
.

M
0

FPP - A FORTRAN PREPROCESSOR

Adam Boyarski

SLAC-Report-408
November 1992

SLAC-408

Prepared for the Department of Energy
under contract number DE-AC03-76SF00515

SLAC-408
UC-414

(E/I)

FPP - A Fortran Preprocessor
Adam Boyarski

Stanford Linear Accelerator Center
Stanford University

Stanford, California 94309, USA

November 1992

Prepared for the Department of Energy
under contract number DE-AC03-76SF005 15

Printeb in the United States of America. Available from the National Techinical Informa-
tion Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia
22161.

.

Abstract
FPP is a preprocessor which aids in porting Fortran source code across differing platforms. It provides

conditional compilation features to enable or disable sections of code, and can modify file names in
INCLUDE statements to a syntax suitable for a target platform. FPP is written in Fortran 77, and runs on
VMKMS, VAX/VMS, UNIX, and PC/DOS systems.

1. Introduction

When Fortran code is moved from one platform to another, it is frequently found that parts of the code
need modification on the new platform. Extensions used on one compiler may not be recognized by the
compiler on another platform. System calls, such as calls to get the date and time, or calls to issue a command
to the operating system, may differ between platforms. The file name syntax on Fortran INCLUDE statements
or OPEN statements may also differ from one platform to another. For all these reasons, it is often impossible
to have a fortran file that compiles and executes successfully on all platforms.

One solution to this problem is to keep separate versions of Fortran code on each platform, each modified
to work correctly on its platform. But then code maintenance becomes difficult, since a change to one file may
require the same change be made to the files on other platforms. Another solution is to write a single master
file in a syntax that a preprocessor can recognize to produce Fortran code for each platform. A disadvantage
with this method is the need for two source files, a master file and the Fortran file on each platform.
Alternately, a preprocessor can be written to use the Fortran code on any one platform and modify it for use
on any other platform, without the need for a master file. The latter scheme has been adopted by FPP.

FPP is a prep%cessor that provides conditional compilation by means of a control language somewhat
like that in CPP, the preprocessor for the C language. However, FPP never deletes or inserts any lines of
source code, but instead enables or disables lines of code with the use of the comment character. FPP also
modifies file names in INCLUDE statements to syntax appropriate for a target platform. Code processed by
FPP for one platform can be used in turn to generate code for any other platform by processing it with FPP
on the target platform. Disabled lines of Fortran code on one platform can be enabled when FPP processes
the code on another platform. Lines of Fortran are disabled by inserting a “C” in column one, lines are enabled
by removing the “C” in column one. There is no need for a “master” source file from which are made the
compiled source files for each platform. The compiled file and the master file can be the same on each
platform, as long as the file is processed by FPP on each platform before the compilation step.

2. Conditional Compilation

Conditional compilation is done by means of commented control lines in the Fortran source code. These
control lines are comments to the Fortran compiler, but are treated as commands by FPP as it processes the
Fortran source file. Control statements must begin with the string “C..#” or “CC..#“, starting in column one.
The user places these control statements in the source code before and after lines that are to be enabled or
disabled. The following control commands are recognized:

C..#IFDEF <key> <key> . . .
C..#ELIF <key> <key> . . .
C..#ELSE
C..#ENDIF

where <key> is a control string. If any <key> on a IFDEF or ELIF control statement matches any of the
defined keys supplied on the FPP command line (described later), then the block of code following this
control statement up to the next control statement is enabled by FPP. If there is no match, the block of code
is disabled by FPl? If no keys match, then the code following the ELSE control statement is enabled. The

--
2

ENDIF control statement terminates the IFDEF-ELIF-ELSE control sequence. These control statements may
be nested to any level. For example, if we have the following code on VM:

<normal code>
C..#IFDEF VM

<code for VM>
CC..#ELIF VAX
C <code for VAX>
CC..#IFDEF UG
C <code for VAX and UG>
CC..#ELSE
C <code for VAX, non UG>
CC..#ENDIF
CC..#ELIF RS6000
C <code for RS6000>
cc.. #ELSE
C <code for all other platforms>

C..#ENDIF
<normal code>

where the conditional block “code for VM” following the “C..#IFDEF VM” control statement is enabled
for this VM version, and other conditional lines following the “CC..#ELIF VAX” or “CC..#ELIF RS6000”
control statements are disabled (commented out). Note also the nested control statements ‘WFDEF UG”,
“#ELSE”, and “#ENDIF” within the VAX block. If this file is sent to a VAX platform, and FPP were invoked
on that platform as folloWs:

fpp -DVAX -DUG infile

then the above VM code would be changed to:

<normal code>
CC..#IFDEF VM
C <code for VM>
C..#ELIF VAX

<code for VAX>
C..#IFDEF UG

<code for VAX and UG>
CC..#ELSE
C <code for VAX, non UG>
C..#ENDIF
CC..#ELIF RS6000
C <code for RS6000>
CC..#ELSE
C <code for all other platforms>
C..#ENDIF

<normal code

Note that every conditional block of code not contained in the VAX block is commented out with a “C”
inserted at column one, including the preprocessor command lines before each such block. Also, the nested
“#IFDEF UG” has the UG code enabled within the VAX block, because both the VAX and UG keys were
supplied with the “-D” option on the FPP command line.

3

If either the VM or VAX versions of the above code were copied to the RS6000 platform and
preprocessed on that platform with “FPP -DRS6000 infile”, then in both cases the resultant code would be the
same with only the conditional code following the “#ELIF RS6000” control statement being enabled.

3. File names on INCLUDE Statements

The INCLUDE statement has been implemented in many Fortran 77 compilers, and is part of the Fortran
90 standard. However, the file name conventions differ from platform to platform, and so the INCLUDE
statement cannot be written in a platform independent way. Also, the INCLUDE syntax in Fortran 77
compilers is not always compatible, some allow single quotes around the file name, some allow double
quotes, and some allow parentheses around the file name. It is sometimes desirable to prefix the file name with
a directory path which specifies where in the file system the included file is to be obtained. Path names are
again platform dependent. It would be desirable for a preprocessor to be able to edit the prefix and suffix of
file names on INCLUDE statements. FPP has this ability.

The options “3” and “-S” on the FPP command line specify the prefix or suffix for included file names,
as described in the next section. The following example illustrates how FPP can modify INCLUDE file
names. If the file “myfile” contains a Fortran statement like:

INCLUDE (jufio)

and FPP is invoked on VM as follows:

fpp -P' -S.cmn' myfile

or on a VAX or UNIX platform as*

fpp ‘--pr ft "-S.cmn'" myfile

then the resultant line of code would appear as:

INCLUDE 'jumbo.cmn'

where the old prefix “(,‘, and old suffix “)” are stripped out and the new prefix ““’ and suffix “cmn”’ are
inserted.

It is sometimes desirable to be able to include Iiles from several directories. This can be done with FPP
using the “-1” option, which provides a means for specifying a list of directories to be searched for include
files. When an include file is found in a directory, the path string is inserted between the prefix and the file
name on the INCLUDE statement. The Fortran compiler will then be able to access the file from the path
given on the INCLUDE statement.

If the “jumbo” include file were in another directory in a UNIX system, say in “../includes”, then

fpp -1.. /includes "-Pr" "-S.cmn'" myfile

would change the line of code in the source file to

INCLUDE '.. /includes/jumbo.cmn'

4

*Note -- On UNIX or VAX, any command line token with an apostrophe should be surrounded by quotes.

4. FPP Description

Following is a description of the FPP command, and the FPP options.

SYNTAX:

fpp [options] Filename

Filename specifies a file name, with or without an extension. (On VM, dots must separate the file name,
the file type, and the file mode). If the extension is not supplied, defaults are provided on each
platform. For example, if Filename is given as “MYFILE” on VM/CMS, then a “.FORTRAN.*‘”
extension is added by FPP On a VAX the default extension is “.FOR”, and on UNIX it is “.I?‘. The
default extension, as well as default option settings, may be seen on any platform by issuing fpp
without any argument.

OPTIONS

-Dkey
-.

Defines a key control string for conditional compilation. This option is repeatable.

-0outn’ame FPP writes its output to the file “outname”. If this option is not given, and FPP detects that
changes were made, then Filename is updated.

-1directory Inserts “directory” into the search path for INCLUDE files. This option is repeatable. The
search order starts with the current directory, then directories in the order given by the -1 options, until
the INCLUDE file is found. This option is useful for those platforms having compilers that cannot
search subdirectories for INCLUDE files (e.g. sun, next). This option is ignored when the -K option
is present.

-Pprefix supplies the “prefix” string to be prefixed to the file names on INCLUDE statements. FPP
strips off the old prefix and adds the new one on each INCLUDE statement. If this option is not
supplied, a default prefix for each platform is provided. This option is ignored when the -K option is
present.

-Ssuffix supplies the “suffix” string to be suffixed to the file names on INCLUDE statements. FPP strips
off the old suffix and adds the new one on each INCLUDE statement. If this option is not supplied, a
default suffix for each platform is provided. This option is ignored when the -K option is present.

- -u Change INCLUDE file names to upper case. This option is ignored when the -K option is
present.

-L . Change INCLUDE file names to lower case. This option is ignored when the -K option is
present.

-M Leave file names on INCLUDE statements in mixed case. This is the default if neither the -U
nor -L options are given, This option is ignored when the -K option is present.

5

-K Preserve the file name syntax and case on INCLUDE statements. This option disables the
-I,-P,-S,-U,-L,-M options.

5. ERROR MESSAGES

The error messages from FPP are shown below. FPP returns a STOP code of 101 in each case.

No output file name specified.
More than one input file given.
Can not parse command line.
File does not exist.
Can not open input file.
Can not open output file.
#IFDEF nesting overflow.
Incorrect #IFDEF . . . #ENDIF structure...
Unknown fpp command.
Internal FPP error.
Error while deleting input file.
Error while closing input file.
Error while closing output file.
Error while copying fpptemp file.

6.. FPPAvailability

FPPis installed on the SLACVM (U disk), SLACVX (in user [AMB]), and the SCS UNIX cluster (Next,
sun4, and aix) in /usr/local/bin. On VM, an exec file (FPP EXEC) is used for passing command line arguments
to the FPP MODULE. When installing FPP on a VAX, the file (FPPCLD) must be edited, and the DCL
command “set command fpp” issued in order to make fpp into a DCL command.

FPP is available on the intemet by anonymous ftp from heplib.slac.stanford.edu in /pub/fpp.tar.Z (It may
move to another subdirectory in the future).

FPP is written in Fortran and is itself written with FPP conditional compilation statements. The
following keys are built into the FPP source Iile at the time of this writing: VM-CMS, VAX-VMS,
RS6000_XLF, SUN4, NEXT-ABSOFT, UNIX, and PC-F77L. Once an FPP executable exists, the FPP

_ source file may be converted to any other by issuing “fpp -Dkey fpp” with the key for that system.

When installing FPP on some other platform, the FPPFortran file may have to be editted. The statements
for getting the command line arguments and some OPEN statements may have to be changed, and new DATA
statements added for defining defaults for the new platform.

6

