Chapter 3

The Alpha-Magnet

As will be discussed fully in Chapter 4, the beam directly out of the gun is not suitable
for injection into a S-band linear accelerator section. Doing so would produce an
accelerated beam with a large energy spread because of the large phase-spread the
ﬁarticles coming into the accelerator section would have in the absence of compression.
Magnetic bunch compression is one solution to this problem, and the one which is
most suitable for use with the RF gun. Indeed, the possibility of using magnetic
compression, as opposed to RF bunching, is one of the attractive features of the RF
gun.

The theory of magnetic compression will be discussed fully in the next chapter,
along with the motivation for using an alpha-magnet. In this chapter, I will describe
the alpha-magnet and derive its main properties. First, I will discuss the magnetic
design of the SSRL alpha-magnet, which is an asymmetric quadrupole, and contrast
this design with an alternative design, namely a Panofsky quadrupole. Second, I will
present the equation of motion in an alpha magnet, and show how a scaled form of the
differential equation can be used to deduce some of the magnet’s properties, without
integration. I will prove that the transport matrices for any alpha magnet can be
expressed in terms of transport matrices for this scaled equation of motion. I will show
how these latter transport matrices can be derived from fits to the results of numerical
integration of the scaled equation of motion for an appropriately selected ensemble
of particles. I will present the results of a calculation of alpha-magnet transport

matrices to third order, along with discussion of the accuracy of the results. Having
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calculated matrices for a perfect alpha-magnet, I then discuss how to extend the
treatment to imperfect alpha-magnets, specifically those with multipole and beam-
hole-induced field errors. Finally, I present the results of experimental measurements
of the SSRL alpha-magnet, including magnetic measurements and measurements of

some first-order matrix elements.
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3.1 Magnetic Characteristics and Design of the
Alpha-Magnet

The alpha-magnet and its properties were first described by Enge[45]. It is essentially
half of a quadrupole magnet, with a symmetry plane at q; = 0, i.e., with a vertical
mirror plane along the longitudinal axis. This mirror plane provides the symmetry
necessary to obtain quadrupole-like fields in the interior of the magnet. Figure 3.1,
a simplified cross-sectional view of the alpha-magnet designed for the SSRL project,
illustrates these points and anticipates the discussion to follow. Rather than inject
the beam along the quadrupole axis (as might be done if the magnet where to be
used as a combined-function dipole and quadrupole), the beam is injected through
the “front-plate”, i.e., through the iron piece that functions as an approximation to

an ideal magnetic mirror-plane.

3.1.1 Asymmetric Quadrupole Design

To understand this in more detail, it is convenient to use the approximation that
the permeability of iron is infinite. In this case, Maxwell’s equations at a material
boundary mandate that the magnetic field H just outside the iron be perpendicular
to the iron surface. (For a full discussion of several of the points that follow, see
J.D.Jackson, [31].) It follows that the iron surfaces are equipotentials of the magnetic

scalar potential @y, which is related to the magnetic field by
B=H=-V&,y, (3.1)

where I employ Gaussian units, and use the fact that B = H in air.
An infinitely-long quadrupole magnet is defined as one that has a magnetic field
given by
B = g(q:93 + qz&1), (3.2)

where g is the quadrupole gradient, and where 41, 4s,andqs form a right-handed coor-
dinate system (The reason for the unusual choice of coordinates—(q;,qs, qs) instead

of the usual (x,y,z)—is for consistency with subsequent sections of this chapter.) The
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Figure 3.1: Simplified Cross-sectional view of the SSRL alpha-magnet.
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reader can verify that this field satisfies Maxwell’s equations, and also that it can be

derived from the magnetic potential

PqQ = —8q1qs- (3.3)

Knowing the magnetic potential necessary to produce quadrupolar magnetic fields
allows one to specify the location of equipotential surfaces that will produce such a
field. That is, if one arranges magnetic surfaces and suitable driving currents so as to
obtain equipotentials of a quadrupolar field on the magnetic surfaces, then the region

“inside the boundary formed by the magnetic surfaces will contain a quadrupolar field
distribution. While it is by no means essential to do so, this is typically accomplished
by a four-fold symmetric arrangement of iron, where alternate poles of the magnet
have the same potential except for a change in sign. Since the magnet poles are
equipotentials, they must be hyperbolic in shape. (This brief exposition does not
show the full power of the equipotential method in treating multi-pole fields, for
which the reader should consult other sources.[6])

From the definition of the quadrupole field, it follows that the lines q; = 0 and
gs = 0 are equipotentials with ® = 0. Hence, if a magnetic surface is placed along the
line q; = 0 extending into q; < 0, then the field in the region q; > 0 is unchanged,
since the locations and shapes of the equipotentials are unchanged. This is what is
done for the asymmetric quadrupole alpha-magnet design used for the SSRL project.
The reader is referred again to Figure 3.1, which exhibits the truncated hyperbolic
poles and the mirror-plate along q; = 0. This design is called “asymmetric” because
the hyperbola extends further horizontally than vertically, in order to obtain a large
horizontal good field region. The deviation from the hyperbolic equipotential surface
that is implied by truncation of the hyperbola is made up for by “shiming” the pole
with additional magnetic material near the upper end of the hyperbola. This is a
trail-and-error process that was carried out using the magnet code POISSONI66].

The resultant calculated gradient in the q3 = 0 plane is shown in Figure 3.2, along
with measurements performed on the magnet before the beam entrance/exit hole was
cut in the mirror plate. Note that the way the data is normalized means that one
should compare the shapes of the curves rather than the absolute agreement. I used

a linearized Hall probe for these measurements (as well as those presented below),
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Figure 3.2: Computed and Measured Gradient of the SSRL Alpha-Magnet
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to ensure that spurious non-linearities did not appear in the data. The discrepancies
are believed to be due in part to construction errors in the magnet, which resulted in
deviations of the pole profile from the design. Some of the discrepancies are also due
to round-off errors and convergence problems in POISSON, which cause the gradient
near q; = 0 to become non-uniform. In any case, the non-uniformities of the gradient
for the magnet without a beam port are dwarfed by those introduced when the beam
port is cut into the front plate. I will return to this topic later in this chapter. Figure
3.3 shows the measured excitation curve, along with a line showing extrapolating
‘the low-current region of the curve to high currents, which illustrates the effect of

saturation. Selected magnet parameters are listed in Table 3.1.

Table 3.1: SSRL Alpha-Magnet Design Parameters.

number of turns 80

-| maximum current 260 A
maximum gradient 405 G/cm
inscribed pole radius 10 cm
good-field region (extent in q;) 20 cm
gradient uniformity without beam port 5%
depth (extent in qy) 40 cm
resistance per coil @ 45°C 40 mQ

3.1.2 Panofsky Quadrupole Design

Another magnet design that might be employed instead of the asymmetric quadrupole
used here is a half Panofsky quadrupole [67] depicted in Figure 3.4. Unlike standard
quadrupole designs where the quadrupole field is obtained through the approximately
hyperbolic shape of the poles, the Panofsky quadrupole relies on uniform sheets of
current to produce a quadrupole field. From 3.4 it can be seen that J # 0 at the pole
surfaces, from which it follows that the fields in the magnet gap are not determined
solely by the shape of the poles, in contrast to the situation for a standard quad-

rupole design. The most straight-forward way to calculate the fields in a Panofsky
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quadrupole is to use the integral form of Ampere’s law:

/H .dl = 4{1. (3.4)
In more practical units, this can be written as[6]:

/H .dl = 0.471, (3.5)

where H is in Gauss, 1 is in cm, and I is in Ampere-turns. Taking the integration
loop as shown in 3.4 and assuming infinite permeability and that H, is a function of
x only (which must be approximately true for a magnet that is wide compared to its

gap-height), one obtains

Jtq
h ki

where h is the full gap of the magnet, J is the current density in the current sheets,

H; = 0.87 (3.6)

and t is the thickness of the current sheets. The linear dependence of Hz on q,
demonstrates that this is indeed a quadrupole. In order to obtain H;, one employs
V x H = 0, from which it follows that

8 . R
H= E'EJt(qlq3 + q3G1). (3.7)

By comparison with equation (3.2), it is seen that the magnet in Figure 3.4 is, in fact,

a quadrupole, with gradient
_ 0.4rm

=T
where J is in A/cm?, gisin G/cm and t and h are in cm.

Jt, (3.8)

3.1.3 Comparison of the Two Designs

A major difference between the Panofsky and asymmetric quadrupole designs for the
alpha magnet is the amount of power consumed to produce a given gradient in a
specified region. It is this difference that lead to the adoption of the asymmetric
design for the SSRL project.

To investigate this, I will assume that what is desired is an alpha magnet with

depth D (as perceived in Figures 3.1 and 3.4), useful gap h,, and good field region G,
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using coils made from a metal with resistivity p and metal packing-fraction f. Then
for the Panofsky quadrupole design, the power consumed is

D+G

Ppg = IOfJZGghupm,

(3.9)

where J is the current density in the conductors, and where I have made the optimistic
assumption that the good-field region is the same as the half-width of the coil window.

The thickness of the current sheets is

5 ghy
= - 1
t 22{Jr — 5g (3.10)
where .
g
25 11
J> 5T (3.11)

must hold in order to obtain a meaningful solution. Taking J as a free parameter of

‘the design, the minimum power consumption is obtained when J takes the value
JPQuopt = 52, (3.12)
' ir

for which the power is

50g>Gh,p(D + G
PpQumin = g 2 ). (3.13)

For an asymmetric quadrupole design, the power consumed is

PAQ = %KnghupJ(D + K2G), (314)

where K; and K, are constants that give, respectively, the ratios of the maximum x
extent of the pole and the pole-root-width to the good-field region. For the SSRL
alpha-magnet, we have K; ~ 1.3 and K, ~ 1. Note that the power consumption of
the asymmetric quadrupole can be decreased indefinitely by decreasing J (which is
not the same as the current density in the Panofsky quadrupole), at the expense of
larger coils; obviously, this is limited by practical considerations such as the cost of
materials, water pressure drop, etc.

If one takes the ratio of Poq t0 PpQ min, One obtains

Pag  _ 7Kif(D + K2G)J  J (3.15)
PpQ min 10D+G) g 3¢ )
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where I ignore factors of order unity in making the approximation. The maximum
gradient desired in the SSRL application was 350 G/cm?. Hence, the Panofsky quad-
rupole would have used more power unless the current density for the asymmetric
quadrupole were above about 1000 A/cm?. In fact, the coils in the magnet could be
made large enough to achieve J < 175A /cm?, from which one can conclude that a
comparable Panofsky quadrupole would consume about six times as much power as

the design used.
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3.2 Particle Motion in the Alpha-Magnet

3.2.1 Scaled Equation of Motion

Particle motion in the alpha-magnet is best described with the aid of a diagram such
as Figure 3.5, which shows the central particle trajectory and the coordinate system.

In terms of these coordinates, the magnetic field for q; > 0 is

B = g(q3q: + 9193), (3.16)

where the constant gis the alpha-magnet gradient. The equation of motion is obtained

from the Lorentz force

F = ——eE+%va, (3.17)
with E = 0, and is 4
YV e
ay _ , 3.18
dt mccv xB ( )

Since the magnetic field does no work, 7 is constant and can be taken outside the
derivative. Since the magnitude of the velocity is also constant, one can rewrite
the derivatives as derivatives with respect to path-length, s = Gct, instead of time.

Combining these, one obtains

d?q e dq

= — —_ . 1
ds? m.c23~ ds xB (3.19)

I now define a constant « by

2 €g
= —— 3.20
* T meBy’ (3-20)

or, in more practical units

(G/em)

a? = 5.86674 x 10~4cm 28 . (3.21)
By
The equation of motion becomes
d’q .dq _B(q)

€ - 88,2\ 3.22
ds? & g (3.22)

d
— —a?-(%x(qs,o,ql) (3.23)



CHAPTER 3. THE ALPHA-MAGNET 145

=<

=

|

=

=

=

'—

=

=

o -

S

S

2::

o2 O

::’E
= LI &S "

——dl U
) é.
: “n z
= =
@ p— E

e —
I % L T
o) o:‘

B

Bﬂ
9

Figure 3.5: Alpha-magnet coordinate system
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I chose by convention to make g > 0, i.e., I define the ez axis to obtain Bs > 0
inside the magnet. This also ensures that a® > 0, so that « is real and positive. To
obtain an a-like trajectory like that exhibited in Figure 3.5, it is then necessary to
have initial velocities such that

da
ds

dq;

-ES—>O and

<0. (3.25)

I wish to rewrite this equation of motion once more, in such a way as to scale out
all explicit dependence on g and 8v. To do this, I define scaled coordinates Q = qa
and scaled path-length S = sa. Using this, I obtain

#Q _ dQ Qo
T e (3:26)
= -2 (Q0,Q) (3.27)
(4% 0 %, dQ
= —(—d—S—Ql,d—SQP,— 2, - Qs) (3.28)
Note that e o 0\ :
1 2 3 _
(ﬁ) *(—d‘s*) +(—d§) =1 (3.29)

a result which will be useful latter, and which in fact does not depend on the scaling
(it is true of %‘} as well).

3.2.2 Ideal Trajectory

From this result, one can deduce that an alpha-magnet can act like an achromatic
magnetic mirror, that is, that a zero-emittance beam injected at a specific angle, 6.,
to the normal into a perfect alpha-magnet will emerge at the point of injection, at
the same angle to the normal and undispersed in momentum.

To see this, first note that the scaled form of the equation of motion does not
display any dependence on momentum. Hence, the trajectories of particles with
various momenta injected into the magnet at the same angle are simply magnifications
or demagnifications of one another. Since the scaled equation likewise does not exhibit
any dependence on gradient, the same can be said of particles injected into alpha

magnets with differing gradients. Because the scaling involves all coordinates, it
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leaves angles unchanged. Hence, if a closed, a-like trajectory does exist, it has the
same shape and the same incident and final angles for all values of a (i.e., for particles
of all momenta in alpha magnets of all gradients).

Note that the scaling alone is not sufficient to ensure that the magnet can be
operated as an achromat. It is also necessary that a trajectory exists which exits at
the injection point, since otherwise the scaling would change the exit location relative
to the injection point. This would, of course, imply non-zero dispersion upon exiting
the magnet.

Next, set Q3 = 0 and note that for trajectories started at Q, = 0 with dTQSi =0
(implying d—d%? = 1) there is some initial value, Q1, of Q; that results in a trajectory
that crosses Q; = Q2 = 0. To see that this must be so, imagine starting trajectories
from Q, = 0 at various initial values of Q;. A trajectory started at infinitesimally
small Q; > 0 will cross Q; = 0 at infinity, since it “sees” very little magnetic field,
and hence is bent toward Q; = 0 only very gradually. As the starting Q; is increased,
t-fxe trajectory crosses Q, = 0 at less and less positive values of Q,, until eventually,
for initial Q; = Q, the trajectory crosses Q; = 0 at Q, = 0.

I will denote this trajectory by Q(S) = (Q,(S), Q,(S),0), and let S = 0 at the start
of the trajectory, which is formally defined only for S > 0. By construction, Q(S) is
a solution to the equations of motion. Consider a new trajectory Q(S) defined for
S < 0 as (Q,(~8),—Q,(—S),0). Upon inserting this trajectory into the equation of
motion (with Qs = % = (), one obtains for the left-hand side of equation (3.26), for

ds
component 1:

d?Qi(S) _ d°Qu(-9)

ds? - ds? (3.30)
_ PQ(=9) (d=9)\*
 d(-S)? ds (3.31)
dz@1(8)>
= (3.32)
(=),
(3.33)
Similarly, for component 2, oneqobtains
d2Q,(S) _ d*Q,(S)
ol O D (3.34)
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For the right-hand-side of equation (3.28), one obtains for components 1 and 2, re-

spectively:
d = — d@z(S)— .
(mrEe)ues - (Bfee) e
d =~ dQ,(S)~
(o) Ts = - (S as) e

(3.37)

Combining these last results, one sees that except for the change of variable S to
-S, the resultant equations are just those that would be obtained by inserting Q into
the equation of motion. Hence, Q is a solution to the equation of motion, since Q is.
Further, the trajectory Q,(S), defined by joining Q to Q at S=0, is also a solution.
The subscript « is used from here on to represent properties of the solution Q.(S),
which is the “a-shaped” trajectory. There should be no confusion with the scaling
parameter o, defined by equation (3.20), since the later is not used as a subscript.

A trajectory has thus been demonstrated to exist which starts at Q; = Q, = 0 with
such values of édgsl and d—d%l so as reach Q; = Q; and Q, = 0 with -d—d%L = 0, and which
continues in a mirror symmetric fashion, crossing Q; = Q2 = 0 with the negative of
the slope with which it started. The absolute value of this slope is denoted by tan(4,).

Corresponding to Q.(S) is an alpha-shaped trajectory for any gradient and particle
momentum. These trajectories enter and exit at the angle 6., since slopes are not

changed by the coordinate scaling.

3.2.3 Numerical Solution of the Equations

It is possible to solve for Q.(S) in terms of elliptic integrals[32]. However, this is
unproductive, since in the end one obtains a result that can only be used by consulting
numerical tables or doing numerical integration. It is better to go directly to numerical
integration, especially since the scaled form of the equation allows one to apply the
results of a single numerical integration to an infinite number of combinations of 37
and g.

In order to find the angle #, and the maximum value of Q; for the trajectory

Q.(S), I used numerical integration starting at Q, = Q2 = 0 and searched for the
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value of 4, that resulted in de—‘S(Sl = 0 when the trajectory crosses the Q; = 0 axis

again. To gauge the accuracy of the numerical integration, note that at that

|%—§; —1] < 5x107'® (3.38)

(@—1> < 5x107%%, (3.39)
dQ2 midplane

where the average are taken over the entire integration, which shows that the inte-
gration is accurate to 14 decimal places. The Bulirsch-Stoer integration method was
employed [61]. Briefly, Bulirsch-Stoer uses the modified midpoint method with poly-
nomial extrapolation of the solution to zero step-size, along with adaptive step-size
control.

In this fashion, I obtained

0, = 0.71052198004575 (3.40)

= 40.709910707900° (3.41)
S. = 4.64209946506084 (3.42)
Q; = 1.81781711509708 (3.43)

6. is the injection' angle for achromatic mirror operation, i.e., the injection angle that
results in the trajectory Q,(S). S, is the path length of Q.(S) through the entire
magnet. Q; is the maximum value of Q; reached by Q.(S). These quantities are
illustrated in Figure 3.6.

3.2.4 Dispersion and Achromatic Path-Length

While these results are not sufficient to fully characterize the optics of the alpha-
magnet (see the next section for this), they do allow one to deduce some of the
magnet’s most important optical properties, namely the dispersion at the vertical
midplane and the dependence of path-length on momentum. For this, I revert to

unscaled coordinates, and write

sala) = % . (3.44)
ai(a) = & (3.45)
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Figure 3.6: Ideal Trajectory in the Alpha-Magnet
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In more practical units, and using the numerical values of S, and Q; given above

_ By
sefom) = 191,655 s (3.46)
d(cm) = 75.0513 -g-(c;—%m—) (3.47)

Assuming that the gradient g is fixed, and letting a, be the value of a for the central

particle, of momentum p, = (7)., the previous equations imply that
s(a) = s(ay)— (3.48)
Gile) = qiao)—. (3.49)

Expanding in § = (p — p,)/p, one obtains

Qo [P
= = /= 3.50
- o (3.50)

1. 1 1
—§— 28+ =6 3.51
1+2 3 +165 (3.51)

2

Using this expansion the dispersive terms of the transport matrix (see the next sec-
tion) from the entrance of the magnet to the “vertical midplane” (where the ideal

trajectory crosses q; = 0 with q; = §;) are seen to be

_ (8% ;
Tie = — ( EY3 >6=O (35~)
1,
= —saia) (3.53)
_ _1({&
t165 = —'é—' (-56—2-)6=0 (354)
1,
= g(h(ao) (3.55)
_ 1 (%
Uieee = —5 ( 563 )6=0 (356)
1,
= —qu(ao) (3.57)

Similarly, the path-length terms for transport through the entire magnet are

e = 5s(a) (3.58)

~
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1
tses = —gS(ao) (359)

1
Us666 — Es(ao) (3.60)

These will prove useful in checking the results of detailed transport matrix calcula-
tions. They are also of interest because the dispersion at the vertical midplane and
the momentum-dependence of the path-length are two of the alpha-magnet’s most
useful features. The dispersion at the vertical midplane allows for momentum selec-
tion via a slit or scraper placed at the vertical midplane. The momentum-dependence
of the path-length is, of course, necessary for bunch compression, as indicated in the

introduction to this chapter.
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3.3 Alpha-Magnet Transport Matrix Scaling

In this section I derive results that provide the basis for a calculation of alpha-magnet
transport matrices to third order. Transport matrices express particle motion between
two points in a beamline as a series expansion about the trajectory of a hypothetical
particle that travels along what is considered to be the ideal trajectory for the beam-
line. Typically this ideal trajectory passes through the center of focusing elements,
down the center of the beam-pipe, and so forth. In the case of the alpha-magnet, the

ideal trajectory enters and exits at the angle 6,, with qs = %f- = 0.

3.3.1 Curvilinear Coordinates and Matrix Notation

The coordinates used for the transport matrix expansion[10] specify offsets in six-
dimensional phase-space of a particle from the ideal trajectory. The coordinate system
is curvilinear; i.e., it follows the ideal trajectory. This subject is treated completely in
publications on particle beam dynamics, listed in the references. Here, I will simply
state that the position of any particle relative to the fiducial particle can be specified
in terms of two transverse coordinates, x and y, their derivatives with respect to path
length (s.) for the central trajectory,
,  dx , dy
~ s, = ds.’

(3.61)

X

the longitudinal distance s traveled, and the momentum deviation &, introduced
in the last section. As is usually done, I form a six-dimensional vector from these

coordinates:

™

x\

L

-~

wn <

)

This vector gives information about a particle as it crosses a reference plane some-

where in the beamline. The reference plane is constructed so that the fiducial particle
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passes through it perpendicularly. I emphasize that the path-length s is not the dis-
tance of a particle behind the fiducial particle; I depart from convention here in
keeping track of the total path-length, for reasons that will be apparent later. This
carries no penalty for a beamline composed of static elements, since the expansions
in s — s, are then of no importance.

Transformation of this vector by beamline elements is expressed as a series expan-
sion:

X — ¢+ Z Ii;X; + Z bk XXk + Z 510X Xk X1, (3.63)
i 2k i>k>1

where ¢, 1, t, and u are the transport matrices for some element, and summation
indices run from 1 to 6 unless otherwise indicated. (The reason for the lower-case
letters will be seen presently.) The restricted sums are used to obtain expressions
that contain only one instance of any term x;xx or x;x.x;. This is consistent with
K.Brown[10], but differs from the definition used by TRANSPORT[68] and some
other compute} programs, where the matrices are defined in terms of symmetric sums
over all indices. The unsymmetric form also has advantages in a computer program,
namely reduction of storage used and reduction of the number of arithmetic operations
needed to transform particle coordinates. I employ the unsymmetric form exclusively
in this work.

The element ¢ is unconventional, and is used to keep track of centroid offsets. It
finds appﬁcation in three ways. First, when used in a tracking program, associating a
centroid offset matrix with an element allows one to implement beam misalignments
and steering in a straight-forward fashion. In addition, time-of-flight calculations are
facilitated by the path-length centroid element, which is useful in a simulation that
has time-dependent elements [49]. Second, it is a necessary corrolary of my use of total
path-length instead of differential path-length in the vector x. Third, in the particular
case of the alpha-magnet, the centroid matrix can be used to calculate higher-order
dispersive path-length terms, as will be seen below. For the alpha-magnet and all

other elements that do not produce orbit distortions, only the cs element is non-zero.
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3.3.2 Relationships Between Curvilinear and Fixed Coor-

dinates

At this point, the reader might expect the equation of motion to be rewritten in terms
of the curvilinear coordinates. This is unnecessary for my purposes. All that I will
need in order calculate the matrices (c, 1, t, u) is to express the relationship between
the curvilinear coordinates x and the coordinates of the equation of motion, q, at the
entrance, vertical midplane, and exit of the alpha-magnet, since it is between these

_reference planes that I wish to know the transport matrices.
At the entrance of the alpha-magnet (i.e., when the particle crosses the reference

plane shown in Figure 3.7), the correspondence between x and q is given by

sign(q;)y/q} + ¢}

X
x' tan(atan(~q,/q}) — 8,)
ar qf , (3.64)
y 43
T S
§ (P — Po)/Po
where I have used
- T
f,=——4,. 3.6
: (3.65)

The slopes q} and g are given by

q; = /1 — (q)?sin (6, + atan(x’)) (3.66)
a5 = /1 — (d4)? cos (6, + atan(x')), (3.67)

while the coordinates q; and g, are given by

and

q; = xsind, (3.68)

and
Q2 = x €08 f5. (3.69)

The reader may have noticed that the reference plane in Figure 3.7 is partially

inside and partially outside the alpha-magnet. Hence, it would seem that in reaching
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Figure 3.7: Reference plane and coordinates at the entrance
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the reference plane, from which transport through the alpha-magnet nominally starts
in the transport matrix formalism, some particles have already traversed part of the
alpha-magnet’s magnetic field. Others (those for which x < 0 in figure 3.7), will
not yet be inside the alpha-magnet. It would seem that the length of a drift space,
for example, prior to the alpha magnet would need to be modified according to the
coordinates of the particle, and this is effectively what is done. The prior element
in the transport line (presumably a drift space) is considered to deliver all of the
particles to the reference plane, with no account taken of the alpha-magnet fields.
The computation of the alpha-magnet matrices (see the subsequent sections of this
chapter) takes this into account, so that particles that are delivered inside (outside)
the alpha-magnet are drifted backward (forward) to the field boundary of the alpha-
magnet before numerical integration. As will be seen presently, similar considerations
apply at the exit of the alpha-magnet, and an identical procedure is followed for this
case.

One could also consider constructing an edge-matrix for the alpha-magnet, similar
to what is done for bending magnets, but since the entrance and exit angles for the
alpha-magnet do not vary between applications (as they do for bending magnets),
this is neither necessary nor useful.

At the vertical midplane of the magnet (i.e., when the particle crosses q; = 0

inside the magnet, see Figure 3.8), a different relationship holds:

X a1 — q1

x' —q3/qh

= B (3.70)
y qs

T S

6 (p—po)/p

The slopes q; and qj are given by

q; = —y/1 — (g5)? sin (atan(x')) (3.71)
gz = /1 — (q3)? cos (atan(x')), (3.72)

and
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while the coordinates q; and g, are given by
Q=G4 —x (3.73)

and
g = 0. (3.74)

Finally, at the exit of the magnet (i.e., when the particle crosses the reference

plane shown in Figure 3.9), one obtains:

X sign(q; )y/a? + &}

x' tan(f, — atan(q,/q}))

y, _ qii (3.75)
43
S

§ (p—1p.)/p

The slopes q} and g5 are given by

q; = —/1 — (g})?sin (4, — atan(x')) (3.76)
qy, = —/1 — (q4)? cos (B — atan(x)), (3.77)

while the coordinates q; and q, are given by

and

q; = xsin b, (3.78)

and
Q2 = —xcos f,. (3.79)

3.3.3 Coordinate Scaling

Let the gradient in the alpha-magnet and the momentum of the fiducial particle be
specified, so that the scaling parameter a takes a definite value, a,. Then it is possible
to define a new vector X that has the same relationship to Q that x has to q. X is

obtained from x by the transformation

X =A(a,) - x, (3.80)
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where A(a,) is a diagonal matrix, given by

a6, 0 0 0 0 0
01 00 0 0

Alay) = 0 0 ao 0 0 0 (3.51)
00 0 1 0 0
0 0 0 a, 0
0000 0 1

The transformation from x to X transforms the fiducial particle, which traveled
a particular a-like trajectory Q. (sa,)/a., into the particle that follows the universal
trajectory Q.(S). To see this more clearly, note that the expression for X at the

vertical midplane is

X Q- Q,

X’ —atan(Q}/Q5)

Yo % , (3.82)
Y’ Q

S S

6 (P —po)/pP

where Q' = %. (Since angles are unchanged by the scaling, I am free to express the
slopes in terms of either the Q!’s or the q!’s, even though this “transformation” is not

in the matrix A.)

3.3.4 Scaled Equation of Motion with Dispersive Terms

The reader may have noted an apparent inconsistency here: this vector, which is
in scaled coordinates, refers to the momentum error, but the scaling was explicitly
constructed so as to remove all reference to momentum. The apparent inconsistency
stems from the fact that, as developed in the last section, the scaled equation of
motion treats every particle (each characterized by some particular scaling constant
) as the fiducial particle (at least as far as momentum is concerned). What is needed
to incorporate momentum errors into the scaled equation of motion is to realize that

one scales the equation with a,, the a value for the central momentum, and not with
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the particular o of every particle under consideration. The resultant scaled equation,

with dispersive effects included exactly, is

noo__ 1 ' Q a

Q= QxBTS (3.83)
1 dQ
- (@ 0.Q) (3.84)

As foreshadowed at the end of the last section, it is not entirely necessary to include
dispersive effects in this fashion. One can obtain all dispersive terms in the matrices
by taking derivatives with respect to 6 after reverting to unscaled coordinates, though
this requires some care if it is to be done correctly. This will be discussed in more
detail below. One reason for inserting dispersive effects at this point is to retain the
six-dimensional transport matrix formalism. Another reason, as indicated at the end
of the last section and as will become more apparent below, is that putting dispersive

eftects into the formalism provides a check on the calculation of the matrix.

3.3.5 Scaling of the Transport Matrices

One can define transformation matrices for the vector X, with the realization that

these transformation matrices apply to the scaled form of the equation of motion:

Xy — Cr+ ZRIJXJ + > TurXeXx + Y, UnxeXsXgXy. (3.85)
5K JSK>L

If I now substitute into this relation the definition of X, equation (3.80), I obtain

Z ApXym — Cr + Z RuAjx; + Z Z Tk AsxsAgexx+ (3.86)
J2K jk
Y. 2 UnkiAsxiAxxcAux. (3.87)
ISK>L 3k

Multiplying from the left by A3’ and summing over I yields

Xj — Z ApCr+ Z AxIIRUAJJXJ + 33 AP TukAsxAxix+
J>K Tk

Y Y AP UnkiAnxArcouAnx. (3.88)

I>K>L Lkl
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Using the fact that A is a diagonal matrix, this becomes

x; — AZIC; + Z AR Ax; + > A T Apx A + > A7 UuApxiAucxicAnxi.
ik 3kl

(3.89)
Comparison with the definition of the matrices (¢, 1, t, u), equation (3.63), for the

normal coordinates gives

G = l(ao)Cl (3.90)
ri = Aj(ao)RyAj(a.) (3.91)
tie = Ap'(eo)TikAy(ao)Aw(ao) (3.92)
g = A (ao)UinAs(ae) Ak e )An(as), (3.93)

where there are no sums in these relations, in spite of the many repeated indices. I
have reasserted the dependence of A on a, to emphasize it, since the importance of
this result stems from this dependence. Specifically, if the matrices (C, R, T, U) for
the scaled equation of motion can be found, then this last result allows one to find
the matrices (c, r, t, u) for an alpha magnet run at some gradient g and for some

central momentum p, = (87), such that

€g
o = . 94
a N (3.94)
A more easily used form of this result can be obtained by noting that
1
Ay = A — = a0; + 0y, (3.95)
where O; (0;) is 1 (0) if the index i is an odd (even) integer.
The expression for the matrices becomes
G
L= 9
“ T O+ 0; (3.96)
= ——L(o +0) (3.97)
T O+ 0 0 '
T:_]k =~
tisgk = O+ 0, (Osa, + O; 5;)(Oxa, + Oy) (3.98)
U; - -
U = ——2 —(0ja, + 0;)(Oxae + Ox)(O1a0 + O). (3.99)

Oia, + O;
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From this one can see that c; elements may be independent of a, or else inversely
proportional to it. 1;; may be proportional to o', e, or al. t;; may be proportional
0

to agt,al,al, or al. uya may be proportional to aJ!,a?,al,a?, or o3.

3.3.6 Alternative Treatment of Dispersive Terms

I indicated above that it is not necessary to include dispersive effects in the matrix
formalism for the scaled equation. The reason is that in reverting to x, one may use
a (which is a function of §, as seen from equation (3.51)) rather than a,, to obtain
the non-dispersive matrix elements as a function of §. This allows one to calculate
the dispersive matrix elements from non-dispersive matrix elements, provided one
compensates for the fact that the scaling changes the coordinate system at the vertical
midplane as well as the momentum of the particle under consideration. That is,
different values of a correspond to different values of §;, which enters the definition
of the coordinates at the vertical midplane via equation (3.70) so that one cannot
simply take derivatives of the non-dispersive matrix elements.

Let (), £5(6), tix(8), and diza(8) be the matrices obtained by scaling with a,
where § is defined with respect to a, by equation (3.51). All chromatic terms Tig, tigk,
Uiex1, and Ujee are zero, since the chromatic dependence is now taken care of by the
functional form of &(6), 7;;(6), ti(8), and @;a(6). The expression for transformation

of a vector x into a vector X is now

% = &(6) + > 1i5(6)x; + Z ti(8)x;xp + > Wpa(§)xxaxi. (3.100)
42] 42j2k 42j2k21

If the matrices are for the transformation from the entrance to the exit, then there
is no modification of the coordinate system with scaling, and no qualifications of this
expression are needed. If the matrices are for the transformation from the entrance to
the vertical midplane, then the coordinate system with respect to which Xx; is defined
is a function of ¢ also, and this must be taken into account in interpreting the results,
as will be done below. If the matrices are for the transformation from the vertical
midplane to the exit, then the coordinate system with respect to which x; is defined
is a function of §; this case will not be pursued here.

Assuming, then, that the initial coordinates are not dependent (through their
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coordinate system or otherwise) on 4, then upon expanding T;5(8), ti;(6), and fza(6)

in §, one obtains

_ a¢; 0%¢, 1 o3¢,

X = (C)so+d (35) —52 ((952) + —?53 (553_)5—0 (3.101)
Or;; 0%t

*Z{ (35) + gt ( 655) i

. 3ti- .
+ 37 < (i _+46 ok XXk + 3 (k1) g X5X1cX1s
5=0 86 6=0

42j2k 42j2k21

where I work to third order and where %; may contain effects of coordinate system
changes with 6. For transformations from the entrance to the exit, the %; are unaf-
fected by coordinate system changes. For transformations to the vertical midplane, it
is only %, that is affected by coordinate system scaling, through scaling of q,. Hence,
I shall niomentarily ignore coordinate system dependencies and equate %X; with the
true coordinates in the proper reference frame. I shall then return to treat the case
of x; for transport to the vertical midplane separately.

Taking equation (3.102) literally, then, one can identify the chromatic matrix

elements as

0
Tig = ——éi(a)) (3.102)
(@)
1 /02
tiee = =7 ('_'~i(a) (3.103)
21 \ 86 5o
1 ( 3
Uiges = — | =Ci(a) (3.104)
RCIE 50
t ( af (a)) (3.105)
6] = | B¢l '
? 06" s=0
1 ( o? . )
Uie6] = =3 ———ri-(a) (3106)
. YTt \eer )
u ( 0 t (a)) (3.107)
i6kj = { 3¢ lijk .
86" $=0

To treat the case of x; for transport to the vertical midplane, I rewrite equation
(3.100) fori=1 as

%1 =G1(a) ~ PP = & (6) + Y (6)x; + . ta(6)xpxc + Yo ua(8)xxx,
6> 6>i>k 6>5>k>1
(3.108)
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The actual coordinate of interest is not %; but rather x; = d;(a,) — g™ where
qriP*™ s, of course, a function of o. Adding d; () — §;(a) to both sides of equation

(3.108), I obtain

X = q](ao) - (h(a) + 61(5) + Zflj(5)Xj + Z Eljk(é)xjxk + Z ﬁljm(é)xjxkxl,
6> 655>k 6>i>k>1

(3.109)
which, when expanded in §, yields additional terms not listed in equations (3.102)
through (3.107), without modifying those that are listed. These additional matrix
‘elements are none other than those resulting from the expansion of —§;(a), which
have already been exhibited in the last section, as equations (3.53) through (3.57).
So far, these results would seem to apply only to the matrices (c, 1, t, u) and not
o (C, R, T, U). However, if one takes a, = 1, one sees that the matrices (c, , t,
u) are numerically equal to (C, R, T, U), from which it follows that the numerical
relationships between the chromatic and non-chromatic elements are the same for (C,
R, T, U) as for the (c, r, t, u). Another way of realizing that this is so is to notice
that c;, Ii6, tigs, and ujeee all have the same scaling with a,, as do 1;;, tie;, and ujgy,
and also tjx and uje; This can be seen from equations (3.96) through (3.99).
An example may make all this clearer. Consider the element t;g, which is given
by

0
tie2(a.) = (-(9—5 ) (3.110)
(6=0)
_ (% (raz(aVIT 5)) (3.111)
0 (6=0)
= Frr(a) (3.112)
= 3 112
Since
Tie2 = tm::)fao) (3.113)
and
Ry = I”C(t‘“), (3.114)
it also follows that .
Ti62 = Ria. (3.115)
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For rapid checks on calculated matrices, or for inclusion in a computer program,
it is convenient to work out the consequences of these relations for the matrices (C,
R, T, U). I have done this, and the results are

Rsg = -;-cs, (3.116)
1 -
Ts66 = —ng, (3.117)
1
Usees = Ecs, (3.118)
1 _ _
Ties = 3R (0105 — 010;), (3.119)
1 _ _
Usess = ‘gRIJ(3OIOJ - 010y), (3.120)

and
1 _ . - - ~ —
Uresk = 5 Tux [010;0x ~ 010;0x — 01(0;0x + 0;0x) — 2010;0x ],  (3.121)

where O; (O1) is 1 if I is odd (even) and zero otherwise, and where 6 > J > K. (I
emphasize again that these results are invalid for transport from the vertical midplane

to the exit, which is a case I have not treated here.)
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3.4 Transport Matrices from Numerical Integra-
tion

The scaled transport matrices (C, R, T, U) for the alpha-magnet can be found from
numerical integration of the scaled equation of motion (equation (3.83)) and fitting.
The technique I have used is not confined in its application to the alpha-magnet,
though it is most appropriate for elements for which there exists an equivalent of
the scaled equation of motion for the alpha magnet. Essentially, an ensemble of N
initial vectors, labeled X!, i = 1,2,...N is mapped into an ensemble of final vectors,
labeled Y, by numerical integration starting and ending at the appropriate reference

planes. These vectors are then required to satisfy

vy = CI+ZRIJXJ + 3 TukXPXP + 3 U XPXPXE+
J>K J>2K>L

Y Vo XPXOXOXE + o((x®)), (3.122)
I>K>L>M

which is essentially the definition of the transport matrices, where I've included a
fourth-order matrix V. I emphasize that the Y& are not calculated from this ma-
trix expression, but are rather being approximated by it, having been calculated by
numerical integration of the equation of motion with initial condition X, I am in-
cluding the fourth-order terms explicitly in order to show how to prevent fourth-order
influences from corrupting the computation of (C, R, T, U). The fifth-order terms

will be assumed to be negligible.

3.4.1 One-Variable Terms

In principle, one could fit this by finding the (C, R, T, U) that minimized the sum
of the squared deviations of the right-hand-side from the left-hand-side. In practice,
thls is computatmna]ly difficult and also extremely inefficient. To see a more efficient
procedure imagine that one was only interested in calculating C;. Clearly, one would
only need to track the fiducial particle.

At first sight, one might think that one could then go on to find Ryy by finding

Y for each vector of an ensemble, X¥), of initial vectors, each of which had only a
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non-zero J** component:
X9 = agey, (3.123)

with J = 1...6, ay a constant, and e; the unit vector for the J** component of X. In
fact, the Y§J) values thus obtained would include the influence of not only Ryj, but

also of all non-zero Tz, Ugyy, and Vizyyy matrix elements:
YF) = C;+ Ryyay + TIJJa§ -+ UIJJJag + VUJJJ&} + O(aﬁ) (3.124)

Obviously, one can extract Cy, Ry, T3, and Upyyy by fitting a fourth-order poly-
nomial to this form (assuming that terms of fifth-order and higher can be ignored),
if one takes a sufficient number of values of ay for each J. A minimum of five initial
vectors are needed for each value of J. Since I consider only static systems, J=5 (i.e.,
path-length dependent) terms are all zero, so a minimum of twenty-five vectors needs
to be integrated. As I will discuss below, I use N vectors per component J, with N

odd and N > 5:
: N+1
2

The reason for this particular choice of X9, which is symmetric about and includes

X9 = G-

)aJeJ, _] =1...5. (3.125)

the origin, will become apparent below. aj is chosen sufficiently small so as to avoid
large contributions to Y from terms higher than fifth order, while obtaining reasonable
influence from third order terms, so that fitting will yield sufficiently precise values
for the third-order coefficients. This step gives all elements Cr, Ryy, Ty, Uy, and,
as a useful bonus, Viyjz;. It remains to find Tyx = Tiks, Upkx = Uk = Ukky,
and Upykp, for J > K and K > L.

3.4.2 Two-Variable Terms

To find Tk and Upkgk, I integrate the equations of motion for a new ensemble of
initial vectors for each (J,K) pair with J > K, described by

N+1

X(JJ.KJ() = (j -
2

)aJeJ -+ (—l)kaKeK, (3.126)

where j=1...N, k=1 or 2, N is an odd integer, and aj and ag are constants.
I now construct a residual final vector, AY KX for each XJ3KX) by subtracting

off the contributions of the known matrix elements.
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AY%JJ'K'k) = Y§J’j’K‘k) - C1— Z {RIMXM + TIMMX§/1 + UIMMMX%{ + VIMMMX?VI}
M

= TuxXsXk + Uik (X5)* Xk + UpxsXs(Xx)?
+Vink(X5)* Xk + Viskk(XsXk)? + Vukks Xs(Xk)®
+0(X%), (3.127)

where for brevity X = X(3KK) in this equation. Using equation (3.126) and dropping
terms of fifth order and higher, this becomes

N+1 N+1

AYITIER o (5 - Jay(—1)*ax + Uk ((j — )ag)*(—1)kax+

2
N+1

) . N+1
Upkk(j — Jagak + Vyxxk(j — 5 Jag(—1)*ad+
. N+1 . N+1
Vi ((j — Jay)ak + Voux((G - 5 )ag)3(—1)*ax
(3.128)
1 define the sum and difference of the residuals for k=1 and k=2 as
AY(J'j’K‘S) = AY(J’j’KJ) + AY(J‘j’K’l) (3129)
and
AYUIED) = AYyiK2) _ AyJiKD), (3.130)

Using equation (3.128), these evaluate to

: . N+1 . N+1
AYIES) = 29U gk (5 - Jagag + 2Vuskx(( — — Jas)*ak (3.131)
and
: . N+1 ) N+1
AYUSED) = 9T (j ~ )agak + 2Unk((j — )as)*ak +
N+1

. 1 .
ZVUKKK(J - )a,ya?{ + 2VUJJK((J e )aJ )3aK (3.132)

From equation (3.131), one can find Upkk and Viyjkk from the linear and quadrat-
ic terms, respectively, of a fit that is quadratic in (j — l\I-;*—l)a,;. Similarly, equation

(3.132) indicates that one can find Tyx + a% Vykkgk and Uk from the linear and
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quadratic terms of a fit that is cubic in (j — £52)a;. By doing the analysis for two

different values of akx, one can separate Tyx from Tk + a% Vykkk. For a general
element, then, at the very least one needs twenty integrations (i.e., N=5, two values
of ak, j=1,2) for every pair (J, K), for J > K, or 20 x 15 = 300 integrations. (The
twenty is the number of integrations per pair; the fifteen is the number of (J, K) pairs
such that 6 > J > K > 1.) Since the elements with J=5 or K=5 are known before-
hand to be zero for a static element, this is reduced to a minimum of 20 * 10 = 200

integrations for the alpha-magnet.

3.4.3 Three-Variable Terms

Having completed this step, only the elements Upgkp with J > K and K > L remain
to be found. To obtain these, new initial vectors are chosen for each triplet (J, K, L)
with J > K > L:
B ‘ XOELY = (—1)(age; + agek + arew), (3.133)

where iis 1 or 2, and aj, ax, and ap are constants.

J,K,L,i

Again, I compute residual final vectors AY! ) by subtracting off the contri-

butions of all R, T, and U matrix elements calculated so far:
AYPRE) = yPRE o 3 {RINXN + Tivn X% + Unenn Xy + VINNNNX?\r}
: N

-> {TINMXNXM + (UnemmXn(Xm)® + UINNM(XN)2XM)}

N>M
= Y UmnmpXnXuXp + Y Vinemm(XnXm)?
N>M>P N>M
+ > {VINMPPXNXMXf: + Vinmme Xn X3 Xp + VINNMPX?\JXMXP}
N>M>P
+0(X®), (3.134)

where for brevity X = XKL in this equation. Using equation (3.133) and dropping

‘terms of fifth order and higher, this becomes

AY§i) = Upkrajakan(—1)+
(Viskkajak + Vigrrasas + Vikkrrasas, )+

(Vukrrasakal + 12Vyggkrasakal + Viggxraiakar).  (3.135)
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I now form the difference of the residuals for i=2 and i=1, obtaining
AYP = v _ vy = 2Upkpasaxar. (3.136)

Thus, one can obtain the Uggy with J > K and K > L by integrating a two additional
vectors for each triplet J > K > L, requiring 40 additional integrations for a general
element. For a static element, Uyky = 0 for J=5, K=5, or L=5, which reduces the

number of additional integrations to 20.

3.4.4 Initial-Vector Ensemble

The reader may have noticed that the ensembles specified by equations (3.125),
(3.126), and (3.133) overlap. Because of this, it is possible to use the ensemble
of vectors defined by

Ny+1 . Nk +1 Np+1
=5~ daser + (=5 =
with Ny odd, 6 >2J>K >1L > 1, and j, k, and 1 taking integer values between
—(N-1)/2 and (N ~1)/2 (where N = Nj, Ng, or Np, for j, k, and 1, respective-
ly) except that j = k =1 = 0 (the null vector) appears only once for all triplets (J, K,

XESKKLD _ (

—k)agex + ( —Daper, (3.137)

L). The maximum amplitude of the J** vector component is
N;-1
2

Since for a static element, X5 is irrelevant, one can choose N; =1 and as = 0. It

M;

aj. (3138)

is also convenient to choose Ny = N for all J # 5. Given both of these choices, the

number of vectors in the ensemble is
10(N® — 1)+ 10(N* — 1) + 1, (3.139)

where I count ten (J, K, L) triplets with neither J, K, nor L equal to 5, contributing
N2 — 1 vectors each, exclusive of the null vector; ten (J, K, L) triplets with one of J,
‘.K, or L equal to 5, contributing N? — 1 vectors each, exclusive of the null vector; plus
one null vector.
For N = 5 this ensemble contains about 6 times as many vectors as the minimum
needed, but using it has the advantage of simplicity of coding and also of provid-

ing additional data to improve the accuracy of some of the elements by averaging.
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Doubtless a more computationally efficient ensemble could be coded than I have used
in my codes.

Having assembled this ensemble, one integrates each initial vector to obtain the
corresponding final vector. One then selects out the necessary sub-ensembles corres-
ponding to equation (3.125), (3.126), or (3.133)) for each stage of the analysis.

3.4.5 Accuracy Considerations and Limits

I have taken pains in the above analysis to eliminate the influence of fourth-order
terms in order to.increase the accuracy of the third-order matrix. In addition, suitable
choice of the constants ay can ensure that the effects of fourth and higher-order terms
are negligible. “Suitable” must be determined empirically, or by reference to the
magnitude of the matrix elements once they are roughly known. A starting point is
to assume that the dominant fourth-order matrix elements have magnitudes similar to
those of dominant matrix elements of third-order, from which one would conclude that
that My = 10~ would be suitable to obtain 0.1% accuracy of the third-order results,
even without the corrections for the V matrix that are included in the equations.
Further, fifth order terms would be expected have an influence of one part in a
million relative to the third-order. If similar results are obtained for a wide range
of values of Mj, then one can conclude that the influence of higher-order terms is
indeed ﬁegligible. In addition, if the contributions of the first, second, and third-
order matrices to the final coordinates Y are seen to be different by several orders of
magnitude between successive orders, then one can reasonably conclude that higher-
order effects are several orders of magnitude below the third-order effects.
Invariably the above procedure will yield some small, non-zero matrix elements
which may or may not be genuine, due to the accumulation of inaccuracies in the
integration, subtraction of higher-order terms, and fitting. If one knows that the
‘accuracy of any integration is of order 107P, where p is an integer, then one can con-
clude that a computed matrix element is spurious if it fails to satisfy the appropriate

criterion (depending on the order of the matrix element) from the following list:

RyM; > 107°? (3.140)
TUKMJMK > 107P (3.141)
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UpxeM;MgMy > 107P. (3.142)

One can also use these same relations to estimate the resolution with which genuine

non-zero matrix elements could be calculated.

10~P

ARy > M; (3.143)

ATUK > 10" (3.144)
M;Mk

AUk, > 107 : (3.145)
M;Mg My

One expects that this resolution will not be achieved, since it does not consider the
inaccuracies in fitting and subtraction to obtain residuals. Nevertheless, these criteria
do provide a solid lower bound on the precision of the matrix elements. In the case

of the alpha-magnet, I have shown above that the accuracy of integrations is 10714,
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3.5 Transport Matrices for the Alpha Magnet

I have written a computer program, salpha matrix, that implements the ideas of the
previous two sections. Matrices up to third order have been computed for transport
from the entrance of the alpha-magnet to the exit, from the entrance to the vertical

midplane, and from the vertical midplane to the exit.

3.5.1 Program Tests and Choice of Initial Amplitudes

For purposes of testing the coding and the method of obtaining the matrix, the
program has the option of generating C, R, T, and U matrices with all components
given by random numbers between -1 and 1, and then tracking vectors through these
matrices instead of integrating the equations of motion for the alpha magnet. It then
attempts to recover the random matrices by analyzing the initial and final vectors
only, just as would be done for initial and final vectors obtained by integration. This
tests the ability of the program to separate various orders, but does not test its ability
to suppress the effects of orders higher than third. Table 3.2 summarizes the results
of this test. As will be seen, the errors are below those that are encountered in fitting
matrices for the alpha-magnet, as would be expected. The errors from this procedure
can be considered to place the ultimate limit on the accuracy with which matrices

for the alpha-magnet can be calculated.

Table 3.2: Accuracy of Recovery of a Randomly Generated Matrix

matrix | maximum error of fit for | average deviation of fit
any matrix element for all matrix elements
C 1.38 1077 7.59 - 1071®
R 8.87-1071¢ 2.71-107%
T 1.13-10710 2.48 .10~
U 1.47-10~7 1.77-10°%

An initial round of computations for the alpha-magnet were done with N = 5 and
with all M; values equal, for a series of different values from 10~2 to 10~%. After the

matrix was obtained, the average of the absolute values of the residuals of the final
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vectors for all initial vectors were computed to assess the degree to which the fits
contained sufficiently high-order terms to match the actual final vectors. Residuals
were computed by successively adding linear, second-order, and third-order terms to

assess the effect of each order. The average absolute residuals for n** order are simply

n 1
SR PP

Yy - {CI + 2 RuXy + (0> 17) 3 TuxXPXP+ (3.146)
J J>K

(3.147)

?

(n>27) 3° UUKLXQ)X?)X@}
J>K>L

where the index i runs over all M initial vectors in the ensemble specified by equation
(3.137), and (n > m?) represents a function that returns 1 if n > m and 0 otherwise.
Table 3.3 summarizes some of the results. (Ré”) is identically zero, since the momen-
tum is not changed by the magnet, and hence is not listed.) It is no coincidence that
for any particular I and n, R%n) varies with M; according to M5!, since for valid fits
(i.e., those that don’t err by compromising lower order coeflicients in order to match
higher-order contributions) R§“) is simply the average contribution of the (n + 1)t®

order terms.

Table 3.3: Residuals from Matrix Fits

M, R R R RE R

1072 | 1.84-1073 | 1.89-107° | 4.51-10"% | 3.79-10"* | 7.63-10"°
1073} 1.84-107% | 1.89.10"% | 4.49.107% | 3.53.10¢ | 7.76 - 107
107% | 1.84-10"7 | 1.90-10"7 | 4.49-107% | 3.51-10"8 | 7.76 -10~°
1072 | 3.44-107° | 2.39-107° | 4.59-107° | 1.43-10"% | 6.38 - 10~
10731 3.44-107% | 2.39.10°8 | 4.61-107% | 1.43.10"7 | 6.34.10°°
107% | 3.44-107% | 2.39.1071% | 4.61-10"% | 1.42-10"1° | 6.34.10°12
10721 9.40-10"7 | 8.78-10"" | 2.08-107°% | 2.37-10°% | 7.19-10~"
107% { 8.98.10711 [ 8.43.10711 | 2.08-10710 | 2.36-.10710 | 7.21 .10~
1074 {1.14-107% | 1.01-1071% | 2.07-107" | 2.36 - 10714 | 7.40 - 1015

O W W BN | e B

Table 3.3 shows that for My = 107*, the third-order residuals are of order 10-14,
which is the accuracy limit of the integrations. Hence, fourth-order contributions are
“in the noise”, and third-order contributions are three orders of magnitude above it. I

find that for such small M; values, the chromatic terms do not follow equations (3.102)
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through (3.107) as well as for My = 1073, For this reason, I choose the matrices
computed with My = 10~% as the most accurate. Analysis of the chromatic terms
indicates that the T matrix elements are accurate to about 107%, indicating that p in
equations (3.143) through (3.145) is 12 (rather than 14 as would be thought from the
accuracy of the integration). I use this value of p in order to “filter” small Tyx and
Upkr values for significance, as per equations (3.140) through (3.142). That is, Tyk

values smaller than 107% and Uy, values smaller than 10~2 are taken to be zero.

3.5.2 Final Results

Having verified the program’s matrix-fitting algorithm and found the limits of its
accuracy, I computed the matrices for the alpha magnet using N=17. I used an
accuracy limit of 5 x 10713 to filter out spurious non-zero matrix elements. This limit
is a compromise between one that is somewhat too large for the T matrix elements,
and somewhat too small for the U matrix elements. Hence, some small, dubious U

matrix elements will appear in the results that follow.

Checks of the Results

A number of checks have been made on these matrices. The determinants of the
first order matrices for entrance-to-exit, entrance-to-vertical midplane, and vertical
midplane-to-exit have been found to be 1 to within 2 x 1072, (This accuracy is not
fully reflected in the results given below, since I have not quoted a sufficient number
of significant figures. Also, the reader should beware of checking this claim with a
hand calculator, since many use only 10 or 11 digits.)

The relationships between the non-chromatic and chromatic terms were used to
evaluate the accuracy of the method, as discussed above; the reader is invited to
use equations (3.102) through (3.107) and (3.53) through (3.60) to verify for himself
that the results do indeed satisfy the expected numerical ratios. As a sample, for the

matrix from the entrance to the vertical midplane, I find that

Rse 1 ~12
—_— = =421 3.148
. 5 +2-10 ( )
Ts66 1

< = —§~6-10‘1° (3.149)
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Usese 1 _8
= —-=2-10 3.150
Cs 16 ( )
T162 1 —9
= =-2-10 3.151
Uiee2 1 _6
= ——=—6-107". 3.152

The reader will see below that the computed entrance-to-vertical midplane and
vertical midplane-to-exit R matrices satisfy the expected relationship for two elements
that are the reverse of each other[6], namely

. Rs R
R= ( 2T ) , (3.153)
R21 R‘ll

where R is the matrix for system that is reversed in order relative to the system for
which R is the matrix.
_ The matrices for the first and second parts of the alpha-magnet were concatenated
(using a third-order matrix concatenation program written by the author) and com-
pared to the matrices computed for the full magnet. No significant discrepancies were
found for the R matrix. The only discrepancies found in the T matrix were fractional
variations of 107% in the two smallest elements; all other T matrix elements either
showed no discrepancy, or discrepancies only in the last decimal place. For most U
matrix elements, the discrepancy was less than .1 %, while for a few of the smallest
U matrix elements, the error was between 1 and 10 %.

In order to ensure that there were no transcription errors made, salphamatrix
provided output in JATgX format, which was included in this document with only

minor editing to properly columnate the data.

Entrance-to-Exit Transport

For transport from the entrance to the exit, tables 3.4 and 3.5 list non-zero T and U
‘,matrix elements, respectively. The following are the centroid and R matrix elements

(unlisted elements are zero):
Cs = 4.642099465061 (3.154)

Rss = 2.321049733 (3.155)
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Rii Ryz | [ —1.000000000 —2.321049733 (3.156)

Ra1 Roo 0.000000000 —1.000000000 '
Rss Ras | [ —0.7371140937 7.618204274 (3.157)

Rys Ry ~ \ —0.05994362928 —0.7371140937 '

Table 3.4: Non-zero T Matrix Elements from Entrance to Exit

Tis9 = —9.985582- 1071
Tiag = 3.782911- 101
T4z = —7.370063

T3az2 = 9.264364

Tag2 = ~1.750135

Taes = 2.997181- 1072
Tses = —2.283314-1071

Ti33 = —6.047097 1071
Ti162 = —1.160525

Ts44 = 3.808545 - 101
T340 = 6.892273

T4y = 5.157770- 1072
Treo = 5.802624 - 10-1
Ts44 = —1.403871

Tias = —6.415746

Tyss = —2.996743 - 101
Taz = —5.157770- 102
T364 = 3.809102

Tago = 9.384079

Tsas = 1.104632- 102
Tses = —5.802624- 1071

Table 3.5: Non-zero U Matrix Elements from Entrance to Exit

Ui299 = 0.634-10"1
U431 = —5.301

Ujg42 = 9.435- 10!
Usgeq = 1.891- 101
Ugqay = 5.157-107!
Ujggqs = 4.557- 10!
Usgey = —1.462

Ugq11 = 4.431- 10-2
Usags = —2.705-1073
Usgaq = —1.075 - 102
Usges = —9.523 - 10-1!
Usgqo1 = 1.463

Ugq33 = —1.441

Ugg3s = 8.751 - 101
Uga99 = 4.993 - 101
Usaz1 = 1.873- 10-2
Ugqqs = —2.145- 101
Usgqs = —7.019-10°1

Ujza; = —2.579- 1071
U420 = 8.263 - 10!
Ujgoo = —4.993.1071
Uige2 = 2.901- 1071
Usqgz2 = 9.310- 10!
Ujgaz = 2.997- 1071
Usaeg = —4.979- 1071
Uago; = 1.033- 1071
Usq3s = —2.310

Usgay = 2.579-1072
Ugsgo = 1.285- 10!
Uggoo = 2.946

Ugqsa = 8.688- 101
Ugpa1 = —2.575- 1072
Usgar = 1.546 - 10-3
Usqza = —4.126 - 1071
Usgaz = 2.901-1071
Usgee = 2.901-1071

Uizzs = —8.573

Ui441 = 3.829- 101
Uigas = 3.023-107!
Usazs = —8.779

Ugaq1 = 6.341

Useqa = 3.685

Usgaz = 1.047

Usgqgo = 1.101- 10!
Uszqqz = 2.220 - 10!
Usgas = 3.446

Ugzszs = —4.323 - 10-1
Ugazs = —1.636- 103
Uggaqa = —3.156 - 102
Usges = —2.248-1072
Usags = 2.469- 1072
Usgq1 = 9.242 - 10-4
Usgaz = —5.524- 1072
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Entrance-to-Midplane Transport

For transport from the entrance to the vertical midplane, tables 3.6 and 3.7 list non-
zero T and U matrix elements, respectively. The following are the centroid and R

matrix elements (unlisted elements are zero):

Cs = 2.321049732530 (3.158)

Rs; = —2.179660432 (3.159)

Rgp = —2.529550131 (3.160)

Ri6 = —9.089085575 - 10~} (3.161)

Rss = 1.160524866 (3.162)

Res = 1.000000000 (3.163)

(Rn R ) _ ( 0.000000000  0.4169954844 ) (3164
Ry Ro —2.398107503 —2.783063390

( Ras Rae ) _ ( 0.07531765053  2.182639820 ) (5.165)

“Rys Rag —0.3979387890 1.745181272 ’

Table 3.6: Non-zero T Matrix Elements from Entrance to Vertical Midplane

T111 = 1.581820 T12; = 3.671483 Tiq2 = 2.357651

Ti33 = 3.170513- 107!
Tigo = 2.084977- 107!
Toss = 1.835742

Tsa4 = 7.286366- 1071
Taga = 3.240582

Taes = 1.091320

Taa1 = —2.536989

Ts21 = 1.875460

Tsa3 = 4.235456 - 107!
Tsee = —2.901312- 1071

Ti43 = —4.724714-1071
Tige = 2.272271- 107!
Tazs = ~3.739056 - 10~1
Tog1 = 1.199054

T4 = ~2.367091
Ta31 = ~9.936083 - 10-2
Taa2 = —2.015590

Tsq2 = 1.378390
Ts4q = 1.614540

T1gq = —2.932169- 1071
Taa; = 2.613530

Toys = 9.437959 - 1071
Taa; = 5.249703- 1071
T340 = —1.933840

Ty32 = 2.168953

T3 = 1.989694 - 101
Tsaz = —3.473390- 107!

Tseo = —1.264775
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Table 3.7: Non-zero U Matrix Elements from Entrance to Vertical Midplane

Uron
Ui
U432
Uie1:
Uis44
Uz111
Usa2y
Uszq21
Uszgq:
Usess
Uss1i
Ussss
Usq22
Usgaq
Usee4
Ugs2z
Ugyn
Usaas
Uses2
Usin
Uszzo
Usas
Usa42

Useqq

= -3.085
=4.933-10"!
= —2.841

= -7.909.10"!
= —1.466-10"!
= —6.200

= —9.493
=-1.025-10"3
= —4.851
=3.739-10"1
= 6.554-10"2
=3.965.10"1!
=3.934-1071
= 1.457

= —2.728-10"!
= —4.777

= 2.868
=1.350-10"1
= -1.084

= -1.264
=-2.112
=1.514

= —1.689

= 8.073 1071

Uiz21 = —5.581
Ujszy = 3.610-10"2
Uigq; = —5.547- 1071
Uig22 = 1.179

Usgg2 = —5.213 - 1072
Usz2y; = —2.159 - 10!
Usszz1 = 2.284 - 101
Usy43; = 1.686

Usggqs = —4.688
Usgez = —4.719 - 10-1!
Uszar = —3.313

Ugg11 = 1.448

Usgaz = ~1.195

Usgay = —2.625- 101
Ug31; = —3.463 - 101
Ugsss = 2.704 - 10-1
Usq92 = 1.015

Uggaq = 5.265-1071

Usesa: = 1.268

Uso11 = ~4.402

Usas; = —1.045 - 10-1
Usg3z = 3.542

Usgoo = 6.892 - 10-1
Usgeo = 3.162-101

Uiz = —2.478

U431 = —~1.791

Ujge2 = —1.004
U6z = —1.585 1071
Uige6 = —1.136 - 101
Usg91 = —2.700- 10!
Ussss = 1.145

Us432 = 1.572

Uggo1 = —1.307

Usg1 = —8.993 - 10!
Usgaz = —4.769

Usa21 = 1.908

Ugqqa = —8.190- 101
Usgez = —9.669 - 101
Uszs; = —4.190

Usq11 = 1.604

Usq33 = —9.890 - 101

Uyps1 = 9.936 - 10-2
Uspez = —1.492 - 101
Usg91 = ~7.153
Ugszo = 1.548. 1071
Usgq1 = —2.804
Usgaz = 1.787- 1071
Usges = 1.451- 1071

Midplane to Exit Transport

For transport from the vertical midplane to the exit, tables 3.8 and 3.9 list non-zero

T and U matrix elements, respectively. The following are the centroid and R matrix

elements (unlisted elements are zero):

Cs = 2.321049732530

Rig = —2.529550131

Rge = —2.179660432

Rs2 = —0.9089085575

(3.166)

(3.167)
(3.168)
(3.169)
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Rss = 1.160524866 (3.170)

Res = 1.000000000 (3.171)
Ri Ri | [ —2.783063390 0.4169954844 (3.172)
Ry; Ry |\ —2.398107503 0.0000000000 '
Rgs Rae | [ 1.745181272  2.182639820 (3.173)
Ras Rus —0.3979387890 0.07531765053 '

Table 3.8: Non-zero T Matrix Elements from Vertical Midplane to Exit

Ti1; = 7.654960- 101  Tyqy = 1.089830 T122 = 7.654960 - 101

Tis3 = 1.491568
T1e1 = 1.391532
Ta1; = 3.133763
Ta4s = 4.999269
Taes = 4.223593
Tz41 = 1.950208
T3ps = 2.863881
T441 = 6.310239
T4p4 = 5.735430

Tss3 = —1.736188 - 1071

Tse; = 3.033067

Ti45 = 4.885853

Tig2 = 1.1990564

Ts9s = 6.596119 - 101
Ta44 = 3.804388

T3z = 2.227000

Taqs = —9.870661 - 1071
T431 = 5.477911

Taq2 = 2.189102- 107!
Ts11 = 1.668521

Tsea = —4.342785- 1071
Tse2 = —9.089086 - 1071

T144 = 3.609338

Tie6 = 1.264775

Toss = 1.417467

Toe1 = 6.895662

T3z = —1.057913

Tse3 = 2.024140

Tags = —4.143302- 102
T4es = 5.177889

Tse; = —5.000000- 1071
Tr4q = 4.109782 - 1072
Tse6 = 1.088259
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Table 3.9: Non-zero U Matrix Elements from Vertical Midplane to Exit

U111 = —1.360 Uiz = —5.249-10"!  Ujggp = —4.872. 107!
Uiz3; = 2.309 Uizss = —3.196 Uj43; = 4.658

Uj4z2 = —7.406 Uraqy = 2.017 Ujg40 = —4.261

Uie11 = —4.089 Uig2:r = —9.537- 107! Uyges = 3.828 - 107!
Uigsr = 5.964-10%  Uygs3 = 1.353 Ujga; = 6.949-10"4
Ujess = 4.234 Ujgas = 3.638 Uieer = —4.413
Uigez = —7.334-10"1  Uyge6 = —1.969 Usiy; = —1.336- 10!
Ujze; = —1.361 Usszz; = 2.331 Usazs = —2.750

Usgga; = 1.181 Ug432 = —5.745 Usgq; = —2.352
Uggqz = —2.750 Uze11 = —3.957- 101 Uggey = —3.419-10-2
Usg29 = —1.237 Usezr = —3.495 - 103 Usgsz = 7.009 . 101
Uszgar = —4.345- 1073 Ujgeg = —1.426 Usgaq = —2.138

Useer = —4.114- 100 Upppe = —1.528- 101  Usgsyy = 3.497

Ussor = —3.620 Usgzas = —3.336- 107!  Ugggg = —1.167

Usarn = 4.993 Usgqz = —4.032 Uszago = —2.847 - 101
U3y = 5.003- 104 Usgzs = —4.874 Uszsqz = —6.236

Uszgqq = —2.195 Usgay = 5.245 Usgaz = —3.290

Uszgar = 9.078 Usges = —4.158 Usgez = 1.371

U3664 = 3.409 U4311 = —9.066 U4321 = -3.494
Ugzoe = —1.567 Uszzs = —2.991 Ugqyy = —1.456 - 10!
Ugqa1 = —2.893 Ugaoo = —1.724 Uga; = —5.345-10"4
Uggaz = —1.323 - 100 Uggaz = —1.849-101  Uggeq = —8.388

Usesr = —2.196 - 101 Uggsr = —3.155 Ueay = —2.962 - 101
Usgas = —2.630 Uspas = —5.769-10"%  Uyges = —1.386 - 10!
Ugeps = —1.633-101  Usyyy = ~9.178-10"1  Usyyy = —1.307
Usze1 = —9.179-10"!  Ugygy = 4.545-1071 Usaar = —2.232
Uszza = 2.105- 107! Usgz = —6.162 Usq32 = 1.565- 101
Ussq; = —4.254 Ugqqo = 4.173-1071 Usg1: = —3.337

Uggar = —2.375 Usezs = —8.343- 107! Uggag = —1.941
Useaz = —5.601 Usgas = —3.846 Useer = —4.550
Usgeo = —8.523 - 10-1 Usges = —1.923
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3.6 Effects of Field Errors

All of the above analysis of the alpha-magnet assumes that the functional form of
the magnetic field is that of a perfect quadrupole. In reality, no magnet is ideal.
A review of the derivation of the scaled equation of motion shows that non-linear
terms in the magnetic field will, strictly speaking, invalidate the scaling. In other
words, the magnet will not be strictly achromatic, as a perfect alpha-magnet would
be. One result of this is that the nominal ideal trajectory (i.e., the trajectory injected
at incidence angle f,) will no longer exit the magnet at the same location that it
entered at.

Magnetic field errors are a fact of life in accelerator physics. The favored approach
to dealing with them is to evaluate the effect of specific types of errors (e.g., higher-
order multipoles) with an eye toward what level of error one’s application can tolerate.
In accordance with this, I have studied the effect of certain types of field errors, such
as sextupole terms, to find what effect they have on the performance of the alpha-
magnet. (Similar, less complete work on this problem is reported in [32].) It has
been found from computer studies that for a variety of errors, the residual dispersion
after the alpha magnet can be reduced to acceptable levels by modifying the injection
angle, 6;, in such a way as to cause the ideal trajectory to once again exit at the
entrance point. If the magnet retains reflection symmetry about the plane g, = 0,
it is always possible to find such a value of #;, which I will call 4,,, or the “mirror
angle”. The reader can convince himself of this by reviewing the argument by which
I proved that the perfect alpha-magnet has such an injection angle, namely 4,.

The field in the imperfect alpha-magnet can be expressed as

B(q) = g(qgs0,q1)+ AB(q)

_ %{(Q3,0,Ql>+AB(Q>3}, (3.074)

a’g
where AB(q) is the departure of the field from a true, uniform quadrupole field and,
as before, Q = qa.

Comparison with equation (3.83) shows that the scaled equation of motion with
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field errors is

R B VAU N 7

Q" = 1+6QXB(a)g (3.175)
1, Q. a

= —mQ X{(Qs,O,Ql)‘FAB(;)g} (3.176)

3.6.1 Multipole Errors

With this equation in hand, it is possible to evaluate the effect of various field errors.
Note that since a appears only as a multiplicative factor for the field error, it is
still possible to find results with some universality. In particular, if AB is a pure
multipole error, then the effect of the field error in the equation of motion will have
a well-defined scaling with « and the multipole coefficient.

Multipole fields can be classified as upright or rotated[6], depending on whether
the magnetic.fields are changed in sign upon reflection of the magnet through the
qz = 0 plane or not, respectively. Upright multipoles have field lines that cross the
qs = 0 plane with normal incidence. For rotated multipoles, field lines do not cross
the qs = 0 plane. Clearly the alpha-magnet has upright symmetry, and if one confines
oneself to errors that do not alter this symmetry, then one can express errors in the
alpha-magnet in terms of the upright multipoles. For example, any deviation of the
poles from a hyperbola will produce only upright multipole errors, as will displacement
of the mirror plane, since neither of these errors changes the fact that the field lines
cross q3 = 0 with normal incidence.

The field due to a pure upright multipole is[6]:

n/2] n—2m 2m-1

-1 4 q3 - -
AB, = A, —1)=-! 3.177
ngl( ) (n—2m)!(2m—1)!q1 (3.277)
[{(n+1)/2] q?-2m+1 qgm—z
An -1 m-—1 -~ ,
* mzzjl (=1) (n—2m + 1)!(2m—2)!q3

‘where n > 1 is an integer, the “order” of the multipole. n =1 is a dipole, n =2 a
quadrupole, and so forth.

For insertion into equation (3.176), this must be rewritten in terms of scaled
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coordinates, as

a {n/2] . Q111—2m %m—-l .
—AB, = M, —-1)™" 3.178
g ;2( ) (n—2m)!(2m—1)!Q1 (3.178)
(n+1)/2] Qo-2m+l Q-2
M, —1)m-t X 2 :
* mgl (=1) (11——2m-{-1)!(2m—2)!Q3

where I have defined the dimensionless normalized multipole strength

An

M,= —.
gan-Z

(3.179)

Even without integration one can conclude that for the same fractional multipole
error, ﬁg&, the perturbation is stronger for smaller a, i.e., for alpha-magnets operated
so as to obtain larger values of ;. This is as expected, since the multipole field grows
as q7. As expected, in the limit of very large a, i.e., very small §;, multipole errors
have no effect.

It is of coﬁrse possible to compute the matrices for equation (3.176) with AB as
given by (3.179) as was done for the equation of motion without field errors. The
matrices thus obtained are to be considered functions of M,, with M, ultimately
a function of a. Hence, if the matrices are found for some particular value of M,
for some particular n, then if the matrices are scaled to some particular value of «

according to equation (3.93), the result is appropriate to a multipole strength of

A, = Myga™?2. (3.180)

I have written a computer program, serrors, which computes third-order scaled
alpha-magnet matrices in the presence of various types of field errors, including mul-
tipole errors. Figures 3.10 through 3.12 show the effect of sextupole errors on the
mirror-angle (6.,), Q., and the non-zero elements of the matrix R. Note the particu-

larly strong effect in the vertical plane.

3.6.2 Entrance-Hole-Induced Errors

I performed magnetic measurements on the SSRL alpha-magnet to assess the devi-

ation of the field from an ideal quadrupolar field. Figure 3.13 shows the measured
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gradient vs q; for q; = 0, while figure 3.14 shows the measured gradient vs gy for
q: =~ 10mm. The deviation of the field from a perfect quadrupole was dominated by
perturbations from the beam aperture or “hole” cut in the magnetic mirror-plate of
the alpha magnet. This can be appreciated by comparing Figure 3.13 with Figure 3.2,
which shows the gradient before the hole was cut. This hole is, of course, necessary
in order to get the beam into and out of the magnet. I have found that the field error

in the q3 = 0 plane is well approximated by
AB; = g(K + Ee™#/)F(qy), (3.181)

where K and E are positive constants, d is a decay constant for the field error, and
F is the function

1 lqa! < W,
F(ge) = ¢ {2l Wi < lgof < Wo. (3.182)
0 W < |qsl

W; and W, are constants characterizing the width of the field perturbation in g,.
W; is roughly equal to the width of the hole in the midplane.
Fits to the data in the Figures give

K =0.054cm E =0.39cm d = 0.72cm
(3.183)
Wi = 2.0cm W, = 3.6cm.

Using Maxwell’s curl equation, one can find an approximation to the full error
field:

Qs

2AB = Ea{ qr—e =d F(Q2
g ad

Qs ~au_, Q Ko, _o_ Q)
)+~ HF(2) + 4o(1 + T ) HF(2)

(3.184)

(The possibility of dipole fields in the g, and q; directions can be eliminated by
symmetry and by assuming that there are no rotated multipole fields present, respec-
tively.) The constants K, E, and d occur in equation (3.184) only when multiplied
by a. Similarly, the constants W; and W, occur only in the combinations W;a and
Wsa, as seen from the definition of F. Any given magnet has fixed values for K,
E, d, Wy, and W,, while a will vary was the gradient of the magnet and the beam

momentum are varied.



CHAPTER 3. THE ALPHA-MAGNET 191

VB (AU) = 1 - E/d exp(~q,/d)

SOLID LINE

g, (cm)

1.00 |

095
0.90
0.85

B (Arb. Units)

Figure 3.13: Hole-Induced Gradient Errors vs q;



192

CHAPTER 3. THE ALPHA-MAGNET

(wo) %

* e ¢ o

1

|

1

1

1

1

008°'09

52809

0S89

SL8°'0

006°9

Sc6'@

95S6° 0

SL6°9

000°1

SNOLLYLNNOD XIMIYM NI G3SN NOLLYNIXONdY “INIT G110

¥vB (Arb.Unitsa)

Figure 3.14: Hole-Induced Gradient Errors vs Q2



CHAPTER 3. THE ALPHA-MAGNET 193

To show how it is possible to find matrices for the hole-induced error in a given

alpha-magnet as a function of a it is convenient to define dimensionless error field

parameters
K=aK E=aF d=aod
~ * “ - “ (3.185)
W1 = an W, = aW2,
and a function corresponding to F
1 1Qa| < Wy
F(Q.:) = %QLJ Wi < |Qof < W, (3.186)
0 W2 < (Q

The hole-induced error field (equation (3.184)) is expressible as

2aB=E { ~Q B HRQ) + - QR Q) + Qul1 +

st

Q; -
)e'*fmczz)} :
(3.187)
which is formally independent of o, as desired for insertion into equation (3.176).

el

serrors takes E, K, d, Wy, and W, as input, and computes the matrices as a
function of a variable M, where E=M+E K=Mx K, etc. Clearly, by choosing the
scaled matrices for M = « and scaling them according to equation (3.93) with a, = a,
one obtains the matrices for the magnet with errors for a given value of a.

While one chooses the value of M is equal the a value of interest, the reader
should not make the mistake of concluding that serrors is varying a, or calculating
matrices at a given value of a. serrors is scaling the spatial extent and magnitude
of the error field in scaled coordinates, and calculating the matrices for the scaled
equation of motion in the presence of these error fields. By choosing M = o, one
obtains matrices that correspond to a certain trajectory size relative to the fixed
spatial extent of the error fields. Another way to use these serrors results is to view
M as a quantity related to the size of the beam-hole, in which case M # a.

‘ Figures 3.15 through 3.17 show the effects of hole-induced errors on Q;, S., 0.,
and strongly-affected R-matrix elements, as calculated by serrors. Typical values of
a for the SSRL magnet and RF gun are between 0.12cm and 0.18cm. Note the large
effect on the vertical plane, similar to that seen for sextupole errors. Experiments

show that the vertical plane R matrix deviates significantly from that for an ideal
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magnet, a subject to which I will return in the next section. Running experience
shows that injection angle corrections of 10-20 mrad are needed, with the sign such
as to make # smaller. It is unclear, however, what part of this is due to field errors
and what part is required by alignment errors. The real value of these calculations is
to evaluate the magnitude of the effects of such errors, to see whether the injection

angle correction required for realistic error levels is feasible or not.
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3.7 Alpha-Magnet Beam-Optics Experiments

A commonly-made measurement on beam-transport systems is that of determining
the transverse centroid offset of the beam downstream from a steering magnet as a
function of the angular kick imparted by that steering magnet. The linear term of
a fit to the offset vs kick angle gives the 132 (or 134 for a vertically steering magnet)
matrix element for transport from the steering magnet to the place where the centroid
position is measured.

The Gun-to-Linac transport line (see Chapter 5) has horizontal and vertical s-
teering just before the alpha-magnet, and a phosphorescent screen downstream of the
alpha-magnet (the “chopper-screen”, since it is part of the chopper tank). There is
also a phosphorescent screen inside the alpha-magnet (the “alpha-magnet screen”)
that intercepts the beam when the alpha-magnet is turned off. These phosphorescent

screens are.viewed via closed-circuit TV. In addition, a Lecroy 9450 digital oscillo-
- scope is available to digitize the TV scan, permitting accurate measurement of both
horizontal and vertical beam positions. Al that is required is.to calibrate the TV
sweep using features on the screens for which the positions are known (e.g., the edges
of the screen).

I will let L; denote the distance from the center of this steering magnet, known as
GTL-.CORR2, to the “crossing-point” of the alpha-magnet (q; = q2 = q3 = 0). Also,
L, and L3 denote, respectively the distance from the crossing-point to the alpha-
magnet screen, and from the crossing-point to the screen after the alpha-magnet.
L, is found to be 117 mm, and L; to be 459 mm, where I use values from updated
engineering drawings, checked by my own measurements with a ruler. The distance
from the crossing-point to the screen in the alpha-magnet 200 £ 10mm, with the large
uncertainty being due to the way the screen is held inside the alpha-magnet on long,

easily-bent copper tubes.

3.7.1 Characterization of the Steering Magnet

I performed magnetic measurements on GTL.CORR2 with a quadrupole and an
alpha-magnet-simulating iron plate in the proper positions relative to GTL_CORR2.

The magnetic field as a function of longitudinal position z is shown in figure 3.18,
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and indicates that the equivalent angular kick for a zero-length steering magnet is
18mm ahead of the geometric center of the magnet (which coincides with the peak
of the magnetic field vs z). Hence, GTL_.CORR2 can be simulated by a zero-length
steering magnet that is L; + 18mm from the alpha-magnet crossing point. I will thus
let i — L; 4+ 18mm, and treat GTL_.CORR2 as a zero-length deflector.

Because GTL_.CORR?2 is in close proximity to both the alpha-magnet and the
immediately preceding quadrupole, it is advisable to check that the calibration of an-
gular deflection vs driving current (obtained from magnetic measurements) is correct.
This was done using the alpha-magnet screen, since the transport to this screen from
GTL.CORR2 is described by a simple drift-space matrix:

1 Li+L, O 0
0 1 0 0
0 0 1 Li+L,
0 0 0 1

1 = , (3.188)

In this section, I will use 1) to represent the r-matrix from GTL_.CORR2 to point i,
where i is 1, 2, or 3 for the crossing-point, alpha-magnet screen, or chopper-screen,
respectively. I leave off the dispersive and path length elements to shorten the nota-
tion.

This check was carried out using the magnetic measurements to set GTL_.CORR2
to a series of nominal horizontal (or vertical) deflection angles, 6,0m,;, and measuring
the resulting horizontal (or vertical) displacement, x;, at the chopper screen. A linear

), uncorrected for errors in the

fit 10 X; V8 fnom,; gives the nominal value of r(f;"m
deflection angle. Since it is that rg) = rgi) = 0.337 £ 0.010mm /mrad (this is just

L; + L,) the actual angular deflection is readily calculated, giving

oot 115" (mm)

"°"0.337 £ 0.010mm/mrad

(3.189)

Linear least-squares fits to the data from these experiments gave 1™ = 0.305+

0.006mm /mrad and r%’fm) = 0.322+ 0.015mm/mrad, from which I conclude that

Oy.oct = Oxnom0.91 £ .03, (3.190)
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and
Oy.act = Oy nom0.96 £ .05. (3.191)

3.7.2 Comparison of Experimental Results and Theory

Having corrected the calibration of GTL.CORR2, I then did a series of measurements
of rg‘? and ré?;) for various alpha-magnet gradients for constant beam momentum. For
these experiments, the low-energy scraper inside the alpha-magnet was set to allow
only about £5% momentum spread through, to lessen any possible ambiguity about
what the momentum of the particles seen on the chopper screen was. Spectrum
measurements allow the determination of the median momentum of the particles let
through, and this quantity was used as the effective momentum of the beam centroid.
Table 3.10 summarizes the results.

In order to compare these results to theory, it is necessary to use serrors-
calculated scaled matrices for the appropriate values of the error parameter M (i.e.,
M = qa, for hole-induced errors), to scale these matrices to the values of a listed in

the table, and to finally concatenate these matrices with drift space matrices:
r = d(L;)A"(a)R(M)A()d(L,y), (3.192)

where d(L) represents the matrix for a drift space of length L. Table 3.11 gives the
results of this procedure, listing the ri, and r3s values corresponding to each of the
cases in Table 3.10. Also listed for comparison are the values for a perfect alpha-
magnet. These results are displayed in figures 3.19 and 3.20.

As seen from Figure 3.20, the r(si)’s are very semsitive to errors, hence the agree-
ment seen here may be fortuitous. In the same vein, some disagreement is hardly
unexpected.

4 With the exception of the anomalous point at a = 0.166, all of the measured
T12’s are 5-10% smaller than the theoretical values for the alpha-magnet with errors.
The first explanation of the discrepancies in the horizontal plane one might entertain
is that the momentum (or, equivalently, the alpha-magnet gradient calibration) is

in error by 5-10%. This, however, would not explain the discrepancies observed.
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First, the correction of the calibration of GTL_.CORR2 would eliminate any effects of
momentum errors on deflection angle. Hence, any momentum errors would come into
play only through the alpha-magnet. However, as seen from the slope of ;5 vs o for
the theoretical data in Figure 3.19, a very large momentum error would be required to
explain the observed discrepancy. For the point with @ = .121, for example, one would
need to postulate a momentum error of about a factor of two, which I do not consider
remotely possible. A remaining possibility is that the calibration of GTL_.CORR2 is
in error, due to inaccurate knowledge of the position of the alpha-magnet screen. A
5-10% error in this calibration would require a 15-30mm error in the position of the

screen. This is not inconceivable, given the lack of precision in the screen assembly.

Table 3.10: Alpha Magnet r;; and r33 Measurements

gradient <p> ! r(l'? rgi)
(G/cm) MeV/c 1/cm mm /mrad mm /mrad

255.1 +1.3 | 3.00 + 0.04 | 0.160 + 0.001 | —0.743 = 0.014 | 0.006 = 0.005
0202.9+1.0|2.71£0.04 { 0.150 £ 0.001 | —0.672 = 0.012 | 0.070 £ 0.002
172.8 £0.9 | 2.83 £ 0.04 | 0.135 £ 0.001 | —0.716 = 0.012 | 0.120 £ 0.004
149.1 £0.7 | 2.81 £ 0.04 | 0.126 = 0.001 | —0.730 = 0.016 | 0.149 = 0.004
129.9 £ 0.6 | 2.80 = 0.04 | 0.118 £0.001 | —0.739 = 0.018 | 0.180 = 0.005

Table 3.11: Calculated Alpha-Magnet r;2 and rgq

alpha-magnet with errors | perfect alpha-magnet
a r(3) r(3) 1.(3) I(3)

12 34 12 34
1/cm | mm/mrad | mm/mrad | mm/mrad | mm/mrad
0.160 -0.736 0.171 -0.739 -0.021
0.150 -0.745 0.197 -0.749 0.014
0.135 -0.763 0.244 -0.766 0.076
0.126 -0.775 0.279 -0.778 0.120
0.118 -0.788 0.315 -0.790 0.164
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Chapter 4
Longitudinal Dynamics

In Chapter 2, I described the longitudinal phase-space distribution of the RF gun
beam, and indicated that this phase-space ill-suits the beam to direct injection into
.a S-Band linear accelerator section (here-after referred to simply as “the linac”). In
this chapter, I will show why this is so, and how the gun longitudinal phase-space may
be transformed into something that is amenable to further acceleration. At issue is
the need for a small fractional energy spread, which is required for efficient transport
through a subsequent beamline, use as the drive for FELs, and other applications. I
shall also show how the rather long (25 ps or so) bunch at the end of the gun can—at
least in the absence of excessive errors and space-charge effects—be compressed to
a very short 1-2 ps bunch, thus promising the potential of very high peak currents,
something that is desirable in FEL applications, among others.

Discussion of the transformation of the gun longitudinal phase-space cannot take
place without an understanding of the longitudinal dynamics of electrons in magnetic
systems and linear accelerators. I will first discuss longitudinal dynamics in linear
accelerators, and in particular how one can predict the longitudinal phase-space at
the end of a finite-length accelerator when starting with a beam that is not fully
relativistic. This discussion will show why the RF gun beam is unsuited to direct
injection into the linac.

I will then discuss how magnetic beamline elements can be used to alter a beam’s
longitudinal phase-space. Using results from Chapter 3, I will demonstrate that an

alpha-magnet has advantages in such an application. I will present the results of
205
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optimized alpha-magnet-based bunch compression, with inclusion of detailed longi-
tudinal dynamics calculations, and show how this achieves significantly better results
compared to the first-order method of simply injecting the shortest possible bunch
into the linac.

Finally, I will present results that include consideration of aberrations in the gun-
to-linac transport line, and use these results to compare the SSRL preinjector to other

projects.
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4.1 Longitudinal Dynamics in Linear Accelera-

tors

There is extensive literature on longitudinal dynamics in linear accelerators[56, 55,
41, 69]. Rather than attempting to duplicate that work here, I shall simply make
use of some of the results. In particular, I shall use the commonly-made assumption
[41, 55] that the longitudinal electric field of a traveling-wave linear accelerator may
~ be approximated by the first space-harmonic,

E.(z,t) =E-cos(kz —wt), 0<z<L, (4.1)

where k is the propagation constant, w/(27) is the RF frequency, L is the length
of the structure (which starts at z=0), and E is a constant. For a velocity-of-light
structure such as the SLAC constant-gradient structure used for the SSRL linac,
w=ke,c beiﬁg the speed of light. While the actual field contains components with
propagation constants k, = k + 3;"3, where n is an integer and p is the periodic length
of the structure[56], these components have phase-velocities w/ky, less than the speed
of light, and hence a relativistic particle will not remain in phase with any but the first
space-harmonic. Because of this, the higher space-harmonics impart no net energy
to a relativistic beam. Traveling wave accelerators are specifically designed to have
small amplitudes in the non-synchronous space-harmonics, since these carry away RF
power without contributing to acceleration[56].
The equations of motion for an electron in the presence of this field are found
from the Lorentz force. For 0 <z < L,

dp eE

—_— = - —w(t —t, o 4.2
= meccos(kz w(t —to) + @) (4.2)
dz pC

— = — 4.

m ST (4.3)

where p = 37 is the momentum and ¢, is the initial RF phase for the fiducial particle,
which enters the accelerator at t = t,. I will assume that —eE > 0, so that the fiducial
particle is accelerated for ¢, = 0. If ¢, < 0, then the fiducial particle is “behind the
crest”, meaning that if it is sufficiently non-relativistic, it may fall further behind; if
it falls back far enough (or if ¢, < 7/2) the particle will be decelerated. Similarly,
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if ¢, > 0, the fiducial particle is “ahead of the crest”, meaning that if it is not fully

relativistic, it may fall back to be nearer the maximum accelerating phase.

4.1.1 Approximate Treatment for Highly-Relativistic Par-

ticles

In general, these equations are unsolvable by analytic means, being coupled and non-
linear. However, for p2 > 1, the electrons are fully relativistic, and z = ¢(t — t;),
where t; is the time at which the particle enters the accelerator. In this case, the

acceleration experienced by any particle is constant:

dp E o ‘
Fri meccos(—w(t1 to) + @) (44)

The solution, for t; <t < t; + L/c,

eE

p(t) = p(t;) — (t — t;) cos(—w(t; — to) + Do )s (4.5)

may be used to determine the final momentum after an accelerating section of length

L:
eEL
Pr=Di — - C2 cos(—w(ti — to) + ¢0), (46)

€

where p; = p(t;) and pr = p(ts).

Since the “useful” electrons out of the RF gun typically have p > 4, giving 8 > 0.97,
this result is of more than academic interest. Though it is far from exact, it is a useful
approximation, and aids the understanding of the detailed results.

The quantity ¢; = —w(t; — t,) + @, is the initial phase for some particular particle,
even if the particle is non-relativistic. However, for a particle that is initially fully
relativistic, the initial phase is also the RF phase throughout the accelerator section.
Hence, if it is desired to accelerate a bunch of relativistic particles with small final
momentum spread, it is necessary to inject these particles into the accelerator over a
‘ sufficiently small time-interval. Suppose that the bunch initially has no momentum
spread, and that ¢, = 0 to obtain maximum acceleration of the fiducial particle.
Assume further that the fiducial particle is at the center of the bunch, which has

length ét. Then the spread in final momenta will be

6p = (pr — Pi)(1 — cos(wdt/2)), (4.7)
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¢EL

mec?

where p; = p; — is the final momentum of the fiducial particle. For wét < 1,

this implies a fractional momentum spread of

@:Pf—Pifﬁ

, 4.8
Ps ps 8 (48)

where §¢ = wét is the phase spread of the incoming beam. If the beam is accelerated

to very high momentum relative to p;, then this becomes

) Yok
2 _29 (4.9)

Pt 8
and one sees that the final fractional momentum spread is, to first order, quadratic
in the initial phase spread if one injects the fiducial (and central) particle at the
crest. Hence, in order to obtain a small final momentum spread, one must inject a

sufficiently short bunch into the accelerator:

bp < 18 (—52) . (4.10)
Ps desired ]

For the SSRL Injector, a fractional momentum spread of less than 0.5% was
needed, to accommodate the acceptance of the synchrotron[26]. Hence, from this
analysis one would conclude that an initial total phase-spread of less than about 12°
is required, if one ignores the initial momentum spread in the RF gun beam. I shall
show below that, however, that one cannot ignore the initial momentum spread, if
one really desires such low final momentum spread. Note that injection with the
central particle off the crest will only increase the final momentum spread for a beam
with no initial momentum spread, while for a beam that has some initial, time-
correlated momentum spread, injection off the crest can be used to compensate the

initial momentum spread, as will be seen below.

4.1.2 Numerical Solution and the Contour Approach

Computer methods can easily solve equations (4.2) and (4.3) to high precision, so
it is not necessary to attempt to find a solution that is valid for non-relativistic

electrons. For the current project in particular, the input longitudinal phase-space
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distribution is itself not amenable to analytical treatment, but is rather obtained from
numerical simulations. Hence, I will move on to discuss computer-aided treatment of
this problem:.

For some of my computer studies, I employed another pair of equations{41], which
are useful if longitudinal motion is one’s only interest. Rather than start with the

Lorentz equation, one starts with[31]

dm.c?y
dt

= —ev-E, (4.11)

and assumes the velocity to be parallel to electric field. One form of the resultant

equations is (reference [41] gives these equations and a detailed discussion of them)

d

é — Ecos2r(( —7) (4.12)

dr 1

— = =, 4.13

-3 (413
where { = £, A = 22, & = — <% and r = . The RF phase for any particle at z=0 is
particle is ¢ = —277, which is consistent with the convention I used above. In terms

of normalized electric-field £, the change in 4 in a section of length L for an initially
relativistic particle is

Ay = EA( = 5% (4.14)

There is no particular advantage to these equations over a similarly-scaled form
of equations (4.2) and (4.3) for numerical work—1I state them because I happened
to use them in some of my computations. Specifically, I have written a computer
program (linac.cg, where “CG” stands for “constant-gradient”) that integrates e-
quations (4.12) and (4.13) for a set of particles distributed on a grid over some region
of initial (¢, p) space. The program computes the final momentum and phase for each
particle, and displays the results in contour-plot form. From these, one can deduce
the resultant momentum spread and phase spread for any particular injected bunch
simply by finding which contours are intersected when the phase-space distribution
for the injected bunch is overlayed on the contour graphs. Note that a different plot

must be generated for each value of E. For the SLAC-type constant-gradient sections
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used for the SSRL pre-injector[70], the nominal energy gain per section is given by/[6]

A~y = 20.4y/P(MW), (4.15)

where P is the RF power to the section. Combining this with the previous equation,
using L = 3.048m and A = 0.105m, I obtain

£ = 0.703,/P(MW). (4.16)

While nominal RF power per section for the SSRL Pre-injector Linac is 30 MW,
the RF power to the first section is limited operationally to 20 to 25 MW. Since the
energy gain scales only as the square-root of the momentum, the differences among
these are relatively minor. For this reason, and for brevity, I present only the results
for 20 MW RF power, and display these in Figures 4.1 and 4.2.

The horizontal axis for these graphs is the phase, ¢;, at which the particle is in-
jected, while the vertical axis is the initial momentum, p;. As before, ¢; > 0 indicates
injection ahead of the RF crest. The contours show lines in (¢;,p;) space of con-
stant final momentum, p{, or final phase, ¢;. The momentum contours are spaced
by Ap; = 4.2 and the phase contours by A¢s = 10°. The labels for the contours are
positioned so that the contour closest to the lower left corner of the first letter in the
label is the one to which the label applies.

A bunch with an initial longitudinal phase-space distribution that matches a con-
stant final momentum contour will be accelerated to zero momentum spread, and
similarly for a bunch that matches a constant final phase contour. Regions where
many lines occur in a small area indicate rapidly changing final parameters as a func-
tion of initial parameters. Regions where the contour lines are widely spaced indicate
slowly changing final parameters as a function of initial parameters.

Examination of Figure 4.1 shows that, as expected from the above analysis, the
final-momentum contours are most widely spaced for ¢; near zero. The region of
widest contour spacing moves to positive ¢; as the initial momentum decreases be-
cause, for a bunch of non-relativistic electrons, injection at slightly positive ¢; results
in the bunch center falling back toward ¢; = 0 as the electrons gain energy. If such
a bunch were injected at ¢ = 0, it would fall back to ¢ < 0 before reaching rela-
tivistic velocities, and as a result the bunch momentum would be decreased while its

momentum spread would increase.
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Figure 4.1: Constant Final Momentum Contours
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For a bunch centered at some phase -—55° X ¢ <0, the smallest final momen-
tum spread will be achieved when the higher-momentum particles come in behind
the lower-momentum particles. Similarly, for a sufficiently high-momentum bunch
centered on some phase 0 ~ ¢; <~ 30°, the smallest final momentum spread will be
achieved when the higher-momentum particles come in ahead of the lower-momentum
particles. In both cases, one can understand this by imagining that a sinusoidally-
varying momentum change is simply being added to the initial momenta, as illustrated
in Figure (4.3).

For the second of these regions, as the bunch center is moved to smaller mo-
mentum and/or larger ¢;, one sees another effect come into play. The slope of the
constant final-momentum contours changes so that higher-momentum particles must
be injected behind lower-momentum particles. In this regime, velocity variation is
important. It is necessary to inject the higher-momentum particles so that they will
eatch up to thie lower-momentum particles as the bunch travels down the accelerator.
This bunching can contribute to small momentum spread, since once bunched the
particles will travel the remainder of the accelerator section at the same phase (pro-
vided they are all relativistic by the time they are bunched), thus experiencing the
same energy gain in the remainder of the section. (In the jargon of the field, one says
that members of such a group of particles all have the same “asymptotic phase”.)

The same velocity effect also occurs in the first of the regions mentioned in the
paragraph before last, it simply does not cause a change in the slope of the contours,
since the slope is required to be the same from both considerations of sinusoidal field
variation and velocity variation in the bunch.

For ¢ R 90°, the slope of the constant final momentum contours changes again.
In this region, higher-momentum particles must be injected first so that they are
decelerated more than lower-momentum particles.

Centered around ¢; = —90° is a “chaotic” region, where the final momentum and
phase of an injected particle depends strongly on the initial momentum and phase.
Particles injected into this region are first decelerated, then accelerated again as they
fall back relative to the traveling wave. Some of the particles injected here are back-
accelerated, exiting the accelerator section at z = 0, while others finally exit at z = L

only after many cycles of acceleration and deceleration. As expected, the width of this
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region decreases at the initial momentum increases, since particles of higher initial
momentum loose less velocify when decelerated by the same fields, and eventually
become captured at an accelerating phase.

Figure 4.2 gives additional insight into the longitudinal dynamics. One sees that
the contour ¢y = 0 lies in the region ¢; > 0, approaching ¢; = 0 as p; increases. This
is because in order for a slow-moving particle to end up at ¢ = 0, it must be in-
jected ahead of the crest so that the velocity-of-light RF wave catches up to it as
it becomes relativistic. This effect is less important when the particle is initially
‘ highly-relativistic, which is why the contour approaches ¢; = 0 as p; increases.

This Figure shows that, by and large, in order to obtain a short bunch, one must
first have a relatively short bunch. The slight slope to the constant ¢ contours around
¢; = 0 indicates that it is best to inject the lower momentum particles ahead of the
higher-momentum particles in OP bunch, so that the former will fall back to the same
-phase as the later before the entire bunch becomes relativistic.

In order to get both a short bunch and a small final momentum spread, it is
necessary that one inject the bunch along a constant ¢r contour in a region where
the constant pr contours are widely spaced. Ideally, one would find two contours, one
for constant ¢ and one for constant ps, that coincide over the required interval of p;,
and inject one’s bunch with the required phase-space distribution, ¢; vs p;.

Typical operating conditions for the RF gun produce a peak momentum of p = 3,
with momenta down to p =4 accepted (giving approximately +10% momentum
spread about p = 4.5 for the “particles of interest”). As was demonstrated in Chap-
ter 2, the higher momentum particles exit the gun first, with the particles of interest
occupying roughly 25 ps, or roughly 25° of S-Band phase. From the above discus-
sion, it is clear that this longitudinal phase-space distribution must be altered so that
the higher-momentum particles enter the linac after the lower-momentum particles.
(The region ¢; > 90 is ruled out because the particles are decelerated before being
accelerated, which is undesirable as it would lead to increased space-charge effects.)
This can be accomplished by means of magnetic compression, as will be shown in the
next section of this chapter. For present purposes, I shall assume that the mdgnetic
compression system can supply the desired momentum-time correlation, and attempt

to locate the optimum phase for injection in order to get the smallest final momentum
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spread and bunch length.

I used linac_ég to compute the constant final-momentum and final-phase con-
tours for the region —50° < ¢; < 90° and 3 < p; < 6, with A¢; = 1° and Ap; = 0.1.
For reasons discussed below, the region —10 < ¢; < 20 is of particular interest. This
region is shown in Figures 4.4 and 4.5.

From the previous set of Figures, one sees that for ¢; ~ —20°, the contours of
constant pr and those of constant ¢; are most nearly parallel. This indicates that
if the initial phase-space distribution could be shaped to match the contours in this
region, then this might be the best place to inject. The problem with injection in this
region is that since the contours of constant p; are equispaced in Apy, the fractional
momentum spread between the contours in this region is larger than for those just
ahead of the crest. In addition, these contours are much more closely-spaced in ¢;
than those nearer the crest. Hence, injection in this region is unlikely to yield good
results in practice, since it is unlikely that the initial bunch phase-space could be
tailored to the contours sufficiently well to obtain low final momentum spread.

From the Figures, I conclude that injecting closer to the crest, but still behind it
by a few degrees looks promising, as does injection ahead of the crest by perhaps 15-20
degrees. The latter region suffers more from crossing of the contours of constant ¢; and
constant p;. Clearly, some compromise will have to be made between minimum final
phase-spread and minimum final momentum spread. How one makes this compromise
depends on one’s application. For example, if additional accelerator sections follow,
then it is probably best to inject into the first section so as to minimize the phase-
spread at exit, so that all particles have, as much as possible, the same phase in all
subsequent accelerator sections. This will ensure that the absolute momentum spread
does not grow, in additional to giving the shortest bunch. Asthe bunch goes through
subsequent sections, the fractional momentum spread will be further decreased.

The SSRL preinjector has a total of three accelerator sections. Hence, I will
attempt to optimize injection into the first section primarily in order to obtain a
short bunch. Having narrowed down the range of initial phase to be considered, it is
next necessary to include details of the initial bunch phase-space distribution. This
requires discussion of magnetic compression, which I go into immediately in the next

section, returning to the combined problem in the section after next.
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4.2 Magnetic Bunch Compression

In the previous section I have shown that, roughly speaking, what one wants is to
deliver to the linac the shortest possible bunch. More precisely, one wants a bunch
with a longitudinal phase-space distribution at the beginning of the linac that will
be compressed further during initial acceleration. This depends upon being able
to reverse the time-order of electrons within each RF gun bunch, so that the lowest
momentum particles enter the linac first and subsequently fall back to the same phase
as the highest momentum particles. Hence, a magnetic bunching system will have to
be able to accomplish some degree of time-order reversal of particles in the bunch,
over a sufficiently large momentum interval. However, this is typically only slightly
more difficult that producing a very short bunch at the entrance of the linac, and so
it is convenient to think in terms of how to produce a very short bunch. This allows
a separation of the problem of magnetic bunching from the details of longitudinal
dynamics in the linac, and hence prevents the issues from being obscured by too
much detail at the outset. Once the mechanism of magnetic bunching has become
clear, it is then possible to go back and consider the effects of longitudinal dynamics

in the first part of the linac.

4.2.1 First Order Solution for Bunch Compression

Consider, then, that it is desired to produce a very short bunch at the entrance of
the linac. It is known that the bunches from the gun have a particular momentum
vs. exit-time characteristic, namely, that higher-momentum electrons exit the gun
ahead of lower-momentum electrons. It is convenient to use the momentum deviation,
§ = (p — Po)/Po, in terms of which, for a sufficiently small momentum interval about

the central momentum p, = (87)o,

dtcxit —-
texit(é) ~ to + ( d5 )06, (41()

where t.,;, refers to the time’of a particle’s exit from the gun and

dt‘exit
( = ) < 0. (4.18)
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(Examination of the longitudinal phase-space distributions shown in previous chap-
ters shows that, for the +10% momentum spread that will be used, this linear ap-
proximation is not exact. However, it is again not my purpose now to deal with this
detail, but rather to explain the principle.) What is desired in order to have a very

short bunch at the end of the bunching system is that
tarrival(6) = texit(6) + Atgign:(6) = constant, (4.19)

where the subscript “arrival” refers to arrival at the end of the bunching system (i.e.,
the entrance to the linac) and where I use Atgig, to indicate that the time-of-flight is
an interval rather than the time of some event. Combining these and using the linear

approximation of equation (4.17), I obtain

tmjva1(5) = to + (df;git) 6 + Atﬁjght(é) = constant, (420)
;nd hence 4 : A
tarrival | [ dtexit taight |
(o) - (fn) (M) L
From this last equation and equation (4.18), one can see that
dAtﬁ_ight dtexit
—_— =- 4.22
() =~ (%) 422

must be obtained at the end of the bunching system. In words, since higher mo-
mentum particles come out ahead of lower momentum particles, they must be put
through a system in which the time of flight is longer for high-momentum particles
in order for all particles to arrive at the end at the same time.

For particles that are not fully relativistic, time-of-flight depends upon both ve-
locity and the length of the path taken

Atﬂ_‘lghg = S—é? (4.23)

where s(é) represents the length of the path taken by a particle with momentum
deviation é. Since 8 = p/\/zp2 + 1), it follows, to first order in &, that

l:_];+(5o-_1_'

5= 7 )8 (4.24)
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Expanding s(6) to first order as well, one obtains

dAtﬁight So 1 1 ds \

=g oy — (). 4.25

( Y; ) <P )t g2 (d&)o (4.25)

The first term of this expression shows that for highly relativistic particles, for
which 8, — 1, the effect of velocity variation on time-of-flight disappears, as would be
expected. For non-relativistic particles, this term is negative, indicating that velocity
effects will fight the bunching process. This is again expected, since the higher velocity

~of higher-momentum particles will help them to “pull ahead” even further. Clearly, if

bunching is to occur, it will come from the variation of path-length with momentum.

4.2.2 Achieving Momentum-Dependent Path Length

Until now, I have said nothing about how one achieves a momentum-dependent path-
length, although the name of this section is an indication. If particles of different
momenta are to have different path-lengths in going through a transport line, they
must of course first be made to take different paths through that system. In addition,
these different paths must have different lengths. For example, merely sending parti-
cles of different momentum through a drift space at different transverse positions will
not produce the desired effect. To see what is needed, consider first the expression
for the path length in a transport line without bending magnets, where the central

particle travels a straight-line path:
s(6) = [ y/1+ x50, 6)dse, (4.26)
0

where the integration is with respect to the path length for the central particle. To

first order there is no variation of path-length with momentum in such a beamline.
Now allow the central particle to traverse a section of a wedge bending magnet
that bends it through an angle Af,, as illustrated in Figure 4.6. The path length
for the central particle is given by As, = p,A#b,, where p, is the bending radius for
the central particle. For an arbitrary particle, the path length is given by As = pAé,

where

p=po(l+6), (4.27)
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and where 6 is the angle the particle is bent through in reaching the reference plane,
as illustrated in Figure 4.6.

Particles other than the central particle will in general enter the bending magnet
with different momenta, positions, and slopes relative to the central particle. Let x;
and x; be the initial position and slope of a particular particle, respectively. Some

trigonometry reveals that the angle through which an arbitrary particle is bent is

X3

Af = A, + atan(x]) + asin {p° : sin(A#f,) — sin [Af, + atan(xi')]} . (4.28)

So far, no approximations have been made beyond assuming an ideal, hard-edge
magnetic field. In order to get a first-order expression for the differential path-length
in an infinitesimal section of a bending magnet, I expand to first-order in A#,, x;,
and x|, obtaining

As = pAl = Ab,(p, + x3). (4.29)

The initial coordinate x; is at this point arbitrary. I am interested, however, only
in momentum-dependent effects, and hence I will assume that the position of any
particle at the entrance is a function only of its momentum, through the dispersion
function D, defined by

x;(8) = D& + O(8?). (4.30)

Hence, the differential path-length is
D

As = As (1 + p—&), (4.31)
from which I conclude that

ds se D(s,)

IF = B .32

= /0 ds., (4.32)

(I use the total derivative because x; and x| are assumed to depend on &, i.e., this
quantity is not necessarily the matrix element rs¢ (it is equal to 156 only when the
integration starts from a point where D=0). )

Referring back to equations (4.22) and (4.25), one sees that positive %3 is required
for bunch compression. This is obtained when D and p have the same sign, which
is always the case for dispersion generated within the magnet itself (otherwise %

could be negative for a lone bending magnet, which is absurd). I define the sign of D
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with respect to a right-handed coordinate system (x, y, z), with 2 along the direction
of motion and y along the ﬁpward vertical, so that for positive dispersion a larger
momentum deviation implies a larger x coordinate. Hence, positive dispersion is
generated by a bend to the right. The sign of p, as well as the sign of 4, for a bending
magnet is then required to be the same as the sign of the dispersion it generates.
This ensures that As, is positive and that a lone bending magnet produces positive
%}. This is consistent with the conventions used by the beamline program MAD|71]
and the tracking program elegant|49].

4.2.3 Options for Implementing Magnetic Compression

From this discussion it is clear that a single bending magnet could be used to provide
bunch compression. However, there is inevitably dispersion at the end of a system
with a single bending magnet, which is undesirable as it increases beam-size, effec-
tively increasfng the beam emittance. The next obvious step is to use two bending
magnets of the same sign, with a focussing quadrupole between them to match the
dispersion to zero at the end of the second bend (see Steffen[67] for examples of such
systems). Such a system has a number of advantages, a principle one being that
chromatic aberrations can be corrected through the addition of sextupoles between
the bending magnets. However, there is the disadvantage that, since the bending
angles of the magnets are fixed by the requirement of steering the central momentum
down the center of the beamline, the bending radius p is fixed for each magnet, and
hence D and % are also fixed. Such a system is thus unsuitable for situations requir-
ing variable compression, such as is needed for the RF gun, where dA‘dgil varies with
Po (i.e., as a function of the RF field level in the gun). Since the RF gun was still
under development when the bunch compression system was being designed, it was
not known before-hand what the operating momentum would be, and hence a system
with variable compression was desirable.

For this reason it was decided to use a different type of magnetic-bunch compres-
sion scheme, namely one employing an alpha-magnet. The properties of this magnet

are covered in detail in a Chapter 3. For present purposes, I will simply state that it
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is first-order achromatic but has momentum-dependent path-length described by

sa(6) = Ka p‘%—‘s—) (4.33)

where s is in meters, g is the gradient in G/cm, K, = 1.91655, and, as above,

= (87)o- From this, it is seen that for the alpha-magnet

dsa ) 1., [Po
() -3 "

Like bending-magnet-based schemes, an alpha-magnet provides momentum-dependent
path-length because of bending and the resultant dispersion. However since the alpha-
magnet is a gradient magnet, the bending radius varies with position along the central
trajectory. The alpha-magnet has the advantage that the gradient, and hence df?,
can be varied without changing the central trajectory outside of the alpha-magnet.
While there are other systems with this property[72], the alpha-magnet is probably
the simplest. It also has the advantage of relatively small aberrations, but has the
disadvantage that there is no simple way to incorporate sextupoles for correction of
chromatic aberrations in external quadrupoles that might be required as part of the
beamline. 7

Evaluating (4.33) for § = 0, and inserting the result along with equation (4.34)

into (4.25), and thence into (4.22), I obtain the requirement for bunching

1 Po 1 Ka po dtexit
Ko |22 4+ Lay S IV S § , 4.35
c ( g i drft) (ﬁ 5o> i 28.c\ g dé (435)

where I have used

$(6) = Laritc + 84(9) (4.36)

to incorporate the effects of any drift spaces between the gun and alpha-magnet and
between the alpha-magnet and linac. It will prove useful to group the alpha-magnet
terms together, as in
Ldnft K Po ( 1 dtexit
, — — =B, ——]+ = 0. 4.37
(5 ﬁo) s \*725) T (437
Solving for the gradient, I obtain

poKi (60 - 21?0)2
[Cd#m + Larist (,30 - 51—0)]2

(4.38)
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This equation reveals a number of aspects of bunch-compression with an alpha-
magnet. Since d—fi"gii < 0 and 'ﬁo — ﬁl—o < 0, the denominator will be zero only if Lggg = 0
and the initial bunch has zero length, i.e., only if bunching is not needed. One also
sees that the longer the drift spaces, the lower the alpha-magnet gradient must be,
in order to compensate for the debunching.

The term (B, — ﬁf in the numerator combines the effects of debunching in
the alpha-magnet due to differential velocity with that of bunching in the alpha-
magnet due to differential path-length. Note that the solution (4.38) is not valid for
B, < 1/+/2, since then all terms on the left-hand side of (4.37) are negative. Hence,
for B, < 1/+/2, the alpha magnet cannot bunch, as the effects of velocity variation will
always overcome the effects of path-length variation. (This is false only if 9—3"3“ > 0,
a situation that does not apply for the RF gun.)

Taking the limit of equation (4.38) as B, — 1, one obtains

oK?Z
lim g = —27%'7’ (4.39)
T (28

which indicates that for constant bunch length and constant fractional momentum
spread (implying constant d—‘;gi*), the gradient must increase with increasing central
momentum. If, however, the absolute momentum spread is kept constant (as hap-
pens with acceleration of relativistic particles near the crest of the RF field), then
dﬁdgﬂ scales as p,, which indicates that the gradient must scale inversely with momen-
tum. A smaller gradient implies a larger alpha magnet, since the size of the central
trajectory scales as 1/,/g (see Chapter 3). Hence, bunching before acceleration is ad-
vantageous in that it decreases the size of the alpha-magnet, at the cost of requiring a
higher gradient. Similarly, as B, — 1//2 from B, > 1/+/2, the gradient must become

vanishingly small, implying a increasingly large alpha-magnet.
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4.3 Optimized Bunch Compression for the RF
Gun

— 1.

T dhn e maa i drce
11l vile pIrevious

wo sections, I discussed the principles that
choosing the injection phase and the alpha-magnet gradient for production of short
bunches with low final momentum spread. I attempted to separate the two aspects,
for simplicity in the discussion. In this section, I demonstrate how to obtain optimum
performance with simultaneous consideration of acceleration and magnetic bunching,
along with inclusion of the detailed initial phase-space. Not surprisingly, this opti-
mization is best done numerically.

I have written a program, alpha_opt, that accepts initial longitudinal phase-space
information in terms of (¢;,p;) pairs for macro-particles (e.g., from MASK or rfgun)
and attempts to find the optimum alpha-magnet gradient for a specified accelerator
phase and enérgy gain. It optimizes for either the minimum mean absolute phase
deviation or the minimum total phase-length of the final bunch, though I have used
the latter criterion exclusively in this work. Equation (4.33) is used without approx-
imation in (4.36) to give the momentum-dependent path-length. Equation (4.1) is
used for the traveling wave field. To simulate particle motion in the accelerator, I
employ equations (4.2) and (4.3) (scaled for more efficient computation), which I in-
tegrate using the so-called “leap-frog” method[61], which is second-order accurate in
the time-step. Typically, I find that taking time-steps smaller than 30 ps makes no
change in the results (i.e., no change of more than +0.001ps in the bunch length).

4.3.1 Use of alpha_opt to Optimize Bunch Compression

The combined distance, Layis, from the gun to the alpha-magnet and from the alpha-
magnet to the center of the first linac cell (where the traveling wave begins) was
‘chosen based on simulations of the gun longitudinal phase-space, the anticipated
strength and good-field-region of the alpha-magnet, and the need for a sufficiently
long drift-space to accommodate the quadrupoles and chopper. Because the gun was
still under development at the time the alpha-magnet and GTL were being specified,

I chose Layis so that compression would be feasible over a wide range of gun operating
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momenta, rather than finding an optimum for any particular beam momentum. If
Lasise were chosen to be too short, then an excessively strong alpha-magnet would be
needed in order to reduce the compression, while if Ly were chosen to be too long, an
unreasonably large good-field region would be needed to provide more compression.
Larige = 1.5m was initially chosen based on preliminary simulations with rfgun and
alpha_opt, along with knowledge of the (then preliminary) magnetic design of the
alpha-magnet. Later, Lans was increased to 1.7m in order to provide more space for
other GTL components.

More specifically, there is a 0.6m drift space from the gun to the alpha-magnet
crossing point, and a 1.1m drift from the alpha-magnet to the linac. See Chapter 5
for more discussion of the layout of the GTL.

I performed a series of alpha_opt runs starting with the MASK-generated lon-
gitudinal phase-space distribution for the RF gun operated at Eyy = 75MV/m and

.J = 10A/cm?. The linac simulation parameters were such that an initially relativis-
tic particle injected at the crest would gain 45 MeV (which corresponds to 20.7
MW RF power). I took the highest-momentum particle as the fiducial particle, and
chose to attempt to compress the beam for a variety of momentum spreads, name-
ly £10%, 5%, and £2.5%. That is, I applied a perfect momentum-filter to the
MASK-generated beam, accepting only particles such that p.(1 — {) <p < p.(1 + 1),
with D¢ = Pmax/(1 + ), where +f is the fractional momentum spread accepted. In
this way, the selected momentum range always contains the highest momentum par-
ticles. (This same capability exists on the actual beamline, where a scraper inside
the alpha-magnet can be moved into the beam from the low-momentum side.)

For each value of f, I first found the alpha-magnet gradient which produced the
shortest bunch at the entrance to the linac. I then used this gradient and sent the
bunch down the linac with the highest-momentum particle injected at the crest, fully
expecting that the result would be a less than optimally compressed bunch. The
simulations confirmed this expectation, as the data listed in Table 4.1 shows. (In this
and all subsequent Tables and Figures, At and AP are the full spread of the values,
e.g., At = tmax — tmin.) In addition, one sees that the absolute moment spread has
increased. The phase-space distributions at the linac entrance and exit are represented

graphically in Figure 4.7. Note that these graphs are of time and momentum, rather



CHAPTER 4. LONGITUDINAL DYNAMICS 230

than phase and momentum, and that particles to the left are ahead of particles to
the right. As expected, the initially higher-momentum particles pull ahead of the

initially lower-momentum particles, resulting in a longer final bunch.

Table 4.1: Optimization for a Short Bunch at the Linac Entrance

Ap/p | Q 8a At; | Ap; | Aty | Aps
(%) | (pC) | (G/em) | (ps) | (mec) | (ps) | (mec)
+10 | 110.9 | 335.40 | 1.050 | 0.978 | 3.030 | 1.808
15 | 80.3 | 338.32 | 0.724 | 0.513 | 1.285 | 0.818
£2.5 | 50.4 | 321.22 | 0.493 | 0.263 | 0.750 | 0.436

The conclusion to be gained from this result is that it is not sufficient to design
a compression system that will generate a short bunch at the entrance to the linac.
It is necessary to take into account the longitudinal dynamics in the linac in order to
ascertain whether one can indeed produce a very short bunch at the end of the linac.
In the present case, one expects that what is needed is to increase the compression (by
using smaller gradients in the alpha-magnet) so that the lower-momentum particles
enter the accelerator ahead of the higher-momentum particles. This expectation is
confirmed by alpha_opt.

I directed alpha_opt to optimize the alpha-magnet for the shortest bunch at the
end of the linac. The same linac parameters were used as before. The optimum
alpha-magnet gradients are smaller than previously found. Table 4.2 lists the results
for this optimization. The phase-space distributions at the linac entrance and exit are
represented graphically in Figure 4.8. One sees that for this optimization the increase
in the absolute momentum spread is significantly smaller than for the previous opti-
mization. The explanation is that the final bunch length is achieved a relatively short
distance into the accelerator section (because the particles are already relativistic),
and hence in the previous optimization the bunch had a large phase-spread during

most of the acceleration, resulting in an increase in momentum spread.
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Table 4.2: Optimizations for a Short Bunch at the Linac Exit

Ap/p Ba At; Ap; Aty | Apy
(%) | (G/em) | (ps) | (mec) | (ps) | (mec)
+10 314.92 | 2.548 | 0.978 | 1.139 | 1.112
+5 319.30 | 1.556 | 0.513 | 0.719 | 0.527
+2.5 { 304.24 | 0.810 | 0.263 | 0.496 | 0.297

4.3.2 Optimization of the Injection Phase

For Ap/p = £10%, I have done an additional series of simulations, designed to inves-
tigate the effect of the initial phase of the fiducial particle. In particular, I repeated
the optimization for a series of values of the initial phase of fiducial particle. The
results are listed in Table 4.3 and displayed graphically in Figure 4.9. Notice that
the smallest final momentum spread and the highest average final momentum are
achieved by injecting the bunch 10 — 15° ahead of the crest, so that it falls back
to the crest before becoming fully relativistic. The smallest final bunch length is
achieved for ¢, = 20°. As might have been expected from the contour method of the
previous section, the optimizations for highest total momentum gain, smallest final
momentum spread, and smallest final bunch length are to some extent incompatible,
though not grossly so. While some advantage in terms of final bunch length is ob-
tained by accelerating well off the crest, the advantage is small and is obtained at
the expense of considerably higher final momentum spread. That this should be so is
confirmed by the contour-plots of the first section, where one sees that the contours
of constant final phase become more widely spaced as ¢; increases from zero up to
around 90°. The explanation is, perhaps, that injecting further from the crest allows
a longer time for the particles to bunch before they are fully relativistic. Presumably,
if this explanation is correct, one would find the optimum injection phase for the
shortest bunch becoming smaller as one decreased the rate of acceleration.

The reader may notice that the numbers for ¢, = 0 in Table 4.3 are different from
those in Table 4.2. The reason for this is that for the optimizations presented in Table
4.3, I used a sample of the MASK-generated longitudinal phase-space distribution

containing only 20% of the macro-particles in order to economize computer resources,
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whereas in the previous two Tables I used all the macro-particles (3461 macro-particles
for £10% initial momentum spread). Each set of data is self-consistent in the size of

the sample used.

Table 4.3: Optimizations for Ap/p = £10% for Various Injection Phases

®o ga Aty | Atg | (ps) Apsg
(degrees) | (G/em) | (ps) | (ps) | (m.c) | (m.c)
-25 313.36 | 2.641 | 1.230 | 76.858 | 1.489
-20 314.08 | 2.580 | 1.193 | 81.339 | 1.416
-15 314.60 | 2.536 | 1.162 | 85.082 | 1.340
-10 314.90 | 2.511 | 1.137 | 88.104 | 1.257
-5 315.11 {2494 | 1.116 | 90.403 | 1.182
0 315.22 | 2.485 | 1.096 | 91.994 | 1.110
) 315.07 | 2.497 | 1.079 | 92.899 | 1.034
10 314.80 | 2.520 | 1.063 | 93.127 | 0.964
15 314.40 | 2.553 | 1.046 | 92.701 | 0.918
20 313.81 | 2.603 | 1.029 | 91.649 | 0.973
25 313.01 | 2.670 | 1.011 | 90.000 | 1.087
30 312.00 | 2.757 | 0.991 | 87.800 | 1.201
35 310.68 | 2.871 | 0.971 | 85.085 | 1.320
40 308.92 | 3.026 | 0.945 | 81.909 | 1.431
45 306.67 | 3.326 | 0.916 | 78.333 | 1.537

4.3.3 Optimizations for Various Current Densities

To obtain predictions of the maximum peak currents that might be obtained with the
SSRL system, I have done a series of optimizations for (Ap/p); = £10%,£5% and
+2.5% using MASK-generated initial longitudinal distributions for Ey, = 75MV/m
and 0 < J < 80A/cm?. Since the initial longitudinal distribution is affected by space-
4charge in the gun, it is necessary to do the optimization for each current level. I chose
¢, = 15° as a compromise between minimum bunch length, maximum momentum
gain, and minimum momentum spread. As before, I assumed 45 MeV as the linac
energy gain. The results are summarized in Table 4.4 and in Figures 4.10 through

4.12. (Note that the data points in the figures are connected as an aid to the eye,
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and not to indicate any assumed variation in the quantities between data points.)

Table 4.4: Optimizations for Various Cathode Current Densities

J Ea Aty | Atgmea | (Pr) Aps | APfmad | Q (I)
(A/em?) | (G/em) | (ps) | (ps) | (mec) | (mec)| (mec) | (pC) A
(Ap/p); = £10%

0.2 313.20 | 1.070 | 0.292 | 92.737 | 0.906 0.263 2.3 2.1

10 314.36 | 1.097 | 0.278 | 92.700 | 0.922 0.262 110.9 | 101.1

20 315.20 | 1.121 | 0.287 | 92.661 | 0.951 0.267 | 217.8 | 194.3

40 318.61 [ 1.193 | 0.277 | 92.630 | 0.979 0.265 | 416.6 | 349.2

80 321.28 [ 1.272 | 0.315 | 92.573 | 1.027 0.275 762.8 | 600.7
(Ap/p)i = £5%

0.2 313.40 | 0.879 | 0.183 | 92.896 | 0.556 0.130 1.7 1.9

10 318.51 | 0.685 | 0.142 | 92.879 | 0.537 0.128 80.3 117.2

20 318.30 | 0.802 | 0.157 | 92.842 | 0.577 0.138 155.6 { 194.0

40 . 329.60 | 0.567 | 0.100 | 92.850 | 0.540 0.128 | 289.3 | 510.2

80 339.68 | 0.494 | 0.090 | 92.850 { 0.531 0.126 501.6 | 1015.4
(Ap/p); = £2.5%

0.2 293.80 | 0.531 | 0.100 | 92.949 { 0.280 0.066 1.1 2.1

10 303.48 | 0.475 | 0.084 | 92.943 | 0.276 0.066 50.4 106.1

20 309.94 | 0.432 | 0.086 | 92.934 | 0.278 0.069 94.6 219.0

40 325.18 1 0.457 | 0.086 | 92.953 | 0.262 0.065 162.8 | 356.2

80 335.18 | 0.409 | 0.087 | 92.960 | 0.281 0.062 | 260.7 ! 637.4

4.3.4 Effects of Transport Aberrations

These predictions of high peak currents neglect space-charge forces in the gun-to-linac
transport line and in the linac itself. They also neglect the effects of non-chromatic
ts and uspg terms (“aberrations”) in the alpha-magnet, and of field errors in the
‘alpha-magnet (see Chapter 3). Other effects that are not included in the analysis are
wake-fields in the accelerator section. In Chapter 3, I discuss the effect of field errors,
and show that the effect of field errors on rs; matrix elements is small, from which I
conclude that the ability of the alpha-magnet to compress the bunch is unaffected by
field errors.

To evaluate the effects of space-charge, both in the GTL and in the accelerator
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section, it would be necessary to employ a program such as PARMELA that is capable
of simulating bearh-transport with space-charge. Unfortunately, PARMELA does not
include alpha-magnets, nor does time permit me to modify the program to remedy
this deficiency (more would be required than simply inserting the transport matrix).
In addition, the space-charge algorithm used by PARMELA is not well-suited to use
for thermionic RF guns, where there is a large velocity spread in the beam. Finally, I
have not found that PARMELA performs accurately in calculating simple test cases,
such as the spread of a uniform cylindrical beam. Hence, evaluation of the effects of
space-charge in the GTL must await the development of a suitable program, and will
not be pursued here.

However, the program elegant([49] is capable of accurately simulating the GTL,
ignoring space-charge. elegant includes chromatic aberrations (see Chapter 5) in the
quadrupoles and alpha-magnet as well as other aberrations in the alpha-magnet (see
Chapter 3). I will discuss the GTL optics and such issues as chromatic aberrations
in Chapter 5. For the present, I simply present the results of elegant simulations of
the GTL and the first linac section, which use the same initial phase-space data as
was used in the previous calculations. That is, the elegant simulations took initial
phase-space data generated by MASK for E,; = 75MV/m, for a range of current
densities, and for initial momentum spreads of 5% and +10%. The results are
shown in Figures 4.13 and 4.14, which are to be compared to Figures 4.10 and 4.11,
respectively.

In addition to showing the peak current at the end of the linac section, I have
shown the peak current at the gun exit, and the cathode current (i.e., 7R2J), to
illustrate the increase in peak current due to the bunching processes in the gun and
GTL/linac. I have not shown the momentum spread, in order to use the space for
other quantities, and because it is essentially the same as the previous results.

One sees that the peak currents predicted by elegant are considerably less than
those obtained previously. The reason is that path-length aberrations in the GTL
increase the broadness of the momentum versus time curves, making compression
to very short bunches more difficult. In addition, the transmission through the first
section is only 70% (particles are lost on the approximately 18 mm diameter apertures

between linac cells), which reduces the amount of charge reaching the end of the
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linac. Figure 4.15 shows the evolution of the longitudinal phase-space in the GTL,
for J = 10A/cm? and AP/P = +10%. As one would expect, the bunch length at the
alpha-magnet entrance is greater than that at the gun exit, due to the higher velocity
of the lead particles in the bunch.

The broadening of the longitudinal phase space is due to path-length-affecting
aberrations in the quadrupoles and drift spaces between the gun and alpha-magnet.
To see that this is reasonable, note that for a drift space of length L,, the path length
traveled by a particle with non-zero slope is

L,
L=Loy1+x?2+y2xL,+ -3—(x'2 +3). (4.40)

At the gun exit, x__ = y._. ~ 10 mrad, and the straight-line distance from the gun
exit to the alpha-magnet entrance is 60 cm. The path-length increase for x' = x[
and y' = y!_. is 60pm, which corresponds to a time delay of 0.2 ps. Since there are
‘particles in the beam with x’ and y’ the several times the RMS value, the broadening
seen is larger than this estimate. As a result of such aberrations, the phase-space at
the linac entrance differs considerably from the results show in Figure 4.8, because
the latter results did not include any consideration of transverse motion.

Figures 4.13 and 4.13 also show the normalized RMS emittance and brightness at
the end of the first linac section, as well as results at the gun exit, for comparison
with those at the end of the linac. Recall that the emittance is defined as

enx = TCy/ (x2)(p2) — (pyx)? (4.41)
and the brightness as of
B, = —2=¢ (rm.c)?. (4.42)
€n,xfn,y

The emittance shown in the Figures is the geometric mean of the emittances for the
x and y planes, £, = |/EqxEny-
- The emittance at the end of the linac section is larger than that at the gun exit,
but not as large as the emittance at the entrance to the linac. The emittance is
“filtered” in the linac because particles with large transverse amplitudes are lost on
the linac disc apertures. Put another way, the emittance numbers do not refer to

the same particles, since 30% are lost. One sees that the emittance depends only
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weakly on the current density; this is due to the overwhelming effect of chromatic
aberrations. The emittance at the entrance to the linac is about twice that at the
end of the section. These points are discussed further in Chapter 5.
In addition to showing the simulation results for the emittance, I have shown the
thermal limit on the emittance for a cathode of R. = 3mm, using[16]
1 kT

€nx = Eny = =R
n,x n,y 2 c mec2’

(4.43)

where T is the cathode temperature, which is 1200°K for the SSRL gun. One sees
quite clearly that the thermal Limit is far from being approached: the emittance is
dominated by RF focusing, non-linear fields in the gun, and chromatic aberrations in
the GTL.

Figure 4.14 also shows two data points obtained by simulating the gun with a
smaller emitting area on the cathode. (These appear as crossed circles in the graphs.)
-fn particular, an emitter radius of 1.5 mm was used, with the physical cathode size
kept at 3mm radius. In effect, the region from r = 1.5mm to r = 3mm was taken
to be a “dead region” on the cathode. In this situation, particles are emitted much
closer to the axis in the gun, so that non-linear fields in the gun have less of an
effect, resulting in a smaller emittance. In addition, the smaller emittance leads to
smaller effects from path-length-affecting aberrations in the GTL, so that shorter
bunch-lengths are achieved. While the amount of charge drops due to the decrease
in emitting area, this is balanced to some extent by the shorter bunch-length, so that
the peak current at J = 80A/cm? is increased. Because of the strong effect on the
emittance, the brightness is dramatically increased. These results make a strong case
for operating the gun with such a cathode, especially since the cathode is currently
operated well below its maximum current density, meaning that a reduced emitting

area could be used with no loss of total charge.

4.3.5 Comparison with Other Injectors

The data of Figures 4.13 and 4.14 permit comparison of the predicted performance of
the SSRL preinjector (i.e., the RF gun, GTL, and linac) with other RF-linac-based

preinjectors. In order to do this, I have reviewed recent literature giving parameters
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of existing and planned injectors. There is always the chance of confusion in any
such compilation, especially since many authors do not state their definition of the
emittance or bunch length. Where doubt exists, I have assumed that the quoted
emittance is the 4-o or “edge-emittance” and that the bunch length refers to 90-95%
of the beam, since these appear to be the most commonly used definitions.

One extremely useful resource in this regard was C. Travier’s review article on RF
guns[14], which gives extensive performance data for RF guns and state-of-the-art
DC gun systems (i.e., those with high-performance guns and multiple subharmonic
bunchers). I have also taken data from T. I. Smith’s review[46], which lists several
systems planned for or already in use as FEL drivers; these are not necessarily state-
of-the-art systems. (Where Travier and Smith differ on the same system, I have
used Travier’s data, which is more recent.) I also show data points for several other
systems that are intended for FEL use[73, 74, 75] as well as SLAC’s SLC[76] (including
-damping rings) and the original SLAC injector[48].

Note that I will compare injeciors, rather than guns. From an applications-
oriented viewpoint, this is the most appropriate comparison to make among systems
using various types of guns, since it includes all of the effects that come into play when
one actually makes use of the beam from a gun. It also avoids issues such as whether
a multi-cell thermionic RF gun should be compared to a DC gun with prebunchers,
given that the multi-cell RF gun is in some sense a combined gun and prebuncher.

The data for DC-gun-based and microtron-based systems are in Table 4.5, while
those for RF guns are in Table 4.6. Two data points are listed for the SSRL sys-
tem. Both are for E;» = 75MV/m and f=0.05, but one assumes J = 40A/cm?® with
R. = 3mm, while the other assumes J = 80A/cm? with R. = 1.5mm. (These are both
consistent with less than 4 MW incident RF power, which is the anticipated upper
limit that will be supplied to the gun after some recent, but untested, hardware up-
grades.) Figure 4.16 shows some of this data in graphical form, with addition points
supplied for the SSRL system, as explained on the graph.

One sees that the SSRL system is predicted to perform quite well in terms of
peak current and brightness, achieving levels comparable to those achieve by much
more sophisticated and complicated systems. One also sees, however, that the high

brightness and high peak current are achieved by generating very short pulses, which
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are not appropriate to FEL work at wavelengths that are not very long compared to

the electron bunch length (see Chapter 1 for a discussion).

Table 4.5: Performance of DC-Gun and Microtron- Based Injectors

Project €n Ipeak | Q ot B.
7-mec-pm| A | nC | ps | A/mm?/mr?

SLC (1986)[76] 30 5400 | 8 |33 5.3
SLC 2[14] 75 580 }10.4 | 18 0.21
SLC 1[14] 43 430 | 7.7 | 19 0.47
Boeing|14] 13 350 | 4.9 | 14 12
LANL[14] 60 300 | 9.0 | 30 0.17
ALS[14] 40 500 | 4.0 | 20 0.25
~CLIO[14] 75 100 | 15 | 15 3.46
Trieste FEL[74] 50 15 015 10 0.012
UK FEL[46] 13 0] - |- 0.12
Frascatti|[75] 14 6 - - 6.1
SCA/TRW [46] 13 7 R 273
Orig.SLAC|48] 5.7 03 | - | - 0.018
NIST-NRL[73] 5 03 | 14 | 15| 0.024
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Performance of Selected Injectors
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Figure 4.16: Brightness and Peak Current for Various Injectors
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Table 4.6: Performance of RF-Gun-Based Injectors
Project €n Ipeak Q ot B. type
T -MC - pm A nC ps | A/mm?/mr?
ANL[14] 340 10-10°] 100 | & 0.17 Taser
CERN|[14] 37.5 150 9 | 30 0.64 Taser
LANL: -
AFEL[14] 2.5 350 5 16 112 laser
HIBAF[14] 9.0 270 £ |15 6.7 Taser
PHASE I[14] 10.0 200 11 | 70 1.0 Taser
SSRL:
3mm, 40A /cm? 9.5 196 0.2 1.0 4.4 therm.
1.5mm, 80A /cm? 4.8 144 0.2 0.7 17.2 therm.
BNL[14] 12.0 125 1 8 1.7 laser
CEA[14] 22.5 100 10 100 0.4 laser
DFELL[14] 1.0 70 | 0.17 | 2.5 140 laser
DFELL[14] 4.6 20-40 .05-.1 | 2-3 1.9-3.8 therm.
THEP[14) 13 1020 | .080-1|4-5| 1122 | therm.
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