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Abstract

Since an amorphous solid is often defined as that which lacks long-range order,

the atomic structure is typically characterized in terms of the high-degree of short-range

order. Most descriptions of vapor-deposited amorphous alloys focus on characterizing

this order, while assuming that the material is chemically homogeneous beyond a few

near neighbors. Phase separation, which leads to a structure with regions of different

short-range order, is, however, endemic in the quasi-equilibrium states of such materials.

By coupling traditional small-angle x-ray scattering which probes spatial variations of the

electron density with anomalous dispersion which creates a species-specific contrast, we

can discern cracks and voids from chemical inhomogeneity.
.- In particular, we find that the chemical inhomogeneities which have been

previously reported in amorphous Fe,Ge,., and Mo,Ge,, are quite anisotropic, depending

significantly on the direction of film growth. With the addition of small amounts of

metal atoms (x<O.2), no films appear isotropic nor homogeneous through the

metal/insulator transition. The results indicate that fluctuations in the growth direction

play a pivotal role in preventing simple growth models of a columnar structure or one that

evolves systematically as it grows. The anisotropy is interpreted in real-space with the

cylindrical correlation function, which has been calculated using a spherical harmonics

approach. The anisotropic phase separation can be modeled as a collection of elongated

particles, oriented with the long axis in the direction of growth, which show strong “in-

plane” correlations but little, if any, in the direction of film growth.

The anomalous scattering measurements identify the metal atoms (Pe or MO) as

the source of the anisotropy, with the Ge atoms distributed homogeneously, We have

developed a method for using these measurements to determine the compositions of the
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phase-separating species. Our results indicate phase separation into an amorphous Ge

and an intermetallic phase of stoichiometry close to FeGe, or MoGe3. Finally, by

manipulating the deposited power flux and rates of growth, Fe,Ge,, films which have the

same Fe composition x can be grown to different states of phase separation. These results

may help explain the difficulty workers have had in isolating the metal/insulator

transition for these and other vapor-deposited amorphous alloys.
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Chapter 1

Introduction

For the past several years, vapor-deposited amorphous alloys have been of

considerableinterest. They can be formed typically over wide composition ranges and,.-

depending on the constituents, have structures that range from continuous random

networks1 commonly found in covalently bonded amorphous insulators and

semiconductors to a dense packing structure2 observed in amorphous metals. It is not

trivial to predict the structure from the constituents, however, since size differences,

chemical bonding, and the kinetics of the deposition process dictate the final structure.

Since the amorphous solid is often defined as lacking long-range order, the atomic structure

is typically characterized in terms of the high-degree of short-range order.3 Most

descriptions of vapor-deposited amorphous alloys focus on characterizing this order, while

assuming that the material is chemically homogeneous beyond a few near neighbors.

Phase separation into regions of different short-range order is, however, endemic in the

. quasi-equilibrium states of such materials.

This thesis is an attempt to observe and characterize nanoscale phase separation in

magnetron sputtered amorphous alloys. The probe used to study the phase separation is

anomalous small-angle x-ray scattering (ASAXS), which is sensitive to spatial variations of
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the effective electron density in the material. By coupling the anomalous dispersion

relations with traditional SAXS, Rice et al.4 detected composition modulations in

amorphous metal-germanium alloys, a-M,Ge,.,  with M=Fe, MO, and W. The work

reported in this thesis is a follow-up study to develop a more sophisticated understanding

of the reported composition modulations that appear and extend through the metal-insulator

transition region (0~~~0.33). Free-standing films (amorphous Mo-Ge and Fe-Ge) were

grown to remove substrate scattering and oblique transmission measurements recorded to

search for anisotropy. This first chapter serves to introduce the reader to the underlying

motivation for the work and to provide a background of the alloy’s physical properties.

1.1 bktai-Insulator Transition
.- With the addition of metal atoms to the random tetrahedral networks of a-Ge, the

alloy undergoes several interesting transformations. When co-sputtered with MO and

studied with high-field, low-temperature magnetoresistance, Yoshizumi et al.6 show that

the electron diffusion constant essentially vanishes when the MO concentration decreases to

approximately 10 at.%. For co-evaporated samples, Devenyi et al.7 noticed that the room

temperature resistivity, which changes by 7 orders of magnitude from a-Ge to C-MO,

decreases by -4 orders with the addition of only 10 at.% MO. They argue that the

transition from an insulator to metal occurs near their prepared samples compositions of 7.5

and 16 at.% MO.

The resistivity data have not resolved an intriguing question, however. Is the

insulator-metal transition well-defined (e.g. is it sharp)? On what parameters does it

depend? Specific heat measurements on co-sputtered amorphous Mo-Ge alloys by Mae1 et

al.* indicate that there exists no critical behavior of the thermodynamic electronic density of

states, proportional to the linear term in the specific heat, at the metal-insulator transition.

They show that a nonvanishing density of states exists throughout the metal-insulator
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transition. Such an observation is consistent with amorphous phase separation into two

types of different local structure. The specific heat measurements can be explained if there

exist regions in which there are quasi-continuous electron densities of states (i.e. metallic)

in a dielectric. In this case, the number of metallic atoms an electron can sample during the

measurement time (e.g. via variable range hopping) determine whether or not a quasi-

continuum exists.

Similar resistivity results have been reported for co-evaporated amorphous Fe-Ge

films by Massenet et al. 9 The change in resistivity at room temperature is -5 orders of

magnitude from a-Ge to 10 at.% Fe, after which the change is only another order of

magnitude up to the most Fe-rich sample they studied, 64 at.% Fe. The conductivity from

20 K to300 K obeys the Mott TL’4 power law for all films up to 25 at.% Fe, which is cited

-as the metal-‘insulator  transition composition. *e The metal-insulator transition for the

triode-sputtered films made by Lorentz is cited as occurring at 15 at.% Fe. Depending on

the microstructure, others have found quite different critical compositions for the metal-

insulator transition. For example, co-evaporated, crystalline In-Ge and Pb-Ge films exhibit

a metal-insulator transition near 15% volume metal atom, whereas co-evaporated, granular

Al-Ge films have a much higher critical concentration near 55% volume ALI1

1.2 Structural Models and Previous Work

The amorphous Mo-Ge and Fe-Ge systems were chosen for this study, because, as

mentioned previously, Rice et a1.,4 upon first examination with ASAXS, reported an

interesting “composition modulation” in M-Ge alloys (M=Fe, MO, and W) that had been

speculated by Kortright and Bienenstockl2  for the Mo-Ge alloys. By working at the

accessible W and Fe absorption edges, the work illustrates that, for a variety of sputtered

M-Ge alloys, the film is not chemically homogeneous beyond a few near-neighbors but

exhibits apparent chemical inhomogeneities on a 15-30 8, size scale (less than -33 at.%
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metal). The chemical inhomogeneity apparently results from a real-space fluctuation of the

metal atoms with the density of Ge atoms constant throughout. They conclude that the

composition fluctuations are consistent with regions of local atomic structure that consist of

a-Ge and a-MGe,,  where the Ge density is similar in both (which is the case for crystalline

FeGe,,  MoGe,,  and Ge). Since the MO K-edge was not accessible at the time, their

conclusions are only strictly valid for the Fe-Ge and W-Ge alloys. The follow-up work

presented in this dissertation, which emphasizes Mo-Ge through the metal-insulator

transition, demonstrates that this alloy is more likely phase-separated into regions of a-Ge

and an amorphous intermetallic closer in stoichiometry to a-MoGe,.  The previous work on

Mo-Ge and Fe-Ge from Kortrightls and Lorentzl” focused on large-scale phase separation,

so the relevant range in reciprocal space for fine-scale inhomogeneities was not measured.

Thus, Rice performed ASAXS measurements on their samples, as well as on W-Ge alloys,

to search for a fine-scale inhomogeneity.

The atomic scale structure of Mo-Ge alloys, studied as a function of composition by

Kortright, can be classified into three structural regions by composition. In structural

region I, from 0 to 23 at.% MO, tetrahedral a-Ge coexists on a very fine scale (<4OA) with

a MO-modified structure, most likely resembling the local order of the Ge-rich compounds

(e.g. c-MoGe2  or c-Mo13GeZ3, the only Ge-rich compounds in the equilibrium phase

diagram). At -23 at.% MO, no evidence of the tetrahedral a-Ge remains, which delimits

regions I and II. Region II extends from -23 to 50 at.% MO, typical of most intermetallic

structures (long MO-MO distances, strong ordering of Ge around MO). The collapse of the

long MO-MO distances leads to region III, with a structure similar to that found in most

melt-quenched metal-metalloid glasses.

Kortright performed SAKS to look for phase separation across the composition

range of the Mo-Ge alloys but did not observe any indication of large-scale phase

separation. In fact, the only appreciable SAKS came from samples with 8 to 15 at.% MO,
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which consisted of two contributions. (1) There is a monotonically decreasing signal at

very small momentum transfer, whose source remains unknown. The scattering may be

possibly from handling the films prior to measurement, cracks, or voids, but it is too weak

to arise from phase separation into regions of appreciable difference in electron density.

This is in agreement with TEM images that show no deviations from an average structure

on this size scale. (2) In addition, there is a weak, diffuse signal whose intensity is of the

same order of magnitude as that expected from independent spherical particles with a 5 8,

radius. Although the model can be questioned (see Chapter 5), its conclusion is important.

The SAKS study indicates that inhomogeneities, on the order of 10 A, may exist.

Although not convincing by itself, the SAKS study was supported by other species-

specific-experiments (extended x-ray absorption fine structure and anomalous large-angle

--scattering) that upheld this model.

Ding and Anderson’s performed molecular-dynamics computer simulations on the

structure of Mo-Ge with the primary goal of developing empirical interatomic potentials that

lead to structures that agreed with Kortright’s scattering measurements. As a result, they

noticed that MO atoms at low atomic percent do not substitute for Ge but rather tend to

cluster together, forming chains and rings, and hence distort the local Ge random

tetrahedral network, as predicted by Kortright. This is particularly striking, especially

since their MO-MO two-body potential is the least attractive and the Mo-Ge is most

attractive. Since the amorphous state in the simulation cell is formed by rapidly cooling a

theoretical “melt” of MO and Ge atoms, the simulation cannot explain structural effects that

depend on the kinetics of the vapor deposition process, however. Although empirical

potentials can be found that describe the data of Kortright, any changes in the deposition

conditions that lead to changes in the scattering and, hence, structure will require new

parameters for each of the interatomic potentials.
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The atomic scale structure of triode-sputtered Fe-Ge alloys has been studied as a

function of composition by Lorentz. With the addition of Fe to a-Ge, the Ge tetrahedral

network becomes significantly altered by 20 at.% Fe (similar result from the Mo-Ge

studies). No large scale phase separation is observed up to a composition of FeGe,, but

beyond 33 at.% Fe, SAXS and x-ray absorption near edge structure (XANES) studies

indicate phase separation into a-FeGez and a-Fe,Ge.r6  Rice performed ASAXS for this

composition range on the samples previously studied with normal SAXS by Lorentz, and

the data are currently being reduced and interpreted. These samples exhibit density

fluctuations on a much larger size scale and persist up to but not including the most Fe-rich

sample (72 at.% Fe) made by Lorentz. As mentioned previously, Lorentz did not look for

a fine scale phase separation for 0~~~0.33  but could not dismiss it either. Rice proceeded

-to observe the apparent composition fluctuations in this composition range with ASAXS.

In addition to Rice’s work, my literature review has indicated that ASAXS has been

used to study only two other vapor-deposited amorphous alloys. Maret et aLI7 have

studied sputtered Tb-Cu and Gd-Cu alloys with ASAXS, which give similar scattering

features as that reported by Rice (with a well-defined SAXS maximum at k-O.2 A-l).

Their results are consistent with phase separation into rare-earth hydride particles

(hydrogen incorporated in the film in the fabrication process) and a rare-earth poor matrix.

1.3 New Interests

The goal of the thesis is to understand on a more quantitative and detailed level the

apparent composition fluctuations that have been observed. Such fluctuations have not

been reported before for vapor-deposited amorphous alloys, and they represent a new class

of materials which have otherwise always been considered homogeneous down to a few

near-neighbors. In particular, we sought to answer the following questions.
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(1) What is a likely real-space description of the source of the scattering? Since the

alloy is vapor deposited with its lateral dimensions and growth direction fixed, one could

imagine phase separation that is not isotropic. Is there any anisotropy present in these

films? In fact, Cargill noticed a strong anisotropy in evaporated a-Ge with SAXS, which

has been interpreted as the scattering from rod-like voids oriented in the direction of growth

(-30 8, in-plane by -2200 A growth direction). Similar structural characteristics are

observed in some electrodeposited amorphous Gd-Co alloys19 and sputtered and

evaporated Ni-Fe alloys20 that are, in some cases, related to the observed large magnetic

anisotropies. The ASAXS studies of Rice4 and Maret et al.18 were performed in normal

transmission, with the scattering vector in the plane of the sample. To search for

anisotropy,  the orientation of the scattering vector must vary with the film surface; that is,

-with it oblique to and in the plane of the films. The experiment designed to test for the

anisotropy is outlined in Chapter 3. Since correlations in electron density are projected

onto the line defined by the scattering vector, interpretation of the scattering results is

difficult. To interpret the anisotropy that we did, in fact, observe, we utilized the

cylindrical correlation function and constructed particle models that might resemble, on an

averaged, simplified scale, an anisotropic phase separation. The anisotropic scattering and

correlation function results are presented in Chapters 4 and 5 for amorphous Fe-Ge and

Mo-Ge, respectively, and Chapter 6 reports on model structures.

(2) What is an accurate estimate of the overall magnitude of the composition

fluctuations? If there are regions of well-defined electron density (particles), what are the

compositions of the phase-separating species ? With an adequate sampling of the

anisotropic scattering, the total cross-section can be determined which is proportional to the

mean-square fluctuation of electron density. When compared with that expected from two-

and three-phase models, we can determine the composition of the phase-separating species,

and we have also explored the reliability of the approach developed. These ideas are
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examined in detail in the Chapters which discuss the Fe-Ge and Mo-Ge results (Chapters 4

and 5).

(3) To what extent can we modify the degree and/or extent of phase separation by

varying the deposition conditions? With such high quench rates, the vapor deposition

process often leads to atomic arrangements that depend on the method of preparation. With

annealing at elevated temperatures, for example, annihilation of excess free volume can lead

to an amorphous structure with atomic arrangements that are more favorable

energetically.21 Hence, the growth parameters (e.g. growth rate, power to targets, sample-

substrate distance, etc.) are likely to be the most defining characteristic of the films other

than its chemical constituents. On a very simple level, we tried to observe any changes in

the SAKS spectrum, for a given Fe concentration, simply by changing the deposition

-conditions. This is explored in Chapter 4.

(4) Are the amorphous Mo-Ge films truly phase-separated? That is, are the MO

atoms distributed inhomogeneously as suggested by Rice’s work at the Ge K-edge for the

Mo-Ge system? What limited Rice et al. experimentally and how can the next set of

experiments overcome these problems? Rice was unable to collect MO K-edge anomalous

scattering data and addresses the experimental problem in her dissertation. Chapter 3

discusses collection of ASAXS data at hard x-ray energies and how we overcame the

problems of Ge fluorescence and poor detector efficiency. Another major limitation has

been a poor signal-to-noise ratio (SNR) with kapton-supported films. Since the

experiments are performed in transmission, scattering from kapton often overwhelms the

signal. In some cases, it is only after subtraction of the kapton that the weak scattering

from the amorphous films is even evident. This is a major problem. In fact, an anisotropy

study performed in August, 1991, with kapton-supported films led to scattering that was so

overwhelmingly swamped with kapton background that it was difficult to interpret the

anisotropy on a quantitative level. In addition, kapton itself is a very anisotropic
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scatterer,22 so the removal of all substrate scattering is a necessity. Films that could be

grown and rendered free-standing were made. Details of the sample preparation and initial

characterization are outlined in Chapter 2.
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Chapter 2

Sample Preparation and Characterization

The atomic arrangements in sputtered amorphous films depend to a large degree on

the kinetics of the deposition process. 1 This is a result of the inter-relationship between the. .
high “quench” rates that can be obtained and the very short time that is available for

diffusion and chemical bonding. The sample preparation procedure thus plays an integral

role in the atomic arrangements found in each film. Since several students2 have made

amorphous binary alloys from the 3” system at the Vapor Phase Synthesis Laboratory of

the Center for Materials Research (CMR) at Stanford, only a summary of the sputtered

samples will be given here. The reader is also referred to the work of Wilson3 who

describes in detail recipes to make free-standing films and who outlines the arguments for

thickness and atomic percent calculations using x-ray absorption measurements.

2.1 Sample Preparation

Amorphous Fe,Ge,., and Mo,Ge,., alloys were prepared at room temperature by

magnetron co-sputtering of elemental targets onto a rapidly rotating substrate table (300

rpm), so that only a fraction of a monolayer is deposited as the sample is rotated in front of

one target and then the next. The sputtering geometry was in the vertical, with the substrate
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table always positioned 3” below the planar magnetron sputter guns. The base pressure of

the chamber was never higher than 2 10-e torr, while at times as low as 7 10-7 Torr, and the

sputtering gas, purified Ar, always held at 2 mTorr. A summary of the different deposition

conditions, targets used, gun settings, film characteristics, etc., can be found in table 2.1.

The Ge and MO targets were typically 2” in diameter by l/8” thick, while the Fe

targets were always 2” by 0.080”. Thicker Fe targets could not be used because the

permanent magnets at CMR were not strong enough to compensate for the Fe target’s high

permeability. In the previous study by Lorentz, the Fe was triode-sputtered, since the

strong permanent magnets that were used in this work were not yet available at CMR.

Magnetron sputtering is favored over the triode-sputtering method, since the magnetron

does a much better job of electron confinement .4 This increases the efficiency of the

.system, permitting us to work at low voltages and low gas pressures. With high gas

pressures, collisions of the sputtered atoms with the sputter gas lead to a broad energy

distribution and lower mean energy of the adatoms (“thermalization”5).  One other

advantage with the magnetron system is that, with greater electron confinement, it is

possible to limit the bombardment of the emerging film with electrons and ions. However,

the reduced gas scattering can lead to bombardment of the emerging film by the adatoms

themselves.6

The Ge RF power was usually set in the range of 350-400 watts (except for some

samples grown at -100 watts--see table 2.1), while the MO or Fe DC current was varied

from 0.02-0.20 amps to control the overall composition of the film (for ~~0.33). Some

Fe-Ge samples were prepared using different target power and current settings. However,

it is difficult to grow thick samples of identical composition under various conditions with

the 3” system at CMR. The sputtering rates change slightly as a function of time, being

dependent on the target thickness; to grow a sample of a particular composition is often a

‘hit’ or ‘miss’. Although useful, the rate tests (deposition rate as a function of power or
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current setting) mentioned by others (e.g. Kortright, Wilson) are simply too crude to obtain

films of accurate composition from one deposition to another. Fortunately, enough

samples have been grown that similar Fe-Ge compositions have been obtained for films

grown under various power settings.

The substrates consisted of Si (100) wafers, glass microscope cover slips and

slides, and 0.001” kapton. The Si wafers were cleaned with standard semiconductor

methods, the glass slides by acetone and methanol, and the kapton by soap and deionized

water and blown with dry Nz gas. Film growth rates varied from l-4 &sec depending on

target power settings, but typically S-10 micron thick films could be grown in 7-10 hours.

With a table rotation of 300 rpm, approximately 0.2 to 0.8 8, of material are deposited for

each revolution under the sputter guns. The films were grown to such thicknesses that they

could support their own weight and not crack or flake once the Si support was removed.

For films thicker than 6-7 microns, the Si substrates could be removed by immersion in a

warm KOH bath for approximately 4 hours. The details of the etching procedure are

described by Wilson.3 Samples that are sufficiently thick and free-standing are 6.3, 10.8,

13.6, and 18.2 at.% Fe and 6.5, 12.4, 16.4, and 23.6 at.% MO; the rest of the samples

(listed in table 1) are only kapton- and glass-supported.

2.2 Initial Characterization

Due to the previous work of Kortright and Lorentz, who have searched amorphous

alloys of similar composition and preparation methods for crystallization and

contamination, little more than a visual examination was required. After sputtering, the

films are very smooth with a shiny surface. In some isolated cases, there exist large areas

of cracks and flakes, where the material has crystallized. These are most evident in

samples grown for long times and at the higher Fe and MO atomic fractions. A

conventional Picker diffractometer was used to insure that the samples used in this study
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had not crystallized. Moreover, since there was no etch stop protecting the films, there was

concern that the Si substrate removal procedure with KOH may have damaged the films.

There was no visual evidence for such damage, however, and the Picker scans showed no

change between the free-standing films and those that were kapton-supported. These

observations are in agreement with Wilson, who also observed no change in the Mo-Ge

alloy with KOH etch. Additionally, the ASAXS patterns show no difference between the

free-standing and kapton-supported films (from the same deposition), except for the far-

improved SNR.

The kapton-supported films often curled, with the deposited film on the outside.

For films of the same atomic percent metal, the curling is greater the thicker the film, and

for films of the same thickness, greatest curling occurs for a-Ge. Such observations had

--been reported earlier by Kortright,z  who argued that the “curling presumably results from

different thermal expansions of the films and kapton on cooling...it is well known that

tetrahedral semiconductors have small thermal expansion coefficients compared to metals,

and this is consistent with the observed curling behavior...” (p. 35). The curling effect has

not been pursued beyond these observations and was not evident in the free-standing films.

This tends to support Kortright’s idea that the thermal expansion between the kapton and

film is the cause of the curling phenomenon.

An extra glass slide was also attached to the substrate table, with a small region

-1cm2 masked. After the deposition with the mask removed, an alpha-step profilometer

was used to determine the film thickness. The profilometer uses a diamond-tipped stylus to

mechanically measure the height difference between the masked and unmasked regions.

Finally, an electron microprobe was used to determine the atomic percent metal in each

alloy.
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2.3 X-Ray Absorption Measurements

To take advantage of differential anomalous scattering, the atomic scattering factors

(ASFs) near the relevant atomic absorption edges must be determined. The ASF, f(k, E),

is defined as the ratio of the amplitude of coherent scattering from an isolated atom to that

from a free electron. It is a function of the photon energy E and the scattering vector

k - 4nsinO/a, with 28 the scattering angle. At small k, the ASFs are essentially constant

for a given x-ray energy. Since we focus only on scattering in this small-angle region and

there is little if any noticeable change in the scattering factor with angle in this region, we

have ignored any angular dependence in the ASF and write it simply as f(E).

Near an absorption edge an anomalous dispersion effect occurs, and one must

include the anomalous dispersion corrections to the total scattering factor:

f(E) - 2 + f’(E) + if”(E), (2.3.1)

with 2 the number of electrons in the atom and f’(E) and f”(E) the real and imaginary

components, respectively. The imaginary component is directly proportional to the atom’s

absorption cross-section by the optical theorem. The real component of the ASF is then

determined by the Kramers-Kronig dispersion relation. For energies lower in value and

just below the absorption edge, f”(E) is essentially constant and f’(E) is increasingly

negative as the edge is approached. Above the edge, f”(E) is much larger, with the

sample absorbing photons more readily with the photoelectric effect. The variation of the

ASF with energy permits a variable contrast effect that allows one to highlight a particular

element’s contribution to the total scattering.

Different methods for determining the ASFs have been critiqued by Fuoss,’ and the

one chosen for this work is conceptually the simplest. The absorption cross-section for a
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particular atomic species is determined by placing an ionization chamber before the sample

(monitor incident intensity) and one after the sample (monitor forward scattered intensity),

scanning in energy through an accessible absorption edge (e.g. Fe, Ge, and MO K-edge),

and subtracting the absorption cross-section contribution from other sources. This is the

standard EXAFS experiment using two ion chambers in a forward-scattering geometry.

After removing the background and absorption from other elements in the sample, the

absorption data are placed on an absolute scale by normalizing the data to the free-atom

ASF given by the Cromer-Liberman values. Then, with the aid of the optical theorem and

the Kramers-Kronig integral, the energy dependent ASFs are extracted.

In practice, the ASFs were obtained as follows. Absorption edge data sets were

taken at-the- eight-pole focused wiggler side-station 4-1 of the Stanford Synchrotron

.Radiation Laboratory (SSRL) on all of the sputtered films. By scanning through the Fe,

Ge, and MO K-edges (see Section 3.3 for a discussion of the x-ray optics), the absorption

cross-section for different samples and energies have been measured. The background and

absorption from other species as well as a changing detector function is removed with a l/E

cubic polynomial. The EXAFS region, which is structure sensitive and thus sample

specific, is excluded from this fit. Then, the absorption data are placed on an absolute scale

by normalizing the data far from the edge to the free-atom ASF with Cromer-Liberman

values. FORTRAN program FPPFIT.FOR, written by Wilson from an earlier version of a

program from Ludwig,* performs the above subtraction and normalization procedure and

then determines f”(E) from the optical theorem. Program FPCL.FOR by Ludwig

calculates the f’(E) by evaluating the Kramers-Kronig integral.9 The ASFs for all free-

standing samples were determined. Figure 2.la shows the raw data at the Ge K-edge for

one of the samples, 23.6 at.% MO, prior to background subtraction and data normalization.

Figure 2.lb and 2.1~ illustrate the extracted f’(E) and f”(E) for this sample using the

above mentioned procedure and computer programs.
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Figure 2.1. (a) Raw absorption data at the Ge K-edge for one of the sarn les, 23.6 at.%
MO, prior to background subtraction and data normalization. (b) and (c illustrate theP
extracted Ge f’(E) and f”(E) for this sample.
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The scale factor that relates the absorption cross-section to the Cromer-Liberman

value provides a measure of the number density of the atomic species in the material. This

has lead to a method that can be used to determine the composition of the film (see Wilson)

using x-ray absorption measurements. For absorption measurements at the a edge, the

scale factor is equal to the atomic number density of element a multiplied by the total

thickness t of the film, n,t. For a binary alloy, an accurate determination of both nAt and

nBt allows the atomic fraction A in &B,.= to be calculated:

x- nAt

nAt + n,t ’
(2.3.2)

By assuming an average number density for the overall film, navg, the thickness can be

‘calculated, t h (n,t + n,t)/n,, . For a given film of metal concentration x (x<O.33), navg

was taken as 95% of the weighted average number densities of c-Ge and c-MGe, (M=Mo,

Fe). Table 2.1 compares the compositions and thicknesses for the different alloys with the

alpha-step and electron microprobe results.
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Table 2.1 Summary of deposition conditions and characteristics for samples studied.

L’J’ti

(alloy)
89285
Fe-Ge

I 1  “I A.&”

s u b s t r a t e s  (&-amps)
position a t . %  metal@ thickness6

(d--watts) time e.m./edge a-step/edge
kapton,

glass 0.043 400 2.1 hrs 10.7 1.00 pm
\

.-

= The atomic percent metal in each of the samples has been determined
for all samples with the electron microprobe (e.m.). In some cases, the
absorption method (edge) has also been used to determine the metal
concentrations (separated by I/‘). When measured, we usually cite the
edge method as giving a more accurate metal concentration, since it
samples the entire film thickness whereas the e.m. probes only the top
1000-4000 A.

b The thickness of each sample from the sputtering runs are measured
with the alpha-step profilometer (a-step). In some cases (separated by
I/‘), the thickness has also been measured by absorption methods with

5an assumed average number density of atoms in the film (Eq. 2.3.2 1.
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Chapter 3

ASAXS Experiment and Data Treatment

In this chapter the basic relationships between differential anomalous scattering and

the structure. factor and pair correlation functions are established. In addition, the.
experimental methods used to obtain these functions will be outlined in detail.

3.1 Structure  Factor and Pair Correlation Functions

In a typical x-ray scattering experiment, the measurable quantity is the differential

cross-section da/&2 of scattered radiation, consisting of the Thomson, photoelectric,

Compton, and, if near atomic absorption edges, resonant-Raman contributions. Elastic or

coherent scattering occurs when energy is conserved in a scattering event and is often

referred to as the Thomson cross-section, dae,a/dQ. It is this quantity that is most often

used to determine atomic arrangements in materials. In the photoelectric effect, a photon is

absorbed by an atom which leads to the ejection of an electron to the continuum and

. emission of additional, lower energy photons from the atom (fluorescence). Similarly,

resonant-Raman scattering,1  which is appreciable only for x-ray energies just below atomic

absorption edges, results from the following inelastic process. An incoming photon, for

example with energy just less than an atom’s K electron, is absorbed by the atom which

--
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leads to a transition from the initial ground state to a virtual state and then to a final state. In

the final state, the atom is left with a hole in the L shell, and a photon is emitted with a

lower energy than the initial one. These lower energy photons (fluorescence and resonant

Raman scatter) are distributed over 4n solid angle and are detected as constant background

superimposed on the coherent scattering. Compton scattering, another inelastic or

incoherent process, is negligible at small angles and is not considered in the analysis.

The knowledge of the differential cross-section provides an immense amount of

information about electron density correlations in the material. With the kinematical theory

of x-ray scattering, the differential cross-section that arises from the elastic x-ray scattering

is proportional to the absolute square of the Fourier transform of the sample’s effective

electron-density, p(x’, E) :

5 (E, E) = rjlr; ,o(x^,  E)e-““d’xl (3.1.1)

with r,= -$ =2.8179  10-S A, the Thomson coefficient for the scattering amplitude for a free

electron (also known as the classical radius of the electron), and V the scattering volume for

photons of energy E (wavelength A). The differential cross-section is a function of photon

energy and momentum transfer E, defined in direction by the incident and scattered

wavevectors and in magnitude as 4nsin(y)/A, with 28 the angle between the incident and

scattered photons. To isolate the elastic term in Eq. 3.1.1, the contribution of the inelastic

processes must be removed from the total, measured differential cross-section. This will

be discussed in more detail in Section 3.6.

The effective electron density is a function of the wavelength that is used to measure

the differential cross-section. Since the experiment is performed at small angles, the

volume elements that are probed are large compared to the typical atomic volumes in the
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sample, and thus each atom in the volume element contributes a certain number of

electrons. At energies far removed from any absorption edges in the material, each atom in

the volume element contributes a number of electrons equal to its atomic number. For

energies near an absorption edge of an atom in the material, the anomalous scattering

factors will define the effective electron density. In particular, the electron density at a

particular point x’ (with respect to an arbitrary reference frame) is the sum of the product of

the number density for a particular atomic specie (nol> by its effective number of scattering

electrons, summed over all species in the material:

(3.1.2)
--

.- In amorphous materials, the differential cross section is usually assumed isotropic;

that is, da/dQ is a function of k only. In this work, the differential cross section and,

hence, the associated structure factors and pair correlation functions are strongly

anisotropic and are expressed as a function of k’ explicitly. Figure 3.1 illustrates the polar

coordinate system with respect to the film surface normal that is used in this work. Notice

that the polar coordinates are (k,O,,q&), with 28 the angle between the incident and

scattered photon and not related to the polar angle coordinate 0,. In order to remove

sample and experimental parameters from the differential cross-section, it is convenient to

define a function called the structure factor, S(i, E), that is proportional to the elastic

contribution of the differential cross-section per unit volume of material:

S&E) = re-‘V-‘@$(“,E). (3.1.3)
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I
’ I/
! /- -

----------.

Figure 3.1 Spherical coordinate system used in this work. The sample is in the x1-x2
plane, with x3 in the direction of growth.

--
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The structure factor has dimensions of (electrons)2 per volume and is simply the absolute

square per unit volume of the effective electron density Fourier transform.

The origin of the x-ray scattering is not from the electron density itself; rather, from

any changes in electron density (this is of course not true if forward scattering is included).

To understand this in the context of the above equations, define the electron density

difference r](Z, E) as the difference between the electron density at Z and the mean density,

pa(E). That is, q&E) - p&E) - p,(E). Inserting this into Eq. 3.1.1 with Eq. 3.1.2

yields

(3.1.4)
-.

‘Since the second integral in Eq. 3.1.4 is the contribution from forward scattering and is

essentially a delta function centered at the origin and not experimentally distinguishable

from the transmitted beam, it is common practice to ignore it. The equation for the

structure factor is thus:

(3.1.5)

Any variations from p,(E) due to voids and/or chemical inhomogeneity give rise to x-ray

scattering. The Babinet principle of reciprocity assures one that a deficiency in effective

electron density (from the average) will lead to scattering of the same magnitude as that

_ from an abundance of the same amount.

An equivalent description of the structure factor is to observe that it is the Fourier

transform of the effective electron density pair correlation function. Explicitly writing out



-

CHAPTER  3. ASAXS EXPERIMENT AND DATA TREATMENT 27

Eq. 3.1.5 and assuming the illuminated volume is large compared to the wavelengths of the

Fourier components of interest:

(3.1.6)

If the pair correlation function y (Z, E) is defined as the average over all two-point

correlations of the change in effective electron density from the average, i.e.

Y (%E) - (r7WV1(x’ + r’,E)) - +~)@W)T@ + jj,E)d3y, (3.1.7)

--

then y (Z, E) and S(& E) are Fourier transform pairs. That is,

S(P, E)e”‘d3k. (3.1.8)

It should be noted that the term “Fourier transform” is being loosely applied in these

equations. Technically, the Fourier transform extends to infinity, so only if the electron

density includes the change in density near and around the perimeter of the sample can the

volume integral be extended to infinity. Realistically, however, the size of the illuminated

sample is so large that the additional Fourier components introduced by the finite size effect

are not important in this analysis; the additional Fourier components are not only far from

the size region of interest but also are not instrumentally resolvable.

One general parameter that follows directly from the correlation function and is

independent of any model structure is the mean square fluctuation in effective electron

density, (q’(E)). This is readily obtained from the pair correlation function for x’
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identically 0 (i.e. y(x’ - 0,E) - (r’(E))) and is commonly known as the total elastic cross-

section:

(r2w) - &j’S(&E)d’k. (3.1.9)

It should be noted that no assumptions have been made about the sample at this point.

Poorly defined phase boundaries, anisotropies, etc. may be present on any scale.

3.2 Differential  Anomalous Scattering

Species-specific structural information manifests itself in the structure factor,

which, for a binary alloy, consists of three specific contributions, S,(l), known as the

partial structure factors (PSFs).  Inserting Eq. 3.1.2 into Eq. 3.1.5, we have

with xA the A atomic fraction (xB=l-xA ),

(3.2.1)

(3.2.2)

fi,( z) the Fourier transform of the difference in atom a’s number density from the average,

_ and N, the number of a atoms in volume V. The derivation of Eq. 3.2.1 assumes that there

exists a center of symmetry in the pair correlation function (i.e. SAB is real), which is

always true for isotropic materials and assumed true even for this discussion of anisotropic

scattering. This need not be the case, however, but it is a subtle effect and difficult to
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measure in amorphous materials. The DAS method2 requires at least three independent

data sets near atomic absorption edges where the scattering factors are changing rapidly and

hence modifying the PSF weighting functions. By observing the effect of various

combinations of weighting functions on S&E),  the PSFs can be extracted.

This is not trivial. The scattering factors that comprise the weighting functions

differ with energy, but usually at most only 12-15 % of the total scattering factor (for the

MO, Ge, and Fe K-edges studied in this work), so that the solution of Eq. 3.2.1 is ill-

conditioned. Additionally, if the spectra exhibit only subtle variations with energy, good

SNRs are required to produce statistically significant changes with energy. There have

been several different approaches that have been tried over the years to obtain the PSFs,

using linear and non-linear methods.

3.2.a Weighted Average PSFs

A simple yet general approach to determine the weighted average of a particular

atom’s PSF has been suggested by Shevchik.3 In this scheme, the derivative of the total

structure factor with respect to energy is calculated for energies just below the atom’s

absorption edge, where the real part of the atom’s ASF changes while the imaginary part

and other atom’s ASFs do not. By taking the derivative with respect to the varying f; of

an A-B binary alloy and neglecting the small changes of fi’ with energy, the equation is

simpler:

(3.2.3)

Rice et al.4 used this approach to assess the degree of homogeneity of a sample. If there is

no change in S(%E) with f;(E), i.e.
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0 - mml%.4m  + lF&l(ElS,B(~). (3.2.4)

then S,(E # 0) = 0 since&(E) changes while f’(E) is constant. This consequently also

leads to S,,(l * 0) = 0; from Eq. 3.2.2, then, atom A must be distributed homogeneously

( fiA(E z 0) = 0). This result is also observed even without taking the derivative. If there is

absolutely no change at the A edge (i.e. S(%E)  constant for various f:(E)), then Eq.

3.2.1 implies S,,=SAA=O for ki+O.  The number density of atom A must be constant

throughout the sample and thus a relative criterion for determining the degree of atom A’s

homogeneity in a sample has been established. In such a scenario, it is important to verify

that atom B’s PSF fully account for the changes in S(E,E), or else the equality in Eq.

.3.2.1 is violated.

3.2.b Keating and Munro Approaches

The Keating approach is the most straightforward method used to extract the PSFs

and relies on writing Eq. 3.2.1 as a system of linear equations,

W$&) - S&E). (3.2.5)

For three independent measurements, the matrices are defined as:

%lf.(El)12 2% R f,(El)f,‘(El) &lWI>I’
4w2>12 2% Re W2)fd(E2>  %lW2)12  9;t 1 (3.2.6)

4w3)12 2% R W3xw3) 4fb(E3]2
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and similarly for S&R). Eq. 3.2.5 is usually solved by matrix inversion methods. The

basic problem, however, is that the rows of the 3x3 weighting matrix Ware not sufficiently

linearly independent to obtain a reliable matrix inversion: the 3x3 weighting matrix has

such a large condition number that any systematic errors in the data and/or weighting matrix

(e.g. scattering factors or atomic fraction) or poor SNRs become magnified and overwhelm

the species-specific contributions. Modern methods have attempted to improve the

condition number of the weighting matrix. Munro incorporates difference equations in the

system of equations, and, with such a scheme, a maximum of 5 energies can be used:

W’ .S&) - S’(E,E), (3.2.7)

‘with

r42[Sm)]

S’(E,E) - S&E,) ,
45[Sm]

%42[lf.(nl’] %42[Re[f,wm]]  0
W' = 4f,(E3)(2 2%  Re[ W3)fd(E3)] %lW3>1’

0 2x,A,,[Relf,cE,,fdCE,)l] .b45[lf,(E,12]

,

and AU the difference of the quantity in brackets measured at energies i and j. This

_ improves the condition number and allows for the subtraction of instrumental errors that are

present in scans 1 and 2 (or 4 and 5) but not in their difference. Since matrix methods can

also be used to solve m equations with n unknowns, the Keating and Munro 3x3 weighting

matrices can be expanded to an mx3 matrix, with m the number of scans recorded. It is not
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clear that this is any better than using the 3 or 5 best scans at different energies, however,

since the mx3 matrix will be even less linearly independent than the original 3x3 matrix.

3.3 X-Ray Optics

In order to perform anomalous scattering experiments, special care must be taken to

ensure that there is adequate flux and energy resolution. Beamline 4-2 at the Stanford

Synchrotron  Radiation Laboratory, which is an &pole wiggler end-station, is the site of the

semi-permanent ASAXS camera (see figure 3.2). The basic line consists of a Pt-coated

toroidal mirror and a double-crystal monochromator. For x-ray energies near the Fe and

Ge K-edges, the Si(ll1) crystals and the mirror were used; near the MO K-edge, an

unfocused beam with Si(220) crystals were employed. The Si(ll1) crystals are better at

.-the lower energies, since its second harmonic (222) is forbidden and its larger Darwin

width allows greater intensity at no loss of energy resolution (see below). The Pt L-edges

(just higher in energy than the Ge K-edge) help limit the higher order harmonics for x-ray

energies near the Fe and Ge K-edges, but the entire mirror must be removed for

experiments at the MO K-edge. Even with the mirror in place, the Si(ll1) crystals are still

detuned -20%. Near the MO K-edge, however, the Si(ll1) crystals cannot be used due to

small Bragg angles which lead to most of the beam passing over the top (or bottom) of the

first crystal and are replaced with the Si(220) crystals (detuned -50%).

The energy resolution is determined by the Darwin width of the crystals and/or the

beam divergence. The Darwin width for a first order reflection from planes parallel to the

cleavage face (hkl) for x-rays polarized normal to the scattering plane is5

de = 2.12r, nsiAz I IF
nsin28 W ’

(3.3.1)
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Figure 3.2. (a) Scattering geometry for oblique transmission
experiment. (b) 4-2 beam line x-ray optics and SAXS camera.
Scattering in vertical plane.
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with n,=0.0498  A-3 the number density of Si and Fhkl the scattering amplitude of the hkl

reflection per Si atom (Fl11=5.657  and F2x0~8.). The FWHM energy bandpass is then

readily determined from the Bragg Law, AE/E = -Aecot8. Table 3.1 shows the Darwin

width and the associated bandpass of each crystal near the energies of interest . The

bandpass is no greater than 1.2 eV for all energies and crystals in table 3.1. This places an

upper limit on the total intensity but is unfortunately not always the true energy resolution.

The beam divergence and any focusing optics that are included (e.g. mirror at the Fe and

Ge K-edges) must also be considered.

Table 3.1. Darwin widths and associated energy resolution for Si mono crystals.
Energy-. Si(ll1) Si(220)
(ev) 8 A8 (pad) AE (eV) 8 (0) A 8  (pad) AE (ev)

-7100 16.18 30.6 0.75 27.07 28.6 0.40
11100 10.27 19.1 1.17 16.92 17.0 0.62
20000 N/A N/A N/A 9.296 9.16 1.12

For the case of point-to-point focusing with a mirror present, where the finite spot

size is ignored, the energy resolution can be determined by considering the opening (yr)

and closing (y2) angles and the distance of the mirror between the source (II) and focus (Z2),

see figure 3.3. The largest angular difference between two rays that meet the Bragg

relationship on the second crystal is given by

de = e, - e, = y2. (3.3.2)

The focusing element determines the relationship between the opening and closing angles,

which, for small angles, is ZlyI=Z2y2, or yl-y2 for the 1:l focusing mirror on line 4-2. The

--
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(a>

monochromator
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35

Figure 3.3. Energy resolution and the influence of focusing elements. yl and y2 are the
opening and closing angles, with I, and Z2 the distances between the source and mirror and
mirror and focus, respectively. For beamline 4-2 with a 1:l focusing mirror, Z1-Z2 and thus
Y1- Y2.
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vertical divergence has been kept to y,=64.5pad  with the mirror aperture which thus

provides Ah64.5 prad with an associated energy resolution of AE=1.58  and 3.95 eV for

Si(ll1) crystals at E=7100 and 11100 eV, respectively. It should be noted that with such a

small yl (which has been intentionally chosen to provide such energy resolution), the

mirror probably does not provide more than a factor of 4-5 increase of the total flux but is

still used as a low-pass filter. Moreover, since the Darwin width is smaller than the source

divergence, the narrow widths serve only to limit flux and do not serve to improve the

energy resolution. It would, of course, be better to use crystals with a Darwin width that

approached the vertical divergence of 64.5 pad. At the MO K-edge with the Si(220)

crystals and the mirror withdrawn, the energy resolution is determined by the opening

angle, yi- and is thus AE=7.88  eV for the Si(220) crystals at 20 keV.

. . For the ASAXS experiments, then, the energy resolution is a combination of the

Darwin bandpass and that due to beam divergence; for these measurements, the vertical

divergence is the limiting factor. We typically work at 4-6 incident x-ray energies below

each edge. At the Fe K-edge: -200, -100, -50, -20, -10 eV (edge at 7112 ev); the Ge K

edge -300, -200, -100, -50, -20, -10 eV (edge at 11103 eV); the MO K-edge: -400, -100,

-20, -10 eV (edge at 20000 eV). The energy bandpass is thus sufficiently narrow to

observe and record the anomalous scattering effects.

3.4 SSRL Small-Angle  Scattering Camera

The SAKS camera used for the measurements is outlined in figure 3.2. The mirror

aperture and a set of slits before the monochromator are used to define the beam and limit

its divergence as it travels towards the hutch. Once in the hutch, the incident beam is

further defined by two sets of slits (each approximately 0.25 mm vertical by 0.50 mm
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horizontal) separated by an evacuated chamber roughly one to three meters in length. The

samples are held in transmission and separated by a telescoping, evacuated chamber from a

linear position-sensitive detector. The lead beamstop  is glued in the middle of a thin mylar

sheet that is rigidly attached to an aluminum ring (-25cm diameter); the ring is placed inside

the second of two evacuated chambers, centered on the direct beam, and motor controlled.

Miniature ionization chambers, placed directly before and after the sample, are used to

normalize scattering data as well as calibrate the monochromator. The monochromator, ion

chambers, and detector are all controlled by a VAXstation through a CAMAC interface.6

Depending on the x-ray energy, the windows used to separate the evacuated

chambers and air are either 0.001” mica or kapton. Mica is the preferred material, except

that it c&tarns enough Fe to prohibit its use at the Fe edge. Consequently, mica has been

used at the MO and Ge-edges, with kapton the material of choice at the Fe edge (and

occasionally used at the Ge edge as well). Unfortunately, kapton has appreciable small-

angle scattering in the angular region of interest, and, even with the free-standing films, the

kapton scattering from the windows on the evacuated chambers is noticeable and must be

subtracted. Details of data subtraction and normalization are presented next. Especially at

the MO edge, where the reduced counting efficiency limits the SNR, elimination of all

kapton with mica (June, 1993) led to significant changes in the scattering pattern with

energy which were somewhat obscured during a previous attempt (February, 1993).

Experiments had been performed on films held perpendicular to the x-rays, so that

the scattering vector lies in the plane of the sample. Consequently, only those correlations

in electron density projected onto the sample surface plane contributed to the scattering.

The oblique transmission experiments allow for various orientations of the scattering

vector. By tilting the sample an amount t9,,  the scattering vector rotates out of the surface

plane, and correlations in electron density are projected onto the plane defined at various

angles with respect to the surface plane. A Huber 410 circle provided the necessary sample
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rotation; the circle in turn was affixed to an XY sample positioner which fit on the camera’s

optical rail. The data sets consist of radial scans in k‘ -space; that is, the sample is taken to a

particular tilt angle 0, so in the small-angle limit the direction of k’ is fixed, and the

scattering is measured as a function of the scattering vector magnitude, k. This is done for

t9,=90, 75, 60, 45, 30, 15” (0” is not measurable) and, with the anomalous scattering

performed at each angle, results in a total of 50-70 scans for each sample.

The linear position sensitive detector used in the measurements is a 20 cm linear

position sensitive proportional counter supplied by Biologic. The details of the detector

have been outlined by previous users7 and will not be discussed in detail. One point,

however, must be stressed. At any point along the length of the linear detector, the

efficiency is.proportional  to the absorption of photons in the depth of the detector (which is

. -6 mm for this particular model), 1 - ewPcEJT, with p(E) the absorption cross-section of the

counter gas and T the detector conversion depth. If the detector is too deep (large 2) and if

the incoming photon enters the detector at any angle with respect to the wire normal, then

the position of the incoming photon is necessarily obscured. On the other hand, if it is too

shallow (small T), the count rate is limited. Near the Fe K-edge, for example E=7012eV,

the absorption length is ,~(7000)-‘=4.0 cm for a 70% Ar/balance  CO2 mixture. Hence, the

Ar mixture is usable at this photon energy with the detector of conversion depth 6 mm.

Near the MO K-edge, the absorption length is ~(19900)I=77  cm for the same Ar-

containing gas. This of course makes it a poor choice of gas. A better choice is one with a

greater absorption cross-section, for example 80% Xc/balance CO2 (although far more

expensive). With this gas, p(19900)-1 is 8.2 cm, which leads to much improved counting

statistics than with the lighter gas. Figure 3.4 compares the absorption cross-sections of

the two gas mixtures as a function of energy. Clearly, the Xe filled gas is the superior

choice. At the MO and Ge K-edges, the Xc/CO, gas has been used, while the detector has

been filled with Ar/CO, at both the Fe and Ge K-edges.
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Figure 3.4. (a) Theoretical comparison of the efficiencies for gas mixtures of Xc/CO, and
_ At-/CO2 with a 6 mm conversion depth as a function of photon energy (absorption from Be

windows, air, etc. not included). (b) Absolute scaled scans at normal incidence for the
13.6 at.% Fe sample with the Ar and Xe gas mixtures at E=11093  eV. Similar data
collection time for each scan with no smoothing performed. The Xe/C02 gives a superior
signal due to its greater absorption cross-section at the Ge and MO-edges than AL ASAXS
near the MO K-edge is simply not possible with an Ar/C02 mixture.

--



CHAPTER 3. ASAXS EXPERIMENT AND DATA TREATMENT 40

There is another problem, however. With an incident energy near the MO K-edge,

Ge fluorescence (Ka,=9886, Ka,=9855, K/$=10982,  K/J,=10975 eV) from the Mo-Ge

samples swamp the detector, since the fluorescence is at lower energies and hence

preferentially absorbed in the limited detector depth (~(10500)-1=1.5 cm for the Xe

mixture). With the Xe mixture and large fluorescence signal, the count rates are so large

that space-charge effects and dead time corrections become appreciable. The energy

resolution of the detector is approximately 20%, so the fluorescence can be discriminated

and excluded from the coherent signal. However, the beam flux must be reduced in any

case to avoid the space-charge and deadtime effects, and the resulting count rate is not good

enough to perform anomalous scattering. Another method is to employ absorbing filters

with an absorption edge between the fluorescent radiation and the coherent signal (e.g. Zn

.with a K-edge at -9700 ev). However, placing such filters after the sample, for example,

leads to fluorescence from the filter itself. This problem has been overcome by sputtering

-4.8 ,um Zn onto a large sheet of 0.001” kapton. The Zn filter is then placed over the

detector, downstream of the beamstop, so the Ge fluorescence can be preferentially

absorbed without excitation of Zn fluorescence from the direct beam. Two filters, stacked

one on top of the other for a net -9.6 pm Zn, worked best. Of course not all Ge

fluorescence is captured--Section 3.6 explains background subtraction. Fluorescence from

Fe in the Fe-Ge samples was not so great as to warrant the use of an absorbing filter and

was removed with the background subtraction method outlined later. This is most likely

due to the small Fe concentrations studied and the low fluorescence yield expected from

lighter elements.

3.5 Data Normalization  and the Absolute Scale

Before the data collection and reduction procedure are discussed, it is instructive

first to understand what is required to normalize and place the data on an absolute scale.
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Simply put, the absolute scaled differential cross-section is the number of photons that

scatter into a given solid angle for a given time per incident flux on the sample. Since the

observed SAXS is very weak, background scattering and sample absorption must be

carefully considered. We suppose that an ion chamber (I,) is placed directly after the

sample and that a linear detector is placed further downstream some distance from the

sample with a number of absorbing elements (e.g. kapton, Be, or mica windows; air) in the

path of the beam. For a given photon energy E and incident intensity, window materials,

and sample, the total scattering observed at any position u along the length of the linear

detector, I&U), consists of two contributions, that from the sample, I,, and all other

sources, lother. The window materials and the parasitic scatter around the main beam

contribute to 10t,,cr. Since the only inelastic scattering at small angles is expected to result

.from the sample (fluorescence and resonant Raman scatter with only a negligible Compton

shift at small angles), I, must be summed over all relevant photon energies:

(3.5.1)

All units of intensity, I, are in counts/time and have not been corrected for the efficiency of

the detecting system in order to give the absolute number of photons/set. To understand

how to remove the lother, we must first consider the absorption of the sample.

For scattering at small angles with an oblique transmission geometry, the

absorption correction is easy to calculate. For a given volume element dV at a depth z’ in

the film, there are two absorption factors to consider. The first is the attenuation of the

incident beam as it travels to depth z’ in the sample, given by e-K(E)r’ with ,uJE) the linear

absorption coefficient for the sample and t the film thickness. The second is the attenuation

of the scattered beam as it traverses the remaining film, given by e-Pd)(f/sinh-z’) in the
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small-angle limit. The overall absorption correction factor for elastically scattered photons

is the product of these factors, or e-K(E)r’sinek.

. Figure 3.5. Absorption correction illustration for samples held in transmission.

With the sample in the path of the beam, the elastic scattering from the window

materials is attenuated by e-Pa(E)r/siaek and is removed by measuring the scattering with and

without sample, ITOr and Iother(u,E)  respectively, and then subtracting the two after

removing the attenuation from the sample:

(3.5.2)

where an extra factor of IO (incident beam intensity) is included to account for changes in

_ beam current and the prime indicates that the sample is removed. It is usually more

practical to place an ion chamber immediately after the sample, to record I1 - loe-“(E)~Si”ek,

in order to automatically include the sample absorption correction. With the sample

removed, I@) is identical to IO. Hence, Eq. (3.5.2) can be replaced with:
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(3.5.3)

The distance along the wire, U, is proportional to the magnitude of the momentum transfer

k, which is determined by the distance from the sample to the detector and number of

detector channels/length.

Now that it is clear how to isolate the sample scattering, we will focus on the

differential cross-section of scattered radiation from the sample and the absolute scale. The

scattering of a photon with final energy J? from a differential volume element dV in the

sample given an incident energy E can be written as

with the result scaled by the incident intensity, sample absorption, and the differential

cross-section per unit volume, da/d& . da/d& l dV is the number of scattered photons

of energy J!? from volume dV into a solid angle dJ2 given an incident flux of photons of

energy E. The proportionality constant, K ,  which defines the absolute scale, is the ratio of

the efficiency of the IO (or II) ion chamber for energy E to that of the linear detector for

energy ,?? multiplied by any extra absorption from the camera (e.g. detector’s Be window,

kapton or mica windows), K is also scaled by the effective solid angle dQ spanned by each

channel on the linear detector (which is the same for all channels along u in the small-angle

limit), in order to convert the do/dQ,, on the right-side to intensity units on the left-side

(Eq. 3.5.4).

As mentioned in Section 3.1, the inelastic scattering (fluorescence and resonant

Raman scatter) is angle-independent but of course energy-dependent. Hence, we write the
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total differential cross-section per unit volume as the sum of the elastic and inelastic

contributions:

g(E,E,i) = $$=(E,E)d(E -k) t %(i <E).
V V V

When substituted into Eq. 3.5.4 and integrated over Vand .!?, we have:

~(~,E)t%(E)=@&&j;i.
V 1

(3.5.5)

(3.5.6)

A is the area of the beam defined by the slits, and B(E) is given by

The k-independent function ‘8(E) is negligible for energies far from any absorption edges

in the sample.

The elastic scattering from the sample will thus be superimposed on an energy-

dependent ‘background’ determined by 3(E). Estimates of do,,,/dSZ,  can be found in

the literature (e.g. for resonant Raman scatter, see Ref. 1), but without K(E,@ and p&!?)

the overall function 8(E) cannot be determined. With the proper energy resolution, it

would be possible to discriminate the elastic signal from R(E). For the case of resonant

_ Raman scattering of Fe at E=7000  eV (Fe K-edge is at 7112 eV), ~??=6292 (final state hole

at LIII), 6279 (LII), and 6154 (LI) eV. With an energy resolution of only 20%, the

position sensitive proportional counter unfortunately cannot discriminate the resonant

Raman from the elastic signal. The same is true at both the Ge and MO K-edges. With

--
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more advanced detectors, it should be possible to exclude the resonant Raman signal.

Methods are developed in Section 3.6 to remove the i??(E) and hence extract the elastic

signal.

If the incident energy is below the Fe K edge for the Fe-Ge alloys or Ge K edge for

the Mo-Ge alloys, then the fluorescence should be minimized, with ‘8(E) consisting only

of the resonant Raman contribution. There is still fluorescence from the L edges, but the

characteristic radiation produced is at such low energies that it is easily absorbed by the

window materials, air, etc. With only small changes in the sample’s absorption from
photons of energy E to k, (P~(J!?)  - p,(E))t/sin8, << 1, Eq. 3.5.7 can be simplified:

(3.5.8)

where the integration is performed over the relevant energies (e.g. 6100-6300 for Fe-Ge

and E=7000). We are still limited, however, by the unknown K(E,@,  and it will not be

possible to remove 8(E) from theoretical calculations of d~~~/dQ,, .

To arrive at the overall sum da,,,/dQ, + S(E), the quantity K(E) in Eq. 3.5.6

must be measured. Foils experiments* can be used, where, for a particular energy, foils of

different thicknesses are placed between I1 and the linear detector. By extrapolation to 0

foils, K(E) can be determined. There are problems with this, however, especially with

proportional counters. 9 Space-charge and deadtime effects permit only low count rates

(4000 cps on any one position of the wire) so that extrapolation to 0 foils is difficult to

_ determine accurately. In addition, higher energy harmonics from the monochromator

crystals can more easily penetrate the foils than the first-order reflection and tend to pollute

the extrapolation. The preferred method is to use a secondary standard that has already

been calibrated by a variety of methods.
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The secondary standard used in this work is a piece of polyethylene (PE)

normalized by T.P. Russell et al.10 using small-angle x-ray and neutron scattering data.

PE, a strong small-angle scatterer with a well-defined scattering maximum at k-O.037 A-l,

is a partially crystalline polymer which consists of C and H atoms. Since the absorption

edges of these elements are far below the Fe K-edge energy, the C and H anomalous

scattering factors are negligible, and the absolute scaled differential cross-section

determined by Russell et al. is valid at photon energies near the Fe, Ge, and MO K-edges.

As with the window materials, the PE’s inelastic scattering is negligible at small angles.

The differential cross-section per unit volume of the PE standard is daPE(k’)/dQv - 4.25

cm-1 for k’ the scattering maximum. With short camera lengths, the PE maximum is not

always resolvable, so a point was chosen at larger k, k”=0.063  A-1, where the PE absolute

.scattering has been determined from long camera length measurements,

&&“)/d4 - 1.93 cm-l. For changes of -200 to 0 eV at the Fe, -300 to 0 eV at the Ge,

and -400 to 0 eV at the MO K-edges, no changes in the PE’s normalized intensity,

4% wY4 (El 9 were resolvable. Apparently, the ratio of the efficiency of I,(E) to that of

the linear detector (with either Ar or Xe gas mixtures) is essentially a constant over these

small changes in energy. It should be noted that the absolute scale is difficult to achieve

precisely--we suspect that there is probably a 10% error in the scale reported here.

The da&d& + B(E) for a given sample, then, is determined by measuring PE

under identical experimental conditions as that for the sample, subtracting the scattering

from other sources (Eq. 3.5.3),  and forming the following ratio to cancel the K(E)A in Eq.

3.5.6:

%(E,E) + S(E) = ~&@,‘), b&dE), da, (k’ E)
I,(E)t/sin&  IPE(k’,E)  dl2, ’ ’

(3.5.9)
V
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where fpE is the thickness of the PE.

47

3.6 Data Collection and the Measured Structure Factor

Data collection, normalization, and %(E) subtraction are discussed next. For a

given sample and tilt angle & SAKS spectra are recorded at 4-6 energies, with typical

scans at each energy -1-10 min in length. These are recorded cyclically; that is, spectra

recorded and saved at each energy and then again, usually 4-6 times. The end result is

usually 4-40 min collection time per angle per tilt angle 9,. There is essentially no dark

current with the beam off (-1-5 cps integrated along the length of the detector), so that it is

ignored. The data are centered, calibrated to a E-scale, divided by I,(E), and averaged

over cycles.7 In order to prevent extra background, no windows were placed on the 1, ion

.chamber, so that the counter gas was simply hutch air at the Fe and Ge K-edges. At the

MO K-edge, however, the extra absorption cross-section from Ar was needed to improve

the I1 count rate--mylar windows were placed on the chamber and Ar flowed. Typical

count rates for the linear detector are -2000-20000 cps integrated along the wire.

Finally, scattering from sources other than the sample is subtracted (Eq. 3.5.3) and

the elastic scattering placed on an absolute scale with the PE standard (Eq. 3.5.8), as

prescribed in the previous section. The range of reciprocal space covered, of course,

depends on the sample-detector distance and the incident x-ray energy, but typical values

ranged from k=0.005 to 0.60 A--I. Smearing effects due to finite beam size have been

considered but are negligible due to the small spot size used and relatively large small-

angles studied and hence are ignored in the analysis. Figure 3.6 shows SAKS from the

18.2 at.% Fe and 6.5 at.% MO samples near the Fe and Ge K-edges along with the

background from the mica and kapton windows. The scattering from the mica windows is

essentially flat in the scattering region of interest. Thus mica is a better window material

--
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than kapton, which has a weak yet comparatively strong scattering maximum near k-O.38

A-1. The x-ray signal from the sample itself is weak, no more than 3-5 times stronger than

the background from other sources in the beam.

Figure 3.6 also shows two “dead spots” that are in (a) but not (b). During one of

the periods of data collection, the detector had been partially destroyed by other users in

those two regions. The proper way to correct for this problem is to uniformly irradiate the

detector with x-rays and measure the detector response function. Then, we divide this

function into the collected scans, which should, in principle, correct for any changes in

efficiency along the length of the linear detector. The easiest way to obtain the detector

response function is to use x-rays just above an absorption edge, for example 7200 eV (just

above the Fe K-edge). With an Fe filter in place, Fe characteristic radiation is emitted

.-isotropically;which provides a strong signal with which to measure the response function.

In addition, by placing the detector at 28-90” and in the plane of the storage ring, there will

be no Bragg scattering from the Fe filter due to the polarization of the synchrotron

radiation. The detector response did not vary by more than 5% along the length of the

detector and 1-2 % from channel to channel, except for the dead spots shown in figure

3.6a. In that case, the detector response function only imperfectly corrected for the dead

spots (the degradation is a function of time and changes). The scattering maximum was

intentionally oversampled (-100 channels per 0.1 8-I>, so that the dead area could be

isolated as much as possible and discarded. In figure 3.6b, the linear detector was

exceptionally clean with no dead channels. In that case, the sampling rate was decreased

(-40 channels per 0.1 A-l).

There remains the issue of isolating the sample’s elastic scattering, which is

superimposed on the angular-independent, inelastic scattering from fluorescence and the

resonant Raman effect. Methods in the literature have focused on the scattering at large k.

--
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Figure 3.6. Scattering from the free-standing films: subtraction of scattering from window
materials, prior to being placed on an absolute scale with the PE. The total recorded
scattering is I,,,(@/Il(E), with Im,(@/Il(E)  - Ii&u,E)/Il(E) the total scattering from
the sample (see Eq. 3.5.3). In (a), recorded at 6912 eV with an Ar counter gas, 0.001”
kapton windows on the evacuated chambers contribute to the observed SAXS and are
subtracted. The arrows show that there are two dead spots along the detector wire which
must be corrected or smoothed (see text). (b) The 0.001” mica windows have essentially a
flat background in the scattering region of interest and are thus a better window material
than kapton (E=10803  eV with Xe gas mixture).

--
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For the case of the relatively strong-scattering Cu-Ni-Fe alloys, Simon and Lyon11 noticed

little angle-dependent scattering for k>0.35  A-1 and hence were able to remove the flat

background by aligning all scans to 0 for k>0.35 A-1. For the case of a broad SAXS

maximum as observed in this work, Maret et al.12 fit the Porod law (S(k) a l/k4) and a

constant background to the large k scattering observed from a-TbCu and a-GdCu alloys.

Due to the inverse relation between real and reciprocal space, at large k the elastic scattering

originates from the interface between distinct regions of different electron density (e.g.

particle and matrix), often referred to as the surface of the particle. k is still small compared

to atomic dimensions. If the surface layer between the regions of electron density or

particles and matrix is a sharp, abrupt density transition, then large k scattering follows the

Porod k71aw. Although they felt “the Porod asymptotic behavior is too inaccurate to give a

.reliable corrected value” for the structure factor, it is not clear if the problem of using such a

method to correct for background is in the SNR of their data, the small k-range fit, or a

fundamental problem with power-law scattering. In fact, Schmidt et al.13 have found that

power-law relationships (S(k) a l/ka) that are fit over several decades in k may differ

(-10%) from a local power-law fit over smaller ranges in k. The regions need not be of a

particular size, identical in shape, or dilute in particle density.

Many years ago, Ruland 14 showed that if the density transition is not sharp

between the two phases, then one can approximate the transition from one phase to another

as the convolution of a Gaussian with the step function, The Gaussian describes the

interfacial width of the transition, and the step function, a perfect interface. With the

Fourier deconvolution theorem, the observed scattering at large k is thus:

S(k) a exP(-o:k2)
k4 ’

(3.6.1)
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with the step function transforming as the Porod law and the Gaussian into another

Gaussian. a, is the standard deviation of the smoothing function, with the total interfacial

width taken as 20,. By plotting log[k4S(k)] versus k2, the interfacial widths can be

determined. This is shown in figure 3.7 for the 10.8 at.% Fe and 12.4 at.% MO samples.

Since the photons are below in energy any of the K absorption edges, the 8(E) should

consist only of resonant Raman scattering. The resonant Raman effect should contribute to

fl&6912eV) for the 10.8 at.% Fe sample but it should not significantly alter the elastic

scattering (only when the energy is much closer to the edge). The scan of the 12.4 at.%

MO sample at 7100 eV is so far removed from the K edges that sM,,(7100eV) should be

negligible. For the Fe-containing sample, the appropriate fitting region is -0.35<k<0.50

before the SNR worsens, whereas the SNR is sufficient to extend the fitting region to

.larger k for the 12.4 at.% MO scan. The 2~7, are listed in table 3.2 and do not follow any

apparent systematic behavior; in fact, for some sample the widths are unphysical. We will

come back to these values after we have discussed an alternative approach to the large k

scattering.
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Figure 3.7. Ruland plots, log[k4S(k,&)]
MO. Plots offset for clarity.

versus k2, for (a) 10.8 at.% Fe and (b) 12.4 at.%
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In a different approach to the diffuse transition between the two phases, Schmidt et

al.13 have shown that the SAXS at large k can decay at a rate greater than k-4 and as great

as k-6 in the form of power law scattering. To see if a power-law relationship exists, it is

instructive to create a log-log plot of the scattering. If there is a power-law at large k, then

it should be observed as a linear region on the log-log plot. Figure 3.8 shows the oblique

transmission results from the 10.8 at.% Fe (E=6912 eV) and 12.4 at.% MO (E=7100 eV)

samples. Table 3.2 shows the power laws determined by extracting the slope from the log-

log plots. The large k power-law does not change by more than 10% with changes in ok

for a particular sample, so it is not clear if the changes are significant or not. From the

Ruland plots, we find the interfacial widths are on the order of a few atoms, and for those

power-laws less than 4, they are imaginary. As mentioned previously, Schmidt has found
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* Figure 3.8. log-log plots of absolute-scaled scattering, da,,,(&E)/dQ, + 8(E) (plots
offset for clarity). For comparison, power-law plots for various exponents are included;
these illustrate that a power-law close to 4 works well. (a) 10.8 at.% Fe sample with
E=6912 eV (200 eV below the Fe K-edge). (b) 12.4 at.% MO sample with E=7100 eV.
The photon energy is far removed from any absorption edges in (b), so 8(E) should be
zero. It is probably close to zero in (a) as well.

--
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variations of up to 10% of a local power law from that fit over several decades in k. This

provides a reasonable explanation for the imaginary inter-facial widths for some of the scans

(cK4).

To investigate the relationship between the interfacial widths and the power laws,

we determined the interfacial width as a function of a for similar fitting regions in k as that

for our samples, shown in figure 3.9. The functions of course are not the same, but when

one is fit to the other over such a small k-range (0.4<k<0.60),  they are essentially identical

within the SNR of the data (see figure 3.9). For a 10% change in power-law, for example

from a=4 to a=4.4, the interfacial width changes from 0 to 2.5 A. Since the cylindrical

correlation function (see Chapters 4 and 5) indicates that regions of similar electron density

(i.e. “pa&cles”) are on the order of 10 A in any direction 0, for either the Mo-Ge or Fe-Ge

samples, the total inter-facial width may consist of up to 50% of the particle (with the a=5

power-law). Since we cannot measure the power-law scattering fall-off at large k better

than this lo%, the meaning of the interfacial widths have little value. They do indicate,

however, that we cannot quantitatively assess the density transition from particle to matrix.

It is thus by no means clear that the interfaces are sharp between “particle” and matrix.

It appears as though the fall-off at large k goes approximately as k-4 or, at most, k-5,

which is consistent with a Ruland-type model. It should be noted that most theories on

power-law scattering assume that the structure factor is isotropic. We have applied these

models in an ad hoc way; that is, we have fit the scattering for a given 0, to an isotropic

scattering theory. From an empirical point of view, we find that the power-law scattering

does not appear to depend significantly on the anisotropy.

Figure 3.10 illustrates how a constant background (e.g. resonant Raman scattering)

can contaminate the power-law that is measured for a sample. In figure 3.10a,  the log-log

plot of scattering from the 6.5 at.% MO sample is shown, collected at 7100 eV and 10803
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Figure 3.9. (a) Relationship between interfacial width 20, and power law CL l/kQ data set
created for 0.4ckx0.6 and then fit to the interfacial width model to extract 20,. (b)
Comparison of power law CY=~ and the Porod law with a finite interfacial width.
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Figure 3.10. At 300 eV below the Ge K-edge (10803 eV), scattering at large k from the
6.5 at.% MO sample does not exhibit a power-law close to 4 that is observed at 7100 eV.
This is likely due to the presence of B(10803eV). With subtraction of different constants,
however, the scattering can be fit to various power-laws, most notably a=4 and 5 in the
above.
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eV along with the necessary ‘8(E) subtracted to fit the 10803 eV data to the elastic

scattering a=4 and 5 power-laws. It is clear that the power-law scattering at large k is

different at the two energies, which is due to the contamination of the elastic scattering

signal by the resonant Raman scattering. For a fitting region 0.40ckc0.50  A-1, we have

cr=4.5 and 3.4 for energies 7100 and 10803 eV, respectively.

Although not too surprising, I have found that the partial structure factors are fairly

insensitive to the method of background subtraction, as long as it is performed in some

consistent way. This has been the case for this work, when one of the PSFs is far greater

than the other two, but it is not likely to be true in general. Figure 4.4 shows the PSFs for

the 13.6 at.% Fe sample calculated for various types of background subtraction, from

fitting the high k-side of the SAXS maximum to power-law fits of cr=4 and 5 to aligning

the energy-dependent scans to coincide at very large k. The method of background

subtraction is important, however, when calculating the total elastic cross-section (Section

4.2) which defines the mean square fluctuation in electron density (Eq. 3.1.9). The elastic

cross-section is determined by integrating the elastic scattering from 0 to k-+03, so an

accurate subtraction of the 8(E) and extrapolation to 00 with, for example, a power law is

essential.

We have tried to fit the function A + B/k” to the scattering patterns with a non-

linear least-squares routine. The results are inconclusive, however, since the relevant k

range that can be fit is less than a decade--limited by the large interparticle interference at

small k and the poor SNR at larger k. With such a small k-range, it is possible to fit

various power-laws that agree quite nicely with the data yet are simply wrong. For

example, consider the analytic function l/k4 presented in figure 3.11. By including a

constant offset (5% of the maximum intensity in the fitting range) and random noise that

increases with k, the best-fit power-law from a log-log plot is cr=3.65. The greatest
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Figure 3.11. Simulated, noisy, large k data that illustrates the difficulty in determining anFigure 3.11. Simulated, noisy, large k data that illustrates the difficulty in determining an
accurate power-law a with such a small k range.accurate power-law a with such a small k range. The simulated data follow an a=4The simulated data follow an a=4
power-law with an added constant of 5% of the largest intensity and random noise thatpower-law with an added constant of 5% of the largest intensity and random noise that
increases with k. The fit to A + 1increases with k. The fit to A + 1k= gives a=4.2. The problem is with the limited k-range,k= gives a=4.2. The problem is with the limited k-range,
which allows very similar sets of {A,B,a) to reproduce the data.which allows very similar sets of {A,B,a) to reproduce the data.
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Figure 3.12. Background subtraction for the 13.6 at.% Fe sample for &=90” for four
energies below the Ge K-edge. (a) Porod plot (offset for clarity): kV,G(k,90) versus k4
after subtraction of the B(E,&).  (b) u=5 power law plot: kV,%(k,90) versus ks after
subtraction of the B(E,&). (c) r,G(k,90) with assumed k-4 fall-off. (d) r,G(k,90)  with
assumed k.5 fall-off.
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deviation from the u=4 law is at the larger k values in the fitting region, which are more

susceptible to the constant offset. When fit to the function A + B/k”, the best-fit power-

law is u=4.2 (using a Simplex routine in MATLAB). With such a small k-range, the fit is

extremely sensitive to any errors. This is a model case, but if there is a problem with

imperfect window subtraction, for example, it becomes even more difficult.

The data presented in this work have been subtracted in the following way (similar

to that by Maret et a1.12). For a particular sample and oblique transmission angle, the

elastic scattering is assumed to follow a power law. That is, it is fit to the large k SAXS to

remove background:

-. da,,,(k&Jq
dQV

+ B(E) - A(E&)/k” + B(E,8,). (3.6.2)

The B is then removed from each scan, rendering dcre,a,(k,8,,E)/dB, . The values of B

and A (for a=4 they are related to the “range of inhomogeneity parameter” or “Pored

radius” often found in SAKS textbooksts)  are only used for background subtraction and

not for structural information; rather, the real-space cylindrical correlation function has been

determined and provides a more sensitive means to extract structural information from an

anisotropic system than the change in ‘Pored radius’ with 6,. Since it is not possible to

unambiguously determine u, the integrated intensities have been determined for two

different u, u=4 and 5 to test the sensitivity of physical results to the choice of CT. Figure

3.12 demonstrates the two different power-law fits for a sample held at &=90° and

_ energies below the Ge K-edge. Evidently, the fits are quite good for either power law.
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Chapter 4

Amorphous Fe,Gel-, Results

I_n this chapter we report the oblique and anomalous x-ray scattering

measurements for amorphous Fe,Ge,., and interpret the data in terms of scattering theory.

The methods of differential anomalous scattering (DAS) as applied to amorphous

components are well understood as are the basic tenets of small-angle x-ray scattering.

The combination of both theories along with the full differential cross-section as

determined by the oblique measurements provides new insights to the structure of these

films.

4.1 Anisotropy and DAS Results

Figure 4.1 shows the structure factor S&E) determined from the oblique

transmission experiment for several Fe,Ge,., samples. A strong anisotropy appears,

observable from the change in the scattering peak with sample orientation. As the sample

. is tilted, the peak shifts inward to smaller k, monotonically decreasing with Ok. Although

the existence of a peak in a SAXS data set is not necessarily a tell-tale sign of a

particularly important lattice spacing or structure, it is at least a firm indication of well-

defined medium-range distances. These data demonstrate that there exists a range of in-
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Figure 4.1. r,2S(k,  0,) (cm-~)  for a-Fe,Ge,.,: (a) 18.2 at. % Fe, (b) 13.6 at. % Fe, and (c)
6.3 at. % Fe. In each case, as 0, changes from 90” to O”, the SAXS peak monononically
decreases in amplitude and shifts inward to smaller k. Data smoothed over an interval
hk=o.o2 A-l.
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plane correlations, which become gradually weaker and of smaller momentum transfer as

the scattering vector shifts in orientation from the sample surface to the sample normal.

All samples in this composition range (~~0.33) illustrate the same behavior: as the

scattering vector direction moves from sample surface to sample normal there is a

monotonic decrease in scattering intensity and shift inward in peak position. However,

by adding even more Fe to the alloy, the SAKS maximum disappears and we report no

scattering for samples with 44 and 47 at.% Fe. The very existence of this peak and

behavior with scattering vector direction has been difficult to understand in terms of

model structures; consequently, Chapter 6 is spent discussing different models that give

rise to its existence.

By changing the deposition conditions, films identical in composition can be

grown to different states of phase separation. Figure 4.2 compares the scattering from

samples of three compositions that have been prepared with two different target powers.

By manipulating the target power, a host of variables in the vapor deposition process are

altered (e.g. adatom thermal energy and deposition rate), so that it is not surprising that

the samples exhibit different states of phase separation. Samples grown at 400 watts

show a more “advanced” state of phase separation than those at 100 watts; that is, the

SAKS maximum appears at a smaller magnitude of the scattering vector with greater

amplitude, The greatest change is observed for the 6 at.% Fe sample while only an

intensity difference is apparent for the 25 and 27 at.% Fe samples. The change in

intensity for the 25 and 27 at.% samples, however, may be due to the different overall

film composition and not from the change in target power.

For all samples (~33 at.% Fe) and oblique angles studied, only slight if any

changes in S(& E) are observed with energy near the Ge K-edge, but large changes exist

at the Fe K-edge. This result has previously been observed by Rice’ for amorphous M-

Ge (M=Fe and W) at the Fe, W, and Ge edges and at normal incidence, but it appears to
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Figure 4.2. SAXS, r,2S(k,90)  (cm-l), as a function of composition and power delivered to
the sputtering targets: -, 400 W power; - - - 100 W. Data smoothed over an interval
&=0.02 A-1.
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be true for all oblique angles studied too. For differences of 16% in f&E), an

approximate 4% intensity change of the main scattering peak is observed, whereas

differences of 17% in fFe(E) lead to a 30% intensity change The technique of DAS is

employed to ascertain the origin of these observations. Figure 4.3 shows the changes at

the Ge and Fe K-edges with respect to the change inf’ for the 13.6 at.% Fe sample. The

Ge edge scans that are shown were obtained with a Xc/CO, detector gas--the scans that

were collected with the Ar/C02 gas have a SNR that is significantly worse and

consequently have not been used to determine species-specific information. The large

change at the Fe edge is evidence that the Fe atoms are not distributed homogeneously.

A small change at the Ge edge is observed, and since it is approximately an order of

magnitude less intense than at the Fe edge, the Ge atoms, at least with respect to Fe, are

.-distributed considerably more homogeneously. To understand the degree of homogeneity

on a more quantitative level, the PSFs must be determined.

The PSFs have been extracted using the Munro approach and are shown in figure

4.4 for the normal transmission case (f&=90’)  and different methods of background

subtraction. The type of background subtraction employed seems to have little effect on

the results, whether the scans are fit to power laws with cr=4 or 5 or are aligned at large

k-O.55 A-1. There appears little, if any, Ge contribution to the total scattering pattern.

Although the weighted-average PSFs (figure 4.3) indicate that there might exist a non-

zero sFeG, and SGeCe, the SNR and the large condition number lead to PSFs with little

information about the Ge-Ge correlations except that they appear negligible compared to

the sFge for all measured k. With SFeGe and SGeGe much smaller than S,,,,, the observed

scattering can be considered due to the inhomogeneity of Fe atoms. The most striking

feature is the absence of any Ge-specific scattering throughout all oblique angles and

composition range studied (~~0.33). S@,E) appears comprised solely of SFeFc(i), which
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Figure 4.3. Weighted-average PSFs for 13.6 at. % Fe sample. (a) Absolute changes in
SAKS at the Fe and Ge K-edges, scaled by the relative change in f(E). That is,
r,” (&(k,90) - SE2(h,90))/(f’(EI)  - f’(E,)) (cm-l). At the Ge edge, El=-300 and E2=-10
eV below the edge, and E =-200 and E2=-10 eV below the Fe edge. (b) Data smoothed
over an interval Ak=0.02 A-l. (c) Difference at the Ge edge scaled by an extra factor of
10. There is approximately an order of magnitude difference of homogeneity between the
Fe and Ge atoms in this sample. Background subtracted with an assumed Porod k-4 fit at
large k.
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Figure 4.4. Normal incidence (&=90’) PSFs for the 13.6 at. % Fe sample determined
with the Munro method (scaled by r,2 and in units cm-l). (a) PSFs from raw data with
scans from energies El=6912 and E2=7102 eV subtracted, energies Es=10803  and
E,=11093 eV subtracted, and energy Es=6912 eV. Background removed with a Porod k-4
fit. (b) PSFs from (a) smoothed over an interval Ak=O.O2 A--1. (c) PSFs determined with
the same method and energies as in (a) but with the background removed with an
assumed k-5 fit. (d) PSFs determined as in (c) but with the background removed by
assuming the coherent scattering is 0 for k>0.55 for all energies and scans. Within the
SNR, the PSFs appear identical and independent of the precise method of background

_ subtraction. The SNR and large matrix condition numbers lead to PSFs that cannot
isolate the Ge-Ge and Fe-Ge correlations that are observed in the weighted-average PSFs
(figure 4.3b).
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must also be responsible for the anisotropy or change in correlation with film orientation.

This result also implies that, for all samples, voids do not contribute appreciably to the

SAXS. The concentration of voids appears negligibly small since any voids would

greatly influence the scattering. The difference in electron density between regions of an

amorphous phase and voids would be far greater than between two solid phases and

would be easily observed as a non-zero SGcGe(@.

4.2 Mean Square Fluctuation in Effective Electron Density

As mentioned previously in Chapter 3, a general parameter that is commonly used

in SAXS studies is the mean-square fluctuation in electron density, (y’). With the

anomalous dispersion relations, (v’) becomes the mean-square fluctuation in effective

.electron density, (y’(E)), as noted in Eq. 3.1.9. It is proportional to the elastic cross-

section, also known as the integrated intensity or invariant in different textbooks. We

start this section by reporting the mean-square fluctuation in effective electron density for

several Fe-Ge samples. Since the transition width between particle and matrix cannot be

unambiguously determined from these experiments (see Section 3.6), it appears

particularly difficult to extract useful information from the (q2(E)). This is not the case,

however, and we will argue that it is possible, albeit with assumptions, to identify the

composition of the phase-separating species.

4.2.a Calculation and Values
In practice, ( q2(E)) is calculated in 2-dimensions with an assumed azimuthal

symmetry. That is, the integral in Eq. 3.1.9 is performed by integrating each radial scan

in k (for a given polar angle t9,> and then over Ok:
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tqztE)) ’I
%c ( )nG,t Are2 2~’

E)k2& sine de1 k k’ (4.2.1)

The integral over k is performed in the usual way: the contribution from 0 to kmin

summed with a triangular approximation, the data from kmin to k,, integrated with the

trapezoidal rule, and the contribution from k,,,, to 00 included by analytically integrating

the GI power law:

(4.2.2)

. The contribution of the triangular approximation to the total integrated intensity is usually

less than O.l%, but the contribution from the power law extrapolation can be as great as

20-30%, which is due in large part to the finite k-range sampled. The value of (y’(E))  is

thus largely dependent on the quality of the l/ka extrapolation and has been entirely

excluded in some analyses,2 where a relative comparison between scans was desired. In

our case, the fit to a power law can be quite good for 4cac5,  depending on the fitting

region in k (see Section 3.6). As mentioned previously, the contribution to the integral is

determined for two different cases (a=4 and S), which should span the range of possible

a observed in these films. The integral over the polar angle is performed with a 7-point

Simpson’s rule. &=O” is not experimentally accessible but is not necessary either in order

to calculate ( q2 (E)), since the sin& term in the integrand forces the &=O” contribution to

_ 0. The measurements at e&O, 75, 60, 45, 30, and 15” appear sufficient to adequately

sample the anisotropy; Section 4.4 addresses this issue in more detail, where the

cylindrical distribution function is calculated from an expansion in spherical harmonics.
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Figure 4.5 depicts the relationship between (q2(E))/nGe and lfF,(E12  for several

samples at the Fe K-edge and the two different power law extrapolations. Since there is

no change in ( q2 (E))/ nce with energy at the Ge K-edge (consistent with DAS results), it

is not shown; we will come back to this null result later, however. n& is used as a means

to normalize (q’(E))  to the sample thickness. Since the thickness is not known precisely,

yet the absorption edge-jump measurements (Section 2.3) provide nGet, a factor of && is

explicitly included in (q?(E)). Nothing has been assumed about the densities in the

sample up to this point. The different power-law extrapolations can change the overall

mean-square fluctuation in density, in some cases up to -20%. This is due to the

different assumptions that are made about the phase separation. For sharp boundaries-.
between regions of two different electron densities, as one might expect from distinct

‘nuclei, the mean-square change in electron density will be larger than that from two

regions of the same difference in electron density but with diffuse boundaries (e.g. early

stages of spinodal decomposition).

Section 3.6 pointed out that we have been unable to unambiguously define the

size of the transition width between regions of different electron density. With the

limited SNR at large k (less than a decade), it is not possible to determine an accurate

transition width from the Ruland plots; equivalently, we can fit an a=4 (sharp transition)

or an a=5 (diffuse transition) power-law to the data. As mentioned in Section 3.6, with

a=5 the transition widths approach -4O-50% of the regions of like electron density

(“particle”), since these regions are no larger than -10 8, (see Section 4.3). In what

_ follows, two models are discussed. In the first case, we assume the interfaces are sharp

and employ the (y’(E)) that are obtained with the Porod law. Alternatively, in the

second case, we focus on a finite transition width that occupies a significant volume

fraction of the sample. In either case, it is possible to determine the compositions of the
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Figure 4.5. Mean-square fluctuation of the effective electron density as a function of the
film composition x and different power-law fall-off at large k. (a) An assumed Porod k-4
fall-off (sharp transition between regions of different electron density); (b) an assumed k-5
fall-off (finite transition width).
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phase-separating species. These two extreme examples allow us to place limits on the

computed compositions, since the actual transition widths will probably vary between

these two examples.

4.2.b Sharp Transition

If the samples are phase-separated into regions of well-defined electron densities

with sharp, abrupt interfaces, then the large k scattering obeys the k-4 Porod law. The

mean-square fluctuation in electron density, for a two-phase system, can be explicitly

written as

-. (r12(E))=+p -~o)~ +&C)(P, -Po)‘~ (4.2.3)

with c the volume fraction of FepGel-, with effective electron density pp and similarly

for (l-c) and FeqGel-,. Since the previous section concludes that the contribution to the

SAXS from voids is negligible, they have not been included in Eq. 4.2.3. (If voids are

included, it is easy to show after some manipulation that they drop out of the calculation.)

Previously, Rice et al.3 used a two-phase model to interpret the anomalous

scattering from amorphous films. The approach developed here is identical, except that

the anisotropy must be included. To see how this is related to the anomalous x-ray

scattering experiments, the effective electron densities pP and ps can be written as linear

combinations of the scattering factors for each element. For example, the phase of

stoichiometry Fe,Ge,-, has an electron density

&cE) - n;dFe(E) + n&fce(E), (4.2.4)
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where & and n& are the number densities of Fe and Ge atoms, respectively, in

Fe,Gq-, . By expanding Eq. 4.2.3 in terms of the scattering factors and number

densities,

(q2tE)) - d1 - +ie - n&Fc(E> + (6, - nie)f,e(E]2* (4.2.5)

As noted, there is no resolvable change in (q2(E)) with energy at the Ge K-edge while

there are large changes with energy near the Fe K-edge. This implies nz, - n&. In

addition, we assume one endpoint is a-Ge (i.e. p=O or nf+ = 0) and hence rewrite Eq.

4.2.5 as

where the volume fraction c is expressed in terms of the measured atomic fraction x and

n, - n& - r&. There could easily be l-2% solubility of Fe in a-Ge, but since we

observe the SAXS with the addition of only 6.3 at.% Fe, the assumption of one endpoint

consisting strictly of a-Ge seems reasonable.

With (v2(E))/nGc 9 fdEh and x measured in the ASAXS and absorption

experiments, a linear fit of (q’(E))/n,  to If,,(E)I’ allows one to find the slope,

&(& -i%G& with the constraint that the y-intercept equal 0. Then, from the slope,

r& can be determined for a given n& (or vice-versa), and thus the atomic fraction 4 of the

phase Fe,Gq-, determined:

(4.2.7)

--
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Figure 4.6. Endpoint compositions 4 determined from the mean-square fluctuation in
effective electron density for four different Fe-Ge samples, with assumed number
densities of Ge that are equal to that for c-Ge and 95% of c-Ge (a-Ge). For the theory of
a sharp transition between the two-phase regions, (q’(E))/n,, is determined with the
Porod law extrapolation. For the theory of a 50% transition width, (q’(E))/n, is
determined with a k-5 law.
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.Figure 4.7. Diffuse interface model for two-phase system. The electron density of the
interface is approximated as the average electron density between the two neighboring
regions.
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The evident linear relationship between (q’(E))/n,,,  calculated for a=4, and IfFe(E]’

shown in figure 4.5a, illustrate that there is good agreement with the two-phase

approximation of Eq. 4.2.6. For number densities of 95% of, and the crystalline value

for, crystalline Ge, the different possible endpoints q are shown in figure 4.6. The results

are convincing; for all samples studied, 4 ranges from -34 at.% Fe to -38 at.% Fe.

4.2.~ Broad Transition

Consider the other extreme to the previous example. Suppose that the transition

width occupies a large fraction of one of the phases; it was shown in Section 3.6 that this

region may be on the order of 50% of the particle for power laws with a=5. As an

.approximation to the electron density of the transition region, which in theory should

vary continuously from pP to p4, let the average of pP and ps occupy this region. Figure

4.7 illustrates such a three-phase model. If the volume fraction of material that has

electron density pq is c/2 and the volume fraction of electron density pP is l-c, then the

overall electron densities must be related by

c Pq + Pp
;P* +(WPp  +z

( )
2 =Po* (4.2.8)

The mean square fluctuation in electron density can be analytically written as:

(?‘cs)-f(P,-p.)2+o-4(Pp-Po)2+;(pq;pp-Po)2. (4.2.9)

With the electron densities expanded in terms of the atomic scattering factors and

number densities and the volume fraction c in terms of the atomic fraction x, we have

--



.

CHAPTER 4. AMORPHOUS FexGel,  RESULTS 80

(4.2.10)

As in the previous example, the slope can be determined in Eq. 4.2.10, shown in figure

4.5b,  which allows us to calculate the atomic fraction 4 given a number density for a-Ge.

For this model of a broad transition between the two phases, the (~2(E))/nG~  must be

calculated with the a=5 power law. The different possible endpoints 4 are shown in

figure 4.6 for two different number densities for a-Ge. For all samples studied, 4 ranges

from -32 at.% Fe to -38 at.% Fe.

These two models are two extreme examples of the type of interfacial region that

we sus@t exist in these samples. Although we are unable to assess accurately the

.interfacial structure, it appears that, regardless of the interface, the composition of the

regions that are somewhat removed from the interfacial regions can be determined. In

this case, it appears that there is phase separation into a-Ge and an Fe-Ge intermetallic,

close in stoichiometry to an amorphous FeGe2.

4.3 Cylindrical Correlation Functions (CCFs)

It is difficult to interpret the anisotropy from the scattering patterns alone, since

the scattering along a given polar angle 6, is given by the Fourier transform of the

projection of the real-space pair correlation function onto the plane defined by 6,. Any

robust understanding, especially of an anisotropic noncrystalline system, thus relies on

determining the electron density pair correlation function. From the vapor deposition

process itself, the pair correlation function is likely to exhibit an “in-plane” isotropy with

an axis of cylindrical symmetry in the direction of growth. The appropriate function in

this case is the cylindrically symmetric pair correlation function.4 Such functions have
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Figure 4.8. The pair correlation function that is determined by integrating k--*m with the
Porod law contains no atomic structure. A region is considered to be of a constant
electron density with sharp boundaries. The pair correlation function (Eq. 3.1.7) for a
vector Z is thus the product of the electron density at the tail and arrow of vector 2,
averaged over all starting points.
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been used to study oriented noncrystalline polymers,5 but to our knowledge have not

been applied to vapor-deposited amorphous semiconductors or metals.

It should be stressed that direct Fourier transformation of the data is difficult due

to truncation errors; the atomic scale structure (i.e. at large k) is not measured so that we

cannot determine the ‘true’ CCF one would obtain by integrating over the entire

reciprocal space. Despite this limitation, we have calculated the CCF by extending the

observed intensities to k-- with the Porod law (as is most often done in SAXS

studiesh).  The pair correlation function that is thus determined contains no information

about the atomic structure. It assumes that the electron density for a particular region is a

constant and that there are sharp boundaries between regions of different electron density

(see figure 4.8).

4.3.a Theory of the CCF

As noted in Section 3.1, the pair correlation function is the average over all pair

correlations of the deviation in effective electron density from the average. It is the

Fourier transform of the observed x-ray scattering function, the structure factor S&E).

The CCF has been calculated for scans measured at one energy, E=6912 eV, so for

convenience the variable E will be dropped from discussion although it is important to

remember that E defines an effective electron density. For cylindrically symmetric

functions, y (x’, E) and S(E, E) can be expanded in terms of Legendre polynomials,

Y WJ = a n d  S(k,e,) - (4.3.1)
“-

where the coefficients y&) and S,(k) satisfy the spherical Bessel transform
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(4.3.2)

and 6, b#d and (k 4,&) are spherical polar coordinates in real and reciprocal space that

describe y(Z) (see figure 3.1). Due to the cylindrical symmetry, $J~ and & do not enter

into the final relations and are dropped from discussion. The S,(k) are readily obtained

from the orthogonality relations, i.e.

s,(k) - (2n + l)JS(R,B,)P,(cosB,)sinB,dB,.
0

(4.3.3)

-.

Only the even terms in n are of interest, since there exists an assumed inversion

symmetry with respect to the x1-x2 or kl-k2 plane. This need not be the case, however, as

one can imagine a situation where correlations in the direction of film growth +& differ

from those in the -i, direction.7

Legendre polynomials form a complete set, but it is not possible to uniquely

determine all S,(k) from the finite data collected. For example, if there exist nine

different radial scans in k that span t9,-0” to 90”, the largest n that can be determined is

eight (the highest order polynomial one expects to fit nine data points is of order eight).

Hence, large regions of reciprocal space must be sampled in order to approximate S(k,@

as a Legendre series. Only those samples that lack long-range order and exhibit slight

anisotropy are amenable to this method.

In contrast to atomic pair correlation functions used in studies of short-range

order, the “independent scattering” of the individual particles has not been removed,

since it does not appear obvious how to remove the self-scattering contribution from

SAXS data. The observed scattering is from both particle and interparticle effects, and it
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is usually desirable to remove the particle scattering so that one can highlight the

interparticle features. Indeed, for the case of large interparticle interference, it is still not

possible to remove the contribution from the particles’ self-correlations since there exists

a distribution in particle size as well as particle interpenetration. This issue is discussed

in more detail in Section 6.4. The CCF which is presented in this section thus includes

the self-scattering contribution. The number of vectors that give an identical correlation

between x and X+Q!X  and 0, and t5,+de, is thus 4mXnf3,u(x,B,)d~,dx,  with a factor of 2

included for inversion symmetry.

4.3.b Application of CCF to Amorphous Films

Since the structure factor is very similar for all a-Fe,Gel.,  samples (x<0.33)--that

.is, there is a -monotonic change in scattering intensity and shift in peak position with

changes in &--we choose the 6.3 at.% Fe sample as representative of the ~~0.33 alloy

and examine in close detail its CCF. It should be noted that each scan has been

extrapolated in the normal way in order to perform the k to x transformation. Scans are

extrapolated to large k with the cr=4 power law and to k=O with a Gaussian function,

aexp[b(&)k2].

The anisotropic scattering data have been used to determine the first four Z&(k)

from Eq. 4.3.3 by employing a ‘I-point Simpson’s rule. For each k, there are six measured

points f3,=90, 75, 60,45, 30, and 15”. The seventh is not measurable but not necessary to

compute the S,(k), since the factor of sine, in the integrand forces the 8,=0” term of the

total integrand to 0. Figure 4.9a shows the computed S,(k). The n=2 and n=4 terms are

far from negligible and illustrate the importance of including the anisotropy. The n=6

term, however, is much weaker, contributing far less to the series. The S(k,Q computed

from the S,(k) provides an approximation of better than 2% to the raw data, except near

the SAXS maximum of the &=90” scan, where the greatest anisotropy is observed and
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_ Figure 4.9. (a) Legendre coefficients r>&(k) (cm-~) for the 6.3 at. % Fe sample. The n=2
and n=4 terms are far from negligible and illustrate the importance of including the
anisotropy. The n=6 term, however, is much weaker, contributing far less to the series.
(b) Comparison between the absolute scaled, unsmoothed data and the computed S(k,&)
from the S,,(k). The Legendre sum provides an approximation of better than 2% to the
data except near the SAXS maximum of the &=90” scan, where the greatest anisotropy is
observed and the difference from that measured is -5%. Plots offset for clarity.
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the fit is no worse than 5%, a result of not including higher order S,(k) or, consequently,

an inadequate sampling of reciprocal space (figure 4.9b). Such good agreement, then,

helps validate the degree of k-space sampling and the 7-point Simpson’s integration used

in both the y (x,0) and (q-‘(E))  calculations.

The spherical Bessel transforms of the S,,(k) have been computed with a

trapezoidal rule and the corresponding Legendre series summed to obtain the CCF (figure

4.10). The large maximum near x’ - 0 is from regions of electron density correlated with

themselves--i.e. regions that are large enough to define a local electron density but small

enough so that variations in density within are not observed. Correlations for x<lOA also

exhibit a large, positive fix,e,>,  due to the similarity of electron density of neighboring

regions-and are often considered the result of a “particle” of certain dimensions of a

.particular electron density. In this case, the dimensions of the particle appear elongated

in the x,-direction by more than a factor of 3 to 2.

Beyond the contribution from self-correlation (x>lO&, oscillations in y&8,)

about 0 are present. The CCF has been truncated at small x in order to allow a close

inspection of the oscillations. If y(x,8,)<0, then the difference in electron density from

the mean for two points separated by x’ will be of opposite sign, on average. That is, one

point will have an electron density greater than the mean electron density in the sample,

and the second point, less than the mean. The amplitude of fix,&) for this x’ is a measure

of the likelihood that this is true any two given points in the sample separated by x’. The

secondary maxima, on the other hand, indicate that regions of greater (lesser) electron

density than the mean exist and are correlated on a particular length scale. Similarly, the

amplitude of the secondary maxima provide a measure of the likelihood that this is true

for any two given points separated by Z.
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Table 4.1. Correlation parameters for
different film directions (6.3 at.% Fe).

W>
FWHM secondary
x’=o (A) maxima (A)

90 (q-x2) 7.3 26.6,50.0,76.3

45 9.0 32.4,64.8

0 (x3) 11.7 41 (v. weak)

0”
15"
30"
45"
60"
75"
90"

0 20 40 60

x (4

_ Figure 4.10. Cylindrical correlation function, y(x,8,),  in units of (e-/&2. (a) CCF along
different radial directions. Plots offset and truncated at small x in order to better observe
the o cillations.

x
(b) Three-dimensional mesh plot of the CCF. Mesh lines are spaced 3A

by3 .

--



ChYPTER 4. AMORPHOUS Fe,Ge,, RESULTS 88

Table 4.1 shows the secondary maxima for a few f3,, which illustrate the strong

oscillations in amplitude present for correlations in the plane of the sample. For those

along &=45”, the oscillations begin to wane in magnitude and frequency. Finally, for a

correlation vector in the direction of film growth, oscillations are not obvious but exist at

much greater distance than in the previous cases and at much smaller magnitude. In

addition, table 4.1 indicates that the intraparticle correlations extend considerably further

in x3 than in x1. These results are consistent with inhomogeneous and close-packed

particle models which are developed in Chapter 6. By applying a cylindrical correlation

function analysis, there exists a more direct and satisfying approach to the question of

anisotropy, especially since the particle models assume monodispersity and an

equilibrium -liquid structure factor to explain interparticle interference (close-packed

.models) in the vapor-deposited state.
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Chapter 5

Amorphous Mo,Gel_, Results

Since the amorphous Fe,Ge,.,  and Mo,Ge,.,  have fairly similar equilibrium phase

diagrams for.xc0.33,  namely no solid solubility, one might expect the phase separation

observed in Fe,Ge,., to be a good indicator as to what to expect for the Mo,Ge,., alloys.

Indeed, phase separation is observed in a-Mo,Ge,.,, but the anisotropy is not as

pronounced, and, more strikingly, phase separation disappears near -24 at.% MO. Density

calculations confirm endpoint compositions near 24-26 at.% MO for the samples that do

exhibit phase separation, leading one to believe that the endpoint of phase separation is an

intermetallic close in composition to an a-MoGe,. This is, of course, quite a bit different

from the Fe,Ge,., results, where the endpoint composition is predicted close to an

intermetallic like a-FeGe,.

5.1 Anisotropy

Figure 5.1 illustrates the structure factor at normal incidence for several Mo,Ge,.,

(0.065<xcO.236)  alloys. The scattering is much weaker than that recorded from the Fe-Ge

alloys. The data were collected at E=10803eV with a Xe/C02 gas filled detector and have

been background subtracted and placed on an absolute scale; the 12.4 at.% MO scan was



CHAPTER 5. AMORPHOUS MoxGel,  RESULTS 91

2.5

0
0 0.3

k (b)
0.6

Figure 5.1. SAXS, r,*S(k,90) (cm-l), as a function of composition for the Mo,Ge,.,
alloys. Since the 12.4 at.% MO scan was collected with an Ar/CO, filled detector, it has a
much lower signal-to-noise ratio than the others (collected with Xc/CO, gas). In the data
presented above, the 12.4 at.% MO scan has been smoothed over an interval Ak=O.O2 A-l.
E=10803 eV.

--
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collected at a previous time with an Ar/CO, gas and has been smoothed over an interval

Ak=0.02 A-1. The 6.5 and 12.4 at.% MO samples exhibit the greatest magnitude of

scattering, with it less intense for the 16.5 at.% MO sample, while little scattering is

recorded for 23.6 at.% MO. The scattering that is recorded for this sample is extremely

weak and is of a different kind, at small k, with only a small, if any, scattering maximum

resolvable. The apparent maximum near k-0.1 A-1 may result, however, from an

imperfect subtraction of the mica windows and/or from parasitic scattering from and around

the main beam. Kortright and Bienenstock (cited previously, see Chapter 1) did not

observe appreciable SAKS of any kind for their 25 at.% MO sample (grown under identical

conditions as the 23.6 at.% MO sample reported here) in the small-angle region spanning

O.Olck<0.15  A-l. It is thus likely that the SAXS reported for our sample is either from

. background sources or indicates that the volume fraction of the chemical inhomogeneity is

decreasing rapidly and becomes essentially zero at -25 at.% MO.

This agrees with a previous structural study of Kortright and Bienenstock (see

Chapter 1) who delineate three different structural regions of which the composition

x-O.23 is at a boundary between two of the regions. As noted earlier, their SAKS study

did not extend out to large enough k to observe the nanoscale phase separation. Rather,

with the observation of a weak, monotonically decreasing signal (localized below k-O.05

A-1) and a diffuse, constant intensity background, they concluded that the source of the

scattering for kc0.05 A-1 is unknown (likely cracks or voids) and that the diffuse signal,

which shows a trend with composition, is related to a fine size scale inhomogeneity of

-10 %, that is a maximum at 8 at.% MO. The use of independent particle scatterers (5 A

spheres in this case) to model the diffuse background, however, is certainly not valid in a

k-range where interparticle interference dominates (for example, see figure 6.10). The

results do, however, provide an order of magnitude estimate of the size of inhomogeneity
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and are consistent with their other results (large-angle scattering, EXAFS) that are

interpreted in terms of a model of nanoscale inhomogeneity for structural region I.

The oblique transmission results for the 6.5 at.% MO sample at E=7100 eV are

presented in figure 5.2. The anisotropy is not strong--the 0,=0” scan is only -1.5 times

that of the t&=60” scan (in magnitude). The anisotropy in the Fe,Ge,.,  samples is more

pronounced, with the &=O” scans -5 times that of the 0,=60” scans, but the percent

change in the position of the SAXS maximum with 0, appear similar for both the Fe and

MO containing alloys. The positions of the maxima are, of course, highly dependent on the

concentrations of the metal atoms, but, for similar compositions, the 6.5 at.% MO sample

has k,,,,,- 0.3 A-1 and for 6.3 at.% Fe, km,,- 0.275 A-1. Slightly longer length scales are

thus expected in the Fe-Ge system, which can be more readily observed by comparing the

.CCFs. .

Figure 5.3 shows the computed CCF for the 6.5 at.% MO sample, with views

along the radial direction x as a function of 0, as well as a three-dimensional view of the

full CCF. In comparison to the CCF from the 6.3 at.% Fe sample (figure 4.9),  the large,

positive fix,Q at small x for this CCF does not extend to as large x and the anisotropy of

the FWHM of the peak at small x is not as pronounced. That is, the “particles” are smaller,

elongated by a factor -1.4. The secondary maxima indicate that strong correlations exist

between the particles in the plane of the sample, which persist with longer length scales as

the correlation direction changes from an in-plane direction to that in the direction of

growth. The CCF confirms that the overall length scale, from the size of particles to the

oscillations in y(x,e,.), is shorter in the 6.5 at.% MO alloy than that for 6.3 at.% Fe.

_ Interestingly, the correlations in the direction of growth appear, relative to its in-plane

correlations, stronger in the MO-containing sample than in the corresponding Fe sample.
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Figure 5.2 SAXS, r,2S(k,&) (cm-*), as a function of oblique transmission angle for the
6.5 at.% MO sample. Collected at 7100 eV. Data smoothed over an interval ho.02 A--1.
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Table 5.1. Correlation parameters for

90 (x,-x2) 6.2 22.5, 53.3, 61.0

45 7.0 25.5, 50.8, 67.8

0 (x3) 8.6 29.1, 49.3

0.02

0.015

0.01

0.005

0

0 20 40 60

* (4

_ Figure 5.3. Cylindrical correlation function, fix,&), in units of (e-/As)*. (a) CCF along
different radial directions. Plots offset and truncated at small x in order to better observe
the o cillations. (b) Three-dimensional mesh plot of the CCF. Mesh lines are spaced 3%r

Rby3 .
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5.2 DAS Results

As mentioned previously, in the last period of data collection a Xc/CO, filled

detector was used to improve the counting statistics at the MO and Ge K-edges. By using a

Xc/CO,  counter gas and Zn filters to reduce Ge fluorescence, a coherent x-ray scattering

signal was observed at the MO K-edge and anomalous scattering was thus possible. Figure

5.4 shows the anomalous scattering patterns for the 6.5 at.% MO alloy and the

corresponding weighted-average PSFs (smoothed and unsmoothed). The relative change

at the MO edge is approximately a factor of 5-10 greater than that observed at the Ge edge.

An 11% change infMo(E)  causes an approximate 30% change of the main scattering peak,

whereas the 16% change in f&(E) leads to a mere 6% intensity change. Although the

weighted average PSFs have been obtained, the PSFs have not. The poor MO edge SNR

‘introduces large uncertainties in the PSFs whether using the standard Keating or Munro

approaches. It is clear that the dominant change occurs at the MO edge with a much smaller

effect at the Ge-edge. Although MO K-edge data were collected for only one sample (6.5

at.% MO) at normal transmission (8,=90’), it is expected that the anomalous scattering

results are similar for the 12.4 and 16.5 at.% MO alloys and at all oblique angles. The

difficulty with the SNR and Ge fluorescence with limited beamtime  allowed us a thorough

study of only one of the strongest scattering samples at one transmission angle.

In a follow-up study, it would be interesting to study the 23.6 at.% MO sample with

MO and Ge K-edge measurements. After all, if there is still phase separation at this

composition and the “particles” are fairly large, then there would be an appreciable

separation of the particles because the a-Ge component would be a small fraction of the

entire sample. As a result, there would be little interparticle interference and one would

expect scattering of the type we observe. For this sample, then, the anomalous scattering

could help discern the particle scattering from background or mica windows.
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Figure 5.4. Anomalous scattering results at the (a) MO and (b) Ge K-edges for 6.5 at.%
MO sample. It should be stressed that 4-6 energies have been recorded at each edge to
check for self-consistency, with only 3 shown for clarity in (a) and (b). (c) Weighted
average PSFs. Absolute changes in SAKS at the MO and Ge K-edges, scaled by the
relative change in f(E) at each edge and T,*. At the Ge edge, El=-300 and E2=-10 eV
below the edge, and El=-400 and E2=-10 eV below the MO edge. (d) Data smoothed over
an interval AJ~=0.02  A-1 with the difference at the Ge edge a factor of -5-10 less than that at
the MO edge.

--
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5.3 Mean-Square Fluctuation in Density

Since only the 8,=90° scans could be recorded with the Xc/CO, detector gas at the

MO K-edge, the mean-square fluctuation in effective electron density cannot be determined

as a function of MO K-edge energies. In an earlier run, the oblique transmission

measurements were performed as a function of energy at the Ge K-edge, but the change in

scattering with energy is so small that no resolvable change in (q*(E)) can be observed.

This latter result is expected, since the number density of Ge atoms is essentially constant

throughout the sample.

At a single, lower energy (7100 eV), which allows for an improved SNR, the

oblique measurements were performed on the 6.5 and 12.4 at.% MO samples. The

calculated mean-square fluctuation in density per Ge number density are listed in table 5.2

.for the two different power-law extrapolations (cr=4 and 5). Since the mean-square

fluctuation in density is known only at one energy, the slope method to determine the

endpoint composition discussed in Section 4.2 cannot be used. As with any SAXS study,

however, the endpoint composition can still be determined by dividing out the atomic

scattering factors. For a model of a sharp transition between the two phases, Eq. 4.2.6 is

written as

(5.3.1)

for a x-ray energy of 7100 eV (and similarly for Eq. 4.2.10 and the 50% interface width

_ model). Then as in Section 4.2, for a given nGe, a nLo can be determined and hence the

composition 4 of phase Mo,Gel., (Eq. 4.2.7).

When interpreted in terms of sharp and 50% diffuse transition widths between the

two phases, the computed endpoints 4 range from -23-27 at.% MO, summarized in table
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5.2. This is in remarkable agreement with the disappearance of the SAKS at 23.6 to 25

at.% MO and is consistent with the structural model of Kortright and Bienenstock, who

argue that structural regions I and II meet at approximately 23 at.% MO. These results

indicate that the phase separation likely results in a film with regions of a-Ge and a Ge-rich

intermetallic, close in stoichiometry to an amorphous MoGe3. Interestingly, c-MoGe3 is

not in the equilibrium phase diagram; alloys with this composition are phase-separated into

c-Ge and c-MoGe2. This, of course, does not rule out atomic arrangements in the as-

deposited alloys that prefer a short-range order that results in an overall composition of

MoGe,.

-.

.-Table 5.2. Results from the density and endpoint composition calculations for E=7100 eV.

Sample Sharp Boundaries [cr=4) 50% Diffuse ((x=5)

(at.% MO) (Q*)/n,, q.100 q.100 q* nGc( >I q-100 q*lOO

(e2/A3J nGc=a-Ge nG,=C-Ge (e2/A3) nG,=a-Ge ?ZG,=C-Ge

6.5 1.539 27.3 26.5 0.9893 24.1 23.5

12.4 1.846 24.3 23.9 1.187 23.6 23.2

--
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Chapter 6

Models of Phase Separation

The x-ray scattering results lead naturally to the following two questions: does a

unique model structure exist that incorporates this anisotropy and are there growth models. .

that explain how a vapor-deposited film evolves into such a structure? X-ray scattering

cannot unambiguously identify a particular model or structure, but of course any model

must be able to reproduce all of the scattering results. This chapter is devoted to trying to

answer these two questions and arriving at a plausible model.

As an attempt to explain these data, it has been suggested that the surface plays an

important role. Adatoms have a few seconds to rearrange on the surface before being

covered by the advanced surface and governed by the much slower bulk transport

coefficients. With mobilities greater and activation energies lower at the surface than in the

bulk, it seems likely that most of the structural properties are determined at the surface,

with only slight modification in the bulk (e.g. structural relaxation). Our efforts to model

_ the data initially focused on the growth process itself, but simple growth models that we

have considered were inconsistent with the data. This chapter begins by discussing these

simple models and then proceeds to a discussion of particle models that have been

constructed to fit the features of the observed scattering.
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6.1 Simple Two-Dimensional Growth Picture

The plan is to show that the two-dimensional models considered fail to explain the

strong anisotropy in the amorphous films. This will be done with some general arguments,

and then a few simple models are constructed to illustrate this point. They explicitly

include correlations due to chemical modulations, thermal fluctuations, etc., in the plane of

the film and, depending on the model, correlations in the direction of growth x3. The full

SAXS spectrum is computed for each model and results presented in terms of the radial

component k and polar angle 0, of the total scattering vector E.

6.1.a Static Structures

One specific structure common to vapor-deposited films is that from a columnar

.growth process. For a columnar structure, perfect phase correlation exists in the direction

of growth--the electron density at Z is the same as the density at point x’ = (x,,x,,O). To

compute the structure factor, we have from Eq. 3.1.1:

(6.1.1)

with a finite film thickness T. The integral can be evaluated and the solution expressed in

terms of polar coordinates and the structure factor at normal incidence:

S(k,8,) - S(ksin8,,90”)
sin? kT cos t9J2)

( kT coseJ2)  2 ’
(6.1.2)

where an in-plane isotropy has been assumed. Given a similar SAXS spectrum as for the

amorphous films at normal incidence (&=90”), the peak shifts outward and decreases

markedly in intensity with decreasing f& (figure 6.la-c).  Figure 6.1(c) shows, however,



Ch!APTER 6. MODELS OF PHASE SEPARATION 102

‘(a) - S(k, 90) 09

0 0.1 0.2 0.3 0.4 0.5 0.6 6.1 0.2 0.3 6.4 6.S 0.6

k (ii-l)
(c)

k (A-1)
-. No Correlation

k (xi-l) k (i&-l)

Figure 6.1. S(k, 0,) for the columnar model (a-c) for various column heights T and for the
model of no correlation in the direction of growth (d). Neither model can reproduce the
observed results from the oblique transmission experiment.
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that for some choices of thickness, the high-k ripples cause the scattering peak to shift

inward with decreasing 6,. In these cases, however, the amplitude change is not in

agreement with data.

As another specific example, consider a film that grows layer by layer with no

appreciable interaction between layers--this is exactly opposite to the columnar model. An

approximation to the film’s structure is then to consider the phase uncorrelated in the x3-

direction. The average over all pair correlations that are not in the same layer is 0:

Y(x’) - (rl(%)d 20 + K)), +3). (6.1.3)

The structure factor for such a model is simply S(k,e,) = S(ksin8,,90”), The model

.spectra are illustrated in figure 6.ld and also show no agreement with experiment. There is

no intensity change with tilt and the peak shift is incorrect.

6.1.b Dynamic Structure: Surface Evolution

Another approach is to assume that the surface structure is not static during the

deposition process--the film structurally evolves as it grows. A layer deposited on the

surface adapts to the morphology it “sees” from the previous layer and adjusts even further

for a limited time until covered by the advanced surface. The completed film, then,

consists of layers stacked one on top of the other, each depending on the previous layer. A

simple linear first-order differential equation can be developed to study phase separation in

growing films (Srolovitz and Kesslerr). For a given depth x3 in the film (with x3=0 the

film/substrate interface), let the two-dimensional Fourier transform in x1 and x2 be given by

r(k,2,~3), where an isotropy is assumed in the x,-x2 plane so the reciprocal vector is

--
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E - (h2, k3). For a film th a evolves as it grows, the new surface can be considered relatedt

to the previous layer by a simple recursion relation:

6(42,x3 + 4 = M@,24fi(il;29~3)~ (6.1.4)

with M(k12,A)  a replication factor that transforms the previous layer to the next. This can

be transformed to an equivalent first-order linear differential equation

ai(~9x3) = R(~,)$&x,),
3

(6.15)

where R(k,2) is an amplification factor that specifies those Fourier components in electron. .
density that are stable and grow exponentially (R(k12)>0). The film consists of

interconnected waves of electron density, and as the film grows thicker, select waves

dominate. This equation is that suggested by Srolovitz and Kessler as a modification of

Cahn’s linear theory2 of spinodal decomposition for phase separation during growth. They

show that it is straightforward to include a moving reference frame into the equations,

which modifies Cahn’s amplification factor R(kJ by a constant, remaining a fourth-order

polynomial. For a given depth x3 in the sample (corresponding to different times during

the deposition process), the solution of Eq. 6.1.5 is

(6.1.6)

where fi(k;,,O) is the initial density distribution at the film’s substrate.

This is the traditional Cahn theory of spinodal decomposition but with the time

variable replaced by the i3 direction of growth. Some mention should be made of the
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assumptions in the theory. (a) The film is deposited at a rate v, with surface diffusion

assumed to occur to a depth A-interatomic spacing and with bulk diffusion assumed

negligible. In-plane isotropy is assumed as well; that is, diffusion on the surface is

considered equally probable in any direction. (b) The equations are linearized and hence

good only during the initial stages of decomposition (early-time or early-growth

approximation). Since the non-linear terms in the diffusion equation have been discarded,

the theory is only valid for a short time after which other processes (nucleation, coarsening,

etc.) have a greater chance of occurring, (c) Fluctuations during the growth process are

neglected.

The structure factor for a film of thickness T is
-.

. S(&2,&) a (lq(ki2,0)r)[  e2R(kU)T -$Y$~~(k3T’ + ‘1 . (6.1.7)

Figure 6.2 shows the resulting structure factor for a certain amplification factor R(k), given

in the Srolovitz-Kessler theory as R(k12)=(R(k12)Csh,,-v/A  )/v, with R(k12)Csbn  the

traditional Cahn amplification factor, v the film deposition rate, and A the thickness per

layer of deposited material. The averaged jr](k12,0)12 is an assumed Ornstein-Zernike

relation of thermal fluctuations above the critical point. Since most amplification factors in

the theory are quite similar, it appears almost certain that this model of surface generated

spinodal decomposition cannot explain the composition modulations in the films. In

addition, since this model is valid only during the initial stages of phase separation, it

_ cannot explain a structural evolution that evolves throughout the entire thickness of our

films, since they are quite thick (microns). It does, however, provide a picture of how the

phase separation might initially start and predict a columnar type structure.
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Figure 6.2. S(k,&) for the surface evolution model. (a) Amplification factor; (b) the
computed S(k,&) with an Ornstein-Zernike prefactor, amplification factor given in (a), and
film thickness T=lO A; (c) T=25 A; (d) T=50 %i.
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If a spinodal decomposition model is to be applied, there needs to be a mechanism

for breaking up the columnar coherence. Eq. 6.1.5 does not permit new fluctuations to

intermittently unseat the steady exponential progression of the phase separation. The data

suggest that non-trivial correlations exist in the direction of growth, and they cannot be

modeled by these simple approaches. In fact, as will be demonstrated in the next two

sections, a critical feature lacking in these models is the ability to nucleate new layers with

Fourier coefficients of a completely new amplitude and, most importantly, phase.

6.2 Single Particle Models

Whether phase separation occurs via a spinodal decomposition or nucleation

process,-the-late-time structures are fairly similar: there exist regions of well-defined

.electron density. Regions of well-defined electron density are believed to exist in these

alloys since the large-k side of the scattering pattern exhibits a power law close to the l/k”

Porod law of smooth interfaces. This is a part of reciprocal space where interparticle

interference effects are less important while scattering from surfaces of the regions in space

and electron density dominate. Consequently, one approach is to consider the scattering

due to distinct particles of electron density, p(Z), embedded in a constant “background”

density. To describe the small-angle scattering results from a collection of particles, we

need to understand not only the contribution of the single particle to the scattering pattern

but also the interparticle interference effects that modify the spectrum. To motivate this

discussion, we first start by separating the particle from the interparticle scattering and then

proceed to a study of the single particle models and inter-particle interference.

For a collection of N particles each of volume V,,, in a total volume V, the Fourier

transform over the electron density can be written as a sum over the transform of each

particle,
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(6.2.1)

with v,(X) the difference in electron density of particle 171 from the background as a

function of X within the particle with respect to the coordinates of particle m, z,,,. v(Z) is

similar to Q(Z) in Eq. 3.1.4, except it is the deviation in electron density of the particle

from the background and not from the average. As with the atomic form factor, denote

F,(E) as the particle m “form factor” and equal to the integral on the left-hand side of Eq.

6.2.1. To compute the structure factor, we use similar arguments as in the derivation of

Eq. 3.1.5:

(6.2.2)

Since the observed structure factor is that from the assembly of particles averaged

with equal probability over all orientations in space and sizes of particles consistent with the

symmetry of the system, Eq. 6.2.2 thus becomes:

S(E> - pp(lF(Ef) + +( ~~C,,,e-~‘(~m-“i^‘~(~)~*(P)), (6.2.3)

with (...) the averaging operator, p, the density of particles, and the m=n term explicitly

calculated. The first term is the scattering from individual particles, and the second is the

contribution from interparticle interference effects. Although first derived by Debye in

_ 1930 for atoms (the 4(E) known as the atomic scattering factors), the equations can be

analogously applied to particle scattering. It should be noted that nothing has been

assumed about the particles at this point--they are polydisperse, inhomogeneous, etc. For
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the remainder of this section, single particle models are presented as an attempt to explain

the anisotropic structure factors.

6.2.a Homogeneous Single Particles

If a collection of particles is sufficiently dilute, then a common practice is to neglect

interparticle interference effects. Then, the structure factor originates from individual

particles, and the first term in Eq. 6.2.3 dominates the second. However, the problem is

intractable without some simplifying assumptions. For a homogeneous particle (i.e.

v(Zj=v, a constant), the form factor for an ellipsoid is:

-. (6.2.4)

with V, the volume of the ellipsoid with axes (R,,Rz,R3). An easy way to perform the

integral over the ellipsoid is to transform the integration to one for a sphere.3 Let

xI’=xIIRI, x2’=xJR2,  and x3’=x3/R3, then Eq. 6.2.4 simplifies to:

(6.2.5)

with @p(u) = 3T, Ve=4/3n8,R2R,, and kR, given by JkfRf + kzg + k;‘g . The

observed structure factor for a dilute solution is thus determined by averaging Eq. 6.2.5

over all sixes and equivalent orientations of ellipsoids.

If the particles can be treated as identical (i.e. a monodisperse solution) then the

averaging involves only that of particle orientation. In most cases, the particle orientation is

averaged over all directions, so the resulting structure factor is isotropic. It is possible,

however, to average over all ellipsoids oriented along a particular direction. Cargill

--
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Figure 6.3. Scattering from homogeneous particles in the dilute approximation. Ellipsoids
{8,8,40) fi oriented in the x3 direction.
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demonstrated that such a model describes large void regions in a-Ge films that give rise to

an anisotropic structure factor. The voids are modeled as elongated ellipsoids with the

elongated axis in the direction of growth. With the ellipsoids oriented so that R3 is along

the x,-direction, the average is only over the azimuthal angle and thus:

S(k,8,)  - ppv21$2y@2(k@ cos’ ipk sin’ 19, + g sin2 qk sin’ f3k + g cos2 8,
0

2, (6.2.6)

which reduces to

-. S(k, 0,) - ppv2<2@2( kdg sin2 6, + g cos’ 8,) (6.2.7)

for the case of RI-R2#R3. We will work mostly in this approximation, since there is an

assumed isotropy in the xl-x2 directions, and moreover, it allows one to analytically

introduce interparticle effects later.

Regardless of the ellipsoid’s relative dimensions, radial scans in k’ show a

monotonically decreasing S(k,8,) starting from k=O (see figure 6.3). There are, of course,

large k ripples which are from unphysically sharp boundaries between particle and matrix

and are introduced by the Fourier transform; these, however, cannot explain the large

maximum of the observed scattering.

6.2.b Inhomogeneous Single Particles

On the other hand, inhomogeneous particle models5 have been used in the past to

explain such a peak in spherically symmetric systems. A simple modification to the

previous isotropic models can be made for ellipsoids and is presented in this section.

Suppose that there are two regions of homogeneity in a particle of volume V,. The first
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Figure 6.4. Schematic of inhomogeneous particle model.
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occupies a volume V, and has a higher (lower) electron density (r],) than the average, and

the other occupies a volume (V2-V,) with lower (higher) electron density (q2) than average.

Then,

( 6 . 2 . 8 )

If the higher density region is deep inside and the lower density along the outer skirts of the

particle, as in two confocal ellipsoids (see figure 6.4), then the physical picture of the

model is one where (e.g. Fe) atoms migrate to a center of high electron density and leave

behind a depletion zone of lower density. The form factor for a confocal model is thus:-.

The observed structure factor is then

(6.2.9)

(6.2.10)

This equation assumes that the observed scattering from a collection of composite

particles is determined by summing the scattering from each particle individually; that is,

the particles scatter incoherently with respect to each other (the second term in Eq. 6.2.3 is

neglected). This is not a bad assumption, however, since the CCFs (figures 4.10 and 5.3)

_ indicate that there is no appreciable positive correlation surrounding the intraparticle peak.

There is, however, a large negative region, which represents the excluded volume, that is

automatically taken into consideration with this model. In fact, if there is only little

correlation between the composite particles, as the CCFs suggest, this model includes the
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most important features of the correlation function: a well-defined intraparticle contribution

with a depletion region. Even if interparticle correlations do exist, the scattering factor of

each composite particle is set-up so that it is going to zero at small angles. Then, there is

no scattering with which to interfere at small angles and the interparticle interference which

causes deviations only at the smaller angles (see next Section) of the composite particles

can be neglected; that is, each particle is essentially invisible to its neighbors at low

scattering angles.

In order to compare this model with the amorphous films, consider the case where

the metal atoms (Fe, MO) migrate to the center and an amorphous intermetallic occupies the

inner ellipsoid. The depletion zone is then a-Ge. The electron densities and volumes of the

inner ellipsoids and depletion zones must be self-consistent with the overall composition of

.the film. Foran amorphous alloy of metal concentration x with an inner region of FeGe2

and depletion zone of a-Ge, we thus have

x-
dwd + nGe 1)v + ‘Ge(v, - v,) ’

(6.2.11)

where ni,, is the number density of the metal atoms in volume V, and the Ge number

density is assumed to be the same in each region. Since n&=2&+ for FeGe,,  Eq. 6.2.11

can be simplified to

:,2x
v, l-x’

(6.2.12)

The relative volumes of the ellipsoids are thus determined by the fixed sample composition

and the density of the phase separating species.



CHAPTER 6. MODELS OF PHASE SEPARATION 115

For a composition of 6.3 at.% Fe, ellipsoids of inner axes R,=(8.5,12.5)  8, and

outer axes R,=(15.5,15) 8, are in the appropriate size range and give a good reproduction

of the observed anisotropy (see figure 6.5a). To achieve the same magnitude of scattering

as that observed, the inhomogeneous particle density must be -5.6 * 10s5 p-, which fills

84% of the sample volume with composite particles. For the 13.6 at.% Fe sample,

ellipsoids of (11,15.5) 8, and (15.5,17.5) 8, reproduce the main features of the anisotropy

and amplitude change with 0, (see figure 6.5b). With the composite particles packed

together in order to reproduce the magnitude of scattering, the depletion zones (i.e. the

region spanned by the difference between the ellipsoids) are touching if not slightly

overlapping in some cases. It is important to observe that the depletion zones are more

extended in the film plane than in the growth direction. That is, to observe an appreciable

.SAXS maximum, the relative size of the depletion zone must be greater for an in-plane

direction than, if even needed, in the growth direction.

If the inner region is a-MoGe,, &e is equal to 3~~. Eq. 6.2.11 becomes

:-3x
% l-x’

(6.2.14)

Ellipsoids of (8,lO) 8, and (12,13.8) 8, reproduce the 6.5 at.% MO scattering patterns and

must be packed to fill 68% of the available volume to reproduce the observed scattering

magnitude (see figure 6.6). Another example is one with the metal atoms located in the

depletion zone, with the inner ellipsoid a-Ge. The order-of-magnitude results are similar

_ and will not be discussed further.

The physical picture that thus emerges from this model is one where the particles

are formed within the layers by depleting the surrounding region. Then, fluctuations in the

deposition process lead to little correlation between where the particles are formed in one

--



CHAPTER 6. MODELS OF PHASE SEPARATION 116

O-
0".

6.3 at.% Fe
(8.5,12.5) 8, by (15.5,15@ 1

with p,=5.6 10-s. I- I

- data

0.2 0.3
k (ii-l)

. .
12

I 09
-I

13.6 at.% Fe
(10,15.5) ii by (15.5,17.5fi

with p,,=l.l 10-4

8

6

2

0
0 0.1 0.2 0.3 0.4 0.5 0.6

k (A-1)

Figure 6.5. Spectra from inhomogeneous particle model as compared to data from (a) the
6.5 at.% Fe sample and (b) the 13.6 at.% Fe sample. Change in peak position and
amplitude with angle agrees well with data from amorphous films. The electron densities
used for these calculations are (E-6912 eV): p(FeGe, =1.782 e-/As, p(Ge)=1.303  e-/A3,
P(%--0.063)=1.404 e-/A3 and p(x,=O.136)=1.515 e-/A 3.
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.

CHAPTER 6. MODELS OF PHASE SEPARATION 118

layer and where they are formed after about 20 A further in the growth direction. This is

consistent with the CCFs which show little, if any, negative region in the growth direction

but a large negative region for the in-plane direction, Of course this model assumes that the

scattering from each particle adds incoherently (i.e. no interparticle interference), but, as

mentioned previously, this is not a bad assumption at low scattering angles since such

interference will not be great.

6.3 Close-Packed Homogeneous Particles

The 20 to 30 A spacings from the inhomogeneous particle model, with the outer

depletion zones touching, leads one to imagine another model that consists of ellipsoids in

an interconnected depletion zone: a close-packing of homogeneous ellipsoids in a matrix of

.constant electron density. Since the mean-square fluctuation in density calculation

identified two electron densities, that of a-Ge and either a-FeGe, or a-MoGe,, we imagine

particles of the Ge-rich intermetallic in a matrix of a-Ge. When the volume fraction of

intermetallic phase exceeds 0.5, then the particles are more likely a-Ge, with the matrix the

inter-metallic phase.

Calculating the interparticle interference function for a system of interacting particles

is difficult, and several simplifying assumptions are required. One approach to the problem

of interparticle interference and anisotropy is to assume that the material consists of

oriented, homogeneous, identical ellipsoids. This is the simplest approach one can take to

the anisotropy, yet it still provides a deep understanding of the material’s structure and

permits the use of exact, analytic functions to describe its properties (e.g. pair correlation

functions). Polydispersity complicates matters but, if it is not too great, does not

significantly alter the main peak positions and average particle sizes.6 For the study of

close-packed particles, the fundamental assumption we will make is that all particles are

identical, are ellipsoidal in shape (R,=R2), and are oriented such that R, aligns with x3.
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The goal of this section is to apply equilibrium liquid theory to derive an

interparticle interference function. First, general relations between the interparticle

correlation functions are discussed and then an interparticle interference function is derived

for oriented ellipsoids in the hard-core Percus-Yevick approximation.

6.3.a. Relations Between Interparticle Correlation Functions

Since the particles are identical (in orientation and size), the averaging of the particle

positions can be separated from that of particle size and orientation:

(6.3.1)

‘Moreover, with

= v2Q2(k Rf sin2 8, + g cos2 t9, )Ve2, (6.3.2)

the total structure factor is thus

(6.3.3)

with z,,,,, = zm -2”. Eq. 6.3.3 shows that it is possible, albeit with assumptions, to

separate the scattering of the particles (first term) from the inter-particle interference effects

_ (second term) which we will define as the function S,N,. This function is tricky to evaluate.

Since the particles are elongated, it is not possible to perform a simple spherical average

over all equivalent particle positions as is often done in liquids or amorphous solids. That

is, the probability of finding a particle a certain distance along axis R3 will differ from the

--
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probability of finding a particle that same distance but along R1. Rather, the locus of

points which map the equivalent positions of particles is an ellipsoid determined by the size

of particles and interparticle potentials.

Eq. 6.3.3 can be further simplified by introducing a probability function, g,(&),

such that p,g,(&,,)dV, is the number of ellipsoid centers that are occupied in the volume

element dv, at &,, relative to particle m. With g,,,(&,,,), the sum over n is replaced by an

integral:

(6.3.4)

For a given displacement 2 -%,,,,,, the radial distribution function is defined as

--da - (UL)) * 7%e average is performed over all positions of particles m for each

vector x. For a model of disordered particles, g(@ tends to 1 for distances a few times

that of the size of the ellipsoid, and hence the sum over m can be replaced with N. The

result:

S&Z) - 1 + pJ(g(Z) - 1)e-&.“dV + p&!-~5w, (6.3.5)

where a constant term has been added and subtracted to the integrand. In the large volume

limit, the third term is omitted since its contribution is obscured by the direct beam and not

directly measurable. The final relation is thus:

S,&) - l+ pJ(g(z) - l)fP.“dV. (6.3.6)

--
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Eq. 6.3.6 is the usual Fourier transform relation between the radial distribution function

and the interparticle interference function.

It is important to notice that the integrand, g(;3) - 1, is also often referred to as the

total correlation function, h(a, by the Ornstein-Zernike integral relations.7 In the

Ornstein-Zernike formalism, the total pair correlation function is the sum of two terms: (1)

the direct term or direct correlation function, c(@, between two particles, and (2) an

indirect term that consists of the influence of all other particles on the correlation between

the two particles:

-.
h(z) - c(z) + pPJ, c(Z - P)h(zyV’ . (6.3.7)

.Since the radial distribution and total correlation functions are simply related, applying the

Fourier convolution theorem to Eq. 6.3.7 and combining with Eq. 6.3.6 leads to the

important relation between the Fourier transform of the direct correlation function, z(E),

and S,,&):

s,,m - 11 - p,l(E) ’
(6.3.8)

The problem is a matter of finding a suitable direct correlation function for a model of

close-packed particles; the interparticle interference function can then be obtained from Eq.

6.3.8 and, hence, the model’s scattering pattern.

6.3.b Hard-Core Percus-Yevick Approximation

Theories of the structure of liquids rely on accurate knowledge of an assumed

interparticle potential energy function, The particles, then, rearrange until a minimum of

--
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free energy is obtained. Although it is not obvious that the equilibrium theory of liquids

can be applied to the special case of a disordered vapor-deposited film, it is the only means

available to calculate an interparticle interference function for an interacting system of

particles. The extent to which the particles interact define the thermodynamic properties of

the fluid and, hence, its structure. One of the most successful theories of liquid structure,

especially for liquid metals,8 is the hard-core Percus-Yevick model which has an analytic

solution for spheres, Agreement with Lennard-Jones fluids9 and consistency between the

compressibility and pressure equations of state10 has led to its widespread use. Despite the

purely repulsive interparticle potential energy function, it is permissible to ignore the

attractive components as a first approximation, since at high density the repulsive features

dominate.

. . The direct correlation function has been determined in the Percus-Yevick

approximation for a hard-core repulsive potential that is ellipsoidal in shape. It should be

stressed that the hard core ellipsoid is not necessarily identical to that of the particle

ellipsoid. As noted by Pederson6 in the study of spherical precipitates in alloys,

precipitates incorporate the surrounding material, and these outer regions thus define an

effective hard core repulsion of somewhat larger distances than those that allow the

particles to touch. Of course in the study of inert gases or liquid metals with a true hard

core repulsion, the hard core permits the closest approach between spheres to equal its

diameter.

The center of each hard-core is also the center of its corresponding ellipsoidal

particle. The hard core is a short-ranged purely repulsive interparticle interaction, with the

following pair potential, @):

(6.3.9)

--
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with oi the orientation-dependent distance from the center of the hard core to a point on its

surface. For a hard core ellipsoid of axes 5 = (a,,a,) oriented in the x,-direction, ai is

given by

u-i = 0103

uf cos* 8 + uf sin* 9 ’
(6.3.10)

with an assumed x1-x2 isotropy. The closest approach between two hard cores is 2aj,

which, as mentioned previously, can be greater than twice the distance between the

particles for precipitates in solids.--
The Percus-Yevick equation for the general hard-core potential11 is given by

solving the following integral equation:

a - l+ e7&y<*oi, z(P)d3X’ - pp&p;o z(B’)t(~ - ?)d3X’, (6.3.11)_
fi

with the new function z(R defined in terms of the pair correlation functions:

(6.3.12)

The integral equation has been solved exactly for spherically symmetric particles by

. Wertheimlx and Thiele.13 By a transformation of variables, it can be shown that Eq.

6.3.12 can also be solved exactly. With jj = ($,%,2) and jJ’ - ($-,2,$), the Percus-

Yevick equation for the ellipsoids can be transformed to one for spheres of radius=l:



.

CHAPTER  6. MODELS OF PHASE SEPARATION 124

with &2: g(y) - 0 and c(y) - -z(y)
&2: c(y) - 0 and go) - z(y^) ’

This is readily solved by Wertheim and Thiele’s approach:

c(y’ s 2) - &, [(1+2~)*-617(1+M)*~l+;(l+27)*~$], ( 6 . 3 . 1 4 )

with the packing fraction Q = Vapp  = $z~$a,p,. Eq. 6.3.14 is identical to-.

c(k s 2Q - (1 -il., [(l+2~)~-61(1+M)*~+~(1+20)*~],  63.15)

a form first proposed by Pynn14 for elongated particles, but with a different q, that has

been used in the study of the isotropic-nematic transitions in the hard ellipsoid fluid.ls In

these studies, the ellipsoids are oriented at various angles with respect to each other, so that

Eq. 6.3.15 is taken only as an approximation. For ellipsoids of various orientation, the

distance of closest approach is a complicated function that is simplified by the Beme and

Pechukasr6  modification. This theory breaks down, however, when the eccentricity of the

ellipsoids exceeds 1.5-2 or when the ellipsoids align in the a,-direction. It should be

pointed out, of course, that numerical studies have been performed that use a spherical

_ harmonics approach with the correct closest approach distance.t7  For ellipsoids oriented in

one direction as in the model presented here, the distance of closest approach between two

hard cores is precisely 20~, and the derived solution (Eq. 6.3.15) is exact.
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The Fourier transform of c(@ can be expressed in terms of elementary functions

so that an analytic expression for S,& is possible. The Fourier transform of the direct

correlation function is

(6.3.16)

where a - (1 + a)*
Cl- 4” ’

P=-
, and (j I 12 @ + 2d2

2 (l- TJ)4 ’

With a transformation of variables (e.g. as in Eq. 6.2.5),  the integral over the hard

core is replaced by one over the unit sphere:
-.

(6.3.17)

with P = 2(4a,,k5,a,,k3a,). This can be readily integrated in terms of elementary

trigonometric functions (left to the reader), so that the interparticle interference becomes:

sm(E) = 1+ Tql(a + L+ &‘)sin(L)xdr
(6.3.18)

Figure 6.7 illustrates S,,&k’) for hard core ellipsoids (10,15) 8, with a packing fraction

r7=0.35.

It should be emphasized that the interparticle potential is defined by the hard core

ellipsoid. The position of one hard core with respect to another is considered equally

probable over that locus of points defined by the second hard core. In an amorphous film,

however, there is no real interaction between particles, and the Percus-Yevick approach

--
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Figure 6.7. Interparticle interference function, SINT(k,tlk),  in the Percus-Yevick
approximation for oriented ellipsoids of { 10,15}A with a packing fraction of 0.35. If there
is no interparticle interference, then SINT=l. The line drawn for S,,,=l show that the
interparticle interference effects are greatest at small k.
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with a fictitious hard core interaction is used only to arrive at an analytic expression of the

interparticle interference function. The maximum amplitude of the Percus-Yevick

S&k,&) depends only on q and does not change with 6, (see figure 6.7). It will be

shown later that this is one difference that is noticeable when compared to the interparticle

function that we extract from the data. In the films, the maximum amplitude of the

interparticle function appears to be a function of the film direction.

6.3.~ Results of Model

In this section, we report the basic results of the close-packed ellipsoid model. The

packing fraction, particle density, and particle and hard core ellipsoid axes are related by the

overall film composition. For a model of phase separation with the Ge-rich intermetallic

.phase (e.g. FeGe, or MoGe,) as the particle in a matrix of a-Ge, the concentration of metal

atoms is given by:

(6.3.19)

with V, and V, the volumes of the ellipsoidal particle and hard core, respectively. The

packing fraction is consequently q = 5 +;;?-.
L) c m&d

When the volume fraction of the Ge-rich intermetallic exceeds l/2, the ellipsoids

become a-Ge with the surrounding material the intermetallic. Since the results are similar

(Babinet principle), we will focus on the low metal concentration alloys with the metallic

_ phase as the particle. For reference, the volume fraction is l/2 at 20 at.% Fe (a-Ge and a-

FeGe,) and 14 at.% MO (a-Ge and a-MoGe3).  By choosing reasonable axes for the particle

and hard core ellipsoids, the general features of the anisotropic scattering can be reproduced

(figures 6.8-6.11). The location of the SAXS maximum, change with tilt, and the order of
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(7.5,14) by (12,14) A
q=o.34

0.3
k (A-1)

0.4 0.5 0.6

5, I

0.3
k (/i-l)

0.4 0.5 0.6

Figure 6.8. r,2S(k,Q  (cm-l) for ellipsoids of (7.5,14) by (12,14) w (given as particle axes
by hard core axes) for a film composition 6.3 at.% Fe (with a corresponding packing
fraction of 0.34). (a) Comparison of close-packed model with data collected at 6912 eV
(electron densities for Ge and FeGe,  the same as that used in figure 6.5). (b) Model scaled
to the maximum at 8,=90°  to better observe anisotropy and peak shift.
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Figure 6.9. r,G(k,&) (cm-l) for ellipsoids of (12.9,18) by (13.1,18) 8, for a film
composition 18.2 at.% Fe (with q=O.46).  (a) Comparison of close-packed model with
data collected at 10903 eV (p(Ge)=1.193 e-/A3 and p(FeGe,)=1.737 e-/A3). (b) Model
scaled to the maximum at 0,=90” to better observe anisotropy and peak shift.
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(13,19) by (14.5,19) 8,
q-o.55

- data
--- model

0
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_ Figure 6.10. r,W(k,&) (cm-l) for ellipsoids of (13,19) by (14.5,19) A for a film
composition 18.2 at.% Fe (with r7=0.55). (a) Comparison of close-packed model with
data collected at 10903 eV (electron densities same as in figure 6.9). (b) Model scaled to
the maximum at @=90” to better observe anisotropy and peak shift.
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Figure 6.11. r:S(k,&) (cm-l) for ellipsoids of (8,11) by (10,12) 8, (given as particle axes
by hard core axes) for a film composition 6.5 at.% MO (with a corresponding packing
fraction of 0.36). (a) Comparison of close-packed model with data collected at 7100 eV
(electron densities for Ge and MoGe, the same as that used in figure 6.6). (b) Model
scaled to the maximum at &=90” to better observe anisotropy and peak shift.
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magnitude of scattering are in agreement with the observed scattering for both the MO and

Fe based alloys.

For a 6.3 at.% Fe sample, an ellipsoid with axes (7.5,14) and (12,14) A with a

corresponding packing fraction ~=0.34 works well (see figure 6.8--these values chosen to

reproduce the peak position at each measured 0,). There is a limit to the general features

that the model can reproduce, however, especially at large packing fractions, and is the

reason we have chosen not to “best-fit” the observed spectra to the model. The magnitude

of scattering and breadth of the maximum depend critically on the shape of the Percus-

Yevick interparticle function and the chosen packing fraction. The FWHM is too sharp and

the magnitude of scattering is always too large to fit the data. It is expected that with a

polydisperse-  model, the maximum would “wash out”; that is, the FWHM would increase

.with a corresponding decrease in the peak amplitude. No polydisperse model of oriented

ellipsoids exists, however, to test our ideas. The agreement between model and theory is

still remarkable, however, from the order of magnitude of scattering to the reproduction of

the peak position. This is a simple monodisperse model with an ideal interparticle

interference function.

For samples with even greater Fe concentrations, the larger packing fractions lead

to sharper maxima in the interparticle function. For example, consider the 18.2 at.% Fe

sample (see figures 6.9-6.10). In order to reproduce the data, the packing fraction in the

Percus-Yevick model must not be too great since a large packing fraction leads to

interparticle interference maxima that are quite large with narrow FWHMs. With ellipsoids

of axes (12.9,18) and (13.1,18) 8, and ~=0.46, the anisotropy of the 18.2 at.% Fe sample

can be reproduced. The relative change in magnitude of scattering with the change in 6, for

these ellipsoids is not good; figure 6.10 shows the comparison between another set of axes

[(13,19) by (14.5,19) A] and the data. In this case, the relative change in magnitude of

scattering is in better agreement with the data, but the larger packing fraction (r~=O.55)
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leads to very sharp FWHMs that are not observed in the data. This example illustrates the

main problem with the model. The monodispersity leads to very sharply defined maxima

(even for moderate packing fractions) that are not experimentally observed.

Another interesting feature is the relative difference between the axes of the particle

and hard core ellipsoids. If the particle and hard core axes are similar in the growth

direction but dissimilar in the plane of the film, then the change in amplitude with tilt angle

is that which is experimentally observed (decrease in magnitude as 0, changes from 90 to

15”). Conversely, if the particle and hard core axes are similar in the plane of the film but

dissimilar in the growth direction, then the change in amplitude with tilt is exactly opposite

(as ek changes from 90 to 15” the SAXS increases). Our results thus indicate that, on

average~~the~particles  are not allowed to touch when they are aligned in the plane of the film

..(&IR, <Ui-U* ) but that they can nearly touch in the growth direction ( R3 - a3). We

might consider this a quasi-columnar structure, with the possibility that the ellipsoids can

touch in the growth direction but with well-defined regions of a-Ge between the ellipsoids

for the in-plane directions. However, with packing fractions less than l/2, a true columnar

structure cannot be established, as further evidenced from our results in Section 6.la. This

result is also confirmed from the CCF and the inhomogeneous particle models, where a

depletion zone is established in the film surface plane but does not appear as important in

the growth direction.

Since the computed scattering is the product of S,&k,Q and Fz(k,Q, there exist

competing factors that influence the amplitude and width of S(k,&). The magnitude of

scattering in figure 6.8 is approximately 1.5 times that observed for the 6.3 at.% Fe. This

is not too surprising, since the model does not include any variations in particle or hard

core size and shape. This is in fact the reason why we have not fit the data to the

monodisperse model. The sharp magnitude from the Percus-Yevick interparticle

interference function at moderate packing fraction is simply too great to reproduce the data.
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To decrease the maximum amplitude in figure 6.8, it would normally be sufficient to

decrease the packing fraction, but the overall film composition must be maintained. Thus,

a decrease in rl implies an increase of the particle’s volume with respect to that from the

hard core. An increase in particle volume, however, leads to a larger overall Fz(k, fl,),

since F(k,Q scales to the particle volume. The net result may or may not be a decrease in

amplitude of S(k,@).  Problems with the amplitude are even more apparent for films with a

composition near a volume fraction of l/2. For example, at 18.2 at.% Fe, figure 6.9

illustrates the S(k,&) is approximately 2 times that observed experimentally.

The model spectra have also been computed for a 6.5 at.% MO sample, assuming

two phases a-Ge and a-MoGe,. With ellipsoids of (8,ll) and (10,12) 8, and ~=0.36, the

main features of the observed SAXS are reproduced (see figure 6.11). In this case,

.-however, the computed scattering maximum is more than 2 times intense than that

observed. The effects of polydispersity in the particle size and shape and in the features of

the hard core are suspected to cause this effect. Even more striking, the magnitude of

scattering predicted from this model of course peaks near 14 at.% MO (where the volume

fraction of the two phases is l/2). However, the observed scattering does not appear to

peak near 14 at.% MO. Figure 5.1 shows that the magnitude of scattering of the 6.5 and

12.4 at.% MO samples is approximately the same. At this point, it is not clear whether or

not this inconsistency is due to the failure of the monodisperse ellipsoid model or if the

structure of the material simply cannot be modeled by ellipsoids at volume fractions near

l/2.

6.4 Experimentally Obtained Interparticle Interference Function

Although the Percus-Yevick interparticle interference function multiplied by the

particle scattering reproduces the qualitative features of the data, we have also tried to
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extract the interparticle interference function directly from the data. The approach taken in

this section is to determine the interparticle interference function by dividing out the particle

scattering. Inter-particle interference effects are not significant at large k, where the particle

scattering dominates (see figure 6.7). Hence, by fitting the large k data to scattering from

particles, it might be possible to extrapolate the particle scattering to small k and

consequently divide it out of the recorded spectra. This is of course a difficult procedure:

distributions in particle shape and size are unknown; only a limited region in k has been

recorded where the interparticle effects are small enough to ignore and the SNR is good

enough to fit; and the particle scattering that is removed from the overall scattering to arrive

at S&k,&) will be, for a large part, extrapolated.

Since the scattering from monodisperse ellipsoids has large-k ripples (e.g. see

.figure 6.4 and accompanying text), to fit the observed scattering (with no such ripples) to

the particle scattering in the large k region, we must consider the ellipsoids as polydisperse.

Rigorously, the ellipsoids must be monodisperse in order to write the total scattering as a

product of the particle form factor and interparticle interference functions (Eq. 6.3.3). A

similar assumption is made for the atomic form factors--covalently-bonded Si or Ge, for

example, are not spherical atoms so there arises a problem of polydispersity. This is often

ignored at least in the first approximation. The degree of polydispersity from the ellipsoids

can be much greater, however, since the sizes can vary considerably while the basic

dimensions of an atom are fairly well-defined.

To simplify the issue of polydispersity, we use Gaussians to define the degree of

polydispersity :

(6.4.1)
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with F(E,r,,r,) the form factor of an ellipsoid (Eq. 6.2.5) with axes (r-,,r3),  normalization

constant A, and polydispersity parameters (a,&. The normalization constant can be

readily determined:

(6.4.2)

with II(u) the probability integral. Figure 6.12 illustrates the particle scattering for various

degrees of polydispersity (i.e. several a, for 6,=90”). The basic effect is a smoothing

operation that allows us to smooth the large k ripples.

The large k limits of the scattering patterns for the 6.3 at.% Fe sample have been

.compared to .Eq. 6.4.1 which contains 6 variables (RI, R2, pp(pl-p2)*, a,, u3, constant

background B). Although the experimental data have been placed on an absolute scale and

background subtracted, any error in the subtraction or scale between subsequent oblique

transmission measurements introduces an error that cannot be removed or fit. Figure 6.13

shows a fit for sample parameters along with the estimated interparticle interference

functions. The values used in the fit are: R1=5.5 A, R2=9.5 A, pp(pl-p2)*=1.3  10-6

e2/A9, a,=0.5, &=0.25, and B=-0.05. With so many fitting parameters and a small k-

range to be fit, it is difficult if not impossible to determine a unique solution with a non-

linear least squares fitting routine. The values chosen here are only used as a reasonable

estimate for what we suspect the particle scattering might look like.

One immediate distinction between the Percus-Yevick interparticle interference

_ function (figure 6.7) and that observed from the samples (figure 6.13~)  is the amplitude of

the first maximum as a function of 0,. The extracted interference function exhibits a strong

maximum for &=90” which decreases dramatically and is quite small at &=15”. The
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Figure 6.12. (a) Semi-log and (b) linear plots of scattering (for &=90”) from Gaussian
polydisperse ellipsoids of nominally (10,15) A. Influence of different polydisperse
parameters a, is also shown. When u1 and a3 are both 03, the ellipsoids are monodisperse.
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Figure 6.13. Semi-log (a) and linear (b) plots of best-fit particle scattering to the high-k
_ scattering for the 6.3 at. % Fe sample. Interparticle interference function &,&k,Q, (c) and

(d). Plots offset for clarity.
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amplitude of the first maximum in the Percus-Yevick model, on the other hand, is not f3,

dependent and is a result of the simple hard core potential that was used.

To investigate the origin of the interparticle interference function and obtain a real-

space interpretation of the data, we have attempted to Fourier transform it and thus

determine the particle’s radial distribution function, g(x,8,). Due to the finite range in k

that has been recorded, the poor SNR, and the poor fits of the particle scattering at large k

(which also contribute to the large deviations around S,,-1 at large k), there has been little

success in direct Fourier transformation of figure 6.13~. Since the issue of polydispersity

is also not well resolved and a qualitative understanding is that which is being sought,

model spectra have been created that resemble the basic features of the interparticle

interference function (figure 6.14a). By using a Gaussian-based function,

s,m(k,e,)-l--‘+A(e~)e
-300(k-kmk,(ek))2 k s k,(e,)

(A@,)  - l)e-300(t-‘m(e~)f k z k,,,(B,)’

with km(&) the position of the interparticle interference function maximum and A(8,)

related to its amplitude, the basic features can be reproduced. This function is well-defined

at small k and for very large k, so the Fourier transform with the spherical harmonics

approach will provide the radial distribution function without any large truncation errors

(see figure 6.14a).

Figure 6.14b illustrates (g&8,) - l)p, for the model spectra as a function of 0,.

As mentioned previously in Section 6.3.a, p&,&)dV is the number of particle centers

_ that exist in the volume element dVat x^ from a particle, averaged over all starting points of

Z (i.e. over all particles). For a model of disordered particles, g(Z) tends to 1 for x on the

order of a few particle diameters; that is, the number of particle centers from a given particle

approaches the average value p&V at large 2. In studies of isotropic amorphous materials,
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Figure 6.14. (a) Gaussian approximation to the experimentally observed interparticle
interference function. (b) Fourier transform of (a) using the spherical harmonics approach
outlined in Section 4.3.
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the quantity 4&g(x) represents the number of particles (or, for example, atoms), on

average, from another at a distance from x to xtdx. With the cylindrically symmetric radial

distribution function, the number of vectors that give an identical correlation between x and

xtdx and 19, and &td& is 2Jcx*sin8,g(x,8,).

It is interesting to study x’g(x,e,) since any oscillations in g&,8,) are more readily

observed with the greater weighting at large X, and without the sine, term, radial plots of

x”g(x,Q should approach X* at large x for a given 0,. Figure 6.15 shows the effect of

multiplying the radial distribution function by x*. In particular, the oscillations in real-

space occur at greater length scales and wane in amplitude when the correlation direction

moves from the film surface plane to the growth direction. With a particle density on the

order of D4 (suggested by the inhomogeneous particle model and the size of the ellipsoids

. in the close-packed model), the function x*g(x, 0,) has been plotted along with the curve X*

in figure 6.15b. The greatest ordering of particles is evident for a direction in the film

surface plane. That is, the deep oscillations about the X* curve indicate that there is a high-

degree of particle-particle short-range order which can be seen from the deviations at small

x from the large x limit of x*. As the particle correlation direction changes from 90 to 60

and then to 30”, the oscillations begin to die out and shift to larger distances. By 6,=0”, it

becomes difficult to distinguish oscillations of the radial distribution function around x2,

but they do appear to exist and at much smaller amplitude.

These results are consistent with the other models and the CCFs. The

inhomogeneous and close-packed models along with the CCFs indicate that there exists an

appreciable depletion region in the film surface plane surrounding regions of higher (lower)

electron density than average. In the growth direction, however, such depletion regions are

not as evident. The radial distribution function analysis of a model inter-particle interference

function that resembles what we suspect exists (given the limits of polydispersity, etc.)
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indicates that the particle correlations in the film plane are indeed much stronger and exhibit

a short-range order which appears much weaker, if non-existent, in the growth direction.

A comparison and summary of the different models and results will be presented in the next

Chapter.
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Chapter 7

Summary and Conclusions

The primary goal of this work has been to address the issue of phase separation in

amorphous Fe-Ge and Mo-Ge alloys. In particular, we have addressed the following. .

questions:

1. What are the compositions of the phase-separating species?

2. What is the nature and source of the anisotropic scattering?

3. Are there any models that might explain such an anisotropy?

4. Is the phase separation influenced by the kinetics of the deposition process?

5. What is the relevance of the phase separation to the metal-insulator transition?

7.1 Identification of Phase-Separating Species

The anomalous scattering results for all oblique transmission angles were similar if

not identical to the results of Rice et al.1 at normal incidence. That is, for amorphous

_ Fe,Ge,., (x<O.33),  there is a subtle change in the scattering with changes in x-ray energy

near the Ge K-edge, but there is a large change in SAKS for energies close to the Fe K-

edge. For the MO-containing alloys, there is no noticeable change at the Ge K-edge for all

alloys studied, but we have observed the anomalous effect at the MO K-edge for a 6.5 at.%
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MO sample (only one sample studied at this absorption edge). It should be mentioned,

however, that a slight change was observed at the Ge K-edge through the weighted-average

PSFs (figures 4.3 and 5.4), but the signal-to-noise ratio was not good enough to resolve

the PSFs to determine any specific Ge-Ge, Fe-Ge, or Mo-Ge correlations.

The interpretation originally presented by Rice et al.1 for the anomalous scattering

results was that the Ge atoms are homogeneously distributed with the metal atoms

inhomogeneously distributed. When compared to the crystalline phases present in the Mo-

Ge and Fe-Ge phase diagrams, the number density of c-Ge number is within 5% of the

number density of Ge in either FeGe,  or MoGe,. It was thus postulated that the anomalous

scattering results are consistent with phase separation into regions of a-Ge and a-MGe,

(M=Mo;-Fe).

. . To test these ideas, we calculated the mean-square fluctuation of effective electron

density for several samples. This is given by the pair correlation function at x=0 and is

also known as the integrated intensity. Assuming two and three-phase models with

amorphous Ge as one of the phases, we developed a means to determine the concentration

of Fe in the second phase. Results from both the sharp and diffuse boundary models

predict phase separation endpoints of a-Ge and a-FeGe,. The most Fe-rich sample which

we have grown that shows SAXS is a 27 at.% Fe sample (figure 4.2); the next samples we

have are 44 and 47 at.% Fe which show no appreciable SAXS over the studied k-range.

For the MO-containing alloys, however, there is not enough data at the MO K-edge

to perform the same anomalous scattering analysis that we developed for the Fe-Ge alloys.

The conventional SAXS method still applies, and we determined (with the same

assumptions as for the Fe-Ge alloys) that the endpoint compositions for the Mo-Ge alloys

are a-Ge and an intermetallic close in stoichiometry to an a-MoGe,.  Although an

intermetallic MoGe, does not exist in the equilibrium phase diagram, this result is

consistent with the absence of a strong SAXS maximum in the 23.6 at.% MO sample and
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the work of Kortright and Bienenstockz  who argue that structural regions I and II meet at a

composition close to 23-25 at.% MO.

Future experiments should focus on studying more samples at the MO K-edge.

With the limited beamtime and difficulty of ASAXS at the hard x-ray energies, it was not

possible to perform anomalous scattering measurements as a function of transmission angle

t&. Such measurements would help pinpoint the uncertainty of the endpoint composition.

In addition, anomalous scattering measurements on the 23.6 at.% MO sample would help

isolate the SAKS that is observed in figure 5.1. As mentioned previously in Chapter 5,

there appears to exist a small maximum in the 23.6 at.% MO sample which is not well

understood (background or chemical inhomogeneity). At this composition, one can

suppose-that there is still phase separation and that the a-Ge particles are fairly large. Then,

.one would have appreciable separation of the particles since the a-Ge component would be

a small fraction of the entire sample. As a result, there would be little interparticle

interference and one would expect scattering of that observed. These ideas should be tested

in the future.

7.2 Source of Anisotropic Scattering

One of the most striking features of our analysis is that we seem to end up with

virtually the same physical model no matter how we analyze the data. We have different

ways of explaining the anisotropy, but they all seem to yield the same results. The most

quantitative method is with the cylindrical correlation function (CCF), which has led to

inhomogeneous and close-packed homogeneous particle models.

The Fourier transform of the anisotropic scattering provides information about the

cylindrical correlation function, discussed in Sections 4.3 and 5.1, which clearly show that

there are interparticle correlations in the film plane but not in the growth direction. The k-
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space anisotropy is a result of regions of a particular electron density, set within a different

electron density, that extend further in the growth direction than in the film surface plane

(“in-plane” direction). From the results of the previous section, the different electron

densities can be considered as that of a-Ge and either a-FeGe, or a-MoGe,,  with the

elongated “particle” either a-Ge or the Ge-rich intermetallic (whichever occupies less than

l/2 the volume fraction). The particle extends further in the growth direction than in-plane,

by a factor of approximately 1.5:1 to 2:1, with basic particle axes for a 6 at.% metal alloy

approximately 12 %, in the growth direction by 7 8, in-plane for the Fe-Ge system and 9 A

growth by 6 A in-plane for the Mo-Ge system.

As evidenced from the CCF for the 6.3 at.% Fe sample, the particles are not

correlated in the direction of growth. For an in-plane direction, the large negative regions

.in the CCF indicate that there is a “depletion region”; there exists great likelihood that the

difference of electron density from the average is of opposite sign from particle interior to

its immediate exterior. At even greater distances, the CCF indicates that particle-particle

correlations also occur but with even smaller amplitude. In the growth direction, a

depletion region does not appear to exist--the particle exterior is just the average electron

density. The CCF from a 6.5 at.% MO sample is similar, but a depletion region is also

present in the growth direction as well as for an in-plane direction. In addition, the in-plane

particle-particle correlation does not appear as strong as that for the amorphous Fe-Ge

samples.

The physical picture that thus emerges is one where the “particles” are formed

within the layers by depleting the surrounding region of, for example, Fe or MO atoms.

Adatoms have a few seconds to rearrange on the surface before being covered by the

advanced surface and governed by the much slower bulk transport coefficients. Then,

fluctuations lead to little correlation between where the particles are formed in one layer and

where they are formed after about 20 8, of material have been deposited. This is consistent
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with figure 4.9a. There is no negative region at &=O”, whereas there is an appreciable

negative region at 90”. This analysis helps establish that the emerging surface plays a

pivotal role in the degree and extent of the phase separation. In fact, by changing the

deposition conditions in a simple way, we have grown amorphous Fe-Ge films of identical

composition that show different SAXS spectra. The different range of real-space

correlations manifests itself in the changes in the position, breadth, and amplitude of the

SAXS maximum. With mobilities greater and activation energies lower at the surface than

in the bulk, it seems likely that most of the structural properties are determined at the

surface, with only slight modification in the bulk (e.g. structural relaxation).

The inhomogeneous and close-packed particle models that we have constructed lead

to the same conclusions. Since there is no appreciable positive bump in figures 4.9 and

.5.3, inter-particle interference effects may not be that important. The excluded volume that

leads to a negative region in the CCF appears to be the most important part of the

interparticle interference to model. Thus, the inhomogeneous ellipsoid model, with a

depletion surrounding each inner region particle, automatically includes this most important

effect and consequently can successfully reproduce the main features of the anisotropy.

Interparticle effects between .the composite particles is not important because the

interparticle interference function deviates from one only at small angles. Since the

scattering factor of each composite particle is going to zero at these small angles, the net

contribution to the entire scattering from the interparticle function will thus be negligible.

The close-packed particle model explicitly includes the interparticle correlations, and

the Percus-Yevick structure factor derived for ellipsoids also provides a qualitative

agreement with the observed anisotropy. However, the Percus-Yevick model is a poor

choice for the correlations that we observe. The interparticle correlations are not as well

defined as that given from an equilibrium liquid structure factor from the Percus-Yevick
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theory, and the model does not incorporate any polydispersity of particle shapes and sizes

that should greatly influence the breadth of the SAXS peak.

7.3 Metal-Insulator Transition

The inability to unambiguously define the critical composition at which the metal-

insulator transition occurs is likely due to the anisotropic, nanoscale phase separation

reported in this work. It appears likely that the different methods of sample preparation

lead to various microstructures that change the electronic density of states and, hence,

whether the alloy is considered metallic or insulating. Whether the transition is explained

through a percolation or tunneling argument, the size and average distances between the

metallic- regions will define the sample’s macroscopic electrical properties. Future

.-experiments- should focus on the kinetics of the deposition process in order to

systematically vary growth parameters while studying the structure and electrical properties

of the alloys. By coupling specific heat measurements with ASAXS, it might be possible

to correlate the size and density of the metallic particles with the electronic density of states,

observed by the linear term of the specific heat.

7.4 New Questions

In addition to the questions raised in the above sections, let us conclude with a

discussion of a few last questions. The film is grown by passing a substrate table under a

Ge sputtering gun and then under either a MO or Fe gun. Our results indicate that

fluctuations in the growth direction play a pivotal role in nucleating new, nanoscale

particles with little correlation between where the particles are formed in one layer to where

they are formed after 20 %, of material has been deposited. Although for each pass under

the targets only 0.2 to 0.8 %, of material is deposited, one cannot help but wonder,

however, if our results are related to this deposition technique. Would the same result be
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obtained if one had two targets pointed at the sample all the time, rather than rotating the

sample in front of one target and then the other? How are the fluctuations that lead to

nucleation at new sites related to the growth parameters and/or deposition geometry?

Finally, we have not addressed the question of phase separation in the Fe-Ge

samples with compositions greater than 33 at.% Fe. We do not find any indication of

phase separation for these samples. Lorentzs and Rice4 have observed and studied phase

separation in this system and composition range for samples in which the Fe was triode-

sputtered. For those samples with ~~0.33, the triode-sputtered and magnetron-sputtered

samples give rise to similar SAXS spectra. This raises the question as to whether those

samples show evidence of the nonmagnetic to magnetic transition (at -40 at.% Fe) in the

same way that the ones studied in this thesis do. EXAFS data which were collected during

.the course of-this work and Mossbauer measurements currently under way in Argentina5

may help resolve this question.
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