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DRESSED SKELETON EXPANSION AND 

THE COUPLING SCALE AMBIGUITY PROBLEM 

Hung Jung Lu, Ph.D. 

Stanford University, 1992 

Abstract 

Perturbative expansions in quantum field theories are usually expressed in pow- 

ers of a coupling constant. In principle, the infinite sum of the expansion series 

is independent of the renormalization scale of the coupling constant. In practice, 

there is a. remnant dependence of the truncated series on the renormalization scale. 

This scale a.mbiguity can severely restrict the predictive power of theoretical cal- 

culations. 

. . 
The dressed skeleton expansion is developed as a calculational method which 

avoids the coupling scale ambiguity problem. In this method, physical quantities 

are expressed as functional expansions in terms of a coupling vertex function. The 

arguments of the vertex function are given by the physical momenta of each process. 

These physical momenta effectively replace the unspecified renormalization scale 

and eliminate the a.mbiguity problem. 

This method is applied to various field theoretical models and its main features 

and limitations acre explored. For quantum chromodynamics, an expression for the 

running coupling constant of the three-gluon vertex is obtained. The effective cou- 

pling scale of this vertex is shown to be essentially given by p2 - Q~inQ~ed/Q~axr 

where Q$inr Qied and Q&ax are respectively the smallest, the next-to-smallest and 

the largest scale among the three gluon virtualities. This functional form suggests 

. that the three-gluon vertex becomes non-perturbative at asymmetric momentum 

configurations. Implications for four-jet physics is discussed. 
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CHAPTER 1: 

INTRODUCTION 
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: 

The progress in the study of elementary particles has been spectacular. We now 

have a comprehensive theory of particle interactions that describes satisfactorily 

all non-gravitational physics. Often neglected in the popular literature is the fact 

that, from the modern point of view, the fundamental objects under study are 

not particles but fields. In the current interpretation, all particles correspond 

to excitations of diverse quantum fields. This picture is very different from the 

classical conception of particles as tiny billiard balls. As an example, electrons and 

their antiparticles, positrons, are to be interpreted as quantized excitations of an 

“electron field”, much like the situation depicted in Fig. 1.1. 

J 

electron 

/d--- e+ 
I + :, 
t---f 
\ I I I 

positron f” field 

Fig. 1.1 Interpretation of electrons and positrons as different quan- 

tized excitations of an electron field. 

There has been steady and extraordinary progress in the understanding of 

quantum field theories. Our physical world seems to be described by a special class 

of quantum field theories named gauge theories, where the interactions are dictated 

by an invariance principle. Strong, weak and electromagnetic interactions are all 

gauge interactions. The success of the Standa.rd Model, which emcompases these 
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three interactions in a single Lagrangian, has become one of the major achievements 

in the history of science. 

Theoretical predictions in quantum field theories frequently rely on perturba- 

tive methods. Perturbative expansions offer a fruitful approach to calculations in 

quantum field theories. For instance, theoretical prediction for the electron mag- 

netic anomaly from perturbative calculations gives 

ath = = 1 159 652 140 (5.3) (4.1) (27.1) x lo--l2 , (14 

which is in near perfect agreement with the experimental measurement 

= 1 159 6Fj2 lSS.4 (4.3) x lo-l2 . (l-2) 

-(See Ref. [lJ f or e al s on the theoretical and experimental development in the d t ‘1 

calculation a.nd measurement of this quantity, as well as the sources of the various 

errors quoted in the expressions given above.) 

Despite this and other successful predictions, perturbative expansions in quan- 

tum field theories are not free of difficulties. The “Scale Ambiguity Problem” 

[2, 3, 41 is one of them, which we shall explain shortly. 

The scale ambiguity problem has its roots in the renormalization procedure 

of quantum field theories. To understand this, we should first clarify what scale 

we are referring to and where it comes from. It is well-known that we encounter 

ultraviolet divergences in a particular class of quantum field theories; that is, the 

-analytical expressions computed from these theories are riddled with mathematical 

infinities. A “renormalization” operation is needed in order to extract physically 

meaningful results. All the gauge theories of the standard model fall into this class 

3 



of theories. During the stage of renormalization, we inevitably introduce a spurious 

momentum scale which we call the renormalization scale. All physical predictions 

should therefore be independent of this scale. This unfortunately is not the case 

in practice. 

More concretely, consider the power series expansion of a physical quantity R in 

terms of a coupling constant CY. As a consequence of the renormalization procedure, 

a dependence on a spurious scale ,Y shows up both in the coupling constant o(p) 

and in the expa.nsion coefficients ri(/l): 

R = r()aP(p) + rl(&TYp+yp) + r2(p)crp+2(p) + * * * * P-3) 

(Here p denotes the lowest power in the coupling constant. The lowest order 

coefficient rg does not depend on the renormalization scale p since it comes from 

tree-level Feynman diagrams where no renormalization is involved. In a theory 

with running masses, the mass dependence is included in the coefficients r;(p).) 

These two kinds of dependence on the renormalization scale will in principle 

conspire to cancel each other, rendering the overall result R independent of ,u. 

In reality, only a few terms in the expansion series can be computed, and the 

truncated series 

RN = rocrp(p) $ ~~(&IY~+'(~) t.9 - t VV(+p+"(~) (1.4) 

*carries a residual dependence on the renormalization scale p. Different choices of 

this scale will therefore lead to different theoretical predictions. The arbitrariness 

in the choice of the scale 1~ is known a.s the coupling scale ambiguity problem. 

4 



Let us see a concrete example of the choice of coupling scale, taken from re- 

cent analyses of hadronic jet events performed by the four collaborations (OPAL, 

DELPHI, L3 and ALEPH) at LEP, the European electron-positron storage ring in 

CERN. 

1) The OPAL collaboration, in a study of jet production rates and a test of 

QCD on the 2’ resonance [5], has concluded that a value of 

p2 = 0.001 - 0.003 M; (1.5) 

is a.ppropriate. 

2) The DELPHI collaboration, in a comparison of jet production rates on the 

2’ resonance to perturbative QCD [6], has employed both 

but favored the last value to fit the four-jet cross section. 

3) The L3 group, in determination of crs from jet multiplicities [7] has chosen 

p2 = 0.0s iv; (1.7) 

to fit their data. This scale is motivated from the typical squared momentum 

Ycuts transferred to hard gluons. 

4) The ALEPH collaboration, in its measurement of the strong coupling con- 

stant CY, from global event-shape variables of hadronic 2 decays [S], has used 

/.L~ = 0.25 M; . (1-S) 

They estimate the error coming from scale ambiguity to be around S%. 
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As can be seen from these cases, there is in general no consensus on the choice 

of coupling scales, even for seemingly identical experiments. 

The bothersome aspect of the scale ambiguity is that our theory does not 

provide a “clean” prediction. Unlike traditional perturbation theories, in which our 

calculation gives us a definite number, quantum field theories requires us to first 

choose a scale in order to obtain a numerical answer. The choice of an appropriate 

scale seems to involve more art than science. 

As mentioned previously, the scale ambiguity problem has its roots in the renor- 

malization procedure. We can imagine a renormalization procedure where, instead 

of introducing an extraneous scale 11, we employ directly the physical momenta 

involved in each problem as the renormalization scale. A theory so renormalized 

will then be free of scale ambiguity. This is exactly the approach taken in the 

‘Dressed Skeleton Expansion to resolve the scale ambiguity problem. 

In spite of its horror-inspiring name, the skeleton expansion forms part of the 

standard techniques in field theoretical analysis. F. J. Dyson [9] apparently is 

responsible for the introduction of this technique and for its naming. The dressed 

skeleton expansion is an adaptation of the traditional skeleton expansion with the 

following two ingredients: 

1) All scattering amplitudes are expanded as skeleton graphs in terms of a 

renormalized vertex function. 

2) This vertex function is computed from a multi-momentum renormalization 

group equation. 

The purpose of this thesis is to explore the main features and limitations of 

the dressed skeleton expansion as a perturbative calculational tool in quantum field 

theories. 



The following is a glossary of the content of this thesis. 

Chapter 2 explains and discusses the problem of scale ambiguity, and surveys 

the standard approaches in handling this problem. 

Chapter 3 introduces the method of dressed skeleton expansion, and points out 

its potential as a perturbative calculational method without scale ambiguity. 

. 

Chapter 4 is devoted to the application of the dressed skeleton method to simple 

field theory models. As a first example, the two-particle scattering amplitude in 4: 

theory is computed, and the dressed skeleton result is found to be compatible with 

other scale-setting methods. Then the dressed skeleton method is applied to field 

theory models in 1-t l-dimension to illustra.te its various features. In particular, it is 

shown to give the exact answer in leading l/N Gross-Neveu model and to absorb 

renormalons at loop level. Its extension to theories involving more complicated 

vertices is discussed. 

Although the skeleton expansion is a relatively straightforward technique in 

simple field theories, it is not as simple to apply to gauge field theories, since 

the nai’ve skeleton graphs in these theories are not gauge-invariant. Nonetheless, 

some interesting lowest-order results can still be obtained. In Chapter 5 the multi- 

momentum renormaliza.tion group equation is applied to gauge-invariant QCD ver- 

tices. In particular, we obtain an expression for the effective coupling constant of 

the three-gluon vertex. 

Finally, Chapter 6 summarizes the discussions and conclusions. 
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CHAPTER 2: 

THE COUPLING SCALE AMBIGUITY PROBLEM 

-- 



I 
: 

The scale-scheme ambiguity problem is present in all field theories, but its rel- 

evance was not fully appreciated until Quantum Chromodynamics (QCD) became 

the accepted theory of strong interactions. Contributing to this misappreciation 

is the fact that its elder sibling Quantum Electrodynamics (QED) has both a 

substantially smaller coupling constant and a convenient renormalization scale for 

low-energy phenomena. The scheme-scale ambiguity problem presently remains 

one of the major obstacles impeding precise QCD predictions, and a deeper under- 

standing in this area is urgently needed. 

As explained in Chapter 1, the scale ambiguity problem has its origin in the 

renormalization process. Hence it is appropriate here to give a description of 

renormalization theory here; this will also clarify the concept of physical coupling 

constant. 

. . 
Consider a quantum field theory with a single coupling constant. Let us assume 

that the theory is renormalizable. A physical quantity R in this theory (e.g., a 

particular scattering amplitude or decay rate) can be expanded as a power series 

in the bare coupling constant cr, of the theory 

R = ro cr; + r1 a, p+l + r2 ~2, PS2 +. . . ) P-1) 

where rg is known a.s the tree-level term, rl the one-loop correction, r:! the two- 

loop correction, etc., and p is the power of coupling constant associated to the 

tree-level term. It is well-known that all the coefficients in the power series beyond 

the tree level suffer ultraviolet divergence; that is, their Feynman integrals are not 

. finite. Thus the series in Eq. (2.1) as it stands is ill-defined. Since R is a physical 

quantity, we expect its series to represent a finite result. We must conclude then 

that the ba.re coupling consta.nt Q, itself is ill-defined. That is, the infinities from 

9 
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the coefficients ri and from the bare coupling (Ye must somehow cancel each other. 

If instead of cy, we use a physical quantity to expand the power series (2.1), we 

would expect the new expansion coefficients to be finite. 

The idea of renormalization is the following. Take another physical quantity S 

s = so (I; + Sl cr, q+l + s2 a, q+2 + . . . . (2.2) 

As the previous quantity R, all the coefficients in this series beyond the tree level 

are infinite. However, if we define a “physical coupling-constant in the S-scheme” 

as (also known as the “renormalized coupling-constant in the S-scheme”) by 

ssso cl; , P-3) 

and express the series of R in Eq. (2.1) as a power series in crs, that is 

R = rb CF: + ri as p+l + 7-i crcs+? + . . , ) 

where 

(24 

rb = 7-o ) 

PSl 
7+-l--9-o ) etc., 

(2-5) 

QSO 

then the new series for R will have finite coefficients. For instance, in the ex- 

pression for the coefficient ri, the infinities coming from the coefficient rl and sl 

- will conspire to cancel each other, yielding a finite result for ri. The process of 

expressing a physical quantity R in terms of a physical coupling as is known as 

the renormalization procedure. 

10 



We see that the underlying theory actually does not provide us a direct pre- 

diction for the quantities R and 5’; rather, it only allows us to relate these two 

quantities. We see also that it makes no sense to measure the bare coupling con- 

stant, since it disappea.rs after the renormalization procedure. 

The name “physical coupling constant” for crs can be somewhat misleading. 

Strictly speaking, cus is not really a coupling, since it is not the quantity that 

appears in the original Lagrangian. Also, crs is not really a constant, because in 

general it contains a dependence on the renormalization scale. 

Renormalization then simply expresses a physical quantity R in terms of an- 

other physical quantity crs (or equivalently, S). We are allowed to choose any 

physical quantity S to define our physical coupling constant; different choices of S 

lead to different definitions of OS. Also, all physical processes depend on one or 

more scales. The scale ~1 that cha.racterizes the overall scale dependence of crs is 

named the renormalization scale. Thus, 

as = W(P) t 2.6) 

and we are allowed to choose any va.lue for ~1. The value of R in principle should 

be independent of our choice of S and p, which is known as the renormalization 

scheme and renorma.liza.tion scale inva,ria.nce. However, due to the truncation of 

the expansion series, the finite series 

becomes dependent on the choice of scheme and scale. This is the scheme and scale 

ambiguity problem. 

11 



The freedom in choosing physical constants has not threatened perturbative 

calculations in QED (Q uantum Electrodynamics) for two reasons: 

1. Due to the Ward-Takahashi identity, the photon vacuum polarization de- 

fines a natural coupling constant a,,(Q2) in QED (known as the on-shell 

scheme coupling constant), where Q2 is the squared momentum transfer for 

the photon. 

2. At zero momentum transfer squared, (r,,(Q2) approaches a small and fixed 

value (called the fine-structure constant; see Fig. 2.1.) 

cy = a,,(O) = l/137.03598.. . . (2-S) 

Because of the naturalness of the on-shell scheme and the small value of the 

‘fine-structure constant, the problem of scale-scheme ambiguity has been virtually 

neglected in QED. Adding to this is the fact that traditional tests of QED are 

performed in the low-energy region (energies within a few orders of magnitude of 

the mass of the electron). As a consequence, the uncertainty in scheme and scale 

has little impact on the numerical results. 

In QCD the situation is quite different. The discovery of the asymptotic free- 

dom [lo] (i.e., the fact that color interactions become weak at short distances,) 

enables us to use perturbative methods at high-energy limits. However, unlike 

QED, QCD apparently has no na.tural scheme associated to gluons. The scale 

dependence of t,he strong coupling constant cyB also has its peculiar features. At 

. low energies, crS becomes large. Perturbative methods eventually cease to be valid 

at low .enough energies (around 1 GeV). At high energies, cyS becomes small due 

to asymptotic freedom, and cr, tends to zero as the energy goes to infinity. Unlike 

12 
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the case of QED, where there is a preferred value of the coupling constant at zero 

momentum scale, in the case of QCD we do not have any special values for the 

coupling constant in the perturbative region. See Fig. 2.1. 

medom 

Fig. 2.1 Energy dependence of the QED and QCD effective cou- 

pling constants. 

The value of the strong coupling constant in the currently accessible energy 

range is rather large. For instance, the strong coupling constant in the popular MS 

scheme [ll] has the values [12] ( assuming five light-quark flavors) 

CY&~) = 0.14s f 0.01s for ,u = 34 GeV , 

(2.9) 
am(p) = 0.115 f 0.00s for p = 91.17 GeV . 

As a consequence, the uncertainty from the choice of coupling scheme and scale 

affects theoretical predictions appreciably, and the study of these issues becomes 

-unavoidable. 

The scheme and scale ambiguity problems are not particular to QED or QCD. 

They are also present in all other quantum field theories. However, as we shall 

13 
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argue here, the scheme ambiguity is conceptually less severe since it can be reduced 

to a scale ambiguity. The freedom to select various renormalization schemes is 

actually no more than the freedom to adopt ‘meter’ or ‘foot’ as the basic unit 

of length. As long as a scheme is well defined, we can always express the result 

in a particular scheme. Notice that in the process of translating results from 

one scheme to a.nother-namely, replacing one coupling constant by another-we 

inevitably re-encounter the problem of scale setting. More precisely, two coupling 

constants crl(/~) and CY~(P) of d ff i erent schemes are related by an equation 

4Pl) = 44) + C1(p1/p3) c&/Q) + C&q/pz) &p2) +. . . . (2.10) 

Given a finite number of terms in this series, we must choose an appropriate value 

of ~2 for each value of 1-11. That is, we again run into a scale ambiguity problem. 

The scale ambiguity is thus a somewhat more fundamental problem than the cor- 

responding scheme a.mbiguity problem, in the sense that if we know how to choose 

the “best” scale in all cases, then we can translate our result freely from one scheme 

to another. 

Several methods have been proposed to solve the coupling scale ambiguity. 

Among them we shall mention: 

1. Fastest Apparent Convergence (FAC) [3,4]: 

According to FAC, we should choose the coupling scale that makes the series 

look most convergent. Operationally we will define this method as setting the 

contribution of the second order term (i.e., next to tree level) to be zero. That 

14 



is, if 

RN = TO cr"(p)+~l(p) ~'+l(p)+ . . . +~N(P) o~+~(P) , 

then the scale AL should be chosen as the solution of 

(2.11) 

q(p) = 0 . (2.12) 

2. Principle of Minimal Sensitivity (PMS) [3]: 

We define this method here as the choice of the coupling scale at the stationary 

. . 
point of the truncated series: 

d&v o 
- = 

dPp - 
(2.13) 

The full PMS method also requires the choice of a renormalization scheme. 

Beyond two-loop order, this method proposes the optimization of scheme pa- 

rameters in a.ddition to the coupling scale. (The scheme parameters can be 

defined as the /?-function coefficients in each scheme. See Ref. [3] for detail.) 

3. Brodsky-Lepage-Mackenzie Method (BLM) [a]: 

This method is inspired by QED. The philosophy is to absorb all fermionic 

vacuum polarization effects into the running coupling constant. In l-loop order 

15 



massless QCD, it is operationally equivalent to the condition of a vanishing 

coefficient of the nf (number of light fermions) term. Therefore BLM results 

are formally invariant under the change of number of light flavors: 

(2.14) 

Extension of the BLM method based on the fermion-number criterion has re- 

cently been studied by Grunberg and Kataev [13]. (See also Surguladze and 

Samuel [14] f or a recent application of the flavor-independence criterion to the 

next-to-leading coefficient in the total hadronic cross section in eSe- annihila- 

tion and in the 7 hadronic decay rate.) However, in the next Chapter we will 

show that BLM’s method in QED effectively corresponds to the dressed pho- 

ton expansion; thus, the general dressed skeleton expansion can be considered 
. . 

as another extension of the BLM method. 

4. Renormalization Scheme Invariant Calculation (RSI) [4,15]: 

This is yet another point of view on the subject. Given a physical quantity, 

we can define an effective coupling (or effective charge) associated to it (which 

we shall call the R-scheme coupling constant): 

R = rocup(p)+ rl(p)crPfl(p)+... 
(2.15) 

E t-0 a; . 

If 'R depends on a single external momentum Q, then the evolution of R(Q)- 

or equivalently of CYR(Q)-OI~ Q can be studied self-consistently without ad- 
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ditiona.1 inputs such as AQCD. This is usually stated as the renormalization- 

scheme-independent calculation. However, we should bear in mind that im- 

plicitly a particular scheme has been preferred: the R-scheme. The R-scheme 

is, in a sense, a natural scheme for the study of the evolution properties of a 

given field theory, because the coupling constant itself in this case is experi- 

mentally measured, hence there is no need for an outside coupling constant. 

But this method has its own limitations. For instance, the total hadron decay 

width of heavy quarkonia should be predictable from QCD, despite that it 

contains no lab controllable momentum and thus has no evolution to work 

with. Another problem with the RSI method is a proliferation of coupling 

constants: one coupling constant is introduced for each physical process. The 

problem of sca,le ambiguity comes back whenever we try to relate one effective 

coupling to another. 

For a single-scale process 

RN(Q) = bag + n(Q, p)~~+~(p) t . . . t w(Q, daP+%4 (2.16) 

the usual impression is that as long as the coupling scale ,u is chosen near the 

typical scale Q of a given process, its perturbation series will give a reasonable 

result. We should notice, however, that due to dimensional transmutation (i.e., 

. the presence of f!QcD) the correct scale might in some cases not be proportional 

to Q, but rather to some other power of Q, or a.n even more complicated form. So 

the assignment of coupling scale with typical physica. scales runs the risk of being 

17 
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too simplistic. For processes involving many scales, in general it is not clear how 

a “typical scale” can be defined. 

For multi-scale processes, the assignment of a uniform coupling throughout 

all the vertices becomes questionable. Consider for instance the exclusive process 

eSe- + p+p-r (Fig. 2.2). In QED the vertices a and b should have a coupling 

strength - aI/2 (Q’), whereas the vertex involving the radiated photon should have 

a strength - ‘Y’/‘(O) - l/&8. 

Fig. 2.2 A typical QED process, where the coupling strength at ver- 

tices a and b is expected to be stronger than the coupling 

strength at c. 

Similarly, for the scattering of two electrons in QED (Fig. 2.3), the appro- 

priate coupling constant for the first diagram should be cr(t) and for the second 

diagram a(~), where t and u are the Mandelstam variables shown in the figure. 

This observation and controversy on the various scale-setting procedures prompted 

-the consideration of the Dressed Skeleton Expansion (DSE) as an alternative to 

the coriventional power series expansion. The details of this calculation method 

will be the subject of the next chapter. 
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Fig. 2.3 Feynman diagrams for the scattering amplitude of e-e- - 
- - 

e e . The Mandelstam variables 2 and u are the squared 

momentum transfers carried by the exchanged photons. 
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DRESSED SKELETON EXPANSION 
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The skeleton expansion is a method of organizing Feynman diagrams, where 

one groups together all diagrams differing only by self-energy and vertex insertions. 

The original idea can be traced back to Dyson [9] in the late 1940s. In the early 

development of quantum field theories, this expansion became a common technique 

in the proof of perturbative renormalizability [16, 17, 181, although its role in this 

area has now been largely replaced by the BPHZ [19,20,21] formalism. Interest in 

the skeleton expansion has also come from the hope that some non-perturbative 

features can be revealed through the study of its coupled integral equations. 

In this chapter we will explore the use the skeleton expansion as a calculation 

tool which has no scale ambiguity. We shall call this method the “Dressed Skeleton . . 

Expansion”. In order to explain this method, we will review here first the concept 

of skeleton graphs. 

3.1. Skeleton Expansion 

Skeleton graphs represent Feynman diagrams stripped of vertex and self- 

energy insertions. To fix the idea, let us consider the Feynman diagram in c$: 

theory. [22] depicted in Fig. 3.1. To obtain the skeleton graph of this particular 

Feynman diagram, we perform the following sequence of operations: 
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Fig. 3.1 An example of a Feynman diagram where the self-energy 

insertions have been bosed. 

1) Draw a box around each self-energy correction. A self-energy correction is a 

subgraph with two legs coming out of it. See Fig. 3.1. 

2) Repla.ce these boxes by single lines (propagators). See Fig. 3.2. 

Fig. 3.2 Result of the Feynman diagram in Fig. 3.1 after the re- 

moval of the self-energy insertions. The remaining vertex 

insertions have been boxed. 
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3) Draw a box around each vertex correction. A vertex correction is a subgraph 

with three legs coming out of it. See Fig. 3.2. 

4) Replace these boxes by simple vertices. See Fig. 3.3. 

We can therefore associate in a unique way with each graph G another graph 

called the skeleton graph of G. For instance, Fig. 3.3 is the skeleton graph of Fig. 

3.1. 

Fig. 3.3 Skeleton graph of Fig. 3.1. 

In Fig. 3.4 we give some more examples to clarify the concept of skeleton 

graphs. Notice that by definition, skeleton graphs a.re those that cannot be further 

‘reduced by removing vertex or self-energy insertions. Thus, the diagram (b) in Fig. 

3.4 is a skeleton gra.ph, while the diagrams (u) and (c) are not skeleton graphs. 
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Fig. 3.4 (b) is a skeleton graph, where as (a) and (c) are not skele- 

ton graphs. 

We can generate the complete set of Feynman diagrams corresponding to a 

particular scattering amplitude (i.e., any connected and amputated n-point Green’s 

function with n > 3) by 

1) first drawing all the possible skeleton graphs with n external legs, then 

2) replacing the propagators in the skeleton graphs by full propagators and 

the vertices by full vertex functions. (The full vertex function contains only 

one-particle-irreducible diagrams, since the one-particle-reducible parts are 

already included in the full propagator.) 

As an example, the two-body scattering amplitude in C,I$ theory will contain 

the skeleton graphs shown in Fig. 3.5. The full propagator and full vertex graphs 

are shown in Fig. 3.6. We can convince ourselves that all Feynman diagrams of this 

scattering a.mplitude are effectively contained once and only once in the skeleton 

expansion. 
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Fig. 3.5 The skeleton expansion for the two-particle scattering am- 

plitude in c)“, theory. 

r----J=-+ -u-+-m 
+ * + . . . 

Fig. 3.6 The full propagator and full vertex function in d3 theory. 
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Skeleton expansion can be used to renormalize scattering amplitudes. 

1) Let 20s be the on-shell wavefunction renormalization constant, that is, the 

residue of the full propagator at the mass pole [23]. Define the renormalized 

propagator by dividing the full propagator by 20s (see Fig. 3.7). 

2) Define the renormalized vertex function as the full vertex function multiplied 

by ZAf (see Fig. 3.7). 

3) More generally, according to LSZ [24] reduction formula, for a scattering 

amplitude with n external legs (n > 4), we multiply the overall amplitude 

n/2 . 
by Z,, m order to renormalize it. 

. 
R 

l =z,: - [ 1 

Fig. 3.7 Renormalized skeleton expansion in d3 theory for two- 

particle scattering amplitude. 
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4) As a consequence, the renormalized scattering amplitudes can be written in 

terms of renormalized skeleton graphs consisting only of renormalized prop- 

agators and renormalized vertex functions. This is shown schematically in 

Fig. 3.7 for the two-particle scattering amplitude. 

It is a rather involved task to rigorously prove that skeleton expansion indeed 

leads to a finite theory for all renormalized Green’s functions. We shall assume 

in the following that the set of skeleton graphs to a given order in the number 

of vertices yields a finite result. The proof of this statement in QED is given in 

Bjorken and Drell [17], and in 4: theory in Zinn-Justin [IS]. 

3.2. Dressed Skeleton Expansion 

The Dressed Skeleton Expansion (DSE) is an adaptation of the standard skele- 

ton expansion. Two essential modifications are introduced: 

1) Local Effective Wavefunction RenormaLzation: Instead of a unique, on- 

shell wavefunction renormalization constant Zos, there is a diagrammatically local 

effective wavefunction renormalization “constant” Z(p2) for each full propagator. 

The idea is to a.bsorb all self-energy renormalization effects into effective wavefunc- 

tion renormalization constants. More precisely, the full unrenormalized propagator 

-is defined to be: 

iA(p2) = 
iZ(p’) 

p? - nz; ’ (3.1) 
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where mp is the pole mass. The effective wavefunction renormalization constant 

coming from a particular full propagator is used to renormalize the vertices im- 

mediately adjacent to it. That is, at each vertex, the full, unrenormalized vertex 

function is to be multiplied by 

z1/2(p2)z’/2(q2)z1/2(r2) . P-2) 

being p2, q2 and r’ the squared momentum of the three legs attached to the par- 

ticular vertex function (see Fig. 3.S). 

- E Z(p’) - 

r 

A 

r 
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= z (P )Z (cl )Z (r 1 
DS 

P . q 
[A~ 
P q 

Fig. 3.8 Propagator and vertex function renormalization in DSE. 

Observe that this prescription is consistent with the LSZ prescription of multi- 

plying Z’Af (the on-shell wavefunction renormalization constant) for each external 

leg. Effectively, for all external legs we have Z’/2(p2 = rnc) = 2;s’; thus, all 

. vertices attached to external legs are (and hence the overall amplitude, too, is) 

multiplied by the correct power of Z’if. 
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DS DS DS 

+ cross graphs 

Fig. 3.9 DSE graphs for the two-particle scattering amplitude in c$~ 

theory. 

The two-body scattering amplitude in DSE to one-loop skeleton order consists 

of the skeleton graphs given in Fig. 3.9. Notice now that in order to compute 

the skeleton graphs in Fig. 3.9, we have to know only one single function: the 

--DS (Dressed Skeleton) vertex function. Obviously this holds true for any n-point 

(n > 3) connected and amputated Green’s functions: once the DS vertex function is 

known, all higher order Green’s functions can be expressed as functional expansions 

in terms of the DS vertex function, graphically represented by the DSE graphs. 

In DSE there is no coupling constant and thus no indeterminate coupling scale. 

Instead of a coupling constant we have a DS vertex function, and the (known) 

momenta flowing into it effectively fulfill the role of the (unknown) coupling scale 

of the conventional power series espansion. 

2) Vertex function through renorma.fization group equation: The vertex func- 

tion can be obtained by the multi-momentum renormalization group equation or 

other suitable techniques. 

The multi-momentum renormalization group equation is an intuitive general- 

ization of the usual p-function formalism. If the perturbative expansion of the DS 
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vertex function XDS( ICI, k2, k3) in terms of the bare coupling constant is 

bs(kl,kz,k3)=Xo+$! fi(kwb,k3)+X; f2(kl,k2,k3)+... , (3.3) 

where the coefficient functions f; contain both divergent and finite parts, then we 

can obtain the multi-momentum renormalization group equation by 

1) taking the derivative of Eq. (3.3) with respect to the external momenta 

dkls 
- = 
ak; 

2) formally inverting Eq. (3.3) t o expand x0 in power series of ADS 

x0 = ADS - & fl - x;s (f2 - 3f;) - . . . , 

3) substituting Eq. (3.5) into the right hand side of Eq. (3.4) 

dADS x3 ?fl 
+ & 

?f2 ?fl 

- = DS ar;; ak; - 
--3fl m 
ak; 

+... 

-Xi& Pl({ki})+& h({ki})+.:. . 

(3.4) 

(3.5) 

When the underlying theory is renormalizable, all the coefficient functions 

Pi ({h}) of th e multi-momentum ,&function will be finite. The DS vertex function 

ADS can be obtained by solving this equation with the specification of an integration 

constant (usually in the guise of a quantity analogous to A&CD). 

Tq one-loop order, however, the renormalization group equation is equivalent 

to the’ well-known trick of eliminating the bare coupling constant through the 
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introduction of an integration constant. That is, if 

ADS ({k}) = XO + $ [ z + f(fki I)] + O(XZ) 7 (3.7) 

where the divergent part in the order Xi term is contained in the l/e pole term, 

then formally 

1 
A;s({ki}) = $ - y - 2 f(iki)) + ‘(‘if) ’ (3.8) 

This last equation is valid for any set of values of {k;); therefore, we also have 

1 1 2c 

X&({k:}) = 2 
- t - 2 f((ki}) + o(g) . (3.9) 

Taking the difference between these last two equations and neglecting higher order 

terms, we obtain: 

A “DS 

1 
(tki}) = c _ 2 f({k;}) ’ (3.10) 

where C = 2 f({k$}) + l/X&({k:}) is effectively an integration constant. 

The exact formula for the vertex function to l-loop order in 4: theory is 

somewhat complicated, but in the small mass limit when some of the legs are 

on-shell, a simplified expression can be obtained (see next Chapter). 

We notice that the expansion order in DSE is two-fold. We have to specify: 

1) the number of vertices used in expanding a general scattering amplitude in 

terms of the DS vertex function, and 2) the number of terms used to compute 

the renormalization group equation for the DS vertex function. This actually also 

happens in the conventional method of perturbative calculations: the results in 

perturbative QclD also contain two expansion orders, one corresponding to the 
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order of the result itself in terms of the running coupling constant, and the other 

one corresponding to the order that is used in obtaining the running coupling 

constant through the p-function formalism. In principle there is no requirement 

that we match one order with the other, but in practice these two orders are often 

kept the same. 

3.3. BLM as the Dressed Photon Expansion 

Fig. 3.10 The photon charged propagator in QED. 

In QED, due to the Ward Identity 21 = 22, it is not necessary to perform a full 

skeleton expansion in order to renormalize the charge. In fact, as a consequence of 

this identity, the photon “charged propagator” (photon full propagator multiplied 

by the squared bare charge) (see Fig. 3.10) 

ieiAp,(p) = 3 g [ pv-y] +... 

is a finite function by itself [25]. Th ere ore, f in QED, we can use the dressed 
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photon expansion instead of the dressed vertex expansion. That is, the renormal- 

ization group equation is performed on the photon two-point function (effectively 

the “running coupling constant” e(p2)) rather than on the fermion-photon-fermion 

vertex, and all other Green’s functions (including the fermion full propagator and 

the fermion-photon-fermion vertex) are to be expressed in terms of dressed photon 

diagrams. 

This is essentially the basis behind the BLM [2] “automatic scale setting” 

procedure in the case of QED. For instance, the lowest dressed-photon graph for 

the computation of the muon anomalous magnetic moment is given in Fig. 3.11. 

The result from this diagram can be expressed as 

4Q*2) 
ai1 = sJT 

= e2(Q*2) 
87r2 ' 

(3.12) 

where Q* is the effective scale. Notice that the loop integral of this diagram is 

performed with the running coupling constant (i.e., the photon charged propagator) 

inside the integrand; therefore, e2(Q*2) effectively is the value obtained though the 

mean-value theorem by pulling the running coupling constant out of the integral. 

By using the running coupling consta.nt e(p2) t o one-loop order, this effective scale 

can be shown to be [2G] 

Q’ = mp exp(-5/4) . 
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Fig. 3.11 The lowest-order dressed-photon diagram for the muon 

anomalous magnetic moment calculation. 

The fermion full propagator (mass and wavefunction renormalization effects) 

is also to be computed with dressed photon diagrams. The diagrammatic expansion 

is depicted in Fig. 3.12, but we shall not undertake detailed discussion of this 
.- 
subject here. 

-=-+ _$D”$ + . . . 
Fig. 3.12 The full fermion propagator in the dressed photon expan- 

sion. 

The association of charge renormalization to a two-point function rather than 

a vertex function is not an exclusive property of QED. As we shall see shortly, 

-the leading l/N Gross-Neveu model in the auxiliary field form also exhibits this 

feature. 

Finally, here is a personal opinion. In QED to one-loop level, the BLM method 
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is equivalent to the absorption of the light-fermion family number nf (from vacuum- 

polarization effects) into the running coupling constant. This useful coincidence is 

peculiar to QED, and the nf criterion probably should not be regarded as the strict 

definition of the BLM scale setting method in extending to other field theories. 

Recently S.J. Brodsky has studied a correspondence principle between QED 

and QCD [27]. B asically, QED can be interpreted as the limit of QCD when the 

number of colors tends to zero. This ensures the same scale in QCD as QED for 

corresponding processes. 
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CHAPTER 4: 

APPLICATIONS OF DRESSED SKELETON EXPANSION 
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4.1. q$ Theory 

As a concrete application of the dressed skeleton expansion, let us first analyze 

the two-particle elastic scattering amplitude in 4: theory. We will consider the 

limit when all the relevant momentum scales are much larger than the mass of the 

particles. 

We use dimensional regularization [28] in d = 6 + 26 to regulate ultraviolet 

divergences. Th e b are coupling constant of the theory can be expanded in terms 

of the MS scheme [ 1 l] d imensionless coupling constant X, 

x0 = p- 

with 

1 
3 x; A,, + 7 - 
& (4793 +*** ’ 1 (4.1) 

1 1 -=- 
i E 

- lof#r) + -/E . P-2) 

As pointed out in the previous section, the basic building block of the dressed 

skeleton expansion is the renormalized vertex function. In order to obtain this func- 

tion, we first need to obtain the effective wa\-efunction renormalization constant 

from the renormalized propagator. 
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P2 
. . = z (p2) 24 

Fig. 4.1. Propagator renormalization in 4: theory. 

The propagator to l-loop order (Fig. 4.1) in the massless limit is given by 

Ab2) = -G2) z p’ - m;h . (4.3) 

where Z(p’) is the effective wavefunction renormalization constant and ?72ph the 

‘physical mass. We will need the expression of Z(p2) in the on-shell (p’ = mih) 

and large-momentum (p” >> m’) 1 imits. In the on-shell limit, we have 

20s = Z(p2 = mEh) = 1 + x2 [;+‘.I($) ++*fi] ) (4.4) 
12(4~)~ 

and in the large-p’ limit 

‘Q2) = 1 + 12(4n)3 xFi [;+log(-$-ii) A] . (4.5) 

Notice that we have absorbed all renormalization effects into Z(p’) and 20s. 

That is., the propagator retains its bare form, with only the bare mass replaced by 

the physical mass. 
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OS 

Fig. 4.2. Vertex renormalization in & theory. 

The unrenormalized three-point function with one off-shell leg (Fig. 4.2) in 

the massless limit to l-loop order is given by 

r=-&{l-$$ [;+log(-$ir) -31) . (4.6) 

Its renormalized version is 

I-R = zosz’~2(p2) r G -iAp2) 

A; 

i [ 
-;+;+ 

q/3 1 
= 

-&I l + (443 _ yj- + 12 1% 

The renormalization group equation to this order is an algebraic equation that 

simply states that X0 is unique: 

1 1 1 -=----- -- 
x; X2($) (4~)~ 

-~~+~log(~) +; log(-$ii)J . 

(4s) 

The solution to this equation is 

X?(p”) = 
12(4~)~ 

11 log( -$/A& - iE) ’ 
w 

where ADS (DS=Dressed Skeleton) is a parameter that mimics the role of AQCD. 
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Similarly, when there are two off-shell legs, the 3-point vertex function 

shown to be 

X2(p2,q2) = 12(4~)~ 12 
p2 log (-p2& - Z’E) - q2 log (-q2/A& - 2) 

p2 - q2 

-log (-& 4) -log (--& -ic,)’ . 

can be 

(4.10) 

Notice that when Ip’( >> /q2j, we recover the one off-shell leg vertex; that is, 

(4.11) 

Fig. 4.3. Tree-skeletons for two-particle scattering. 

The two-pa.rticle scattering amplitude to tree skeleton level (Fig. 4.3) and to 

l-loop renormaliza,tion in the fundamental vertices is given by 

iMtree = [-ix(s)]? k + [-ix(t)]2 ; + [-ix(u)]2 ; 
s 

1 = -z 
’ :: (4’)3 [s (log ,s,:;,, - i;;) + -t log ,;,Ais, + u log Iu/A$/ 

- 
I ’ 

(4.12) 
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Fig. 4.4. One-loop skeleton for two-particle scattering. 

The box diagrams are calculated by inserting the renormalized vertex func- 

tions in the momentum integrals. For the box diagram shown in Fig. 4.4, we have 

--the expression 

Observe that this expression contains no undetermined momentum scales. That 

is, higher order skeleton diagrams in general are also scale ambiguity free. 

The numerical evaluation of the box diagram integral is complicated by the 

unusual presence of the vertes function X(p’, 4’). H owever, we can formally expand 

the integral in power series of l/log(s/A&) ( by expanding first X(p2, q”) in power 

- series of l/log(s/A&) ). We shall content ourselves with the first two terms in 

this series expansion. In asymptotic free region (s >> A&) this series would give a 

good approximation to the exact integral [29,30]. 
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: 

To order log-3(s/A&) the box diagram of Fig. 4.4 gives 

ihfboz(s; i, i) = I$, q 

1 
(4.14) 

+ 5 l%(s/A;s) 
[-2 I&i) + 11 12(&i) + 2 13(i,i)] . 

where 

i = 1; i = t/s; 6 = u/s, 

I@,i) = 2(.&{log2(2$) +2} 

I2(2, i) = &{ log (s) [Liz (y) -Ij2 (y)] 

$2 [Li3 (y) +I.j3 (y)]} 
(4.15) 

. . 13(i, i) = 1 -Alog ; 

{ II i+i 2 
[log2( -i - ic) - log2( -t^ - ic)] 

- log(-> - ic) I& 
i+t^ 

( > 
- 

i 
- log(-i - ic) Ci2 

2+i 

( > 
- 

i 

+lrij (+) +Ij, (F)} . 

and Li2(z) and Li3( ) x are respectively the real part of the dilogarithm and the real 

part of the trilogarithm functions [29]. 

Adding up contributions from tree and box skeletons, the total scattering 

amplitude is given by 

We will compare this result with the two-particle scattering amplitude ob- 

tained by standard methods of scale fixing, which is derived next. 
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>c+x+M+x cross grzphs 

Fig. 4.5 Feynman diagrams for two-particle scattering. 

The m-scheme running coupling constant to second order in ,&function [31] 

is given by the solution of the following equation: 

1 125 
+ 10s 1% 

125 q&4 

Q&P) 125 C&/I) + 10s > 
= ; log //L~/A&I , (4.17) 

. . 

and the squared renormalized scattering amplitude to l-loop order (Fig. 4.5) is [29] 

inf/’ = (4~)‘a~(p)(f+r+~)?(lfa~(~)[; log/& H(s,t,u,~“)]} , 
MS 

(4.18) 

where 

H(s, t, u, ii2) = 
( 

+f (log$- 

The crk term in Eq. (4.18) comes from the interference of the 

with the tree diagrams. 
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We now apply the usual scale setting prescriptions. The result in PhlS can 

be expressed as 

1 ‘2 - 
U > 

o2 324 + 125 cr 

324 + 375 Q ’ 
(4.20) 

with cy given self-consistently by 

12 
CY= 

11 H(s, t, u, AZ) 

The result in FAC can be 

324 + 500 cx 

324 + 375 cr 
+ (4.21) 

expressed as 

pflgAc = (47q (f + f + ‘) 2 a2 ) 
U 

with Q given self-consistently by 

(4.22) 

(4.23) 

(The BLM scale setting method does not apply here, since the charge renor- 

malization in 4: theory involves no fermion loops. The dressed skeleton calculation 

is effectively the extension of BLM in this case, in the sense that the coupling con- 

stant renormalization effects are absorbed into a vertex function and the effective 

coupling scale is set automatically.) 

To compare the results of PMS and FAC with DSE, we need to know the 

relationship between i and ADS. Let us use ADS as our unit of momentum ADS = 1, 

and express all other momentums in unit of ADS. We take the physical point 
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s = 2ltl = 21211 = 10s as the matching point. This leads to 

Apbfs = 3.5805 , 

AFAC = 3.6149 . 
(4.24) 

However, in practice the numerical results of PMS and FAC are indistinguishable. 

In Fig. 4.6 we show the s-dependence of I’M/L,, and /MI$bf,-FA, for the “sym- 

metrical point” s = 2ltl = 21 I u , assuming that ADS = 1. In Fig. 4.7 we show the t 

dependence for fixed values of s. For this multi-scale process, Fig. 4.6 depicts the 

dependence of the scattering amplitude on the overall scale of the system, while 

Fig. 4.7 illustrates the dependence on the relative s&e (t/s). 

S 

Fig. 4.6 The s-dependence of the probability amplitude along the 

“symmetric” line s = -2t = -2~. 
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Fig. 4.7 The t-dependence of the probability amplitude for fixed 

values of s. 

From these figures we can observe that, in this example 

1) There is no qualitative difference between the results calculated by DSE 

or conventional methods (PMS-FAC) in the relative-scale dependence (Fig. 

4.7), as long as we are in the deep asymptotic free region (say, s > 104). 

2) The main difference between the DSE and the PMS-FAC predictions come 

from the overa.ll-scale dependence. If 4: theory were a realistic model, this 

difference potentially is large enough to allow an “experiment” to check the 

performance of the two methods at somewhat lower scale.( We must stress 

here that the agreement of disagreement of either method does not imply that 

a certain method is correct or incorrect, but simply means that the particular 
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method is more or less efficient in organizing the perturbative series so that 

higher order terms yield negligible contributions. ) 

4.2. Gross-Neveu Model in Leading l/N Expansion 

This section is inspired by P. M. Stevenson’s analysis of the PMS method in 

the Gross-Neveu model [32]. W e will consider this model with the auxiliary scalar 

field CY [33, 341. The L a g rangian density of this model is given by 

a=1,2 ,..., N . (4.25) 

--The bare propagators and vertex functions of this theory are depicted in Fig. 4.S. 

*-e--w* I -IA0 = -i 

Fig. 4.8 Bare propagators and coupling vertex in the massless Gross- 

Neveu model. 
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Let us analyze the off-shell fermion four-point function. Although this is not 

a “physical” quantity in the usual sense (because it is off-shellness), it nevertheless 

provides a simple Green’s function where various ideas about scale fixing methods 

can be tested. For our purpose, we will only deal with perturbative quantities and 

bypass all non-perturbative effects arising from dynamical symmetry breaking [35]. 

The fermion four-point function to leading order in l/N has the structure (Fig. 

4.9) 

(4.26) 

where A(s) is the full propagator of the scalar particle to leading order in l/N, 

s = (pl + ~3)~ and u = (pl + ~2)“. 

~28 b Pll.a p2e b 

Fig. 4.9 The fermion four-point function to leading order in l/N. 
The double dashed line represents the full scalar propaga- 
tor to leading order in l/N. 

Notice that for the Gross-Neveu model in the auxiliary-scalar-field context, 

every vertex in a given Feynman diagram counts as a negative unit power in N, 

while’every scalar propagator counts as a positive unit power in N. Vertex and 

fermion self-energy corrections are thus absent in the leading l/N expansion, since 
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these effects are higher order in l/N [34]. 

Therefore, only the full scalar propagator multiplied by the squared bare 

charge needs renormalization. In the following we shall refer to this function as 

the “charged scalar propagator”. That is, we can choose to “dress up” the charged 

scalar propa.gator instead of the three-point vertex function. This resembles the 

case of QED, where due to the fact that 21 = 22 [Z] the charge renormalization 

can be performed on the charged photon propagator. 

As we will see later, in the leading l/N limit the dressed three-point function 

coincides with the charged propagator function. We will first consider the charged 

propagator here. Let us obtain its renormalization group equation, for the moment 

up to the sixth-order in the bare coupling constant. 

-I g,, (p2) = g; l z===fz=. 

- e,’ [ 
e---a + *-- -u --+ 

->- 
P 0 

--- = i g;n (p2) 

k+P 

Fig. 4.10 The charged scalar propagator and the vacuum polariza- 

tion diagrams in Gross-Neveu model to leading order in 

l/N. 
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The charged scalar propagator to this order is (see Fig. 4.10) 

-iy,2A(p2) E -i& (p2) 

=9 ;{-i+(-i)[iy:n(pl)l(-i)+(-i)([ig;n(~~)](-i))~} (4.27) 

=-- is: { 1 + 93(p2) + 9,4~‘b21} 7 

where the subscript DS stands for Dressed Skeleton. The vacuum polarization 

correction (see Fig. 4.10) is given by 

iYzII(P2) = -YiN I 
ddk TG(jF + Iv> 

- 
(27r)d k”(k +# * 

(4.28) 

A straightforward calculation leads to 

~(P2)=-~(~+log(-p2-iE)) ) +og4n+rs ) 
E 

(4.29) 

where we have used dimensional regularization in d = 2 + 2~. Eq. (4.27) can be 

rewritten as 

9&(P2> = 9: + 9,4WP2) + 906n2(P2) 7 (4.30) 

and by formally inverting this power series we can expand yz in power series of 

Y&(P2) 

9,” = 9Fk(P2) - YimP”) + Y~s(P2)~2(P2) + WY;,) * (4.31) 

Now let us obtain the renormaliza.tion group equa.tion for gas. We first differ- 

entiate Eq. (4.30) with respect to the scale variable x = log(-p2 - &z). Noting 
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that from Eq. (4.29) 

dIl N 
-=-- 
dx 2?r ’ 

(4.32) 

we obtain 

d& _ 
dx 

9: (-E) + 29D(P2) (-;) * (4.33) 

The next step is to use Eq. (4.31) h ere to replace go by 9~~s. After this substitution 

we obtain the renormalization group equation for y&(p2) 

G&=-N 
dx 

2T { (YtdP2) - YtdP2)WP2) + * * .)’ + 2 YFdP2MP2)} * (4.34) 

To order y&, this equation reduces to 

. . 
dY;S 

dx 
= -;94Ds + O(Yfk) * (4.35) 

Notice that the order y& coefficient has vanished completely. This is a general 

result for this model: independent of the initial number of terms, all higher-order 

coefficients in Eq. (4.35) will vanish. (This result would have been obvious if we 

had applied the renormalization group equation to 96: instead of y&, but we have 

2 chosen to present the equation for yDS here to indicate the procedure for a general 

field theory.) In other words, we always obtain the exact infinite order solution 

Y;s(P2) = 
2r 

N log(-p?/A& - k) ’ 
(4.36) 

independent of the number of terms we have included in the original equation for 

the charged scalar propagator (Eq. (4.27)). This is true even if we have only 

included the lowest loop correction. 
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Naturally, we could choose to dress up the three-point vertex function instead 

of the two-point scalar function. However, in this particular. model these two 

approaches are completely equivalent. Let us show next this equivalence. 

In order to dress up the vertex function, we first need to obtain the effective 

wavefunction renormalization constant of the scalar propagator 

-iA = -i + (-i) [iyzII(p’)] (4) + . . . 

E (-i)Z(p2) . 

(4.37) 

Since there a.re no fermion self-energy nor vertex corrections, we simply have to 

multiply the bare vertex function by the square root of the effective scalar wave- 

function renormalization constant to renormalize the three-point function (see Fig. 

4.11). If we designate the renormalized three-point function by Gas, then 

-iijDS(p2) - -ig,z”“(p2) . (4.3s) 

‘JO 
.-DS P2 I 

( 1 
P2 ( p2) 

Fig. 4.11 Dressed three-point function in Gross-Neveu model to 
leading order in l/N. 
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However, this implies 

i&b”) = !?2(P2) = &s(P2) * (4.39) 

Thus dressing up the three-point vertex amounts exactly to dressing up the charged 

scalar two-point function. 

The result for the fermion four-point function is obtained by replacing the A 

function in Eq. (4.26), using 

&w = L&(s) = N log(-s2/:\’ (--N - kc> ’ (4.40) 

As shown in Ref. [32] and [33], this is also the exact answer. That is, for the 

leading l/N massless Gross-Neveu model, the exact answer is equivalent to the 

DSE expansion. This should be contrasted with conventional scale setting methods, 

where the results are not exact. In Fig. 4.12 we plot the symmetrized and the 

antisymmetrized four-point function [36] for spa.celike s and u (s < 0, u < 0), 

where the scale has been fixed by a,pplying second (without scheme variation) and 

third (with scheme variation) order PM5 scale-scheme setting method. According 

to the convention of Ref. [32], these functions are defined by 

R+(s, u) = g [A(s) + A(u)] , 

R&u) = 2g,2N [A(s) - A(u)] , 
~1%(44 

(4.41) 

and they are calculated in power series of a running coupling constant g(p2)* 
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Fig. 4.12 Symmetrized (R+) and ant.isymmetrized (R-) fermion 

four-point functions to leading order in l/N in Gross- 

Neveu model. The dashed lines represent the exact re- 

sults. The solid lines are the results obtained by applying 

the PMS optimization method. Fig. (a) and Fig. (b) 

correspond respectively to the second and the third order 

approximant. 

We notice from the figure that the third-order approximant does improve over 

the second order approximant. This is especially true for the R- component, which 

54 



is almost indistinguishable from the exact result in the range plotted. However, 

these approximants differ from the exact result at higher value of U/S. The con- 

ventional scale setting methods do not give the exact result in this simple model 

because they assign a single coupling scale to both skeleton graphs. In fact, if the 

conventional scale setting procedures (FAC, PMS) are applied to the two skeleton 

graphs individually, they will also give the exact result. 

The lesson of this exercise is that different skeleton diagrams possess individual 

renormalization properties, and that by separating different skeleton graphs, at 

least in this case, one obtains a more exact answer. 

-4.3. N=2 Gross-Neveu Model 

In the following we will consider the N=2 Gross-Neveu model without the 

l/N expansion (this is effectively a two-flavor Thirring model [37,38]). The main 

purpose of considering this model here is to illustrate the DSE calculation beyond 

the tree skeleton level. As before, we will only be interested in performing pertur- 

bative calculations, and all non-perturbative effects (dynamical mass generation, 

spontaneous symmetry breaking [34,37,3S], etc.) shall be bypassed. Since the 

vertex correction is no longer trivial, we cannot choose to dress up the charged 

two-point function. Instead, we have to perform the renormalization group equa- 

tion on, the three-point vertex function. We shall carry out our calculation within 

the context of dimensional regularization, with d = 2 + 26. To one-loop order, the 

fermion self-energy correction remains zero (see Fig. 4.13), 
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ig$(p) = (-i)(-igo) J +$; = 0 . 

Hence there is no fermion wavefunction renormalization to this order: 

Z,(P) = 1 + O(gZ) . 

(4.42) 

(4.43) 

‘S’D c (PI = 

r 

igi n (k2) s ---t;-- 

0 

--b--- 
k 

r+k 

-igi r, (k2) = 

Fig. 4.13 One-loop self-energy, vacuum polarization and vertex cor- 

rection diagrams in the N=2 Gross-Neveu model. 

From the previous section, the scalar propagator for N = 2 is (see also Fig. 

4.13) 

-iA(L?) = -1. + (-i)(ig;II(k?))(-i) 

= -i[l - $(f + log(-li” -;q)] . 

(4.44) 
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From here, we obtain the effective scalar wavefunction renormalization constant 

.z&c2) = 1 - $(; +log(-P - ;,,) ) f = 5 - log47r + -yE . (4.45) 

The vertex correction (Fig. 4.12) is given by 

Iyp,q) = rj(k2) = &(i + log(-k2 - i,)) 

(4.46) 

. 

Combining the self-energy, vacuum polarization and vertex corrections, we obtain 

the renormalized vertex function 

-ig&“) G -igoz;‘2(q)(1 + g%rl(l;2))z~‘?(p)Z~‘?(k’) . 

‘-This equation can be put into the following form: 

1 
= $ + &(i + log(-t2 - iE,) 

g&J~2) 0’ 
; 

and its solution is given by 

T&s@“) = 
2lr 

* log -k2/Ats - i& 
( > 

(4.47) 

(4.48) 

(4.49) 

Notice that if we had used the l/N expansion (compare with Eq. (4.36)), we would 

have erred by a.n overall fa.ctor of 2. Also notice that the vertex function to this 

order depends exclusively on the squared momentum of the scalar particle. Now, 

let us use this vertex function to study the elastic scattering amplitude of two 

particl.es of the same flavor. Consider the process indicated in Fig. 4.14, where we 

have chosen the center-of-mass frame to express our kinematics. The corresponding 

tree skeleton dia.grams are indicated in Fig. 4.15. 
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PI - (PI PI P,=(Pr -PI P4- (PI -PI Pf (PI P> 

Fig. 4.14 Kinematics of the elastic collision between two same-flavor 

particles in the N=2 Gross-Neveu model in the center-of- 

mass frame. 

l.++-3 1 

x 

3 

2.+-&k+ 

I 

4 2 4 

Fig. 4.15 Tree-skeleton diagrams for two-particle elastic scattering 

amplitude in the N=2 Gross-Neveu model. 

We shall use here yo = C, and y1 = iay. The external fermion wavefunctions 

are given by 

1 0 
211 = 4) 2P 0 Tu2= J-0 3 1 7 

?23=fi(O 1) ) &=fi(l 0) ) (4.50) 

58 



. - 

and the tree level amplitude is simply 

= i4p2g& (u) (4.51) 

i87rp2 
= 

1% (4P2/&) - 

The Mandelstam variables have the following values 

s = 4$, t = 0, u = -4p2 . (4.52) 

The one-loop order skeleton diagram is given in Fig. 4.16. Let us spend some 

time to discuss these diagrams. First of all, let us compute the box diagrams in 

the usual perturbation theory, i.e., using the bare coupling constant at the vertices 

instead of the DS vertex function. By simple power counting argument, one can 

see that the two diagrams are individually ultraviolet divergent. However, it turns 

out that the divergences coming from the two diagrams cancel each other, as one 

would expected from the renormalizability of the theory. The Feynman integral of 

these box diagrams is given by 

(4.53) 
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(4 (b) 

Fig. 4.16 One-loop skeleton diagram for two-particle elastic scatter- 

ing amplitude in the N=2 Gross-Neveu model. 

. . 

The propagators in these expressions come with the +i,c prescription, and in 

the language of distribution theory they should be interpreted as the sum of a 

principal-value part and a delta function 

1 

k2 + ie 
= P.V. j$ - iaS . (4.54) 

The terms in the integrand in Eq. (4.53) can thus be classified into the following 

three types 

_ 1) product of two principal-value parts, 

2) product of a principal value part with a delta function, and 

3) product of two delta functions. 
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Fig. 4.17 Locations of the double-delta function singularities of the 

box diagrams (a) and (b) of Fig. 4.16 in the ko - kl plane. 

The hyperbola indicates the location of the Landau singu- 
. . larity at k’ = -A&. 

By direct calculation, it can be shown that the contribution from the first 

two types of terms vanish; thus, the net contribution of the box diagrams comes 

entirely from the double delta function terms. In Fig. 4.17 we plot the locations 

of the singularities of the double delta functions. The result after integration has 

a simple expression: 

iMboz = -P2gz . (4.55) 

Now let us return to the dressed skeleton case. We have to replace the bare 

-coupling vertex -ig, by the dressed vertex function -igos(k”). At high energies 

(p > ADS) the domina.nt contribution is from the two double-delta points, because 

these two points are located in deep-spacelike and deep-timelike regions, i.e., far 
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away from the light-cone, and because gDs(k2) is a slow varying function at large 

Ik21. Therefore, the corrections coming from the infrared behavior of the vertex 

function gDs ( k2) are expected to be higher-twist in nature [39]. In a sense, we can 

interpret the two points shown in Fig. 4.17 as the “scale-setting centers” of the 

skeleton box diagrams. The Landau singularity at k2 = A& might cause concern 

about the box integral, but one should bear in mind that this pole actually is 

located off the real axis due to the presence of the +iE term, and as long as we 

respect this prescription, this pole poses no threat to the finiteness of the box 

integral. It turns out that the box skeleton diagram can be calculated exactly 

(see Appendix A for t h e calculation and discussion about the box integral and its 

renormalons) 

iMboz = -4~” 
. . J 

d?l; I;” 

(2+ (k - PI)” i (I; :p# - (I; Ip2)’ s~s(k”) 
i 

( . 
- ;lo@P/ ADS) 

> 

(4.56) 
= -sp2p’ , 

where ,8’(z) is the derivative of the /3(z) function [40] 

PC4 = 2 g 7 
n=O 

P’(4 = z ;;:‘J: - (4.57) 

Needless to say, the bos amplitude is totally free of scale ambiguity: the result 

of the skeleton box dia.grams is directly expressed in terms of p and ADS, and no 

extraneous coupling has been invoked in the calculation. 

One can associate an “effective coupling” and an “effective scale” to the box 

diagram. These functions are defined by (see Eq. (4.49) and (4.55)): 

i&m(P) - -P2S&(P) 

( 
2x 

log(P$&g) 

(4.5s) 
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In Fig. 4.1~3 we plot the real and imaginary part of the effective coupling constant 

geJ(p), and in Fig. 4.19 we plot the Bode diagrams of amplitude and phase for the 

effective scale p,~(p). W e o b serve that at high energies the effective scale has, in 

the language of phasors, a reactive (negative) angle of 45’. This is expected since 

one box diagram probes into the deep timelike region while the other box diagram 

probes into the deep spacelike region (see Fig. 4.17); thus the effective scale is 

expected to be half reactive and half resistive. In contrast with conventional scale 

setting methods, the effective scales and the effective coupling constants in DSE 

are in general complex numbers. 

u.c; r / \’ 1 

P/A 

Fig. 4.18 Real and imaginary parts of the effective coupling constant 

for the bos amplitude of the N=2 Gross-Neveu model. No- 

tice that a.t high energy CJ~,,(P) - gas. 
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100 101 102 1c 

P/A 

I 

Fig. 4.19 (a) Bode d’ lagram of amplitude for the effective scale of 

the box amplitude in the N=2 Gross-Neveu model. The 

dashed line represents peff = p. (b) Bode diagram of 

phase (measured in degrees) for the effective scale of the 

same amplit.ude. The dashed line indicates -45”. 

The total amplitude to one-loop skeleton level is given by the simple addition 

of the tree-level amplitude (Eq. (4.51)) and the box amplitude (Eq. (4.56)), 
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iMt,t = GUtTee + iMboz . (4.fj9) 

Notice that different order skeletons in general have different effective coupling 

scales, a feature that has been pointed out in the BLM paper [2]. 

4.4. Yukawa Interaction in l+l Dimension 

The main purpose in using the Yuka.wa model here is to present the subtleties 

related to the mass renormalization of propagators and to the matrix structure 

of vertex functions. While the usage of the skeleton technique for massless scalar 

bosons is straightforward, the presence of mass terms and the existence of matrix 

structure in-the various basic vertex functions make the extension of the DSE 

not immediately trivial. The Yukawa model is chosen because it presents these 

two features at one-loop level. Although the Yukawa model in 1 + 1 dimension 

is a superrenormalizable theory, this does not affect our discussion of the Dirac 

structure. The Yukawa theory describes the interaction between a fermion field 

and a scalar boson field according to the following Lagrangian density: 

(4.60) 

where a mass unit m has been inserted in the interaction term to make the bare 

coupling X, dimensionless. To simplify our discussion, we shall assume that both 

-the fermion physical mass and the boson physical mass are equal to m. The bare 

interaction vertex is scalar, in the sense that it is given by -&,m and is thus 

proportional to the identity matrix (this will be the meaning of the word “scalar” 
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throughout this section). However, this feature is spoiled by the presence of higher 

order corrections. The full vertex function will in general contain a non-trivial 

Dirac structure (Fig. 4.20) 

-imA(p, q) = -im {L 1 + Al(p, S) j t i2(P, Q) k -I- h(P, q> M} - (4.61) 

In general the vertex function A(p,q) will be an N x N matrix, where N is the 

dimension of the representation of the Dira.c algebra, and an immediate question 

is how to a.pply the DSE method to obtain all the N” components of this vertex 

function. A first approach would be to write down the renormalization group equa- 

tions for all the components and solve them separa.tely. But this would introduce 

N2 integration constants, that is, N” quantities analogous to AQCD. This is hardly 

‘necessary, for we know that, aside from the masses of the particles, we only need 

one more parameter to fix the entire theory. Therefore we can solve the equation 

for only one component, and then expand the other components in terms of the 

one we have solved for. 

The next question is how to choose the component for the renormalization 

group equation. One obvious selection is A,, for we know that in weak coupling 

regime the vertex function should somehow resemble the bare coupling, which is 

scalar (i.e., proportional to the identity matrix). More precisely, we 

1) solve the renormalization group equation for A,(p, q) 

ii,(p,q)=xo(1tfi(P,q)~~t~2(P,q)~~+...) 7 (4.62) 
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2) expand the other components in power series of &,(p,q) by inverting Eq. 

(4.62). For example, 111 will have the expression 

While this procedure is formally valid, we shall argue that the four matrices 

{ 1, $, 8, $&} are not the most desirable basis for decomposing A. The problem 

is that when p and q are on-shell and the vertex function is multiplied by the 

external fermion wavefunctions, the matrices fi and h can be formally replaced 

by the scalar matrix m. . 1 because the wavefunctions satisfy the Dirac equation: 

(~5 - m)u(p) = E(q)(R - m) = 0. Th is means that, on-shell, the matrices $ and R 

are indistinguishable from a scalar matrix. Thus it is highly unnatural to perform 

the RGE on A,, for it means that its on-shell value will not be representative of 

the entire vertex function. Th ere ore, f we are led to the more natural choice of 

basis matrices given by: { 1, j - m., k - m, (k - m)(j - m)} [41]. Notice that now 

the non-scalar components {$ - m, R - m, (k - m)(j - m)} vanish on-shell upon 

contraction with the external fermion wavefunctions because of the Dirac equation; 

thus, the on-shell value of the vertex function is completely contained in the scalar 

component. 

Let us explicitly compute of these components of the vertex function in DSE 

to l-loop order. The scalar boson propagator offers no major difficulty: we simply 

absorb. all the renormalization effect into the effective wavefunction renormalization 

constant zb (Fig. 4.20): 
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Fig. 4.20 One-loop scalar and fermion propagator and vertes correc- 

tion diagrams for the Yukawa model. 

i&(p2) = ’ 
p2-mi 

$ ’ .,iXim’fl(p’) 
p2 - rn; 

’ + . . . , 
p”-rni 

(4.64) 

To lowest order, we can replace the bare fermion mass rnf by m in the previous 

expression, and obtain 

I-I(r2) = -$ 
1 

1 + 2 + 
i J 

&log (-~(1 - z)r’ $ m2 - iE) 

0 

(4.66) 
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The bare boson mass to order Xz is given by 

mi = m2(1 + xzcb) , (4.67) 

where cb is the lowest order counterterm [42]. Substituting (4.66) and (4.67) into 

(4.64), and retaining only terms to order X2, we obtain the expression 

iAb(T2) = r2 ” m2 
. ( 

1 + qm2 cb - nb-2) 

> r2-m2 * 
(4.6s) 

On mass shell (r2 = m2), &, has a simple pole, therefore Cb = n(m2), and 

i&(r2) = ~2 ’ 
. ( 

1 - grn2 ‘b-“> - n(m2) = i 
- m2 ) 

r2-m2 - r2-m2 
zb(T2) . (4 69) 

The effective wa.vefunction renormalization constant is given by 

. . 3H(~2) - II 
zb(r2) = 1 - Aim” 1.2 - m2 (4.70) 

In particular, the on-shell renormalization constant is 

z&OS = Zb(m”) = 1 - Xzm2 $ (4.71) 
r2 cm2 

For the fermion propagator we apply a similar procedure (Fig. 4.20). To 

one-loop order 

7 (4.72) 

where the self-energy is given by 

iXim2C(p) = (-iX,m)2(i)2 J 2+- 
Ft n-2 

(2T)” [(x7 - p)” - mi][k2 - rn;] ’ 
(4.73) 

For Df(p) to order Xz, we can replace the boson ma.ss ??Zb by m. After removing 
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the mass counterterm for the fermion mass 

mi = m2(1 + X,~C/) (4.74) 

by requiring Df(p) to have a simple pole at p2 = m2, we obtain the following 

expression for the full fermion propagator 

iDf(P) = Zf(P)T& , 

3X; m2f(p2) - m”f(m2) 
-- 

(4.75) 

. . 
-1% (1+&--Q] a 

Notice that instead of a scalar wavefunction renormalization constant, we have 

introduced an effective wavefunction renormalization matrix. The on-shell expres- 

sion of this matrix is 

=ltA&V4) tz(+-2)&Z ) (4*76) 

where the sca1a.r pa.rt ( the first two terms ) is readily identified a.s the conventional 

on-shell wavefunction renormalization constant. The last term vanishes on-shell 

upon contraction with the associa.ted external fermion wavefunction. 

Let us study the full vertex function at on-shell boson, one spacelike fermion 

and one on-shell fermion configuration. That is, p” = ~2 = ,x2 and q2 = -Q2 < 0. 
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The vertex function at a completely general momentum configuration could be 

studied in the same manner, but the expressions involved would be much more 

complicated. 

The vertex correction (Fig. 4.20) is given by 

-igmr1 = (-ix,m)3 
J 

M3(F + R + m>(F + P + 4 
$$[(k + q)” - d][(k + p)2 - m2][P - d] ’ 

(4.77) 

where we have set mf = mb = m. The decomposition of l?r into the various 

components is given by 

.-with 

+ h2(q2)p + l&p - iJCP- “‘)} , 
. nz 

(4.78) 

1 x 

hJq2) = 3 dx 
JJ 

dy? , 

0 0 

1 X 

h1(q2) = dx dyl +;L3’ , 
JJ 
0 0 

Q1 ’ 
h2(q2) = ; J J dx dy -’ +;; - ’ , 

0 0 

1 X 

Q 
h3(q2) = ; dx JJ dI/F , 

0 0 

o=l-~+y2-(1--r)(x--y)~-ii . 

- The renormalized vertex function is given by 

-imA(p, q) = -iX,mZi”(q)(l + A~rl,Z~~os(p)Z~!~, . 

(4.79) 

(4.80) 
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Upon decomposition we have 

P-m A(p,q) = &(q2) 1 + x,(q2) 7 + uq 2 k-m 
) & 

+ x3(q2) (h - mm - ml 
Qm ' 

(4.81) 

where we have named the scalar component the dressed skeleton effective coupling 

constant Xos(q’). It satisfies the RGE 

1 
= -$ + & 

[ 
f(q2) - 2 ho(q2) + 6 m2f(q2) - m2f(m2> 

&(!12) 0 q2-m2 
+5+2 , 1 

(4.82) 

with the solution 

. . 

&$dc12) = 
x2 

1+ (X’/47r)L(qZ) ’ 
(4.83) 

L(q”) = ’ 

where we have chosen the integration constant X such that L(q2 = O-) = 0. That 

is, X is the effective coupling at zero spacelike momentum 

X&q2 = o-) = x . (4.84) 

The general procedure to obtain the other three components involves an ex- 

pansion of A, in terms of XDs(q”) by inverting Eq. (4.82), and then using this 

substitution in the va.rious Xi(q2) of Eq. (4.81). But to this order we simply need 

to replace A, in Eq. (4.81) by ADS. The resulting expressions are 

&(q”) = ^$;l’ (hl(q?) + -& - 1) ) 

x,(q’) = ““f’) (h2(q2) - ; m,Q f(q2; - r(;2)) , (4.85) 
q- - m- 

X,(q?) = ^“i”” h3(q?) . 
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l- (b) 

I I I I 

10-l 100 101 102 10 

Q/m 

Fig. 4.21 Different components of the full vertex function of the 

Yukawa mode1 in 1+ 1 dimension as obtained by DSE. The 

external legs of the scalar boson and one of the fermions 

are on-shell; the second fermion has a spacelike momen- 

tum q’ = -Q’ < 0. In Fig. (a) X2/4x = 0.15. In Fig. (b) 

x?/4ir = 0.1 . 

In Fig. 4.21 we plot the different components of the full vertex function for two 

different values of A. Notice that in the weak coupling regime (say, X’/~T < O.l), 



the renormalization effects become small; namely, the scalar component at high en- 

ergy only gets slightly renormalized, and the non-scalar ones become comparatively 

negligible. 
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CHAPTER 5: 

COUPLING SCALE OF QCD VERTICES 
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In multiple-scale processes, it is desirable to have a prescription for coupling 

scales from simple considerations of Feynman diagrams. For instance, in Fig. 

5.1 (a) we have the elastic scattering of two quarks. We clearly have to assign 

P2 - q2 for the coupling scales at the quark-gluon vertices a and b. Similarly, 

in the case of the elastic scattering of three quarks via a three-gluon vertex as 

indicated in Fig. 5.1 (b), we would intuitively assign p2 - p”, q2, r2 for the vertices 

a, b and c. However, there is a priori no clear prescription for the coupling scale 

for the three-gluon vertex d. 

b 

(a) 

C 

(b) 

Fig. 5.1 (a) Two-quark scattering process via one-gluon exchange. 

(b) The non-Abelian part of three-gluon scattering process. 

The coupling scale at the vertex d lacks a prescription. 

The assignment of different coupling scales to different vertices cannot be done 

in an arbitrary fashion, though. Gauge invariance has to be observed; otherwise, 

the final result, would be physically mea.ningless. The tree-level Feynman diagrams 

in Fig., 5.1 are gauge-invariant; hence, the assignment of different coupling con- 

stants’for the various vertices is allowed to this order. 



In the previous section we have applied the dressed skeleton expansion to a 

variety of field theoretical models. The extension of dressed-skeleton method to 

gauge theories is not straightforward, since the skeleton graphs in these theories are 

in general not gauge invariant. Unlike QED, where the dressed-photon expansion 

provides a gauge-invariant way of clustering Feynman diagrams, in QCD we lack 

of a systematic method of obtaining gauge-invariant skeletons. 

Some time ago Cornwall and Papavassiliou obtained a gauge-invariant gluon 

propagator and three-gluon vertex function [43] to one-loop order through the 

application of the “pinch” technique. Essentially, these functions correspond to the 

gauge-invaria.nt skeletons of QCD to one-loop level. In this Chapter, we apply the 

multi-momentum renormalization group equation of the dressed skeleton method to 

the gauge-invaria.nt gluon two- and three-point functions and obtain their effective 

‘coupling scales. 

In Section 5.1 we study the case of the quark-gluon vertex and recover the 

well known result of one-loop QCD running coupling constant. 

In Section 5.2 we analyze the case of the three-gluon vertex. We obtain 

a s0mewha.t more involved expression. However, the effective coupling scale is 

roughly given by 

being QLillr Qied and Sk,, respectively the smallest, the next-to-smallest and 

the largest gluon virtuality of the three-gluon vertex. We show that the functional 

form for the effective coupling supports the BLM ansatz [2] of using fermion loops 

as probes of coupling scales. 
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5.1. Quark-Gluon Coupling 

1 + 
+ + 

+ Q 
0 

+ P 
_ Fig. 5.2 Diagrams involved in the gauge-invariant gluon propagator 

calculation to one-loop order. The definition of the pinched 

diagrams are given in Ref. [43]. 

The gauge-invariant gluon propagator is calculated by using the pinch tech- 

nique in Ref. [43]. Th e one-loop Feynman diagrams are indicated in Fig. 5.2. The 

interpretation of the pinched diagrams is explained in Ref. [43]. 

To illustrate the principle of pinch technique, let us analyze the pinched dia- 

gram in the upper right corner of Fig. 5 .2. In Fig. 5.3 we show the same diagram 

before’and after the pinching process. 
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m 

m’ 

0 a (b) 

Fig. 5.3 (a) A d iagram involving three-gluon vertex in two-quark 

scattering amplitude. (b) The pinched part of the diagram 

in (a). 

Although the pinch technique ca.n be carried out in an arbitrary covariant 

gauge, the use of Feynman gauge offers enormous simplification. The bare propa- 

‘-gator in a general cova.riant gauge is given by: 

-iA;,(4’) = --$ g/m .( -+), P-2) 

and Feynman gauge corresponds to the choice 77 = 0. 

The three-gluon vertex in Fig. 5.3 can be decomposed into two parts (the 

group theoretical factor will be omitted for clarity) 

&3-r(P~ Qld = 9dP - Q)y + 9&l - 6 + 9& - p)a 

with 

cipy(P7 474 = -29crpcly + 29pyqa + 9y& - p)p 
(5.4) 

c$y(P7 47 4 = -9ffpry + 9pyPcr * 

The Feynman part rF is obtain&d by requiring it to satisfy a Feynman gauge Ward 
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identity: 

dTpy(P, Q, 4 = (P2 - r2) 9oy * (5.5) 

(For 77 # 0 gauge, th is must be replaced by the corresponding Ward identity in 

that gauge. See Ref. [44].) 

The pinched part I” contains only components that carry longitudinal mo- 

menta p, and ry. Notice that these momenta effectively pinch out the internal 

quark propagator in Fig. 5.3(a). For instance, 

p,yQ = j = (F - m) - (fi1 - 7-n) f fi - 7-n . F-6) 

The term fil - m. va.nishes upon multiplying the external quark wavefunction. The 

remaining term exactly cancels the internal quark propagator. Similarly, 

WY = f = ($2 - m) - (F - m) --f -(f - 772) . (5.7) 

Thus, when the pinched part I” is contracted with the vertices on the upper quark 

line, all the dependence on the quark mass m is effectively removed. The pinch 

technique therefore extracts from the total amplitude the part that only depends 

on the momentum transfer Q”. 

For more details on the use of pinch technique, the reader is referred to the 

original paper in Ref. [43]. 

The expression for the full gauge-invariant propagator can be parametrized 

as 

Z(q”) + i(l - v)F ) (5.8) 

where 2(q2) is the gauge-invariant gluon wa.vefunction renormalization constant 

and 7 the gauge parameter. 
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To one-loop order we have 

Q2) = 1 - (/f$ “[(11-:Nf) (f+h(-q2)) -22+rNf] , (5.9) 

where we have employed dimensional regularization with D = 4 + 2~ and l/i = 

l/e + YE - 47r. Nf is the number of light quark flavors. In analogy with QED, we 

define the effective quark-gluon running coupling constant to be 

922(4”) = 9%q2) * (5.10) 

Thus 

1 ‘+- 
&q = 9: (4$ I . (5.11) 

Upon solving this renormalization group equation we obtain the familiar expression 

[(li-ZNf) (f+ln(-q’)) -22+rNf 

932(q2> 47r . . aa G 7 = 
(11 - +Nf) ln(-q?/Ai) ’ 

(5.12) 

The scale A:! is formally an integration constant to be fixed by experimental mea- 

surement. We observe that the gauge-invariant gluon propagator effectively intro- 

duces a renorma.lization scheme with itself. To this order, the relationship between 

A:! and the more conventional Am can be obtained by noting that in the MS 

scheme 

g&2) = i$ + (4$ 
- [(ll - :Nf) (k+ln(p2))] . (5.13) 

By comparing equations (5.11) and (5.13) at -q” = Ai and ,LL~ = Ak, and noting 

that the left-hand sides of both equations vanish, we obtain the relationship 

(5.14) 

For Nj = 4 and ATf = 5 we have respectively A? = 2.S67Am and A2 = 2.923Am. 
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5.2. Three-Gluon Coupling 

The effective coupling of the three-gluon vertex has been studied previously 

by a number of authors [45]. H owever, previous studies have been focused on the 

gauge-dependent three-gluon vertex. The presence of the gauge parameter impeded 

a reliable physical interpretation of the effective charge. 

The gauge-invariant three-gluon vertex to one-loop order was first obtained by 

Cornwall and Papavassiliou [43]. Th e renormalized version of this vertex function 

is given below, where we have added the quark-loop contribution absent in Ref. 

[43]. 

-gJabCr&/(p, q, 7.) =Zll"(p")Z'/2(q?)Z1/2(T2)fa*c 
1 

- 90 [(P - QL9Xp + (q - 4X9pv + (r - p),m] 
3 4 . 

- -&f 2 J &&x 

[rLGprL + f! (k2 + k3jx (k3 + h), (h + k2jv] 

J 
” 

- l&71 (pv9xp - Pp9fix) - ($4 kyk: p)2 

d4k - l%d (qxgLrv - qvgxLJ) 
J 

(an)4 k?(k; q)2 

- 1219; (QSVX - TXQjL “)/&k?jk:i)? 

Nf. 3 

s 

d4k Tr [F1~~h~3~~1 

where Z(p’) is the gauge-invariant gluon wavefunction renormalization as given in 
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Eq. (5.9), and the Feynman parts [43] of the three-gluon vertex are given by 

rFpxy =2Pygxp - 2Ppgyx - (k2 + k3hgpy y 

r;ypo/ =%ag,, - %,ga, - (k3 + h),g,a , (5.16) 

r,F,,, =2rpgua - 2wqu - (h + k&gap . 

The definition of the various momenta. and indices is given in Fig. 5.4. 

Fig. 5.4 The definition of the various momenta, Lorentz indices and 

color indices involved in the one-loop three-gluon vertex 

calculation. 

The gluon vertex has a complicated tensor structure. We can classify the 

various tensor components of this vertex into 

rxpy =r19xp(p - du + r29dq - rh + r39dr - P)~ 

+ r% - rh(r - P~(P - dv + r?nug(p, q, 4 , 

(5.17) 

where the longitudina.1 part r:“,“U” contains all the terms that vanish upon contract- 

ing with the projector operator 

I-$y(P, 4, I‘) = gxx - ( ’ y) (9d - y) (w - y> . (5.1s) 
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That is 

(5.19) 

The Born component, i.e., the component proportional to the tree-level tensor, is 

given by 

r0 = $ (r* + r2 + P) . (5.20) 

We can calculate this component by using the tensor method. Namely, we first 

obtain a set of linea.rly-independent equations by contracting the three-gluon vertex 

in Eq. (5.17) with a complete set of basis tensors, and then we solve for I” from 

this set of equations. Fortunately, the outcome of this lengthy analysis can be 

expressed in a rather compact form, 

. . r” = -&5x4- 
(5.21) 

with S the projection tensor given by 

sxpv =Q2(q - r>xg IlV + 2q2(r - P)/rgvx + 2r2(p - q)vgx/l 
(5.22) 

+ (Q - r>h- - PMP - q)v , 

and 

R = t (2p”q2 + 2q%” + 2r”p” - p4 - q4 - T-4) . (5.23) 

The effective three-gluon coupling is defined in terms of the Born component by 

g3(p2, q2, r2) E gore . (5.24) 

This is’ a natural choice since in the perturbative regimen the Born structure dom- 

inates. All the non-Born components are formally higher-order in go and hence 
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are subleading. Also notice that, to one-loop order, all the ultraviolet divergences 

are contained within the Born component; therefore, it is the only component 

responsible for the coupling constant renormalization. 

Upon inverting and squaring the previous equation, 

1 1 

9f(P2? q2, T2> = 2 + (4& 

f + L(-p2, -92, -2) - -22+zN 
3 f 1 * 

(5.25) 

where 

+ q * ‘R’ * p ln(3) 1 p2$7-2 F(p2, q2, 4 + l6 (f> . 
(5.26) 

-Lsinz 
3fi 

The various -dot products are expressible in terms of the gluon virtualities, e.g., 
. . 

p.q = (7’2-p2 - q2)/2. The functions F(p2, q2, ?) and Lsinz(z) are fully described 

in Appendix B; for completeness, we reproduce a summary here. 

= ’ binaWl) t Lsin7(2&) + Lsin2(2#3)] 
P 

, 

p=JR, 

$3 =arctan (po~eic) = iln (~:~S~~~~~) , 

Lsinz(z) = k [Liz (ei’) - Liz (e-‘:)I = C Z!$E , 

1 

(5.27) 

7r 
Lsinz - 0 3 

= 1.01494160.. . . 
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The function L(a, y, z) can be considered as a three-variable extension of the loga- 

rithmic function. In fact, on the symmetric axis x = y = z, the function L(x, y, z) 

reduces to 

L(x,x,x) = In(x) . (5.28) 

The function L(x, y, z) also satisfies the simple scaling property 

L(AX,Xy,XZ) = 1nX t L(x, y, 2) , for X > 0 . (5.29) 

We can interpret Eq. (5.25) a.s a multi-momentum renormalization group 

equation (see Chapter 3). Its solution is given by 

. . 

Q3(P2, q2, r2) = 
932(P2, q2, r’)) 

471. 

47r 

= (11 - $Nf) L(-p?/A;, -q3/A;, -+/A;) ’ 

(5.30) 

where the function A3 is a quantity to be fixed by experimental measurement. 

Notice the similarity between this formula and the familiar form of the strong 

coupling consta,nt as given in (5.12). In both cases, the factor 11 - $Nf multiplies 

a single function. The functional form of the fermion contribution thus is identical 

to the pure-gluon contribution. In the three-gluon vertex, this fea.ture is a surprise 

given the complicated form of the integrals in Eq. (5.15). This strongly supports 

BLM’s proposal [2] f o using fermion loops as probes of QCD coupling scales, since 

the scale obtained via fermion-loop analysis is identical to the one obtained by a 

more complete a.nalysis. 

The scale A3 can be expressed in terms of A2 or Am since the bare coupling- 

constant of QCD is unique. By compa.ring Eqs. (5.11), (5.13) and (5.25), we 
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obtain 

A3 = exp 

= exp 

(5.31) 

For Nf = 4 a.nd Nf = 5 we have respectively A3 = 15.2211~ = 5.308A2 and 

A3 = 16.12Am = 5.515A2. 

In what follows we will consider only the case where p2, q2 and r2 are all 

spacelike [46]. In Fig. 5.5 we plot the equal-coupling surfaces of cr3(p2, q2, r2) in 

this kinematic region. 

In the limit when one of the momentum scales is much larger than the other 

two, we have 

. . 
L(-p”;A$, -q2/Az, -T-‘/A:) + In (5 33) 

. I 

with Q~in, Qied a,nd Qf,, respectively the smallest, the next-to-smallest and the 

largest scales among -p2, -q2 and -r2, and 

(5.33) 

For Nj = 4 and Nf = 5 we have respectively A3 = 3.190Am = 1.113A2 and 

A3 = 3.378A~ = 1.156Az. From Eq. (5.32) we see that the effective coupling 
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scale of the three-gluon vertex is essentially given by 

(5.34) 

to.2 

Fig. 5.5 Equal-coupling surfaces for the effective three-gluon cou- 
pling constant in the completely spacelike region. 

Next, we define the scale correction factor I\’ through the relation 

(5.35) 

In Fig. 5.6 we plot K(z,y) as function of the ratios x = Qy/Qiax and y = 

Q~/Q~ax~ where Qkax is the masimum scale among -p2, -q”, &, and Qf and 

Qi are the two remaining scales. From the figure we see that the actual coupling 

scale is, in general within a factor 0.2096 - l/5 of the simple expression given in 

Eq. (5:34). 
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0.01 0.1 1 
X 

Fig. 5.6 Scale-correction factor function, as defined in text. Note 

that this function takes values between Iimin = 0.2096 and 

I\‘,,, = 1. 

Note that formula (5.34) indica.tes that the coupling scale in general will be 

small when there is one scale disproportionately larger than the other two scales. 

Consider for instance the jet-production process indicated in Fig. 5.‘i. Formula 

(5.34) implies that, for fixed gluon-jet invariant masses MT and Mi, the three-gluon 

vertex becomes non-perturbative at high values of Q”. That is, the three-gluon 

vertex is perturbative only if the invariant-masses all of the gluon jets are allowed 

to increase simultaneously with Q’. 

We know that in the conventional p-function analysis in QCD the coupling 

constant becomes large at low energies. This signals two things: 1) The renormal- 

ization group equation breaks down at low energies. That is, many higher order 

terms in the p-function need to be taken into account. 2) If the perturbative series 
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for a physical quantity contains a large coupling constant, higher order corrections 

become non-negligible and the tree-level result alone will not correctly reproduce 

the physics. 

Fig. 5.7 A four-jet process involving a three-gluon vertex. The 

three-gluon coupling is expected to be large at large values 

of Q” and fixed values of invariant masses Ml and M:. 

Exactly the same situation happens with the multi-momentum renormaliza- 

tion group analysis of the three-gluon coupling when the momentum configuration 

is asymmetric. 1) For highly asymmetric momentum configuration, the multi- 

momentum renormalization group equation becomes inapplicable. This is reflected 

by the fact that the effective coupling becomes large. 2) The Born graphs contain- 

ing highly asymmetric three-gluon vertices will not be enough to represent the 

physics. Higher-order diagrams should be considered. In particular, multi-particle 

emission effects become crucial (See Ref. [47]). 

To conclude, we make the following observations. 

1. The large values of A3 a.nd A3 with respect to Am (see Eqs. (5.31) and 

(5.33)) indicate th a in general one should choose a smaller-than-expected t 

scale for the coupling constant cr&~‘) in four-jet physics, where the three- 
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gluon vertex plays an essential role. This, together with the fact that the 

effective scale for the three-gluon vertex as given by (5.34) is always smaller 

than the smallest scale, might help to explain the surprising smallness of the 

effective-coupling scale observed in four-jet cross-sections [48] 

i-z,, = 0.001 - 0.002 s , (5.36) 

with s the squared total center-of-mass energy. 

2. In principle, the running of the three-gluon coupling could be studied by 

detailed measurements of four-jet events in e+e- annihilation (491. In partic- 

ular, these measurements would allow us to test the validity of the functional 

dependence of effective-coupling scale as given in Eqs. (5.34) and (5.35). Un- 

fortunately, this is not possible in the presently available energy region, since 

the three-gluon vertex in this region is highly non-perturbative. Consider 

some typical invariant-mass values in 2” physics, say (see Fig. 5.7) 

. . 

Q = 20 GeV, Ml = ikfz = 7 GeV . (5.37) 

According to formula (5.35), th is would give an effective coupling scale 

lJ= 
Ii’ Ml Mz A= 

Qi3 
- 0.4 GeV (5.3s) 

for the three-gluon vertex. Given a value of Am - 175 MeV for NJ = 5 

(See Review of Particle Properties, Ref. [12]), this would mean 

47r 

cr3 = (11 - ZNf) ln(/L”/A&.-) N I.” * 
(5.39) 

Therefore higher-order effects must be taken into account. In other words, 

the tree-level picture is not valid. 
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3. Observe that the Born-level description should remain valid for qqqq events 

(see Fig. 5.8) since the scale of the strong coupling is given by the momentum 

squared of the exchanged gluon. 

Fig. 5.8 A four-jet process with four final quarks. The effective 

coupling scale is expected to be given by the squared mo- 

mentum transfer &’ of the exchanged gluon. 

. . 

(Experimentally, heavy quarks can be tagged by their semileptonic decay 

products [50] or by using a vertex detector [51].) 

If the skeleton picture is correct, the effective coupling pL2 for qijqq processes 

should be la.rger than the corresponding scale observed for all four-jet events (qqggf 

- - 
qqqq). For a value of yCuf = 0.05, we would expect 

A” = 0.006 s . 
m 

(5.40) 

(The expected value of /12 should be larger than the value shown here since the 

squared mom,entum transfer of the gluon usua.lly is larger than yCUts.) 
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CHAPTER 6: 

DISCUSSION AND CONCLUSION 
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This thesis represents an effort towards the clarification and generalization of 

automatic scale-setting methods in perturbative quantum field ‘theory, first pro- 

posed by Brodsky, Lepage and Mackenzie [a]. 

We have pointed out that automatic scale-setting can be achieved in a number 

of field theoretical models by employing the dressed skeleton method discussed in 

the thesis. This method is based on the following two procedures: 

1. Expand scattering amplitudes in skeleton graphs instead of conventional 

Feynman diagrams;. 

2. Obta.in the coupling vertex function by the multi-momentum renormalization 

group equa.tion. 

The absence of the scale ambiguity is obtained naturally in this approach. 

In the dressed skeleton expansion, we do not rely on a coupling constant as the 

-expansion pdra.meter; hence, we do not encounter undetermined coupling scales. 

Instead, a functional expansion in the renormalized vertex function is employed. In 

contrast to the ca.se of the conventional coupling constant where the coupling scale 

is an arbitrary parameter, in the case of the renormalized vertex function, the var- 

ious scales are given by the physical momentum flows in the skeleton graphs. That 

is, the effective coupling scale in the dressed skeleton approach is automatically 

dictated by the kinematics of each problem. 

The absence of scale ambiguity eliminates a typical nuisance of conventional 

methods: the fact tha.t one can arbitrarily shift the weight of lower-order and 

higher-order contributions by simply manipulating the coupling scale of each prob- 

lem. In dressed skeleton calculation, each term in the expa.nsion has a well-defined 

magnitude. This allows us to judge objectively the validity of a particular pertur- 

bative expa.nsion by analyzing its numerical convergence. 
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A fair question is whether the classification of Feynman diagrams into dressed 

skeleton graphs has some physical justification. As we showed in Chapter 4, among 

the various scale setting methods, the dressed skeleton expansion is the only 

method that provides the exact answer in the leading l/N Gross-Neveu model. 

This hints that separate skeletons renormalize independently; hence, they possess 

different effective coupling scales. Forcing different skeletons to share the same 

coupling scale in general will lead to inaccurate answers. 

One drawback of the dressed skeleton method occurs in loop-skeleton calcula- 

tions. Since the point-vertices of Feynman diagrams are now replaced by compli- 

cated vertex functions, the new loop integrals are much more difficult. However, we 

have seen in an explicit example that loop skeleton graphs in general absorb a large 

number of renormalon poles. This lea.ds to an optimistic expectation that skele- 

-ton expansidn might provide a better large-order convergence than conventional 

coupling constant expansion. 

We have also discussed the generalizations of the dressed skeleton method to 

other field theories like the Yukawa model, QED and QCD. When a field theory 

contains more complicated vertices, generally we have to take additional care to 

make the method useful. This is especially true in the case of gauge field theories 

like QED or QCD, since their naive skeleton graphs are not gauge-invariant. 

In the case of QED this problem can be circumvented thanks to the Ward 

identity 21 = 22. We only need the photon vacuum pola.rization to renormalize 

the bare coupling constant. The dressed-photon expansion thus provides a scale- 

. ambiguity-free calculation method that respects gauge invariance. This is exactly 

the basis for the BLM automatic scale setting method in QED. 

In QCD the situation is not as simple. Although the one-loop order gauge- 
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invariant gluon propagator and three-gluon vertex have been obtained [43], no 

general method of obtaining gauge-invariant QCD skeletons seems to be available. 

Despite this shortcoming, useful results have been obtained in the study of the 

lower-order vertices. In Chapter 5 we applied the multi-momentum renormalization 

group equation to the gauge-invariant three-gluon vertex and obtained an effective 

three-gluon coupling 

%(P2, q2, r2) = 
47T 

(11 - $vj) L( -$/A& -q”/Ai, -r”/A$) * 
(6.1) 

which bears a remarkable resemblance to the conventional single-scale coupling 

constant 

The function L(z, y, z) is given in Eq. (5.26) and it can be interpreted as the 

three-dimensional extension of the logarithmic function. As explained in Chapter 

5, the factorization of the coefficient 11 - $Nf in the three-gluon coupling constant 

is non-trivial. This a.dds support to BLM’s proposal of employing fermion loops to 

probe the coupling scale of physical processes. 

For highly asymmetric momentum configurations, the effective coupling scale 

of the three-gluon vertex is shown to be given by 

(6.3) 

_ being &kin, Qied and QZ,,, respectively the smallest, the next-to-smallest and 

the largest gluon virtuality of the three-gluon vertex. This functional form of the 

three-gluon coupling gives an effective coupling scale that is always smaller than 
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the smallest gluon virtuality. This feature might help explain the smallness of the 

effective coupling scale observed in four-jet physics in eSe- annihilation. 

To conclude, we point out here two main limitations of the dressed skeleton 

method: 

1. In QCD we lack a. systematic method of constructing gauge-invariant skeleton 

lFPh% 

2. Higher-order skeleton calculations present great difficulties. 

Despite these limitations, the study of lower-order skeletons allows us to gain 

insight to the scale setting mechanism of various physical processes, as exemplified 

in the case of the three-gluon coupling. Lower-order skeleton graphs also provide 

us an objective scale setting ansa.tz, in contrast to the many ad hoc scale setting 

solutions, which often involve guessing processes. However, the remaining unsettled 

issues make this field worth exploring. 
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APPENDIX A: 

BOX SKELETON CALCULATION 
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The skeleton box diagrams indicated in Fig. 4.16 gives the following Feynman 

integral: 

iMboz = -4p2 J d2k k2 1 1 47r2 

(2r)” (k - p1)2 (k + p2)2 - (k -pa)” log2(-k2/A& - ;E) ’ 

(A4 

To perform this integral, let us first expand the inverse square of the logarithm 

into power series in log(p’/A&.). Define 

x = log(p2/&) , /i = klp , 

we have 

. . log-? (---$--i.r) = [log@-) +log (-$-iE)]-’ 

= [X + log( -k” - ic)] -2 

1 O” -2 
=- 

X2 
c( ) 

logn(-i2 - iE> 

Xn 
7 

n.=O 
n 

where 

-2 ( > = (-2)(-3). . - C-1 - 4 = (qL( n + q 

n 1.2...:72 

(A.2) 

(A4 

(A4 

This espansion effectively corresponds to the espansion of the box skeleton dia- 

grams into a power series in the coupling constant at scale p. 

By applying the identity 

n 

log”(-k2 - i&) = 
( > 

& (-i” - iq ) 

cr=o 
P.5) 
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the Feynman integrals can be done exactly; the result is: 

iMboz = -.!g g(-l)“Eg (q 

n=O a=0 

= -~11-2!fiz-‘+...+(-l)n(n+l)!fn2-n+...} , 

where 

f(cr) = (-4i)@sec y = f0 + flex + j2a2 + . . . 
( > 

, 

We give here the numerical values of the first few coefficients: 

j-0 = 1 

fl = 1.38629 - i1.57OS 

f2 = 0.960906 - iLli 

. . 
f3 = 0.444033 - i’s.SO132 

(A.6) 

(A.7) 

(A4 

f4 = 0.15389 - i2.4SS48 

f5 = 0.0426674 - iZ.i5S23 

f6 = 0.009S5S26 - i2.40832 . 

The expansion (A.6) exhibits an n! divergence behavior (because f; is roughly 

constant for large value of i), typical of an asymptotic series that needs Bore1 

resummation [52, 531 in order to yield a finite result [54]. Fortunately this se- 

ries can be Bore1 resummed exactly, and the result obtained by a straightforward 

application of the Bore1 resummation formulas is given by: 
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where P is the trigamma function [40] defined by 

8’(z) = g = $logT(*) 

-;+&+&-&+&&+... - 

and ,8’(z) is the derivative of the p(z) function [40] 

p(z) = 1 [Q (9) - 8 (;)I = gg . 

(A.lO) 

(A.ll) 

It is interesting to observe that the Bore1 transform of the series (A.6): 

G(g) - W + $ bf(-d) 7 (A.12) 

possesses an infinite number of poles on the real axis (see Fig. A.l). These poles 

exhibit the typical features of renormalon singularities [52, 551. We notice that 

these poles lie exactly on the real axis, i.e., they do not have infinitesimal imaginary 

part. Thus, when performing the Bore1 integral, those poles on the positive real 

axis should be interpreted in the principal value sense. We note that the resulting 

integral under this prescription is finite, despite the presence of the infinite number 

of poles. 

Notice that if the original integral in Eq. (A.l) were performed numerically, 

we wotild never have to worry about renormalons. In a sense, the renormalons of 

this example are effectively “eaten” by skeletons. 
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-7 -5 -3 -1 1 3 5 7 Rey 

Fig. A.1 Location of the singularities of the Bore1 transform of the 

box amplitude in the complex-y plane. There is a delta 

function at the origin and an infinite number of poles 1~ 

cated at odd integer numbers, which correspond to renor- 

malon singularities. 

102 



- 

APPENDIX B: 

MASSLESS ONE-LOOP SCALAR THREE-POINT INTEGRAL AND 

ASSOCIATED CLAUSEN, GLAISHER AND L-FUNCTIONS 
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The one-loop three-point integral has been obtained by other authors previ- 

ously [56]. Th e result is usually expressed in terms of dilogarithms, also known as 

Spence functions. However, the obtained formula lacks explicit symmetry under 

the permutation of the three external momenta, and conceals the structure of the 

real part of the integral. 

Here, we obtain the massless one-loop three-point integral in terms of associ- 

ated Clausen functions. Our expression manifests the symmetry under the permu- 

tation of the three external momenta and provides a transparent real part. (The 

real part of the integral is actually given by the imaginary part of the function 

F(pl ,JI~,JI~) defined below.) Since one-loop Feynman integrals are in increasing 

demand, and also since the various associated functions introduced here are not 

as well-documented as the polylogarithmic functions [57, 581, we have decided to 

.collect our results here to facilitate future reference. 

We have employed only standard integration techniques in obtaining our for- 

mula; therefore, we shall present the result without derivation [59]. The massless 

one-loop three-point integral in question is (see also Fig. B.l): 

-- F(PLPLP~) , 
(46)’ 

P.1) 

where pl,p?,p3 are the external momenta of the three-point function. It is conve- 

nient to introduce the following variables: 

6i = pi-1 * pi+1 = (Pf - Pf-1 - Pf+l)/2 7 

R=Sls2+S2s3+S361=(2p~p~+2p~P~+2pgP~-P:-P~-P:)/4 , 

P=m * 
(B.2) 

The subindices are understood to be modulo-3. That is, pq G pl and po E ~3. 
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Pl 

P2 

Fig. B.l One-loop Feynman diagram associated to the massless three- 

point function. 

. . The exact form of the function F(pl,pz,ps) depends on the kinematic region 

of the three external momenta. In general, we can classify a kinematic region as 

trigonometric or hyperbolic, according to the signature of the variable 72. 

p = 2 x Area of Triangle 

Fig. B.2 Geometrical interpretation of the angles 41, 42, 43 and the 

variable p in the completely spacelike region. 
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1) Trigonometric case ( R > 0 ) 

F(pl~p2~P3) = b [c12(2&) -i- c12(2$2) -I- cl2(2$3)] 
, 

P-3) 

$i = arctan , 

where Clz(r) is the Clausen function, which will be described later. The 

trigonometric case can happen only in the completely spacelike (px,pi,pz < 

0) and the completely timelike (pT,pi,pi > 0) regions. Geometrically, in 

the completely spacelike region the angles $I,& and 43 correspond to the 

three internal angles of a triangle with sides fi, 0 and @ (see 

Fig. B.2), and p is twice the area of the triangle. Thus, in the completely 

spacelike region we have 

In the completely timelike region we have the same identity with the opposite 

sign: 

41 + $2 + $3 = -7r . P-5) 

Note that F(PI , p:!, ~3) contains no imaginary part in the trigonometric case, 

as one would expect in t,he completely spxelike and timelike regions. 

2) Hyperbolic ca.se ( ‘R < 0 ) 



- 

where B(z) is the step function 

O(x) = 
{ 

1, ifs>0 

0, ifx<O ’ 
(B-7) 

arctanh(p/&;), if pf-,~f+~ > 0 

arctanh(b;/p), if pf-,pf+, < 0 ' 
W) 

and 

EZ2(2$i) = 
Clh2(2#i), if~f-~pf+~ > 0 

G1112(24i), ifpf-,pf+, < 0 
> (B.9) 

. . 

where Clhz( x) is the hyperbolic Clausen function and Qllh,(z) is the alter- 

nating hyperbolic Clausen function. The definitions and properties of these 

functions are discussed later. The hyperbolic case can happen in kinematic 

regions with any signature (pT,p!,p$ z 0). For the hyperbolic case we have 

the following identity 

$1 + 4? + $3 = 0 . (B.10) 

Thus, despite its appearance, Eq. (B.6) contains no imaginary part in the 

completely timelike region. 

In summary, in the definite-signature regions (completely spacelike or time- 

like regions), we encounter both the trigonometric case and the hyperbolic case, 

whereas in the mixed-signature regions (some of the external momenta are space- 

like and some are timelike), we can have only the hyperbolic case. The numerical 

.evaluation of the various associated Clausen functions can be performed with the 

help of the series expansions given below. We have checked our result numerically 

against direct Feynma.n parameter integrals in all kinematic regions. 
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Next, we give the definition and the main properties of the associated Clausen 

functions [60]. 

1) [Trigonometric) Clausen function. 

l definition 

C12(x) E - Z In 12sin(x/2)/dx = C y 
J 

(B.ll) 

0 
1 

l periodicity 

Cla(x + 2n7r) = Clz(x) , n = 0, fl, f2,. . . (B.12) 

0 pa.rity 

Cla(-x) = -Clz(x) (B.13) 

0 zeros 

x=n7r, n = 0, rtl, f2,. . . 

0 maxima 

2 max = n = 0, fl, f2,. . . 

Cl2 (Xmax ) = 1.01494160.. . 

(B.14) 

(B.15) 

l minima 

Xmin = -;+2nn, n=O,fl,f2 )..’ 

(B.16) 

C12(xmin ) = -1.01494160.. . 

l duplication formula 

C11(2x) = 2 Clz(x) - 2 Clz(7r - x) 
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0 special values 

c12( ;) = $ - $ + $ - . . . = G = 0.91596559 . . . 

c12(;) = ; +) = 1.01494160.. . 

where G is Catalan’s constant. 

l expansion around x = 0 

x3 x5 
=-x111lxl+x+~+~ 

27 

14400 + 1270080 

X9 Xl1 

+ 87091200 + 5269017600 +*** 

where B, are Bernoulli numbers [61], 

l expansion around x = n; define J: = x - TT 

c12(x) = +457 + 2 “‘qr;;;2;p* x2k+1 

k=l 

(B.18) 

(B.19) 

?iT3 = -(In 2>- + 4 + g + & + ,,($o,, + 15i$I,o 
691,13 5461z15 

+ 
49816166400 + 5230697472000 +‘** 

(B.20) 
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2) (Trigonometric) Alternating Clausen function. Although this function is not 

used in the scalar three-point integral, we have included it here for complete- 

ness. 

l definition 

QJ12(x) E - j In 12 cos(x/2)jdx = C (-l)llinnx (B.21) 

0 
1 

0 relation to Clausen function. 

QIl2(4 = C12(x + 7r) (B.22) 

. . 

Since$Z12(x) is simply the half-period translation of Cl?(x), all the prop- 

erties of $l’( ) x can be easily obtained from those of Clz(x); therefore we 

will not give them separately here. 

3) Hvperbolic Clausen function. 

l definition 

Clhz(x) G - ’ In )2sinh(x/2)jdx = c sinLZnx 
J 
0 1 

(B.23) 

The series should be considered formal, since it is not convergent for real 

values of 2. 

0 parity 

Clha( -x) = -Clha(x) 

0 zeros 

x = 0, f2.49879679.. . (B.25) 
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l maximum and minimum 

X max = -Xmin = 2 In (l/2 + h/2) = 0.96242365.. . 
(B.26) 

C12(Xmax ) = -C12(Xmin ) = 0.98695978.. . 

l expansion around x = 0 

Clhz(x) = -xln 1x1 + x - 2 B2k 
k=l 2k(2k + l)! 

x21c+1 

x3 x5 
=-xln1xl+x--+-- 

X7 

72 14400 1270080 

X9 Xl1 
+ 

87091200 - 5269017600 + -** 

l large-x expansion. For x > 0 

. . Clh?(x) = -; + w’/6 - c s 

1 

(B.27) 

(B.28) 

4) Alterna.tinn Hvperbolic Clausen function. 

l definition 

$Zlh,(x) E - 1 In I2 cosl1(x/2)~dx = c (-l)nzjnh nx (B.29) 

0 1 

The series should be considered formal, since it is not convergent for real 

values of 2. 

0 parity 

W,W = -W,(x) (B.30) 

0 zero 

x=0 
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l expansion around x = 0 

($lh,(x) = -(ln2)x - E (22k - 1)B2kx2k+1 k=l 2k(2k t l)! 
xg 312’1 

’ 5806080 - 159667200 

691x13 5461x1’ 

+ 49816166400 - 5230697472000 +‘*- 
(B.32) 

l large-x expansion. For x > 0 

$lh,(x) = -; _ R2/1-) _ c ‘-‘r2e-nz 
1 

(B.33) 

In Fig. B.3 we plot the functions Cl?(x), Clhz(x) and $Zlh?(x) in the interval 

-6 < x < 6. Notice the approximately sinusoidal nature of Cl,(x). The derivative 

of Clz(x) at-zero is infinite. 
.- 

3-a,,,, ,,\,, /,,, /,,, ,i,, (// 
\ ‘\ 
\ \ Cl,(x) = - /i h-112 sin x/21 dx 

2- \ \ 
\ .\ 

Clh,(x) = -/i In12 sinh x/Z/ dx - 

\ 
\ 

‘\ elh,(x) = - /; 11112 cash x/2/ dx 
\ 

-I- 
\ 

Y, ’ 
C%(x) - 

-2- $%(x) ‘\ ‘\J 

\ \ 

\ \ 
-3r’ 5, I I I1 I, I I, r ! I I, 1, I I I,, , I\, I I ,- 

-6 -4 -2 0 2 4 6 

x 

Fig. B.3 Plot of the Clausen function, the hyperbolic Clausen func- 

tion and the alternating hyperbolic Clausen function. 
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Another set of functions closely related to the associated Clausen functions 

are the associated Glaisher functions [57]. W e include their basic features here for 

completeness. All these functions have even parity, and their defining series are 

given by 

G12(x) = c 7 , 

1 

g12(x) = c (-l);;osnx , 

1 

Glh2(x) = c co;znx , $$lh,(x) = c (-l)n;;shnx , 

(B.34) 

1 1 

where the two hyperbolic series are only formal. The trigonometric Glaisher func- 

tions are periodic with period 27r, and in the interval [O,r] they are given by 

= ;(r - 
X2 

2 
-x)2 - $ ) 

7r2 
(B.35) 

=--- 
4 12 * 

The hyperbolic Glaisher functions are explicitly given by 

2 
Glh2(x) = -; + -6- , 

@h,(x) = -; - ; . 

(B.36) 

The massless three-point integral can also be expressed in terms of a complex 

analytic function, thus avoiding the division into subcases [62]. For all kinematic 

regions, the function F(pr ,pz,p3) has the following expression 

F(P17P37P3) = $ bina t Lsin:!(2&) $ Lsin2(2#3)] , (B.37) 

with 

(B.38) 

The va,riables Si a.re defined as before, p = a, and E is infinitesimally small and 
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positive. The conventions for the imaginary part of logarithms and negative square 

roots can be taken to be ImIn(-Ix]) = ir and m = ;m. 

The function Lsinz(z) is the analytical extension of the function Clz(x) to 

the entire complex plane. For a number of reasons, we have introduced a new 

notation for this function and other analytically extended functions. First of all, 

the new notation emphasizes the form of the defining series of these functions. 

Secondly, Clausen and Glaisher functions are real functions whereas the L-functions 

are complex functions. This distinction is very clear in the case of the hyperbolic 

Glaisher function. For real x 

Glh+) = -; $ ; , (B.39) 

whereas 

. . 
x2 71.2 

Lcosh2(x) = -Z + 6 - $]x] . (B.40) 

Another argument in favor of a new notation is that, in the case of Clausen func- 

tions, their L-function partners are not the nai’ve analytical continuation of their 

defining integrals as given in Eqs. (B.ll), (B.21), (B.23) and (B.29). It seems 

best to keep Clausen-Glaisher functions real, and name their analytical partners 

differently. 

Keeping the definition of L-functions sepa.rate from Clausen-Glaisher func- 

tions also avoids the sta.ggered definition used in Ref. [57], for example 

Cl,,(x) = 1 s ) 

1 

_ but 

Cl 2mSl(X) = c s - 

1 

(B.41) 

(B.42) 
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Finally, a.s we will see shortly, all the L-functions are naturally defined in terms 

of the Lexp,(z) f unction. It thus appears appropriate to use the new notation to 

reflect this relationship. 

Next, we give the list of L-functions [63] and their basic properties. 

Lexp,(z) = Li,(e”) = C f , 
1 

L&n,(z) E $ [Lexp,(iz) - Lexp,(-iz)] = C G , 

1 

Lcos,(z) E f [Lexp,(iz) + Lexp,(-k)] = C y , 

1 

Lsinh,(z) 5 i [Lexp,(z) - Lexp,(-z)] = c ‘lrirz , 

1 

Lcosh,(z) z i [Lexp,(z) + Lexp,(-z)] = c co~~z . 
1 

(B.43) 

The various series given above should be considered formal. All L-functions are 

periodic. Th e period of Lexpm(z), Lsinh,( ) z and Lcosh,(z) is 2ri, whereas the 

period of Lsin,(z) and Lcos,(z) is 3~. The alternating L-functions ( J&functions) 

are defined as the half-period shifts of the L-functions, 

$exp,(z) Z Lexp,(z + ir) = C ‘-been’ , 

1 

$sin,(z) E Lsin,(z + 7r) = C (-‘)Im nz , 

1 

~COSm(Z) E Lcos,(z + 7r) = c (-l);;snz ) 

1 

@inh,,(z) E Lsinh,(z + ;7r) = c (-l)y:h nz 

1 

$cosh,,(z) E Lcosh,(z + in) = C (-l)~~sh nz 
1 

(B.44) 
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The Lexp,(z) function satisfies the following recursion relation 

2 

Lexp,(z) = 
J 

Lexp,&)dz . 

-CO 

The first three Lexp,(z) functions are given by 

Lexpl(z) = - ln(1 - e’) , 

z 

LexpZ(z) = - 
J 

ln(1 - e”)dz . 

-03 

Similarly, we have 

Lexpo(z> = j&--g , 

. . @v,(z) = 1 Y,exPm&)dz l 
--co 

and 

$expl(z) = - ln(1 + e*) , 

$expz(z) = - 1 ln( 1 + e’)dz . 

--co 

(B.45) 

(B.46) 

(B.47) 

(B.48) 

The explicit form of other L-functions can be similarly obtained. We will not 

reproduce them here. 

In the following, we will concentrate on the case m = 2. The function Lexp2(z) 

_ has branch cuts on the positive semia.xes where Im z = 2nri, n = 0, *I, f2,. . ., 

and the function $exp,(z) h as rant cuts on the positive semiaxes where Im z = b h 

(2n + 1)7ri,n = 0, fl,*2,. . . . On the real axis, we choose the imaginary part of 



Lexp2(z) to be 

Im LexpZ(z) = -i7rx 0(X) . (B.49) 

Around the origin, the two functions have the following series expansion 

22 O” 
Lexp2(z) = -zln(-z) + z - 4 - C 

&k 
k=l ak(ak + l)! 

z2k+l 
7 

$exp2(z) = -s - (ln2)z - G - z (iE2i ~~~~z2k+1 

(B.50) 

, 

where B, are Bernoulli numbers [61] defined through the generating function 

t ~ = 
et - 1 c Bns . (B.51) 

0 * 

-We have Bo ‘= 1, B1 = -l/2, B2 = l/6, BJ = -l/30, etc. The series expansions 

for other L-functions follow easily from those in Eqs. (B.50). 

The real and imaginary parts of Lexp,(z) can be obtained by Kummer’s for- 

mula (see Ref. [57]) 

X 

Lexp2(x + iy) = - k J In (1 - 2ex cos y + eZZ) da 

0 (B.52) 

+ i xy’ + kClz(2y) + kCl?(?y’) + iC13(2y”) 
{ I 

, 

where 

~‘=arctan(l~~~S,) , j/“=r-Y-P’ . (B.53) 

The separation of other L-functions into real and imaginary parts can be obtained 

by using the previous formula. 
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We have given here only some basic features of the L-functions. However, since 

they are defined from the polylogarithms, many other properties of polylogarithms 

are translated directly to L-functions. We refer the reader to Refs. [57, 581 for 

other potential properties of L-functions. 

In summary, we have provided an analytically and numerically desirable ex- 

pression for the massless three-point scalar integral in terms of associated Clausen 

functions and discussed the main features of these functions and their analytically 

extended partners, the L-functions. The simplicity shown in Eq. (B.37) hints at 

the potential usefulness of these functions in other Feynman diagram calculations. 
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