fourier transform of the normalised bunch line
density.

It is thus evident that measurement of single-bunch synchronous phase versus bunch
current yields an integral over the longitudinal impedance. Such a measuement yields no
information on the shape of Z(jw). Although we can improve the situation a little by
repeating the experiment with varying bunch lengths (and therefore varying F(jw)), this
method still falls short of directly quantifying resonances in the impedance.

The next section discusses the relationship between multi-bunch synchronous phases
and the shape of the fill, which is used in this note to directly measure the longitudinal
impedance spectrum Z(jw) in the HER.

3.2 Multi-bunch Synchronous Phase
If a beam is filled with N bunches at an even spacing T;, we can rewrite Eq. 3.1 as:

_V,:uk

= Vecos(@2)]

k=0,1,..N-1 (3.4)
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The steady state wake voltage V“¥ seen by bunch k is the superposition of the wakes left
by all preceding bunches: -
VP =Y qe-mW(mT), (3:5)
m=0

where gx_r, is the charge of the m-th bunch preceding bunch k. It should be noted here
that the variation in ¢y from bunch to bunch results in a small amount of unevenness in the
bunch spacing. This unevenness is neglected in computing the RHS of the above equation,
so as to keep it linear. If frma. is the largest frequency of interest in |F(jw)|>Z(jw), then
the approximation is valid as long as fpaz@c/fry < 7/2 for all k, where fry is the RF
frequency (476 MHz at PEP-II).

Since the above equation is a discrete convolution, it is useful to rewrite it in terms of
Fourier transforms. The DFT (Discrete Fourier Transform) of V;** is defined as:

N-1
Vo =Y Viukeitrkn/N, n=0,1,..N-1  (3.6)
k=0
Using Eq. 3.5, this can be rewritten as:

oo N-1
Va = Z W (mT;) E Qk-me—12"lm/N
k=0

m=0

00 N-1
Z W(mn)e-ﬁmnn/lv Z qk_me-jZW(k-m)n/N
m=-o k=0

=>Vy, = ann =ToWhql,, (3-7)

where Q,, and I,, are the DFTs of g and i; respectively, and W, is the DTFT (Discrete-
Time Fourier Transform) of W (kT,). This can be rewritten as a transfer function from i to
¢ using Eq. 3.4:

. T w

In  [Vecos(¢2)] ™
where @, is the DFT of ¢x. Now all that remains is to express W, in terms of the
longitudinal impedance Z(jw). The derivation shown in the previous section can be repeated
to produce the following result:

(3.8)

W

Ty 3 Z[mN +

m=-0oo

= Wn = Zn/T‘bs
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where Z, is the longitudinal impedance aliased at a sampling rate of 1/7,. From this
equation and Eq. 3.8, we get:

@ __-N . _ _-N
L.~ |Vecos(#9)| ™™ — [Vecos(¢2)|

f: Z[j(mN + n)w,] (3.9)
m=-—00
This is the multi-bunch analog of Eq. 3.3. The two equations are equivalent in the single-
bunch case (N = 1). Again, we need to replace Z(jw) with |F(jw)|?Z(jw), if we want to
take the finiteness of the bunch length into account. Of course, this need not be done if the
bunch length is much smaller than the wavelength of the relevant resonances in Z(jw).

If we know ¢i and ¢ for all k, we can calculate the aliased longitudinal impedance Z,
using the above formula. As we increase N, the loss of information due to aliasing decreases.
The best we can do is to fill every bucket, in which case N equals the harmonic number h.
In practice, measurement noise prevents us from accurately calculating the entire aliased
longitudinal impedance spectrum from just one multi-bunch measurement with N = h.
However, as we shall see in the next section, it is possible to measure really large impedance

resonances at revolution harmonics that are excited by the shape of the multi-bunch fill.

3.3 Experimental results

In this section we present a retrospective analysis of multi-bunch synchronous phases and
bunch currents (fill shapes), using data from measurements made during the PEP-II HER
commissioning run from Sep. to Oct. 1998. The measurements were originally aimed at
identifying unstable coupled-bunch modes and quantifying noise-driven beam motion, and
are therefore not ideally suited to our present purpose of estimating Z,. In particular, our
knowledge of fill shapes during the run comes only from the serendipitous presence of 60-Hz
harmonics in the klystron output, which makes crude current monitoring possible. We will
see, however, that it is still possible to obtain useful information about the longitudinal
impedance from the available data. Bunch current monitoring using the feedback system
was first demonstrated at the ALS [71]. Since then, variants of the method described in this
section have been used at all of the machines that use the PEP-II-ALS-DA®NE feedback
system.

A sample measurement of the PEP-II HER and LER gap transients during collision
(Feb. 1999) is also shown.
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A typical PEP-II data set consists of around 660 samples (one every 6 turns) of the phase
of each bunch in the ring. The fill pattern being examined here consists of 291 bunches,
at an even spacing of 12 RF buckets between bunches. The front end phase measurement
contains a gain that is proportional to bunch current. Multi-bunch synchronous phases
" are therefore calculated by averaging the digitised signals for each bunch and dividing the
averages by the corresponding bunch currents.

Line harmonics from the klystron impose the same low-frequency motion on all the
bunches. During the commissioning run from Sep. to Oct. 1998, 360-Hz and 720-Hz lines
from the klystron were large enough to be detected in the bunch data. These spectral lines
afford a crude current monitor, since the bunch signals are proportional to charge times
longitudinal phase'. Bunch currents are estimated by projecting individual bunch signals
onto a line harmonic spectrum calculated by averaging over all the bunch signals.

3.3.1 Time Domain
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Figure 3.1: Averaged bunch signal spectrum up to 2 kHz, for a 291-bunch fill with a total
current of 122 mA. Two circles mark the 720-Hz line, onto which bunch signals are projected
for current monitoring.

Figure 3.1 shows the averaged low-frequency bunch signal spectrum for a 291-bunch 122-mA
fill. In this case we calculate bunch currents by projecting individual bunch signals onto
the 720-Hz line in the averaged spectrum, and then scaling the result so that the calculated

!Actually, the signal of bunch k is proportional to ix sin[H (¢« + ¢ ~ ¢m.o.)], where H is the harmonic
of the RF frequency at which phase detection is performed, and ¢ ,. is the phase of the master oscillator
phase reference (see Eq. 2.46). However, the assumption is reasonable, since i sin[H (di + 62 — dm.o.)] =
ki coS[H (43 — @m.o0.)], when Heyp € 7/2.
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total beam current agrees with that measured by the DCCT (DC Current Transformer).
The bunch currents i, so obtained are shown in Figure 3.2(a). There is a step discontinuity
in the fill at the 175th filled bucket (k = 175). Figure 3.2(b) shows the averaged bunch
signals in units of ADC (Analog to Digital Converter) counts. The synchronous phase graph,
calculated by dividing the average signal by the bunch currents (and by a calibration factor),
is shown in Figure 3.2(c). The step in the fill can be seen to cause the synchronous phase

to ring a few times and then drift back to its initial value. This is evidence of a resonance
in the impedance Z(jw).
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Figure 3.2: (a) Bunch current measurement, 291-bunch fill, 122 mA total current. Note
the step discontinuity at the 175th filled bucket. (b) Raw mean bunch phase, ADC counts.
(c) Synchronous phase variation around the ring. The discontinuity in the fill causes ¢, to
oscillate with a peak-to-peak amplitude of 3° at the RF frequency.

In the time domain we would like to observe the response of the synchronous phase to
impulses in the fill shape. Figure 3.3(a) shows a 96-mA 291-bucket fill with a discontinuity
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that is impulsive at low frequencies. The resultant synchronous phase ringing is shown
in Figure 3.3(c). We can see from the figure that the “impulse response” goes through
about three oscillations and dies out in one revolution period. This indicates that Z(jw)
has a strong resonance three revolution harmonics away from some multiple of the bunch
frequency, which is a twelfth of the RF frequency in this case.
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Figure 3.3: (a) Bunch current measurement, 291-bunch fill, 96 mA total current. The
discontinuity in the fill looks like an impulse at low frequencies. (b) Raw mean bunch
phase, ADC units (c) Synchronous phase variation around the ring. The “impulse response”
contains about three oscillations in one revolution period.

3.3.2 Transfer Function

We are now ready to take the DFTs of iy and ¢ and calculate the transfer function from i;
to ¢r.. Asshown in Eq. 3.9, the scaled transfer function is the aliased longitudinal impedance
Z,. Of course, we should only calculate Z, at revolution harmonics n that have a reasonably
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good signal to noise ratio (SNR). By looking at the shape of the fill in Figure 3.2(a) and
Figure 3.3(a), we can tell that I, is relatively large at the first few revolution harmonics
and small elsewhere. If we calculate Z, wherever I,, is above the noise floor, we should
therefore expect to have a reasonable estimate for small values of n.

It must be pointed out here that the DC synchronous phase is not known, since it is
canceled in the feedback front end by a DC offset designed to prevent the phase signal
from saturating the digitiser. This precludes the calculation of Z, from the data presently
available. Z, can be measured by keeping the offset fixed at a nominal value and varying
the total beam current.

Transfer functions have been calculated from 15 different sets of data. The resulting
impedance estimates are consistent to within 20% of each other. Repeatability of the
impedance measurements will be improved by more accurate bunch current monitoring.
Figure 3.4 shows the estimate of Z, obtained by averaging transfer functions from four
consecutive data sets with similar fill shapes. The aliased impedance is calculated only for
the first four values of n, since the excitation is close to the noise floor everywhere else. As
expected, there is a strong resonance in Z, at n = 3, with Z; = 8.6 M.
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Figure 3.4: Estimate of Z, obtained by averaging transfer functions from four consecutive
data sets. The impedance is in the MQ range due to the fundamental resonance of the
parked cavities. The cavity resonant frequencies seem to be closer to 3f, than 2f,.

The HER has 20 installed RF cavities, each with a loaded shunt impedance of 761kQ2.
The experiment was performed with eight active cavities, tuned about 5 kHz away from the
RF frequency. This detuning is small compared to the revolution frequency, which is 136.3
kHz. Six idle cavities were nominally parked exactly halfway between the second and third
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revolution harmonics above f;, while the other six occupied a symmetric location below
fry- If, however, they were all parked exactly three revolution ha.rmoxiics away from f,r,
their impedances would add up to 9.2MQ at n = 3. The asymmetry between Z, and Z3
in Figure 3.4, together with the fact that Z; = 8.6M(), indicates that the 12 idle cavities
were indeed parked closer to the third revolution harmonic than the second.

3.3.3 Coupled-Bunch Instability

Ideally, idle cavities should be parked symmetrically around fs so that they do not drive
coupled-bunch instabilities. The impedance estimates shown in Figure 3.4 suggest that they
might not have been parked accurately. This conclusion is also borne out by the fact that
coupled-bunch modes 2 and 3 were sometimes seen to be unstable. Figure 3.5 shows the
beam pseudospectrum [72] (beam spectrum without revolution harmonics, calculated from
digitised data) for a 291-bunch 84-mA fill, taken a few days before the data displayed in the
previous figures. The pseudospectrum shows that mode 3 is unstable, with a steady state
amplitude above 2° at the RF frequency.

The conclusion that incorrect parking of the idle cavities was responsible for the mode

J instability has been borne out by subsequent measurements [73].
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Figure 3.5: Beam pseudospectrum for a 291-bunch 84-mA fill, taken a few days before the
data displayed in previous figures. The pseudospectrum shows that mode 3 is unstable,
with a steady state amplitude of 2° at the RF frequency.
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Figure 3.6: Synchronous phase transients in the PEP-II HER and LER, measured during
collision (10% gap).

3.3.4 Matching of PEP-II Gap transients

At the design current, the PEP-II gap transients are of the order of 10-20 RF degrees.
Although this makes the problem of feedback harder to solve, it does not impact the lumi-
nosity, as long as the HER and LER transients are the same. Transient matching between
the two rings is a non-trivial task, requiring diagnostic measurements of the actual bunch
currents and synchronous phases.

Figure 3.6 shows a measurement of HER and LER synchronous phase transients during
commissioning, with the HER at 319 mA and the LER at 638 mA. Every fourth RF bucket
is populated in this case. The flat portions at the ends of the two traces coincide with the
10% gap at the end of each bunch train. Since the feedback system receives no beam signal
in the gap interval, these flat segments merely reflect the offsets in the processing.

We see that the gap transients in the two rings are mismatched by up to 2 deg@RF,
possibly due to irregularities in the fill shape?. Although mismatches of this magnitude

#The DC component of the synchronous phase transient is canceled out in the LFB front end. Hence,
DC phase mismatches between the two rings are not detected in this measurement.
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have no noticeable effect on the PEP-II luminosity [74], it must be kept in mind that this
measurement was made at a third of the design current, and that larger mismatches are
possible at higher currents.

3.4 Summary

A novel beam-based technique for measuring the longitudinal impedance spectrum Z(jw)
has been demonstrated at PEP-II. The technique involves calculation of the transfer function
from fill shape to multi-bunch synchronous phase. Bunch currents and synchronous phases
have been extracted from a retrospective analysis of data taken using the longitudinal
feedback system during PEP-II HER commissioning.

The presence of line harmonics in the klystron output has been used to extract bunch
currents from feedback system data. Impulsive discontinuities in the fill were seen to cause
the synchronous phase to ring at thrice the revolution frequency. The corresponding transfer
function agrees well with the impedance of the parked cavities, if we assume that they were
tuned closer to f,; + 3f, than to fr; +2f,.

Our ability to measure the longitudinal impedance in these retrospective data sets has
been limited mainly by noise in the bunch current measurements. Cleaner current monitor-
ing by injecting low-frequency signals into the feedback front end has been implemented,
and would improve the situation significantly. Of course, this method is not suitable for
measuring small impedances, which produce synchronous phase transients that are much
smaller than a 1 deg@RF.

Specific regions of the impedance spectrum can be explored by adjusting the fill shape to
excite the targeted revolution harmonics. For example, we could investigate the impedance
around 100f, with a 582-bucket fill by creating a periodicity of approximately 5.82 buckets
in the fill. We could get a good measurement by injecting a little extra charge into every
sixth bucket (i.e. every 18th bucket at 238 MHz).

In colliders, measurements of multi-bunch synchronous phases are also useful in esti-
mating the loss in luminosity due to shifts in the collision point.



Chapter 4

Measuring Instability Growth and
Damping Rates

When a beam exhibits unstable coupled-bunch motion, one needs to perform diagnostic
measurements to identify the source of the problem, before deciding upon a cure. The goal
of instability diagnostics is to identify the modal pattern of the instability, the growth rate,
the coherent tune shift, the extent of nonlinearities, and the correlations of all of these
observables with conditions such as cavity temperatures, cavity tuner positions, vacuum
pressure, fill shape (bunch current profile), synchronous phase variation, etc. If a feed-
back system is supposed to damp the instabilities, it is also necessary to perform feedback
diagnostics, to track down potential non-idealities and sources of gain reduction.

Chapter 3 described a method for using LFB data to measure the fill shape, which has
a direct effect un beam stability, and the multi-bunch synchronous phase transient, which
has an effect on stability because it affects feedback gain.

The modal structure of an unstable beam can be qualitatively studied by examining the
beam spectrum once nonlinearities limit mode growth [75, 76]. It is more useful, though,
to quantify instabilities in the linear small-oscillation region, since this directly yields the
impedance of external resonant structures (see Eqs. 2.31 and 2.37). Such measurements
have been made by recording the output of narrowband filters tuned to the frequencies of
the relevant modes while oscillations grow {27]. Unfortunately, a machine with hundreds or
thousands of bunches, and external resonances driving a large number of unstable modes,
would pose practical problems for such an approach. Even in machines with a small number
of unstable modes, this technique has the disadvantage of requiring prior knowledge of the

41
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location of the most unstable mode.

In this chapter, an offline modal decomposition of digitised data is used to study the
coupled longitudinal motion of electron bunches in storage rings. The technique allows
simultaneous measurement of linear-region growth rates and (feedback induced) damping
rates of all unstable beam modes via a time-domain transient technique. Such measurements
have been useful in identifying the ALS cavity temperatures most conducive to longitudinal
stability. The damping rates of naturally stable modes are measured using externally excited
transients. Longitudinal growth and damping rates at the ALS and PEP-II, measured under
a variety of beam conditions, are compared to projections based on the estimated cavity
impedance [77, 78]. A measurement of unstable longitudinal modes at SPEAR is shown, as
well as a sample grow-damp measurement of horizontal instabilities at the ALS.

All of the data displayed in this chapter were digitised using the programmable LFB
system described in Ch. 2. The transverse measurement was made by gating the transverse
feedback signal, and simultaneously recording the transverse front end signal in the LFB
DSPs. See [51] for a description of the ALS transverse feedback system.

Brief recapitulation: The eigenmodes of longitudinal motion of the bunch centers in
the case of an azimuthally symmetric beam with N evenly spaced bunches of equal charge
consist of all bunches oscillating at the same amplitude. The N eigenmodes are characterised
by the angular separation in phase space between successive bunches, which is a constant in
any given mode. At a fixed azimuth in the ring, mode [ produces a beam signal at (I +vs) f,
(upper sideband) and at (N — [ — ;) f, (lower sideband). This pattern is repeated with a
periodicity of N f,, if the bunches are assumed to be point-like.

4.1 ALS Measurements

The ALS is a synchrotron light source, which stores electrons at 1.0-1.9 GeV. It has demon-
strated longitudinal coupled-bunch instabilities since commissioning in 1993 (79].

Table 4.1 lists the relevant parameters of the ALS machine and the ALS LFB system.
The high bandwidth required for simuitaneous tracking of all beam modes is achieved by a
bunch sampling rate of 500 MHz, at the ALS. After downsampling, the feedback signal is
calculated in a digital processing array composed of 40 processors. The processors imple-
ment a bunch-by-bunch discrete-time FIR algorithm at an aggregate multiply-accumulate
rate of 1.6 x 10° operations/s.
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Table 4.1: ALS Parameters

Parameter | Description Value

E, Beam energy 1.5 GeV

frs RF frequency 499.65 MHz
h Harmonic number 328

fo Revolution frequency 1.5233 MHz
@ Momentum compaction factor | 1.594e-3

I, Design current 400 mA

fs Nominal synchrotron frequency | 11.3-12 kHz
d, Radiation damping rate 745!

- Bunch sampling rate 499.65 MHz
D Downsampling factor 21-31

P Feedback output power 200-500 W
- Output amplifier bandwidth 1-2 GHz

Growth and damping rates are extracted from “grow-damp” measurements made by
switching feedback off, allowing unstable modes to grow spontaneously from the noise floor,
and then turning feedback on again to damp them back to the noise floor. This sequence of
events spans only a few tens of milliseconds. Naturally stable modes are studied by exciting
them through the external drive input of the feedback system and observing the resulting
decay transients. The bunch oscillations stay linear throughout.

The results presented in this section are for a 320-bunch beam followed by an eight-
bucket gap. Charge variation within the populated RF buckets is of the order of 15%.
However, we will project the recorded beam motion onto the symmetric-beam eigenmodes,
since they are well known and simple. It will become apparent later in this chapter that
this projection is quite useful, in spite of the unevenness in the fill'.

4.1.1 Signal Processing

A typical ALS data set consists of around 1000 samples (one every D turns, where D is
the downsampling factor) of the phase of each of the 320 bunches. The first step in modal
analysis is to filter the data with a band pass filter centered at the synchrotron frequency,
to improve the signal-to-noise ratio.

Due to the requirements of downsampling, the bunches are not all sampled on the same

'In Ch. 7, it is shown that the set of even-fill eigenmodes forms a natural basis for observing coupled-bunch
instabilities, even when fill unevenness affects the eigenvalues and eigenvectors.
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turn. In addition, even those bunches that are sampled on the same turn are sampled
at different instants, since they don’t all fly past the BPM at the same time. Hence,
the second step is to delay or advance the bunch signals using appropriate phase shifts
in the frequency domain, so that we approximate simultaneous sampling on every D-th
turn. Transverse feedback signals that are downsampled and recorded by the LFB system
need special care at this stage of the processing, since they are usually aliased to a lower
frequency. A further complication arises when aliasing converts an upper betatron sideband
into a lower sideband. The data analysis programs have been designed to compensate for
these effects, when given a rough estimate of the unaliased betatron tune (for details, see
the appendix).

Although real bunch oscillations vary as cos(€2t), it is convenient to represent bunch os-
cillations as phasors of the form e/. This is accomplished by masking negative frequencies
in the discrete Fourier transform (DFT) of the individual bunch signals. Instabilities are
usually studied in this form, with beam spectra that consist only of upper sidebands.

It is evident from Eq. 2.24 that the projection onto symmetric-beam modes is achieved
by taking the DFT of all the bunch phases at a single instant, on a single turn. The empty
buckets are assigned a phase of zero. The strength of the symmetric-beam modes is tracked
by observing the magnitude of the DF'Ts over time.

4.1.2 Longitudinal

Fig. 4.1 illustrates the measurement of growth rates of unstable modes with and without
feedback, using the grow-damp technique. The 238-mA beam is initially stable under the
action of negative feedback. At t = 0 ms, the feedback system is turned off under software
control, and the exponential growth of unstable modes begins. At t = 7 ms the feedback
is turned on again, and the oscillation amplitudes damp back to their initial steady state
level. The bunch motion is recorded in a dual-port memory which is read by an external
processor. The data is then processed offline. After the data is read, the DSP processors
can be triggered again to record another transient.

Fig. 4.1(a) shows the envelopes of the longitudinal oscillations of the 320 bunches. We
see growth of unstable oscillations up to t = 7 ms, followed by damping of the motion.
The envelopes do not contain information about the phase relationship between individual
bunch oscillations. They do not grow or damp exponentially, indicating that the bunches
are oscillating in a superposition of two or more coupled-bunch eigenmodes.
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a) Osc. Envelopes in Time Domain b) Evolution of Modes
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Figure 4.1: ALS grow-damp measurement. a) Bunch oscillation envelopes. b) Modal am-
plitudes. c,d) Exponential fits before break point yield growth rates without feedback. e,f)
Exponential fits after break point yield feedback-induced damping rates.
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The unstable modes of oscillation are revealed by taking turn-by-turn DFTs of the bunch
phases, as described earlier. Fig. 4.1(b) traces the evolution over time of the 328 “modes”
during the grow-damp transient. Although the fill is slightly uneven, we see from this
figure that the projection onto symmetric-beam eigenmodes is successful in dramatically
simplifying the picture. It is apparent that the beam motion is the result of exponential
growth and damping of unstable modes 204 and 233.

The growth rates of the modes were found by curve fitting to be 0.64 ms™! and 0.5 ms™!
respectively [Fig. 4.1(c),(d)]. Exponential fits to the tails of the transients in Fig. 4.1(b)
revealed damping rates of 0.46 ms™! and 0.59 ms™! respectively [Fig. 4.1(e),(f)]. We see
here the action of the feedback system in turning the net growth rate from positive to
negative. The growth rates correspond to effective cavity impedances of 67 k2 and 84 k2
respectively (see Eq. 2.31). We can see that the action of feedback shifts the two open-loop
growth rates down by the same amount (approximately 1.1 ms~!). This is consistent with
the expectation that bunch-by-bunch feedback should damp all symmetric-beam modes
equally. From Eqgs. 2.42 and 2.44, we can now estimate that the feedback system has a gain
of 97 V/ps, or 31 V/mrad, and an effective damping impedance of 130 k.

For the measurement of naturally stable modes, a narrowband excitation at the desired
mode frequency is injected into the feedback system at the external drive input (see Fig. 2.5).
This excitation is impressed on the beam through the power amplifier and kicker, and bunch
motion at the desired frequency is excited (a single longitudinal mode). When the excitation
and feedback are turned off, the excited mode decays at its natural rate. The growth rate
of the mode becomes more negative when feedback is turned on again. The transient is
recorded and processed as before. Fig. 4.2 shows a measurement of mode 161, which is
naturally stable. At J, = 145 mA, the natural growth rate of the mode is -0.07 ms—!, which
is close to what is expected from radiation damping, and the feedback-induced growth rate
is -1.14 ms~*.

In this experiment, the 200-W ALS feedback power amplifier has been used. The pre-
viously described experiment was performed with a borrowed 500-W amplifier. Thus, for
identical DSP gains, the feedback impedance in this case should be lower by a factor of
v/5/2. However, the gain in the DSPs is greater by a factor of 2 in this case. The two
factors combine to give an expected feedback impedance of 130 x 2 x /2/5 = 164 kQ.
However, the growth rate shift in this case implies a damping impedance of 207 kQ (see
Eqgs. 2.42 and 2.44). The slight discrepancy between these two numbers is explained by the



CHAPTER 4. MEASURING INSTABILITY GROWTH AND DAMPING RATES 47

feedback-induced tune shifts in the two cases, as discussed in Ch. 5.

If the above measurement is repeated for several modes (or an excitation is applied
to several modes simultaneously) the gain of the feedback system can be measured as a
function of frequency. This is a useful system check, since it can be used to examine the
combined frequency response of the power amplifier and kicker.

Growth and damping rates of unstable modes were measured at currents ranging from
60 to 250 mA at a variety of cavity temperatures. The growth rates varied by up to a factor
of 3 due to cavity temperature changes alone. Small changes in the beam current over a few
minutes occasionally caused significant changes in growth rates, possibly due to movement
of the cavity tuners. Open-loop (no feedback) damping rates of a number of stable modes
were measured by exciting them to a measurable amplitude and tracking their decay.

It is instructive to compare measured growth rates to predictions based on the measured
impedance Z(w) of a model RF cavity [77) and Eq. 2.31. We expect to see unstable modes
where the measured cavity resonances land on upper sidebands of revolution harmonics.
It must be kept in mind, however, that the cavities installed in the ring could differ from
the model cavity in geometry, temperature and tuner position. Another potential source of
deviations from the expected modal structure is the difference between the exact resonance
frequencies of the two installed RF cavities, which could blur the effective impedance seen
by the beam.

The comparison between measured and predicted growth rates (at 100 mA, without
feedback) is shown in Fig. 4.3. The cavity-induced growth rate is antisymmetric about
250 MHz, but the addition of radiation damping breaks this symmetry. Of the cavity
resonances in the figure that could potentially drive instabilities at currents up to 400 mA,
only two have been seen to do so at the nominal cavity temperature and filling pattern?.
These resonances drive modes 204 and 233, which appear as 'x’s at 311 MHz and 355
MHz respectively, in Fig. 4.3. Their growth rates have been measured at 15 different beam
currents, and normalised to a current of 100 mA. Error bars for the measured positive
growth rates are one standard deviation wide on each side. The sharpest resonance is the
TM-011 mode at 808 MHz, which is aliased down to 308 MHz. This resonance correlates
fairly well with the instability at mode 204, although an exact calculation places it between
modes 202 and 203. The correspondence is greater between mode 233 and the resonances

IThe situation has changed quite a bit with the introduction of passive Landau cavities, which have larger
HOM resonances than the active cavities. The study of instability and feedback issues in the presence of
the Landau cavities is ongoing [80]
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Figure 4.2: Example of external transient technique for measuring (negative) growth rates
of naturally stable modes with and without feedback. Mode 61 is externally excited and

then allowed to decay naturally until ¢ = 7 ms, at which point feedback is turned on and
the mode is rapidly damped.
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at 355 MHz (aliased from 2.3 and 2.8 GHz). Neither of the unstable modes shows the
worst-case growth rate, which implies that the cavity resonances do not land exactly on a
mode frequency.
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Figure 4.3: Log plot of experimentally measured and predicted growth rates as a function
of modal frequency, with error bars around measured points. The predicted rates are based
on the radiation damping rate and measurements of the impedance of a model RF cavity.

The measured (negative) growth rates of naturally stable modes are mostly close to
the radiation damping rate (Fig. 4.3). These rates are less sensitive to variations in cavity
temperature and tuner position, since the modal frequencies do not correspond to large
cavity resonances. The corresponding error bars are conservatively estimated at 10%.

When the temperature of an RF cavity is changed, so is its size, and consequently, the
resonant frequency of each parasitic mode. The HOM frequencies are also affected by the
cavity tuners, which are adjusted to keep the beam loading small at the new temperature
setting. Thus, the temperatures (T1 and T2) of the two ALS cavities constitute knobs with
which to reduce the overlap between the HOM impedance and the modal frequencies.

The temperature of the cooling water exiting the ALS cavities can be controlled with
a precision of around 0.5°C. Grow-damp measurements were used to study the behaviour
of longitudinal coupled-bunch growth rates, as the cavity water temperatures were swept
from 40°C to 48°C, in steps of 1°C. T2 was kept at 48°C while T1 was swept, and T1
was kept at 45°C while T2 was swept. Figure 4.4 shows the measured growth rates, scaled
to a beam current of 100 mA. We see that the maximum growth rate decreases, as the
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two temperatures are increased. Of course, transverse HOM frequencies also move with
temperature. As a compromise between longitudinal and transverse requirements, the ALS
cavities are kept at the highest transversely stable temperature.
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Figure 4.4: Longitudinal growth rates vs. cavity temperature at the ALS, I, = 100 mA.

Another way of analysing transient data is to concatenate the sampled bunch phases
over a few ms, and take the DFT of the resulting vector. The resulting spectrum, which
was originally called a “pseudospectrum” (72], is similar to a conventional BPM signal
spectrum. The main difference is that synchrotron sidebands are easier to identify in the
pseudospectrum, since revolution harmonics are suppressed. This suppression comes from
removal of the DC component of the bunch signals in the LFB front end, as well as in offline
data processing. The distance of the sidebands from the revolution harmonics gives us the
frequency shifts of the modes, and the width of the sidebands gives us an equivalent way of
calculating their growth rates. See the appendix, for details of the algorithm used for data
analysis.

The beam pseudospectrum resulting from a single 4-8-ms transient covers the entire
500-MHz range of the modes (0 to f,;) with a resolution of 250-125 Hz. A heterodyned
spectrum analyser would take at least a few minutes to perform the 328 narrowband sweeps
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required to produce an equivalent spectrum, by which time the oscillations would have
reached a damped or saturated steady state.

Fig. 4.5(a) shows the magnitude of the DFT of the bunch-phase signal over the last
4 ms of mode growth (Af = 250 Hz). Only the section from 0 to fry/2 is shown, since
the magnitude of the pseudospectrum is symmetric about f, 7/2. This is compared to the
real part of the effective impedance of the RF cavity [Fig. 4.5(b)]. Radiation damping
is converted to an effective impedance using Eq. 2.31. The two plots agree in several
respects. The two largest impedance peaks drive longitudinal motion at (or close to) their
aliased resonant frequencies. They correspond to the two prominent modes in Fig. 4.1. The
impedance plot suggests that a few more cavity resonances should poke up above radiation
damping, but this has never been observed, possibly for the reasons mentioned above.
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Figure 4.5: (a) Magnitude of high-resolution DFT of growing transient in Fig. 4.1, showing
all the spectral components from 0 to 250 MHz. (b) Real part of Z¢//.

Fig. 4.6 zooms in on two 90-kHz sections of the 500-MHz pseudospectrum, the first
250 MHz of which are shown in Fig. 4.5(a). These sections contain the two largest upper
sidebands in the pseudospectrum. The lower sidebands of the same modes are visible in
Fig. 4.5(a), at 189 MHz and 145 MHz. Fig. 4.6 shows that the most unstable mode is an
upper sideband at 204f, (and therefore a lower sideband at 328 — 204 = 124f,), with a
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linewidth corresponding to the previously measured growth rate. The lower sideband at
204f, is damped to the noise floor by the TM-011 cavity mode. The next most unstable
mode is an upper sideband at 233 f, (and therefore a lower sideband at 95 fo)- The smaller
linewidth of this mode is consistent with its smaller growth rate.

1 0-1 i v M 10_1 [ v v -
E modal spectrum modal spectrum
around 204*frev around 233*frev
1073 ,
1073
40 -20 0 20 40 -40 -20 0 20 40
Frequency (kHz) Frequency (kHz)

Figure 4.6: 90-kHz sections of the high-resolution spectrum in Fig. 4.5(a), showing an
unstable upper sideband and a damped lower sideband at 204 f, and also at 233 fo-

4.1.3 Transverse

“Grow-damp” measurements of transverse instabilities have been made by using the LFB
system in conjunction with the transverse feedback system. As shown in Fig. 4.7, the
baseband beam motion monitor signal from the transverse front end is fed to the LFB
analog-to-digital convertor®. The transverse feedback path is gated by a fast TTL signal
from the LFB system. Upon receipt of a software trigger, the gate is opened for a few
milliseconds, and then closed again. The LFB DSPs simultaneously record the bunch
oscillation signals for offline analysis.

In the absence of a spare LFB system, this measurement requires the interruption of
longitudinal feedback. More details on such measurements, as well as the design of a new
transverse feedback system with built-in diagnostic capabilities, can be found in [66].

Figure 4.8 shows an example of a horizontal grow-damp measurement at the ALS, at
I, = 94 mA. The fill pattern is the same as before; an even fill with an 8-bucket gap. We

3Figure 4.7 has been prepared by D. Teytelman.
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Figure 4.7: Block diagram of experimental setup for “grow-damp” measurements of trans-
verse motion. Longitudinal feedback system used to gate the transverse feedback system,
and record transverse motion.
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a) Osc. Envelopes in Time Domain b) Evolution of Modes
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ALS/jun2990/TFB/1612: lo= 93.91mA, Dsamps 21, ShifGsin= 3, Nbun= 320,
Gaini= 0.9, Gain2x 1, Phasel= 30, Phase2s -140, Bript= 570, Calib= 7.88.

Figure 4.8: ALS horizontal grow-damp at I, = 94 mA. Resistive wall instability is the
strongest. Feedback gain margin is comfortable.
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see that the growth and damping rates are faster than in the longitudinal case. Only modes
326 and 327 (-2 and -1) are unstable. Note: These modes are numbered according to the
conventions of longitudinal modes, so they are upper sidebands of revolution harmonics 326
and 327, and lower sidebands of revolution harmonics 2 and 1. They are probably driven by
the impedance of the vacuum chamber walls, which is dominant at low frequencies. Their
open-loop growth rates are 0.77 ms~! and 0.9 ms~!, respectively. The growth rates have
been calculated from fits to the initial parts of the growing transients, since nonlinear effects
make the transients non-exponential at the highest amplitudes seen in this measurement.

The damping rates are much faster, indicating that the transverse feedback system has a
comfortable gain margin.

4.2 PEP-II Results

The PEP-II B Factory is an asymmetric electron-positron collider. The High Energy Ring
(HER) stores electrons at 9 GeV, while the Low Energy Ring (LER) stores positrons at
3.1 GeV. Table 4.2 summarises the relevant beam and feedback parameters. So far, beam
currents up to 750 mA and 1750 mA have been achieved in the HER and LER respectively.
During commissioning, a variety of longitudinal and transverse beam dynamics experiments
have been performed with the help of the PEP-II LFB system (54, 55, 81, 82, 83]. This
section focuses on longitudinal dynamics in the two rings.

Table 4.2: PEP-II Parameters

Parameter | Description HER | LER | Unit
E, Beam energy 9 3.1 GeV
frr RF frequency 476 476 MH:z

h Harmonic number 3492 3492 -
fo Revolution frequency 136.3 136.3 | kHz
@ Momentum compaction factor | 2.44e-3 | 1.23e-3 -
I, Design current 1 2.25 A
fs Nominal synchrotron frequency | 5.1-6 | 3.3-4.5 | kHz
dy Radiation damping rate 54 34 st
- No. of RF cavities 20 4 -

- Bunch sampling rate 238 238 MHz
D Downsampling factor 6 6 -
P Feedback output power 1500 1500 w
- Output amplifier bandwidth 1-2 1-2 GHz
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The two main sources of longitudinal motion identified in PEP-II are coupled-bunch
instabilities induced by the cavity impedance and noise from the klystron. Coupled-bunch
instabilities are usually caused by unwanted Higher-Order Modes (HOMs) in the RF cav-
ities, or by impedance sources elsewhere in the beam surroundings. At PEP-II however,
the large beam current and small revolution frequency combine to produce “low-mode”
instabilities, i.e., instabilities within the bandwidth of the detuned RF cavity fundamental
mode (21, 82]. Low-mode motion is damped by a combination of RF feedback loops acting
through the klystron [84]. The HOM-induced instabilities have been successfully damped
by the above-mentioned longitudinal feedback system.

The longitudinal growth rates expected from the RF cavity HOMs [78], in the absence
of feedback, are shown in Fig. 4.9. The rates are calculated at the design current and tune,
with 1746 bunches evenly filled at a spacing of 4.2 ns. Since the two rings use similar
cavities, their even-fill eigenvalue spectra (impedance-induced growth rates and coherent
tune shifts) differ only by a scale factor. The spectra extend from DC to 119 MHz (half the
bunch frequency). The damped cavity HOMs cover broad ranges of frequency.
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Figure 4.9: PEP-II longitudinal growth rates from RF cavity HOMs at nominal bunch
spacing and tune, design current. (a) HER, 1 A, 20 cavities. (b) LER, 2.25 A, 4 cavities.

Only two HOMs are strong enough to cause instabilities in the HER. The strongest
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is aliased to 105 MHz (mode 770), and drives roughly 65 modes in a 9-MHz band. The
second potentially troublesome mode is aliased to 93 MHz (mode 683), and drives roughly
51 modes in a 7-MHz band. The two unstable bands are expected to broaden and coalesce
in the LER, [Fig. 4.9(b)]. A new unstable band, centered at 45 MHz, is expected in the
LER at 2.25 A, albeit with a very small growth rate. This band of modes is expected to
be naturally stable at the beam currents achieved so far. If radiation damping is taken into
account, the largest expected growth rates in the HER and LER are 0.12 ms~! and 0.19
ms™!, respectively.

Evidence of bands of impedance-driven modes was first uncovered in the HER. Since
most of the initial commissioning was done at currents below the HER instability threshold,
grow-damps were performed with low-gain positive feedback during the “grow” interval, so
as to add to the destabilising effect of the HOM resonances. Figure 4.10 shows such a grow-
damp, with 1650 bunches filled at the nominal spacing, and I, = 361 mA. The time-domain
bunch envelopes plot does not show clear growing and damping sections, since the unstable
bunch motion is superimposed on noise-excited oscillations at modes within the bandwidth
of the RF cavity fundamental resonance®. The modal plot in Fig. 4.10 zooms in on the
section from mode 720 to mode 830, which contains the band of modes that grew under
positive feedback, and waned under negative feedback®. Most of the unstable motion is
localised to the band from mode 760 to mode 790. This agrees fairly well with the aliased
impedance of the largest cavity HOM, which was predicted to excite modes around 770.

Interestingly, the impedance resonance that aliases to mode 683 (see Fig. 4.9) has not
been seen to excite coupled-bunch motion so far, in either of the two rings. This might
indicate that this mode is better damped than expected. Of course, this could also be due
to the fact that grow-damp measurements have not been performed at the highest beam
currents achieved so far.

The growth and damping rates of the modes in Fig. 4.10 do not reflect the full impedance
of the feedback system, since the noise-excited low-mode motion in this measurement is
sufficient to cause significant feedback saturation.

The technique of investigating the impedance spectrum at below-threshold currents, by
means of positive feedback, is also illustrated by Fig. 4.11, which shows pseudospectra of
the HER longitudinal motion below the open-loop (no feedback) threshold. As described

*Noise-excited oscillations were reduced significantly later on, once the RF feedback loops were fully
commissioned.
*Due to erratic hidden-line removal, some of the modal lines in this figure are missing.
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a) Osc. Envelopes in Time Domain b) Evolution of Modes

Bunch No.

PEP-Il HER/jan3098/1123: lo= 361.4mA, Dsamp= 6, ShifGain= 3, Nbun= 1740,
Gaini= 1, Gain2= -0.8, Phase1x 5, Phase2z 5, Brkpt= 310, Calib= 16.06.

Figure 4.10: PEP-II HER grow-damp measurement at [, = 361 mA. Feedback is positive
during the “grow” portion of this grow-damp, and negative during the “damp” portion.
Modes from 760 to 790 show significant growth and damping.

earlier, revolution harmonics are suppressed in this figure. The pseudospectra extend from
0 to 119 MHz, which is half the bunch crossing frequency in this case (every other RF
bucket is filled). With positive feedback, we see excitation of a broad band of synchrotron
sidebands from 100 MHz to 110 MHz. These are clearly the modes closest to instability,
when there is no feedback. The impedance of the largest expected cavity HOM resonance
in Fig. 4.9 is overlaid on the driven pseudospectrum. It coincides quite well with the band
of driven modes.

Measurement of open-loop growth rates at machines like PEP-II presents a unique chal-
lenge. As will be explained in Ch. 7, the combination of broad impedance resonances
and uneven filling patterns creates eigenmodes that are significantly different from those of
an evenly filled ring. Thus, the projection onto even-fill eigenmodes by means of a Fourier
transform results in non-exponential beating between superimposed uneven-fill eigenmodes.
The problem of eigenmode and eigenvalue resolution is made even harder by the fact that
superimposed PEP-II eigenmodes tend to have very similar eigenvalues.

D. Teytelman has devised an analysis technique that gets around this problem by calcu-
lating the growth rate of the rms oscillation amplitude, averaged over a band of “modes.”
If we assume that the band of projections onto even-fill modes contains uneven-fill modes
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Figure 4.11: PEP-II HER beam pseudospectrum. Positive feedback excites a band of
roughly 60 sidebands, in the vicinity of the 770th revolution harmonic (105 MHz). The
aliased impedance of the largest cavity HOM is superimposed.

of roughly the same eigenvalue, then this gives us a good estimate of the average of the
true growth rates. In practice, the rms oscillation amplitude within the unstable band has
been seen to grow exponentially, even when the individual projections onto even-fill basis
vectors show significant beating. This method has been applied to an HER grow-damp
measurement at [, = 605 mA, which shows open-loop growth in the band from mode 740
to mode 790. The growth rate is very slow; it is a mere 6 s~*. In this case, 93% of the ring
is filled, at a bunch spacing of two RF buckets. The instability threshold is approximately
550 mA, which is significantly higher than the value of 310 mA expected from impedance
measurements, at f, = 5800 Hz. It will be shown in Ch. 7 that this discrepancy is explained
by Landau damping from the interbunch tune spread generated by the HER gap transient.
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Figure 4.12 shows the measured open-loop growth rates of the band of LER modes
from 780 to 800, over a range of beam currents, with 90% of the ring filled at a spacing of 4
buckets. The rates scale fairly linearly with I,, with an instability threshold of 316 mA. The
expected even-fill threshold is 385 mA with f, = 3300 Hz, and 4 RF cavities installed. In this
case, the beam is less stable than expected, indicating that Landau damping is probably not
significant at these low currents. Another possibility is that the actual radiation damping
in the LER is slightly smaller than the design value. The linear fit to the growth rates
in Fig. 4.12 intersects the vertical axis at -0.02 ms™!. The design value of the radiation
damping rate is 0.03 ms™!.

LER, modes 780-800, growth rate vs. current, 1999-02-12
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Figure 4.12: PEP-II LER open-loop longitudinal growth rates versus I,, with 90% of the
ring filled.

In general, the beam impedance is not a constant, since cavity tuners are continuously
adjusted as [, is changed. As a result, cavity-induced coupled-bunch instability growth rates
often fail to scale linearly with /,. The beam impedance is also affected by changes in the
temperature of resonant structures in the ring. If the impedance is caused by a resonance
that is narrow compared to f,, then small changes in the resonant frequency will result in
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noticeable growth rate variation. In the case of PEP-II, motion of HOM resonances has less
of an effect on growth rates, since the dominant cavity resonances are much broader than
fo. However, the amount of Landau damping afforded by beam loading of the fundamental
does vary with the tuner position.

4.3 SPEAR Results

The SPEAR storage ring functions as a 3-GeV light source, with a stored current of 100
mA. Electrons are injected at 2.3 GeV, and then ramped up to the design energy. The
energy lost on each turn is replenished in two 5-cell RF cavities, which have a rich spectrum
of high-Q parasitic resonances [85]. Longitudinal instability measurements at SPEAR were
performed using temporarily installed LFB electronics, in conjunction with a 50-W amplifier
and a stripline kicker. Most of the measurements were made at the injection energy. The
pertinent beam and feedback parameters are shown in Table 4.3.

Table 4.3: SPEAR Parameters

Parameter | Description Value | Unit
E, Beam energy 2.3 GeV
Irr RF frequency 358.5 | MHz

h Harmonic number 280 -
fo Revolution frequency 1.28 | MHz
a Momentum compaction factor | 1.5e-2 -
I, Design current 100 mA
fs Nominal synchrotron frequency | 28.5 kHz
dr Radiation damping rate 110 s~!
- No. of active RF cavities 1 -

- No. of passive RF cavities 1 -

- Bunch sampling rate 358.5 | MHz
D Downsampling factor 14 -
p Feedback output power 50 \id

Since the temporary LFB system had low gain, it could not control instabilities at
currents much higher than the open-loop threshold, which was roughly 30 mA®. Grow-
damp measurements above the open-loop threshold were also complicated by the fact that
the feedback system was too weak to damp the beam, once the oscillations grew large
enough to saturate the back end.

®This threshold varied significantly with temperature and cavity tuner settings.
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Figure 4.13: Grow-damp measurement of longitudinal instabilities at SPEAR, I, = 29
mA. Positive feedback is used during the “grow™ portion, to uncover the modes closest to
instability.

Figure 4.13 shows a grow-damp measurement at the below-threshold current of 29 mA.
The ring is evenly filled with 70 bunches, at an interbunch spacing of 4 RF buckets. In this
case, beam oscillations grow under the action of pesitive feedback, until negative feedback
is restored at ¢ = 10 ms. Only modes 65 and 67 are excited by positive feedback, indicating
that these modes are closest to instability at I, = 29 mA. Many other unstable modes have
been seen at SPEAR, under various conditions of temperature and tuner position.

Surprisingly, the beam is longitudinally stable in the production configuration, with
I, = 100 mA and E, = 3 GeV. The elevated threshold is partly explained by the increased
radiation damping at 3 GeV. The positions of the active cavity tuners might also be playing
a part in elevating the threshold from 30 mA at E, = 2.3 GeV to above 100 mA at E, =3
GeV. It is suggested in Ch. 7 that the unevenness of the production fill is yet another
contributing factor.



Chapter 5

Phase Space Tracking: A Complete
Diagnostic

This chapter describes an instability diagnostic that exploits the information contained in
the angular evolution of coupled-bunch oscillations in phase space. In addition to enabling
measurement of coherent tunes and bunch tunes with accuracy of a few Hz, phase space
tracking allows new kinds of comparisons between instability theory and experiment.

Phase space tracking is used to compare the signature of a low-threshold vertical in-
stability in the PEP-II HER (83] to those of the fast beam-ion instability (FBII) [6, 86)
and conventional instabilities. It is shown that this method has the potential to distinguish
between the two instability mechanisms.

Tracking of longitudinal motion at the ALS and PEP-II is used to measure coherent
tunes and gain new insights into uneven-fill instabilities.

An ALS example is used to demonstrate measurement of feedback-induced tune shifts,
using phase space tracking. Such measurements are now commonly used to minimise the
reactive component of the LFB impedance.

5.1 Introduction

Diagnosis of the nature and cause of unstable bunch motion is the first step towards a cure.
Observation of BPM power spectra under various beam conditions is the most common
diagnostic. Other recently developed techniques include streak camera imaging of bunch
motion, and offline analysis of digitised bunch oscillation data.

63
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Theoretical analyses of coupled-bunch instabilities yield qualitative and quantitative
predictions about bunch trajectories in phase space. Ideally, an experimenter who wants
to diagnose dipole instabilities would like to be able to track the phase space positions of
all bunches under various beam conditions. This would require a measurement system of
bandwidth 1/(2T3), where T, is the bunch spacing.

When viewed in the light of the bandwidth or information rate requirement, streak cam-
era measurements are seen to be unsuitable for multi-bunch phase space tracking, since they
suffer from update rate limitations. However, they provide excellent time resolution, and
are very useful in studying the bunch size and shape. By the same criterion, the traditional
technique of observing BPM signals on a heterodyned spectrum analyser is limited by the
resolution bandwidth of the spectrum analyser. To identify the instability mode number,
one needs resolution bandwidths comparable to the synchrotron or betatron tune. All infor-
mation outside the resolution bandwidth is lost, as is information contained in the phase of
the Fourier transform of the BPM signal. For these reasons, heterodyned spectrum analyser
measurements are used mainly for steady state measurements of instability frequency and
amplitude, or for narrowband detection of the phase space magnitude transient of a single
coupled-bunch mode.

Phase space tracking of multibunch motion is only possible with fast digitisation and
storage of the oscillation coordinate of each bunch in the machine. Diagnostic techniques
that satisfy this criterion suffer from loss of bunch centroid information only to the extent
that measurements are never noise free. In this chapter, tracking is based on LFB system
data. As mentioned earlier, LFB “grow-damp” measurements facilitate observation of the
growth of unstable oscillations in the linear small-amplitude region, for which theoretical
predictions exist. Another advantage of the LFB system is its ability to store downsampled
data. Conventional digital oscilloscopes with data storage capabilities cannot easily use
downsampling to take advantage of the fact that the beam signal only contains information
near synchrotron and betatron sidebands of revolution harmonics.

5.2 Signal Processing

Coupled-bunch instability data from a singie BPM is often used to measure average tunes,
oscillation amplitude envelopes, average phase shifts from bunch to bunch, etc. However,

it is not too difficult to estimate the approximate phase space angle corresponding to each
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sample of bunch data, if the beam motion is approximately sinusoidal [87, 88].
We assume that the sampled longitudinal or transverse bunch oscillation coordinate sk
of bunch k is given by

s

= af cos(2mnDv + ¢f) = Re{uk}; (5.1)

u ak eI (2mnDr+k) (5.2)

k
n

where n is the sample number, D is the downsampling factor, uf is the analytic signal
corresponding to s&, and aX and ¢£ vary slowly compared to the nominal tune v. Although
there is no unique solution for the phase space magnitude a and the normalised phase space
angle ¢, we can use the approximation

un

x sp = Jin, (5.3)
where 3% is the Hilbert transform of s¥. The Hilbert transform is calculated by taking the
discrete Fourier transform of s, rotating all positive-frequency components by +90° and

all negative-frequency components by —90°, and then taking the inverse Fourier transform.
From Egs. (5.2,5.3), we get

aﬁ =] Isﬁ—j§ﬁ|, (5.4)

¢k =~ ((sk-j5) - 2mDv (5.5)

This approach is equivalent to that of calculating the quadrature component of a narrow-
band signal from its in-phase component. In the terminology of transverse diagnostics, we
are estimating the signal at a fictitious BPM that is 90° ahead of the original BPM in
betatron phase.

When used alone, the discrete Hilbert transform produces significant errors at the edges
of discrete data sets, since the corresponding filter has a long impulse response. This effect
is minimised in practice by simultaneously subjecting the data to a smooth band pass filter
centered at the synchrotron or betatron sideband. The band pass filter rejects noise outside
the frequency band of interest. We also introduce appropriate delays in the bunch signals by
means of a phase shift that is proportional to frequency. This compensates for the fact that
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the bunches are sampled at different instants and on different turns, due to the requirements
of downsampling.

With the processing techniques described above, we have approximations to the ampli-
tude a* and normalised angle ¢¥ of each bunch k at each sample instant n. If the data are
digitised soon after feedback is switched off, we have enough information to test almost any
theoretical prediction about the coupled-bunch instability. The most immediate application
of this technique is in the diagnosis of fast transverse instabilities in short bunch trains. For
example, one could distinguish between conventional instabilities and the FBII by matching
the angle variation along a bunch train with the frequencies of various kinds of ions in the
vacuum chamber. Tune shifts along the bunch train are also a strong indicator of the FBIIL.
Bunch tunes can be tracked continuously by taking the derivative of smooth fits to the
bunch angle.

Instabilities in beams with most of the buckets filled are well described by projections
of the beam motion onto even-fill eigenmodes (EFEMs). These projections are calculated
by taking the discrete Fourier transform of the sequence of analytic signals at each turn.
The modal phase space coordinate U7 of the m-th EFEM at turn n is thus given by

N-1

U":n = A;nej(21mDu+¢T) = Z uﬁ e—j?wmk/N, (5.6)
k=0

where N is the ratio of the harmonic number to the bunch spacing, and A™ and & are
the magnitude and normalised angle respectively in modal phase space.

There is a subtle but important difference between the analytic signals uX used for
studying bunch motion in the time domain and those used for calculating modal projections
using the equation shown above. In the former case, data is processed to estimate the
phase space coordinate of each bunch as it crosses the BPM (coincidence in space). This is
how a localised impedance sees bunch motion. In the latter case, signals are processed to
recreate instantaneous snapshots of the analytic signals of all bunches each time the first
bunch crosses the BPM (coincidence in time). This is because bunch oscillations must be
projected onto the Fourier domain simultaneously, for the discrete Fourier transform to
correspond to a modal decomposition.

In the past, measurements of modal magnitude transients A™ have been used to de-
termine growth rates of coupled-bunch eigenmodes. Here we shall use normalised modal

angle transients ®} to precisely measure coherent tunes in the linear regime. In addition to
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affording direct measurements of the imaginary part of the beam impedance, this approach
yields new insights into uneven-fill instability dynamics.

5.3 Phase space tracking of bunch trains

The PEP-II HER has exhibited vertical and horizontal instabilities at surprisingly low
beam currents. The vertical instability was seen to grow and then saturate at amplitudes of
around 100-300 pm at currents as low as 5 mA [83]. The low threshold and small saturation
amplitudes triggered a search for a possible FBII.

The FBII is usually distinguished from conventional instabilities by studying the effect of
variations in gas pressure, bunch spacing, train length, and bunch currents on the spectrum
of betatron sidebands. Although such measurements have been used at the Advanced
Light Source [89] and the Pohang Light Source [90], they are not always conclusive during
commissioning, since conditions such as beam orbit, vacuum pressure, coupling, beam size,
feedback, etc. are sometimes not well controlled.

To diagnose the HER vertical instability, we make use of the prediction that FBII growth
in bunch trains is characterised by variation in the growth rate and bunch tune along the
train. Conventional coupled-bunch instabilities caused by wake fields that persist over the
length of the gap are not expected to exhibit such behavior. The approach of distinguishing
between the two kinds of instability on the basis of a single growing transient has the
advantage of being insensitive to artefacts such as parameter drift.

The vertical instability was investigated using digitised records of the oscillations of
each bunch, immediately after switching off feedback. Figure 5.1 shows a typical growing
transient in a 150-bunch train with a 4.2 ns (nominal) spacing and a total beam current
I, of 52 mA!. Feedback is switched off approximately at ¢ = 0. The bunch oscillation
amplitudes increase exponentially with time, with bunches at the tail of the train reaching
higher amplitudes than those at the head. Although growth along the train is sometimes
thought to be a symptom of the FBII, it is also a feature of conventional instabilities driven
by an impedance resonance whose fill time is comparable to the length of the bunch train.

Bunch tune variation can most easily be examined by locating the peak in the Fourier
spectrum of each bunch signal. Figure 5.2 zooms in on the bunch spectra in the region of

!The PEP-II HER design goal is 1 A in 1658 buckets. At a spacing of 4.2 ns, the entire ring can be filled
with 1746 bunches.
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Figure 5.1: Growing vertical instability transient in a 150-bunch train in the PEP-II HER
at [, = 52 mA. Feedback is switched off at ¢t = 0. The oscillation amplitude a* of each
bunch k grows exponentially over the 20 ms interval, with trailing bunches growing to larger
amplitudes than leading bunches.

the vertical tune peak. The trailing bunches show a more pronounced spectral peak than
the leading bunches, since they oscillate at larger amplitudes. Since the data record is 20
ms long, these spectra have a frequency resolution of no more than 50 Hz, i.e. 0.0004 in
tune units. At this resolution, we see no tune shift along the bunch train. In addition to
the limited resolution of the discrete Fourier transform, such measurements are also often
complicated by power supply ripple, which imposes a 60 Hz modulation on the betatron
tune.

We can measure tune variations with greater sensitivity by tracking the normalised
bunch phase space angles ¢%. For example, we could subtract ¢!5° from all the other
angles to get the phase space angle of each bunch relative to that of the last bunch. This
automatically masks the tune variation due to power supply ripple. The slope of this angle
differential directly yields the tune of the corresponding bunch relative to that of bunch
150. Figure 5.3 shows the phase space angle differentials (¢£ — $1*°) for all bunches. Only
the last 7 ms of data are shown, since the signal to noise ratio is worse during the initial
section of the growing transient. We see that the differential angles are almost constant over
these 7 ms, with a small positive slope in the section from bunch 60 to bunch 1402. This

?See [91] for an animation depicting the evolving bunch magnitudes and relative phases in this transient.
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Figure 5.2: Color-coded representation of magnitude spectra of the 150 bunches in previous
figure. Peaks of Fourier transform of bunch transients lie at the same tune, indicating that
tune spread across the train is < the frequency resolution (50 Hz).

implies that the bunches oscillate coherently, with very little tune variation along the train.
The exact tune variation can be extracted from linear fits to the relative angles (¢X — ¢159).
Instantaneous tunes are not calculated, since the relative angles vary linearly with time in
this piece of data.

Figure 5.4(a) shows the fitted tunes of bunches 46 to 150, relative to the tune of bunch
150. The peak-to-peak variation is less than 50 rad/s. The first 45 bunches are excluded be-
cause they grow to smaller amplitudes and have smaller signal-to-noise ratios. Exponential
fits to the magnitude transients a* yield the instability growth rates shown in Fig. 5.4(b).
As can be expected of conventional instabilities, the growth rate variation across the train
is small enough to be accounted for by the presence of other eigenmodes at small ampli-
tudes. The original theoretical studies [6, 86] of the FBII predicted that oscillations should
grow as exp(y/t/7), where 7 is the growth time. However, the experimental data quite
clearly shows exponential growth. A more detailed theoretical analysis, which incorporates
B-function variation around the ring, predicts exponential FBII growth and a linear varia-
tion in tune shift and growth rate along the train [92]. The linear variation of growth rates
and tunes is not borne out by the data, as can be seen from Fig. 5.4. It is of course possible
that some of the approximations made in [92] do not apply to the relative time scales of
this experiment.
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Figure 5.3: Phase space angle differentials (¢5 — ¢13) for all 150 bunches. Differentials
for first few bunches are noisy due to smaller oscillation amplitudes. Differential angles are
almost constant over 20 ms, indicating that the bunches oscillate coherently.
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Figure 5.4: (a) Relative tunes of bunches 46 to 150, calculated using linear fits to the phase
space angle differentials in the previous figure. (b) Growth rates of the same bunches,
calculated using exponential fits to the magnitude transients a*.
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5.4 Phase space tracking of coupled-bunch modes

The previous section focused on applications of time domain phase space tracking, i.e.
tracking of bunch trajectories uX in phase space. Coherent instabilities in rings with more
filled buckets than empty buckets are better described by the projection of these trajec-
tories onto the eigenmodes of an evenly filled ring (see Eq. 5.6). The magnitude A™ of
each projection U™ corresponds to the magnitude of the sideband of the m-th revolution
harmonic in the bunch spectrum. If the coherent tune is a constant, the angle of U™ evolves
linearly with a constant slope v + d®™/dt = v + Av™. The coherent tune shift Av™ can
thus be measured accurately by measuring the slope of the modal phase space angle as
the instability grows linearly out of the noise floor. This is a direct measurement of the
imaginary part of the beam impedance.

Of the 328 longitudinal coupled-bunch modes at the ALS, only modes 204 and 233 are
unstable in most cases (Ch. 4). Figure 5.5 shows the measured linear evolution of $2%4
(dashdot) and 233 (dotted line) as the two modes grow out of the noise floor. The ring is
evenly filled at I, = 157 mA. The slopes give the coherent frequency shifts, which are -132
Hz and -196 Hz respectively.

From Eq. 2.31, we know that the effective longitudinal impedance Z¢//, for a beam with
N evenly spaced bunches, is related to the even-fill coherent tune shift by

4nBu,

Im{Z (mw, + w,)} = - —
o

Av™; m=0,1,..,.N—1 (5.7

By scaling the measured tune shifts according to the above equation, we get Im{Z°// (204w, +
ws)} = —157kQ and Im{Z2°// (233w, +w,)} = —232kQ. Together with the measured growth
rates, these numbers have been used to estimate the shunt impedance of the cavity reso-
nances that drive the instabilities (see Ch. 7).

In addition to aiding in impedance measurement, graphs of modal phase space angles
provide information about the shape and nature of the eigenvectors of an unevenly filled
ring. It is shown in Ch. 7 that two even-fill eigenmodes could be coupled to each other
by means of uneven fills that contain Fourier components at their spatial beat frequency.
For example, the ALS even-fill modes at 204/, and 233, can be coupled together using a
square-wave fill with a periodicity of roughly 1/(29f,). The coupling creates a new pair of
eigenmodes which are linear combinations of the two even-fill eigenmodes. If we measure
the growth of one of the “mixed” eigenmodes, we should naturally see that projections
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Figure 5.5: Linear evolution of modal phase space angles 2% and 233 at the ALS (lon-
gitudinal instabilities, I, = 157 mA). dashdot: $2*4, even fill. dotted: $233, even fill. solid:
$?M, square-wave fill. dashed: $233, square-wave fill. Square-wave fill couples the two
frequencies and creates a mixed eigenmode, so that U?% and U233 are phase-locked.

of the motion onto even-fill modes 204 and 233 show exactly the same growth rate and
coherent tune shift. Such a measurement was performed at the ALS on the same day and
at the same beam current (157 mA) as the above-mentioned even-fill measurement. The
normalised phase space angles $2% (solid) and $233 (dashed line) of the projections U/2%4
and U?* are shown in Fig. 5.5. The existence of a mixed eigenmode is confirmed by the
fact that ®?* and 2% have identical slopes (the slopes were different by 64 Hz in the
even-fill case). As will be explained in Ch. 7, mixtures of unstable even-fill eigenmodes are
generally to be avoided, since the mixed mode is more unstable than either of the even-fill
modes.

Longitudinal coupled-bunch instabilities in PEP-II exhibit more complicated behaviour,
since they are driven by damped cavity resonances which span tens of revolution harmon-
ics [78]. Other complications include irregular fill shapes during commissioning and gap-
induced interbunch tune spreads {55, 93], which tend to couple neighbouring even-fill eigen-
modes to each other. Conventional measurements of instability growth rates are difficult to
interpret under such circumstances.
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Figure 5.6: Growth in magnitude of two sets of projections of a longitudinal instability
transient in PEP-II LER. Uneven fill, I, = 703 mA. (a) A™" to A™4, beating is evidence
of at least two uneven-fill eigenmodes in this frequency range. (b) A%7 to A%%, quasi-
exponential growth indicates that this set of sidebands oscillates coherently as a single
eigenmode.

The uneven-fill eigenmodes can be thought of as linear combinations of even-fill eigen-
modes. Thus an uneven-fill eigenmode could show up at more than one sideband in the
beam spectrum, and a single sideband could be a superposition of many eigenmodes. Since
different modes in general have different coherent frequencies, we should see beating of side-
band amplitudes on a spectrum analyser in zero span mode, and beating of the A™s in the
reconstructed phase space trajectories.

Figure 5.6 shows the magnitude growth of two sets of projections of a single longitudinal
instability transient in the PEP-II LER. The data was taken at an above-threshold beam
current of 703 mA. There is a clear qualitative difference between the upper traces, which
show beating at a frequency of 50 to 80 Hz, and the lower traces, which show slow quasi-
exponential growth. The obvious conclusion is that the “modes” in Fig. 5.6(a) are actually
superpositions of two or more uneven-fill eigenmodes with slightly different coherent fre-
quencies. The “modes” in Fig. 5.6(b) look like projections of a single uneven-fill eigenmode,
since they all show about the same growth rate.
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Figure 5.7: (a) Average of modal phase space magnitudes A™; m = 775, 776, ... 815 (same
data as previous figure). (b) Average coherent tunes, calculated using linear fits to ™;
m =775, 776, ... 815. Fitted tunes show negligible variation above m = 798, implying that
the band of projections on the right side of the dotted line contains only one eigenmode.

The LER instability transient described above is localised to the frequency range be-
tween 775f, and 815f,, which agrees with the aliased frequency band of the largest cavity
resonance (Ch. 4). Figures 5.7(a) and (b) show the average magnitudes and tunes of the
modal phase space trajectories {U7">, U7"S,.... U85} in the same piece of data. We see
a clear transition at “mode” 798, which is marked with a dotted line. The coherent tune
spectrum to the right of the dotted line shows no tune variation, confirming our earlier con-
clusion that this band of projections onto even-fill modes contains just a single uneven-fill
eigenmode. The other possibility, which is much less likely, is that this band contains mul-
tiple eigenmodes whose growth rates are very close and whose coherent tunes are identical
to within 4 Hz.

The “modes” to the left of the dotted line in Fig. 5.7(b) seem to have a relatively large
coherent tune variation. This frequency band contains two or more eigenmodes that beat
against each other over time scales comparable to the length of the data set. The modal

phase space angles ™ do not evolve linearly in this band, and therefore these calculated
tunes have errors of the order of the beat frequency.



CHAPTER 5. PHASE SPACE TRACKING: A COMPLETE DIAGNOSTIC 75

The phase space trajectories of some of the “modes” which comprise the single uneven-
fill eigenmode above 798, are shown in Fig. 5.8(a). Here we see the simple exponentially
growing single-frequency spirals that we usually expect. Although the actual modal phase
space trajectories complete roughly 95 revolutions around the origin in the duration of this
piece of data, the figure shows less than a single revolution for each “mode”. This is because
the phase space angle of a reference mode has been subtracted from the angles of each of
the displayed trajectories, to reduce clutter in the graphical representation. In other words,
we plot U™(t) exp(—jwrest) in the complex plane rather than U™(¢).

The phase space trajectories of a few beating “modes” U™ are shown in Fig. 5.8(b).
Most of these trajectories look approximately like circles with a stationary or slowly rotating
center. This indicates that the complicated beating in Fig. 5.6 is largely explained by the
superposition of just two uneven-fill eigenmodes. The slowly rotating (and diverging) centers
of the circles are the tips of phasors that represent an eigenmode whose coherent frequency
is very close to wy.ys, which is 2w x 3416 rad/s in this case3. The circular orbits are formed
when another eigenmode with a slightly larger coherent frequency is superimposed on the
original mode. It should be possible to use such plots as visual aids in precisely measuring

the growth rates and coherent tunes of unstable uneven-fill modes that beat against each
other.

3.5 Measuring Reactive Feedback

The LFB system should ideally act on instability growth rates alone, without affecting
coherent tunes, so that the available feedback power is optimally utilised. In other words, the
equivalent impedance of the feedback system should be purely resistive at the synchrotron
frequency. The feedback impedance can be adjusted by adjusting filter coefficients in the
DSPs. However, one does not always know in advance the exact phase shift required from
the filters, to make feedback purely resistive. For this reason, measurements of the reactive
component of feedback are a useful diagnostic.

It is not easy to measure the tune shift induced by linear feedback by conventional
methods, since a damped beam often has no measurable motion, and an unstable beam
is subject to extraneous nonlinear tune shifts. Again, the grow-damp technique, combined
with phase space tracking, comes in handy.

3The evolution of the two bands of phasors is animated in [91).
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Figure 5.8: Modal phase space trajectories of growing PEP-II LER longitudinal instability
(same data as previous figure). (a) Representative selection of “modes” above m = 798.
Expanding spirals about the origin indicate a single uneven-fill eigenmode. (b) Trajectories
of a few “modes” below m = 798, whose magnitude transients show beating.
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Figure 5.9: Evolution of modal phase space angles ?°* and $2%, during a 238 mA ALS

grow-damp. Change in slope at break point indicates that feedback has a reactive compo-
nent.

Figure 5.9 shows the evolution of the modal phase space angles 2% and $%33, during
the 238 mA ALS grow-damp measurement illustrated in Fig. 4.1. The slopes of these lines
give the coherent tune shifts of the modes. There is a kink in the phase space angle graphs,
at the break point. This implies that feedback changes the slope of the phase space angle
graphs by introducing a tune shift. Linear fits to the pre- and post-break point segments
reveal feedback-induced tune shifts of 104 Hz and 99 Hz respectively, for the two modes.
The tune shifts of the two modes are very similar, since they sample the transfer function
of the feedback system at about the same frequency.

The LFB system is tuned by adjusting the feedback filter so that the difference between
pre- and post-break point tunes is minimised. Note: This diagnostic is reliable only when
feedback dynamics are linear, or mildly saturated. When the feedback system is heavily
saturated, it produces no noticeable tune shift, since the gain is very low. This gives the

mistaken impression that the feedback system presents no reactive impedance to the beam.

5.6 Summary

Phase space tracking is a powerful new diagnostic for coupled-bunch instabilities. Tracking
in the frequency (modal) domain has been shown to be useful in accurately measuring the
imaginary part of the effective beam impedance at the ALS. Measurements of modal phase



CHAPTER 5. PHASE SPACE TRACKING: A COMPLETE DIAGNOSTIC 78

space trajectories at the ALS and PEP-II confirm qualitative predictions about uneven-fill
coupled-bunch eigenmodes. These trajectories can conceivably be used to measure coherent
tunes and growth rates in cases where conventional methods are frustrated by beating
between multiple uneven-fill eigenmodes.

Phase space tracking of grow-damp data facilitates measurement of the reactive com-
ponent of feedback, which should be minimised, for optimal utilization of the available
feedback power.

Tracking in the time domain has been used to study a low-threshold vertical instability
in the PEP-IT HER, and compare features of the bunch phase space trajectories to charac-
teristics of conventional instabilities and the FBIL The trajectories fail to match qualitative
features described in the existing literature on FBII theory. The method shows promise as a
tool for analyzing data from future FBII experiments, and for revealing aspects of instability
growth that have hitherto remained unexamined.



Chapter 6

A Matrix Formalism for Landau

Damping

Coupled-bunch instabilities can be cured by introducing a tune spread between the bunches
(Landau damping), so that they cannot organise a growing coherent oscillation. Some of
the techniques for inducing such tune spreads are mentioned in Ch. 2.

Existing methods of analysing the effect of bunch-to-bunch tune shifts on coupled-bunch
instabilities [26] are strictly applicable only when the beam impedance overlaps just a single
synchrotron or betatron sideband. This is not usually the case. Even if there is just a single,
narrow impedance resonance to reckon with, the resonance often overlaps both the upper
and lower sidebands of the revolution harmonic closest to its center frequency. However, it
is shown in [94] that the conventional dispersion relation is a good approximation, as long as
the tune variation is smooth on a time scale of 1/A f, where Af is the frequency difference
between the mode under examination, and the nearest other mode with a non-negligible
impedance.

Another (relatively minor) problem with the conventional approach is that the dispersion
relation has no explicit solution.

This chapter presents a more general approach to the Landau damping problem, that
involves computation of the eigenvalues of a reduced state matrix. Evenly filled rings
are assumed throughout, i.e., the interbunch spacing and the bunch charge are assumed
to be constant. The method is applied to the analysis of PEP-II longitudinal coupled-
bunch modes. Since a large number of closely-spaced PEP-II modes are naturally unstable,
conventional techniques do not apply to this case. Together with decreasing revolution

79
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frequencies in new high energy accelerators, the increasing use of damped RF cavities with
broad HOM resonances makes the PEP-II example quite relevant.

The most direct and general way of calculating Landau-damped eigenvalues for a system
of N bunches is to solve for the eigenvalues of the N x N state matrix A. If NV is large, this
becomes computationally cumbersome. If we assume slow tune variation around the ring,
we can make the eigenvalue problem more manageable by creating an equivalent M x M
matrix that models the dynamics of the most unstable modes of A. This is the reduced
state matrix referred to in the previous paragraph.

6.1 Equivalent State Matrix

In general we can write the equations of motion of a linear system as:
X =AX; X(t)=X,eM, (6.1)

where X, is any eigenvector of A, and A is the corresponding eigenvalue. Consider NV iden-
tical evenly spaced rigidly oscillating bunches with oscillation coordinates zg. For mathe-
matical convenience, the variables z; shall be considered to be complex, so that the state
matrix A has size N, and the eigenvectors are merely the N Fourier vectors of Eq. 2.24:

=1 Ml  N-DIBT,//N. g=21/N; 1=12,..N-1 (6.2)

The corresponding eigenvalues A; (5€;, usually) are given by: A; = (=d, + jw.) + A, if we
assume that the coherent eigenvalue shifts A; and the radiation damping rate d, are small
compared to the longitudinal or transverse oscillation frequency w.. We can calculate A for
each mode ! by scaling the effective impedance at the corresponding revolution harmonic
(5].

From here on we shall drop the common additive term (~d, + jw,) from the eigenvalues
Ay, so that we are left with only the part that contains the coherent tune shift of mode l,
i.e., A;. This merely shifts the eigenvalue spectrum of A, without changing the eigenvectors.

We now have:
N-1

A= Z Mool (6.3)
=0

where uf! denotes the complex conjugate of v7. If we now add a small tune shift 5 (0 € wz)
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to the tune of each bunch k, we get the following modified matrix:

N-1
A = diag(j jé1 ... jon-1)+ Y Muvf, (6.4)

1=0
where the “diag” function places a vector of length N onto the diagonal of an otherwise
empty N x N matrix. The eigenvalues of this A matrix reveal the damping effect of a tune
spread on the unstable coupled-bunch modes. Unfortunately, if N is very large (N = 1746
at PEP-II), the eigenvalue problem becomes difficult, or even insoluble, on most computers.
The next two subsections describe the construction of an equivalent A-matrix of reduced

size, whose eigenvalues approximate the most unstable eigenvalues of A.

6.1.1 Single Unstable Mode

The physics behind the approximation is illustrated by the simple case of a beam with only
one unstable coupled-bunch mode v,. Equation 6.4 reduces to:

A =diag(jdo 7o ... JoN-1) + Ao vg vgl

Here it is assumed that only g is non-negligible. By summing the rows of the eigenvalue

equation, we get:
1

’\L -jak )kr

1= X ( (6.5)

where AL is the Landau-damped eigenvalue, and (ug)x denotes the mean of u over all k.
The common approach at this stage is to make the approximation that the d;s are closer to
their neighbours than they are to AL, in which case we can replace the discrete averaging
in the above equation by an average over a fictitious continuous distribution p(d) [26]:

4,

mes _p(6)

= —_ .6
1= A AV dé (6.6)

Physically, this approximation is equivalent to the statement that neighbouring tunes are
blurred together by the speed of evolution of the unstable mode. The matrix reduction
method inverts this approximation by going from N discrete tunes to M, where M < N.
We could, for example, choose M to be N/2 by averaging pairs of adjacent tunes. We would
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then have the following average over N/2 fictitious tunes ok:

1
12“./\0(’\[’

—_ﬁ—}")m (6.7)

The physical interpretation of this approximation is the same as before, with the criterion
that the & s are closer to their neighbours than they are to AL. We now have a smaller
matrix A! of size N/2x N/2 whose largest eigenvalue is about the same as that of 4. We
can progressively reduce the size of A as long as the closeness criterion holds, until the
eigenvalues become easy to compute.

6.1.2 Multiple Unstable Modes

In the case where the beam impedance hits more than one coupled-bunch mode, we need
to transform the state vector X and the state matrix A to the Fourier basis:

Y=VH#X; B=vHAV; BY =ily, (6.8)

where the columns of V are the normalised Fourier eigenvectors of a beam with no tune
spread. With a little manipulation, we can arrive at the following dispersion relation from
Equations 6.4 and 6.8:

ej(n—m)21rk/N

Y=CY; Cmn=h (TJ-T)I:

(6.9)

This dispersion relation is hard to solve in its present form. If we assume that § is a smooth
function of k, and therefore so is AL — j4, then the terms far from the main diagonal drop out
of C. If there are only a few unstable modes excited by narrow impedance resonances, their
eigenvalues can be calculated independently as in the previous section, provided that the
mode numbers are not too close, and the unstable unperturbed (no tune spread) eigenvalues
are far from degeneracy.

Unfortunately, in the case of rings with low revolution frequency and/or damped RF
cavities such as PEP-II, the unstable modes are clustered together, and their interaction
through the tune spread must be considered. Let mode p be the most unstable unperturbed
eigenmode. Consider the set of unperturbed modes from (p—gq) to (p+r— 1), where g and
(r—1) are larger than the number of non-negligible diagonals above the main diagonal in C.
If the modes outside this set are stable or have eigenvalues far from Ap, they do not couple
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to mode p. We could truncate C so that only the portion that couples modes within the
set to each other remains. We could now make use of the smoothness of d; to downsample
it by a factor N/(q +r) = N/M, making sure that the closeness criterion is still satisfied.
The obvious next step is to transfer back to the regular basis to get the following equivalent

state matrix:
M-1

Al = diag(j65 76} ... joy_) + 3 Mmool (6.10)

m=0
where {47, } is the downsampled version of {4} and AL, = Ap—gtm. The matrix A' models
the truncated C-matrix. It is most accurate close to row p, if g = r, while it introduces an
artificial “wrap around” coupling between modes at either end of the truncated C-matrix
due to the downsampling of §.
We now have a reduced matrix whose eigenvalues approximate those of a Landau-
damped beam in the general case, if bunch tune variation is smooth.

6.2 Application to PEP-II

In this section we apply the equivalent matrix method to the study of longitudinal tune
spreads in PEP-II. The impedance of the two strongest HOMs in the damped PEP-II RF
cavities produces a broad spectrum of unstable longitudinal coupled-bunch modes, which
are expected to stabilise with feedback. Here we examine the effect of bunch tune spreads
as the only longitudinal damping mechanism in the HER and LER. The effect of bunch-
by-bunch feedback can be added on as an increase in radiation damping. The rings have
a harmonic number of 3492, with every other bucket filled. We will assume that all 1746
buckets are equally filled.

The design current of the HER is 1 A. Based on the measured cavity HOMs, we have
a band of roughly 60 unstable modes about mode 770, and another band of roughly 40
unstable modes around mode 682 in the absence of tune spreads. The most unstable mode
is at p = 770, with Re(A;) = 115 1/s. With a uniform tune distribution between § = —300
rad/s and 4 = 300 rad/s, we cannot easily compute the eigenvalues of the 1746 x 1746 A-
matrix directly, so we reduce it by a factor of 6 (M = 291). We can choose q = 145, r = 146.
Figure 6.1(a) shows the eigenvalues (including radiation damping) of the unperturbed HER
beam and the approximate eigenvalues of the beam with a tune spread of 600 rad/s across
the bunches. The perturbed eigenvalue spectrum, shown with ’x’s, is most accurate at
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Figure 6.1: Eigenvalues of longitudinal coupled-bunch modes in PEP-II with and without
bunch-to-bunch tune spread, 1746 bunches: (a) HER, 1 A, 600 rad/s tune spread (b) LER,
2.25 A, 600 rad/s tune spread.

its center, since ¢ = r. We can see from the figure that the most unstable modes are
Landau-damped down to a growth rate of roughly 25 1/s.

The LER has a design current of 2.25 A. Since the cavities in the two rings are identical,
the LER is most unstable at the same value of p, with Re(A\p) =195 1/s. If we assume the
same tune distribution as in the case of the HER, we could use the same values of q and
r. Figure 6.1(b) shows the perturbed and unperturbed eigenvalues of the LER longitudinal
coupled-bunch modes. In this case, the most unstable mode is damped down to a growth
rate of 75 1/s.

6.3 Summary

Existing methods of analysing the effect of bunch-to-bunch tune shifts on coupled-bunch
instabilities are applicable to beams with a single unstable mode, or a few non-interacting
modes. Unfortunately, in the case of rings with low revolution frequency and/or damped
RF cavities such as PEP-II, we are faced with multiple unstable modes.
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We have presented a more general approach to the Landau damping problem that in-
volves computing the eigenvalues of a reduced state matrix. The application of the method
to the case of longitudinal coupled-bunch modes in PEP-II has shown that a tune spread
of 95 Hz across the bunches damps the most unstable HER mode from a growth rate of
115 1/s to a growth rate of 25 1/s. The corresponding numbers for the LER at full current
are 195 1/s and 75 1/s respectively, given the same tune spread.



Chapter 7

Optimal Uneven Fills: A New Cure

As explained in previous chapters, coupled-bunch instabilities are conventionally cured using
(see [31, 33, 34] and references therein): a) Minimization of impedance seen by the beam.
b) Landau damping. c) Active feedback. This chapter describes yet another cure.

Studies of coupled-bunch instabilities [5, 22] have traditionally considered even bunch
spacings and equal bunch currents (even fills}), since the uneven-fill eigenvalue problem has
no general analytic solution. Approaches to the uneven-fill problem have included numerical
computation of the eigenvalues of the VxN bunch coupling matrix in the general N-bunch
case [2, 16}, and an upper bound on growth rates for an even fill with one gap [15].

Unfortunately, the existing theories do not intuitively explain why some fill shapes are
more stable than uthers, or how one could systematically design an uneven fill to reduce the
severity of instabilities. The latter problem can be restated as follows: given an effective
beam impedance Z¢//(w) and a maximum allowable bunch current .z, how does one
distribute the desired beam current I, among the h RF buckets to minimise the largest
instability growth rate max[Re(\;)]?

The space of possible fill shapes has h —1 dimensions, since the bunch currents i; are
constrained by: Z',:;cl, i = I, and 0 < i, € taz; £=0,...,~A—1. In some machines, it is
not practical to fill consecutive buckets. Hence, we shall use the generic variable N = h/S,
in place of h, where S is the minimum bunch spacing. If N is in the hundreds or thousands,
it is clearly impractical to search for the most stable fill shape by evaluating the eigenvalues
of an NxN matrix at a sufficient number of points in the (N —1)-dimensional search space.

Analytical complexity notwithstanding, empirically selected uneven fills have success-
fully raised instability thresholds at the Cornell Electron Storage Ring [95], the SPEAR

86
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storage ring, the Advanced Photon Source [96] and other machines. Recently, the longi-
tudinally stabilising effect of interbunch tune spreads, arising from RF cavity transients
induced by gaps in the fill, has been noted {93, 97). Though important in large rings, this
effect is weak in small rings with revolution frequencies beyond the tunable range of the
cavities.

This chapter presents a new, general theoretical framework for coupled-bunch instabil-
ities in unevenly filled rings. Uneven-fill longitudinal dynamics are explained in terms of
two physical phenomena: modulation coupling of strong even-fill eigenmodes (EFEMs) and
Landau damping from fill-induced interbunch tune spreads. The former effect is also present
in the transverse plane. These concepts are utilised to devise a simple, easily implementable
algorithm for shaping fills to cure instabilities.

The theoretical predictions are verified by uneven-fill instability measurements from the
ALS, SPEAR, and PEP-II.

7.1 Derivation of Coupling Matrix

As is mentioned in Ch. 2, the N Fourier vectors v; = [1 e/ 210, (N-Vi0|T; g = 2x/N; | =
0,..N-1, make up the eigenmodes of an N-bunch even fill. In the absence of wake fields, all
modes have the same eigenvalue —d, +jw,. From here on, we shall use the word “eigenvalue”
only for the coherent eigenvalue shift produced by wake fields.

As described in Ch. 2, the longitudinal arrival-time error 7, of the n** bunch centroid
is given by
__ae
E,T,

where V;,(¢) is the total wake voltage seen by bunch n. If the bunches are short,

Tn + 2d,Tn +w3'rn = Va, (7-1)

oo N-1
Valt) = Y > aW[th, + lt) — me(t — £ )],
p=-00 k=0
where g is the charge of bunch k, t}, = (pbN +n — k)Th, and T; is the bunch spacing
(Ty, = S/ fry = T,/N). Note: uneven fills are analyzed as N-bunch evenly spaced fills with
varying charge. If 7 is small,

oo

N-1
Va= 3 Y alm-n(t—2 JIWE,) (7.2)

p=-00k=0
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The zero-order term in this Taylor expansion has been dropped, since it merely produces a
small shift in equilibrium position (synchronous phase), which we ignore. From this point
on, one could derive an N x N matrix describing the coupling of every bunch to every other.
This matrix is far from sparse. In addition, it offers no obvious insights into the dynamics
of uneven fills. We shall instead use the EFEM basis

N-1

" = Z Tae I TN (7.3)
n=0
o= =) TR (7.4)
N =~
m=0
We assume eigenvectors of the form
Ti = Brel™; k=0,.N-1. (7.5)
Similarly,
T™ = Dppe?™; m=0,.N-1. (7.6)
Thus,
) N-1 m —— ~j(muwo+ P v
=Y ¥ vl TN 1 — e T k| W (2R )
p=-00 m,k=0

With the substitution u = pN +n — k, we get tﬁ,k = uT}, and g = gn—u. If we now project
V. onto the I** EFEM,

N—-1

. . ae o —ine U=m)u . .
F+2d, # +ir = —E.,—NZ Z I pr™e™32%7 x [1—e~dmuotMuliiyir (yT}), (7.7)

m=0 u=-oc

where the complex amplitude of the p** revolution harmonic in the beam spectrum is
N-1L
=Y ixe % (7.8)
k=0
Since the total ring impedance is

Zw) = [ Wt)e-itd, (7.9)

-0
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we have
jaew, jaewr s

=l 2 l

Z L Zim(Q)T™, (7.10)

m=0

where the coupling impedance Z;,,(w) is given by

Zim(w) = Z'”(lu +w) = ZM[(l ~ m)w,);

Z(w) = — Z (pNw, + w)Z(pNw, + w) (7.11)

wr! p=—00

If dr « wy and | — wy| K wy, then
# 4+ 2, + w2 & 2w [# + (dy - jwi)T!
;T = 2jws [T + (dr — jws)T'). (7.12)

From Egs. (7.10) and (7.12),

4+ (dr - juwg)?t = Z A ™
m=0
_ aefyy
Am = 3 Eove D Zign (ws) (7.13)

If the fill is even, I} = O for k # 0, and the coupling matrix A becomes diagonal. The
diagonal elements yield the following well-known expressions [5] for the even-fill eigenvalues
(see Eq. 2.31):

M=Ay= ;’;f Lf LIZ (lwo + w,) — 291 (0)]; [=0,.N-1. (7.14)
avs

It is apparent from Eq. (7.13) that:
— The sum of the eigenvalues (3" Ay) is independent of fill shape.
— Uneven-fill eigenvalues vary linearly with I,.
— Radiation damping merely shifts all eigenvalues by d,, regardless of fill shape.

~ If all filled buckets have the same charge i, then broadband bunch-by-bunch feedback
also damps all uneven-fill modes equally, since it behaves like radiation damping.

— The EFEM basis yields a sparse A-matrix. The ALS, for example, has significant
impedance only at 4 revolution harmonics [72]. Thus the ALS A-matrix, which is of
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size 328 x 328, has non-negligible entries only along 4 rows and 8+1 diagonals. Even
these are thinly populated, since I is usually negligible for most k.

In addition to being sparse and computationally more tractable, Eq. (7.13) reveals the

two main uneven-fill phenomena: modulation coupling and Landau damping.

7.2 Modulation Coupling

Modulation coupling, which is represented by the terms Jj_n 2%/ (lw, + ws) [see Egs. 7.11
and 7.13], arises from the fact that the longitudinal beam signal is proportional to ;7. If
7 has a frequency component at mw, +ws (i.e. ™) and i has a component at (I — m)w,,
then their product must excite the effective impedance at lw, + w,, which in turn drives 7.
In other words, 7! “sees” ™ if [;_, Z2%/f (lw, + w,) is large. The loop is closed if 7™ sees
7! through I, Z¢! (mw, + wy). Note: Ipey = I},

Since the transverse beam signal is the product of the transverse oscillation coordinate
and i, modulation coupling is also present in the transverse plane. Similarly, higher bunch
shape oscillations are also affected by modulation coupling.

This insight immediately suggests a new cure for coupled-bunch instabilities, namely,
coupling of unstable EFEMs to stable EFEMs through uneven fills tailored to maximise the
difference frequency. It also suggests that fill shapes that couple unstable EFEMs to each
other should definitely be avoided (experimental evidence follows).

7.2.1 Simplest Case

If I Z%/] (kw,) is negligible for all k # 0, the modulation coupling terms are the only mani-
festation of fill unevenness, and the problem simplifies considerably. In addition, if Z(w) is
made up of a small number n of sharp resonances, we can approximate the most unstable
eigenvalues by those of an equivalent A-matrix consisting only of the n corresponding rows
and columns. This is a dramatic simplification in large rings with hundreds or thousands of
stored bunches. If we now design a fill so that I} coincides only with the beat frequency of
the most stable EFEM m and the most unstable EFEM [, we get an equivalent A-matrix
which is diagonal except for the coupling between 7™ and 7!. This reduces the eigenvalue
problem to a quadratic equation with the solution:

1 1
A=g+Am) £ 5\/ (At = Am)? +4CE  AiAm, (7.15)
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Figure 7.1: Hlustration of fill optimization. N = 1000, I, = 500 mA. Solid lines: 50% fll
and 25% fill maximise Cj for i,5z =1 mA, 2 mA. Dashdot: Reference sinusoid at 4w,.

where C is a modulation parameter defined by Cp, = |I|/I,. If Ci_, = 0, the even-fill
cigenvalues A\; and A, are unperturbed. As Cj_,, approaches unity (it can never exceed
unity), one eigenvalue approaches zero and the other approaches A; + A,,. This yields the
maximum damping. Equation 7.15 is equally valid in the transverse case.

7.2.2 Algorithm for Optimising Fill Shape

To damp instabilities by modulation coupling, we need a way of identifying unstable EFEMs
and their eigenvalues, or at least their growth rates. We also need an algorithm for designing
fill shapes to maximise C, at desirable values of p, given I, and 4.

It can be shown that the following procedure maximises Cp, under the above-mentioned
constraints:

1) For each bucket n in the N-bucket pattern, calculate a corresponding “weight”
cos(2n&F).

2) Fill each of the “heaviest” I,/ig.z buckets to the same current ip .

If N is not divisible by p, this gives

Cp = sin(nz)/(nz), (7.16)

where z is the fraction of the ring filled. Figure 7.1 shows two example fills which maximise
C4 when N = 1000, I, = 500 mA, and i = 1 mA, 2 mA.



CHAPTER 7. OPTIMAL UNEVEN FILLS: A NEW CURE 92

a : ) X T T .
3102" ™ A dashdot: rad dampi 3
~ Y i mmmm e L\ - = 41ty Gasnac wfad. damping _ ;
< F ;! ty P ]
= I | i ~
g 101 E :' 1 1 l\\ l, 1 S

0 150 200
@ 2 i dashed: —ve growth rate
Z10°F solid : +ve growth rate 3
— P oo ¢ s e s g iy, w b e v me b = wm o - cwm s e - - - . - - -_
< s\ ’ \\\
S 3 ~ 4 ~
& 101 e \ 1 /1\ / 3 1 ~

o

20 25 30 35
Mode Frequency (MH2)

Figure 7.2: PEP-II HER cavity-induced modal growth rates vs. mode frequency (lw, + w;)
at [, = 1 A for: a) Even fill at nominal 4.2 ns spacing (feedback required). b) Even fill at
6 x 4.2 ns spacing (stabilised by modulation coupling).

7.2.3 Sample Calculation: PEP-II

The PEP-II RF cavities have two prominent parasitic resonances (78] which drive broad
bands of modes unstable. The bands are centered at 93.1 MHz (EFEM 683) and 105 MHz
(EFEM 770), if the ring is filled evenly with the nominal bunch spacing (T, = 4.2 ns,
N = 1746). The cavity resonances also stabilise corresponding bands of modes centered at
144.9 MHz (EFEM 1063) and 133 MHz (EFEM 976). Figure 7.2(a) shows the estimated
cavity-induced growth and damping rates for the High Energy Ring (HER) at the design
current of 1 A. The most obvious approach is to couple the modes around 105 MHz to
those near 133 MHz. This would damp the most unstable band, but the band around 93.1
MHz would remain undamped. A better approach is to couple 105 MHz to 144.9 MHz
by maximising Cz93. This automatically couples 93.1 MHz to 133 MHz. In general, if ¢
couples to 7¥=°, then 7° couples to 7V-¢,

In machines like PEP-II with low w, and damped cavities, quite a few EFEMs see a
non-negligible impedance. The problem of exactly calculating the most unstable eigenvalue
for various values of Cagj is therefore non-trivial. If Cy3 is small, we can assume that 7770
only couples to 7193, +771 only couples to 794, etc., so that Eq. (7.15) is sufficient. It is
possible to show that as Cag3 becomes large, Cax203 starts growing and then Ciyx293, and
so on, if one uses the fill optimization algorithm described earlier. Thus the smaller, more
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distant impedance resonances start to figure in the exact calculation.

Here we will use the fact that optimising Cag; is almost as useful, since w, is small
compared to the bandwidths of the two large impedance resonances. Cag; can be optimised
using fills with a periodicity of 67T}, since N/6 = 291. This simplifies the eigenvalue problem
considerably, since we can extend even-fill symmetry arguments. If a fill has a periodicity
of MT;, its eigenvectors must remain unchanged except for a scale factor when rotated by
M. The N/M scale factors are given by e/2*"M/N. r = 0, N/M —1. Each scale factor
defines a family of M eigenmodes. Since these families are orthogonal to each other, the
eigenvalue problem reduces to N/M problems of size M x M, i.e. A separates out into
N/M unconnected matrices. Physically, this corresponds to the problem of finding out
the relative phases and amplitudes of M adjacent bunches in an eigenstate, given that the
complex amplitudes of successive periods are related by the ratio e/2*"M/N

In the limit, only every sixth slot is filled, Cy9; = 1, and the 1746-bucket uneven fill
reduces to a 291-bucket even fill. Z(w) is then aliased into the frequency band from 0 to 39.7
MHz, and the two main impedance resonances almost cancel each other. We can see from
Fig. 7.2(b) that such a fill is completely stabilised by modulation coupling and radiation

damping, without recourse to active feedback or Landau damping.

7.2.4 Intuitive Explanation for Modulation Coupling

In general, as C, approaches 1, the fill shape approaches that of an evenly filled ring with
wrf = puwo. Such a fill would alias Z(w) into the band from 0 to pw,, so that impedances
separated by pw, overlap. This intuitively explains modulation coupling. Equivalently, if
we sample 7/ at all filled buckets, it looks increasingly like 7*? sampled at the same buckets
as C) increases.

7.3 Landau Damping

Landau damping, which is represented by the tune-spread terms [;_,, Z¢//[(I — m)w,] [see
Egs. 7.11 and 7.13], is another uneven-fill cure for coupled-bunch instabilities.

For illustration, consider a ring with one sharp impedance resonance which coincides
only with the n** revolution harmonic, where nw, is not a multiple of the bunch frequency
Nuws. If we design a fill optimised for C,, we excite a sinusoidal ringing in the wake voltage
at the frequency nw,, which gives each bunch a unique frequency shift proportional to
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nwolnZ(nw,). The tune spread, which is proportional to the impedance (and therefore to
the even-fill instability growth rate), provides Landau damping.

Of course, narrowband resonances are not required for producing a tune spread, though
they simplify the explanation of fill-induced Landau damping. The proportionality of tune
spread to impedance is quite general, as we shall see in the following subsection. There is
some degeneracy in the frequency shifts, if n and NV are not mutually prime.

Unfortunately, there is no analog of this phenomenon in the transverse plane.

This method has the advantage that all unstable dipole modes are damped by the
interbunch tune spread. Bunch shape oscillations are also damped, since the distorted
potential wells produce interbunch spreads in quadrupole, sextupole and higher tunes as

well.

7.3.1 Interbunch Tune Spread Formula

The tune shift of bunch k relative to the mean tune is
Sk = jotes Efrf z [ze!f(zw )I,em“/"] (7.17)

dw, is purely real, since the real part of the summand is an odd function of {, with period
N.

7.3.2 Narrowband Impedance Spectrum

The analysis of Landau damping in unevenly-filled rings with just a few sharp impedance
resonances is relatively simple. If n is the most unstable EFEM, a good strategy would be
to design a fill that optimises C,,.

The best value of C, for damping EFEM n is different from the optimum for other
EFEMs.

EFEMs other than n

Landau damping of EFEMs other than n can be calculated in the usual way [26, 94], as long
as they are not coupled to other prominent EFEMs by modulation coupling or by Landau
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Figure 7.3: Graphical look-up table for fill-induced damping of eigenvalue of unstable longi-
tudinal EFEM n as C,, is increased from 0 (100% of ring filled) to 0.5 (61% filled). Dashed
lines: Evolution of A, from a few even-fill starting points.

terms on the n'# diagonal of A. Alternatively, one could use the formula

Mow) = M —a%/N; L #n, (7.18)

where o, is the rms of éw! over all filled buckets. If C,, is close to 1, EFEMs other than n
are barely damped, since all bunches see almost the same tune shift. Since o, is close to its
maximum when = 0.45, the best value of Cy, for EFEMs other than n is approximately
sin(0.457)/(0.457) = 0.7.

EFEM n

The damping of EFEM n is larger than that of the other modes, since the combination
of tune spread and fill unevenness introduces coupling between 7" and +V~". If Landau
damping and coupling to 7" are the only significant effects and A_,, is assumed to equal
—An (this is true from Eq. 2.3?, if 2w, is small compared to the bandwidth of the HOM),
then the variation of A, with fill fraction z is shown in Fig. 7.3 (numerical computation).
Dashed lines show the evolution of A, from a few even-fill starting points. This figure
is symmetric about both axes. Interestingly, eigenvalues with large imaginary parts are
completely damped even by 80% fills. EFEM n is best damped by maximising Cj,.
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7.3.3 Broadband Impedance Spectrum

In large high-current machines, the gap transient is often the strongest source of tune
spreads [93, 97]. Since this spread arises from the lowest frequencies in i;, the Landau
terms in A tend to couple neighbouring EFEMs to each other. This reduces the efficacy
of Landau damping, if the dominant impedance resonances are broad enough to straddle
many revolution harmonics (coupling of unstable modes through the tune spread).

Intuitively the relative efficacies of various tune distributions can be understood on
the basis of the fact that bunches couple mainly to their immediate neighbours, if cavity
resonances are damped. Thus, small, rapidly oscillating tune distributions perform as well
as large, smoothly varying tune distributions from gap transients.

Coupling of neighbouring EFEMs makes conventional one-mode-at-a-time analysis of
Landau damping invalid in machines like PEP-II, which have broad bands of impedance-
driven modes. If the gap is small, one could neglect modulation coupling and calculate
Landau-damped eigenvalues using matrix reduction [98], as explained in the previous chap-
ter. If the gap is large, there are currently no alternatives to numerical computation for
such machines, unless one extends the matrix-reduction technique.

7.4 Some Special Cases

If an uneven fill excites no revolution harmonics in Z(w) and has no significant components
at modulation coupling frequencies, its eigenvalues are no different from those of an even
fill.

In cases where Z(w) consists of many narrow resonances that vary significantly with
temperature and tuner position, fills that contain a “cocktail” of important frequencies
should prove useful. If, for example, one wanted both C, and C, to be large, one could
give bunch n a weight cos(274}) + Rcos(2r5}) in step (1) of the fill-generating algorithm,
where R is a monotonic function of the desired ratio C,/C,.

Other ideas for further study include tuning of superconducting cavity HOMs to land on
revolution harmonics, and symmetric tuning of Landau cavities around multiples of f, s If
a narrowband resonance of a superconducting cavity is tuned onto a revolution harmonic, it
might be possible to achieve a large interbunch tune spread without having any significant
impedance at the neighbouring sidebands.

A similar effect could be achieved by tuning the fundamental modes of Landau cavities
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onto the stabilising sidebands of (say) EFEMs +1 and -1. A fill with a gap would then
create some interbunch tune spread.

7.5 Brief Summary of the Theory

Uneven-fill theory is most easily explained in terms of relative amplitudes of revolution
harmonics in the bunch spectrum. If we define I, = ZLV___'OI ike‘jz"%, where i; is the
current in bunch k, then the amplitude of any revolution harmonic p in the bunch spectrum
relative to the lines at multiples of Nw, is given by Cp = |I,|/I,.

The theory identifies two important classes of revolution harmonics p in the beam spec-
trum:

1) Harmonics of the form {~m, where | and m are even-fill eigenmodes (EFEMs) that
couple strongly to the beam impedance. If C;_,, is comparable to 1 (it never exceeds 1),
EFEMs [ and m couple to each other, forming two composite eigenmodes which are linear
combinations of the two EFEMs (modulation coupling). The corresponding eigenvalues are
given by Eq. 7.15.

2) Harmonics that coincide with peaks in Z°//. Fills with significant components at
such frequencies drive a steady state ringing in the wake field, which creates potential well
distortion that varies from bunch to bunch. The resulting interbunch tune spread damps
instabilities (Landau damping). The amount of damping achievable is shown as a graphical
look-up table (Fig. 7.3).

The best solution to the problem of maximising Cj, for a certain desired beam current I,
and maximum bunch current iy,4; is to fill a suitable subset M = I, /i;0- of the N available
buckets. If the filled fraction z is defined as z = M/N, then C, = sin(rz)/(rz).

7.6 Measurements

This section presents uneven-fill instability measurements from the ALS, PEP-II and SPEAR.
The ability to measure the eigenvalues (growth rates and coherent tune shifts) of all unsta-

ble modes simultaneously has greatly improved the accuracy and completeness of instability
diagnostics at these machines.
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Figure 7.4: Uneven fill couples EFEMs 204 and 233 by maximising Cog for z = 0.5. Solid
line: ideal; "x’s: measured. a) Typical section of bunch current profile. b) Fill spectrum.

7.6.1 ALS Modulation Coupling

The theoretical predictions of modulation coupling were first tested at the ALS. As was
shown in Ch. 4, only two of the 328 ALS modes are unstable: modes 204 and 233. The
two were coupled using the fill shown in Fig. 7.4(a), which optimises Cy9 for z = 162/328.
The measured and desired bunch currents differ by less than 20% in most cases. Since the
difference has the form of white noise, the error in Cyg is very small (see Fig. 7.4(b)).

Figure 7.5(a) shows a transient measurement of the growth of the two modes at I, =
158.5 mA in an even 328-bucket fill with no longitudinal feedback. The technique of digi-
tising and analyzing such transients in the linear small-oscillation regime is unique in that
it allows accurate measurement of the instability growth rate and coherent tune, i.e., the
most unstable eigenvalues. Growth rates are measured using exponential fits to the modal
transients in the EFEM basis. Coherent tunes are measured using linear fits to the angular
evolution of individual EFEMs in phase space.

Fits to the growth rates and coherent tunes in Fig. 7.5(a) give us the following eigenval-
ues': Aygq = (0.39 £ 0.02) — (0.83 £ 0.03)7 ms~! and Ag33 = (0.35 £ 0.02) — (1.23 £0.03)5
ms~! (assuming that d, = 0.074 ms™!). For the uneven fill shown in Fig. 7.4, Cy =
0.62. If we scale the even-fill eigenvalues to I, = 156.3 mA and apply Eq. 7.15, we get
A = (0.59 +0.03) — (1.68 £0.05)7 ms™! for the most unstable uneven-fill eigenvalue. The

'If the impedance is constant, eigenvalues vary linearly with I,. Deviations of the measurements from lin-
earity arise from fluctuations in the cavity temperatures and tuner positions, and from errors in fitting curves
to measurements. Here, RMS deviations from linearity are used as error bars for eigenvalue measurements.
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Figure 7.5: Projection onto EFEMs of measured ALS signal soon after feedback is stopped.
a) Even fill, 158 mA. EFEMs 204 and 233 grow independently. b) Fill shown in Fig. 1, 156
mA. The composite eigenmode grows faster due to modulation coupling of unstable EFEMs
204 and 233.

uneven-fill mode grows faster than the EFEMs, since two unstable EFEMs are coupled.
Figure 7.5(b) shows the projection of the growing uneven-fill signal onto the 328 EFEMs.
We expect the dominant eigenmode to be some linear combination of v9g4 and vq33. In the
figure, we also see projections onto vzg2, v291, v175, €tc., since the recorded DSP signal is
proportional to the convolution of I and the modal spectrum. The measured eigenvalue is
A = (0.59 £0.02) — (1.6 +£0.03)j ms™!, which is close to the theoretically predicted value of
(0.59 £ 0.03) — (1.68 £ 0.05)j ms~!.

This piece of data illustrates the resolution of a problem that experimenters measuring
instabilities often face. When the fill is significantly uneven, a single unstable eigenmode
created by a single narrowband cavity resonance shows up as a multitude of sidebands in the
beam spectrum. It is thus difficult to distiguish between multiple eigenmodes and multiple
projections of a single eigenmode if one merely observes the beam spectrum. The problem
is solved by digitising the growth of beam motion and calculating an eigenvalue for the
projection of the motion onto each significant EFEM. If the calculated growth rates and
coherent tunes of the projections are identical, it is fair to conclude that they all correspond
to just one uneven-fill eigenmode. On the other hand, if the projections have different
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Figure 7.6: Uneven “Landau fill” that maximises Cqgs, (i.e. Ca33) for I, = 175 mA, z = 0.47.

eigenvalues, they must correspond to distinct eigenmodes.

7.6.2 ALS Landau Damping

Another cure for the instability of longitudinal modes 204 and 233 at the ALS is to use
fill shapes with large values of Cza3z or Cy4. Although both kinds of fills yield significant
damping through the interbunch tune spread, the best choice is not immediately obvious.
In general, if one uses the fill-optimising rule described earlier to maximise C,, EFEM p is
stabilised more than other EFEMs, since the combination of tune spread and fill unevenness
introduces coupling to EFEM N — p. Since the growth rates of EFEMs 204 and 233 are
comparable, the deciding factor in picking the best value of p is the amount by which the
“non-p” EFEM is Landau-damped. A quick calculation based on Egs. (7.17) and (7.18)
shows that Ca33 is more effective than Cyo4 when z is in the neighbourhood of 0.5. Intu-
itively, C233 produces more tune spread than Cag4 because |A233| > |A204], and EFEM 204
is more easily Landau-damped because |[Im(\y04)| < [Imn(A233)]-

Figure 7.6(a) shows the desired and measured bunch currents in a fill which optimises
Ca33 for z = 154/328 and I, = 175.2 mA. Figure 7.6(b) shows the desired and expected
normalised fill spectrum, which is symmetric about p = 164. The difference between the
expected and measured values of Cys = Ca33 is negligible.

A baseline even-fill instability measurement was first made at I, = 172 mA (see Fig. 7.7(a)).
Exponential fits to the mode amplitudes and linear fits to the mode phases in this growing
transient give the following eigenvalues: Ay = (0.47 % 0.02) — (0.05 £ 0.03)j ms~! and
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Figure 7.7: Measured growth of ALS longitudinal instabilities in EFEM basis. a) Even fill,
172 mA. b) “Landau fill” (see Fig. 3), 175 mA. Modes barely grow.

A23z = (0.61 £0.02) — (1.16 £ 0.03)j ms~!. These numbers are not merely scaled up from
the previously measured even-fill eigenvalues, since the two measurements were made on
different days at different cavity tuner positions and temperature settings.

We can see from Fig. 7.3 that “Landau fills” with z < 0.6 almost completely damp the
primary target mode, which is EFEM 233 in this case. Thus, any residual instability in the
fill illustrated in Fig. 7.4 must correspond to the Landau-damped mode 204.

Although many methods exist for calculating the instability growth rate once the bunch
tune distribution is calculated [26, 94], we use numerical computation of the eigenstructure
of the mode coupling matrix, since it is the most exact. For this we need to know the shunt
impedance R,, the resonant frequency f, and the quality factor @ of the two cavity modes
responsible for the measured values of Aygq and Ao33.

If the effective impedance corresponding to an even-fill eigenvalue is R + j X, then the
shunt impedance of the cavity mode is given by (i"—!R, -R?Z+X?%= [/jR,]2 (see Fig. 2.4,
and the accompanying discussion). By correlating this result with data on ALS cavity modes
[77], we get (nominally) R, = 11.36 kQ, f. = 1809.69 MHz and Q = 2900 for EFEM 204 and
R, = 43 kQ, f, = 2852.92 MHz and Q = 9149 for EFEM 233. The numerical calculation
then gives us an eigenvalue of (0.1 +0.04) + (1.62 + 0.06)j ms™! for the Landau-damped
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mode 204. Error bars are calculated by assuming that errors in measured eigenvalues arise
from fluctuations in f.. Note: The real part of the most unstable eigenvalue is 6 times
smaller than in the even-fill case.

Figure 7.7(b) shows a measurement of the growth of instabilities in a 175 mA beam
whose fill shape is illustrated in Fig. 7.6. Although there is only one unstable eigenmode, the
slowly-growing uneven-fill signal has projections onto many EFEMs of the form [204 +n233]
modulo 328. The measured eigenvalue is (0.09 £ 0.003) + (1.63 + 0.005)j ms™!, which
compares well with the theoretically predicted value of (0.1 £ 0.04) + (1.62 £ 0.06); ms™!.

7.6.3 SPEAR

Uneven-fill cures have also been tested on longitudinal instabilities at the SPEAR storage
ring, which has two 5-cell RF cavities with a rich spectrum of high-Q (see Eq. 2.12) parasitic
resonances (85]. The SPEAR beam has an even-fill longitudinal threshold of 20 to 30 mA at
the injection energy of 2.3 GeV. Considerable variation is seen in the threshold and spectral
location of the instability over time scales of hours, as a result of variations in cavity
temperatures and active-cavity tuner positions. The passive-cavity tuners are positioned so
as to minimise the impedance seen by the beam [39]. The regular configuration, which has
54 of the 280 buckets filled at I, = 100 mA and E, = 3 GeV, is longitudinally stable due
to increased radiation damping at the higher beam energy.

Although the SPEAR production fill was not specifically designed to reduce longitudinal
instabilities, it turns out to have a spectral line at a modulation-coupling frequency. The
measured spectrum of the production fill is shown in Fig. 7.8(a). The prominent peaks
are at p = 20,60,80 and 100. Even-fill instability measurements {54, 55] performed using
temporarily installed longitudinal feedback hardware indicate that EFEM 230 is usually
the most unstable mode. Since Cyig9p = 0.75 in the production fill, EFEM 230 is damped
by modulation coupling to its stable counterpart EFEM 50 (see Eq. 7.15). At SPEAR,
h = 280, so [230+100] modulo h = 50. In general, EFEM n and EFEM h—n are coupled if
Cosy, is large.

The proposed upgrade of SPEAR [99] aims for higher beam currents. This would neces-
sitate activation of the second RF cavity and reduce tuner flexibility, if the present cavities
are retained. In addition, bunch currents might exceed allowable limits if only 54 buckets
are filled. Thus, if the same RF cavities are used, there is no guarantee of stability for
SPEAR 3, unless active feedback is employed. However, one could experiment with new
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Figure 7.8: a) Measured fill spectrum of regular SPEAR fill. b) Calculated spectrum of
SPEAR “Landau fill”. Peak at C5; generates tune spread, doubles instability threshold.

fill patterns that raise the instability threshold, while simultaneously increasing the number
of filled buckets. Figure 7.8(b) shows the calculated spectrum of a pattern that maximises
Cso, i.e. Caza, for a 46% fill (130 buckets filled). At first, this fill was unsuccessful in rais-
ing the instability threshold at 2.3 GeV. Upon observing the signal from cavity probes, it
was discovered that the idle cavity resonance that often drives EFEM 230 was far from its
expected position. When this resonance was moved onto the relevant revolution harmonic
by adjusting cavity tuners, all modes were completely stabilised at I, = 60 mA (at least
twice the even-fill threshold).

It seems unlikely right now that the present RF cavities will be retained in SPEAR
3 [100]. The discussion of optimal fills for SPEAR 3 will have to be revisited when the
parameters of the new system are known.

7.6.4 PEP-II Landau Damping

As mentioned earlier, the fill that maximises C), i.e., the conventional even fill with a gap
at one end, is likely to be the best “Landau fill,” in large high-current machines.

Offline RF cavity measurements (78] indicate an even-fill longitudinal threshold of 310
mA for the PEP-II High Energy Ring (HER). The measured threshold is at 550 mA due
to the gap transient. Figure 7.9(a) shows a measurement of interbunch tune spread in a
605 mA uneven fill with a 7% gap (solid line). The tune spread has been extracted from
feedback system data through Lorentzian fits to individual bunch spectra in a record of
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Figure 7.9: a) Solid line: Meaured PEP-II HER longitudinal tune spread due to 7% gap,
I, = 605 mA. Dashed lines: 3 representative eigenvectors (calculation). b) Calculated
eigenvalues of 605 mA beam. '+’s: No tune spread. 'o’s: Tune spread included. Dashdot
line: Radiation damping.

growing beam motion®. Ideally, the tune distribution should be smooth. However, this
measurement was made with a ragged looking fill before the RF feedback loops were fully
commissioned.

The nominal eigenvalues of this HER beam (calculated using matrix reduction [98))
are shown as circles in Fig. 7.9(b). We see that eigenvalue clusters coincide in tune with
moderately flat regions in the bunch tune graph shown in Fig. 7.9(a). Only a few eigen-
values are unstable. The largest calculated eigenvalue is (73 + 15) s~!. The uncertainty
in this calculation comes largely from error bars on the estimated cavity impedance [101].
Representative eigenvectors, shown as dashed spikes in Fig. 7.9(a), are localised to short
segments within the bunch train that correspond to flat regions in the tune distribution.
These segments are decoupled from the rest of the train by the tune spread. The calculated

*These are not the true incoherent bunch tunes. However, we assume that the coherent mation of
the bunches is made up of localised eigenvectors whose coherent tunes approximately equal the average
incoherent tune of the participating bunches. This is valid only if the impedance is broadband and the
incoherent tune spread is much larger than the coherent tune shift. Locally flat regions in Fig. 7.9(a) reflect
eigenvector localization.
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eigenvalue agrees with the measured eigenvalue of (60 + 5) s~!. The imaginary parts of
these eigenvalues are not considered, since the single-bunch tune for this day is not known
with sufficient accuracy.

7.7 Conclusion

The theory described in this chapter opens the door to further theoretical and experimental
investigations of the stability of longitudinal and transverse dipole modes and bunch shape
oscillations. It reveals a new cure for coupled-bunch instabilities, which has been verified
experimentally at ALS, SPEAR and PEP-II.

The uneven-fill cure increases in efficacy, as the maximum allowable bunch current 7,4,
increases, and the beam current I, is distributed among fewer and fewer buckets. Factors
that limit ¢mqz include heating of vacuum chamber elements, intrabunch scattering, and
beam-beam effects (in colliders).



Chapter 8

Conclusion, Ideas for Further
Study

The goal of this thesis has been to exploit the capabilities of the SLAC/LBNL/INFN-LNF
longitudinal feedback system, and to close the gap between what is theoretically predicted,
and what can be conveniently measured, in the field of coupled-bunch instabilities. The
pursuit of this goal has also led to the development of new theoretical approaches to the
instability problem. This chapter briefly summarises the previous chapters, and suggests
directions for further study.

A method has been described for extracting bunch currents and multi-bunch syn-
chronous phases from feedback system data. Since the two are related through the beam
impedance, such measurements constitute a novel beam-based impedance measurement.
This impedance measurement technique has been used to identify the cause of a low-mode
instability in PEP-II. Knowledge of multi-bunch currents and phases is also useful in it-
self, since the two distributions affect instability growth rates, feedback performance, and
collider luminosity, among other things.

The above-mentioned technique for impedance measurement is limited by the fact that
we do not see the “synchronous phase” of the empty buckets. Also, noise and systematic
errors currently get in the way of measuring impedances that induce synchronous phase
transients much smaller than 1 deg@RF. A dedicated diagnostic system with higher sensi-
tivity than the regular feedback system should be able to measure smaller impedances.

Modal decompositions of digitised data have been used to study longitudinal and trans-
verse coupled-bunch transients, induced by switching the feedback state. Transient records
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of beam motion, lasting just 10-20 ms, have been analyzed offline to reveal the frequencies
and growth rates of unstable modes, the damping rates of stable modes, and the effective
impedance of the feedback system, under a variety of beam conditions. The measured
longitudinal growth and damping rates at the ALS and PEP-II are in agreement with
projections based on the estimated cavity impedance at the two machines. Longitudinal
grow-damp data have been used to minimise ALS instability growth rates by optimising
cavity temperatures.

It has been shown that offline analysis can also be used to reconstruct the full phase
space trajectories of the oscillating bunches, or modes, from LFB system data. Phase
space tracking provides a complete description of beam motion, and allows new kinds of
comparisons between theory and experiment. The technique has been used to accurately
measure the imaginary part of the effective beam impedance at the ALS, and confirm
qualitative predictions about uneven-fill dynamics at the ALS and PEP-II. It also facilitates
measurement of the reactive component of feedback, which should be minimis.ed, for optimal
utilization of the available feedback power.

Measurement of nonlinear effects, such as amplitude-dependent growth rates and tune
shifts, should be possible with this method.

Time-domain phase space tracking has been used to study a low-threshold vertical in-
stability in the PEP-II HER. The trajectories fail to match qualitative features described
in the existing literature on FBII theory. The method shows promise as a tool for analyzing
data from future FBII experiments, and for revealing aspects of instability growth that have
hitherto remained unexamined. The diagnostics shown in this thesis are probably just the
first harvest from the field of possibilities opened up by the LFB system. More extensive
transverse measurements, as well as beam-beam experiments with similar data recording,
are sure to bear fruit.

The initial ALS grow-damp experiments provided excellent illustrations of the fact that
the dynamics of hundreds of bunches can sometimes be represented by just a few indepen-
dent variables. The use of “modal” projections, in mathematical descriptions of Landau
damping and uneven-fill dynamics, is a direct consequence of the attempt to formalise this
concept.

A matrix-based method has been developed, for calculating the effect of bunch-to-bunch
tune shifts on coupled-bunch instabilities. It has more general applicability than the dis-
persion relation that is conventionally used to describe Landau damping, and is especially
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useful in situations where many even-fill modes are coupled to each other.

A related mathematical formalism, based on projections of beam motion onto even-
fill eigenmodes, has been used to simplify the uneven-fill instability problem. Uneven-fill
longitudinal dynamics have been explained in terms of two physical phenomena: modulation
coupling of strong even-fill eigenmodes (EFEMs) and Landau damping from fill-induced
interbunch tune sbreads. The former effect is also present in the transverse plane.

Based on the above-mentioned concepts, a simple, easily implementable algorithm has
been designed, for shaping fills to cure instabilities. The new uneven-fill cure has been
verified experimentally at the ALS, PEP-II and SPEAR.

The uneven-fill theory opens the door to further investigations of the stability of longi-
tudinal and transverse dipole modes and bunch shape oscillations.



Appendix A

Computer Programs for Data

Analysis

This appendix lists some of the MATLAB codes that have been used to analyse LFB system
data, and produce most of the figures shown in this thesis. The listings are preceded by
functional descriptions of the main programs, and some information that new users might
need, to use the programs effectively. The material presented here complements the tutorial
on data analysis codes prepared by D. Teytelman [102].

The main programs are synchp.m, Modes.m, PhasSpac.m, and sideband.m. Except for
PhasSpac.m, which must be executed after Modes .m, they all draw their data directly from
a file called gd.mat, which is in MATLAB's data format. The file contains the following
11 variables!: bunches, beamCurrent, damp_brkpt, downsamp, gains, phases, rf_freq,
ring_size, shift_gain, taps, and turn_offsets.

bunches is a matrix that contains the sampled oscillations of the bunches in the ring,
in units of ADC counts. Each column contains the signal of a single bunch, sampled once
every downsamp turns. The turn number of the initial sample of each bunch is stored in
the turn_offsets vector. rf_freq is the ADC sampling frequency, in MHz. If the LFB
system processes bunches with a minimum spacing of b buckets, then rf_freq = f,;/b, and
the harmonic number equals b x ring_size. The total beam current in mA is stored in
beamCurrent.

The grow-damp measurements involve switching to a new set of feedback parameters,

'More variables will be added soon, to accommodate the use of infinite impulse response (IIR) filters in
the feedback algorithm.
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and then returning to the original parameters. Data recording starts after the first switch,
and ends after the second. For example, in a typical grow-damp experiment, data recording
starts soon after feedback is switched off. The break point is the point in the data at which
negative feedback is restored.

damp_brkpt is the scaled break point. The gains and phases of the finite impulse re-
sponse (FIR) feedback filters are stored in gains and phases, and taps is the length of
the filter. shift_gain is the number of bits by which the DSP output is left-shifted, to
augment the filter gain.

A.1 synchp.m

The program synchp.m has been used to calculate bunch currents and synchronous phases
from the data in gd.mat (see Ch. 3). The program assumes that there is some low-frequency
motion that is common to all the bunches, in the frequency range from 0 to £CM. The variable
£CM is initialised in Recogn.m. This “motion” could come from power supply ripple in the
klystron, or from a small-amplitude external modulation of the LFB front end phase shifter.

The subprogram curr_mon.mcalculates and plots the average of the low-frequency bunch
spectra, from 0 to £CM. The user enters the number of frequencies in the plot that seem
to represent coherent bunch motion. The bunch signal amplitudes at these frequencies are
used to make an initial estimate of the bunch currents.

The earlier version of synchp.m calculated synchronous phases by dividing the mean
bunch signals by the product of the calibration (ADC counts per mA-deg) and the bunch
currents returned by curr_mon.m. The new version uses a more accurate method, based
on the fact that the average bunch signal is proportional to ik sin(H¢y), and not to iy,
where i and ¢; are the bunch current and synchronous phase (relative to the LFB phase
reference), respectively. H is the harmonic of f,, at which phase detection is performed. It
also takes into account the fact that the low-frequency signal amplitudes are proportional
to i; cos(H ¢y ), and not to ix. Phases are not calculated for bunches with detected currents
below a threshold that is fixed in synchp.m.

The program plots the bunch currents and synchronous phases. It also plots the averages
of the bunch signals, which help in identifying saturation of the ADC.

synchp.m works well only when:

— There is some power supply noise or external phase modulation on the bunch signal.
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The low-frequency motion should be small compared to the detection range of the
front end, but large enough to be detected above the noise floor.

— The FE_freq variable is set correctly in Recogn.m. FE_freq = H = (front end phase
detection frequency)/f;;.

— Themix_ofst (mixer offset) variable is set correctly in Recogn.m. mix_ofst = average
DSP signal of the empty buckets, in ADC counts.

- The calib variable is set correctly in Recogn.m. This is the front end calibration in
ADC counts per mA-deg@RF.

The subprogram synchTF.m is optionally called by synchp.m. It calculates and plots
the transfer function from bunch currents to synchronous phases, at all frequencies that
have a good signal-to-noise ratio. Please see Ch. 3 for equations describing the relation
between this transfer function and the beam impedance. Ch. 3 also describes conditions

under which the estimated impedance is believable.

A.2 Modes.m

Modes.m is used to perform modal analysis of recorded multi-bunch motion, and plot the
results. Figure 4.2 is an example of a figure generated by Modes .m.

The program starts by loading oscillation data, and initialising machine-specific pa-
rameters. The oscillation frequency fr_osc is then detected, by locating the peak of the
averaged bunch spectra. The bunch signals are converted to units of deg@RF, based on
the calibration stored in Recogn.m. Before changing units, the program looks for bunch
currents in a file called BunCurr.mat. If this file is not found, all of the sampled bunches
are assumed to have equal charge, for the purposes of unit conversion.

The signals are then passed through a band pass filter, to remove some of the noise.
The filter width is determined by variables initialised in Recogn.m. See the first few lines
of code in params.m, for the relation between the variables freq_ratio and delta_f, and
the width of the band pass filter. A smooth gaussian filter is employed, so as to minimise
transients at the beginning and end of the data record.

The bunch signals are also delayed by appropriate amounts, to compensate for the
sampling time offsets. For example, if bunch k is sampled on turn T} , and if bunch [ is
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sampled on turn T}, then signal of bunch k could be delayed by At = (T} — T + (| - k) /AT,
to simulate simultaneous sampling. Alignment of the sampling instants is necessary for
projecting the motion onto EFEMs. The delay is implemented by means of a Fourier-
domain phase shift that increases linearly with frequency. To compensate for aliasing,
transverse signals are given an additional phase shift w,AvAt, where Av is the difference
between the true and aliased fractional tunes.

Before projecting the motion onto the modal basis, the real bunch signals, which have
the form a cos(wt), are converted to complex signals of the form a e/“%, by means of a Hilbert
transform (see Eq. 5.3). The program then calculates and plots the evolution of the bunch
oscillation amplitudes, i.e., the oscillation envelopes. Modal projections are calculated by
taking the FFT (Fast Fourier Transform) of the vector of bunch oscillation coordinates, on
each turn?. We thus obtain the complex amplitude of all the EFEMs, on each turn. The
evolution of the magnitudes of the EFEMs is plotted next to the graph of bunch envelopes.

The program offers to fit exponentials to the portions of the modal transients before
and after the break point. If the offer is accepted, it prompts the user for the fit cutoff.
Exponential fits and growth rates are plotted for all modes whose amplitude exceeds the fit
cutoff. The user must set the cutoff at a level that is high enough to exclude modes in the
noise floor.

Note: The function used to fit the transients is not a simple exponential. Rather, it
is an exponential added in quadrature to a constant noise level. Thus, there are three fit

parameters - initial amplitude, growth rate, and noise amplitude.

A.2.1 checkfit.m

It is very important to visually check the quality of exponential fits, to make sure that
the calculated growth rates are believable. This can be done by executing checkfit.m
after Modes.m terminates. The checkfit program produces a two-dimensional graph of
the exponential fits, superimposed on the measured modal transients. It also prints the
calculated growth rates and rms fit errors to the command line. Clearly, the rates are
accurate only if the transients coincide with the fits.

Most commonly, the quality of the fits is affected by nonlinear effects, such as saturation
of feedback, or of the instability mechanism. The modal transient becomes non-exponential
as a result of such saturation. The solution is to move the break point, so that fits are

2The term “FFT" refers to a specific algorithm for implementing the DFT (Discrete Fourier Transform).
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only calculated to the small-amplitude portion of the transient, where the dynamics are
linear, and the evolution is exponential. After Modes .m has been executed (with or without
checkfit .m), the break point can be changed to sample number n by typing breakpt = n
at the command prompt. The user can then redo the fits before or after the break point by
typing modefitg or modefitd, respectively.

In short, exponential fits are valid only when oscillations are small, and the dynamics
are linear.

Transients that rise sharply out of the noise floor just before the break point sometimes
cause problems, because the fit routine may not have enough data to do a good job. In this
case, as in all other cases, the user must exercise discretion in judging the accuracy of the
fit, based on the results of checkfit.m.

The most subtle problems arise from the fact that uneven-fill eigenmodes are sometimes
very different from EFEMs. Thus, the FFTs performed by Modes.m do not in general
constitute a modal decomposition. In other words, the Fourier vectors are not necessarily
eigenvectors of uneven-fill motion, as explained in Ch. 7. Thus, a single “modal” transient
could actually be a superposition of two or more uneven-fill eigenmodes, which beat against
each other, and fail to evolve exponentially. In such cases, exponential fits can be misleading.

A.2.2 PhasSpac.m

The Modes program only displays the mode magnitudes, i.e., the absolute values of the
complex phase space coordinates of the modes. The evolution of the phase space angles of
the modes can be studied by executing PhasSpac .m after Modes .m has terminated.

The program first asks the user to specify the section of the transient that is to be
examined. Section 1 is the section before the break point, and section 2 is contains the
portion after the break point. The sizes of sections 1 and 2 can be changed by moving the
break point, as shown above. The user is then prompted for a vector containing the modes
of interest.

It would not be very helpful to plot the evolution of the phase space angles directly,
since the modes generally complete a revolution in phase space every few samples. Instead,
the program plots the normalised angles, which are calculated by subtracting the angle of a
fictitious reference mode (see Ch. 5). The reference mode oscillates exactly at the nominal
synchrotron or betatron frequency fr_osc, which is the frequency detected by Modes.m.

Analysis of longitudinal modes is simpler, since longitudinal tunes are not aliased by
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downsampling. Thus, a longitudinal reference mode is always an upper sideband, whose
angle evolves as 27 x fr_osc x t. However, in 50% of the cases, aliasing converts transverse
upper sidebands into lower sidebands. More precisely, aliasing inverts the sidebands when
the fractional tune lies between k/2D and (k+1)/2D, where D is the downsampling factor,
and k is an odd integer. When this happens, Modes .m detects the inversion and responds
by working with analytic signals of the form ae™7“*, so as to avert the confusion that
would be created if any mode | were to be mistaken for its counterpart mode —I. In such
cases, the transverse reference mode must be a lower sideband, whose angle evolves as
—2m x fr_osc x t.

PhasSpac.m prompts the user for the desired reference mode. An upper sideband can
be chosen by typing u, and a lower sideband by typing 1. Alternatively, the angles are
normalised by subtracting the angle transient of an actual, measured mode, that is chosen
as a reference mode. This can be done by entering the reference mode number, instead of
uor 1. The uses of this program are discussed in Ch. 5.

The plotted phase space angles sometimes have ripples at the beginning or end of the
data record. This happens because of transients from the band pass filtering performed
by Modes.m. If the transients are large enough to cause problems, the bandwidth of the
filter should be increased by changing the appropriate variable in Recogn.m. The variables
freq_ratio and delta_f control the widths of filters for longitudinal and transverse data,
respectively.

A.3 sideband.m

The program sideband.m is sometimes used as an alternative, or complement to Modes.m.
It useful when one needs to examine the beam spectrum. For example, Figs. 4.5 and 4.6
have been generated using sideband.m.

This program works on the same principle as an FFT analyser, which is a kind of
spectrum analyser. An FFT analyser samples and stores the incoming signal, and then
takes the FFT of sampled vectors, to calculate the beam spectrum. A typical FFT analyser
has a sampling rate in the region of 10 MHz. The processed vectors are roughly 10000
samples long, so the frequency resolution is of the order of 1 kHz, when the full frequency
span is used.

Data stored by the LFB system is sampled at 500 MHz. Since the data records are
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10~25-ms long, frequency resolutions of 100-40 Hz are achievable. Note: Downsampling
increases the frequency resolution that can be achieved, with a fixed amount of memory
space.

sideband.m first removes the DC component of each individual bunch signal, so that
revolution harmonics are suppressed in the spectrum. This is useful, because it is often
hard to distinguish between revolution harmonics and sidebands, in a conventional beam
spectrum.

The program then creates an “FFT-able” vector, i.e., a vector of continuous samples,
from the raw DSP data. This is done by upsampling the bunch data — to estimate the
bunch signals at each turn — and then laying the samples out in a continuous sequence, as
seen by a BPM. The interpolated samples are calculated using MATLAB's interp function.

The FFT of the above-mentioned vector is a beam spectrum with suppressed revolution
harmonics, also known as a beam pseudospectrum.

If steady state motion is recorded, it is useful to analyse the entire data record as a
single block. However, when analysing grow-damp data, it is useful to be able to look at
the spectrum of specific segments of the growing or damping transients. For this reason,
the program only calculates the pseudospectrum of the section of data specified by the user.
The user specifies a section by entering the starting sample number and the final sample
number. To analyse the entire data record, the user enters 1, for the starting number, and
M, for the final sample number. M is a variable in the workspace that contains the number
of samples per bunch, in the bunches matrix.

The pseudospectrum is plotted, together with the difference of upper and lower sideband
amplitudes at each revolution harmonic. The zoomed spectrum around the 8 revolution
harmonics with the largest sideband asymmetry is plotted on a separate figure. Presumably,
these 8 sidebands represent the most unstable modes.

A.3.1 Memory Limitations

Of all the data analysis programs described here, sideband.m requires the most memory
space. Consider a machine with h = 400, and D = 20. If the data record in gd .mat contains
M = 1000 samples of each bunch, then the size of the time domain vector of continuous
samples is D x M x h = 8 x 10%. Since MATLAB uses 8 bytes for each number, this
vector alone would require 64 MB of memory space. In addition, the program needs 64 MB
for the calculated spectrum, and a comparable amount of space for storing intermediate
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computation results.

In practice, it is advisable to use a computer with as much RAM as possible, and then
run sideband.mon a suitable subset of the data record. If the RAM capacity of the machine
is as low as 32 MB, it is sometimes tedious even to run Modes .m on data from large machines,
such as PEP-II. A capacity of 128 MB is generally sufficient, although it really helps to have
even more, when analysing PEP-II data.

A.4 Program Listings

EEEERERERREEKRRKEERRERRKERREREREREERE R R ER R RE RN TR R R R KRR R KRR RRE R R RR KK

% synchp.m

% Loads bunch data, removes turn offsets and calculates bunch
% currents and synchronous phases.

% Plots the currents, the averages of the bunch signals (check
% for ADC saturation), and the synchronous phases.

% Copyright 2000 by Shyam Prabhakar

clear

global bun_curr mb Io

loadgd

bemin = 0.1;

CALIB = calib+*160/pi; % Counts per mA-rad@rf

[bunches,M] = rmTrnOfst (bunches,turn_offsets,dovnsamp) ;
mbl = mean(bunches);

mb = (mbl - mix_ofst)*FE_freq/CALIB;

bunches = bunches - ones(M,1)=mbi;

curr_mon
scal = fmin(’curr_scal’,1,10, [0 1e-5]);
bun_curr = bun_curr/scal;
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synch_p = atan2(mb,bun_curr)*180/pi/FE_freq;
bun_curr = (mb.~2 + bun_curr."2).-0.5;
v = find(bun_curr<max(max(bun_curr)/10,bcmin) imb1>126 |mb1<-127);
if “isempty(v),
synch_p(v) = zeros(size(synch_p(v)));
end

figure(2), clf, orient tall
subplot(3,1,1), plot(0:N-1,bun_curr,’g’, 'linewidth’,1), grid on
ax = axis; ax(3)=0; axis(ax)
title([Dir ’: Bunch Current Monitor, Io=’ num2str(Io) ...
'mA’ ', nCM=’ num2str(round(nCM))])
ylabel(’'mA?’)

subplot(3,1,2), plot(0:N-1,mbl,’g’, ’linewidth’,1), grid on

ax = axis; ax(3) = max(ax(3),-128); ax(4) = min(ax(4),127); axis(ax);
title(’Averages of bunch signals’)

ylabel(’ADC counts’)

synch_pl = synch_p;
q.medflt = ’y’; med_win = 1;
vhile strcmp(q_medflt,’y’),
u = find(“synch_p1);
synch_pi(u) = NaN + synch_pi(u);
subplot(3,1,3), plot(0:N-1,synch_pi,’g’,’linewidth’,1), grid on
title(’Synchronous phase (relative to reference oscillator)’)
xlabel (’bunch number’), ylabel(osc_unit)
q.medflt = input(’Median filter synch_p? (y/n): ’,’s’);
if strcmp(q._medflt,’y’),
med_win = input(’Enter median filter window: ’);
synch_pl = med_flt(synch_p,med_win);
end

end
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synch_p = med_flt(synch_p,med_win);

bnum = find(mb1>126|mb1<-127)-1;
if size(bnum),
for j = 1:3,
subplot(3,1,j), hold on, ax = axis;
y = ax(3:4) 'sones(size (bnum)) ;
plt = plot(ones(2,1)sbnum,y,’~-.’,’linevidth’,0.25);
set(plt,’col’,[0.75 0 0])
end, end

q.TF = input(’Plot Tramsfer function? (y/n): ’,’s’);
if stremp(q.TF,’y’), synchTF, end
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% loadgd.m

% This program loads data from the file gd.mat, and does the
4 initial sorting and renaming of variables. Calls Recogn.m to
% initialise machine-specific parameters. Calls Reduce.m to
% reduce the "bunches" matrix to it’s smallest possible width.
% Automatically called at the start of Modes.m and synchp.m

% Copyright 2000 by Shyam Prabhakar

fprintf([’\n---- ’, pwd, ' ----\n’])
fprintf(’\nLoading and sorting by bunch no. ...\n’)

load gd

(Dir,Year] = getDir;
Recogn

M, N] = gjze(bunches);
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[R,C] = find(bunches == -1000 | bunches == 12345678);
if “isempty(R),
R = min(R); bunches(R:M,:) = [J; M = R-1;
end
lto = length(turn_offsets);
if N7 =lto,
if N<1lto,
fprintf(’\nWarning: turn_offsets has more columns than bunches\n’)
else
fprintf(’\nCAUTION!! bunches has more columns than turn_offsets\n’)
bunches(:,1to+1:N)=[]J; N = lto;

end, end

Reduce

{y,1l = gort (bunches(1,:));
bunches = bunches(2:M,I);

M = M-1;

Io = beamCurrent;

vhile Io <= 0, Io = input(’Enter estimated Io (in mA): ’'); end

breakpt = round(samples_per_bunchsdamp_brkpt/63);

if gains(2) == gains(1) & phases(2) == phases(1),
breakpt = M;

end

harm_no = ring_size/red_fact;

Frf rf_freq/red_factsle6;

fitrecord = [0 0]; PDpos = 0;

cnt

fsamp

clear beamCurrent damp_brkpt ring_size rf_freq lto Y I R C

ceil (harm_no/15);

Frf/harm_no/downsamp;

fa et L2 2T 22 2222 22 22222222 2222222222223 2222 2222222222222 2222222
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% getDir.m

4 Initialises Dir and Year for labeling and other

% purposes. Assumes that it is being called from a time-
% stamped directory of the form mmmddyy/tttt. For example,
% jan3098/1024.

% Copyright 2000 by Shyam Prabhakar

function [Dir,Year] = getDir

global New
str = pud;
lstr = length(str);

if New, fsep = filesep;
else, fsep = '/’;
end
fseppos = find(str==fgep);
fseppos2 = fseppos(length(fseppos));
strchk = str2num(str(fseppos2-2:fseppos2-1));
if isempty(strchk),
fsepposl = fseppos(length(fseppos)-2);
fseppos2 = fseppos(length(fseppos)-1);
else,
fsepposl = fseppos(length(fseppos)-1);
end
Dir = str(fsepposi+1:1str);
if nargout > 1,
Year = str(fseppos2-2:fseppos2-1);
Year = str2num(Year);
if isempty(Year),
Year = 999;

end, end
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% Recogn.m

4 Initialises a list of machine-specific parameters like
% calibration, data size, etc. Automatically called by Modes.m
% and synchp.m (via loadgd.m).

% Copyright 2000 by Shyam Prabhakar

if exist(’q_trans’)"=q,

q-trans = input(’Is this transverse data (y/n)?: ’,’s’);
end
if strcmp(q_trans,’y’),

if exist(’tun_guess’) =1,

tun_guess = input([’Enter estimate of fractiomal ’ ...
‘betatron tune: ’]);

end

tun_alias = fix(2stun_guesssdownsamp);

osc_unit = ’‘mm’;

else
tun_alias = 0Q;
osc_unit = ’degORF’;
end

fit_ord = 4; % Order of polynomial fits
FE_freq = 6; % Detection at 6e¢Frf

if ring_size == 328,

machine = ’ALS’;

calib = 7.88; % counts/mA/o8c_unit
%4 calidb = 21.2;

Uo = 134.1e3;

WIN_dflt = 30;

n_pts_1 = 30;
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n_pts_2 = 70;

samples_per_bunch = 1008;

if strcmp(q.trams,’y’),
delta_f = 3,5e3;
fCcM = 3e3;

else

freq_ratio = 1.2;

fCcM = 2.5e3;
end
mix_ofst = -16.5;

elseif ring_size == 280,
machine = 'SPEAR’;
calib = 8.5;

Uo 560e3;
WIN_dflt = 30;
n_pts_1 = 30;

n_pts_2 = 60;

samples_per_bunch = 2267;

if strcmp(q_trams,’y’),
delta_f = 4.5e3;
fCM = 300;

else

freq_ratio = 1.05;

fCM = 10e3;
end
mix_ofst = 0;

elseif ring_size == 1746,
WIN_dflt = 30;
n_pts_1 = 20;
n_pts_2 = 45;
if exist(’q.m’)"=1,
q.m = input(’Is this HER data (y/n)?: ’,’s’);
end
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h

if strcmp(q.m,’n’),

machine = 'PEP-II LER’;
Uo = T770e3;
samples_per_bunch = 610;
if strcmp(q_tranms,’y’),

delta_f = 2e3;

£CM = 800;

calib 280.6; % cnts/mA-mm
else

freq_ratio = 1.3;

fCM = 2e3;
calib = 8.9;
end
mix_ofst = -4;

else

machine = 'PEP-II HER’;
Uo = 3,.58e6;
samples_per_bunch = 661;
if strcmp(q_tranms,’y’),
delta_f = 2e3;

fCM = 800;

calib = 280.6; 4 cnts/mA-mm

calib = 280.6/sqrt(10); % 10 dB pad
else

freq_ratio = 1.2;

fCM = 3e3;
calidb = 16.06;
end
mix_ofst = -4;

end

elseif ring_size == 120,

machine = 'DAFNE’;
calib = 1.166;
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Uo 134.1e3; %To be changed later
WIN_dflt = 20;
n_pts_1 = 200;
n_pts_2 = 300;

samples_per_bunch = 4032;
if strcmp(q.trans,’y’),
% Filter bandwidth for TRANSV, default = 6e3
delta_£f = 6e3;
fCM = 300;
else
% Filter freq_ratio for LONG = f_high/fsynch = fsynch/f_low

freq_ratio = 1.1;

fCM = 10e3;
end
mix_ofst = 0;

elseif ring_size == 468,
machine = ’PLS’;
calib = 11.02;

Uo 223e3;
WIN_dflt = 30;
n_pts_1 = 30;
n_pts_2 = 60;

samples_per_bunch = 1763;
if strcmp(q_trams,’y’),
delta_f = 3ed;
fCcM = 300;
else
freq_ratio = 1.3;

fCM = Je3;
end
mix_ofst = 0;

elseif ring_size == 400,
machine = ’BESSY II’;
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calib = 13.4; %sk)% to be changed later
Uo = 900e3; %sk¥% check the log files
WIN_dflt = 30;

n_pts_1 = 30;

n_pts_2 = 60;

samples_per_bunch = 1588;
if strcmp(q_tranms,’y’),
delta_f = 3Je3;

fCM = 300;
else

freq_ratio = 1.3;

£CM = le3;
end
mix_ofst =0;

else

machine = ’?77777;
calib = 15;
Uo = 150e3;
WIN_dflt = 30;
n_pts_.1 = 30;
n_pts_2 = 45;

samples_per_bunch = 1e3;
if strcmp(q_trams,’y’),

delta_f = 6ed;

£CM = 300;
else

freq_ratio = 1.3;

fCM = 2e3;
end
mix_ofst = 0;
end

fprintf ([’ \nRecognised ' machine ’ ring\n’])
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% Reduce.m

% Reduce size of "bunches" matrix. Example: If every 4th bucket is
% filled and the fill starts at bucket 3, the user can select

% bunches 3, 7, 11, 15, ... by entering a downsampling factor of

% 4 and a starting bucket number of 3 at the prompts. Automatically
% called by synchp.m and Modes.m (via loadgd.m).

% Copyright 2000 by Shyam Prabhakar

if exist(’r_inp’) =1,
r_inp = input(’Downsample columns of ’’bunches’’ ? (y/n): ?,’s?);
end
if stremp(r_inp,’y’),
if exist(’red_fact’)"=1,
red_fact = ring_size + 1;
while rem(ring_size,red_fact),
red_fact = input(’Enter the reduction factor: ’);
red_fact = round(red_fact);
end
else
if rem(ring_size,red_fact), error(’Illegal bunch spacing!!!’), end
end
if exist(’red_start’) =1,
red_start = input(’Starting bucket# (1st bucket = #1): ’);
end
red_start = rem(red_start-1,red_fact) + 1;

bnums = bunches(l,:);
bnumDS = red_start:red_fact:max(bnums);
bnumidx = find(rem(bnums-red_start,red_fact)==0);

if max(size(bnumidx)) < max(size(bnumDS)),
error(’Some of the desired buckets are not sampled!!!’);
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end
bunches = bunches(:,bnumidx) ;
turn_offsets = turn_offsets(bnumDS);
N = max(size(bnumidx)) ;
else
red_fact = 1;
end
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% rmTrnOfst.m

% Removes the sampling time offsets between the bunches, using

% filters that implement the appropriate fractional sample delay.
% The sampling time offsets are in the turn offsets vector "to".
% Does not take aliasing of transverse data into account.

% Copyright 2000 by Shyam Prabhakar

function {bunches,M] = rmTrnOfst(bunches,to,D)

% Realign all the samples so that each bunch is sampled at turn D-1
% There will be an error if max(fix_to) > 2sl

fprintf (’\nInterpolating and resampling data ...\n’)

M,N] = gize(bunches);
1 = 4;
alpha = .5;

select = zeros(M,1);
extrapol = zeros(M+2sl,1);
resamp = zeros(M+2sl,1);

sl = toeplitz(0:1-1) + eps;
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82 hankel (2#1-1:-1:1);

s2p = hankel([1:1-1 0]);

82 = 52 + eps + 82p(1:-1:1,1:-1:1);
sl = sin(alphaspissl)./(alphaspi*sl);
82 = sin(alphaspi®s2)./(alphaspi*s2);
ap = sl + s2;

am = s1 - 82;

ap = inv(ap);

am = inv(am);

d = zeros(2sl,1);

d(1:2:2¢1-1,:) = ap + am;

d(2:2:2+1,:) = ap - am;

x = (0:D-1)/D;

y = zeros(2sl,1);

y(1:2:291-1) = (1:-1:1);

y(2:2:2s1) = (1-1:-1:0);

X1 = ones(2s1,1);

X1(1:2:2%1-1) = -ones(1,1);

XX = eps + ysones(1,D) + Xisx;

y =1X1+y+ eps;

h = .5«d’«(sin(pisalpha*XX)./(alphaspisXX));
b = zeros(2s1lsD+1,1);

b(1:1sD) = h’;

b(1lsD+1) = .5#d(:,1)’s(sin(pivalphasy)./(pisalphasy));
b(1sD+2:2+1%D+1) = b(1leD:-1:1);

b = b(1:2+1sD); % Since b(21D+1)=0. Be careful about indices now!

rem_to = rem(to,D);

fix_to = floor(to/D);

for k = 1:N,
select = bunches(:,k);
uppr_extrap = 2sselect(l) - select(l+1:-1:2);
lur_extrap = 2#select(M) - select(M-1:~1:M-1);
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extrapol = [uppr_extrap; select; lur_extrap];

interp_filt = b(D-rem_to(k):D:2s1sD);

resamp

bunches(: ,k)
end

filter(interp_filt,1,extrapol);
resamp( (2+1+1:2¢1+M)-fix_to(k));

bunches(M-1:M,:) = [];
M= M-2;
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% curr_mon.m

% Automatically called by synchp.m. Estimates bunch currents
% by looking at the amplitudes of line harmonics (harmonics of
% 60 Hz/50 Hz), or low-frequency phase shifter modulation in
% the data.

% Copyright 2000 by Shyam Prabhakar

len = 2-(ceil(log(M)/log(2)));
bunff = fft(bunches,len);

freq = (0:1len-1)/lensfsamp;

u = find(freq<fCM) ;

lenu = length(u);

sbunff = gum(bunff(u,:)’);
sbunff(1:5) = zeros(i,5);

asbunff = abg(sbunff);

figure(1), cif

plot(freq(u) ,asbunff,’g’), grid on

xlabel(’Freq (Hz)’), ylabel(’Arb. units’)
axis([min(freq(u)) max(freq(u)) O 1.2smax(asbunff)+eps])
title([Dir ’: Averaged Bunch Signal Spectrum’])
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(srt,vl] = sort(asbunff);
ansCM =ty
while strcmp(ansCM,’y’),

nCM = input(’Enter no. of freq.s for CM: ’);

if isempty(nCM)|"nCM, nCM = 1; end

v = vi(lenu-nCM+1:lenu);

hold on, plot(freq(v),asbunff(v),’ro’)

drawnow

ansCM = input(’Change no. of freq.s? (y/n): ’,’s’);

if strcmp(ansCM,’y’),
ch = get(gca,’children’); delete(ch(1))

end, end
bun_curr = real (sbunff(v)sbunff(v,:));
u = find(bun_curr<0);

bun_curr(u) = zeros(size(u));

bun_curr = bun_currs(Io/sum(bun_curr));
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h curr_scal.m - calculates the error, for a given current scaling.
% Copyright 2000 by Shyam Prabhakar

function y = curr_scal(k),
global bun_curr mb Io

y = abs(sum((mb.~2 + (bun_curr/k).~2).-0.5) - Io);
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% med_flt.m - performs median filtering on the input x.

% Copyright 2000 by Shyam Prabhakar
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function y = med_f1lt(x,win)

(M,N] = size(x);
len = max(M,N);
halfwin = fix((win-1)/2);
if “halfwin | len<win,
y=x;
else
if min(M,N)" =1,
error(’Check size of input to med_flt!!’)
end
x = x(:);
extendl = ones(halfwin,1)*x(1);
extend2 = ones(halfwin,1)sx(len);

X

y
for j=1:len,

[extendl;x;extend2] ;

zeros(M,N);

y(j) = median(x(j:j+2+halfwin));
end

end
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% synchTF.m

% Called by synchp.m. Calculates and plots transfer function
% from bunch currents to synchronous phases (aliased impedance
% at revolution harmonics), at all frequencies that seem to

% have a good signal-to-noise ratio. The "clean" revolution

% harmonics are determined on the line "vIF = find(....);".

% Copyright 2000 by Shyam Prabhakar
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x = [bun_curr bun_curr(N)sones(1,harm_no-N)]1;
x = x-mean(x);

y = [synch_p synch_p(N)*ones(1,harm_no-N)];
y = y-mean(y);

N1 = harm_no;

fftx = fft(x);

ffty = fft(y);

N2 = floor(harm_no/2) + 1;
vTF = find(abs(£f£ftx(1:N2))>N1/50 | abs(££ty(1:N2))>N1/5);
TF = ffty./fftx;

[xxx,u] = max(abs(fftx));
if real(TF(u)<0), TF = -TF; end
TFab = abs(TF);

figure(3), clf
if “isempty(vTF),
plot(vTF-1,TFab(vTF),’g’), grid on, hold on
plot(vTF-1,TFab(vTF),’ms’), hold off
title([Dir ’: Transfer Function (synch_p/bun_curr)’])
xlabel (’Revolution harmonic’), ylabel(’deg@RF/mA’)
axis([0 5+ceil ((max(vTF)-1)/5) 0 5#ceil(max(TFab(vTF))/5)]1)
MOhm = input(’Display TF in MOhm instead of deg/mA (y/n)? ’,’s’);
if strcmp(MOhm,’y’),
Vc = input(’Enter total cavity voltage in MV: ’);
Vc = le6sVc;
Vecc = sqrt(Ve~2-Uo"2);
Zn = TFab*pi/180*1e3sVcc/harm_no/1e6;
plot(vIF-1,Zn(vTF),’g’), grid on, hold on
plot(vTF-1,Zn(vTF), 'ms’), hold off
title([Dir ’: Aliased longitudinal impedance’])
xlabel ('Revolution harmonic (n)’), ylabel(’|Z_ni  (MOhm)’)
axis([0 S5+ceil ((max(vTF)-1)/5) O 1.3*max(Zn(vTF))])
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end, end
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% Modes.m

% This program loads longitudinal oscillation data, filters it to

% remove some of the noise, removes the offsets in the sampling times
% of the bunches, plots the oscillation envelopes of the bunches,

% plots the strengths of modes as a function of time, and fits

% growing/ damping exponentials to the largest modal transients (so
% as to estimate growth/damping rates).

% Last revision: Mar 25 1997.

% Revision on July 22 1998: Hilbert transform of bunch transients added

A to remove folding of modal spectrum about f_bunch/2. FltOfstHil
% created to perform hilbert transform, filter data, remove samp. time
% offsets and compensate for aliasing of transverse data due to
% downsampling.

% Copyright 2000 by Shyam Prabhakar
%

clear

global mode_f N fsamp mmm New Npts osc_unit

Ver
loadgd
findFs, params, FltOfstHil

if exist(’q_timdom’)"=1,
q.timdom = input(’Plot bunch envelopes in time domain (y/n)? ’,’s’);
end

if strcmp(q_timdom,’y’), bunenv, end
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if N < harm_no, bunches(1,harm_no) = 0; N = harm_no; end

fprintf(’\nCalculating modal strengths ...\n’)

if N>1,
mode_ff = 1/nbun*fft(bunches.’).’;
else
mode_ff = 1/nbunsbunches;
end
Npts = N;
mode_f£ = abs(mode_f£f(:,1:Npts));

fprintf(’\nPlotting results ...\n’)
waterplot1(M,ceil(M/n_pts_2))

drawnow

modes_to_fit = O:Npts-1;
if exist(’qfitg’) =1,

qfitg = input ('Fit exponentials to modes before breakpoint (y/n)? ’,’s’);
end
if stremp(qfitg,’y’), modefitg, end
if exist(’qfitd’)"=1,

qfitd = input('Fit exponentials to modes after breakpoint (y/n)? ’,’s’);
end

if strcmp(qfitd,’y’), modefitd, end

fprintf(’\n’)
ParmDisp
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% Ver.m

% Executes MATLAB commands specific to the version of MATLAB that
% is being used (for compatibility with old and new versioms).
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% WARNING: MATLAB 5.2 has better hidden line removal in most

% cases, but it sometimes takes much longer to execute than

% MATLAB 4.2. The fully fulled PEP-II ring is an extreme example
% of execution time. Smaller rings may not have this problem.

% Ver.m is automatically called by Modes.m, etc. where reqd.

% Copyright 2000 by Shyam Prabhakar

VER = version;
str2num(VER(1)) > 4;
get (0, 'children’);
if New&isempty(ch),

New
ch

eval(’colordef none’),
figure(1), clf
else
figure(1), clf
end
set(1, ’DefaultTextFontsize’, 11, ’DefaultAxesFontsize’, 11,
‘name’, ' MODES’, ’DefaultPatchErasemode’, ’background’)
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% findFs.m - finds the synchrotron/betatron frequency.
% Copyright 2000 by Shyam Prabhakar

len = 2~ (ceil(log(M)/log(2)));

bunches = bunches - ones(M,1)emean(bunches);
bunches = fft(bunches,len);

sum_bunches = abs(bunches)sones(N,1);

freq = (0:len-1)/lensfsamp;

f_idx = find(freq<fCM | freq>fsamp/2);
sum_bunches(f_idx) = zeros(size(f_idx));
(sbffmax,maxidx] = max(sum_bunches);
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fr_osc = round(freq(maxidx));
fprintf([’\nThe oscillation frequency is ’ num2str(fr_osc) ’ Hz.\n'])
if exist(’fs_corr’) =1,
fs_corr = input(’Is the estimate of oscill. freq. correct? (y/m): ’,’s’);
if strcmp(fs_corr,’n’),
fr_osc = input(’Enter your estimate of oscill. freq. in Hz: *);
end
else
if strcmp(fs_corr,’n’),
fr_osc = fr_oscl;
fprintf(’\nThe corrected oscillation frequency is ’)
fprintf([num2str(fr_osc) ’ Hz.\n’])
end

end

***********************#********************************#********t*********

% params.m

% Sets band pass filter width, according to parameters created
% by Recogn.m. Uses front end calibration and beam/bunch current
% information to change units of oscillations from counts to

% deg@RF or mm. The variable nbun should be set to the proper

% value in case of a bunch train fill. The nominal value for

% nbun is N, the number of columns in the "bunches" data

% matrix. If a bunch train fill is analysed without entering

% the correct value of nbun, the change of units will introduce
% a scale factor of N/nbun in the calculated oscillation

% amplitudes. Automatically called by Modes.m, etc.

o~

Copyright 2000 by Shyam Prabhakar

% Set bandpass filter cutoffs
if strcmp(q_trams,'’y’),
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flt_low_freq = fr_osc - delta_f/2;
flt_high_freq = fr_osc + delta_f/2;
else
flt_low_freq = fr_oscs(2-freq_ratio);
flt_high_freq = fr_osc*freq_ratio;
end

nbun = N; % Change this if fewer than N buckets are filled ++++++<<<<<<

% Change units of ’bunches’ from counts to osc_units
if exist(’BunCurr.mat’),
load BunCurr
Ncurr = size(bun_curr,2);
if Ncurr == N,
fprintf(’\nUsing Current Monitor Result to Scale DSP Signals !!\n’)
bec

ubc

bun_curr;
find(bun_curr<.12);
bc(ubc) = .12sones(size(ubc));
count2deg = 1./(bcecalib);

M1

bunches = (ones(M1,1)scount2deg) .*bunches;

size(bunches,1);

else
fprintf (’\nCurrent monitor result has wrong size (igmore)!!\n’)
count2deg = 1/(Ioscalib/nbun);
bunches = count2degsbunches;
end
else
count2deg = 1/(Io*calib/nbun);
bunches = count2deg*bunches;
end

FEEREXEXREEREEERERREEEEEEEREEEEERERRER AR RERERRERRRERREXRREXERKARREERRRERKEKEK

% FltOfstHil.m
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% This program £

ilters bunch signals, and removes sampling time

% offsets by adding the appropriate phase shift in the frequency
% domain. The bunch data are converted from real signals to

% analytic signals by means of a hilbert transform.

% Copyright 2000 by Shyam Prabhakar

fprintf((’\nFiltering signals, performing hilb. transf.,’ ..

' removing samp. time offsets...\n’])

center_freql =
center_freq2 =
delta_f_by2 =

Freq . =
H =
flt_mask =
[mx,u_cent_£f] =
flt_mask =
f_len =
hil_mask =
n_smooth =
n_smby?2 =
n_smooth =

if n_smooth > 1
idx1
vecl
idx1
if rem(len,2),
idx2
vec2
idx2
else

(f1t_low_freq+flt_high_freq)/2; Y% Same as fr_osc
fsamp - center_freql;
(f1t_high_freq-flt_low_freq)/2;
(0:len-1)/lensfsamp;
exp(-(Freq-center_freql)."~2/(2sdelta_f_by2-2));
H + exp(-(Freq-center_freq2).-2/(2sdelta_f_by2-2));
max(H) ;
flt_mask/flt_mask(u_cent_f);

fix((len-1)/2);

[1 2+ones(1,f_len) ones(1,1-rem(len,2)) zeros(1,f_len)];
ceil(len/30);
floor(n_smooth/2);

2*n_smby2+1;
& len > 2sn_smooth,

= -n_smby2:n_smby2;

= 1 + sin(pi/2+idx1/(n_smby2+1));

= rem(len+idxl,len)+1;

= -n_smby2:n_smby2-1;
= 1 + fliplr(sin(pi/2¢(idx2+.5)/n_smby2));
= f_len + 2 + idx2;
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vec2 = fliplr(vecl);
idx2 = f_len + 2 + (-n_smby2:n_smby2);
end
hil_mask(idxl) = vecl;
hil_mask(idx2) = vec?2;
end

if rem(tun_alias,2), hil_mask = 2 - hil_mask; end

flt_hil_mask = flt_mask.shil_mask;

nadv = max(turn_offsets(1:N)) - turn_offsets(1:N);
nadv = nadv + (N-1:-1:0)°/N;

Tadv = nadv’sharm_no/Frf;

omeg = zeros(l,len+1);

ceil(len/2);
2spis(Freq(1:idx_max) +
(-1)"tun_alias*ceil (tun_alias/2)*fsamp);

idx_max

omeg(1:idx_max)

omeg = omeg - fliplr(omeg);

omeg(len+1) = [];

bunches = bunches.*(f1t_hil_mask.’»*ones(1,N)).*exp(i*omeg’»Tadv);
bunches = ifft(bunches);

bunches([1:15 M-14:1en],:) = [];

M = M-30;
breakpt = max(breakpt-15,1);
breakpt = min(breakpt,M);

EEXEEXREEEEREEEXEEERXRRERREERRREERRERXRERREEREEERREREBREERREERXE R ERR KR KL R KR

% bunenv.m - calculate and plot envelopes of bunch
% oscillations.

% Copyright 2000 by Shyam Prabhakar
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fprintf(’\nCalculating envelopes of bunch oscillations ...\n’)

WIN = fsamp/fr_osc;

WIN = round (round (WIN_df1t/WIN) sWIN);
if “WIN, WIN = WIN_dflt; end

WIN = ceil(WIN/10);

decim = ceil(M/n_pts_1);
env = zeros(fix((M-WIN)/decim)+1,nbun);

mean_vec = ones(1,WIN)/WIN;

for j = 1:decim:M-WIN+1,

bun_squared = abs(bunches(j:j+WIN-1,1:nbun))."~2;
env((j-1)/decim+1,:) = sqrt(mean_vecsbun_squared);
end

t_env = (0:decim:(M-WIN))sle3/fsamp;
fprintf(’\nPlotting results ...\n’)

figure(1l), subplot(3,2,1), hold off

vaterfall(t_env, 1:nbun, env’),grid on

axis([0 max(t_env) 1 nbun+(nbun==1) 0 max(max(env))+eps])
ylabel(’Bunch No.’), xlabel(’Time (ms)'’), zlabel(osc_unit)
title(’a) Osc. Envelopes in Time Domain’)

drawnow ‘
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% vaterploti.m - creates a 3-D plot of the evolution of the
% mode amplitudes.

% Copyright 2000 by Shyam Prabhakar
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function waterplotl(max_samp,decim)
global mode_f N fsamp mmm New Npts osc_unit

mode_£1 = mode_f(decim:decim:max_samp,1:Npts);
{m,n] = gize(mode_f1);

X = 0:n-1;

Y = decims1e3/fsamp*(1:m);

mm = max(mode_£1) ;

mmm = max(mm) ;

mmi = mm;

dn = ceil(n/30);

mml(l:dn:n) = 3*smmmsones(size(mm1(1:dn:n)));
medmm?2 = 2smedian(mm) ;
v = find (mmi>medmm?) ;

figure(1), subplot(3,2,2), reset(gca)
waterfall(Y,X(v),mode_£1(:,v).’)
axis ([0 max(Y) O n-1+(n==1) 0 mmm])
grid on, ylabel(’Mode No.’), xlabel(’Time (ms)’), zlabel(osc_unit)
title(’b) Evolution of Modes’)
if “New,
drawnow
ch = get(gca,’children’);
chidx = fliplr(length(v) - find(mm(v)>medmm2) +1);
fc = get(gca,’color’);
if strcmp(fc,’none’), fc = get(gcf,’color’); end
set(ch(chidx), 'face’,fc)
end

REEEEXEXXEERERERKEEAREREERRXRREEREREEERRREEEREXEEEEEEERER KRR R AR KRR RRRER XXX K

% modefitg.m
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% This program fits exponentials to modal transients that grow

% larger than the fit cutoff typed in by the user. Only the section
% of the transients before the break point is used for calculating

4 the fit. Fits and growth rates are plotted by calling plotfit.m.

% Copyright 2000 by Shyam Prabhakar

global mode_f N fsamp strength t
fit_type = ’exp’; q.cutoff = 'y’;

fprintf(’\nFitting exponentials to modes before breakpoint ...\n')

[M,N] = size(mode_f);

u = (1:2:min(M,breakpts(1-(Year>93&kYear<96)/9)))’;
lenu = length(u);
t = (u-min(u))/fsamp*1000; % 't(in millisec.)!!

option2 = [0 ie-4 lenu=sie-8 zeros(1,10) 1100];
optionl = [0 1e-2 lenusie-5 zeros(1,10) 400];
10/mmm;

Scale

while strcemp(q_cutoff,’y’) & lenu > 2,

fit_cutof = Scalesinput([’Enter fit cutoff in ’ osc_unit ’: ’]);
grate = zeros(1,Npts);

fit = zeros(lenu,Npts);

RMS = zeros(1,Npts);

Noyz_flr = zeros(1,Npts);
modnumg = [];
fprintf(’\n’)
for j=modes_to_fit+i,
strength = Scalesmode_£f(u,j);
if max(strength) > fit_cutof,
modnumg = [modnumg j];
check = fmins(’£1’,({.3 .01sScale],option2);

142
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x0 = [check .0O1sScale];
sol = fmins(’£2’,x0,option2);
fit(:,j) = gqrt(s0l(3) “2+s01(2) “2sexp(2+s01(1)*t))/Scale;
grate(j) = gol(1); RMS(j) = sqrt(f2(sol)/lenu)/Scale;
Noyz_£f1r(j) = abs(s01(3))/Scale;

end

if floor(j/cnt)==j/cnt, fprintf([’j=’,num2str(j),’ ’]), end
end
fprintf(’\n’)
if “isempty(modnumg), fitrecord(1) = 1; plotfit, end

fprintf ([’\nPresent fit cutoff is ’ num2str(fit_cutof/Scale) ...
osc_unit ’\n’])

q-cutoff = input(’Change the fit cutoff (y/n)? ’,’s’);
end

if lenu <= 2, fprintf(’\nNot enough data before breakpoint’), end

if exist(’Txhdl’) & PDpos “= 3,
if PDpos == 1, set(Txhdl, ’erasemode’,’normal’), delete(Txhdl), end

ParmDisp
end
ug = u;
rateg = grate(modnumg) ;
fitg = fit(:,modnumg) ;
RMSg = RMS(modnumg) ;

Nyz_flrg = Noyz_flr(modnumg) ;
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% modefitd.m

% This program fits exponentials to modal transients that grow
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the fit cutoff typed in by the user. Only the section

% of the transients after the break point is used for calculating

% the fit. Fits and damping rates are plotted by calling plotfit.m.

% Copyright 2000 by Shyam Prabhakar

global mode_f

N fsamp strength t

fit_type = ’exp’; q.cutoff = ’y’;

fprintf(’\nFitting exponentials to modes after breakpoint ...\n’)

[(M,N] = size(mode_f);
u = (min(M,breakpt):2:M)’;
lenu = length(u);

t

(u~min(u))/fsamp*1000; % ''(in millisec.)!!

option2 = [0 1e-4 lenu*le-8 zeros(1,10) 1100];
optionl = [0 1e-2 lenusle-5 zeros(1,10) 400];
Scale = 10/mmm;

vhile strcmp(q.cutoff,’y’) & lenu > 2,

fit_cutof =

grate =
fit =
RMS =
Noyz_flr =
modnumd =
fprintf(’\n’

Scalesinput( [’Enter fit cutoff in ’ osc_unit ’: ']);
zeros(1,Npts);

zeros(lenu,Npts);

zeros(1,Npts) ;

zeros(1,Npts);

a;

)

for j=modes_to_fit+l,
strength = Scalesmode_f(u,j);
if max(strength) > fit_cutof,

modnumd

check
x0

= [modnumd jl;
= fmins(’£1’,[-.3 .01sScale],option2);
= [check .01¢Scale];
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sol = fmins(’f2’,x0,option2);
£fit(:,j) = gqrt(sol(3) “2+801(2) “2sexp(2+801(1)st))/Scale;
grate(j) = g01(1); RMS(j) = sqrt(£2(sol)/lenu)/Scale;
Noyz_£flr(j) = abs(sol(3))/Scale;

end

if floor(j/cnt)==j/cat, fprintf([’j=’,num2str(j),’ °’]), end
end
fprintf(’\n’)
if ~“isempty(modnumd), fitrecord(2) = 1i; plotfit, end

fprintf([’\nPresent fit cutoff is ’ num2str(fit_cutof/Scale) ...
osc_unit ’\n’])

q-cutoff = input(’Change the fit cutoff (y/n)? ’,’'s’);
end

if lenu <= 2, fprintf(’\nNot enough data after breakpoint’), end

if exist(’Txhdl’) & PDpos "= 1,
if PDpos == 2, set(Txhdl,'’erasemode’, ’normal’), delete(Txhdl), end
ParmDisp

end

ud = u;

rated = grate(modnumd) ;
fitd = fit(:,modnumd);
RMSd = RMS (modnumd) ;
Nyz_flrd = Noyz_£f1r (modnumd);
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% fi.m

% Calculates the error between the modal transient and the
% exponential fit.
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% Copyright 2000 by Shyam Prabhakar

function y = f1(x);
global strength t

f = x(2)sexp(x(1)st) - strength;
y = £=f;
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% £2.m

% Calculates the error between the modal transient and the
% (exponential + noise floor) fit.

% Copyright 2000 by Shyam Prabhakar

function y = £2(x);
global strength t

f = sqrt(x(3)"2+x(2) “2»exp(2#x(1)st)) - strength;
y = f'sf;

EXREEREERXRRERRRERRERRA XX ERRREEEEXRRERARRRERERRERERRE KRR RERRERRERXEEERE KRR

% plotfit.m

% Calls waterplot2.m or waterplot3.m to plot the exponential
% fits to the modal transients, and plots the calculated

% growth rates or damping rates.

% Copyright 2000 by Shyam Prabhakar

fprintf(’\nPlotting fit ...\n’)
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figure(1)

X = O:Npts-1;

if max(u) <= breakpt,
waterplot2
subplot(3,2,4) ,hold off

else

waterplot3d

subplot(3,2,6) ,hold off

end :

lv = length(v);

gg = [zeros(1,lv) grate(v) NaNszeros(1,1lv)];
v = [vvv];

[w,j] = sort(w);

plot(X(w),gg(j),’r’), grid on, hold on
plot(X(v),grate(v),’go’), hold off

set(gca, 'fontsize’,11)

xlabel(’Mode No.'’)

ylabel(’Rate (1/ms)’)

axis([0 length(grate) 1.2+min(grate) 1.2smax(grate)+eps])
if max(u) <= breakpt,

title(’ d) Growth Rates (pre-brkpt)’)
else

title(’ f) Growth Rates (post-brkpt)’)
end
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% waterplot2.m

% Creates 3-D plot of expomential fits to modes before the
% break point.
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% Copyright 2000 by Shyam Prabhakar

decim = ceil(lenu/30);

Y = 2e¢3/fsamp*(1:decim:lenu); % time in ms

fitl = fit(l:decim:lenu,:);

mf = max(fitl);

mmf = max(mf);

v = [1 find(mf)];

X1 = X(1:ceil(Npts/40) :Npts);

Y1 = 2e3/fsamp*([1 lenu/2 lenu];

21 = eps*([1:length(X1)]’#[1 1 1] + ones(length(X1),1)*[1:3]);

figure(l), subplot(3,2,3), reset(gca)
waterfall(Y1,X1,Z1), hold on
vaterfall(Y,X(v),fit1(:,v).’), hold off, v(1) = [];
axis([0 max(Y) O max(X) O mmf])
grid on, ylabel(’Mode No.’), xlabel(’Time (ms)’), zlabel(osc_unit)
title(’c) Exp. Fit to Modes (pre-brkpt)’)
if “New,
drawnow
ch = get(gca,’children’);
fc = get(gca, ’color’);
if strcmp(fc,’none’), fc = get(gcf,’color’); end
set(ch(i:length(v)),'face’,fc)
end

EXRXRRRREREERRREREERRRREEXSERRERERERRRERREERRRRERERKER KRR KRR RERERRERRERERERK

% waterplot3.m

% Creates 3-D plot of exponential fits to modes after the
% break point.

% Copyright 2000 by Shyam Prabhakar
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decim = ceil(lenu/30);

Y = le3/fsamp*(breakpt+4) + 2e3/fsamp*(1:decim:lenu);

fitt = fit(1l:decim:lenu,:);

mf = max(fitl);

mmf = max(mf);

v = [1 find(mf)];

X1 = X(1:ceil(Npts/40) :Npts);

Y1 = le3/fsamp*(breakpt+4) + 2e3/fsamp*(1 lenu/2 lenu];

21 = eps*([1:length(X1)]’s[1 1 1] + ones(length(X1),1)*[1:3]);

figure(1), subplot(3,2,5), reset(gca)
waterfall(Y1,X1,21), hold on
vaterfall(Y,X(v),fit1(:,v).*), hold off, v(1) = [J;
axis({min(Y) max(Y) 0 max(X) O mmf])
grid on, ylabel(’Mode No.’), xlabel(’'Time (ms)’), zlabel(osc_unit)
title(’e) Exp. Fit to Modes (post-brkpt)’)
if “New,
dravnow
ch = get(gca,’children’);
fc = get(gca,’color’);
if strcmp(fc,’none’), fc = get(gcf,’color’); end
set(ch(1l:length(v)), 'face’,fc)
end
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% ParmDisp.m - displays relevant parameters at figure bottom
h Copyright 2000 by Shyam Prabhakar
strl = [machine '/’ Dir ’: Io= ' num2str(Io) 'mA’ ', Dsamp= ' ...

num2str(dovnsamp) ’, ShifGain= ’ num2str(shift_gain)
', Nbun= ’ pum2str(nbumn), ’,’'];
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str2 = [’Gainl= ' num2str(gains(2))
', Gain2= ’ num2str(gains(1))
’, Phasel= ' num2str(phases(2))
', Phase2= ’ num2str(phases(1))
', Brkpt= ’ num2str(breakpt) -
’, Calib= ’ num2str(calib) ’.’];

figure(l)
pos_figl = get(1,’position’);
vidth = pos_£igl(3);

height = pos_fig1(4);

if fitrecord(2), subplot(326), PDpos = 3;
elseif fitrecord(l), subplot(324), PDpos = 2;
else subplot(322), PDpos = 1;

end

ax_posn = get(gca,’position’);
ax_X = widthsax_posn(1);
ax_Y

height*ax_posn(2) ;

TxtX = .5swidth - ax_X;
TxtYl = -40;

TxtY2 = TxtY1l - 14;
Txhdl = le3sones(1,2);

Txhd1(1) = text(TxtX, TxtY1, stri, ’color’, ’'g’, ’fontweight’, ...

’demi’, ’units’, ’pixels’, 'horizontalalignment’, ...
’center’, ’erasemode’, ’xor’);

Txhd1(2) = text(TxtX, TxtY2, str2, ’'color’, ’'g’, ’fontweight’, ...

'demi’, ’units’, ’pixels’, ’'horizontalalignment’, ...
‘center’, ’erasemode’, ’xor’);
set(Txhdl, ’units’, 'normalized’)
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orient tall

AERREERRKKEREEEEEEERERRREEEERERRREEREERRRRERKEERRRRERERERRERSR KRR REERRREREEK

% checkfit.m

% This program should be executed after Modes.m, if the accuracy
% of the exponential fit to any particular section of the
% modal transients needs to be checked.

% Copyright 2000 by Shyam Prabhakar
lg = 0; 1d = 0;

if exist(’modnumg’), 1g = length(modnumg); end
if exist(’modnumd’), 1d = length(modnumd); end

dash = [’ ’]; dash = [dash dash dash];

if ~(1lg+ld),
error(’No fits have been calculated!’)

elseif “lg,
modnumgd = modnumd; ugd = ud; rategd = rated; 1lgd = 1d;
fitgd = fitd; RMSgd = RMSd; Nyz_flrgd = Nyz_flrd;

strdisp = ['Mode# ' ‘’'D.rate ' ’RMS error ’ ’'Noise floor’];
ckformat = ’%5.3g %8.4g 49.3g %9.3g\n’;
elseif ~1d,

modnumgd = modnumg; ugd = ug; rategd = rateg; lgd = 1lg;
fitgd = fitg; RMSgd = RMSg; Nyz_flrgd = Nyz_flrg;
strdisp = ['Mode# ' ’'G.rate ' °’RMS error ' ’Noise floor’];
ckformat = ’%5.3g %8.4g 7%9.3g %9.3g\n’;
else
ugd = [ug; udl;
tmp = zeros(1,N); tmp(modnumg) = tmp(modnumg) + 1;
tmp (modnumd) = tmp(modnumd) + 2;
modnumgd = find(tmp); lgd = length(modnumgd);



APPENDIX A. COMPUTER PROGRAMS FOR DATA ANALYSIS 152

ratel = rateg; Nyz_flrl = Nyz_flrg; RMS1 = RMSg; fitl = fitg;
rate2 = rated; Nyz_flr2 = Nyz_flrd; RMS2 = RMSd; fit2 = fitd;
if lgd-1g,
[temp,indx] = sort([modnumg find(tmp==2)]);
ratel(lgd) = O; Nyz_flri(lgd) = O; RMS1(1gd) = 0; fit1(1,1gd) = 0;
ratel = ratel(indx); Nyz_flri = Nyz_£1ri(indx); RMS1 = RMS1(indx);
fitl = £fit1(:,indx);
end
if 1gd-1d,
(temp,indx] = sort([modnumd find(tmp==1)]);
rate2(lgd) = 0; Nyz_flr2(lgd) = 0; RMS2(lgd) = 0; £it2(1,1gd) = 0;
rate2 = rate2(indx); Nyz_£1r2 = Nyz_f1lr2(indx); RMS2 = RMS2(indx);
fit2 = £it2(:,indx);
end
rategd = ([ratel; rate2]; Nyz_flrgd = [Nyz_flrl; Nyz_f1r2];
RMSgd = [RMS1; RMS2); fitgd = [fitl; fit2);
strdisp = [’Mode# ' ‘’G.rate ' ‘’D.rate L
'RMS error '  ’Noise floor’];
ckformat = ’%5.3g %8.4g %8.4g %9.3g 49.3g 49.3g %9.3g\n’;
dash = [dash dash(1:length(dash)-6)];
end

fprintf([’\n’ dash ’\n’ strdisp ’\n’ dash ’\n’])
disp(sprintf(ckformat, [modnumgd-1; rategd; RMSgd; Nyz_flrgd]))
disp(dash)

PlotCheck
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% PlotCheck.m - plots the superimposed modal transients and
% exponential fits. Called by checkfit.m.

% Copyright 2000 by Shyam Prabhakar
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Dir = getDir;

figure(2), clf
set(2, ’name’, ' CHECK FIT’, ’'DefaultAxesFontsize’, 11)
tbreak = min(M,breakpt)sle3/fsamp; tbreak = [tbreak tbreak)];
for j = 1:1gd,
subplot(lgd,1,j)
plot(1e3/fsamp*ugd, mode_f (ugd, modnumgd(j)), ’g’), hold on
plot(1e3/fsampsugd, fitgd(:,j), ’m’), grid on
ylim = axis; ylim = ([ylim(3)*(i+eps) ylim(4)*(1-eps)];
plot(tbreak, ylim, ’w:’)
if Year > 93 & Year < 96, plot(tbreak#8/9,ylim,’'w:’), end
ylabel(osc_unit)
if j == 1,
title([Dir ’ Data + Fit for Mode #’' num2str(modnumgd(1)-1)])
else
title([’Mode #' num2str(modnumgd(j)-1)])
end
end
xlabel(’Time (ms)’)
orient tall
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% sideband.m

% This program interpolates between the samples and interleaves

% bunch data to produce one long vector which contains the

% sequence of bunch oscillation coordinates seen by the BPM. The

% FFT of this vector is the beam pseudospectrum, which contains

4 oscillation sidebands, but no revolution harmonics (ideally). The
% pseudospectrum is plotted, together with the difference of

% upper and lower sideband amplitudes at each revolution

~
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% harmonic. The zoomed spectrum around the 8 revolution harmonics
% with the largest sideband asymmetry is plotted on a separate
% figure. No filtering is done.

% Copyright 2000 by Shyam Prabhakar

clear
global bunHR bunmax Frf harm_no len Dir NyzFlr osc_unit

VerHR
loadgdHR
paramsHR

bunches = bunches’;

resampl
(srtpk,mnum] = sortpeaks(fr_osc, .Ssfr_osc);

figure(2), clf

set(2, ’name’, ' Z00M’, ’DefaultTextFontsize’, 11, .
‘DefaultAxesFontsize’, 11)
for j = 1:8,

subplot(4,2,j), Zoom(mnum(j),1.7+fr_osc)
if j < 7, xlabel(’’), end

end

orient tall

fprintf(’\n’)
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% VerHR.m - equivalent to Ver.m. Called by sideband.m

% Copyright 2000 by Shyam Prabhakar
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VER = yersion;
New = gtr2num(VER(1)) > 4;
ch = get (0, 'children’);

if Newkisempty(ch),
eval(’colordef none’), figure(1)
else
figure(l), clf
end
set(1l, ’name’, ’ SIDEBANDS’, ’DefaultTextFontsize’, 11, ...
'DefaultAxesFontsize’, 11)
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% loadgdHR.m - equivalent to loadgd.m. Called by sideband.m.

% Copyright 2000 by Shyam Prabhakar

fprintf([’'\n---- ’, pwd, ' =-=---\n’])
fprintf(’\nloading and sorting by bunch no. ...\n’)

load gd
(Dir,Year] = getDir;

Recogn

M,N] = gize(bunches);
(R,C] = find(bunches == -1000 | bunches == 12345678);
if “isempty(R)
R = min(R); bunches(R:M,:) = [J; M = R-1;
end
1to = length(turn_offsets);
if N™=lto,
if N<lto,
fprintf(’\nWarning: turn_offsets has more columns than bunches\n’)
else
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fprintf(’\nCAUTION!! bunches has more columns than turn_offsets\n’)
bunches(:,lto+1:N)=[]; N = lto;
end, end

Reduce

y,1] = sort(bunches(1,:));

bunches = bunches(2:M,I);

M = M-1;

bunches = bunches-ones(M,1)*mean(bunches);

Io = beamCurrent;

vhile Io <= 0, Io = input(’Enter estimated Io (in mA): ’); end

breakpt = round(samples_per_bunch*damp_brkpt/63);
if gains(2) == gains(1) & phases(2) == phases(1),

breakpt = M;
end
harm_no = ring_size/red_fact;
Frf = rf_freq/red_fact*1e6;
frev = Frf/harm_no;
cnt = ceil(harm_no/15);
fsamp = frev/downsamp;

clear beamCurrent damp_brkpt ring_size rf_freq 1to Y IR C
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% paramsHR.m

% Detects the oscillation frequency, and uses the front end

% calibration and beam/bunch current information to change units

% of oscillations from counts to degORF or mm. Automatically called
% by sideband.m.

% Copyright 2000 by Shyam Prabhakar
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% Find the synchrotron frequency

[xx,yy] = max(abs(bunches));

[xx,yyl = gort(xx);

yy = yy(max(1,N-15):N);

len = 2°(ceil(log(M)/log(2)));

yuk = abs(fft(bunches(:,yy),len));
yuk = mean(yuk’) ;

freq = (0:len-1)/lensfsamp;

yukidx = find(freq<ie3d | freq>fsamp/2);

yuk(yukidx) = zeros(size(yukidx));
[duk,muk] = max(yuk) ;
fr_osc = round(freq(muk));
fprintf([’\nThe oscillation frequency is ’ num2str(fr_osc) ’ Hz.\n’])
fs_err = input(’Is the estimate of oscill. freq. correct? (y/n): ’,’s’);
if strcmp(fs_err,’n’),
fr_osc = input(’Enter your estimate of oscill. freq. in Hz: ’);
end

% Change units of ’'bunches’ from counts to osc_units
if exist(’BunCurr.mat’),
load BunCurr
Ncurr = size(bun_curr,2);
if Ncurr == N,
fprintf(’\nUsing Current Monitor Result to Scale DSP Signals !!\n’)
be = bun_curr;
ubc = find(bun_curr<.12);
bc(ubc) = .12sones(size(ubc));
count2deg = 1./(bcscalib);
bunches = (ones(M,1)scount2deg).sbunches;
else
fprintf (’\nCurrent monitor result has wrong size (ignore)!!\n’)
count2deg = 1/(Ioscalib/N);
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bunches = count2deg*bunches;
end
else
count2deg = 1/(Io*calib/N);
bunches = count2degs*bunches;
end

********************************#*****#****#********t****t***#*********##**

% resampl.m

% Upsamples the bunch signals, to get a sample per turn. The

% expanded "bunches" matrix is then strung out into a single

% vector, which contains the sequence of bunch phases seen by the
% BPM. The sequence is then FFT-ed, to get the beam pseudospectrum.
% The pseudospectrum is plotted as a function of frequency.

% Copyright 2000 by Shyam Prabhakar

fprintf (’\nInterpolating and resampling data ... °)
fprintf ([’ (breakpt = ’ num2str(breakpt) ’)\n’])

n_pts =0;

while n_pts < 9, % Need at least 9 to interpolate
minn = input (’Enter starting sample #: ’);
minn = max(1,minn);

:

input (’Enter final sample #: ’);
min(M,maxx) ;

:

n_pts = maxx - minn + {;

len = (n_pts-5)sharm_nosdovnsamp;

bunches = (2/len)sbunches;

bunHR = zeros(harm_no, (n_pts-5)sdownsamp) ;

NyzFlr = 2+2ssqrt(downsamp/len)smean(count2deg); Y% Assume 2 cnt rms noise
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fprintf(’\n’)

for k = 1:N,
intr = interp(bunches(k,minn:maxx), downsamp);
bunHR(k,:) = intr(3+*downsamp-turn_offsets(k): ...
(n.pts-2)sdownsamp-1-turn_offsets(k));
if floor(k/cnt)==k/cnt, fprintf([’k=’,num2str(k),’ °']), end
end
fprintf(’\n’)

bunHR = bunHR(:);

fprintf (’\nPerforming FFT ...\n’)
bunHR = fft(bunHR);

bunHR = abs(bunHR) ;
%[u,bunmax,bunHR] = db(bunHR,80);
bunmax = max(bunHR) ;

u = find(bunHR > NyzFlr/5);
freq = (Frf/len/1e6)s*(u-1);

subplot(2,1,1), hold off

semilogy(freq,bunHR(u),’g?)

axis ([0 Frf/2/1e6 NyzFlr bunmax+2])

xlabel(’Frequency (MHz)’), ylabel(osc_unit)

title([Dir ’: Beam pseudospectrum ! '(Sample# ’ ...
num2str(minn) ’:’ num2str(maxx) ’)’])

*******************#*********t*************}**#t**********************#****

% sortpeaks.m

% Plots the difference between upper and lower sidebands,
% as a function of frequency (revolution harmonic).

159
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% Returns the sorted differences, and the corresponding
% vector of mode numbers.

% Copyright 2000 by Shyam Prabhakar

function [srtpk,mnum] = sortpeaks(fs, deltaf)
global bunHR Frf harm_no len osc_unit

uofst = round(fs/Frfslen);
uspan = round(deltaf/2/Frfslen);
peak

2zeros(1,harm_no) ;

uusb = (uofst+1l-uspan): (uofst+i+uspan);
peak(1) = max(bunHR(uusb));

hby2 = floor(harm_no/2);

for j = 1:hby2,

umidu = round(j/harm_no*len) + 1 + uofst;
uusb = umidu - uspan:umidu + uspan;
umidl = round(j/harm_no*len) + 1 - uofst;
ulsb = umidl - uspan:umidl + uspan;
peak(j+1) = max(bunHR(uusb)) - max(bunHR(ulsb));
j-conj = harm_no - j;
peak(j_conj+1) = -peak(j+1);

end

j = harm_no/2;
if £fix(j) == j,

umidu = round(j/harm_no*len) + 1 + uofst;
uusb = umidu - uspan:umidu + uspan;
peak(j+1) = max(bunHR(uusb)) ;

end

subplot(2,1,2), hold off
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semilogy(0:hby2, abs(peak(i:hby2+1)), ’g’)

axis ([0 hby2 min(abs(peak)) max(peak)s2])

title(’Peak Values of Synchrotron Sidebands (upper - lower)’)
ylabel (osc_unit), xlabel(’Mode’)

[srtpk,mnum] = sort(peak);
srtpk = fliplr(srtpk);
mnum = fliplr(mnum) - 1;
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% Zoom.m

% Plots the portion of the pseudospectrum from mnumsfrev - flim to

% mnumsfrev + flim
% Copyright 2000 by Shyam Prabhakar

function Zoom(mnum, flim, col, Ymax)
global bunHR bunmax Frf harm_no len Dir NyzFlr osc_unit

if nargin < 4, Ymax = 2sbunmax;

if nargin < 3, col = 'g’;
end, end
frev = Frf/harm_no;
ulow = round((mnumsfrev-flim)/Frfslen) + 1;
ulow = max(ulow,1);
uhigh = round((mnum*frev+flim)/Frfslen) + 1;
u = ulow:uhigh;
freq = (u-1)/len*Frf/ie3 - mnumsfrev/le3;
flim flim/1e3;
semilogy(freq,bunHR(u),col), grid on

axis([min(freq) max(freq) NyzFlr/5 Ymax])
xlabel ('Frequency (kHz)'’), ylabel(osc_unit)
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title([Dir ’: ’ num2str(mnum) ’sfrev’])
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% PhasSpac.m

% This program is to be run after Modes.m. Displays phase space

% angles of selected modes relative to a fictitious upper (u) or

% lower (1) sideband at the nominal synchrotron/betatron frequency
% (fr_osc). Phases can also be plotted relative to the phase of an
% actual mode.

% Copyright 2000 by Shyam Prabhakar

sect = input(’Which section of the transient do you want (1/2)7: ’);
if sect==2,
u = breakpt+1:M;
else
u = l:breakpt;
end
lu = size(u,2);
bun_£f = mode_£f(u,:);

mlist = input (’Enter vector of mode#s : ’);
mlen = length(mlist);

Xrec = real(bun_f£(:,mlist+1));

Yrec = imag(bun_££(:,mlist+1));

mphas = atan2(Yrec,Xrec);

tphas = (u-1)’s1e3/fsamp;

clear u 1;
mref = input (’Enter reference mode# : ’,’s’);
if strcmp(mref,’u’),

phasref = angle(exp(is*2spisfr_osc/1e3stphas));
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elseif strcmp(mref,’l’),
phasref = angle(exp(-is2episfr_osc/1le3stphas));

else
mref = gtr2num(mref);
Xref = real(bun_ff(:,mref+1));

Yref = imag(bun_££(:,mref+1));

phasref = atan2(Yref,Xref);
end
mphas = unwrap(mphas-phasrefsones(i,mlen),pi);
%mphas = unwrap(mphas-phasref*ones(1,mlen),3spi/2);
mmp = mean(mphas) ;
mmp1 = angle(exp(ismmp));
mphas = 180/pi*(mphas+ones(lu,1)*(mmpl-mmp));

hold off

plot(tphas,mphas),grid on

xlabel(’Time (ms)’)

ylabel (’Relative phase (deg)’)

title([Dir ’': Relative phases of growing modes’])
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163



Bibliography

(1] K.W. Robinson, “Stability of Beam in Radiofrequency System,” Cambridge Electron
Accel. Report No. CEAL-1010 (1964).

[2] E. Courant and A. Sessler, “Transverse Coherent Resistive Instabilities of Azimuthally
Bunched Beams in Particle Accelerators,” Rev. Sci. Instrum. 37, 1579 (1966).

[3] A. Chao, Physics of Collective Instabilities in High Energy Accelerators (Wiley, 1993).

[4] J.-M. Wang, “Modes of Storage Ring Coherent Instabilities,” in Physics of Particle
Accelerators, proceedings of the SLAC summer school, 1985, and the Fermilab summer
school, 1984 (AIP, 1987), p. 697.

(5] J. Laclare, “Bunched Beam Instabilities,” in [Ith International Conference on High
Energy Accelerators, Geneva, 1980, edited by W.S. Newman (Birkhauser Verlag,
1980}, p. 526.

[6] T. Raubenheimer and F. Zimmermann, “A Fast Beam-Ion Instability in Linear Ac-
celerators and Storage Rings,” Phys. Rev. E 52, 5487 (1995).

[7) K. Ohmi, “A Coupled Bunch Instability due to Beam-Photoelectron Interactions in
Positron Storage Rings,” in Fifth European Particle Accelerator Conference, Sitges,
1996, proceedings, edited by S. Myers et al. (Institute of Physics Publishing, 1996),
p- 1069.

[8] J. Rogers, “Photoelectron Instabilities in Electron Positron Factories,” in Beam Dy-
namics Issues for ete™ Factories, proceedings of the 14th Advanced ICFA Workshop,
Frascati, Italy, 1997, edited by L. Palumbo and G. Vignola (Frascati Physics Series
Vol. X, 1998), p. 413.

164



BIBLIOGRAPHY 165

[9] LBNL Report No. LBL-PUB-643-Rev.2, 1989.

(10] “PEP-II: An Asymmetric B Factory. Conceptual Design Report,” SLAC Report No.
SLAC-418, 1993.

[11] M.A. Allen, Rudolf A. Ecken, Leonard Genova, B. Humphrey, L.G. Karvonen, Ger-
hard T. Konrad, J.V. Lebacqz, R.A. McConnell, and C.W. Olson, “Design and Op-
eration of the SPEAR-II RF System,” IEEE Trans. Nucl. Sci. 22, 1269 (1975).

[12] J. Safranek and H. Wiedemann, “Low-Emittance in SPEAR,” in IEEE 1991 Particle
Accelerator Conference, proceedings, San Francisco (IEEE 1991), p. 1104.

(13] S. Prabhakar, “Curing Coupled-Bunch Instabilities with Uneven Fills: Theory” (to
be published).

(14] S. Prabhakar, J. Fox, and D. Teytelman, “Curing Coupled-Bunch Instabilities with
Uneven Fills: Experiment” (to be published).

(15] R.D. Kohaupt, “On Multi-Bunch Instabilities for Fractionally Filled Rings,” DESY
Report No. DESY 85-139, 1985.

[16] K. Thompson and R.D. Ruth, “Transverse and Longitudinal Coupled Bunch Instabil-
ities in Trains of Closely Spaced Bunches,” in 1989 IEEE Particle Accelerator Con-
ference: Accelerator Science and Technology (IEEE, 1989), p. 792.

(17] S.A. Bogacz, “Potential Well Distortion Effects for a Partially Filled Ring,” Part.
Accel. 48, 19 (1994).

(18] M. Sands, “The Physics of Electron Storage Rings: an Introduction,” SLAC-121
(1970).

[19] P. Wilson, “Introduction to Wakefields and Wake Potentials,” in Physics of Particle
Accelerators, proceedings of the Fermilab summer school, 1987 and the Cornell Uni-

versity summer school, 1988, edited by M. Month and M. Dienes (AIP, 1989), p. 524;
SLAC-PUB-4547.

[20] K. Thompson and R. Ruth, “Transverse Coupled-Bunch Instabilities in Damping
Rings of High-Energy Linear Colliders,” Phys. Rev. D 43, 3049 (1991)



BIBLIOGRAPHY 166

[21] F. Pedersen, “RF Cavity Feedback,” SLAC-400, 192 (1992).

[22] F. Sacherer, “A Longitudinal Stability Criterion for Bunched Beams,” IEEE Trans.
Nucl. Sci. 20, 825 (1973).

[23] M. Zobov, R. Boni, A. Gallo, A. Ghigo, F. Marcellini, L. Palumbo, M. Serio, B.
Spataro, and G. Vignola, “Measures to Reduce the Impedance of Parasitic Resonant
Modes in the DAPHNE Vacuum Chamber,” in Beam Dynamics Issues forete™ Fac-
tories, proceedings of the 14th Advanced ICFA Workshop, Frascati, Italy, 1997, edited
by L. Palumbo and G. Vignola (Frascati Physics Series Vol. X, 1998), p. 371.

[24] W. Chou and J. Griffin, “Impedance Scaling and Impedance Control,” in Proceedings
of the 1997 Particle Accelerator Conference, Vancouver (IEEE, 1998), p. 1724.

(25} L.D. Landau, “On the Vibration of the Electronic Plasma,” J. Phys. USSR 10, 25
(1946).

(26] see H.G. Hereward, “Landau Damping,” in CERN Accelerator School: Advanced Ac-
celerator Physics, proceedings, Oxford, 1985, CERN 87-03, p. 255 (1987), and refer-
ences therein.

[27] F. Pedersen and F. Sacherer, “Theory and Performance of the Longitudinal Active
Damping System for the CERN PS Booster,” IEEE Trans. Nucl. Sci. 24, 1396 (1977).

[28] R.D. Kohaupt, “Theory of Multibunch Feedback Systems,” DESY-91-071, 1991.

[29] D. Boussard, “RF and Feedback Systems,” in Tau-Charm Factory, proceedings of the
3rd workshop, Marbella (Editions Frontieres, 1994), p. 579.

[30] K. Balewski, “Review of Feedback Systems,” in Sizth European Particle Accelerator
Conference, Stockholm, 1998, proceedings, edited by S. Myers et al. (Institute of
Physics Publishing, 1998), p. 169.

[31] A. Mosnier, “Cures of Coupled Bunch Instabilities,” in Proceedings of the 1999 Par-
ticle Accelerator Conference (IEEE, 1999), p. 628.

[32] D. Boussard, “Cures of Instabilities,” in CERN Accelerator Scheol: Advanced Accel-
erator Physics Course, proceedings of the 5th, Rhodes, 1993, edited by S. Turner,
CERN 95-06, p. 391 (1995).



BIBLIOGRAPHY 167

(33]

(34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

G. Jackson, “Identification and Correction of Fermilab Instabilities,” in Proceedings of
the Workshop on Beam Instabilities in Storage Rings (Press of University of Science
and Technology of China, 1994), p. 194.

W. Chou, “Beam Instability Studies for the SSC,” in Proceedings of the Workshop on
Beam Instabilities in Storage Rings (Press of University of Science and Technology of
China, 1994), p. 176.

T. Weiland, “Low Impedance Vacuum Chambers,” Part. Accel. 51, 53 (1995); PEP-
II-TECH-NOTE-59, 1994.

R. Rimmer, D. Goldberg, G. Lambertson, F. Voelker, K. Ko, N.M. Kroll, R. Pendle-
ton, F. Adams, and M. Dejong, “Higher Order Mode Damping Studies on the PEP-II
B Factory RF Cavity,” in Third European Particle Accelerator Conference, Berlin,
1992, proceedings (Editions Frontieres, 1992), p. 1289.

R. Boni, A. Gallo, F. Marcellini, and G. Vignola, “Operational Experience with the
DAPHNE Radio-Frequency Systems,” in Proceedings of the 1999 Particle Accelerator
Conference (IEEE, 1999), p. 866.

M. Svandrlik, A. Fabris, and C. Pasotti, “Improved Methods of Measuring and Cur-
ing Multibunch Instabilities in ELETTRA,” in Fifth European Particle Accelerator
Conference, Sitges, 1996, proceedings, edited by S. Myers et al. (Institute of Physics
Publishing, 1996), p. 1144.

J. Sebek and C. Limborg, “Measurement of RF cavity HOMs with Beam,” in Beam
Dynamics Issues for ete™ Factories, proceedings of the 14th Advanced ICFA Work-
shop, Frascati, Italy, 1997, edited by L. Palumbo and G. Vignola (Frascati Physics
Series, 1998), p. 365.

H. Ego, M. Hara, Y. Kawashima, Y. Ohashi, T. Ohshima, H. Suzuki, I. Takeshita, and
H. Yonehara, “Suppression of the Coupled-Bunch Instability in the SPring-8 Storage
Ring,” Nucl. Instrum. Meth. A 400, 195 (1997).

A. Hofmann and S. Myers, “Beam Dynamics in a Double RF System,” in 1I1th In-
ternational Conference on High Energy Accelerators, Geneva, 1980, edited by W.S.
Newman (Birkhauser Verlag, 1980}, p. 610.



BIBLIOGRAPHY 168

(42] R.A. Bosch and C.S. Hsue, “Suppression of Longitudinal Coupled-Bunch Instabilities
by a Passive Higher Harmonic Cavity,” Part. Accel. 42, 81 (1993).

[43] R. Averill, A. Hofmann, R. Little, H. Mieras, J. Paterson, K. Strauch, G-A. Voss,
H. Winick, “Synchrotron and Betatron Instabilities of Stored Beams in the CEA;.” in
Proceedings of the 8th International Conference on High Energy Accelerators, Geneva,
1971, edited by M.H. Blewett (CERN, 1971), p. 301.

[44] D. Boussard, J. Gareyte, and D. Mohl, “Study and Compensation of Coherent Lon-
gitudinal Instability in CERN PS,” IEEE Trans. Nucl. Sci. 18, 1073 (1971).

[45] D. Goldberg and G. Lambertson, “Dynamic Devices: A Primer on Pickups and Kick-
ers,” in Physics of Particle Accelerators, edited by M. Month and M. Dienes (AIP,
1992), p. 537; LBL-31664-mc (microfiche).

[46] A. Renieri and F. Tazzoli, “The Longitudinal Feedback System in ADONE,” in Pro-
ceedings of the 9th International Conference on High Energy Accelerators, Stanford,
1974, p. 370 (1974).

(47] D. Boussard and G. Lambertson, “Reduction of the Apparent Impedance of Wide
Band Accelerating Cavities by RF Feedback,” IEEE Trans. Nucl. Sci. 30, 2239 (1983).

(48] D. Boussard, “Control of Cavities with High Beam Loading,” IEEE Trans. Nucl. Sci.
32, 1852 (1985).

[49] S. Khan and T. Knuth, “Longitudinal and Transverse Feedback Systems for BESSY-
IL,” in Bean Instrumentation Workshop, proceedings of the 8th, Stanford, 1998, edited
by R. Hettel, S. Smith, and J. Masek (AIP, 1999), p. 537.

(50] S.V. Ivanov, “Impedance Treatment of Longitudinal Coupled-Bunch Feedbacks in a
Protron Synchrotron,” IHEP Preprint No. IFVE-96-8, 1996.

[51] W. Barry, J. Byrd, and J. Corlett, “The LBL Advanced Light Source (ALS) Trans-
verse Coupled Bunch Feedback System: Recent Commisioning Results,” in Beam
Instrumentation Workshop, proceedings of the 6th, Vancouver, 1994 (AIP, 1995), p.
501.

[52] W. Barry, J. Byrd, J. Corlett, M. Fahmie, J. Johnson, G. Lambertson, M. Nyman, J.
Fox, and D. Teytelman, “Design of the PEP-II Transverse Coupled Bunch Feedback



BIBLIOGRAPHY 169

[53]

[54]

[55]

[56]

[57]

(58]

System,” in Proceedings of the 1995 Particle Accelerator Conference, Dallas (IEEE,
1996), p. 2681.

G. Oxoby, R. Claus, J. Fox, H. Hindi, J. Hoeflich, I. Linscott, J. Olsen, S. Prabhakar,
L. Sapozhnikov, J. Corlett, G. Lambertson, A. Drago, and M. Serio, “Bunch-by-Bunch
Longitudinal Feedback System for PEP-II", in 4th European Particle Accelerator Con-
ference, London, 1994, proceedings, edited by V. Suller and Ch. Petit-Jean-Genaz
(World Scientific, 1994), p. 1616.

J. Fox, R. Larsen, S. Prabhakar, D. Teytelman, A. Young, A. Drago, M. Serio, W.
Barry, G. Stover, “Multibunch Instability Diagnostics via Digital Feedback Systems at
PEP-II, DAPHNE, ALS and SPEAR,” in Proceedings of the 1999 Particle Accelerator
Conference (IEEE, 1999), p. 636.

D. Teytelman, J. Fox, H. Hindi, C. Limborg, I. Linscott, S. Prabhakar, J. Sebek, A.
Young, A. Drago, M. Serio, W. Barry, and G. Stover, “Beam Diagnostics Based on
Time-Domain Bunch-by-Bunch Data,” in Beam Instrumentation Workshop, proceed-
ings of the 8th, Stanford, 1998, edited by R. Hettel, S. Smith, and J. Masek (AIP
Conference Proceedings Volume #451, 1999), p. 222.

Frascati INFN-LNF-90-031(R) (1990).

M. Serio et al., Muitibunch Instabilities and Cures,” in Fifth Europeen Particle Ac-
celerator Conference, Sitges, 1996, proceedings, edited by S. Myers et al. (Institute
of Physics Publishing, 1996), p. 148.

E. Jaeschke for the BESSY-II Project Team, “Status of the High Brilliance Syn-
chrotron Light Source BESSY-IL,” in Proceedings of the 1997 Particle Accelerator
Conference, Vancouver (IEEE, 1998), p. 713.

[59] S. Khan, T. Knuth, “BESSY II Feedback Systems,” in Proceedings of the 1999 Particle

Accelerator Conference (IEEE, 1999), p. 1144.

[60] J. Choi, J.Y. Huang, M.G. Kim, T.-Y. Lee, E.S. Park, and S.S. Chang, “The Op-

erational Status of PLS,” in Proceedings of the 1999 Particle Accelerator Conference
(IEEE, 1999), p. 2418.



BIBLIOGRAPHY 170

[61] Y.J. Kim, J.Y. Huang, M. Kwon, L.S. Ko, “Status of Longitudinal Feedback System
for the PLS Storage Ring,” in Proceedings of the 1999 Particle Accelerator Conference
(IEEE, 1999), p. 1076.

(62] R. Claus, J. Fox, L. Linscott, G. Oxoby, W. Ross, L. Sapozhnikov, and D. Teytelman,
“Software Architecture of the Longitudinal Feedback System for PEP-II, ALS and
DAPHNE,” in Proceedings of the 1995 Particle Accelerator Conference, Dallas (IEEE,
1996), p. 2660.

[63] D. Briggs, P.L. Corredoura, J.D. Fox, A. Gioumousis, W. Hosseini, L. Klaisner,
J.L. Pellegrin, K. Thompson, and G.G. Lambertson, “Prompt Bunch by Bunch Syn-
chrotron Oscillation Detection via a Fast Phase Measurement,” in IEEE 1991 Particle
Accelerator Conference, proceedings, San Francisco (IEEE 1991), p. 1404.

[64] A. Oppenheim, R. Schafer, “Discrete-Time Signal Processing,” Prentice Hall (1989).

[65] Franklin, Powell, Workman, “Digital Control of Dynamic Systems,” Addison Wesley
(1990).

[66] D. Teytelman, PhD thesis, Stanford University (to be published).

[67] H. Hindi, J. Fox, S. Prabhakar, L. Sapozhnikov, G. Oxoby, I. Linscott, and D. Teytel-
man, “A Formal Approach to the Design of Multibunch Feedback Systems: LQG
Controllers,” in 4th European Particle Accelerator Conference, London, 1994, pro-

ceedings, edited by V. Suller and Ch. Petit-Jean-Genaz (World Scientific, 1994), p.
1622.

[68] A. Gallo, A. Ghigo, F. Marcellini, M. Migliorati, L. Palumbo, M. Serio, “Simula-
tions of the Bunch-by-Bunch Feedback Operation with a Broadband RF Cavity as
Longitudinal Kicker,” DA®NE Technical Note G-31, 1995.

(69] J. Corlett, J. Johnson, G. Lambertson, and F. Voelker, “Longitudinal and Transverse
Feedback Kickers for the ALS,” in 4th European Particle Accelerator Conference,
London, 1994, proceedings, edited by V. Suller and Ch. Petit-Jean-Genaz (World
Scientific, 1994), p. 1625.

[70] R. Boni, A. Drago, A. Gallo, A. Ghigo, F. Marcellini, M. Migliorati, M. Serio, and M.
Zobov, “Kickers and Power Amplifiers for the DA®NE Bunch by Bunch Longitudinal



BIBLIOGRAPHY 171

Feedback System,” in Fifth European Particle Accelerator Conference, Sitges, 1996,
proceedings, edited by S. Myers et al. (Institute of Physics Publishing, 1996), p. 1881.

[71] S. Prabhakar, D. Teytelman, J. Fox, and H. Hindi, “Use of Digital Feedback System
as a Bunch Current Monitor: Results from ALS,” SLAC-PEP-II-AP-NOTE-96-29
(1996).

[72] S. Prabhakar, R. Claus, J. Fox, H. Hindi, I. Linscott, J. Olsen, W. Ross, and D.
Teytelman, “Observation and Modal Analysis of Coupled Bunch Longitudinal Insta-
bilities via a Digital Feedback Control System,” Part. Accel. 57, 175 (1997); SLAC
Report No. SLAC-PUB-7717.

[73] U. Wienands et al., “First Beam-Commissioning Results from the PEP-II B-factory
High Energy Ring: Intensity Effects,” in Beam Dynamics Issues for ete~ Factories,
proceedings of the 14th Advanced ICFA Workshop, Frascati, Italy, 1997, edited by L.
Palumbo and G. Vignola (Frascati Physics Series Vol. X, 1998), p. 379.

[74] J. Seeman, private communication.

[75] R. Kohaupt, “Single Beam Instabilities in DORIS,” IEEE Trans. Nucl. Sci. 22, 1456
(1975).

(76] R. Stiening and J. Griffin, “Longitudinal Instabilities in the Fermilab 400-GeV Main
Accelerator,” IEEE Trans. Nucl. Sci. 22, 1859 (1975).

[77] J. Corlett and J. Byrd, “Measurement and Computation of the Higher Order Modes
of the ALS 500-MHz Accelerating Cavities,” in 1993 IEEE Particle Accelerator Con-
ference, proceedings, Washington, D.C. (IEEE, 1994), p. 3408.

(78] R.A. Rimmer, J. Byrd, M. Irwin, and D.A. Goldberg, “Updated Impedance Estimate
of the PEP-II RF Cavity,” in Fifth European Particle Accelerator Conference, Sitges,
1996, proceedings, edited by S. Myers et al. (Institute of Physics Publishing, 1996),
p- 2035.

[79] A. Jackson, “Commissioning and Performance of the Advanced Light Source,” in 1993
IEEE Particle Accelerator Conference, proceedings, Washington, D.C. (IEEE, 1994),
p. 1432.



BIBLIOGRAPHY 172

(80] J. Byrd (to be published); D. Teytelman (to be published).

[81] S. Prabhakar, J. Fox, H. Hindi, D. Teytelman, and A. Young, "Calculation of
Impedance from Multibunch Synchronous Phases: Theory and Experimental Re-
sults,” in Sizth European Particle Accelerator Conference, Stockholm, 1998, proceed-
ings, edited by S. Myers et al. (Institute of Physics Publishing, 1998), p. 996.

[82] S. Prabhakar et al, "Low-Mode Longitudinal Motion in the PEP-II HER,” SLAC-
PEP-II-AP-NOTE-98-06, 1998.

[83] S. Prabhakar, D. Teytelman, J. Fox, M. Minty, U. Wienands, and A. Young, “Measure-
ments of a Fast Vertical Instability in the PEP-II HER,” SLAC-PEP-II-AP-NOTE-
99-04 (1999).

[84] P. Corredoura, “Architecture and Performance of the PEP-II Low Level RF System,”
in Proceedings of the 1999 Particle Accelerator Conference (IEEE, 1999), p. 435.

[85] P. Wilson, “Mode Impedances for PEP- and Petra-Type Cavities,” CERN Report
No. LEP/70/69, 1978.

[86] G. Stupakov, T. Raubenheimer, and F. Zimmermann, “Effect of Ion Decoherence on
Fast Beam-Ion Instability,” Phys. Rev. E 52, 5499 (1995).

[87) A.N. Dubrovin, A.S. Kalinin, D.N. Shatilov, E.A. Simonov, and V.V. Smaluk, “Ap-
plications of Beam Diagnostic System at the VEPP-4,” in Fifth European Particle
Accelerator Conference, Sitges, 1996, proceedings, edited by S. Myers et al. (Institute
of Physics Publishing, 1996), p. 1585.

[88] G. Morpurgo, “The BOM 1000 Turn Display: a Tool to Visualize the Transverse
Phase-Space Topology at LEP,” in Proceedings of the 1999 Particle Accelerator Con-
ference, New York, 1999, p. 1571.

[89] J. Byrd, A. Chao, S. Heifets, M. Minty, T.O. Raubenheimer, J. Seeman, G. Stupakov,
J. Thomson, and F. Zimmermann, “First Observations of a Fast Beam Ion Instability,”
Phys. Rev. Lett. 79, 79 (1997).

[90] J.Y. Huang, M. Kwon, T.-Y. Lee, LS. Ko, Y.H. Chin, and H. Fukuma, “Direct Ob-
servation of the Fast Beam-ion Instability,” Phys. Rev. Lett. 81, 4388 (1998).



BIBLIOGRAPHY 173

[91] S. Prabhakar, J.D. Fox, D. Teytelman, and A. Young, “Phase Space Tracking of
Coupled-Bunch Instabilities,” Phys. Rev. ST Accel. Beams 2: 084401, 1999.

(92] G. Stupakov, “Fast Ion Instability in Real Lattice,” in Proceedings of the 1997 Particle
Accelerator Conference, Vancouver (IEEE, 1998), p. 1632.

(93] S. Prabhakar, D. Teytelman, J. Fox, A. Young, P. Corredoura, and R. Tighe, “Com-
missioning Experience from PEP-II HER Longitudinal Feedback,” in Beam Instru-
mentation Workshop, proceedings of the 8th, Stanford, 1998, edited by R. Hettel, S.
Smith, and J. Masek (AIP, 1999), p. 529.

[94] Y.H. Chin and K. Yokoya, “Landau Damping of a Multibunch Instability due to
Bunch to Bunch Tune Spread,” DESY Report No. DESY 86-097, 1986.

[95] M. Billing, “Observation of a Longitudinal Coupled Bunch Instability with Trains of
Bunches in CESR,” CLNS Report No. CLNS 98/1564, 1998.

[96] K. Harkay, A. Nassiri, J.J. Song, Y.W. Kang, and R.L. Kustom, “Compensation
of Longitudinal Coupled-Bunch Instability in the Advanced Photon Source Storage
Ring,” in Proceedings of the 1997 Particle Accelerator Conference, Vancouver (IEEE,
1998), p. 1575.

[97] O. Naumann and J. Jacob, “Fractional Filling Induced Landau Damping of Longi-
tudinal Instabilities at the ESRF,” in Proceedings of the 1997 Particle Accelerator
Conference, Vancouver (IEEE, 1998), p. 1551.

[98] S. Prabhakar, J.D. Fox, and H. Hindi, “A Matrix Formalism for Landau Damp-
ing,” in Beam Dynamics Issues for e*e™ Factories, proceedings of the 14th Advanced
ICFA Workshop, Frascati, Italy, 1997, edited by L. Palumbo and G. Vignola (Frascati
Physics Series Vol. X, 1998), p. 385; SLAC Report No. SLAC-PUB-7978.

[99] Spear 3 Conceptual Design Report (in press).
[100] H. Winick, private communication.

[101] R. Rimmer, private communication.

[102] D. Teytelman (to be published).





