
Chapter 3 

The Alpha-Magnet 

As will be discussed fully in Chapter 4, the beam directly out. of the gun is not, suitable 

for injection into a S-band linear accelerator section. Doing so would produce an 

accelerated beam with a large energy spread because of the large phase-spread the 

particles coming into the accelerator section would have in the absence of compression. 

Magnetic bunch compression is one solution to this problem, and the one which is 

most’ suitsable for use with the RF gun. Indeed, the possibilit’y of using magnetic 

compression, as opposed to RF bunching, is one of t,he at.tractive feat,ures of the RF 

gun. 

The t*heory of magnetic compression will be discussed fully in the next chapt,er, 

along with t,he motivation for using an alpha-magnet. In this chapt.er, I will describe 

t.he alpha-magnet’ and derive its main properties. First,, I will discuss t.he magnet’ic 

design of t.he SSRL alpha-magnet: which is an asymmetric quadrupole, and contrast 

this design with an alt,ernative design, namely a Panofsky quadrupole. Second, I will 

present, t.he equation of motion in an alpha magnet., and show how a scaled form of the 

differential equation can be used t,o deduce some of the magnet’s properties, without, 

int$egrat,ion. I will prove that, the transport matrices for any alpha magnet. can be 

expressed in terms of transport. mabrices for this scaled equation of motion. I will show 

how these lat,ter transport, matrices can be derived from fit,s to the results of numerical 

integration of the scaled equation of motion for an appropriately selectsed ensemble 

of particles. I will present, the results of a calculation of alpha-magnet, transport, 

ma.trices to t.hird order, along with discussion of the accuracy of the results. Having 
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calculat.ed matrices for a perfect alpha-magnet, I then discuss how to extend the 

treatment. t.o imperfect, alpha-magnets, specifically those with multipole and beam- 

hole-induced field errors. Finally, I present, the results of experimental measuremenbs 

of the SSRL alpha-magnet, including magnetic measurements and measuremenbs of 

some first.-order matrix elements. 

-- 
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3.1 Magnetic Characteristics and Design of the 

Alpha-Magnet 

The alpha-magnet. and its properties were first, described by Enge[45]. It’ is essentially 

half of a quadrupole magnet, with a symmet,ry plane at qi = 0, i.e., with a vertical 

mirror plane along the longitudinal axis. This mirror plane provides the symmet,ry 

necessary to obt,ain quadrupole-like fields in the interior of t’he magnet. Figure 3.1, 

a simplified cross-sect,ional view of the alpha-magnet, designed for t,he SSRL project, 

illust,rabes these point’s and ant,icipat,es the discussion to follow. Rather than inject’ 

t,he beam along t#he quadrupole axis (as might, be done if the magnet, where to be 

used as a combined-function dipole and quadrupole), t.he beam is injecbed through 

t’he “front,-plat,e”, i.e.. through the iron piece that. functions as an approximation t,o 

an ideal magnet’ic mirror-plane. 

3.1.1 Asymmetric Quadrupole Design 

To understand t.his in more detail, it is convenient, t,o use t.he approximation that 

t,he permeabilit~y of iron is infinite. In this case, Maxwell’s equat,ions at a mat.erial 

boundary mandate t,hat t.he magnetic field H just, out.side t,he iron be perpendicular 

to t.he iron surface. (For a full discussion of several of the points that’ follow, see 

J.D.Jackson, [31].) I6 follows t.hat t,he iron surfaces are equipodentials of t.he magnet’ic 

scalar pot,ent*ial @ M, which is related to t’he magnet’ic field by 

B=H=-V9eM, (3.1) 

where I employ Ga.ussian unit,s, and use the fact, t.hat’ B = H in air. 

An infinitely-long quadrupole magnet. is defined as one t,hat’ has a magnetic field 

given by 

B = g(qA + q&L (3.2) 

where g is t.he quadrupole gradient, and where qi, 42, and& form a right-handed coor- 

dinat,e system (The reason for t*he unusual choice of coordinat.es-( qi , 92, qa) inst.ead 

of the usual (x, y, z)-is for consist,ency wit,h subsequent, sectsions of this chapt,er.) The 
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Figure 3.1: Simplified Cross-sectional view of the SSRL alpha-magnet. 
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reader can verify that. this field satisfies Maxwell’s equations, and also t,hat it, can be 

derived from t.he magnetic pot.ential 

@Q = -gql%- (34 

Knowing the magnetic pot,ential necessary to produce quadrupolar magnetic fields 

allows one to specify t,he location of equipotential surfaces that will produce such a 

field. That is, if one arranges magnetic surfaces and suitable driving currents so as to 

obtain equipotent,ials of a quadrupolar field on the magnetic surfaces, then the region 

inside the boundary formed by the magnetic surfaces will conk& a quadrupolar field 

dist,ribution. While it. is by no means essent,ial to do so, this is t,ypically accomplished 

by a four-fold symmedric arrangement of iron, where alternate poles of t,he magnet’ 

have the same pot,ential except for a change in sign. Since the magnet poles are 

equipotentials, they must be hyperbolic in shape. (This brief exposition does not. 

show the full- power of the equipot,ential method in treating multi-pole fields, for 

which the reader should consult, ot,her sources.[6]) 

From the definibion of the quadrupole field, it. follows that the lines ql = 0 and 

qa = 0 are equipotentials with @ = 0. Hence, if a magnetic surface is placed along the 

line qi = 0 ext,ending into qi < 0, then the field in the region qi > 0 is unchanged, 

since the locations and shapes of t.he equipot,ent,ials are unchanged. This is what’ is 

done for- the asymmetric quadrupole alpha-magnet, design used for the SSRL project,. 

The reader is referred again to Figure 3.1, which exhibits the truncat,ed hyperbolic 

poles and the mirror-p1at.e along qi = 0. This design is called “asymmet,ric” because 

the hyperbola extends further horizontally than vertically, in order to obtain a large 

horizontal good field region. The deviation from the hyperbolic equipotential surface 

that is implied by truncateion of the hyperbola is made up for by “shiming” the pole 

with additional magnetic mat.erial near the upper end of t’he hyperbola. This is a 

trail-and-error process that. was carried out using t.he magnet, code POISSON[66]. 

The resultant calculat.ed gradient in the qa = 0 plane is shown in Figure 3.2, along 

wit,h measurements performed on the magnet before the beam ent,rance/exit’ hole was 

cut, in the mirror plat,e. Not,e that the way the data is normalized means t,hat. one 

should compare t.he shapes of t#he curves rather t,han the absolut,e agreement. I used 

a linearized Hall probe for t,hese measurements (as well as those present,ed below), 
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Figure 3.2: Computed and Measured Gradient of the SSRL Alpha-Magnet, 

-- 
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Figure 3.3: Measured Excitation Curve of the SSRL Alpha-Magnet, 
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t,o ensure t,hat spurious non-linearities did not. appear in the dat,a. The discrepancies 

are believed to be due in part to construction errors in the magnet., which resulted in 

deviations of the pole profile from the design. Some of the discrepancies are also due 

t,o round-off errors and convergence problems in POISSON, which cause the gradient’ 

near ql = 0 t.o become non-uniform. In any case, the non-uniformities of the gradient, 

for the magnet without a beam port. are dwarfed by t.hose introduced when the beam 

port, is cut’ into the front’ plate. I will ret.urn to t.his t,opic later in this chapter. Figure 

3.3 shows the measured excit.at,ion curve, along with a line showing extrapolating 

the low-current’ region of t,he curve bo high currents, which illust,rat,es the effect, of 

sat,urabion. Select.ed magnet, paramet’ers are listed in Table 3.1. 

Table 3.1: SSRL Alpha-Magnet Design Parameters. 

number of t,urns 
maximum current 
maximum gradient. 

inscribed pole radius 
good-field region (extent, in ql) 
gradient unif0rmit.y wit,hout, beam port’ 
depth (ext*ent’ in 92) 
resistance ner coil Q 45°C 

80 
260 A 

405 G/cm 
10 cm 
20 cm 

.5% 
40 cm 
40 mS2 

3.1.2 Panofsky Quadrupole Design 

Another magnet design that, might. be employed inst,ead of t.he asymmet.ric quadrupole 

used here is a half Panofsky quadrupole [67] depicted in Figure 3.4. Unlike standard 

quadrupole designs where the quadrupole field is obtained through the approximat,ely 

hyperbolic shape of t’he poles, the Panofsky quadrupole relies on uniform sheets of 

current to produce a quadrupole field. From 3.4 it. can be seen that. J f 0 at the pole 

surfaces, from which it, follows that’ the fields in the magnet gap are not det.ermined 

solely by t,he shape of the poles, in contrast’ to t.he sit,uat,ion for a standard qua.d- 

rupole design. The most, st,raight-forward way to calculate the fields in a Panofsky 
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Figure 3.4: Panofsky quadrupole 

-- 



. 

CHAPTER 3. THE ALPHA-MAGNET 

quadrupole is t,o use the integral form of Ampere’s law: 

J H . dl = 5. 
C 

141 

(3.4) 

In more practical units, this can be written as[S]: 

J H - dl = 0.4~1, (3.5) 

where H is in Gauss, 1 is in cm, and I is in Ampere-turns. Taking t.he int,egration 

loop as shown in 3.4 and assuming infinit,e permeabilit.y and t.hat’ H, is a function of 

x only (which must, be approximat,ely true for a magnet, that’ is wide compared 60 its 

gap- height.), one obtains 

H3 = 0.8?iF, (3.6) 

where h is the full gap of the magnet, J is the current, density in the current, sheets, 

and t. is the t,hickness of the current, sheets. _. The linear dependence of Ha on ql 

demonstrat,es that. this is indeed a quadrupole. In order to obtain Hl, one employs 

V x H = 0, from which it’ follows that. 

(3.7) 

By comparison with equation (3.2), it. is seen that, the magnet in Figure 3.4 is, in fact., 

a quadrupole, with gradient, 
0.4T 

g= hJt,, (3.8) 

where J is in A/cm*, g is in G/cm and t, and h are in cm. 

3.1.3 Comparison of the Two Designs 

A major difference between the Panofsky and asymmetric quadrupole designs for the 

alpha magnet. is the amount. of power consumed t,o produce a given gradient in a 

specified region. It, is this difference that, lead to the adoption of t,he asymmet,ric 

design for the SSRL project. 

To investigate t,his, I will assume that’ what. is desired is an alpha magnet’ wit,h 

depth D (as perceived in Figures 3.1 and 3.4), useful gap h,, and good field region G, 
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using coils made from a metal with resist,ivity p and metal packing-fraction f. Then 

for t,he Panofsky quadrupole design, the power consumed is 

PpQ = lOfJ*Ggh,p D + G 
2fJr - 5g’ 

(3.9) 

where J is the current. densit,y in the conductors, and where I have made the optimistic 

assumption t,hat. the good-field region is the same as the half-width of the coil window. 

The thickness of t.he current, sheets is 

(3.10) 

where 

(3.11) 

must, hold in order to obtain a meaningful solution. Taking J as a free parameber of 

t,he design, t,he minimum power consumption is obtained when J takes the value _. 

g 
JPQ,~~~ = 5-, 

f7r 
(3.12) 

for which the power is 

PPQ,min = 
50g*Gh,p(D + G) 

f.rr2 

For an asymmet.ric quadrupole design, the power consumed is 

PAQ = zKiGgh,pJ(D + KzG), 

(3.13) 

(3.14) 

where Kl and K2 are constanbs that, give, respectively, the ratios of the maximum x 

extent of t.he pole and the pole-root,-widt,h to the good-field region. For the SSRL 

alpha-magnet, we have Ki z 1.3 and K2 z 1. Notme that, the power consumption of 

the asymmetric quadrupole can be decreased indefinitely by decreasing J (which is 

not, the same as the current densit.y in the Panofsky quadrupole), at, the expense of 

larger coils; obviously, this is limit,ed by practical considerations such as the cost, of 

materials, water pressure drop, etc. 

If one takes the ratio of PAQ to PpQ,min, one obtains 

pAQ = 
rKif(D + K2G)J - J 

P PQ,min lO(D + G) g - c’ 
(3.15) 
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where I ignore fact,ors of order unity in making t,he approximation. The maximum 

gradient’ desired in the SSRL applicat,ion was 350 G/cm2. Hence, the Panofsky quad- 

rupole would have used more power unless the current densit$y for the asymmet.ric 

quadrupole were above about 1000 A/cm2. In fact, the coils in t,he magnet, could be 

made large enough to achieve J 5 175A/cm2, from which one can conclude that. a 

comparable Panofsky quadrupole would consume about’ six times as much power as 

the design used. 



CHAPTER3. THEALPHA-MAGNET 144 

3.2 Particle Motion in the Alpha-Magnet 

3.2.1 Scaled Equation of Motion 

Particle motion in the alpha-magnet, is best. described with the aid of a diagram such 

as Figure 3.5, which shows the cent.raI particle trajectory and the coordinate syst,em. 

In t,erms of t,hese coordinates, the magnetic field for q1 > 0 is 

B = gkm + wd, (3.16) 

where t,he constant, g is bhe alpha-magnet, gradient. The equat.ion of motion is obtained 

from t,he Lorent,z force 

F=-eE+?vxB, 
C 

(3.17) 

with E = 0, and is 

_. 

drv e v x B -=-- 
dt m,c * 

(3.18) 

Since t,he magnetic field does no work, y is constant, and can be taken outside t,he 

derivabive. Since the magnitude of t.he velocit,y is also constant, one can rewrit,e 

t.he derivatives as derivat,ives wit.h respect, to path-lengt,h, s = pet,, instead of t,ime. 

Combining these, one obtains 

d2q e 
%B 

- = -m,c2p7 ds ds2 ’ 
(3.19) 

I now define a constant, 0 by 

a2 = eg 

mec2i% ’ 
(3.20) 

or, in more pract,ical units 

a2 = 5.86674 x 10-4cm- 2 gwc4 

P-Y * 

The equat.ion of motion becomes 

d2s 2dq B(q) - = -a-x- 
ds2 ds .!z 

= --Q 
2 q 

$x(93mk) 

dq3 dql dq2 
= --Q -g3 - -j-p? -p3 

(3.21) 

(3.22) 

(3.23) 

(3.24) 
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Figure 3.5: Alpha-magnet co0rdinat.e system 
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I chose by convent,ion t.o make g > 0, i.e., I define t.he es axis to obt,ain B3 > 0 

inside t,he magnet,. This also ensures that, a2 > 0, so that. a is real and positive. To 

obtain an a-like t.raject#ory like that. exhibitsed in Figure 3.5, it is then necessary to 

have initial velocities such that 

dql 
ds’O and $0 

ds * 
(3.25) 

I wish to rewribe this equat,ion of motion once more, in such a way as t,o scale out. 

all explicit dependence on g and Pr. To do this, I define scaled coordinat,es Q = qQ 

and scaled pat,h-length S = sa. Using t’his, I obtain 

d2Q dQ Qa 
- = -dS xB(-)- 
dS2 Q g 

dQ = -dS x (Q3A Qd 

dQz = - -QI? SQs - $41, -zQz) 
dS 

Not.e that’ 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

a result, which will be useful latter, and which in fact, does not depend on the scaling 

(it is true of 2 as well). 

3.2.2 Ideal Trajectory 

From this result, one can deduce that, an alpha-magnet can act, like an achromat.ic 

magnetic mirror, that is, that. a zero-emit,tance beam injected at a specific angle, 19,, 

to the normal into a perfect. alpha-magnet will emerge at the point, of injection, at. 

t*he same angle to the normal and undispersed in moment.um. 

To see t,his, first. note t.hat. the scaled form of the equat.ion of motion does not, 

display any dependence on moment,um. Hence, t,he Qrajectories of particles wit,h 

various momenta injected int.o t,he magnet. at, the same angle are simply magnifications 

or demagnifications of one another. Since t,he scaled equation likewise does not exhibit, 

any dependence on gradient,, the same can be said of particles inject,ed int,o alpha 

magnets witch differing gradient.s. Because the scaling involves all coordinates, it, 
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leaves angles unchanged. Hence, if a closed, a-like trajecdory does exist, it has the 

same shape and the same incident. and final angles for all values of a (i.e., for particles 

of all momenta in alpha magnets of all gradients). 

Not#e that, the scaling alone is not sufficient, t.o ensure that the magnet, can be 

operated as an achromat. It is also necessary that. a traject.ory exists which exits at’ 

the injection point,, since ot.herwise the scaling would change the exit, locat,ion relative 

to the injection point. This would, of course, imply non-zero dispersion upon exiting 

t,he magnet. 

- 

Next, set. Qs = 0 and not,e that, for traject,ories st,art,ed at’ Q2 = 0 widh 2 = 0 

(implying $$ = 1) there is some initial value, Q1, of Q1 t,hat results in a traject,ory 

t.hat crosses Q1 = Q2 = 0. To see that. this must. be so, imagine starting t,rajectories 

from Q2 = 0 at various initial values of Q1. A traject,ory started at infinit,esimally 

small Qi > 0 will cross Qr = 0 at’ infinit,y, since it “sees” very little magnetic field, 

and hence is bent. toward Q1 = 0 only very gradually. As the starting Qi is increased, _. 
t.he trajectory crosses Qi = 0 at, less and less positive values of Q2, until eventually, 

for initial Qi = ($1, the traject,ory crosses Qi = 0 at Q2 = 0. 

I will denote this traject.ory by Q(S) = (~,(S),~,(S), 0), and let. S = 0 at t.he start. 

of t,he traject,ory, which is formally defined only for S > 0. By const,ruction, Q(S) is 

a solut,ion to the equations of motion. Consider a new traject,ory Q(S) defined for 

S < 0 as (8,(-S), -Q2(-S), 0). Upon inserting this traject,ory into the equation of 

mot,ion (with Qs = s = 0): one obtains for t,he left,-hand side of equation (3.26), for 

component 1: 

d*&(S) d28,(-S) 
dS2 = dS2 

= 
(S-+-S) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

Similarly, for component’ 2, one obt,ains 

d2&(S) = 
dS2 

(3.34) 

-- 
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For the right-hand-side of equation (3.28), one obtains for component,s 1 and 2, re- 

spect,ively: 

- 
i 

-&t-Q,(S))) w-s> = (- d~p21@~) 

(&w) 8,(-S> = - ( dQpQds): 

(3.35) 
(S--S) 

I (3.36) 
(L-S) 

(3.37) 

Combining these last, results, one sees that, except for t.he change of variable S to 

-S: t.he result’ant, equations are just, those t,ha,t. would be obtained by inserting Q int,o 

the equation of mot,ion. Hence, Q is a solution t,o the equat,ion of motion, since Q is. 

Furt.her, the trajectory QQ(S), defined by joining Q to 0 at S=O, is also a solut.ion. 

The subscript, Q is used from here on to represent, properties of the solution Qa(S), 

which is t,he “a-shaped” kajectory. There should be no confusion with the scaling 

parameter Q, defined .by equat,ion (3.20), since the lat,er is not. used as a subscript. 

A traject,ory has thus been demonstrat.ed to exist which starts at Q1 = Q2 = 0 with 

such values of 9 and 9 so as reach Q1 = Qi and Q2 = 0 wit,h $$ = 0, and which 

cont,inues in a mirror symmetric fashion, crossing Qi = Q2 = 0 with t,he negat,ive of 

t,he slope with which it, start,ed. The absolut,e value of this slope is denot*ed by tan(8,). 

Corresponding to QQ( S) is an alpha-shaped trajectory for any gradient, and particle 

momentum. These trajectories enter and exit, at’ the angle t?,, since slopes are not, 

changed by the co0rdinat.e scaling. 

3.2.3 Numerical Solution of the Equations 

It’ is possible to solve for Qa(S) in terms of ellipt.ic integrals[32]. However, this is 

unproduct,ive, since in the end one obtains a result. that can only be used by consulting 

numerical tables or doing numerical integration. It, is bedter to go directly to numerical 

int,egrat,ion, especially since the scaled form of t,he equation allows one t,o apply the 

results of a single numerical integrat,ion to an infinite number of combinations of Pr 

and g. 

In order t,o find t,he angle 8, and the maximum value of Qi for the tra.jectory 

Qa(S), I used numerical integration start.ing at, Qi = Q2 = 0 and searched for the 
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value of 8, t.hat, resultfed in v = 0 wh en the t#raject.ory crosses the Q2 = 0 axis 

again. To gauge t,he accuracy of the numerical integration, not.e that ab that 

l/ < 5 x lo-i6 

dQ1 c-1 d&2 
< 5 x lo-r5, 

midplane 

(3.38) 

(3.39) 

where the average are t,aken over the entire integration, which shows that the inte- 

gration is accurate t,o 14 decimal places. The Bulirsch-Stoer integrat,ion method was 

employed [61]. Briefly, Bulirsch-Stoer uses the modified midpoint’ method with poly- 

nomial extrapolation of the solution t.o zero step-size, along wit,h adaptive step-size 

cont,rol. 

In t.his fashion, I obt,ained 

8, = 0.710521980045i5 (3.40) 
. . 

= 40.709910707900” (3.41) 

S, = 4.64209946506084 (3.42) 

Qr = 1.81781711509708 (3.43) 

6, is the injection angle for achromatic mirror operaCon, i.e., t.he injection angle t,hat. 

results in the trajectory Q,(S). S, is the pat&h length of Qa(S) t,hrough the entire 

magnet,. Qi is the maximum value of Qr reached by Qa(S). These quantities are 

illustrated in Figure 3.6. 

3.2.4 Dispersion and Achromatic Path-Length 

While t,hese results are not, sufficient to fully charact,erize t-he optics of the alpha- 

magnet. (see the next. sect,ion for this), they do allow one t.o deduce some of the 

magnet,‘s most important. optical properties, namely Qhe dispersion at, the vertical 

midplane and the dependence of path-length on moment,um. For this, I revert, to 

unscaled coordinates, and write 

S,(Q) = % . 
L 

Q&k) = 5. 
a 

(3.45) 
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Figure 3.6: Ideal Trajectory in the Alpha-Magnet. 
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In more practical units, and using t,he numerical values of S, and ($1 given above 

s,(cm) = 191.655 Pr 
J .dWm) 

(3.46) 

qi(cm) = 75.0513 
d 

” 
dw=-d 

(3.47) 

Assuming that’ the gradient, g is fixed, and let,ting o, be the value of cr for the central 

particle, of momentum p0 = (PT)~, the previous equations imply that, 

s(a) = s(&J~ 

Qlb) = tllh)~. 

Expanding in 6 = (p - pO)/p, one obt,ains 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

Using this expansion the dispersive terms of 6he transport. matrix (see t,he next, sec- 

tion) from the entrance of the magnet to the “vert.ical midplane” (where the ideal 

trajectory crosses q2 = 0 with ql = qi) are seen to be 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

Similarly, the path-length berms for transport, t.hrough t,he entire magnet are 

156 = $(a,) (3.58) 
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(3.59) 

u5666 = (3.60) 

These will prove useful in checking the results of det.ailed transport matrix calcula- 

tions. They are also of interest, because t,he dispersion at, the vertical midplane and 

the moment.um-dependence of the pat,h-length are two of the alpha.-magnet,‘s most’ 

useful feat.ures. The dispersion at the vert.ical midplane allows for momentum selec- 

tion via a slit’ or scraper placed at, t,he vertical midplane. The moment,um-dependence 

of the path-len@h is, of course, necessary for bunch compression, as indicat,ed in the 

int.roduction t,o hhis chapt.er. 



- 

CHAPTER3. THEALPHA-MAGNET 153 

3.3 Alpha-Magnet Transport Matrix Scaling 

In this section I derive results that, provide the basis for a calculation of alpha-magnet. 

transport, matrices t.o third order. Transport, matrices express particle mot.ion bet,ween 

t#wo points in a beamline as a series expansion about the trajectory of a hypothetical 

particle t,hat, travels along what, is considered t.o be the ideal trajectory for the beam- 

line. Typically this ideal trajectory passes through the center of focusing elements, 

down the center of the beam-pipe, and so forth. In t,he case of the alpha-magnet, t,he 

ideal traject,ory enters and exits at, the angle 8,, wit.h q3 = % = 0. 

3.3.1 Curvilinear Coordinates and Matrix Notation 

The coordinat,es used for the transport, matrix expansion[lO] specify offsets in six- 

dimensional phase-space of a particle from the ideal traject,ory. The coordinate syst’em 

-is curvilinear; i.e., it’ follows the ideal kajectory. This subject is treat,ed completely in 

publicat,ions on part,icle beam dynamics, Wed in t.he references. Here, I will simply 

stat.e that. the position of any particle relative t.o the fiducial particle can be specified 

in terms of t,wo transverse coordinat,es, x and y, their derivatives wit,h respect to path 

lengt,h (s,) for t,he central t,rajecbory, 

dx 
x’ = ds, 

dy 
Y’= ds,’ (3.61) 

the longit,udinal distance s kaveled, and the momentum deviat,ion 6, inkoduced 

in t,he last. sect,ion. As is usually done, I form a six-dimensional vector from t,hese 

coordinates: / \ 
x \ 

X’ 

Y x= 
Y’ * 

S 

\s/ 

(3.62) 

This vector gives information about, a particle as it crosses a reference plane some- 

where in t,he beamline. The reference plane is const,ructed so that, the fiducial particle 
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passes through it. perpendicularly. I emphasize that the path-length s is not t,he dis- 

tance of a parMe behind the fiducial particle; I depart’ from convent.ion here in 

keeping t,rack of the t,otal path-length, for reasons that, will be apparent, lat.er. This 

carries no penalt.y for a beamline composed of st,atic elements, since t,he expansions 

in s - so are then of no importance. 

Transformation of this vect,or by beamline elements is expressed as a series expan- 

sion: 

Xi - Ci $ c rijxj $ c tijkxjxk + c uijklxjxkxl, (3.63) 
j jlk j/k>1 

where c, r, t: and u are the transport, matrices for some element., and summation 

indices run from 1 to 6 unless ot’herwise indicat,ed. (The reason for the lower-case 

letters will be seen present,ly.) The restrict’ed sums are used t’o obt.ain expressions 

that, comain only one instance of any t,erm xjxk or xjxkxl. This is consistent, with 

K.Brown[lO], but. differs from the definit,ion used by TRANSPORT[68] and some 

other computer programs, where the matrices are defined in terms of symmetric sums 

over all indices. The unsymmetric form also has advant.ages in a compuber program, 

namely reduction of st,orage used and reduct.ion of the number of arithmetic operations 

needed t,o transform parbicle coordinat!es. I employ the unsymmetric form exclusively 

in this work. 

The element c is unconvent,ional, and is used to keep track of cent,roid offsets. It, 

finds application in t.hree ways. First, when used in a tracking program, associat.ing a 

cent’roid offset mat.rix with an element. allows one to implement, beam misalignments 

and st,eering in a straight,-forward fashion. In addition, t.ime-of-flight, calculations are 

facilitated by the pat,h-length centroid element, which is useful in a simulat,ion that, 

has t.ime-dependent, elements [49]. Second, it is a necessary corrolary of my use of total 

path-lengt,h instead of differential path-length in the vector x. Third, in the part,icular 

case of the alpha-magnet, t,he centroid matrix can be used to calculate higher-order 

dispersive path-lengt,h terms, as will be seen below. For the alpha-magnet, and all 

ot.her element#s that, do not produce orbit. dist,ortions, only t,he cs element, is non-zero. 
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3.3.2 Relationships Between Curvilinear and Fixed Coor- 

dinates 

At. t,his point, the reader might. expect. the equat,ion of motion to be rewrit.ten in terms 

of the curvilinear coordinat,es. This is unnecessary for my purposes. All that I will 

need in order calculate t,he matrices (c, r, t,, u) is t,o express the relationship bet,ween 

the curvilinear coordinat,es x and the coordinat.es of the equation of motion, q, at. the 

entrance, vertical midplane, and exit, of the alpha-magnet, since it is bebween these 

reference planes that. I wish t’o know the transport, matrices. 

- 
At, the ent,rance of t,he alpha-magnet, (i.e., when t,he particle crosses the reference 

plane shown in Figure 3.i), the correspondence bet.ween x and q is given by 

X 

X’ 

Y 

Y’ 

I- 

s 

= 

signh )j/ZG ’ 
tan(atan( -qi /qi) - 8,) 

q3 

sQ 

S 

(P - PO)/PO 

where I have used 

The slopes qi and qb are given by 

qi = d-sin (8, + atan( 

and 

qi = Jmcos (8, + at,an(x’)), 

while the coordinates q1 and q2 are given by 

q1 = xsin8, 

and 

q2 = x cos 8,. 

(3.64) 

(3.65) 

(3.66) 

(3.67) 

(3.68) 

(3.69) 

The reader may have not.iced that. the reference plane in Figure 3.7 is pardially 

inside and parbially outside the alpha-magnet. Hence, it. would seem that in reaching 

-- 
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Figure 3.7: Reference plane and coordinates at, the entrance 
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t.he reference plane, from which transport. through t.he alpha-magnet nominally starts 

in the transport, matrix formalism, some particles have already traversed part’ of t,he 

alpha-magnet.‘s magnet,ic field. Others (those for which x < 0 in figure 3.7), will 

not. yet be inside the alpha-magnet. It. would seem that the lengt,h of a drift, space, 

for example, prior to the alpha magnet’ would need to be modified according to the 

coordinates of t.he particle, and this is effectively what is done. The prior element. 

in the t.ransport line (presumably a drift’ space) is considered to deliver all of the 

particles t,o the reference plane, with no account, taken of the alpha-magnet, fields. 

The compubation of the alpha-magnet matrices (see the subsequent, sect,ions of this 

chapt,er) takes bhis into account, so that, particles that are delivered inside (outside) 

tShe alpha-magnet are drift.ed backward (forward) to the field boundary of the alpha- 

magnet, before numerical integration. As will be seen presently, similar considerations 

apply at the exit of the alpha-magnet, and an identical procedure is followed for this 

cage. 

One could also consider const,ructing an edge-matrix for the alpha-magnet, similar 

t,o what, is done for bending magnets, but, since the entrance and exit, angles for the 

alpha-magnet do not vary bet.ween applications (as t,hey do for bending magnets), 

this is neit,her necessary nor useful. 

At the vertical midplane of the magnet (i.e., when the particle crosses q2 = 0 

inside the magnet, see Figure 3.8), a different relationship holds: 

\ 

X 

X’ 

Y 

Y’ 

7 

b, 

= 

a1 - 91 

-cl:/4 

q3 

4 

S 

(P - PA/P 

The slopes qi and qb are given by 

I 

qi = -41 - (q$)2 sin (atan( 

and 

qb = dwcos (atan(x 

(3.70) 

(3X) 

(3.72) 
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Figure 3.8: R.eference plane and coordinates at, bhe vertical midplane 

-- 
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while the coordinates q1 and q2 are given by 

159 

41 = 41 -x (3.73) 

and 

q2 = 0. (3.74) 

Finally, at. the exit, of the magnet, (i.e., when the particle crosses the reference 

plane shown in Figure 3.9), one obtains: 

X 

X’ 

Y 

Yt 
7 

6 

= 

The slopes qi and q$ are given by 

QPhl > ~sx 

t.an( S, - atan( qi /qi)) 

q3 

Q$ 

S 

(P - PO)/P 

(3.75) 

and 

s’l = -t/l - b&l2 sin (f?, - atan( (3.76) 

q; = -Jecos (@, - at.an(x’)), 

while the coordinates ql and q2 are given by 

qr = xsin8, 

and 

q2 = -xcose,. 

(3.77) 

(3.T8) 

(3.79) 

3.3.3 Coordinate Scaling 

Let the gradient, in the alpha-magnet and the momentum of t,he fiducial particle be 

specified, so that the scaling parameter Q takes a definite value, oO. Then it, is possible 

to define a new vector X that has t,he same relat#ionship to Q that x has t,o q. X is 

obtained from x by the transformation 

X = A@,) e x, (3.80) 



CHAPTERS. THEALPHA-MAGNET 160 

Figure 3.9: Reference plane and coordinates at, the exit 
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where A(a,) is a diagonal matrix, given by 

/ a* 0 0 0 0 0 \ 
010000 

,) = 
0 0 a0 0 0 0 

000100 

0 0 0 0 a, 0 

\ 000001 ) 

(3.81) 

- 
The transformat,ion from x to X transforms the fiducial part.icle, which traveled 

a particular a-like t,raject,ory Qa(saO)/ a,, into the particle that, follows the universal 

traject,ory Q,(S). To see this more clearly, note t,hat, the expression for X at, the 

vertical midplane is 

X 

X’ 

Y 

Y’ 

S 

s 

= 

& - &I 

-atan(Ql,lQ;) 
Q3 

Qb 

S 

(P - PJP 

(3.82) 

where Q’ E g. (Since angles are unchanged by the scaling, I am free to express the 

slopes in t,erms of either the Qf’s or the qi’s, even though this “transformation” is not, 

in the mat,rix A.) 

3.3.4 Scaled Equation of Motion with Dispersive Terms 

The reader may have noted an apparent inconsistency here: this vector, which is 

in scaled coordinat,es, refers to the momentum error, but the scaling was explicit,ly 

constructed so as to remove all reference to momentum. The apparent inconsist’ency 

stems from the fact that, as developed in the last section, t.he scaled equation of 

motion treats every particle (each characterized by some particular scaling constant. 

o) as t.he fiducial particle (at least. as far as momentum is concerned). What. is needed 

to incorporat,e momentum errors into the scaled equation of motion is to realize t.hat, 

one scales bhe equation wit.h aO, the CL value for t,he central momentsum, and not, wit,h 
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the particular o of every particle under consideration. The result.anb scaled equation, 

wit.h dispersive effects included exactly, is 

Q’l = - &Q’ x B(;l; 

1 dQ = -~-&Q3,09Q1) 

(3.83) 

(3.84) 

As foreshadowed at’ the end of the last, section, it, is not. entirely necessary t,o include 

dispersive effects in this fashion. One can obtain all dispersive terms in the matrices 

by taking derivat.ives wit.h respect, t,o S after revert,ing t,o unscaled coordinat,es, though 

this requires some care if it, is to be done correctly. This will be discussed in more 

detail below. One reason for inserting dispersive effects at, this point? is t.o retmain t’he 

six-dimensional transport matrix formalism. Anot’her reason, as indicat,ed at’ the end 

of the last, section and as will become more apparent’ below, is that putting dispersive 

effects into the formalism provides a check on t.he calculation of the matrix. 

3.3.5 Scaling of the Transport Matrices 

One can define transformation matrices for the vector X, with the realization that’ 

these transformation matrices apply to the scaled form of the equation of motion: 

XI _+ G + C RIJXJ + C TwKXJXK + C UIJKLXJXKXL. (3.85) 
I J/K J>K>L 

If I now substitut.e into this relation t.he definit,ion of X, equation (3.80), I obt,ain 

c AISL - G + C RIJ AJjxj + C C TIJK AJjxj AKkXk + 
m Jj J/K jk 

cc UHKLAJjXj AKkXk ALlXl- 
J>K/L jkl 

Multiplying from t,he left by A,’ and summing over I yields 

Xi + CA$‘CI $ CA~~RIJAJ~X~ $ C C A,lTIJKAJjXjAKkXkS 
I Uj J>K Ijk 

C C A,1UIJKLAJjXj-4KkXkALlXl. 
J>K>L Ijkl 

(3.86) 

(3.87) 

(3.88) 
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Using t,he fact. that, A is a diagonal matrix, this becomes 

Xi - Aii’Ci + C A,lR..A*. u DXj $ C Ai~*TijkA~XjA~Xk + C A1~‘U~~A~XjA~XkA~Xl. 
j j/k j>k>l 

(3.89) 

Comparison wit,h the definition of the makices (c, r, t, u), equation (3.63), for the 

normal coordinates gives 

Ci = A,r( a,)Ci (3.90) 

rij = A,:‘( ct:,)RtiAji( a,) (3.91) 

tijk = &l(Ct.o)‘JJijkAz( ao)Ati( ao) (3.92) 

Uijkl = A,l(a,)UijMAji(a,)Akk(a,)An(~:,), (3.93) 

where there are no sums in t,hese relations, in spit,e of the many repeakd indices. I 

have reasserted the dependence of A on a, to emphasize it, since the importance of 

this result stems from this dependence. Specifically, if the matrices (C, R, T, U) for 

the scaled equat,ion of motion can be found, t,hen t.his last result, allows one to find 

the matrices (c, r, t, u) for an alpha magnet’ run at’ some gradient. g and for some 

central momemum p0 = (Pr)O such t.hat 

eg CL&= - 
J mec2Po ’ 

A more easily used form of this result. can be obt.ained by noting t,hat# 

Aii = 1 = 
Ai;l 

CuOi + Oiy 

where Oi (Oi) is 1 (0) if the index i is an odd (even) integer. 

The expression for the matrices becomes 

Ci 
Ci = 

OiOLc, + 0; 

r.. = u 

t ijk = oia + 0. (Ojao + oj)(OkQo + Ok) 

lliju = o,fiT 01 (Oj% $ Oj)(okQ, $ Ok)(o1a, $ 01). 
1 0 1 

(3.94) 

(3.95) 

(3.96) 

(3.97) 

(3.98) 

(3.99) 
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From this one can see that, ci elements may be independent, of a, or else inversely 

proport,ional to it. rij may be proportional to oil, cri, or ai. tijk may be proportional 

to Q;~,c.$,Q:, or a:. UGM may be proportional t.o ai’, cwt, ai, a:, or cr:. 

3.3.6 Alternative Treatment of Dispersive Terms 

I indicated above t,hat it is not necessary to include dispersive effects in the mat,rix 

formalism for the scaled equation. The reason is that. in reverting t,o x, one may use 

a (which is a function of S, as seen from equation (3.51)) rather than o,, t.o obtain 

the non-dispersive matrix elements as a function of 6. This allows one to calculate 

the dispersive matrix elements from non-dispersive matrix elements, provided one 

compensat’es for the fact, that. the scaling changes the co0rdinat.e system at, the vertical 

midplane as well as t,he moment.um of the particle under consideration. That is, 

different, values of a correspond to different. values of qi, which enters the definition 

of the coordinates at the vertical midplane via equation (3.70) so that. one cannot, 

simply t,ake derivatives of the non-dispersive matrix element,s. 

Let E;(S), f,(h), tijk(s), and iiijM(S) be the mat’rices obtained by scaling with a, 

where 6 is defined with respect, to Q, by equation (3.51). All chromatic terms i!iG, ii6k, 

5;6u, and iii661 are zero, since the chromatic dependence is now taken care of by the 

functional form of E;(S), rij(S), f:ijk(b), and iiij~(S)+ The expression for transformation 

of a vect,or x into a vector f is now 

Xi = Ei(S) $ C fij(S)Xj $ C iijk(fi)xjxk + C fiijkl(~)xjxkxl* (3.100) 
43 4>j/k 4>j>k>l -- - 

If the matrices are for bhe transformation from the entrance to the exit, then there 

is no modification of the coordinate syst’em wit’h scaling, and no qualifications of t,his 

expression are needed. If the mat.rices are for the transformat,ion from the ent,rance t,o 

the vertical midplane, then the coordinate system with respect to which %i is defined 

is a function of S also, and this must be taken into account, in interpreting the result.s, 

as will be done below. If the matrices are for the transformat,ion from the vertical 

midplane to 6he exit,, then t,he coordinat,e system with respect. to which x; is defined 

is a funct.ion of 6; this case will not. be pursued here. 

Assuming, t,hen, that. t.he initial coordinates are not dependent (through t,heir 
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coordinate system or obherwise) on S, then upon expanding Iij(S), iijk( S), and UijH(S) 

in S, one obtains 

xjxk + c (fiijkl)6=OXjXkXI, 

where I work t,o t,hird order and where xi may con&in effects of coordinade system 

changes with 6. For transformations from the entrance to the exit., the Xi are unaf- 

fect,ed by coordinate syst,em changes. For transformations to the vertical midplane, it, 

is only xr that. is affected by coordinat*e system scaling, through scaling of qr. Hence, 

I shall momentarily ignore coordinat,e system dependencies and equat,e xi with the 

true coordinates in the proper reference frame. I shah then ret,urn to t.reat. the case 

of ztl for transport to the vert,ical midplane separately. 

Taking equation (3.102) literally, t,hen, one can identify the chromatic mat,rix 

elements as 

(3.102) 

(3.103) 

(3.104) 

(3.105) 

(3.106) 

(3.107) 

To treat, the case of fi for transport to t.he vertical midplane, I rewrit,e equation 

(3.100) for i = 1 as 

21 = &(a) - qydpl- = El(b) + ~~lj(fi)xj + c f:ljk(b)XjXk + c ~ljkl(~)XjXkX1, 
S>j 6>j>k 6>j>k>l 

(3.108) 
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The act,ual coordinat,e of int,erest is not, ~1 but, rather xl 5 ql( a,) - qydplane, where 
midplane . 

91 is, of course, a function of cr. Adding qi(aO) - &((Y) to both sides of equat,ion 

(3.108), I obtain 

21 = 41 (Cl!,) - &(a) $ cl(b) $ c ?lj(b)Xj + c iljk( b)xjxk + c ~ljkl(~)xjxkxl, 
S>.i S>j>k 6>j>k/l 

(3.109) 

which, when expanded in S, yields addit,ional terms not, listed in equations (3.102) 

through (3.107), wit,hout, modifying those that are listed. These additional matrix 

elements are none other than those resulting from the expansion of -&(a), which 

have already been exhibit,ed in the last section, as equations (3.53) through (3.57). 

So far, these results would seem to apply only to t.he matrices (c, r, t., u) and not, 

to (C, R, T, U). However, if one takes a0 = 1, one sees that, the mahrices (c, r, t, 

u) are numerically equal t,o (C, R, T, U), f rom which it. follows that’ the numerical 

relat,ionships between the chromatic and non-chromatic elements are the same for (C, 

R, T, U) as for the (c, r, t, u). Anot’her way of realizing that this is so is to not.ice 

t#hat, Ci, ris, tic69 and ui666 all have t,he Same SCahg wit’h a,, 8S do rij, ti6j, and Ui6jk, 

and also t,ijk and Ui6jk This can be seen from equations (3.96) through (3.99). 

An example may make all this clearer. Consider t,he element t,i62, which is given 

bY 

Since 

and 

h62(%) = 

T 
t162(%) 

162 = 
a0 

n2b) 
R12 = - 

a3 ’ 

it, also follows t.hat, 

T 12. 

(3.110) 

(3.111) 

(3.112) 

(3.113) 

(3.114) 

(3.115) 

-- 
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For rapid checks on calculat,ed matrices, or for inclusion in a comput,er program, 

it, is convenient t#o work out. the consequences of these relations for the matrices (C, 

R, T, U). I have done this, and the result,s are 

1 
R56 = 45, 

2 

1 
T566 = -45, 

8 

U 5666 = 35’ 

and 

TIGJ = $RIJ(OIOJ - OIOJ), 

UI~~J = ~RIJ(~&OJ - O&J), 

(3.116) 

(3.11i) 

(3.118) 

(3.119) 

(3.120) 

. . 
UIGJK = IJE; [o@J& - OIOJOE; - o,(oJ& + OJOK) - 2bI0J04, (3.121) 

where 01 (01) is 1 if I is odd (even) and zero’ ot,herwise, and where 6 > J 2 K. (I 

emphasize again that. these results are invalid for transport, from the vertical midplane 

to the exit, which is a case I have not treated here.) 
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3.4 Transport Matrices from Numerical Integra- 

tion 

The scaled transport. mat,rices (C, R, T, U) for the alpha-magnet, can be found from 

numerical integration of the scaled equation of motion (equation (3.83)) and fitSting. 

The technique I have used is not. confined in its application to the alpha-magnet, 

though it, is most. appropriate for elements for which there exists an equivalent of 

the scaled equat.ion of motion for the alpha magnet. Essentially, an ensemble of N 

init,ial vecbors, labeled Xc’), i = 1,2,. . . N is mapped int.o an ensemble of final vect,ors, 

labeled Y(‘), by numerical integrat.ion starting and ending at the appropriat,e reference 

planes. These vectors are t,hen required to satisfy 

Yii’ = CI + c RrJX:‘) + c TIJKXy)X;) + c UUKLXF)X;)Xt)+ 
J JZK J>K>L 

c vUKLMx~$$)X~)xfJ + q(xCi))5) , (3.122) 

which is essentially the definition of the transport’ matrices, where I’ve included a 

fourth-order matrix V. I emphasize that. the Yci) are not, calculated from this ma- 

trix expression, but are rather being approximat,ed by it,, having been calculated by 

numerical int,egration of the equation of motion with initial condition Xc’). I am in- 

cluding t,he fourt,h-order terms explicitly in order t,o show how to prevent, fourth-order 

influences from corrupting t.he computat,ion of (C, R, T, U). The fifth-order t,erms 

will be assumed to be negligible. 

3.4.1 One-Variable Terms 

In principle, one could fit this by finding the (C, R, T, U) that minimized the sum 

of t,he squared deviations of the right-hand-side from the left.-hand-side. In practice, 

t,his is compudationally difficult and also extremely inefficient. To see a more efficient, 

procedure, imagine that, one was only interesbed in calculat,ing Cr. Clearly, one would 

only need t.o track the fiducial particle. 

At, firsts sight,, one might think that, one could then go on t,o find Ru by finding 

Y for each vector of an ensemble, XcJ), of init,ial vectors, each of which had only a 

-- 
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non-zero Jth component: 

xtJ) = aJeJ, (3.123) 

with J = 1.. .6, aJ a constant, and eJ t,he unit vector for the Jth component8 of X. In 

fact, the YiJ’ values thus obtained would include the influence of not only RIJ, but 

also of all non-zero TIJJ, U~JJ, and VLJJJJ matrix elements: 

$’ = CI + h.JaJ + TIJJil; + UIJJJai + VIJJJJai + o($). (3.124) 

Obviously, one can extract. C I, IJ, R T IJJ, and UIJJJ by fit,ting a fourth-order poly- 

nomial t#o this form (assuming that, terms of fifth-order and higher can be ignored), 

if one takes a sufficient, number of values of aJ for each J. A minimum of five initial 

vectors are needed for each value of J. Since I consider only static systems, J=5 (i.e., 

path-length dependent) t$erms are all zero, so a minimum of t,went,y-five vectors needs 

t,o be integrated. As I will discuss below, I use N vectors per component. J, with N 

Cidd and N 2 5: 

xcJi) = (j - F)aJeJ, j = 1...5. (3.125) 

The reason for this particular choice of XcJj), which is symmetric about. and includes 

the origin, will become apparent below. aJ is chosen sufficiently small so as to avoid 

large contributions t,o Y from terms higher than fift.h order, while obtaining reasonable 

influence from third order terms, so that, fit.ting will yield sufficiently precise values 

for the third-order coefficients. This st.ep gives all elements Cr, RIJ, TIJJ, UIJJJ, and, 

as a useful bonus, VIJJJJ. It remains to find T IJK = TIKJ, UIJKK = UIKJK = UIKKJ, 

and UIJKL, for J > K and K > L. 

3.4.2 Two-Variable Terms 

To find TIJK and UIJKK, I integrat*e the equations of motion for a new ensemble of 

initial vectors for each (J, K) pair with J > K, described by 

XcJitKTk) = (j - F)aJeJ $ (-l)kaI<eK, (3.126) 

where j = 1. . . N, k = 1 or 2, N is an odd integer, and aJ and aK are constants. 

I now construct, a residual final vector, AY(Jj~K~k) for each X(Ji9K*k) by subtract,ing 

off the contributions of the known matrix elements. 
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AY(Ji’K*k) I = Y~Ji’K’k) - CI - C {R~MXM + TIMMX& + UrMMMXL + VrMMMX&} 
M 

= TIJKXJXK + UIJJK(XJ)~XK + UIJKKXJ(XK)~ 

+VIJJJK(XJ)~XK + VIJJKK(XJXK)~ + VIJKKKXJ(XK)~ 

+0(X5>, (3.127) 

where for brevit.y X - X (J,j*Ktk) in this equation. Using equation (3.126) and dropping 

terms of fift.h order and higher, this becomes 

Ay’Jj,“,k) 
I = Tm(j - 

N+l 
T)aJ(-l)kaK •t UIJJK((j - y)aJ)2(-l)kaK+ 

N+l 
UIJKK(j - - 

2 ) 
aJ& + VIJKKE;(~ - 

N+l 
F)aJ(-l)kai-+ 

VIJJKK((j - y)aJ)2ai $ VIJJJK((j - y)aJ)3(-ll)kaK 

(3.128) 

I define the sum and difference of the residuals for k=l and k=2 as 

Ay(Ji,K,S) E Ay(J,j,K,2) + ~y(Ji,Kl) (3.129) 

and 
~y(JtiW) E ~y(Ji,K,2) _ ~y(Ji,K,l). 

Using equabion (3.128), these evaluat(e t,o 

(3.130) 

N+l A~(J~~K*S) = 2UIJKK(j - - 
2 ) 

aJai + zVIJJKK((j - (3.131) 

and 

N+l 
AY(J’j,K.D) = 2TrJI<(j - y)aJ&K + 2uIJJI<((j - F)aJ)‘aK+ 

zVIJKKK(j - 
N+l 

2 ) 
aJ$ + sVIJJJK((j - y)a,J)3aK (3.132) 

From equation (3.131), one can find U IJKK and v1J.r~~; from the linear and quadrat’- 

ic t,erms, respect,iveIy, of a fit that. is quadrat.ic in (j - ?)a,. Similarly, equat’ion 

(3.132) indicates t,hat one can find TIJK $ &VIJKKK and UZJJK from the linear and 
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quadrat,ic terms of a. fit. t,hat. is cubic in (j - y)aJ. By doing t,he analysis for two 

different. VdUeS Of afi, one can Separate TIJK from TIJE; $ a;VIJKKK. For a general 

element, then, at, the very least, one needs bwent.y int,egrations (i.e., N=5, t.wo values 

of ae, j=1,2) for every pair (J, K), for J > K, or 20 * 15 = 300 integrations. (The 

t.wenty is the number of int,egrations per pair; the fift,een is the number of (J, K) pairs 

such that. 6 2 J > K 2 1.) Since the elements with J=5 or K=5 are known before- 

hand to be zero for a st,at,ic element., this is reduced to a minimum of 20 * 10 = 200 

int’egrat’ions for the alpha-magnet. 

3.4.3 Three-Variable Terms 

Having complebed t.his st.ep, only the elements U IJKL with J > K and K > L remain 

to be found. To obt.ain these, new init,ial vect,ors are chosen for each t.riplet, (J, K, L) 

with J > K > L: 
. . x(JLLi) = (-l)i( 

aJeJ •t aKeK + aLeL), (3.133) 

where i is 1 or 2, and aJ, aK, and aL are constant’s, 

Again, I comput,e residual final vectors AY (J,KvL,i) bv subt.ract,ing off the contri- v 

butions of all R: T, and U matrix elements calculated so far: 

Ay(JtK7Lti) f y 
I $J’K’L’i) - CI - 1 { RINXN + T INNXi + UINNNXi + VINNNNX~ 

N 
- c( TINMXNXM + (UINMMXN(XM)~ + U INNdxN)2xM)} 

N>M 

= c UINMPXNXMXP + c hNNMM(XNXM)2 

N>M>P N>M 

+ 1 (VINMPPXNXMX; + VINMMPXNXCXP + VINNMPx$MXP} 

N>M>P 

+Q(X5), (3.134) 

where for brevit.y X zz X(J*K,L9i) in this equation. Using equation (3.133) and dropping 

terms of fift.h order and higher, this becomes 

AYii’ = UIJr;LaJaKaL(-I)‘$ 

(VIJJKKajak -t VIJJLLaiat + vIKKLL&af,)+ 

(vIJKLLa,JaKat + 12VIJKKI,aJ&a~ + VIJJKLa~aKaL). (3.135) 
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I now form the difference of t.he residuals for i=2 and i=l, obt.aining 

AYCD) 1 YC2) - Y(i) = 2UIJKLaJaKaL. I - I I (3.136) 

Thus, one can obtain the UIJKL with J > K and K > L by integrating a two additional 

vectors for each triplet. J > K > L, requiring 40 additional integrations for a general 

element. For a stat#ic element, UIJKL = 0 for J=5, K=5, or L=5, which reduces the 

number of addit,ional int#egrations to 20. 

3.4.4 Initial-Vector Ensemble 
. . 

The reader may have noticed that, the ensembles specified by equations (3.125), 

(3.126), and (3.133) overlap. Because of t,his, it. is possible to use the ensemble 

of vectors defined by 

x(J,iKkL1! = (NJ ’ ’ _ j)aJeJ + ( NK ’ ’ - k)arCeh: + ( 
NL + 1 

. . 2 2 
- - l)aLeL, (3.137) 2 

wit.h NJ odd, 6 > J > K > L > 1, and j, k, and 1 taking integer values bet,ween 

-(N - 1)/2 and (N - 1)/2 ( w h ere N = NJ, NK, or Nr,, for j, k, and 1, respective- 

ly) except that, j = k = 1 = 0 (the null vector) appears only once for all triplets (J, K, 

L). The maximum amplit,ude of the Jth vector component, is 

MJ = 
NJ - 1 
-aJ. 

2 
(3.138) 

Since for a static element,, X5 is irrelevant, one can choose N5 = 1 and $5 = 0. It. 

is also convenient. to choose NJ = N for all J # 5. Given bot,h of these choices, the 

number of vect#ors in the ensemble is 

10(N3 - 1) + 10(N2 - 1) + 1, (3.139) 

where I count ten (J, K, L) triplets with neit,her J, K, nor L equal to 5, contributing 

N3 - 1 vectors each, exclusive of the null vector; ten (J, K, L) triplets with one of J, 

K, or L equal t#o 5, contributing N2 - 1 vectors each, exclusive of the null vector; plus 

one null vector. 

For N = 5 t.his ensemble contains about. 6 times as many vectors as the minimum 

needed, but’ using it, has t,he advantage of simplicit,y of coding and also of provid- 

ing additional dat,a t,o improve the accuracy of some of the element,s by averaging. 
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Doubtless a more computat,ionally efficient. ensemble could be coded t,han I have used 

in my codes. 

Having assembled this ensemble, one integrates each initial vector to obt,ain the 

corresponding final vect,or. One then selects out, the necessary sub-ensembles corres- 

ponding to equat,ion (3.125), (3.126), or (3.133)) for each stage of the analysis. 

3.4.5 Accuracy Considerations and Limits 

I have taken pains in the above analysis to eliminat,e the influence of fourth-order 

terms in order to-increase the accuracy of the third-order matrix. In addition, suitable 

choice of the const.ants 8J can ensure that, t.he effects of fourth and higher-order t.erms 

are negligible. “Suit,able” must’ be determined empirically, or by reference to t.he 

magnitude of the mat’rix elements once they are roughly known. A starting point is 

to assume that’ the dominant, fourth-order matrix elements have magnitudes similar to 

those of dominant’ matrix elements of third-order, from which one would conclude that, 

t.hat# MJ = 10v3 would be suit,able to obtain 0.1% accuracy of the third-order results, 

even wit,hout, the corrections for the V matrix that. are included in the equations. 

Furt,her, fifth order terms would be expect,ed have an influence of one part’ in a 

million relative to the third-order. If similar results are obtained for a wide range 

of values of MJ, bhen one can conclude that the influence of higher-order t’erms is 

indeed negligible. In addiCon, if the contributions of t,he first, second, and t,hird- 

order matsrices to the final coordinates Y are seen t,o be different. by several orders of 

magnitude between successive orders, then one can reasonably conclude that. higher- 

order effects are several orders of magnitude below the third-order effects. 

Invariably the above procedure will yield some small, non-zero matrix element,s 

which may or may not. be genuine, due t.o the accumulation of inaccuracies in the 

integraCon, subtraction of higher-order terms, and fitt(ing. If one knows that the 

accuracy of any integration is of order 10mp, where p is an integer, then one can con- 

clude that a computed mat,rix element is spurious if it fails to satisfy the appropriat,e 

criterion (depending on t#he order of the matrix element,) from the following list: 

RIJMJ > lo-* (3.140) 

TLIKMJMK > lo-* (3.141) 
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UIJKLMJMKML > IO-‘. (3.142) 

One can also use t,hese same relations bo est,imat#e the resolution with which genuine 

non-zero matrix elements could be calculat.ed. 

10-p 
ARIJ > - 

MJ 

10-p 
ATUK > - 

MJMK 

AUIJKL > 
10-P 

MJMKML 

(3.143) 

(3.144) 

(3.145) 

One expects that. this resolut,ion will not, be achieved, since it. does not consider t.he 

inaccuracies in fitting and subtraction to obt,ain residuals. Nevertheless, t,hese criteria 

do provide a solid lower bound on t.he precision of t.he matrix elements. In the case 

of t,he alpha-magnet, I have shown above t#hat’ the accuracy of int,egrations is 10-14. 
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3.5 Transport Matrices for the Alpha Magnet 

I have writt,en a computer program, salphamatrix, t,hat’ implements the ideas of t.he 

previous two sections. Matrices up to third order have been computed for transport 

from t.he entrance of t,he alpha-magnet, to the exit, from the ent,rance to the vertical 

midplane, and from the vertical midplane to the exit. 

3.5.1 Program Tests and Choice of Initial Amplitudes 

For purposes of testing t’he coding and t.he met,hod of obtaining the mat,rix, t.he 

program has the opt.ion of generating C, R, T, and U matrices with all component’s 

given by random numbers bet,ween -1 and 1, and then tracking vect,ors through t,hese 

madrices instead of integrat,ing the equations of motion for the alpha magnet. It t,hen 

attempts to recover t*he random mat,rices by analyzing t.he initial and final vect,ors 

only, just as would be done for initial and final vect.ors obt,ained by int’egration. This 

t,ests the abilit,y of the program to separat.e various orders, but, does not. t.est its ability 

to suppress the effects of orders higher t,han t.hird. Table 3.2 summarizes the result,s 

of this test.. As will be seen, the errors are below t.hose that. are encount,ered in fit,ting 

matrices for the alpha-magnet, as would be expectSed. The errors from this procedure 

can be considered t’o place the ultimat,e limit. on t,he accuracy wit.h which matrices 

for t.he alpha-magnet, can be calculat,ed. 

Table 3.2: Accuracy of Recovery of a Randomly Generated Matrix 

matrix maximum error of fit’ for average deviat,ion of fit 
any mat,rix element, for all matrix element,s 

C 1.38 . lo-l7 7.59 * lo-‘” 

R 8.87 - lo-l4 2.71 - lo-l4 
T 1.13 * lo-lo 2.48 . 10-l’ 
U 1.47 * 1o-i 1.77 - 10-s 

An initial round of computations for the alpha-magnet were done wit.h N = 5 and 

wit,11 all MJ values equal, for a series of different’ values from 10m2 to 10m5. After t,he 

matrix was obtained, the average of the absolute values of the residuals of the final 

-- 
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vect,ors for all initial vectors were comput,ed to assess the degree t#o which the fit,s 

contained sufficiently high-order t,erms to match the act,ual final vectors. Residuals 

were comput,ed by successively adding linear, second-order, and third-order terms t,o 

assess the effect of each order. The average absolute residuals for nth order are simply 

@“’ = l 
Mi 

II 1 

Jy _ Cl + ~R~JXY) + (n > l?) c TIJE;X~)X$)+ (3.146) 
J J>K 

(n > 2?) C U~E;LX~‘)X~)X~’ 

)I 

, (3.147) 
J>K>L 

where the index i runs over all M initial vect,ors in the ensemble specified by equation 

(3.137), and (n > m?) represent,s a function 6hat. returns 1 if n > m and 0 otherwise. 

Table 3.3 summarizes some of the results. (Rf) is identically zero, since the momen- 

tum is not, changed by the magnet., and hence is not, listed.) It’ is no coincidence that’ 

for any particular I and n, Rp) varies with MJ according to MJ”‘l, since for valid fit’s 

(i.e., those t’hat, don’t. err by compromising lower order coefficients in order to mat.ch 

higher-order contributions) RI”’ is simply the average cont’ribution of t,he (n + l)th 

order t,erms. 

Table 3.3: Residuals from Matrix Fits 

n MJ 
$4 

1.84 .11O-3 
w RF) w w 

1 1o-2 1.89. 1O-3 4.51 * 1o-4 3.79 * 1o-4 7.63 - 1O-5 

1 1o-3 1.84 . 1O-5 1.89 . 1O-5 4.49 * 1o-6 3.53 - lo+ 7.76 - 1O-7 

1 1o-4 1.84. 1O-7 1.90 * 10-i 4.49 - 1o-s 3.51 . 1o-s 7.76 . 1O-g 

2 1o-2 3.44 * 1o-5 2.39 . 10-5 4.59 - 1o-5 1.43 * 1o-4 6.38 - 1O-6 

2 1o-3 3.44 * 10-s 2.39 * 10-s 4.61 . lo-” 1.43 . 1o-7 6.34 . 1O-g 
2 1o-4 3.44 . 10-l’ 2.39 e lo-l1 4.61 . lo-l1 1.42 . lo--lo 6.34. lo-l2 

3 1o-2 9.40 * lo-’ 8.78 - 1O-7 2.08 . 1O-6 2.37. 1O-6 7.19 * 10-7 
3 1o-3 8.98 . lo-l1 8.43 . 10-l’ 2.08 . lo-lo 2.36 . lo-lo 7.21 . lo-l1 
3 1o-4 1.14 . lo-l4 1.01 s lo-l4 2.07. lo-l4 2.36 . lo-l4 7.40 - lo-l5 

Table 3.3 shows that, for MJ = 10H4, the third-order residuals are of order 10-14, 

which is the accuracy limit, of the int,egrations. Hence, fourt*h-order corkibutions are 

?n the noise”: and third-order contributions are three orders of magnit,ude above it,. I 

find t,hat’ for such small hlJ values, the chromadic terms do not follow equations (3.102) 
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through (3.107) as well as for MJ = 10e3. For this reason, I choose the matrices 

compuhed wit,11 MJ = 10e3 as the most’ accurate. Analysis of the chromatic t,erms 

indicates that, the T matrix elements are accurat,e to about’ 10e6, indicat.ing that’ p in 

equations (3.143) t,hrough (3.145) is 12 (rather than 14 as would be thought, from t,he 

accuracy of the integration). I use this value of p in order t,o “filter” small TIJK and 

UIJKL values for significance, as per equations (3.140) through (3.142). That, is, TIJK 

values smaller than low6 and U IJKL values smaller than 10m3 are taken to be zero. 

3.5.2 Final Results 

Having verified the program’s matrix-fitting algorithm and found the limits of its 

accuracy, I computed the mat’rices for the alpha magnet, using N = 7. I used an 

accuracy limit. of 5 x lo-l3 to filter out spurious non-zero matrix elements. This limit 

is a compromise bet,ween one that, is somewhat too large for t,he T matrix elements, 

and somewhat’ too small for the U matrix elements. Hence, some small, dubious U 

matrix elements will appear in t.he results t,hat follow. 

Checks of the Results 

A number of checks have been made on t.hese matrices. The determinams of t,he 

first. order mat.rices for entrance-to-exit, emrance-t,o-vert’ical midplane, and vert,ical 

midplane-to-exit have been found t.o be 1 to wit’hin 2 x 10-12. (This accuracy is not’ 

fully reflect.ed in t.he resuhs given below, since I have not. quot,ed a sufficient’ number 

of significant, figures. Also, t.he reader should beware of checking this claim wit,h a 

hand calculatSor, since many use only 10 or 11 digits.) 

The relationships between the non-chromatic and chromaCc terms were used t,o 

evaluate the accuracy of the method, as discussed above; the reader is invited to 

use equations (3.102) t.hrough (3.107) and (3.53) through (3.60) t,o verify for himself 

-that the results do indeed satisfy the expected numerical ratios. As a sample, for the 

matrix .from the ent,rance to the vertical midplane, I find t,hat 

R56 
-= 
c5 

f + 2 * lo--l2 

T566 1 - = _- _ 6. 1()-1o 

c5 8 

(3.148) 

(3.149) 
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u5666 1 - = -- 
(35 16 

2 - 1o-8 

T 162 1 
-= 
R12 

- - 2 .1()-g 
2 

(3.150) 

(3.151) 

U 1662 1 - = --- 
R12 8 

6 . lo-? (3.152) 

The reader will see below that the computed entrance-to-vertical midplane and 

vertical midplane-t.o-exit’ R matrices satisfy the expected relationship for two elements 

t,hat, are the reverse of each ot’her[6], namely 

R= (3.153) 

where I? is the matrix for syst,em that is reversed in order relative t.o the system for 

which R is the makix. 

_- The mat’rices for the first, and second parts of the alpha-magnet, were concat’enated 

(using a third-order matrix concat,enat,ion program writ,ten by t,he aut,hor) and com- 

pared t#o 6he matrices comput.ed for t.he full magnet. No significant, discrepancies were 

found for the R matrix. The only discrepancies found in the T matrix were fractional 

variations of 10e5 in the t,wo smallest, elemems; all ot,her T matrix e1ement.s eit,her 

showed no discrepancy, or discrepancies only in the last decimal place. For most. U 

mat,rix elements, t,he discrepancy was less than .l %, while for a few of the smallest’ 

U matrix elements, the error was between 1 and 10 %. 

In order t,o ensure that. there were no transcript,ion errors made, salphamatrix 

provided output, in I~TEX format, which was included in this document’ widh only 

minor editing to properly co1umnat.e the data. 

Entrance-to-Exit Transport 

For transport, from the entrance to t.he exit, tables 3.4 and 3.5 list non-zero T and U 

makix elements, respectively. The following are the cenkoid and R matrix elements 

(unlist(ed elements are zero): 

C5 = 4.642099465061 

R56 = 2.321049T33 

(3.154) 

(3.155) 
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(3.156) 

( ;;; I%:; ) = ( -0.7371140937 7.618204274 ) 

-0.05994362928 -0.7371140937 
(3.157) 

Table 3.4: Non-zero T Matrix Elements from Entrance to Exit 

TIz2 = -9.985582.10-l T133 = -6.047097.10-’ T1d3 = -6.415746 
T144 = 3.782911. lo1 Tl‘j2 = -1.160525 T233 = -2.996743. lo-’ 
T243 = -7.370063 T244 = 3.808545. lo1 T331 = -5.157770. 1O-2 

T332 = 9.264364 T342 = 6.892273 T364 = 3.809102 

T432 = -1.750135 T441 = 5.157770. 1O-2 T442 = 9.384079 
T463 = 2.997181. lO-2 Tsz2 = 5.802624 -10-l T533 = 1.104632. 1O-2 

T543 = -2.283314.10-l T544 = -1.403871 T566 = -5.802624.10-l 

Table 3.5: Non-zero U Matrix Elements from Entrance to Exit 

U1222 = 9.634. 10-l 

u1431 = -5.301 

IT1442 = 9.435 ’ lo1 

111644 = 1.891. lo1 

U2431 = 5.157’ lo-’ 

Ur,,,, = 4.557 ’ lo’ 

Us321 = -1.462 

113411 = 4.431. 10-2 

U3432 = -2.705. lo-3 

U3444 = -1.075. lo2 

us664 = -9.523 ’ lo-’ 

U4421 = 1.463 

u4433 = -1.441 

U4632 = 8.751. lo-’ 

115222 = 4.993.10-l 

U5431 = 1.873 1 1O-2 

Us442 = -2.145. lo’ 

tT5644 = -7.019 * 10-l 

u1331 = -2.579. 10-l 

U1432 = 8.263. 10’ 

tTl622 = -4.993 * lo-’ 

ul&j2 = 2.901 * lo-’ 

u2432 = 9.310 ’ lo’ 

172633 = 2.99-i ’ 10-l 

u3322 = -4.979 ’ lo-’ 

U3421 = 1.033. lo-’ 

U3433 = -2.310 

u3631 = 2.579 * lo-2 

U4322 = 1.285. lo’ 

u4422 = 2.946 

u4443 = 8.688.10’ 

U4641 = -2.575. lo-2 

U5331 = 1.546. 1O-3 

Us432 = -4.126. 10-l 

u5622 = 2.901. 10-l 

u,,,, = 2.901.10- 

U1332 = -8.573 

U1441 = 3.829. 10’ 

U1633 = 3.023. 10-l 

IT2332 = -8.779 

U2441 = 6.341 

U2,j43 = 3.685 

113333 = 1.047 

173422 = 1.101 ’ lo1 

u3443 = 2.220.10’ 

U3642 = 3.446 

U4333 = -4.323. 10-l 

U4432 = -1.636. lo-3 

U4444 = -3.156. lo2 

U&j63 = -2.248. lo-2 

us332 = 2.469 ’ lo-2 

IT5441 = 9.242. 1o-4 

Us633 = -5.524. lo-3 
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Entrance-to-Midplane Transport 

For t,ransport from the entrance to the vertical midplane, tables 3.6 and 3.7 list non- 

zero T and U matrix elements, respectively. The following are the cent*roid and R 

matrix element#s (unlisted elements are zero): 

c5 = 2.321049732530 (3.158) 

R51 = -2.179660432 (3.159) 

R52 = -2.529550131 (3.160) 

R16 = -9.089085575 -10-r (3.161) 

R56 = 1.160524866 (3.162) 

R66 = 1.000000000 (3.163) 

0.07531765053 2.182639820 

-0.3979387890 1.745181272 
(3.165) 

Table 3.6: Non-zero T Matrix Elements from Entrance to Vertical Midplane 

Till = 1.581820 T121 = 3.671483 

T133 = 3.170513.10-’ TIDE = -4.724714.10-l 

T162 = 2.084977. lo-’ Tls6 = 2.272271.10-l 

T222 = 1.835742 T233 = -3.739056. lo-’ 

T244 = 7.286366. lo-’ T261 = 1.199054 

T332 = 3.240582 T341 = -2.367091 

T364 = 1.091320 T431 = -9.936083 ’ 1O-2 

T441 = -2.536989 T&Y = -2.015590 

T521 = 1.875460 T522 = 1.378390 

,T543 = 4.235456. 10-l T544 = 1.614540 

T566 = -2.901312.10-1 

Tlz2 = 2.357651 

T144 = -2.932169.10-l 

T221 = 2.613530 

T243 = 9.437959 ’ 10-l 

T331 = 5.249703.10-l 

T 342 = -1.933840 

T432 = 2.168953 

T&j3 = 1.989694.10-l 

T 533 = -3.473390.10-l 

T562 = -1.264775 
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Table 3.T: Non-zero U Matrix Elements from Entrance to Vertical Midplane 

U1211 = -3.085 U1221 = -5.581 U122~ = -2.478 
U1331 = 4.933.10-I U1332 = 3.610. 1o-2 U1431 = -1.791 

U1432 = -2.841 IT1441 = -5.547. 10-l U1442 = -1.004 
U1611 = -7.909.10-l tJ1622 = 1.179 U1633 = -1.585 ’ lo-’ 
tJ1644 = -1.466. lo-’ IT1662 = -5.213. 1o-2 U1666 = -1.136. lo-’ 

U2111 = -6.200 u2211 = -2.159.10’ U2221 = -2.700. 10’ 

U2222 = -9.493 tJ2331 = 2.284. lo-’ tJ2332 = 1.145 

U2421 = -1.025. lo-’ U2431 = 1.686 U2432 = 1.572 

U2441 = -4.851 tJ2442 = -4.688 U2621 = -1.307 
CT2633 = 3.739. 10-l IT2643 = -4.719 10-l tJ2661 = -8.9%. 10-l 

1J3311 = 6.554. 1O-2 tJ3321 = -3.313 tJ3322 = -4.769 

U3333 = 3.965. 10-l u3411 = 1.448 tJ3421 = 1.908 
u3422 = 3.934 ’ lo-’ u3433 = -1.195 U3443 = -8.190. 10-l 

u3444 = 1.457 U3631 = -2.625. 10-l IT3642 = -9.669. lo-’ 

CT+4 = -2.728. 10-l U4311 = -3.463. 10-l u4321 = -4.190 
LJ4322 = -4.777 U4333 = 2.704.10-l U4411 = 1.604 
LJ4421 = 2.868 U4422 = 1.015 u4433 = -9.890.10-l 
u4443 = 1.350.10-’ U4444 = 5.265.10-l u+,j31 = 9.936. 1o-2 

LJ,,,, = -1.084 tJ4641 = 1.268 u4663 = -1.492. lo-’ 

LJ5111 = -1.264 tJ5211 = -4.402 U522l = -7.153 
LJ5222 = -2.112 U5331 = -1.045 * 10-l tJ5332 = 1.548. 10-l 

u5431 = 1.514 r-J5432 = 3.542 u5441 = -2.804 

35442 = -1.689 U5622 = 6.892.10-l Us633 = 1.737. 10-l 
J5644 = 8.073 ’ 10-l Usss2 = 3.162.10-l U5666 = 1.451. 10-l 

Midplane to Exit Transport 

For transport, from the vertical midplane t.o the exit, tables 3.8 and 3.9 list’ non-zero 

T and U mat’rix elements, respect,ively. The following are the cenkoid and R makix 

elements (unlist,ed elements are zero): 

c5 = 2.321049732530 (3.166) 

RI6 = -2.529550131 (3.167) 

Rz6 = -2.179660432 (3.168) 

RS2 = -0.9089085575 (3.169) 
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Rs6 = 1.160524866 (3.170) 

RG6 = 1.000000000 (3.171) 

-2.783063390 0.4169954844 

-2.398107503 0.0000000000 
(3.172) 

Table 3.8: Non-zero T Matrix Elements from Vertical Midplane to Exit 

Till = 7.654960.10-l Tlzl = 1.089830 Tlz2 = 7.654960.10-l 

T133 = 1.491568 T143 = 4.885853 T144 = 3.609338 

T161 = 1.391532 Tl62 = 1.199054 Tls6 = 1.264775 

Tzll = 3.133763 T222 = 6.596119.10-’ T233 = 1.417467 

T243 I 4.999269 T24.j = 3.804388 Tz61 = 6.895662 

T266 = 4.223593 T331 = 2.227000 T332 = -1.057913 

T341 = 1.950208 T342 = -9.870661. 10-l T363 = 2.024140 

T3fj4 = 2.863881 T431 = 5.477911 T432 = -4.143302. 1o-2 

T441 = 6.310239 T442 = 2.189102. 10-l T463 = 5.177889 

T464 = 5.735430 T511 = 1.668521 T521 = -5.000000~10-’ 

T533 = -1.736188.10-l T543 = -4.342785.10-l T544 = 4.109782. 1O-2 

T561 = 3.03306i T562 = -9.089086. 10-l T566 = 1.088259 
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Table 3.9: Non-zero U Matrix Elements from Vertical Midplane to Exit 

Ullll = -1.360 u1211 = -5.249. 10-I U12z2 = -4.872. 10-l 

U1331 = 2.309 

U1432 = -7.406 

UlSll = -4.089 

tJ1631 = 5.964. 1O-4 

IT1643 = 4.234 

U1662 = -7.334. lo-’ 

1-12221 = -1.361 

U2431 = 1.181 

U2442 = -2.i50 

tJ2fj22 = -1.23i 

Ui,=j41 = -4.345 1o-3 

U26‘jl = -4.114. 10’ 

Ii3321 = -3.620 

tJ3411 = 4.993 

U3431 = 5.003. lO-4 

U3444 = -2.195 

tJ3fj41 = 9.078 

us664 = 3.409 

U4322 = -1.567 

u&J21 = -2.893 

U4433 = -1.323 . 10’ 

u4631 = -2.196 10’ 

U4642 = -2.630 

U&64 = -1.633. 10’ 

U5221 = -9.179.10-l 

U5332 = 2.105. 10-l 

U5441 = -4.254 

U5621 = -2.375 

Us643 = -5.601 

U5662 = -8.523 . 10-l 

tJ1332 = -3.196 

U1441 = 2.017 

u1621 = -9.537. lo-’ 

tJ1633 = 1.353 

IT1644 = 3.638 

171,366 = -1.969 

U2331 = 2.331 

tJ2432 = -5.745 

tJ2611 = -3.95i. 10’ 

r-12631 = -3.4%. 1o-3 

U2643 = -1.426 

UZfj66 = -1.528. lo1 

IT3322 = -3.336. lo-’ 

U3421 = -4.032 

U3433 = -4.874 

tJ3631 = 5.245 

IT3642 = -4.158 

U4311 = -9.066 

u4333 = -2.991 

U4422 = -1.724 

U4443 = -1.849. 10’ 

U&,32 = -3.155 

tJ4643 = -5.769. 1o-4 

IT5111 = -9.178. 10-l 

U5222 = 4.545. lo-’ 

U5431 = -6.162 

1-75442 = 4.173. lo-’ 

U5622 = -8.343. 10-l 

Us644 = -3.846 

tJ14~1 = 4.658 

U1442 = -4.261 

tJ1622 = 3.828. lo-’ 

U1641 = 6.949. 1O-4 

U16fjl = -4.413 

Uzlll = -1.336. 10’ 

U2332 = -2.750 

1-12441 = -2.352 

u2621 = -3.419. 1o-3 

u2,j33 = 7.009. 10-l 

tJ2644 = -2.138 

u3311 = 3.497 

U3333 = -1.167 

IT3422 = -2.847 ’ lo- 

U3443 = -6.236 

us632 = -3.290 

tJ3663 = 1.371 

u4321 = -3.494 

U4411 = -1.456. lo1 

u4431 = -5.345.10-4 

U4444 = -8.388 

u4641 = -2.962. 10’ 

U4,j63 = -1.386. lo1 

U5211 = -1.307 

U5331 = -2.232 

Us432 = 1.565. lo-’ 

U56ll = -3.337 

us633 = -1.941 

IJ5661 = -4.550 

U5666 = -1.923 
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3.6 Effects of Field Errors 

All of the above analysis of t.he alpha-magnet assumes that. the functional form of 

the magnet.ic field is that’ of a perfect. quadrupole. In realit’y, no magnet. is ideal. 

A review of the derivat,ion of the scaled equation of motion shows that. non-linear 

t.erms in the magnetic field will, strictly speaking, invalidat,e the scaling. In odher 

words, the magnet’ will not. be strictly achromatic, as a perfect, alpha-magnet, would 

be. One result’ of this is that the nominal ideal traject,ory (i.e., the trajectory injectSed 

at’ incidence angle 8,) will no longer exit, the magnet at, the same location t.hat it’ 

ent,ered at,. 

Magnet,ic field errors are a fact of life in accelerat,or physics. The favored approach 

t.o dealing wit.h them is to evaluate the effect’ of specific t,ypes of errors (e.g., higher- 

order mult,ipoles) with an eye t.oward what, level of error one’s application can tolerat,e. 

In accordance with this, I have studied the effect of cert,ain t’ypes of field errors: such 

as sextupole berms, to find what, effect they have on the performance of the alpha- 

magnet. (Similar, less complet,e work on this problem is report,ed in 1321.) It has 

been found from computer st.udies that. for a variet.y of errors, the residual dispersion 

aft,er t,he alpha magnet, can be reduced t,o acceptable levels by modifying the injection 

angle, 8i, in such a way as to cause the ideal trajectory t,o once again exit. at’ t’he 

ent,rance point. If the magnet, retains reflect,ion symmet,ry about, the plane q2 = 0, 

it. is always possible to find such a value of Bi, which I will call t9,, or t,he “mirror 

angle”. The reader can convince himself of t,his by reviewing t,he argument. by which 

I proved that’ the perfect, alpha-magnet’ has such an inject,ion angle, namely 8,. 

The field in the imperfect’ alpha-magnet can be expressed as 

B(s) = g(qs,O, ql) + AB(q) 

(Q3AQ,> + AB(z); (3.174) 

where .AB(q) is t,he depart,ure of the field from a true, uniform quadrupole field and, 

as before, Q = qa. 

Comparison with equation (3.83) shows thatS the scaled equation of mot.ion wit,h 
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field errors is 

Q” = - &Q’ x B($); 

= -1Q’ x 
1+6 

(Qso, Ql) + A+} 

(3.175) 

(3.176) 

3.6.1 Multipole Errors 

Wit,h this equation in hand, it. is possible t,o evaluate the effect. of various field errors. 

Not,e that’ since Q appears only as a multiplicat.ive fact.or for the field error, it’ is 

still possible to find result,s with some universalit’y. In particular, if AB is a pure 

multipole error, t.hen the effect of the field error in the equation of motion will have 

a well-defined scaling with Q and the mult,ipole coefficient. 

Multipole fields can be classified as upright’ or rotated[6], depending on whether 

the magnetic-fields are changed in sign upon reflection of the magnet through the 

qs = 0 plane or not, respectively. Upright multipoles have field lines that cross the 

qs = 0 plane with normal incidence. For rotat,ed multipoles, field lines do not, cross 

the qa = 0 plane. Clearly the alpha-magnet. has upright’ symmetry, and if one confines 

oneself to errors bhat, do not alt,er t#his symmetry, then one can express errors in the 

alpha-magnet, in t#erms of the upright. multipoles. For example, any deviation of the 

poles from a hyperbola will produce only upright multipole errors, as will displacement. 

of t.he mirror plane, since neit,her of these errors changes t,he fact’ that, the field lines 

cross qs = 0 with normal incidence. 

The field due t,o a pure upright’ mult.ipole is[6] : 

1nPi n-2m 

AB, = A, C ( -Qm-i q1 s3”-’ & 

Ill=1 (n - 2m)! (2m - l)! 
(3.177) 

l(n+l)/2J n-2m+l 2m-2 

+An c 
m=l 

(-‘)“-‘(n 4’2, + I>! (22 _ 2)!q3r 

where n _> 1 is an int.eger, the “order” of the multipole. n = 1 is a dipole, n = 2 a 

quadrupole, and so fort,h. 

For insert,ion into equation (3.176)) this must, be rewritten in terms of scaled 
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coordinat,es, as 

QAB, 
g 

= 
l+J QF2" Q;"-' .. 

Mn m~l(ml'm-l (n - 2m)! (2m - I)! Q1 
l(n+l)DJ +M, 1 (-l)m-1 Qi'-2m+1 Q,G"-" g3, 

m=l (n - 2m + l)! (2m - 2)! 

where I have defined the dimensionless normalized mult.ipole st.rength 

M,G% 
gQn-2 

186 

(3.178) 

(3.179) 

Even without, int,egrat,ion one can conclude that for t.he same fractional multipole 

error, $, the perturbation is stronger for smaller Q, i.e., for alpha-magnets operat,ed 

so as t,o obt#ain larger values of 41. This is as expect.ed, since the multipole field grows 

as qf. As expect.ed, in the limit’ of very large Q, i.e., very small ql, multipole errors 

have no effect.. 

It, is of course possible t>o compute the matrices for equation (3.176) with AB as 

given by (3.179) as was done for t#he equat.ion of motion without’ field errors. The 

mat.rices thus obtained are to be considered funct.ions of M,, with M, ultimabely 

a funct,ion of Q. Hence, if t,he matsrices are found for some particular value of M, 

for some particular n, t,hen if t,he matrices are scaled to some particular value of Q 

according to equation (3.93), t.he result, is appropriate to a multipole strengt.h of 

A, = M,~cC-‘-~. (3.180) 

I have writt,en a computer program, serrors, which computes third-order scaled 

alpha-magnet. matrices in the presence of various types of field errors, including mul- 

tipole errors. Figures 3.10 through 3.12 show the effect, of sextupole errors on the 

mirror-angle (8,), Ql, and the non-zero elements of the matrix R. Not,e t,he particu- 

.larly strong effect. in the vertical plane. 

3.6.2 Entrance-Hole-Induced Errors 

I performed magnetic measurements on t’he SSRL alpha-magnet. to assess the devi- 

at,ion of the field from an ideal quadrupolar field. Figure 3.13 shows the measured 
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Figure 3.10: Effects of Sexdupole Errors-Part, 1 
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gradient. vs q1 for q2 = 0, while figure 3.14 shows t,he measured gradient, vs q2 for 

91 z 10mm. The deviation of the field from a perfect quadrupole was dominat,ed by 

perturbat,ions from t,he beam apert,ure or “hole” cut. in t,he magnet.ic mirror-plat,e of 

the alpha magnet. This can be appreciat,ed by comparing Figure 3.13 with Figure 3.2, 

which shows the gradient. before the hole was cut. This hole is, of course, necessary 

in order t,o get, t’he beam into and out of the magnet. I have found that, the field error 

in t,he qa = 0 plane is well approximat,ed by 

4Bg = g(K + Eemqlid)F(q2), (3.181) 

where K and E are positive constants, d is a decay const.ant. for the field error, and 

F is the function 

I 

1 Is21 < Wl 

F(qd = ?i2-/921 WI 5 /q2/ < W2. 
b2-W1 

(3.182) 

. . 0 w2 L Is21 

Wi and W2 are constants charact.erizing the width of the field pert,urbat.ion in q2. 

Wi is roughly equal to the widt’h of t,he hole in the midplane. 

Fits to the dat,a in t,he Figures give 

K = 0.054cm E = 0.39cm d = 0.72cm 

Wi = 2.0cm Wp = 3.6cm. 
(3.183) 

Using Maxwell’s curl equation, one can find an approximation to the full error 

field: 

Q3 -a Q2 
-Qi;L;ie adF(T) + -G2Ze 

Q2 
Q3 -sF’( ;) + G3( 1 + 

(The possibility of dipole fields in the q2 and ql directions can be eliminated by 

symmetry and by assuming that. there are no rotated multipole fields present, respec- 

tively.) The const,ants K, E, and d occur in equation (3.184) only when multiplied 

by a. Similarly, t’he constant,s Wi and W2 occur only in the combinat,ions Wio and 

W2a, as seen from t,he definit,ion of F. Any given magnet has fixed values for K, 

E, d, Wi: and W2, while a will vary was t.he gradient, of the magnet and the beam 

moment,um are varied. 
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Figure 3.13: Hole-Induced Gradient. Errors vs q1 
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Figure 3.14: Hole-Induced Gradient Errors vs q2 
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To show how it. is possible to find matrices for the hole-induced error in a given 

alpha-magnet, as a function of CY it is convenient t.o define dimensionless error field 

paramet,ers 

l? E aK fi E oE d s ad 

w, E awl I@2 E QW2, 
(3.185) 

and a function corresponding to F 

1 IQ21 < *I 

p(Q2) = - $& 5 IQ21 < m2. 
wz-w1 

0 \?i’2 5 IQ21 

(3.186) 

The hole-induced error field (equation (3.184)) is expressible as 

:4B=E 
i- 

-blQ3 -$- y d F(Q2) + -Q2 ;1 ^ se-%@‘(Q2) + &(l + $e-%$jQ,) , 
1 

. . (3.187) 

which is formally independent’ of a, as desired for insertion into equation (3.176). 

serrors takes E, K, d, WI, and W2 as input,, and computes the mat,rices as a 

funcdion of a variable M, where E = M * E, K = M * K, et,c. Clearly, by choosing the 

scaled mat.rices for M = Q and scaling them according to equat,ion (3.93) wit.h Q, = o, 

one obtains the matrices for the magnet, with errors for a given value of a. 

While one chooses the value of M is equal t,he o value of interest, the reader 

should not, make the mistake of concluding that. serrors is varying Q, or calculating 

mat’rices at’ a given value of c~. serrors is scaling the spatial extent, and magnit’ude 

of the error field in scaled coordinates, and calculat,ing the matrices for the scaled 

equation of motion in the presence of t.hese error fields. By choosing M = a, one 

obt.ains mat.rices that correspond to a certain traject*ory size relative to the fixed 

spat.ial ext,ent, of the error fields. Another way to use t.hese serrors results is to view 

M as a quant,it.y related to the size of the beam-hole, in which case M # Q. 

Figures 3.15 through 3.17 show the effects of hole-induced errors on Qr, S,, 8,, 

and strongly-affected R-matrix elements, as calculated by serrors. Typical values of 

CY for the SSRL magnet and RF gun are between 0.12cm and 0.18cm. Not.e t,he large 

effect on the vertical plane, similar to t,hat seen for sextupole errors. Experiments 

show that the vert,ical plane R matrix deviat.es significant,ly from that for an ideal 
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magnet, a subject, to which I will ret,urn in the next section. Running experience 

shows t.hat. injection angle corrections of lo-20 mrad are needed, with the sign such 

as to make 8 smaller. It’ is unclear, however, what. part, of this is due to field errors 

and what. part is required by alignment, errors. The real value of these calculations is 

to evaluat,e the magnit.ude of the effects of such errors, t,o see whet,her the injection 

angle correction required for realistic error levels is feasible or not. 
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3.7 Alpha-Magnet Beam-Optics Experiments 

A commonly-made measurement’ on beam-transport systems is that of det,ermining 

t,he t,ransverse cent.roid offset, of the beam downstream from a st,eering magnet, as a 

function of t,he angular kick impart*ed by that st,eering magnet. The linear derm of 

a fits to the offset. vs kick angle gives the ri2 (or ra4 for a vertically steering magnet) 

matrix element, for transport, from the steering magnet, to the place where the cent.roid 

position is measured. 

The Gun-to-Linac transport, line (see Chapt,er 5) has horizontal and vertical s- 

teering just before t,he alpha-magnet, and a phosphorescent’ screen downstream of the 

alpha-magnet, (t,he “chopper-screen”, since it, is part. of the chopper tank). There is 

also a phosphorescent, screen inside the alpha-magnet, (the “alpha-magnet, screen”) 

that, intercepbs the beam when the alpha,-magnet, is t,urned off. These phosphorescent, 

screens are-viewed via closed-circuit, TV. In addition, a Lecroy 9450 digit.al oscillo- . . 
scope is available t,o digitize t,he TV scan, permit.ting accurate measurement’ of both 

horizont,al and vertical beam positions. All that’ is required is. t,o calibrat,e t,he TV 

sweep using features on the screens for which the positions are known (e.g., the edges 

of the screen). 

I will let Li denote t.he dist.ance from the cent,er of t,his steering magnet, known as 

GTL-CORR2, to the “crossing-point,” of the alpha-magnet (qi = q2 = qs = 0). Also, 

L2 and La denot,e, respecdively the distance from the crossing-point, to the alpha- 

magnet. screen, and from the crossing-point t,o t’he screen aAer t.he alpha-magnet. 

L1 is found to be 117 mm, and La to be 459 mm, where I use values from updat,ed 

engineering drawings, checked by my own measurements wit,h a ruler. The distance 

from the crossing-point to t,he screen in t,he alpha-magnet, 200 i lOmm, with the large 

uncertaint’y being due to the way the screen is held inside the alpha-magnet on long, 

easily-bent, copper tubes. 

3.7.1 Characterization of the Steering Magnet 

I performed magnetic measurement,s on GTL-CORR2 with a quadrupole and a.n 

alpha-magnet-simulating iron plat,e in the proper positions relative to GTL-CORR2. 

The magnetic field as a function of longitudinal posit.ion z is shown in figure 3.18, 
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and indicades t,hat, the equivalent. angular kick for a zero-length steering magnet, is 

18mm ahead of the geometric cent,er of the magnet (which coincides with the peak 

of the magnetic field vs z). Hence, GTL-CORR2 can be simuladed by a zero-length 

s6eering magnet. that is Li + 18mm from the alpha-magnet, crossing point. I wiIl thus 

let. L1 + Li + 18mm, and treat, GTL-CORR2 as a zero-length deflector. 

Because GTL-CORR2 is in close pr0ximit.y to both the alpha-magnet and the 

immediat,ely preceding quadrupole, it, is advisable to check t,hat, the calibration of an- 

gular deflect,ion vs driving current. (obtained from magnetic measurements) is correct. 

This was done using the alpha-magnet screen, since the transport, to this screen from 

GTL-CORR2 is described by a simple driftspace matrix: 

(3.188) 

In t.his sect,ion, I will use r(‘) t,o represent, t,he r-matrix from GTL-CORR2 to point i, 

where i is 1, 2, or 3 for the crossing-point, alpha-magnet’ screen, or chopper-screen, 

respectively. I leave off the dispersive and pat,h length elements t.o shortmen t,he not.a- 

t,ion. 

This check was carried out. using the magnetic measurement,s to set GTL-CORR2 

to a series of nominal horizontal (or vertical) deflection angles, Bnom,i, and measuring 

t,he resulting horizontal (or vertical) displacement, xi, at. the chopper screen. A linear 

fit, t0 Xi VS onom,i gives the nominal value of rem), uncorrect,ed for errors in the 

deflection angle. Since it. is that, ri2 (2) = rE’ = 0.337 & O.OlOmm/mrad (this is just. 

LI + L2) the acfual angular deflection is readily calculated, giving 

@act = @nom 
rem)( mm) 

0.337 or O.OlOmm/mrad 
(3.189) 

Linear least-squares fits t,o t,he dat,a from these experiments gave Tern) = 0.3055 

O.O06mm/mrad and rgrn) = 0.3221 O.O15mm/mrad, from which I conclude t,hat’ 

8 - 8,,,,,0.91 i .03, x,act - (3.190) 
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and 

8 y,act - - 8y,rmmO.96 5 .05. (3.191) 

3.7.2 Comparison of Experimental Results and Theory 

Having corrected the calibration of GTL,CORR2, I then did a series of measurements 

of r$) and rg’ for various alpha-magnet, gradients for const,and beam momentum. For 

these experiments, t.he low-energy scraper inside the alpha-magnet was set’ bo allow 

only about &5% moment.um spread t,hrough, t,o lessen any possible ambiguit.y about 

what. t*he momentum of the particles seen on the chopper screen was. Spectrum 

measurements allow the det,ermination of the median momentum of the particles let 

through, and this quantity was used as the effective moment,um of the beam centroid. 

Table 3.10 summarizes t.he results. 

In order to compare these results to theory, it is necessary to use serrors- 

calculated scaled mat’rices for the appropriate values of the error parameter M (i.e., 

M = cy, for hole-induced errors), t’o scale these matrices to the values of Q listed in 

the t,able, and to finally concat,enat,e these matrices with drift space matrices: 

r = d( Ls)A-I( a)R( M)A( cr)d(Li), (3.192) 

where d(L) represents the matrix for a drift, space of length L. Table 3.11 gives the 

results of this procedure, listing the r 12 and rs4 values corresponding to each of the 

cases in Table 3.10. Also listed for comparison are the values for a perfect. alpha- 

magnet. These results are displayed in figures 3.19 and 3.20. 

As seen from Figure 3.20, the rg” s are very sensitive to errors, hence the agree- 

ment, seen here may be fort,uitous. In the same vein, some disagreement is hardly 

unexpect’ed. 

With the exception of the anomalous point at cr = 0.166, all of the measured 

ri2’s are 5-10% smaller than the theoret,ical values for the alpha-magnet. with errors. 

The first, explanation of the discrepancies in the horizont,al plane one might entertain 

is t,hat, the moment,um (or, equivalently, the alpha-magnet gradient, calibration) is 

in error by 5-10%. This, however, would not. explain the discrepancies observed. 
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First, the correction of the calibrat,ion of GTL-CORR2 would eIiminat,e any effects of 

moment,um errors on deflecdion angle. Hence, any momentum errors would come int,o 

play only through the alpha-magnet. However, as seen from the slope of r12 vs o for 

the t,heoretical dat.a in Figure 3.19, a very large moment.um error would be required to 

explain the observed discrepancy. For t.he point, with a = .121, for example, one would 

need to postulat,e a moment,um error of about, a factor of two, which I do not consider 

remot,ely possible. A remaining possibiIit,y is t,hat, the calibration of GTL-CORR2 is 

in error, due to inaccurate knowledge of the position of the alpha-magnet, screen. A 

5-10% error in this calibration would require a. 15-30mm error in the position of t,he 

screen. This is not’ inconceivable, given the lack of precision in the screen assembly. 

Table 3.10: Alpha Magnet rr2 and rs4 Measurements 

gradient. <P> OL (3) 
r12 

(3) 
r34 

. . (G/c4 MeV/c l/cm mm/mrad mmfmrad 

255.1 & 1.3 3.00 & 0.04 0.160 i 0.001 -0.743 i 0.014 0.006 i 0.005 
202.9 i 1.0 2.71 i 0.04 0.150 & 0.001 -0.672 i 0.012 0.070 i 0.002 

172.8 i 0.9 2.83 i 0.04 0.135 & 0.001 -0.716 i 0.012 0.120 zt 0.004 

149.1 i 0.7 2.81 i 0.04 0.126 i 0.001 -0.730 i 0.016 0.149 i 0.004 

129.9 i 0.6 2.80 i 0.04 0.118 i 0.001 -0.739 i 0.018 0.180 i 0.005 

Table 3.11: Calculated Alpha-Magnet r12 and ~4 
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Chapter 4 

Longitudinal Dynamics 

In Chapt,er 2, I described the longit.udinal phase-space dist,ribut,ion of the RF gun 

beam, and indicat.ed that this phase-space ill-suits the beam to direct’ injection into 

.a S-Band linear accelerator section (here-aft,er referred t,o simply as “the linac”). In 

this chapter, I will show why this is so, and how the gun longitudinal phase-space may 

be t,ransformed int.o somet.hing that, is amenable to further acceleration. At, issue is 

the need for a small fractional energy spread, which is required for efficient, transport, 

through a subsequent, beamline, use as the drive for FELs, and other applications. I 

shall also show how the rather long (25 ps or so) bunch at t,he end of the gun can-at, 

least in t,he absence of excessive errors and space-charge effects-be compressed to 

a very short, 1-2 ps bunch, t.hus promising bhe pot,ential of very high peak currents, 

somet,hing that. is desirable in FEL applications, among ot.hers. 

Discussion of t,he t,ransformation of t,he gun longit,udinal phase-space cannot, take 

place without, an understanding of the longitudinal dynamics of electrons in magnetic 

syst,ems and linear accelerators. I will first, discuss longit,udinal dynamics in linear 

accelerat,ors, and in particular how one can predict, the longitudinal phase-space at’ 

the end of a finit,e-length accelerat,or when start.ing with a beam that, is not. fully 

relativistic. This discussion will show why the RF gun beam is unsuit.ed to direct 

injection int.o the linac. 

I will t#hen discuss how magnetic beamline elements can be used t.o alter a beam’s 

longit,udinal phase-space. Using results from Chapter 3, I will dem0nstrat.e that. an 

alpha-magnet, has advantages in such an application. I will present. the resu1t.s of 
205 
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optimized alpha-magnet-based bunch compression, with inclusion of detailed longi- 

dudinal dynamics calculahions, and show how t.his achieves significantly bett.er resu1t.s 

compared to t,he first,-order method of simply inject,ing t,he short.est, possible bunch 

into the linac. 

Finally, I will present, results that include consideration of aberrations in the gun- 

to-linac transport. line, and use t.hese results to compare the SSRL preinjector to other 

projects. 
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4.1 Longitudinal Dynamics in Linear Accelera- 

tors 

There is extensive literat,ure on longitudinal dynamics in linear accelerators[56, 55, 

41, 691. Rather than att,empting to duplicat’e that work here, I shall simply make 

use of some of the results. In particular, I shall use the commonly-made assumption 

[41, 551 that. the longitudinal elect.ric field of a t’raveling-wave linear accelerat,or may 

be approximat,ed by the first space-harmonic, 

E,(z, tm) = E - cos(kz - wt), 0 5 z < L, (4.1) 

where k is the propaga.tion constant,, w/(2~) is the RF frequency, L is t,he length 

of the st#ruct.ure (which starts at z=O), and E is a constant.. For a velocit.y-of-light, 

st.ruct,ure such as t.he SLAC constant-gradient’ structure used for the SSRL linac, 

w = kc, c being the speed of light. While the actual field contains components with 

propagation constants k, = k + T, where n is an integer and p is the periodic length 

of t,he structure[56], these components have phase-velocities w/k, less than the speed 

of light: and hence a relativistic particle will not remain in phase with any but t.he first. 

space-harmonic. Because of t.his, the higher space-harmonics impart no net, energy 

to a relat,ivist,ic beam. Traveling wave accelerat,ors are specifically designed to have 

small amplit,udes in t.he non-synchronous space-harmonics, since these carry away RF 

power without. cont.ribut*ing to acceleration[56]. 

The equations of motion for an electron in the presence of dhis field are found 

from the Lorentz force. For 0 I z 2 L, 

dp 
-*cos(kz - w(t, - t,) + &) 

dt = m,c 
dz 

dt.= 

(4.2) 

(4.3) 

where p G fir is t,he momentum and & is the initial RF phase for the fiducial particle, 

which enders the accelerat,or at. t. = t,. I will assume that, -eE > 0, so t.hat, the fiducial 

particle is accelerat,ed for &, = 0. If 40 < 0, t,hen t,he fiducial particle is “behind the 

crest,“, meaning t.hat. if it, is sufficiently non-relativistic, it, ma,y fall furt.her behind; if 

it, falls back far enough (or if &, < ~/2) the particle will be decelerated. Similarly, 
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if $,, > 0: the fiducial particle is “ahead of the crest.“, meaning that, if it’ is not. fully 

relativistic, it, may fall back to be nearer t,he maximum accelerat,ing phase. 

4.1.1 Approximate Treatment for Highly-Relativistic Par- 

t icles 

In general, these equations are unsolvable by analytic means, being coupled and non- 

linear. However, for p2 >> 1, the electrons are fully relat,ivistic, and z = c(t# - ti), 

where ti is the time at, which t.he particle ent,ers the accelerator. In this case, t,he 

acceleration experienced by any part.icle is const.ant: 

dp 
-eECOS(-Ld(ti - to) + 40). 

db = m,c 

The solution, for t; 5 t. 5 ti + L/C, 

. . 
p(t,) = p(ti) - (t - ti)- eE COS(-Ld(tmi - to) + $0)~ 

n-w 

may be used to determine the final moment,um after an accelerat,ing section of length 

L: 

eEL COS(-Ld(t,i - to) + $o), Pf = Pi - - 
m,c2 

(4.6) 

where pi = p(ti) and pf = p(t.f). 

Since the “useful” elect.rons out. of the RF gun typically have p > 4, giving ,i? 1 0.9i, 

this result, is of more t,han academic int,erest,. Though it is far from exact, it. is a useful 

approximat.ion, and aids t,he underst,anding of t.he detailed result,s. 

The quant,it’y $i = -ti(ti - to) + &, is t.he initial phase for some particular particle, 

even if t.he particle is non-relativistic. However, for a particle that is init.ially fully 

relativist,ic, t,he inibial phase is also the RF phase throughout, the accelerat’or section. 

Hence, if it. is desired t,o accelerate a bunch of relat,ivistic particles wit,h small final 

momendum spread, it, is necessary to inject’ these particles int,o the accelerat,or over a 

sufficient#ly small time-int,erval. Suppose t,hat. the bunch initially has no moment8um 

spread, and that’ & = 0 to obtain maximum acceleration of t.he fiducial part,icle. 

Assume further t,hat, t.he fiducial particle is at, the cent,er of t.he bunch, which has 

length bt. Then t.he spread in final moment,a will be 

6p = (pf - pi)( 1 - COS(U6t~/2)), (43 
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where pf = pi - 3 is the final momentum of t’he fiducial part,icle. For wSb < 1: 

t.his implies a fractional moment,um spread of 

EP Pf - Pi S42 -=-- 
Pf pf 8’ 

(4.8) 

where S$ = w6t is the phase spread of the incoming beam. If the beam is accelerated 

to very high momentum relative to pi, then this becomes 

fip S@ -=- 
Pf 8’ 

(4.9) 

and one sees t,hat. the final fractional moment,um spread is, t,o first order, quadrat.ic 

in the initial phase spread if one injects the fiducial (and central) part.icle at, the 

crest. Hence, in order to obtain a small final momemum spread, one must inject, a 

sufficienbly short bunch int,o t.he accelerator: 

(4.10) 

For t,he SSRL Injector, a fractional moment.um spread of less t,han 0.5% was 

needed, to accommodat*e the accept,ance of the synchrotron[26]. Hence, from this 

analysis one would conclude that, an initial tot.al phase-spread of less than about 12” 

is required, if one ignores the initial moment,um spread in t,he RF gun beam. I shall 

show below t.hat,, however, t,hat one cannot, ignore the initial momentum spread: if 

one really desires such low final momentum spread. 1L’ot.e that injection with the 

central parMe off the crest, will only increase the final moment,um spread for a beam 

with no initial moment,um spread, while for a beam t,hat, has some initial, time- 

correlat,ed momentaurn spread, inject,ion off t.he crest can be used to c0mpensat.e the 

initial moment,um spread, as will be seen below. 

4.1.2 Numerical Solution and the Contour Approach 

Comput,er met’hods can easily solve equations (4.2) and (4.3) t,o high precision, so 

it, is not necessary t*o att,empt, to find a solution t,hat. is valid for non-relativistic 

eleckons. For the current, project in part,icular, t,he input, longit,udinal phase-space 

-- 
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dist,ribut.ion is it,self not amenable to analytical treat’ment, but. is rat.her obtained from 

numerical simulations. Hence, I will move on to discuss computer-aided t.reatment, of 

this problem. 

For some of my computer studies, I employed another pair of equations[41], which 

are useful if longit,udinal motion is one’s only interest. Rather than start. with t&he 

Lorentz equat,ion, one start.s wit,h[31] 

dm,c2Y 

dt’ = 
-eve E, (4.11) 

and assumes t,he velocit’y bo be parallel bo elecdric field. One form of t,he result,ant, 

equations is (reference [41] gives t,hese equat,ions and a detailed discussion of t’hem) 

dy 
dC 

= E cos 2T(C - r) 

. . 
dr 1 

;i3 = 3’ 

(4.12) 

(4.13) 

whereC=f,X=%,Z=-3,andr=$$. The,RF phase for any part.icle at, z=O is 

particle is 4 = -2nr, which is consist,ent with the convention I used above. In terms 

of normalized elect,ric-field &, the change in y in a section of length L for an inidially 

relativist,ic part.icle is 

Ay = cYA< = f; (4.14) 

There is no particular a,dvant,age to these equations over a similarly-scaled form 

of equations (4.2) and (4.3) for numerical work -1 state t.hem because I happened 

t,o use them in some of my computations. Specifically, I have writt,en a computer 

program (linac-cg, where “CG” st.ands for “constant-gradient”‘) that int.egrat.es e- 

quat.ions (4.12) and (4.13) for a set, of particles distribut,ed on a grid over some region 

of initial (4, p) space. The program comput,es the final momentmum and phase for each 

part’icle, and displays the results in contour-plot, form. From these, one can deduce 

the result.ant, moment,um spread and phase spread for any particular injected bunch 

simply by finding which contours are int,ersect’ed when t,he phase-space distribution 

for t,he inject.ed bunch is overlayed on the cont.our graphs. Note t.hat a different plot, 

must be generateed for each value of E. For the SLAC-t,ype constant’-gradient, sections 
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used for the SSRL pre-injector[70], t.he nominal energy gain per section is given by[6] 

Ay = 20.4@-@iij, (4.15) 

where P is t,he RF power t,o the section. Combining this with the previous equation, 

using L = 3.048m and X = O.l05m, I obtain 

& = 0.703JP~. (4.16) 

While nominal RF power per section for the SSRL Pre-injector Linac is 30 MW, 

t,he RF power to t,he first. section is limited operat.ionally to 20 to 25 MW. Since the 

energy gain scales only as t.he square-root, of the momentum, bhe differences among 

these are relat,ively minor. For t,his reason, and for brevity, I present. only the results 

for 20 MW RF power, and display these in Figures 4.1 and 4.2. 

The horizontal axis for these graphs is the phase, &, at. which the particle is in- 

jected, while the vertical axis is the initial momentum, pi. As before, 4i > 0 indicat.es 

injection ahead of the RF crest. The contours show lines in (4i, pi) space of con- 

stant, final moment.um, pf, or final phase, &. The momentum cont,ours are spaced 

by Apf = 4.2 and the phase cont’ours by A& = 10”. The labels for t.he contours are 

posit,ioned so that. the cont,our closest, t*o the lower left. corner of the first letter in the 

label is the one to which the label applies. 

A bunch wit,h an initial longitudinal phase-space distribution that, mat,ches a con- 

stant. final momentum cont,our will be accelerat,ed t.o zero momentum spread, and 

similarly for a bunch that mat,ches a constant’ final phase contour. Regions where 

many lines occur in a small area indicat,e rapidly changing final paramet,ers as a func- 

tion of init.ial parameters. Regions where the contour lines are widely spaced indicat.e 

slowly changing final parameters as a function of init.ial parameters. 

Examination of Figure 4.1 shows that,, as expected from the above analysis, the 

final-moment*um cont,ours are most widely spaced for $i near zero. The region of 

widest, cont,our spacing moves to posit,ive 4; as the initial momentsum decreases be- 

cause, for a bunch of non-relativistic electrons, injection at slight,ly positive #i result,s 

in the bunch center falling back toward c$ = 0 as the electrons gain energy. If such 

a bunch were inject,ed at di = 0, it, would fall back to & < 0 before reaching rela- 

tivistic velocities, and as a result, the bunch momentsum would be decreased while its 

moment’um spread would increase. 
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For a bunch cent.ered at’ some phase -55” A & < 0, the smallest final momen- 

t,um spread will be achieved when t.he higher-momentum particles come in behind 

the lower-momentum particles. Similarly, for a sufficiently high-moment’um bunch 

centered on some phase 0 5 4; 2 30”, the smallest. final momentum spread will be 

achieved when the higher-moment.um particles come in ahead of the lower-moment,um 

particles. In both cases, one can understand this by imagining that a sinusoidally- 

varying moment,um change is simply being added to the initial momenta, as illustrat,ed 

in Figure (4.3). 

. , 
For the second of these regions, as the bunch cent.er is moved to smaller mo- 

ment.um and/or larger di, one sees anot,her effect come int.o play. The slope of the 

constant, final-momentum cont,ours changes so that, higher-momentum particles must 

be injectsed behind lower-momentum particles. In this regime, ve1ocit.y variation is 

important. It’ is necessary to inject the higher-momentum particles so that. they will 

c-at.ch up t,o the lower-momentum part,icles as the bunch travels down the accelerabor. 

This bunching can contribute to small momentum spread, since once bunched the 

particles will t,ravel the remainder of the accelerator section at, 6he same phase (pro- 

vided they are all relativistic by the time they are bunched), thus experiencing the 

same energy gain in the remainder of the section. (In the jargon of the field, one sa.ys 

that’ members of such a group of particles all have t,he same “asymptotic phase”.) 

The same velocit’y effect also occurs in the first of the regions ment,ioned in t,he 

paragraph before last, it, simply does not. cause a change in the slope of the cont,ours, 

since the slope is required to be t.he same from both considerations of sinusoidal field 

variation and velocit’y variat,ion in the bunch. 

For 4 2 90”, the slope of the constant, final momentum contours changes again. 

In this region, higher-momentum particles must, be inject,ed first, so that they are 

decelerated more than lower-momentum particles. 

Centered around 4; = -90” is a “chaotic” region, where the final momentum and 

phase of an injected particle depends st,rongly on the initial momentum and phase. 

Particles injected indo this region are first decelerat,ed, then accelerat.ed again as they 

fall back relative to the traveling wave. Some of the part.icles injected here are back- 

accelerat#ed, exit’ing the accelerator section at z = 0, while ot,hers finally exit, at z = L 

only aft.er many cycles of acceleration and deceleration. As expect.ed, t.he width of t.his 



. 
__

 

IN
JE

CT
KI

N 
FO

R M
IN

IM
UM

 
FI

NA
L MO
ME

NT
UM

 
SP

RE
AD

 
FO

R I
NI

TI
AL

 
MO

ME
NT

UM
 

>>
 1
 



. 

CHAPTER 4. LONGITtTDINAL DYNAMICS 216 

region decreases at. the init,ial moment,um increases? since particles of higher init,ial 

momentum loose less ve1ocit.y when decelerat,ed by the same fields, and evenhually 

become capt,ured at. an accelerating phase. 

Figure 4.2 gives additional insight into the longit.udinal dynamics. One sees t,hat, 

the cont,our & = 0 lies in the region 4; 2 0, approaching & = 0 as pi increases. This 

is because in order for a slow-moving particle to end up at & = 0, it. must, be in- 

ject,ed ahead of the crest so that, the velocit.y-of-light. RF wave catches up t.o it as 

it. becomes relativistic. This effect’ is less important, when t,he particle is initially 

highly-relativist,ic, which is why the contour approaches @i = 0 as pi increases. 

This Figure shows t,hab, by and large, in order t,o obtain a short. bunch, one must, 

first. have a relatively short, bunch. The slight, slope to the constant, & cont,ours around 

#+ = 0 indicat.es that, it, is best, to inject, the lower momentum part.icles ahead of t,he 

higher-moment*um particles in OP bunch, so that. the former will fall back t,o t,he same 

-phase as t’he later before the entire bunch becomes relativistic. 

In order to get both a short’ bunch and a small final momentum spread, it is 

necessary that one inject, t,he bunch along a constant, & cont,our in a region where 

the constant. pf contours are widely spaced. Ideally, one would find two cont,ours, one 

for constant $f and one for constant pf, t,hat. coincide over the required interval of pi, 

and inject, one’s bunch witch the required phase-space distribution, c#+ vs pi. 

Typical operat,ing conditions for the RF gun produce a peak moment8um of p = 5, 

with momenta. down t,o p = 4 accept,ed (giving approximat,ely 3~10% moment,um 

spread about. p = 4.5 for t,he “part,icles of int,erest,“). As was demonsbrat.ed in Chap- 

ter 2, the higher moment’um particles exit the gun first, with the particles of int.erest, 

occupying roughly 25 ps, or roughly 25” of S-Band phase. From the above discus- 

sion, it. is clear that, this longitudinal phase-space dist,ribution must be alt,ered so that, 

the higher-moment,um part.icles ent,er the linac after the lower-moment.um particles. 

(The region #i > 90 is ruled out, because the particles are decelerated before being 

accelerated, which is undesirable as it. would lead to increased space-charge effect.s.) 

This can be accomplished by means of magnet,ic compression, as will be shown in the 

next. section of this chapt.er. For present, purposes, I shall assume that t,he magnetic 

compression syst,em can supply the desired moment,um-time correlat,ion: and at.tempt. 

60 1ocat.e the opt’imum phase for inject,ion in order to get the smallest. final moment,um 
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spread and bunch 1engt.h. 

I used linac-cg to compute t,he const.ant’ final-momentmum and final-phase con- 

tours for t,he region -50” 5 & 5 90” and 3 5 pi 5 6, wit,h A$; = 1” and Api = 0.1. 

For reasons discussed below, the region -10 5 @i 5 20 is of particular interest. This 

region is shown in Figures 4.4 and 4.5. 

From 6he previous set of Figures, one sees that for +i z -2O”, the contours of 

constant, pf and those of constant, $f are most’ nearly parallel. This indicat,es that. 

if the initial phase-space distribution could be shaped t,o match the contours in this 

region, then t,his might. be t.he best. place to inject. The problem with inject,ion in this 

region is t.hat since t.he contours of constant, pf are equispaced in Apf, the fract.ional 

momentum spread between the cont,ours in this region is larger than for t.hose just, 

ahead of the crest. In addition, these cont,ours are much more closely-spaced in $i 

than those nearer the crest. Hence, injection in t.his region is unlikely to yield good 

results in pract,ice, since it. is unlikely that, the initial bunch phase-space could be 

tailored to the contours sufficiently well t,o obdain low final momentmum spread. 

From t.he Figures, I conclude that, injecting closer t.o the crest, but. still behind it 

by a few degrees looks promising, as does injection ahead of the crest by perhaps 15-20 

degrees. The lat,ter region suffers more from crossing of the cont,ours of constant $f and 

constant pf. Clearly, some compromise will have t.o be made between minimum final 

phase-spread and minimum final momenbum spread. How one makes this compromise 

depends on one’s application. For example, if additional accelerat,or sections follow, 

then it, is probably best, t,o inject, int,o the first, section so as t.o minimize t,he phase- 

spread at. exit,, so that, all particles have, as much as possible, t,he same phase in all 

subsequent’ accelerat.or sections. This will ensure that. the absolute momentum spread 

does not grow, in addit,ional to giving the short,est. bunch. As the bunch goes through 

subsequent, sections, the fracGona1 moment,um spread will be further decreased. 

The SSRL preinjector has a total of three accelerabor sections. Hence, I will 

at,tempt to opt,imize injecdion into the first section primarily in order to obtain a 

short bunch. Having narrowed down t,he range of initial phase to be considered, it is 

next necessary to include details of the initial bunch phase-space distribution. This 

requires discussion of magnet,ic compression, which I go int,o immediately in the next. 

section, returning t.o t,he combined problem in the section aft,er next. 
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Figure 4.5: Expanded View of Constant Final Phase Contours 
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4.2 Magnetic Bunch Compression 

In the previous section I have shown t.hat, roughly speaking, what, one wants is t,o 

deliver t.o t,he linac the short.est. possible bunch. More precisely, one wants a bunch 

wit,h a longitudinal phase-space distribution at. the beginning of t,he linac that, will 

be compressed further during initial acceleration. This depends upon being able 

to reverse the time-order of electrons within each RF gun bunch, so t,hat’ the lowest. 

moment,um particles ent.er the linac first and subsequently fall back to the same phase 

as the highest momentum part.icles. Hence, a magnetic bunching syst,em will have t,o 

be able t.o accomplish some degree of time-order reversal of particles in the bunch, 

over a sufficient,ly large momentum interval. However, this is t.ypically only slightly 

more difficult, that. producing a very short, bunch at, the ent,rance of t’he linac, and so 

it, is convenient, to think in terms of how to produce a very short bunch. This allows 

a separation of the problem of magnet’ic bunching from 6he details of longitudinal 

dynamics in the linac: and hence prevents t,he issues from being obscured by too 

much det,ail at. the out,set. Once the mechanism of magnetic bunching has become 

clear, it, is then possible to go back and consider the effects of longit,udinal dynamics 

in the first. part, of t,he linac. 

4.2.1 First Order Solution for Bunch Compression 

Consider, t.hen, that, it. is desired t,o produce a very short bunch at, the ent.rance of 

the linac. It is known that, the bunches from t,he gun have a. particular moment.um 

vs. exit’-time charact,eristic, namely, that. higher-moment,um electrons exit. the gun 

ahead of lower-moment,um electrons. It. is convenient, to use the momentum deviat,ion, 

6 - (P - Po)/Po, in t,erms of which, for a sufficiently small moment.um interval about’ 

the central moment.um p. G (Pr)o, 

(4.17) 

where texit refers to t,he t.ime of a particle’s exit from the gun and 

(4.18) 
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(Examination of the 1ongit.udina.l phase-space distribut,ions shown in previous chap- 

ters shows that, for the &lo% moment’um spread that’ will be used, t.his linear ap- 

proximation is not exact. However, it. is again not my purpose now to deal with this 

det,ail, but, rat.her to explain t’he principle.) What is desired in order to have a very 

short. bunch at, the end of the bunching syst,em is t.hat 

tarrival = t,,it(b) + Ataight(S) = constant, (4.19) 

where the subscript “arrival” refers t#o arrival at. the end of the bunching syst,em (i.e., 

t.he emrance bo the linac) and where I use At t ,fi&,t to indicat,e t,hat. the time-of-flight is 

an int,erval rather t,han the time of some event. Combining these and using the linear 

approximation of equation (4.17), I obtain 

6 $ At,,,,,(b) = COnStant, 

0 

.- 

and hence 

From this last, equation and equation (4.18), one can see t,hat, 

(4.21) 

(4.22) 

must be obtained at. the end of t,he bunching syst,em. In words, since higher mo- 

ment,um particles come out, ahead of lower momentum part.icles, they must’ be put, 

t.hrough a system in which the t,ime of flight is longer for high-moment.um particles 

in order for all parbicles to arrive at the end at. the same time. 

For particles that. are not, fully relativist,ic, time-of-flight depends upon bot,h ve- 

1ocit.y and the length of the path taken 

(4.23) 

where s(6) represents t.he lengt,h of the path taken by a particle with moment,um 

deviation 6. Since p = p/fip2 $ 1): it’ follows, t.o first order in 6, t.hat’ 

$=j$+(Po- o $)E. (4.24) 



I 
. 

CHAPTER 4. LONGITUDIIVAL DI’NAMCS 222 

Expanding s(S) t,o first’ order as well, one obt,ains 

=.iB,-$)+&($) . 
o c 0 0 

(4.25) 

The first. t,erm of this expression shows that, for highly relativistic part,icles, for 

which PO -+ 1, the effect, of velociby variation on time-of-flight, disappears, as would be 

expectSed. For non-relativist,ic particles, this t.erm is negative, indicating that. velocity 

effects will fight. 6he bunching process. This is again expected, since the higher velocity 

of higher-moment,um part,icles will help them to “pull ahead” even further. Clearly, if 

bunchin,g is t,o occur, it will come from the variation of path-1engt.h with moment,um. 

4.2.2 Achieving Momentum-Dependent Path Length 

Until now, I have said not,hing about, how one achieves a momentum-dependent, pat’h- 

lengt.h, although the name of t,his sect,ion is an indication. If particles of different 

moment,a are to have different, path-lengt.hs in going through a transport line, they 

must, of course first, be made bo take different, paths through that. system. In addit,ion, 

these different pat.hs must. have different, lengt,hs. For example, merely sending part,i- 

cles of different, momentum through a drift. space at, different, t,ransverse positions will 

not, produce t,he desired effect. To see what, is needed, consider first the expression 

for the pat.h lengdh in a transport, line without. bending magnets, where the cent,ral 

particle t.ravels a straightline pat.h: 

s(s) = J,‘” di%i$i&so, (4.26) 

where the int,egrat,ion is wit.h respect to bhe pat,h 1engt.h for the cent.ral particle. To 

first, order t.here is no variat,ion of path-length with momentum in such a beamline. 

Now allow the central particle t,o traverse a sect.ion of a wedge bending magnet, 

t,hat bends it through an angle AO,, as illust,rated in Figure 4.6. The path length 

for the cent,ral particle is given by As, = p,AB,, where p. is the bending radius for 

the central particle. For an arbitrary part*icle, the path length is given by As = ,oAB, 

where 

P = POP + 4, (4.27) 
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and where 8 is t,he angle the part,icle is bent. through in reaching the reference plane, 

as illustrated in Figure 4.6. 

Particles ot.her than the cent,ral part,icle will in general ent,er the bending magnet’ 

with different momenta, positions, and slopes relative to the central particle. Let’ xi 

and xf be the initial position and slope of a particular particle, respectively. Some 

trigonomet’ry reveals that. the angle through which an arbitrary particle is bent is 

Ad = Ad, + atan + asin ysin(A8,) - sin [A#, + atan( . (4.28) 

. . So far, no approximations have been made beyond assuming an ideal, hard-edge 

magnetic field. In order t,o get, a first-order expression for the differential path-lengbh 

in an infinitesimal section of a bending magnet, I expand t,o first,-order in Ad,, xi, 

and xf, obtaining 

As = pA6’ = A&(p, + x;). (4.29) 

The init,ial coordinate xi is at, this point. arbitrary. I am int,erested, however, only 

in moment,um-dependent, effect.s, and hence I will assume t,hat, the position of any 

particle at. the entrance is a funct.ion only of its momentum, through t.he dispersion 

function D, defined by 

xi(S) = D6 + c3(S2). (4.30) 

Hence, t:he differential path-lengt,h is 

from which I conclude t,hat, 

As = As& + (4.31) 

(4.32) 

(I use the total derivative because xi and xf are assumed to depend on S, i.e., t.his 

quantit.y is not necessarily t.he mat,rix element rss (it, is equal to rss only when t.he 

integrat,ion starts from a point’ where D=O). ) 

Referring back to equations (4.22) and (4.25), one sees that positive $ is required 

for bunch compression. This is obtained when D and p have the same sign, which 

is always t,he case for dispersion generat,ed within the magnet. itself (ot,herwise $ 

could be negat.ive for a lone bending magnet, which is absurd). I define the sign of D 
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with respect. to a right’-handed coordinate system (x, y, z), wit,h i along the direction 

of motion and jr along the upward vertical, so t,hat, for positive dispersion a larger 

momentum deviation implies a larger x coordinate. Hence, positive dispersion is 

generated by a bend to the right. The sign of p, as well as the sign of 8, for a bending 

magnet is then required to be the same as t,he sign of the dispersion it, generates. 

This ensures that. As, is positive and t.hat. a lone bending magnet, produces positive 

$. This is consisdent, wit’h t.he convent,ions used by the beamline program MAD[71] 

and t.he tracking program elegant [49]. 

4.2.3 Options for Implementing Magnetic Compression 

From this discussion it is clear that, a single bending magnet could be used to provide 

bunch compression. However, t,here is inevit,ably dispersion a6 the end of a system 

wit.h a single bending magnet, which is undesirable as it, increases beam-size, effec- 

tively increasing the beam emit,tance. The next, obvious step is t,o use two bending 

magnets of the same sign, wit’h a focussing quadrupole bet,ween them to match the 

dispersion to zero at, t,he end of the second bend (see Steffen[67] for examples of such 

syst,ems). Such a system has a number of advantages, a principle one being that. 

chromatic aberrations can be correct,ed through the addition of sext.upoles between 

the bending magnets. However, there is the disadvantage that., since the bending 

angles of t’he magnets are fixed by the requirement, of st,eering the cent,ral momentum 

down t.he center of the beamline, the bending radius p is fixed for each magnet, and 

hence D and g are also fixed. Such a syst,em is thus unsuitable for situations requir- 

ing variable compression, such as is needed for the RF gun, where * varies with 

pO (i.e., as a function of the RF field level in the gun). Since the RF gun was still 

under development when the bunch compression system was being designed, it was 

not. known before-hand what the operating moment.um would be, and hence a system 

with variable compression was desirable. 

For this reason it was decided to use a. different. type of magnetic-bunch compres- 

sion scheme, namely one employing an alpha-magnet. The propert’ies of t,his magnet 

are covered in detail in a Chapt,er 3. For present. purposes, I will simply state that it, 

-- 
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is firsCorder a,chromat’ic but’ has moment,um-dependent pabh-length described by 

~a@‘> = K, (4.33) 

where s is in meters, g is the gradient, in G/cm, K, = 1.91655, and, as above, 

p0 = (PT)~. From th is, it is seen that for t,he alpha-magnet, 

(4.34) 

Like bending-magnet,-based schemes, an alpha-magnet. provides momentum-dependent. 

path-lengt,h because of bending and t,he result.ant dispersion. However since t#he alpha- 

magnet. is a gradient, magnet, t,he bending radius varies wit,h positsion along t,he cent,ral 

t,ra.jecbory. The alpha-magnet has the advant,age t,hat. 6he gradient, and hence %, 

can be varied without. changing the central trajecdory outside of t,he alpha-magnet. 

While t,here are ot,her syst.ems wit,h this propert’y[72], t.he alpha-magnet, is probably 

the simplest. - It. also has the advantage of relat.ively small aberrations, but has the 

disadvantage that, t.here is no simple way to incorporate sext,upoles for correction of 

chromatic aberrations in ext,ernal quadrupoles that might, be required as part, of the 

beamline. 

EvaluaCng (4.33) for 6 = 0, and inserting bhe result, along with equation (4.34) 

into (4.25), and thence int.o (4.22), I obtain Qhe requirement, for bunching 

f (KffE+L&ift) (BcI-+-) +j$f-/f= -!.!Z$, 
(4.35) 

where I have used 

s(S) = Ldrift + Sa(b) (4.36) 

t,o incorporat,e the effects of any drift. spaces bet,ween the gun and alpha-magnet, and 

bet.ween t,he alpha,-magnet. and linac. It’ will prove useful to group the alpha-magnet, 

terms together, as in 

Solving for the gradient,, I obtain 

g= 
PZ: (A - &-)’ 

[ C* + L&ift (A - k)]” 

(4.37) 

(4.38) 
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This equation reveals a number of aspects of bunch-compression with an alpha- 

magnet. Since % < 0 and PO - & < 0, the denominator will be zero only if Ldrift = 0 

and the initial bunch has zero length, i.e., only if bunching is not. needed. One also 

sees that, the longer the drift. spaces, the lower the alpha-magnet. gradient, must. be, 

in order to compensat,e for the debunching. 

The t,erm (Do - $-,, in the numerator combines the effects of debunching in 

t,he alpha-magnet, due to differential ve1ocit.y with that, of bunching in the alpha- 

magnet. due to differential pat,h-length. Not,e that, the solut,ion (4.38) is not. valid for 

PO < l/d, since t,hen all t’erms on the left,-hand side of (4.37) are negative. Hence, 

for PO < l/d, the alpha magnet, cannot bunch, as t,he effects of velocit*y variation will 

always overcome the effect.s of path-length variat(ion. (This is false only if % > 0, 

a sit,uation that. does not. apply for the RF gun.) 

Taking the limit’ of equat,ion (4.38) as PO --+ 1, one obtains 

. . 
~3: 

L21 g = (2cd+)2 ’ 
(4.39) 

which indicat,es that. for constant. bunch 1engt.h and constant fractional moment’um 

spread (implying constant *), the gradient. must’ increase with increasing central 

momentum. If, however, the &sol&e momentum spread is kept constant. (as hap- 

pens wit’h accelerat,ion of relat,ivistic particles near the crest of the RF field), then 

* scales as pO, which indicates that t.he gradient, must scale inversely with momen- 

t,um. A smaller gradient implies a larger alpha magnet, since t,he size of the cent.ral 

traject.ory scales as l/d (see Chapt,er 3). Hence, bunching before acceleration is ad- 

vantageous in that, it decreases the size of the alpha-magnet, at, the cost, of requiring a 

higher gradient. Similarly, as p, * l/fifrom PO > l/a, the gradient must. become 

vanishingly small, implying a increasingly large alpha-magnet. 
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4.3 Optimized Bunch Compression for the RF 

Gun 

In the previous two sections, I discussed the principles that, must, be employed in 

choosing t,he injection phase and t,he alpha-magnet, gradient for production of short, 

bunches with low final moment,um spread. I att*empted to separate t,he t,wo aspects, 

for simplicit’y in the discussion. In this section, I demonstrate how bo obtain opt.imum 

performance wit*h simultaneous consideration of accelerabion and magnetic bunching, 

along with inclusion of the det,ailed initial phase-space. Not’ surprisingly, this opt,i- 

mization is best, done numerically. 

I have written a program, alpha-opt, that. accept,s initial longitudinal phase-space 

information in t,erms of (&,pi) pairs for macro-particles (e.g., from MASK or rfgun) 

and att.empts t,o find the optimum alpha-magnet gradient for a specified accelerat,or 

phase and energy gain. It. opt,imizes for eit’her the minimum mean absolute phase 

deviation or t’he minimum total phase-length of the final bunch, though I have used 

the latter crit#erion exclusively in this work. Equation (4.33) is used witChout, approx- 

imation in (4.36) bo give the moment,um-dependent. path-length. Equation (4.1) is 

used for the traveling wave field. To simulat,e particle motion in the accelerat,or, I 

employ equations (4.2) and (4.3) (scaled for more efficient, computation), which I in- 

tegrate using the so-called “leap-frog” met,hod[61], which is second-order accurat.e in 

t*he t,ime-st,ep. Typically, I find that taking time-steps smaller t,han 30 ps makes no 

change in t,he result,s (i.e., no change of more t,han 1O.OOlps in the bunch length). 

4.3.1 Use of alpha-opt to Optimize Bunch Compression 

The combined distance, Lhift, from the gun t.o t,he alpha-magnet, and from the alpha- 

magnet, to the tender of the first, linac cell (where the traveling wave begins) was 

chosen based on simulat,ions of the gun longitudinal phase-space, the anticipated 

st,rength and good-field-region of the alpha-magnet., and t,he need for a sufficiently 

long drift,-space t.o accommodat,e the quadrupoles and chopper. Because the gun was 

still under development at, t,he t,ime t,he alpha-magnet and GTL were being specified, 

I chose Ldrift so t,hat compression would be feasible over a wide range of gun operating 
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momenta, rather t.han finding an optimum for any part.icular beam momentum. If 

L&if, were chosen t.o be too short, then an excessively strong alpha-magnet, would be 

needed in order to reduce the compression, while if L&if, were chosen bo be too long, an 

unreasonably large good-field region would be needed to provide more compression. 

Ldrift = 1.5m was initially chosen based on preliminary simulations with rfgun and 

alpha-opt, along with knowledge of the (then preliminary) magnetic design of the 

alpha-magnet,. Lat,er, L drift was increased to 1.7m in order t’o provide more space for 

other GTL components. 

More specifically, there is a 0.6m drift, space from the gun to the alpha.-magnet’ 

crossing point, and a l.lm drift’ from the alpha-magnets to t.he linac. See Chapter 5 

for more discussion of the layout, of the GTL. 

I performed a series of alpha-opt runs st.arting wit,h t.he MASK-generated lon- 

git,udinal phase-space dist,ribution for the RF gun operat,ed at, Ep2 = i5MV/m and 

J = lOA/cm 2. The linac simulation parameters were such that an initially relat,ivis- 

tic particle injected at, t,he crest, would gain 45 MeV (which corresponds to 20.7 

MW RF power). I took the highest.-moment8um part,icle as the fiducial particle, and 

chose to at,tempt’ to compress the beam for a variet,y of momentum spreads, name- 

ly ilO%, is%: and &2.5%. That’ is, I applied a perfect momentum-filter to the 

MASK-generat,ed beam, accept.ing only particles such t,hat p,(l - f) 5 p < p,(l + f), 

with p; - pmax/(l + f), where if is the fract,ional momentum spread accepted. In 

this way, the selected momendum range always cont,ains the highest moment,um par- 

t,icles. (This same capabilit.y exists on the actual beamline, where a scraper inside 

the alpha-magnet, can be moved into the beam from the low-moment,um side.) 

For each value of f, I first. found the alpha-magnet, gradient. which produced the 

shortest bunch at the ent#rance to the linac. I then used this gradient, and sent’ the 

bunch down the linac with the highest’-moment,um particle injectsed at. the crest, fully 

expecting that, the result, would be a less than optimally compressed bunch. The 

simulations confirmed this expectat,ion, as the data listed in Table 4.1 shows. (In this 

and all subsequent, Tables and Figures, At’ and AP are the full spread of the values, 

e.g., At. = t,,, - tbn.) In addit,ion, one sees t,hat. the absolute moment. spread has 

increased. The phase-space dist,ributions at. t,he linac ent.rance and exit are represended 

graphically in Figure 4.7. Not.e that’ these graphs are of time and moment.um: rather 

-- 
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t,han phase and moment,um, and that. particles t.o t,he left are ahead of particles to 

the right. As expecbed, t,he initially higher-moment.um particles pull ahead of the 

initially lower-momentSum particles, result.ing in a longer final bunch. 

Table 4.1: Optimization for a Short Bunch at the Linac Entrance 

APIP & APi An 
(%) (PC) (G$zm) ii\ (m,c) t”s; (m,c) 
110 110.9 335.40 1.050 0.978 3.030 1.808 

15 80.3 338.32 0.724 0.513 1.285 0.818 

12.5 50.4 321.22 0.493 0.263 0.750 0.436 

The conclusion to be gained from this result is that, it is not sufficient, t,o design 

a compression system that. will generat.e a short, bunch at, t,he entrance t,o t,he linac. 

It’ is necessary to take into account, the longitudinal dynamics in t,he linac in order t.o 

ascert,ain whether one can indeed produce a very short bunch at, the end of the linac. 

In t,he present, case, one expects that’ what. is needed is t,o increase the compression (by 

using smaller gradients in the alpha-magnet,) so that. the lower-momentum particles 

enter the accelerat,or ahead of the higher-moment$um particles. This expectat.ion is 

confirmed by alpha-opt. 

I direct,ed alpha-opt to optimize t’he alpha-magnet. for the shorbest. bunch at tShe 

end of t.he linac. The same linac parameters were used as before. The opt.imum 

alpha.-magnet gradients are smaller than previously found. Table 4.2 lists 6he results 

for this optimization. The phase-space dist,ributions at the linac entrance and exit. are 

represented graphically in Figure 4.8. One sees t,hat, for this opt,imizat,ion t.he increase 

in t,he abso1ut.e moment,um spread is significantly smaller than for the previous opti- 

mizat,ion. The explanation is that the final bunch length is achieved a relatively short 

distance into t.he accelerat,or section (because t,he particles are already relativistic), 

‘and hence in the previous optimization the bunch had a large phase-spread during 

most, of the acceleration, resulting in an increase in momentum spread. 
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Figure 4.7: Result for Compression Optimized for a Short. Bunch at. Linac Ent,rance 
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Figure 4.8: Results for Compression Opt,imized for a Short Bunch at Linac Exit 
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Table 4.2: Optimizations for a Short Bunch at the Linac Exit 

I AP/P I g, I Ati I APi I At, I APf I 

4.3.2 Optimization of the Injection Phase 

For Ap/p = IlO%: I have done an additional series of simulations, designed to inves- 

tigat,e t,he effect. of the initial phase of t,he fiducial particle. In particular, I repeat,ed 

the opt,imization for a series of values of the initial phase of fiducial particle. The 

results are listred in Table 4.3 and displa.yed graphically in Figure 4.9. Notice that 

the smallest final momendum spread and the highest, average final momentum are . . 
achieved by injecting the bunch 10 - 15” ahead of the crest, so that it falls back 

to the crest, before becoming fully relativistic. The smallest final bunch length is 

achieved for $+, = 20”. As might have been expected from the contour method of bhe 

previous section, the optimizations for highest total momentum gain, smallest, final 

momentum spread, and smallest final bunch length are to some extent. incompatible, 

though not, grossly so. While some advantage in terms of final bunch length is ob- 

tained by accelerat,ing well off the crest,, the advantage is small and is obtained at, 

the expense of considerably higher final moment.um spread. That this should be so is 

confirmed by the contour-plots of the first. section, where one sees that the contours 

of constant final phase become more widely spaced as @I increases from zero up to 

around 90”. The explanation is, perhaps, that injecting further from t.he crest allows 

a longer time for t,he particles to bunch before they are fully relativistic. Presumably, 

if this explanation is correct, one would find the optimum injection phase for t,he 

shortest, bunch becoming smaller as one decreased the rate of acceleration. 

The reader may notice that bhe numbers for 4. = 0 in Table 4.3 are different. from 

those in Table 4.2. The reason for this is that for the optimizations presentfed in Table 

4.3, I used a sample of the MASK-generated longit.udinal phase-space distribution 

containing only 20% of t,he macro-particles in order to economize computer resources, 
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whereas in the previous t,wo Tables I used all t’he macro-part.icles (3461 macro-part.icles 

for ilO% init,ial momentum spread). Each set. of data, is self-consistsent, in the size of 

bhe sample used. 

Table 4.3: Optimizations for Ap/p = AlO% for Various Injection Phases 

4.3.3 Optimizations for Various Current Densities 

To obtain predictions of bhe maximum peak currents that. might. be obtained with the 

SSRL system, I have done a series of optimizations for (Ap/p)i = &lo%, &5% and 

12.5% using MASK-generat,ed initial longit,udinal distributions for Ep2 = 75MV/m 

and 0 5 J 5 80A/cm2. Since the initial longitudinal distribut.ion is affect,ed by space- 

‘charge in bhe gun, it is necessary to do the opt,imizat,ion for each current level. I chose 

& = 15” as a compromise bet,ween minimum bunch length, maximum momentum 

gain, and minimum moment,um spread. As before, I assumed 45 MeV as the linac 

energy gain. The results are summarized in Table 4.4 and in Figures 4.10 t,hrough 

4.12. (Not.e that. the dat.a point.s in t.he figures are connected as an aid to the eye, 
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Figure 4.9: OptimizaGon for a Short. Bunch at the Linac Exit for Various & 

-- 
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and not, bo indicat,e any assumed variat,ion in t,he quant’ities bet,ween dat,a points.) 

Table 4.4: Optimizations for Various Cathode Current Densities 

(Ap/p), = &lo% 

At f,mad (Pf) Apf APf,mad Q (1) 
(~4 b-4 b-4 b-4 (PC) A 

4.3.4 Effects of Transport Aberrations 

These predict,ions of high peak current,s neglect, space-charge forces in the gun-t,o-linac 

transport, line and in t#he linac itself. They also neglect, the effects of non-chromatic 

t5jk and u5jM terms (“aberrations”) in the alpha-magnet,, and of field errors in t.he 

alpha-magnet. (see Chapter 3). Other effect,s that. are not. included in the analysis are 

wake-fields in the accelerat,or sect,ion. In Chapter 3, I discuss the effect. of field errors, 

and show t,hat the effect of field errors on r5j mat.rix elements is small, from which I 

conclude t,hat. the abi1it.y of t,he alpha-magnet’ to compress the bunch is unaffect,ed by 

field errors. 

To evaluate t,he effects of space-charge, both in the GTL and in t,he accelerat,or 
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section, it would be necessary t,o employ a program such as PARMELA that, is capable 

of simulating beam-transport. with space-charge. Unfortunately, PARMELA does not, 

include alpha-magnets, nor does time permit. me to modify t.he program to remedy 

this deficiency (more would be required than simply inserding the t,ransport mat’rix). 

In addition, the space-charge algorithm used by PARMELA is not, well-suited t,o use 

for thermionic RF guns, where t,here is a large velocity spread in the beam. Finally, I 

have not. found that, PARMELA performs accurately in calculat.ing simple test. cases, 

such as the spread of a uniform cylindrical beam. Hence, evaluation of the effect,s of 

space-charge in the GTL must, await, the development, of a suitable program, and will 

not, be pursued here. 

However: the program elegant[49] is capable of accurat,ely simulating the GTL, 

ignoring space-charge. elegant includes chromat,ic aberrations (see Chapter 5) in the 

quadrupoles and alpha-magnet as well as other aberrations in the alpha-magnet (see 

Chapter 3). I will discuss the GTL optics and such issues as chromatic aberrations 

in Chapt,er 5. For the present, I simply present the results of elegant simulations of 

t,he GTL and the first’ linac section, which use tshe same initial phase-space data as 

was used in the previous calculations. That, is, the elegant simulations took initial 

phase-space data generat,ed by MASK for Ep2 = 75MV/m, for a range of current 

densities, and for initial momentum spreads of &5% and &lo%. The result,s are 

shown in Figures 4.13 and 4.14, which are to be compared to Figures 4.10 and 4.11, 

respectively. 

In addition bo showing t,he peak current, at the end of the linac section, I have 

shown the peak current, at the gun exit, and the cathode current (i.e., nR:J), to 

illust.rat,e t#he increase in peak current due to the bunching processes in 6he gun and 

GTL/linac. I have not shown t,he momentum spread, in order t.o use t.he space for 

other quant.it,ies, and because it, is essentially the same as the previous results. 

One sees that the peak currents predicted by elegant are considerably less t’han 

those obt.ained previously. The reason is that path-length aberrations in the GTL 

increase the broadness of t,he momentum versus time curves, making compression 

t,o very short bunches more difficult. In addit,ion, the transmission through the first 

section is only 70% (part,icles are lost. on t,he approximately 18 mm diameter apert,ures 

between linac cells), which reduces t,he amount, of charge reaching the end of the 
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Figure 4.13: elegant/MASK Results after First. Accelera.tor Section, for Various 
Cat.hode Current Densities and Ep2 = 75MV/m, for (AP/P)i = &lo % 
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Figure 4.14: elegant/MASK Results after First, Accelerator Section, for Various 
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Figure 4.15: Longit.udinal Phase-Space at, Various Points in the GTL 
(elegant/MASK results for E,,Z = 75MV/m, J = lOA/cm’, and (AP/P)i = &lo %). 
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linac. Figure 4.15 shows the evolution of the longit,udinal phase-space in the GTL, 

for J = 10A/cm2 and AP/P = &lo%. As one would expect, the bunch length at’ the 

alpha-magnet, enkance is greater than that at, the gun exit, due to the higher ve1ocit.y 

of the lead particles in the bunch. 

The broadening of the longitudinal phase space is due to path-length-affecting 

aberrations in the quadrupoles and drift, spaces bet,ween the gun and alpha-magnet. 

To see that’ t,his is reasonable, not,e that for a drift. space of lengt,h L,, the pat.h length 

traveled by a particle wit.h non-zero slope is 

L=L,dW=Lc+ +(xr2 + y’“). (4.40) 

At’ the gun exit,, &, = y&, z 10 mrad, and the st,raight,-line distance from the gun 

exit, t,o the alpha-magnet ent,rance is 60 cm. The pabh-length increase for x’ = &, 

and y’ = y:,, is 60pm, which corresponds to a time delay of 0.2 ps. Since there are 

particles in the beam with x’ and y’ t.he several times the RMS value, the broadening 

seen is larger than this estimate. As a result. of such aberrations, the phase-space at 

the linac ent,rance differs considerably from t.he results show in Figure 4.8, because 

the latt.er results did not, include any consideration of transverse mot’ion. 

Figures 4.13 and 4.13 also show the normalized RMS emittance and brightness at, 

the end of the first linac section, as well as results at, the gun exit, for comparison 

with those at, the end of the linac. Recall that. the emittance is defined as 

& - rmec (x2)(pf) - (PG)* n,x - (4.41) 

and the brightness as 

B, = 
2I,e,k 

-(7rm,c)2. (4.42) 
& & n,x n,Y 

The emittance shown in t,he Figures is the geometric mean of the emittances for the 

x and y planes, fn = d-. 

The emitt,ance at the end of the linac sectlion is larger than that, at, the gun exit, 

but, not. as large as the emittance at. the entrance t,o the linac. The emittance is 

“filtered” in the linac because particles with large transverse amplit,udes are lost on 

the linac disc apert,ures. Put. anot.her way, t#he emittance numbers do not, refer to 

t,he same part.icles, since 30% are lost,. One sees that, the emittance depends only 
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weakly on the current, densit’y; t,his is due to the overwhelming effect of chromatic 

aberrations. The emittance at, the ent.rance to the linac is about. twice that, at t.he 

end of the section, These points are discussed further in Chapter 5. 

In addition t,o showing the simulation results for the emit,tance, I have shown t.he 

thermal limit on the emit,tance for a cathode of R, = 3mm, using[l6] 

& -& n,x - n,Y = (4.43) 

where T is the cat(hode temperat,ure, which is 1200°K for the SSRL gun. One sees 

quite clearly t&hat. t,he thermal limit, is far from being approached: the emittance is 

dominat.ed by RF focusing, non-linear fields in the gun, and chromatic aberrations in 

t,he GTL. 

Figure 4.14 also shows t.wo data points obtained by simulat.ing the gun with a 

smaller emitting area on t,he cat,hode. (These appear as crossed circles in t,he graphs.) _. 
In particular, an emitter radius of 1.5 mm was used, with the physical cathode size 

kept’ at, 3mm radius. In effect, the region from r = 1.5mm to r = 3mm was taken 

to be a “dead region” on the cathode. In this situation, part.icles are emitted much 

closer to the axis in t,he gun, so that, non-linear fields in the gun have less of an 

effect, resulting in a smaller emit,tance. In addition, the smaller emit*tance leads t,o 

smaller effects from path-length-affecting aberrat’ions in the GTL, so t.hat, short,er 

bunch-lengt.hs are achieved. While t,he amount. of charge drops due to the decrease 

in emibting area, this is balanced t.o some ext,ent# by the shorter bunch-lengt,h, so that 

t’he peak current, at, J = 80A/cm2 is increased. Because of bhe strong effect. on t,he 

emitbance, the brightness is dramatically increased. These results make a strong case 

for operating the gun with such a cathode, especially since the cathode is currently 

operated well below its maximum current densit(y, meaning that. a reduced emit,ting 

area could be used with no loss of t,otal charge. 

4.3.5 Comparison with Other Injectors 

The data of Figures 4.13 and 4.14 permit, comparison of the predict,ed performance of 

t,he SSRL preinject,or (i.e., the RF gun, GTL, and linac) with other RF-linac-based 

preinjectors. In order t(o do this, I have reviewed recent’ lit,erat,ure giving parameters 
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of existing and planned injectors. There is always the chance of confusion in any 

such compilat,ion, especially since many authors do not. stade their definition of the 

emit*tance or bunch length. Where doubt’ exists, I have assumed thad the quoted 

emittance is the 4-u or “edge-emittance” and that, t.he bunch 1engt.h refers Qo 90-95% 

of the beam, since these appear t.o be the most, commonly used definitions. 

One extremely useful resource in this regard was C. Tra.vier’s review article on RF 

guns[l4], which gives extensive performance data for RF guns and stat,e-of-the-art 

DC gun systems (i.e., those wit,h high-performance guns and multiple subharmonic 

bunchers). I have also t,aken data from T. I. Smith’s review[46]? which lists several 

syst,ems planned for or already in use as FEL drivers; these are not. necessarily st.at,e- 

of-t’he-art’ systems. (Where Travier and Smith differ on the same syst.em, I have 

used Travier’s data, which is more recent.) I also show data points for several other 

syst.ems that, are intended for FEL use[73, 74, 75j as well as SLAC’s SLC[76] (including 

-damping rings) and the original SLAC injector[48]. 

Not.e that, I will compare injectors, rather than guns. From an applications- 

orient.ed viewpoint, t,his is the most appropriate comparison to make among systems 

using various types of guns, since it includes all of the effects that. come into play when 

one actually makes use of t,he beam from a gun. It also avoids issues such as whether 

a m&i-cell thermionic RF gun should be compared to a DC gun with prebunchers, 

given t,hat. the mult,i-cell RF gun is in some sense a combined gun and prebuncher. 

The dat,a for DC-gun-based and microtron-based systems are in Table 4.5, while 

those for RF guns are in Table 4.6. Two daba. points are listed for the SSRL sys- 

hem. Both are for Ep2 = 75MV/m and f=0.05, but one assumes J = 40A/cm2 with 

R, = 3mm, while the other assumes J = 80A/cm2 with R, = 1.5mm. (These are both 

consist,ent, with less than 4 MW incident. RF power, which is the anticipabed upper 

limit that, will be supplied t,o the gun aft,er some recent,, but. unt,ested, hardware up- 

grades.) Figure 4.16 shows some of this data in graphical form, with addition points 

supplied for the SSRL system, as explained on bhe graph. 

One sees dhat, the SSRL system is predicted to perform quite well in terms of 

peak current, and brightness, achieving levels comparable to those achieve by much 

more sophisticated and complicated systems. One also sees, however, that. the high 

brightness and high peak current. are achieved by generat,ing very short, pulses, which 
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are not. appropriat,e t,o FEL work at, wavelengt,hs that, are not’ very long compared t.o 

t,he elect,ron bunch length (see Chapter 1 for a discussion). 

Table 4.5: Performance of DC-Gun and Microtron- Based Injectors 

Project. G I peak Q 6t B, 

7r-rnm,c-tirn A nC DS A /mm2 /mr2 I 
1 SLC (1986)/761 1 io 1 1 2400 1 8 1 3.3 1 ’ 5.3’ 

I I I I 

SLC 2[14] I 75 580 10.4 18 0.21 
SLC 1[14] 43 430 7.7 19 0.47 
Boeing [ 141 13 350 4.9 14 4.2 
LANL/141 60 300 9.0 30 0.17 
ALSli41- 40 I 200 I 4.0 I 20 I 0.25 

t CLIdll41 
I I I I I 

7.5 I 100 I 1.5 I 15 I 3.46 I 
1 Trieste F’Eil741 1 

I I I I 
50 I 15 I 0.15 I 10 I 0.012 

UK FEL[46j _ 13 10 - - 0.12 
Frascat,ti[75] 1.4 6 - - 6.1 

SCA/TRW[46] 1.3 4 - - 4.73 
Orig.SLAC[48] 5.7 0.3 - - 0.018 
NIST-NRLl73i 5 0.3 14 15 0.024 

-- 
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Figure 4.16: Bright.ness and Peak Current, for Various Inject,ors 
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Table 4.6: Performance of RF-Gun-Based Injectors 

Project, G I peak Q St %I t,ype 

7r-m,c-pm A nC ps A/mm2/mr2 

ANL[14] 340 10 - lo3 100 8 0.17 laser 

CERN[14] 3i.5 450 9 30 0.64 laser 

_- LANL: - 
AFEL[14] 2.5 350 5 16 112 laser 

HIBAFjl4] 9.0 270 4 15 6.7 laser 

PHASE I[ 141 10.0 200 11 70 4.0 laser 

SSRL: 
3nun,40A/cn~2 9.5 196 0.2 1.0 4.4 t,herm. 

1.5rnrn,80A/cm2 4.8 144 0.2 0.7 lf.2 t,herm. 
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