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Abstract

In a collaborative effort by SSRL, AET Associates, and Varian Associates, a high-
brightness microwave electron gun using a thermionic cathode has been designed,
built, tested, and installed for use with the SSRL 150 MeV linear accelerator. This
thesis discusses the physics behind the design and operation of the gun and associated
systems, presenting predictions and experimental tests of the gun’s performance.

_ The microwave gun concept is of increasing interest due to its promise of providing
higher-current, lower-emittance electron beams than possible from conventional, DC
gun technology. In a DC guns, accelerating gradients are less than 8 MV/m, while
those in a microwave gun can exceed 100 MV /m, providing much more rapid initial
acceleration, thereby reducing the deleterious effects of space-charge. Microwave guns
produce higher momentum beams than DC guns, thus lessening space-charge effects
during subsequent beam transport. Typical DC guns produce kinetic energies of
80-400 KeV, compared to 2-3 MeV for the SSRL microwave gun.

“State-of-the-art” microwave gun designs employ laser-driven photocathodes, pro-
viding excellent performance but with greater complexity and monetary costs. A
thermionic microwave gun with a magnetic bunching system is comparable in cost
and complexity to a conventional system, but provides performance that is orders of
magnitude better.

Simulations of the SSRL microwave gun predict a normalized RMS emittance
at the gun exit of < 10 7-m.c-pm for a beam consisting of approximately 50%
of the particles emitted from the gun, and having a momentum spread of +10 %.
These emittances are for up to 5 x 10%~ per bunch. Chromatic aberrations in the
transport line between the guh and linear accelerator (GTL) increase this to typically

< 30 7 -m,-pm.
il



The SSRL microwave gun was designed to have a longitudinal phase-space suited
to magnetic bunch compression. Simulations predict that peak currents of several

hundred amperes are achievable.
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Chapter 1
Introduction

The history of accelerator physics is inseparable from the history of the application of
particle beams. The production of high-brightness electron beams is one of increasing
.interest among accelerator physicists precisely because of increasing interest in the
applications of such beams. These applications provide the motivation for the research
reported on in this thesis.

In this introductory chapter, I will indicate the nature of the these applications
to give the reader some appreciation of the motivation for research into microwave
electron guns. Prior to this, I review fundamental concepts—such as phase-space,
Liouville’s theorem, and emittance—that are necessary to the understanding of high
brightness. 1 also review issues relevant to the production of high-brightness pho-
ton beams from synchrotron radiation emitted by high-energy electrons, including a
discussion of coherent radiation and free electron lasers.

Microwave, or “RF”, electron guns[1, 2] are a relatively recent development in the
production of high-brightness beams. Their general characteristics and brief history
are reviewed in the third section of this chapter.

I end this chapter with an overview of the main body of the thesis.
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CHAPTER 1. INTRODUCTION

1.1 Review of Fundamental Concepts

In order to understand the meaning of “high-brightness”, it is necessary to first un-
derstand several prior concepts. The first of these is the concept of emittance. The
emittance of a beam is related to the phase-space volume occupied by the beam, or
some fraction of it. To properly define the emittance requires a discussion of phase-

space and Liouville’s theorem.

1.1.1 Phase-Space and Liouville’s Theorem

Phase-space refers to the six-dimensional space in which the spatial position and
dynamical properties of any particle are defined. For example, the coordinates of
phase-space may be taken to be the Cartesian coordinates (qi,q2,q3) and the corres-
ponding momenta (p;, p2,P3). In classical mechanics, these six coordinates uniquely
-and completély describe the state of any particle. (More will be said about the choice
of coordinates below.) '

Suppose that at some time, t=0 say, an arbitrary closed surface S in phase-space is
chosen, and that it bounds a volume V. Allow S to evolve in time as if it were anchored
to imaginary particles that lie on S at t=0. That is, consider S(t) to be defined as the
surface occupied by those particles. Liouville’s theorem|3] states that the phase-space
volume, V(t), bounded by S(t) is constant, provided that only conservative forces act

on the particles.

Proof of Liouville’s Theorem

Perhaps the simplest and most intuitively appealing proof of Liouville’s theorem is
that given by Weiss[4]. For simplicity in notation, consider a two-dimensional phase-
space, with coordinates (q, p), so that V(t) is the area bounded by a closed curve
S(t).

In order to calculate the total time derivative of V(t), one need only look at the
motion of the boundary, which again may be thought of as determined by the motion
of hypothetical boundary particles that are defined by the choice of S(t=0). Let df

represent the outward vector for an infinitesimal segment of the boundary. A motion
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of this boundary element by (Aq, Ap) will increase the area bounded by S by
df;Aq + df; Ap. (1.1)

Dividing by At and integrating over S, one sees that

S = [(@p)-af. (12)

Use of the Divergence Theorem allows one to convert the surface integral into an

integral over the region of phase-space bounded by S:

dv L : .
o / V-(4,p)dqdp = f (8q4 + G,P) dq dp. (1.3)
, v v
For a conservative system[3], Hamilton’s equations,

g = 0,H (1.4)
p = —0.H, (1.5)

are applicable. Since the boundary S moves as if anchored to particles, these equations
for particle motion specify the motion of the boundary, and may meaningfully be used
in equation (1.3), yielding

dv

- /V(aqapH — 8,0,H) dq dp = 0. (1.6)

Hence, the phase-space area bounded by S(t) is constant as the system evolves.

Implications of Liouville’s Theorem

Most statements of Liouville’s theorem|[5, 6] make use of the particle distribution
function, ¥(q,p,t), which gives the density of particles in phase space. Since the
paths of particles cannot cross in phase-space, any particle inside S at t=0 will remain
inside S. Thus, if one accepts that the volume bounded by any surface S(t) is constant,
then it follows that the integral of ¥ over that volume is also constant, since this
integral gives the number of particles in the volume and since particles cannot cross
S. Since the volume bounded by S(t) and the number of particles inside S(t) are both

constant, the average density of particles inside S(t) must also be constant.
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To deduce a further result, assume that S(t) bounds an infinitesimal volume
dV = dqdp, so that one can ignore the variation of ¥ over the volume. Then the
statement that the average of ¥ over V(t) is constant implies that the value of ¥
at the center of the volume (or for any other point inside it) is constant. That is,
if one chooses any point (q,p) in phase space at t=0, then as one travels with a
particle starting at that point and moving under the influence of conservative forces,
the value of ¥ evaluated at the position of the particle is constant. Writing this in

mathematical form, one obtains

dv oV dq ov dp 0V .
_ daq &P gr _ 1.
dt Ot + dt  aq + dt Op 0 (1.7)

which is the mathematical result commonly referred to as Liouville’s theorem|5, 6].

Liouville’s Theorem and Real Beams

In acceleratot physics, one deals with the properties of ensembles of large numbers of
particles, referred to as “beams” or “bunches”. The real phase-space distribution of

a bunch is the sum of many delta-functions:
o(q, P, t 25 — q®(t))é(p — pV(1)), (1.8)

where N is the number of particles, and (q¥),p!¥)) are the phase-space coordinates
of the i** particle.

What does Liouville’s theorem tell us about the evolution of such a bunch?
Contrary to the impression given by some discussions[5], there is nothing in the
derivation[6] of equation (1.7) that invalidates it for a distribution of this type. In
my discussion, I have taken care to refer to “imaginary” particles in defining bound-
ary surfaces, in order to emphasize that Liouville’s theorem is not dependent for its
validity on having an infinite number of particles or a smooth continuous distribution
of particles. Liouville’s theorem stated in terms of the constancy of the volume inside
a closed, evolving surface in phase-space is clearly a result that is valid regardless of
what sort of actual beam distribution one has. This applies just as well to Liouville’s
theorem as stated in equation (1.7).

One caveat needs to be issue in this regard[7]. The derivation of Liouville’s the-

orem implicitly assumed that the Hamiltonian was macroscopic in nature, and in
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particular that particle-particle forces could be included in the Hamiltonian in a way
that did not refer to the individual coordinates of particles. If particle-particle colli-
sions are considered, then the real Hamiltonian is a function of 6N variables, where
N is the number of particles. In this case, Liouville’s theorem is strictly valid only in
6N dimensional phase-space. In 6 dimensional phase-space, particle-particle collisions
will increase the phase-volume occupied by the beam and appear to violate Liouville’s
theorem. For practical purposes, the phase-volume in 6 dimensional phase-space is
what matters, so this can be an important issue. For sparsely populated beams, the
issue becomes even more relevant, since then the particle fields cannot be smoothed
into a macroscopic field.

Even given this conclusion, a distribution as defined by equation (1.8) is unwieldy
and contains more information than is needed or useful. In the limit of a very large
numbér of particles, ¥, can generally (though not always) be approximated by a
..smooth, continuous function of q and p. The applicability of a smooth distribution
depends on practical considerations of how well one wants the smooth distribution
to match the actual distribution. Since real bunches are always confined to a limited
volume in phase-space, a practical way to gauge whether a bunch is well-approximated
by a smoothed distribution is to ask whether an arbitrary phase-space volume inside
the bunch that is small compared to the total phase-space volume contains a number

of particles that is much larger than 1.

1.1.2 Beam Emittance

I mentioned above that the emittance is related to the volume occupied by a bunch,
or some part of it, in phase-space. The intervening discussion of Liouville’s theorem
indicates why the emittance is an important concept for accelerator physics. Ignoring
dissipative effects such as synchrotron radiation|[8], all of the forces in an accelerator
are conservative. Hence, Liouville’s theorem is applicable, and potentially provides a
means of describing a bunch in terms of a conserved property that applies to the whole
bunch, rather than in terms of the coordinates of the individual particles. Indeed,
the standard analysis of beam evolution in terms of the Twiss parameters[8, 9] makes

use of the emittance in order to simplify the computation of bunch properties along
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an accelerator.

Commonly-Employed Simplifications

In this analysis, certain simplifications are commonly employed. First, instead of deal-
ing with six-dimensional phase-space, it is common to deal with the 2-dimensional pro-
jections of the phase-space coordinates into the (qi,p1), (42, P2), and (qs, ps) planes.
In the absence of coupling between these planes, Liouville’s theorem is valid for each
of the 2-dimensional phase-spaces.

In accelerator physics, it is common to have a bunch that travels largely in one
direction, i.e., as a well-collimated beam. Hence, instead of a Cartesian coordinate
system, one employs a curvilinear coordinate system which follows the path of an
ideal, central particle[10]. At each point along this path, one defines a locally Carte-
sian system in such a way that one axis (z) lies along the direction of motion of the
"tentral trajectory, while the other two axes (x and y), are perpendicular to the central
trajectory, so that (x, y, z) is a right-handed system. Corresponding to each of these
spatial coordinates is a momentum, thus completing the six-dimensional phase-space.

Discussion of the emittance per se is usually confined to the transverse planes,
(x,px) and (y,py). For the longitudinal plane, (z,p,), it is more common to speak of
the bunch length and momentum spread without defining an emittance. Hence, I will
confine myself to the transverse planes in what follows. I will also write the equations
only for the (x,py) plane, though they are equally valid for the (y,py) plane.

Another simplification commonly used pertains to the method used for computing
the area occupied by the bunch in each phase-plane. A seemingly straight-forward
definition of the emittance would be: the smallest contiguous phase-space area con-
taining a specified fraction, say 90%, of the particles. While this would give an
accurate measure of the phase-space area occupied by the bunch, it is difhicult to use
in practice, and does not lend itself to analytical treatments. (In addition, it may
‘not accurately characterize the effective phase-space area occupied by a bunch, due

to filamentation and non-linear correlations in phase-space.)
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The RMS Emittances

For this reason, and for others to be seen presently, the most commonly used means
of measuring the phase-space area occupied by a bunch is the “normalized RMS

emittance”, defined as

en = mmecy/(2) (p2) — (pax)?, (1.9)

where angle brackets indicate averages of the bracketed quantities over the en-
tire bunch. The factor of m.c indicates that the momentum is dimensionless, i.e.,
Px = Bx7. The reason for the factor of 7 will be seen presently. Both of these factors
are absorbed in the units of ¢,, which in the present work are = - m.c - um.
£, 1s referred to as the normalized emittance to distinguish it from the “geometric
RMS emittance”, defined as

e = 7/ (x2)(x) — (x'x)2, (1.10)

where x' = p,/p. = Bx/B. is the slope of a particle’s trajectory. The units of ¢ are

7w -um or - mm - mrad. If p, is nearly the same for all particles, then

€n = (Py)MmCE. (1.11)

In most applications, the geometric emittance is a more important quantity, since
the divergence is what is relevant to the optical properties of the bunch or any radia-
tion produced by it. (I will return to this issue later in this chapter.) Note, however,
that if the bunch is accelerated, so that (p,) is increased, the normalized emittance
will be unchanged while the geometric emittance will decrease. Hence, the “phase-
space” formed by (x,x’) is really not a phase-space in the strict sense (it is sometimes
referred to as “trace-space”, instead[11]). p, is the momentum conjugate to x, while x’
is a ratio of two momenta. Because of these considerations, the normalized emittance
is most relevant to the comparison of different accelerators that produce bunches of
different longitudinal momenta.

Some authors{12, 13, 11, 14] prefer to define the RMS emittance with an additional
factor of 4, in order to obtain a measure of the phase-space area occupied by a

larger (though not necessarily well-defined) fraction of the beam. This definition is
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also put forward because the emittance so defined is equal to the total phase-space
area for a uniformly populated ellipse in (x,px) space (a projection of the “K-V”
distribution|7, 14]). I have used the definition given in equation (1.9) principly because
it is the definition used in the electron storage ring community.

For electron storage rings[8], a gaussian phase-space distribution is found to ap-
proximate the actual phase-space to a high degree. Such a phase-space distribution

may be specified as

m.c r*m2c?(x?)(p?) [ x° (xpx) p?
U(x,py) = _rm. x _9 - 1.12
bopa) = o e""( 22 o et eyy) O
where the normalization is such that
/ dx/ dp,¥(x,ps) = 1. (1.13)

_ The interested reader may verify that if this distribution used to compute the right-
hand side of equation (1.9), then the parameter ¢, in equation (1.12) is indeed the
normalized RMS emittance.

It is now possible to explore the connection between the RMS emittance and the
area occupied by the bunch in phase spacé. To simplify the analysis, let (xpx) = 0, so
that e, = 7m.cy/(x?)(p2). (This simple equation for the normalized RMS emittance
for an uncoupled phase-space distribution is one of the appeals of this definition of

the emittance.) The distribution in equation (1.12) becomes

Hxp) = me"p ('% {&{T * <§§> D ‘ (114)

Consider an ellipse in (x, py) space defined by

X p’ w2
@-1- <p,2(> = K*, (1.15)

where K is a dimensionless constant. The area of this ellipse is

A(K) = mm.cK?\/(x?)(p}), (1.16)

where I have included the “units” (m.c) of p,. For K=1, the area is equal to the

normalized RMS emittance, which is the motivation for including the factor of 7 in
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the definition of the emittance (equations (1.9) and (1.10)). The fraction of the bunch
within this ellipse is readily computed:

F(K) = /(;Kk dk exp (—k;) =1-exp (—%2) . (1.17)

For K=1, the ellipse has an area equal to the normalized RMS emittance, and contains
39.35% of the particles. The maximum x coordinate of the ellipse is the RMS value
of x, while the maximum p, coordinate of the ellipse is the RMS value of p,. For
K=2, the ellipse has an area equal to four times the normalized RMS emittance, and

contains 86.47% of the particles.

Virtues and Pitfalls of RMS Emittances

One virtue of the geometric and normalized RMS emittances is that both are constant

for propagation through a system with no acceleration and where all transverse forces
are linear in x (for the normalized RMS emittance, this is true only if the longitudinal
momentum spread is zero[11]). For a bunch with no longitudinal momentum spread,
the normalized RMS emittance is constant for a linear system, even with acceleration.
Because of this, the degradation of the RMS emittances in a beamline is an indication
of the severity of non-linear effects and cross-plane coupling in the beamline. This is
discussed in more detail in Chapter 5.

In Chapter 5, I also discuss how the geometric RMS emittance can be measured
experimentally. In the absence of noise and longitudinal momentum spread, mea-
surements of RMS beam-sizes can be used to ezactly measure the RMS geometric
emittance, which is yet another of the appeals of the using the RMS definition of the
emittance.

One problem with the RMS emittances is that they do not measure the actual
phase-space area occupied by a fixed fraction of the bunch for an arbitrary phase-
space distribution. In fact, it is easy to construct phase-space distributions occupying
zero area while having non-zero RMS emittances. One solution to this problem is to
use higher-moment descriptions of the beam phase-space, in order to correct the area
estimate for higher-order corrélations, thus producing an emittance that corresponds

more closely to the actual phase-space area occupied by the beam[15]. One can also
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use such analysis to evaluate and potentially eliminate higher-order phase-space cor-
relations (which are caused by non-linear forces), thus decreasing the RMS emittance.

In the final analysis, one must realize that for non-gaussian beams the RMS emit-
tances are simply convenient but potentially crude estimates of the actual phase-space
area occupied by a bunch. In fact, there is simply no way to accurately describe a
complicated phase-space distribution with a single number (like the RMS emittance)
that will be appropriate to all cases and relevant in all applications. Whenever a
precise description of the bunch phase-space is required, it is necessary to specify
the distribution itself, either in some functional form or in terms of a representative
sample of particles from the distribution. From the standpoint of gun and accelerator
simulations, the later method is indeed the method used to specify and compute the
evolution of the bunch. That is, in gun and accelerator simulations, one frequently
simulates the bunch by a number of “macro-particles” which are representative of the
.actual distribution. This technique is used extensively in the present work.

If an accurate description of a complicated beam phase-space is to be provided
by the accelerator physicist to those interested in applications of the beam, then that
description may need to go beyond the RMS emittances and deal directly with the
distribution. In many cases, particularly for guns and linear accelerators, RMS and
other averaged beam properties must be recognized as approximate characterizations

of the phase-space, suitable for approximate calculations only.

1.1.3 Beam Brightness
Bunch Length and Peak Current

The transverse emittances of a bunch, or its transverse phase-space distribution,
do not fully characterize the bunch and its usefulness for applications. Missing is
information about the number of particles in the bunch and their distribution in
longitudinal phase-space. As noted above, the longitudinal phase-space of a bunch
is most often characterized in terms of the momentum spread and the bunch-length.
Bunch length can be specified either as the literal, spatial length of the bunch in the
longitudinal dimension, or as the time-length of bunch, i.e., the time it takes for the

particles in the bunch to pass by a fixed location along the beamline.
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Some authors[14] define the bunch length as an RMS value about the centroid. For
present purposes, I prefer to specify the bunch length as the time-interval occupied
by the central 90% of the particles in the bunch. The reason is that the RMS bunch
length and the 100% bunch length are sensitive to straggling particles that comprise
a small fraction of the bunch and hence are unimportant. As a result, these are
unreliable and potentially misleading measures of the bunch length.

Having defined the bunch length, one can go on to define the average current

during the bunch, referred to as the “peak current”

Q
Ipeak: 6—t, (118)

where 6t is the 90% bunch length and Q is the amount of charge in the interval 6t.
More specifically, 6t = ty — t1, where

tm tm+t2
/ U(t)dt = / ¥(t)dt = 0.45. (1.19)
t tm

m—t1
" tm is the “median” time, that is, the time at which half the particles in the bunch,
specified by the temporal distribution ¥(t), have passed by some specified point in
the beamline. (Note that ¥(t) is normalized to unit area.) While this is not the only
way one might define the 90% bunch length, it has the advantage of being readily

computed and robust (in the sense of being insensitive to outlying particles or noisy

distributions).
In contrast to the peak current, the “average current” is
Qv
Tove = — 1.20
T (1:20)

where Qy, is the total charge per bunch and T, is the time between bunches (equal

to the RF frequency for a RF gun). In general, the average current is much less than
the peak current, since the distance between bunches is much greater than the bunch
length.

Brightness

The normalized brightness is the proportional to average current density in phase-

space during the bunch, defined|[16] in terms of the peak current and emittance as

pes
B, = —2=* (rm.c)?, (1.21)
Ex,ney,n
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where £q5, is the normalized RMS emittance for the g-plane. The units of the
normalized brightness that I will use are A/mm?/mrad?.

The motivation for this definition[7] is that the volume of an uncoupled ellipse in
four-dimensional phase space is V4 = 7%/2abcd, where a, b, ¢, and d are the semi-
major axes of the ellipse in each of the dimensions. Hence, for a uniformly filled
ellipse (i.e., a K-V distribution), V4 = 7?/2XmaxDx,maxYmaxPy,max, SO that the current
density in phase-space is

1 21

—— 5
V4 ™ Xmaxpx,maxymaxpy,max

, (1.22)

which corresponds to equation (1.21 except for the factor of #. (In retrospect, it
would have been preferable to leave the factor of 72 out of equation (1.21).)

To increase the brightness, one needs to increase the peak current, decrease the
emittance, or both. To increase the peak current, a process known as “bunching” or
.“bunch comﬁression” is often employed, which involves increasing the peak current
by compressing the bunch into a shorter time-length. (This is discussed in Chapter
4.) Increasing the emittance is often a matter of mitigating emittance-diluting effects,
such as non-linear fields. More will be said about about these issues in Section 1.3.

Having reviewed these concepts, many of which will be used throughout this work,

I now proceed with a discussion of applications of high-brightness electron beams.
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1.2 Applications of High-Brightness Beams

While the problem of producing high-brightness electron beams is a challenging one
for the accelerator physicist, these beams are not pursued as ends in themselves.
Among the applications that require such beams are linear colliders[17], wake-field
and other two-beam acceleration schemes|18, 19], and radiation-producing devices,
such as Free Electron Lasers (FELs)[20, 21]. Of these applications, I will discuss only

those related to the production of radiation.

1.2.1 Synchrotron Radiation

Synchrotron radiation is the radiation emitted when a charged particle (usually an
electron or positron) is subjected to accelerating forces imposed by external magnetic
or electric fields. In this section, I will review the properties of synchrotron radia-
“tion, taking results from some of the many excellent discussions that appear in the
literature[22, 23, 24, 25]

Bending-Magnet Radiation

The simplest way to produce synchrotron radiation is to send a high-energy electron
beam through a uniform magnetic field transverse to the direction of travel of the
beam. In such a circumstance, the beam undergoes acceleration perpendicular to its
direction of motion, which bends its path into an arc of a circle of some fixed radius,
p- This is commonly referred to as “bending-magnet radiation”, since it is produced
by the magnets used to “bend” the central trajectory of an electron beam (often into
a closed path, as in an electron storage ring[8]). This radiation is characterized by
the “critical frequency”,

3 3
we = 27f, = =7 ,
2p

where v is the electron energy in units of the rest mass. The spectral distribution

(1.23)

of bending magnet radiation is such that half the radiated power is below the critical
frequency and half above. In addition, the power spectrum of the radiation observed

in the bend plane is peaked at w ~ 0.83w.. The wavelength corresponding to the
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critical frequency is

dmp
Ae = — (1.24)

It is well known that the radiation from a relativistic particle undergoing instan-
taneously circular motion is emitted primarily in the forward direction. If one defines
the horizontal plane to be the plane in which the magnet bends the beam trajec-
tory, then the radiation emitted from a bending magnet is spread over a horizontal
angle essentially equal to the bend angle, assuming that the bend angle is large com-
pared to 1/4. In the vertical plane, however, the “opening angle” of the radiation is
much narrower. For w = w., the RMS vertical opening angle of the radiation power
distribution is ¥ =~ 0.57/7.

The instantaneous total synchrotron radiation power for a single electron is

4,4
P, = 4.611 x 10"2°Watt - meter® x

s (1.25)

Hence, if a beam consisting of bunches of N. electrons with a repetition rate of 1,
passes through a bending magnet with bending radius p that bends through an angle

6, the average radiation power is

bp
P) = P.—N. 1.26
(P) 7 (1.26)
6374
= 1.538 x 10~%®Joule - meter x 6N f (1.27)

As an example, the SSRL pre-injector linac|[26] delivers a 120 MeV beam (y ~ 235),
which is subsequently deflected by 0.72 rad by a bending magnet with p ~ 0.6m, so
that A ~ 0.6pm, which is in the visible part of the spectrum. Typically 2 x 10°
electrons are accelerated per pulse, with 10 pulses per second, so that the average
radiation power is a mere 11 nW. However, as will be seen in Chapter 4, each electron
bunch has a length of order 1 ps, so that the peak radiation power is of order 1 kW.

The “natural” RMS opening angle of the radiation (i.e., ignoring beam emittance
effects, which are discussed below) is 2.4 milli-radians.

For a 120 MeV beam with 2 x 10° electrons per bunch in approximately 1 ps
bunches, the peak instantaneous beam power is of order 40 GW. This is seven or-

ders of magnitude greater than the peak instantaneous radiation power produced in
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the example. Clearly, a more efficient way of converting electron beam power into
radiation power is desirable. From equation (1.27), it would appear that the most
straight-forward ways to do this are to increase the field strength (i.e., decreasing p)
and increase the path length, 1 = p6, in the bending magnet (these are not, of course,

independent quantities).

Undulators and Wigglers

The power from a bending magnet is fanned out in the bend plane over an angle equal
to the bending angle. Hence, the radiation power density per unit solid angle does not
increase if one has a longer bending magnet with the same bending radius (which has
the same fields but a greater bending angle). However, by using a series of bending
magnets of equal but opposite bending angles, one can increase the radiation power
per unit solid angle. Such a device is called a “wiggler” or “undulator” magnet[25].
By reducing the fanning-out of the radiation caused by the deflection of the beam
path, these devices not only allow one to extract more power from a beam, but also
to concentrate that power into a narrower solid angle, thus increasing the brightness
of the radiation.

The dominant field component in such magnets is a transverse field described by
By = Bocos(27z/ )\ ), (1.28)

where X is the periodic length of the magnet. (As in the last section, z is the
longitudinal coordinate, while x and y are the horizontal and vertical coordinates,
respectively.) If B, is not too large, the particle trajectory in the y=0 plane is

sinusoidal, i.e.,

x = a-cos(27z/Ay), (1.29)
where B )2
eBoAZ
= —0, 1.
472m.cry (1.30)

The maximum slope of x(z) is thus

max

<
Il
[
by
i
2| =



CHAPTER 1. INTRODUCTION 16

where K is the usual undulator strength parameter. The distinction between wigglers
and undulators is that for wigglers, K > 1, whereas for undulators K is less than or
of order 1. That is, an undulator is a wiggler that causes only very slight motion
of the beam, so slight that the natural opening angle of the radiation is not greatly
degraded in either plane due to the fanning-out effect that occurs in ordinary bending
magnets.

From equation (1.25), one sees that the instantaneous radiation power is propor-
tional to 1/p?. Since 1/p ~ By, the highest instantaneous power is radiated when the
electron is at the crests of its sinusoidal trajectory, where the acceleration is greatest.
For K > 1, x/., is much greater than the natural opening angle of the radiation
at the crest, which means that a distant, on-axis observer principly sees radiation
emitted from near the crest of the oscillations (where the electron is traveling with
x' < 4), which enhances the dominance of the radiation emitted at the crest. Hence,
for K > 1, it is plausible that the radiation seen by a distant, on-axis observer will
take the form of a series of pulses, one emitted from each crest in the electron’s oscil-
lations. The frequency spectrum of this radiation is dominated by the instantaneous
spectrum at the crests, and one can show that the spectrum from a wiggler is indeed
very much like that from a bending magnet with field B,.

If K~ 1, however, the same observer will receive radiation from a significant
portion of the electron’s oscillation, and one finds the the spectrum of this radiation
is related to the frequency of the electron’s oscillatory motion. In the average rest-
frame of the electron, the electron executes transverse oscillations with frequency

vBc
Ay

f. ~

(1.32)

where the factor of v is due to the Lorentz-contraction of the undulator period as
seen in the moving frame. In its rest frame, then, the electron emits dipole radiation
at this frequency. In the laboratory frame, this frequency is Doppler shifted, so that
.a spectrum of frequencies is produced:
_e__ 2
T A1+ K2/2 + 4262

() (1.33)

where 4 is the angle in the x-z plane relative to the axis of the undulator. For
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6 < 1/v,i.e., near the axis, the wavelength of the radiation is simply

1+K2/2

A = /\u 3
1 277

(1.34)

so that for a high-energy electron (i.e., 42 > 1), the wavelength of the radiation
will be much shorter than the undulator period. For very weak undulators, the
radiation spectrum is dominated by this “first-harmonic” radiation. For K > 1, the
electron motion in the rest frame contains significant frequency components other
than the fundamental oscillation, which generate additional frequencies in the rest
frame at even and odd harmonics of the fundamental. The odd harmonics are a
result of transverse oscillations, while the even harmonics are a result of longitudinal
oscillations relative to the average rest frame. The odd harmonics of the motion
produce spectral peaks at frequencies that are, of course, odd multiples of f;. The
odd harmonics are of the greatest interest, since the radiation in this case is confined

“to a narrow forward cone with an RMS divergence of

, _l /1+R2/2 \/—I \/— (135)
r "7 M

where N is the number of undulator periods, L is the total undulator length, n is

the (0odd) harmonic number, and A\, = A;/n is the wavelength of the n*® harmonic.
The subscript “r” is used to emphasize that this angular divergence is an intrinsic
property of the radiation, separate from the electron beam divergence.

This result assumes that the radiation from the undulator may be approximated
as coming from a source at the longitudinal center of the undulator and that the light
is observed from a distance that is large compared to the length of the undulator[27].
If this assumption is made, then for a zero-emittance electron beam (e.g., a single
electron), the radiation produced in an undulator has an angular divergence given by

equation (1.35), as well as an apparent source size (due to the length of the undulator),

1
Ork = E V AnL (136)

Hence, the geometric RMS emittance of the photon beam emitted by a single electron

given by

passing through an undulator is

An

2. (1.37)

!
Er‘k - War,kor’k =
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For an electron beam with a gaussian transverse distribution, characterized by a
spatial parameter o. and an angular parameter o., the effective photon beam param-
eters are obtained by adding in quadrature with the single-electron parameters{23,
27, 28] :

2 2 2
g = 0O, +0r

2 __ ”2 2
oS = o/ +o0,

Thus, the emittance of weak undulator radiation for a non-zero emittance electron

beam is

£s :w\/af+af\/a{,2+0‘;2. (1.38)
From this, one concludes that the emittance of the photon beam is maintained at its

minimum value if

ol < o? (1.39)

and |
ot <o (1.40)

This implies that '
€e K €. (1.41)

(Note that the latter condition is necessary but not sufficient to fulfill equations
(1.39) and (1.40).)

This result two important implications. First, if one desires a low-emittance pho-
ton beam, then the best one can do is to supply an electron beam with emittance
significantly less than the wavelength being produced, and with o./0. = ¢./0. = 47L
(where L is, again, the length of the undulator). Second, as will be seen presently,
if one maintains the intrinsic photon beam émittance, then (if other conditions are
also satisfied) the radiation will be spatially coherent. This is path to Free Electron

Lasers.

1.2.2 Coherent Radiation

In order to discuss the possibility that undulator radiation might be coherent, it

is helpful to review the meaning of coherence[29, 30]. There are two varieties of
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coherence, spatial coherence and temporal (or longitudinal) coherence.

Spatial Coherence of Transversely Extended Sources

Spatial coherence refers to the constancy of the phase across a wave-front of light.
In particular, spatially coherent light will form interference fringes when used in a
Young’s two-slit experiment. Figure 1.1 shows an experiment in which an on-axis
point source is used to illuminate two slits, spaced by 2A, a distance D from the
source. Suppose further that the light from these slits falls on a screen at a distance
S from the slits. If the width of the individual slits is small compared to D, L, and A,
and if A is small compared to D and L, then interference fringes are formed on the
screen, spaced by

Axs = % (1.42)
_If the point source is moved transversely (i.e., to an off-axis position), then the center

of the fringe pattern moves as well, to
(1.43)

where x, is the distance of the source from the axis.

If one had two equal-strength point sources that individually produced fringe
patterns offset by Ax;/2 relative to one another, then the combined irradiance would
be flat—i.e., no fringes would be seen. (One must, of course, add the electric fields
and not the irradiances to see this.) This occurs when the two point sources are off
axis at

Hence, even though these two sources might be radiating in phase, the combined
source does not produce interference fringes and is said to be spatially incoherent.
As the point sources are moved toward one another, the fringes gradually reappear.
To obtain a high degree of spatial coherence for two point sources offset by +x,, one

wants the centers of the two fringe patterns to be spaced by, say, less than Ax;/4:

AS

2%S 1
X2 < 0% =22 (1.45)

D
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Figure 1.1: Young’s Two-Slit Experiment

20



CHAPTER 1. INTRODUCTION

This can be rewritten as

A A
— = — 1.46
) Xs0s < 16 (1.46)

where I have used 6, to denote the angle of a ray that starts on-axis and passes
through one of the slits.

If one now lets x, represent the spatial size of an extended source and 6, the
characteristic angular divergence of the source, then one concludes that radiation
with emittance e, = 7mx.f, exhibits spatial coherence at certain wavelengths, namely
if

A > 16¢. /7. (1.47)

A more rigorous analysis shows[24] that for a gaussian beam, complete spatially
coherence (i.e., no washing-out of fringes) is obtained if

A > 4e, = 4ro,0). ' (1.48)

While I have discussed coherence in the context of Young’s experiment, and will
continue to do so below, this is only for clarity. What the appearance of fringes in
Young’s experiment attests to is the coherence of the radiation from the source at
a certain distance from the source (namely, the position of the slits) and within a
certain region (namely, between the slits).

If one refers back to equation (1.37) for the emittance of single-electron undulator
radiation, one sees that this condition for spatial coherence is in fact satisfied, so that
single-electron radiation from an undulator is spatially coherent. In addition, one sees
that if the electron-beam emittance is significantly less than \/4, then the radiation
is spatially coherent even for a beam of many electrons. One conclusion that can be
drawn from this is that for a zero-length electron bunch that satisfies equation (1.48),
the on-axis intensity is the coherent superposition of the radiation from each electron,

so that the flux on-axis will be N? times the flux for a single electron.

Spatial Coherence of Longitudinally Extended Sources

Until now, I have considered the sources to lie in a plane of constant z (i.e., in a plane

parallel to the planes of the slits and the screen). However, when an electron bunch
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acts as a source of synchrotron radiation, it has a longitudinal extent as well as a trans-
verse extent. Imégine then that one has two equal-strength, on-axis point sources,
one at z=0 and another at z = Az, with Az < D. Since both sources are on-axis,
each individually illuminates both slits with the same phase. Hence, spatial coherence
is maintained. However, depending on Az, the coherent flux passing through the slits
may be diminished or increased relative to that for a single source, due to interference
between the two sources.

The optical path length difference for light from the two sources to the slits is
simply Az, to first order. Hence, if Az < A and the sources emit in phase, then
constructive interference will occur at the slits. Clearly, for N equal-strength, in-
phase sources, confined to a longitudinal interval Az < A, the peak on-axis intensity
is increased by N%. Thus, if an electron-bunch is short compared to the wavelength
and if the transverse coherence condition (equation (1.48)) is also satisfied, then the
-on-axis flux will be N? times the single-electron flux, preserving the result obtained
for a zero-length electron bunch. This provides a dramatic increase in the radiation
power (in regions of constructive interference), and is therefore a highly desirable
result.

Consider also that if the two sources are out of phase by 180° and spaced by A/2,
then they will constructively interfere. Hence, if two electron bunches, each short
compared to A, are spaced by (n+ 1/2)) (where n is an integer) and experiencing
opposite acceleration, then they will radiate in phase at the slits (or some distant
on-axis point) and hence their intensities will interfere constructively. In this way, a
train of mutually-coherent sources can be created.

A typical undulator period, Ay, is 2.5 cm. For a 120 MeV beam such as that
produced by the SSRL pre-injector, the first-harmonic wavelength (assuming K <« 1)
is A1 = 0.2um. A relativistic electron bunch with a bunch-length of 0.2um would
have 6t = 0.6 x 10~3ps. While bunch-lengths of order 1 ps are possible (see Chapter
4), a sub-femto-second bunch length is not within the realm of current accelerator
technology. Hence, it would seem that the promise of coherent undulator radiation
is out of reach. The solution to this problem is called a Free Electron Laser (FEL),

and I will discuss it in the next section.
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Temporal Coherence

First, I wish to complete the discussion of coherence by explaining temporal coherence.
Temporal coherence refers essentially to the monochromaticity of light, and can be
understood by returning to Young’s two-slit experiment with a single on-axis source.
If one modifies the experiment by placing refractive material over one of the slits,
then the optical path length for light going through that slit is increased, resulting in
a phase-shift at the screen relative to the light going through the other slit. Suppose
that the light going through the refractive material is delayed by time At. For a
perfectly monochromatic source, this phase shift is irrelevant, and merely results in
a shifting of the fringes. A perfectly monochromatic source is said to be completely
temporally coherent, or to have At = oc.
However, for a realistic source, the spread in frequencies means that for too long of
a delay, At > At.on, the interference fringes will no longer appear. Instead, one will
“see the uniform illumination characteristic of incoherent light. To see this, imagine
that a source has a spread Aw of frequencies about w,. If these frequencies are in phase
at the source at time t=0, then at t = 7 /Aw, the phase spread for light emérging from
either of the slits will be 27. If light from such a source is used in a modified Young’s
two-slit experiment with a refractive plate giving At > 7 /Aw, then the interference
pattern will be washed out because the phase-shift will shift the fringes for the outer
frequen-cies by one-half of the fringe spacing. Hence, At.n = 7/Aw is the time over
which the source is said to maintain coherence with itself. The coherence time can
be improved to the desired degree by employing a mono-chromator with a sufficiently
narrow band-pass.
The spectral broadness of undulator radiation at harmonic n can be estimated by
taking the Fourier transform of a sinusoidal field oscillation of Nn periods, where N
is the number of undulator periods. One finds that the FWHM of the spectral power

distribution around each harmonic is

w
Awy =~ —, 1.49
“ nN ( )

implying coherence times of
N= N)q

Ateep = — = —— 1.
b Wi 2c ( 50)
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and coherence lengths of
N

Alcoh = CAtcoh = 5 (1.51)

4

Since typically N > 1, one sees that undulator radiation is temporally coherent over

many wavelengths.

1.2.3 Free Electron Lasers
Energy Transfer Condition

Imagine that an electron beam is sent through an undulator, and that the fundamental
radiation wavelength is A;. Further imagine that a laser beam of the same wavelength
is also made to pass through the undulator, so that it overlaps the electron beam.
Electrons oscillate at the same frequency as the laser field (otherwise, the electrons
wouldn’t radiate at the same frequency).

The transverse motion of the electrons is determined primarily by the undulator

fields[21], so that for any electron

‘(11_: = ——"5vEcos(2n2(t)/\) cos(wt — kz(1))

z2(t) = B(t-to),

where #*cis the average longitudinal velocity of an electron which enters the undulator
and laser fields at t = to. v and E are positive quantities, v being the peak transverse
electron velocity and E the peak transverse field strength of the laser beam. (This
ignores the transverse motion that individual electrons have in addition to the motion
imposed by the undulator, consistent with the assumption of a small beam-emittance.)

When the phase of the undulations and of the laser field are such that the cosines
have the same sign, then energy is transferred from the electron to the laser beam.
The energy transfer is greater when the transverse electron velocity is greater, i.e.,
when the electron is near the zero crossing of its undulating motion. If the cosines
-are of opposite sign, then the field does work on the electron and thus energy is
extracted from the laser beam. Clearly, to amplify the laser beam, one wants the
former condition to hold. However, since the electrons do not travel exactly at the
speed of light, it would seem that the condition cannot be maintained, and that the

electron will alternately gain and loose energy as it falls behind the wave.
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To see how net energy transfer to the wave is possible, note that there will be
such transfer if .
A= / cos(27z/As)cos(kz — wi(z)) dz > 0, (1.52)
0

where I am now considering t a function of z (the electron position), and where L is

the length of the undulator. Rewriting this using equation (1.52) one obtains

L
A= / cos(2mz/ Ao )cos(2rz/ A (1/8° — 1)) dz (1.53)
0
To maximize A, one equates the factors multiplying z in the cosines, obtaining
A 1
S | 1.54
W T (189

which is the “phase-slip” condition|[20]. If the phase-slip condition is satisfied, then
as the electron falls back, its transverse velocity is falling as well, so that when
-it has fallen back to where the laser field has changed sign, its velocity has also
changed sign. The crests of the electron motion, where the velocity is zero, coincide
with zero-crossings of the laser fields. The phase-slip condition, together with the
electron beam energy and equation (1.34) for the radiation wavelength, must be self-
consistently solved in order to find the conditions on K and < necessary to achieve
energy transfer to the laser beam for a given A,. Alternatively, one can find the
“synchronous velocity”, v, = 8*c that electrons must have in order to give (or receive)

net energy from the laser fields.

Micro-Bunching

Most of the elements necessary for an intuitive understanding of FELs have been
reviewed in the previous sections. I showed that under certain conditions, undulator
radiation could be spatially coherent and that the on-axis flux would scale like N2. It
seemed, however, that to realize this would require an unrealistically short electron
bunch. FELs succeed in spite of this because the radiation field interacts with the
bunch to produce “micro-bunching”, i.e., longitudinal density modulations on the
scale of the light wavelength{21, 20].

For an initially longitudinally uniform beam traveling at the synchronous velocity,
half the particles will loose energy and half will gain energy. Unless the density of the
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beam can be modulated on the scale of \;, there will be no amplification of the laser
beam. However, since the electron beam energy is being modulated at the wavelength
of the laser beam, so is the velocity. This velocity modulation has the same spatial
frequency as the laser fields, and is thus just what is needed allow coherent power to
be generated. (see Section 1.2.2, page 21).

Note that the derivation of the phase-slip condition ignored the fact that as elec-
trons gain or loose energy, their velocities change. In order to get gain, the beam
must initially travel somewhat faster than the synchronous velocity, so that bunching

is not symmetric about the null of the laser field[20].)

Electron Beam Requirements for FELs

Having given a brief account of the physics at work behind the generation of coherent

radiation in FELs, I now list the general beam-quality requirements for an FEL:

e The electron beam emittance should be less than the natural emittance of the
undulator radiation. More precisely, equations (1.39) and (1.40) should be
satisfied.

e The undulator parameter K, the undulator wavelength, and the initial beam
momentum should be chosen to give an initial beam velocity somewhat greater
than the synchronous velocity, so that micro-bunching occurs in the region
where the electron beam looses energy to the laser beam. (See [20] for a more

precise statement.)

e The bunch length, ét, should be as long as practical in order to provide more
micro-bunches, which results in greater gain. Similarly, the peak current should

be high, in order to give as much charge per micro-bunch as possible.

e The initial momentum spread of the bunch should be small enough to be within
the “buckets” created by the laser field. If the initial momentum spread is too
large, the gain is decreased because not all particles have the proper velocity

relative to the synchronous velocity. More specifically[20], one wants

Ay 1

— <5 (1.55)
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where N is the number of undulator periods.

o
bt
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1.3 RF Guns

A RF or microwave electron gun [1, 2] is an electron source consisting of an electron
emitter (the “cathode”) immersed in the radio-frequency fields inside a metal-walled
cavity. The SSRL RF gun is discussed in detail in Chapter 2. For the present, I will

make some remarks about RF guns in general and about their history.

1.3.1 Varieties of RF Guns

There are two principle varieties of RF guns in use today[14}: “thermionic” and
“photocathode” RF guns. They are distinguished by the type of cathode used or,
more precisely, by the way the cathode is made to emit electrons.

Thermionic RF guns employ cathodes that must be heated in order to obtain
emission of electrons. In the simplest design, a pillbox cavity[31] might be used with
“a thermionic cathode being part of one end-wall, and with a beam exit-hole in the
opposite end-wall. When the RF fields in the cavity are in the aécelerating phase,
electrons are accelerated off of the cathode. With proper design, a large fraction of
these electrons exits the cavity before the fields go into the decelerating phase. Those
that do not exit the cavity are decelerated and turned around, and may return to
impact the cathode (a phenomenon referred to as “back-bombardment”). As long as
RF power is supplied to the gun, this cycle is repeated every RF period, resulting in
a train of bunches spaced at the RF period.

Commonly-used cathode materials for thermionic guns are LaBg and dispenser
cathodes (a tungsten matrix with work-function-lowering compounds added). Typical
operating temperatures for LaBg are 1600°C[32], while the dispenser cathode for the
SSRL RF gun is run at 950°C. Typical current densities for both these types of
cathodes are in the 10-30 A/cm? range, though LaBg. is capable of up to 200 A/cm?[2]
and advanced dispenser cathodes of up to 140 A/cm?(33].

Problems with thermionic guns stem from the fact that emission occurs through-
out the accelerating phase of the RF, and during every RF period. This results in a
beam with a large momentum spread and a large time-spread as well. These issues
are discussed in more detail below and in Chapter 2

Photocathode (or “laser-driven”) RF guns[34] employ a photoemitting cathode
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material that is pulsed by a laser. Commonly-used cathode materials[14] include
LaBg, CssSb, and CsK,Sb. Typically, the laser pulse is much shorter than the RF
period, so that emission occurs only over a short phase interval. Thus, a photocathode
RF gun can produce a much shorter bunch than a thermionic RF gun working at the
same RF frequency, since in thermionic guns electron emission occurs continuously
during the accelerating phase of the RF.

While it is not my purpose here to discuss the physics of photocathode RF guns in
detail (see [13, 35, 36, 37]), I wish to indicate the reasons that such guns out-perform
thermionic systems.

The high current densities possible from a photoemitter (as much as 600 A /cm?(38])
result in significantly higher charge per bunch for photocathode RF guns than for
thermionic RF guns. Because of the shorter phase-interval during which electrons are
emitted in a photocathode RF gun, RF focusing effects (see Chapter 2) are greatly
reduced relative to a thermionic RF gun, resulting in smaller emittances. Since the
current density is very high, the pulse from a photocathode RF gun need not be great-
ly compressed in order have high peak currents; hence, one sees that photocathode
based systems generate longer bunches than thermionic based systems, since the later
systems must compress to very short bunches in order to achieve high peak currents.
As noted in Section 1.2.3, a long, high peak-current bunch is preferred for FEL work.

Photocathode RF guns also have the advantage of being free of the cathode back-
bombardment problem that can plague thermionic RF guns when long RF pulses or
high repetition rates are used[39]. In addition, the use of the laser to trigger emission
permits a more flexible bunch pattern, at least in principle. For example, if only N
bunches are desired per RF pulse, then one need only fire the laser N times per pulse.
The firing can be delayed until the cavity has fully charged, so that the fields are not
changing between bunches. In a thermionic RF gun, emission occurs continuously,
even while the cavity is filling, giving a train of bunches that vary in momentum until
the beam-cavity system has come to equilibrium. This has implications for FEL use,
where a small momentum spread is required.

The superior performance of a photocathode RF gun comes at the expense of
the greater complexity of a photocathode-based system, which requires a complicat-

ed and expensive high-power, RF-synchronized laser and, for the highest-performing
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systems using Cesiated cathodes, a mechanism to withdraw and re-Cesiate the cath-
ode at intervals [40]. While a thermionic RF gun with a magnetic bunching system
is comparable in complexity and cost to a DC-gun-based system with a gap-and-drift
buncher[41], a photocathode RF gun is substantially more complicated and much
more expensive. Given that the thermionic RF gun system can out-perform a con-
ventional DC gun system (excluding sophisticated state-of-the-art DC gun systems,
employing several sub-harmonic bunchers, such as the SLC injector[41}) by orders of
magnitude in brightness and peak-current, there is clearly a role for thermionic RF

guns. Data to substantiate this claim is given in Chapter 4. -

1.3.2 A Brief History of RF Guns

Kapitza and Melekhin[42] report that in 1948 the first microtron was constructed,
and that it used field-induced emission from the gap of the accelerating cavity to
‘generate a beam. In the broadest sense of the term, then, this was the first RF gun.
In 1959, Melekhin proposed the use of a hot cathode placed off-axis in the microtron
cavity. The primary difference between microtron guns and modern RF guns is that
in microtrons, the cavity must not only accelerate the beam off of the cathode, but it
must also provide acceleration each time the beam returns to the cavity. Hence, the
microtron cavity must have entrance and exit beam holes, which greatly complicates
the placément of the cathode and the initial trajectories of emitted electrons. Without
reviewing microtron performance in detail, I will simply state that it does not equal
that of a modern RF gun.

R.B.Neal would appear to be the first to use a RF gun other than a microtron
gun. In a 1953 report{43] on work done at Stanford’s Microwave Laboratory, Neal
discusses experiments done with a hot cathode inserted in the first cell of a 2856-MHz
linear accelerator section. These experiments were done in order to explore certain
aspects of electron capture by RF fields, and not for the purpose of developing a new
type of gun.

In 1975, Y. Minowa of Japan’s Mitsubishi Electric filed for a Japanese patent
on a RF gunll], though it is unclear when an operational gun was actually built.

Successful operation and experimental characterization of a multi-cell Mitsubishi RF
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gun with a LaBg cathode was reported at the 1989 Linear Accelerator conference in
Nara, Japan[44].

The RF gun is usually considered to have been invented by G.Westenskow and
J.M.J.Madey at Stanford’s High-Energy Physics Laboratory (HEPL). Their design
work[2] on a gun employing a pillbox-like cavity and a LaBg cathode was first re-
ported in the literature in 1984, and the gun was installed and operated in 1985[39].
The HEPL system was the first to combine a RF gun with an alpha-magnet-based
magnetic buncher[32, 45], resulting in a simple, compact system.

In 1985, J.S. Fraser and R.L. Sheffield of Los Alamos proposed use of a laser-pulsed
cesium antimonide cathode in a multicell RF gun[34]. Experimental characterization
of a prototype one-cell gun with such a cathode was reported in 1987[40].

The number of proposed RF gun projects increased rapidly after 1985. A 1990
review article by C. Travier[14] gives the number of RF gun projects world-wide as
..22. Those readers interested in a listing of the parameters of existing and proposed

RF gun projects are referred to this article and to Chapter 4.

1.3.3 Factors That Degrade Electron Beam Brightness

The degradation of electron-beam emittance, and hence brightness, in electron ac-
celeration and bunching is discussed in many places in the literature[46, 47, 16].
Knowlédge of these effects is necessary if one is to appreciate the advantages and
disadvantages of RF guns. For the present, I will list and briefly discuss some of the
effects involved, leaving the detailed discussion for the chapters that follow. Corres-
ponding to each of these effects is the brightness increase to be gained by eliminating

its influence.

Effects that Degrade Emittance

o Thermal velocity spread at the cathode is almost always a negligible effect, being
overwhelmed by other effects. This is the case for the SSRL RF gun.

o Non-linear space-charge forces are a particular problem for high-brightness beams,
which by definition have high charge density. These effects are mitigated by

accelerating as rapidly as possible to relativistic energy, where the beam is
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“stiffer”. For a beam of constant radial cross-section, the radial acceleration
scales like 1/4® [7]. This is part of the motivation for RF guns, as I will discuss

presently.

o Time-dependent focusing forces due to RF fields are a particular problem for
thermionic RF guns, as mentioned above. These also have a non-negligible effect
in photocathode RF guns[15] and in DC-based injectors, since time-dependent
RF fields and long phase-length bunches are present during initial bunching.
This is the dominant emittance-increasing effect in the SSRL RF gun.

o Non-linear tranverse forces in RF cavities and from DC magnets are avoidable,
in general, though not always in practise, by increasing the apertures of the
magnets or RF cavities, or by properly shaping the metal surfaces in the cavity.
In the SSRL RF gun, non-linear tranverse fields in the gun are responsible for
significant emittance increase and for broadening of the momentum spectrum.
Solution of this problem by a simple cathode modification is discussed briefly
in Chapter 4.

o Chromatic aberrations from DC magnets are a problem for thermionic RF guns,
which emit a very broad momentum spectrum, since particles starting from the
cathode at different phases are given different energies. In order to increase
intensity, it is often desirable to use particles emitted over a substantial phase-
interval, which entails dealing with a larger momentum spread. For the SSRL
RF gun, using electrons emitted over 40° of phase entails accepting a momentum
spread of about +10%.

1.3.4 Advantages and Disadvantages of RF Guns
Advantages

Until now, I have not discussed why RF guns are being adopted in preference to well-
established DC gun technology. However, from the foregoing discussion it will have
been anticipated that RF guns are capable of delivering very high-brightness beams.

The principle advantage of RF guns stems from the rapid acceleration that can

be achieved with the strong electric fields possible in an RF cavity. The maximum
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fields possible in a DC gun are about 8 MV/m[2], while the peak surface fields in
a 2856 MHz RF can be as high as 240 MV/m{44]. Typical output energies for DC
guns are from 0.08 MeV to 0.4 MeV (kinetic energy), with the upper ranges being
reached only by the most state-of-the-art designs. In contrast, the SSRL RF gun
delivers a 2-3 MeV beam. This higher beam momentum greatly decreases the effect
of space-charge forces in subsequent bunching and transport.

Another advantage of thermionic and photocathode RF guns is that bunching (in
order to decrease the bunch length and hence increase peak current) can make use of
relatively a simple magnetic bunching system (see Chapter 4), rather than the more
complicated gap-and-drift prebuncher[41] and sub-velocity-of-light RF “buncher” ac-

celeration section required in conventional injectors.

Disadirantages

“The principle disadvantage (or difficulty) for a thermionic RF gun is the time de-
pendence of focusing and energy gain in the gun, due to the time-varying nature of
the RF fields. DC guns have no RF focusing in the gun per se, but it is inevitably
encountered in subsequent bunching and acceleration. Similarly, while a DC gun
emits a highly mono-energetic beam, that energy must be modulated (in order to
modulate the velocity) for bunching. Hence, the time-dependence of the gun fields
is not necessarily a net disadvantage relative to DC-based systems, but it does de-
crease the achievable brightness, and is one of the principle motivations for use of a
photocathode.

A more significant problem for thermionic RF guns is that of cathode lifetime and
survivability in the presence of back-bombardment. For sufficiently high repetition
rates and long RF pulse lengths, back-bombardment can damage the cathode and
degrade the gun’s performance. In addition, back-bombardment can lead to current
variation during the RF pulse, which causes problems for FEL applications][39]. The
SSRL system is run with a 2 us RF pulse and a repetition rate of 10 Hz, so that
back-bomdardment is not a serious issue.

Another issue in thermionic RF guns is that of cathode thermal isolation. Since
thermionic cathodes have operating temperatures typically in excess of 1000° C, the

cathode support stem cannot be in direct contact with the metal surfaces of the cavity.
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At the same time, it is necessary that the cathode be in electrical contact with the
cavity. This is usually done using an RF choke[32], which can be problematical,
leading to distortions of the fields in the cavity and unanticipated power losses. For

the SSRL RF gun, a simpler concept was employed, as discussed in Chapter 2.

Conclusion

One cannot conclude from this discussion whether RF gun based preinjectors will
in fact provide brighter beams than conventional preinjectors. Such a conclusion
requires detailed simulations of the effects discussed in this section and the last

In Chapter 4, I present comparative data for the SSRL preinjector, other RF-gun-
based preinjectors, and DC-gun-based preinjectors. It will be seen that, in terms of
beam brightness, a thermionic RF gun system with magnetic bunching can outper-
form all but the most state-of-the-art DC-gun-based injectors, which employ high-
‘performance DC guns with multiple frequency sub-harmonic bunching. Thermionic
RF gun systems can outperform conventional “low-technology” injectors by orders
of magnitude in brightness and peak current. That this can be done using low-cost
magnetic bunching technology, with a system using a single RF frequency (the gun fre-
quency is the same as the linear accelerator frequency), and with only velocity-of-light
accelerator section, is a significant improvement in the simplicity and affordability of

high-brightness injectors.
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1.4 Overview of Thesis

Figure 1.2 shows a schematic layout of the SSRL RF gun project, including the gun,
the gun-to-linac transport line (GTL), and the beginning of the first of three SLAC-
type(48] 2856-MHz accelerating sections. Electrons start at the gun cathode and
are accelerated by the fields in the gun cavity, forming a beam that is transported
through the first part of the GTL to the bunch-compression alpha magnet. After
emerging from the alpha-magnet, the train of bunches is “chopped” by the traveling-
wave beam-chopper, which admits 3-5 bunches into the linear accelerator. (A more
detailed discussion of the GTL will be found in Chapter 5.) The plan of this thesis
in large part follows the path that electrons take—that is, it proceeds from the gun,
through the alpha-magnet, to the linear accelerator.

In this section, I present a brief overview of the thesis. To do so, I must anticipate
much that will not become completely clear until latter in the thesis. It is also ap-
hpropriate at this time to be explicit about my individual contributions to the project,
having noted the contributions of others in the acknowledgements.

Chapter 2 is in part a computer-aided explanation of the detailed workings of the
RF gun. It starts with an overview of the concepts behind the gun and the goals of
the design. The capabilities of various relevent simulation programs are discussed, as
well as my methodology of applying the codes. The codes are used to explore design
alternatives, to understand the physics at work in the gun, and, finally, to predict
expected gun performance.

The simulation results presented in Chapter 2 are my own work (though the
codes used were in some cases created by others, who are acknowledged at appro-
priate points). My contribution included evaluation and generation of gun design
alternatives and modification of the design to satisfy the project goals. In particular,
I determined the size and shape of the focusing noses (necessary to obtain good con-
trol of the tranverse beam size in the gun over a wide range of currents) as well as
the necessary on-axis field ratio between the cells (necessary to obtain a longitudinal
phase-space suited to magnetic compression). I created the code rfgun to provide a
fast, accurate design tool, and took the leading role in the commissioning of the gun
and GTL at SSRL.
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Design of the gun cannot be separated from the design of the GTL itself, which
was also my responsibility. This included determination of the GTL optics, the length
of the transport line, and the requirements for the alpha-magnet. While I will not
discuss these details here, I did the physics design of all the GTL magnets (quad-
rupoles, steering magnets, and the alpha-magnet) and the beam-chopper (including
the permanent magnet deflectors). My work included magnetic characterization of
the magnets using a computer-aided measuring setup that I assembled and wrote the
code for.

Chapter 3 goes into the properties of the alpha-magnet[45] in great detail. While
the alpha-magnet was invented in 1963 and has been widely used in bunching and
other applications, to my knowledge this is the first work in which full second and
third order transport matrices are given. These matrices, along with highly accurate
zero and first order results, are calculated by a program that I wrote, using a method
.that I developed and which I explain in the chapter. The method is applicable to
finding matrices up to third order for any beam transport element (as is the code,
if provided with the appropriate equation of motion). I also report on beam-optics
experiments that I performed to test some of these calculations.

Chapter 4 discusses the subject of longitudinal dynamics, in the alpha-magnet-
and-drift buncher and in linear accelerators. I present a new way of looking at the
problem of matching the injected bunch longitudinal phase space, using contour maps
of final phase and momentum as a function of initial phase and momentum. I discuss
the well-known general principles of magnetic bunch compression, and employ results
from Chapter 3 in order to show how an alpha magnet can be used for magnetic
bunching, and under what circumstances. Using these ideas, I employ computer
methods to find the optimal bunch-compression parameters for the SSRL RF gun.
This is followed by detailed predictions of the performance of the SSRL pre-injector
in terms of peak current, emittance, and brightness, as well as comparison with other
projects. For this, I used the tracking code elegant[49], which I wrote specifically
for the SSRL project.

Chapter 5 concentrates on experimental characterization of the gun and the pre-
injector. It starts with a detailed walk through the GTL and continues with a discus-

sion of the GTL optics. The remainder of the chapter gives experimental results and
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comparable results of simulated experiments. These experiments include measure-
ment of the momentum spectrum, the emittance, and the bunch length. I performed
all of the experiments and data analysis, as well as the simulations.

Computer simulations are employed extensively in the present work, because the
nature of the problems dictates that numerical methods be used for precise solutions.
In order to more clearly separate my own contributions from those of others, I have
adopted the convention of putting the names of computer programs that I have writ-
ten in type-writer type face (e.g., “program”) while putting the names of computer
programs written by others in upper-case letters (e.g., “PROGRAM?”). (This is not
always adhered to in figure labels.) In addition, I have mentioned, where appropriate,
what modifications I have made to programs written by others.

Some of my programs (albeit those with the least literal physics content) are de-
scribed in Appendix A, and others are either described in the text or will be described
in forth-coming publications[49, 50]. While these programs represent a substantial
amount of original work, I have decided to concentrate on the physics that the codes
predict rather than the details of the codes themselves. Appendix A is included in
part to advance a new philosophy of code integration, in part as an example of the
implementation of that philosophy, and in part as documentation for that implemen-

tation.



Chapter 2
Gun Design and Simulations

As discussed above, one of the RF gun’s principle advantages, and indeed the essential
reason for using an RF gun rather than a DC gun, is the rapid acceleration of electrons,
‘which greatly lessens space-charge induced emittance degradation. Unfortunately,
the very fact that electrons emitted from the RF gun cathode are accelerated from
thermal velocities to velocities approaching the speed of light means that analytical
approaches to the electron dynamics in the gun are unlikely to be fruitful. Additional
complications arise from the time-varying nature of the accelerating fields, and from
the continuous emission of electrons from the cathode.

Because of these complications, it is necessary to employ computer programs to
simulate the detailed operation of the gun and to evaluate alternative designs. In
this chapter, I will discuss many aspects of the physics of the gun as explored with
various computer codes. In particular, I will concentrate on steady-state simulations
of single-bunch evolution in the gun. (Multiple-bunch simulations will be addressed
in future publications.) In addition to discussing the physics behind the codes and the
methodology of the simulations, I will discuss the design criteria for the gun and how
the codes were used to explore alternative designs. Finally, I will present and discuss
collated results of simulations of the gun as it was built, giving a picture of many
aspects of gun performance. Experimental results are reported in a later chapter.

The primary computer codes that I employed in this context were MASK[51],
SUPERFISH[52], and rfgun. SUPERFISH is a well-established code that calculates

the frequencies and the field distributions for TM modes of resonant cavities. In
39
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the present work, it found application in finding higher-order mode frequencies, in
“tuning” simulated cavity shapes to the desired frequency, and in computing field
distributions for use by rfgun.

rfgun is a code that I wrote specifically for the SSRL RF gun project. It uses
the longitudinal field profile generated by SUPERFISH and an approximation to the
radial electric field and azimuthal magnetic field to calculate beam evolution in the
absence of space-charge effects. Like other such codes, rfgun integrates the equations
of motion for discrete “macro-particles”, each of which represents many electrons. Its
primary advantages are speed and simplicity of use, which make it a valuable design
tool when coupled with the slower, more cumbersome, but also more accurate code
MASK. rfgun also allows the investigation of the importance of various non-linear
field terms by allowing the user to turn such terms on or off at will.

MASK is a “particle-in-cell” code that self-consistently integrates Maxwell’s e-
_quations for the electromagnetic field and the Lorentz equation for simulated macro-
particles, including the effects of space-charge. MASK'’s advantage over rfgun is that
it can simulate space-charge and higher-order cavity modes, at the expense of greater
complexity and greatly reduced speed. MASK is also more accurate in predicting
the effects of non-linear fields near the cathode, which are poorly handled by rfgun’s

off-axis expansion.
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2.1 Gun Design Overview

The SSRL RF gun was designed as part of a larger project, the SSRL 3 GeV Injector
for the storage ring SPEAR[26], and hence was required first of all to meet the needs
of that project. The primary need of the Injector project was for a reliable high-
current electron source that could be matched to the subsequent linear accelerator
sections in such a way as to produce a beam with less than 0.5% momentum spread
at 120 MeV/c. (This is discussed in more detail in Chapter 4.) The basic goal for the
gun was to be able to provide 10° usable electrons per gun bunch, which, assuming
operation at 10 pulses per second with the equivalent of two bunches accelerated per
pulse and a very conservative filling efficiency of 10%, would allow filling of SPEAR
to a (quite high) current of 100 mA (5 x 10*! electrons) in under ten minutes. I found
in the course of my design studies that this goal was relatively easy to meet, requiring

__reasonable RF power, cathode current, and bunching.

2.1.1 Design Characteristics

Before examining the design criteria in detail, it is helpful to review the general
characteristics of the gun[53, 54]. In doing so, I will necessarily mention many points
that I will not discuss in detail until later.

The SSRL RF gun consists of a thermionic cathode mounted in the first cell of a 1-
% cell side-coupled 2856 MHz velocity-of-light standing wave structure, as illustrated
in Figure 2.1. The gun was designed in collaboration with Varian Associates, and
the basic cavity design is one used in Varian Medical accelerators. The modifications
to the cavity were purposely kept to @ minimum in order to reduce the magnitude
of the research and development effort. This is not without its costs in terms of
beam quality, since the Varian cavity is not optimized for elimination of non-linear
RF fields.

Consisting as it does of three coupled resonant cavities, the gun has three possible
“structure” modes[55] with frequencies near the fundamental frequency (as distin-
guished from higher-order modes of the individual cells, which are infinite in number).
This subject is discussed in the references, and to be brief I will simply state that

the gun is operated in the 7 /2 mode, which means that there is a phase-shift of 90°
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between the first cell and side-coupling cell, and between the side-coupling cell and
second cell. Hence, the fields in the first and second cells are 180° out of phase. RF
is fed into the gun through a port in the second cell, via rectangular wave guide, as
shown in Figure 2.1, and fills the first cell through the coupling cell.

The design of the Varian side-coupled structure is such that the length of a full

cell is one-half the free-space wavelength of 2856 MHz radio waves:

L= : (2.1)

o] >
2] o

where L represents the periodic length of the structure and A = 10.497cm. For an
accelerator consisting of a long chain of such cells, a relativistic particle that arrives
at the center of one cell at the RF crest is guaranteed to arrive at the center of
all subsequent cells at the RF crest in each cell. Hence, it will achieve maximum
acceleration from each cell[56]. This is why this structure is referred to as a “velocity-
-of-light” structure. The RF gun is a very short version of such a structure, with the
electrons being emitted from a cathode mounted in the end-wall. (The end wall in
the first cell does not change the fields in the remaining part of the gun, since the
end wall is placed at a location of symmetry.)

The cathode for the RF gun is a Varian dispenser cathode[33], with a flat, circular
emitting surface of 6mm diameter, capable of current densities of up to 140A/cm?®. It
is mounted in a modified version of Varian’s high-voltage isolation mounting, which
is used in Varian’s DC guns. In order to provide focusing of the electron beam in the
first cell, we have put a metalized ceramic annulus around the cathode. This annulus
and the cathode must be in RF electrical contact with the metal walls of the RF
cavity in order to avoid distortion of the RF fields. One way to achieve this is using
an RF choke[32]. For the SSRL gun, a simpler concept was developed.

RF electrical contact between the cathode stem and the annulus is achieved by
a toroidal tungsten spring around the cathode stem. This spring fits snugly into a
toroidal cavity in the annulus. Electrical contact between the outer diameter of the
annulus and the cavity is achieved through a knife-edge on the annulus that bites
into a soft metal O-ring that rests in a toroidal channel in the back side the cavity
wall. The reason for making the annulus out of ceramic is to provide a heat-barrier

to prevent heat from being conducted too readily into the metal walls of the cavity,
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which would cool the cathode. If this “heat leak” were too great, the cathode might
not achieve the temperature (> 900°C) necessary for emission. The tungsten spring
serves a similar purpose, in that it connects the cathode and annulus electrically
without providing an easy path for heat flow.

Pyrometric measurements, shown in Figure 2.2, demonstrate that it is an easy
matter to achieve cathode temperatures in excess of 1050°C, which is the approximate
temperature required to “convert” the cathode (which refers to a chemical change that
must occur before good emission is obtained). In operation, the cathode temperature
is closer to 950°C. The Figure shows measurements that I took using two different
pyrometers, corrected for the emissivity of tungsten. I found that the temperature
variation across the cathode was less than 5°C over the entire cathode surface, and
less than the measurement resolution of about 2°C out to about 90% of the cathode

radius.

2.1.2 Gun Operating Cycle

In the steady-state, as long as RF is supplied to the gun, the gun operating cycle
repeats itself every 350 ps (i.e., at the RF frequency). Electrons that start from the
cathode during the accelerating phase of the RF in the first cell are initially moving
at thermal velocities. The RF fields accelerate these electrons rapidly, as a result of
which a beam is injected into the second cell (provided the fields are high enough).
By virtue of the time it takes for the beam to get from the cathode to the second cell,
the particles arrive in the second cell during the accelerating phase of the fields in
that cell. Hence, the second cell continues the acceleration of the beam that began in
the first cell. In a matter of about 330-360 ps after being emitted from the cathode
(how long depends on the field), the first electrons of the bunch are ejected from the
gun. During that same time, electrons that do not make it out of the first cavity are
back-accelerated into the cathode, causing additional heating of the cathode surface.
In addition, some particles that do not make it out of the second cell (because they
entered too late in the accelerating phase of that cell, with too little momentum), will
be back-accelerated into the first cell, and contribute to the back-bombardment of the

cathode. I will return to these points in the next section, where I will show a series of
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“beam snapshots” (from MASK simulations) at various points in the operating cycle.

Those particles that exit the gun comprise the “gun current” or “the beam”.
Because of the RF nature of the accelerating fields, the gun current for each cycle
has a large spread in momentum, from some maximum down to essentially zero.
However, we shall see that about half the particles in the beam have at least 80% of
the peak momentum. Similarly, there is a wide spread in exit times, but about half

the particles are within 25 ps or so of the particle with the peak momentum.

2.1.3 Matching to the RF Source

There are two principle limitations on the gun current. One is the current density
that is available from the cathode. The other is the amount of RF power that is
available to accelerate that current. Extraction of current from the gun requires a
certain minimum electric field level in the cavity, otherwise current emitted from the
"cathode will not be accelerated sufficiently rapidly to make it out of the gun before
the RF fields reverse sign. In order to maintain the electric fields in the cavity and
accelerate electrons, one must supply sufficient RF power to compensate the power
that goes into the beam, as well as the power that must be dissipated in the cavity
walls to maintain the electric fields.

Early design studies on the gun indicated that 1-1.5 A of current at an average
kinetic energy of 2 MeV was feasible. In addition, it was anticipated that 5 MW of RF
power could be supplied to the gun. The beam power is simply the product of beam
energy and current, from which one concludes that 2-3 MW of RF power must be
supplied “for the beam” in this case. An additional power loss of about 1 MW occurs
in the walls of the RF cavity, as a result of creating the electric fields that provide
acceleration to 2 MeV. This makes a total of 4 MW, which is conservatively below
what we anticipated would be available. The cavity must be “matched” to the RF
source in order to make best use of the available RF power in the presence of beam.
‘The cavity was thus made to be “over-coupled”, with a normalized load impedance
of B = Pyeam/Pwan + 1 ~ 4.15. (This is topic is discussed in the references[57, 58].)

2.1.4 On-Axis Field Profiles
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Computer studies also showed that in order to optimize the bunch longitudinal phase-
space for magnetic compression, it would be necessary to delay the arrival of electrons
in the second cell. The most straight-forward way to do this was by accelerating the
electrons less rapidly in the first cell. Hence, the field amplitude in the first cell is
approximately one-third of that in the second cell, as shown in Figure 2.3 (calculated
with SUPERFISH). This was accomplished by modifying the coupling slots that
connect the on-axis cells and the coupling cell[44].

The on-axis fields in the gun are related to those shown in Figure 2.3 (which is
for the first RF gun, as built) by the multiplicative factor Epscos(wt), where Epy is
the peak, on-axis field in the second cell. E,, provides a convenient measure of the
excitation level of the RF fields, and I shall use it for this purpose throughout my
discussion. Another important quantity related to the excitation level of the cavity is
the peak surface field, Ep;. This field is of course proportional to E,,, and since there
_are breakdown limitations on how high E,, may be, there are limits on how high E_,
may be. For the RF gun as it was built, SUPERFISH gives E, ~ 2 - E;». For 2856
MH:z RF in a copper cavity with a surface finish of the quality that is achieved in the
RF gun, E;; < 240MV/m is feasible[44]. Typically, Varian operates its accelerators
with Eps < 165MV/m[44]. We will see below that the optimum operation of the RF

gun is comfortably below the breakdown limit.

2.1.5 Design Goals

Having given an overview of the gun and the concepts involved, I am now in a position
to list and briefly discuss the design goals [53, 54]:

1. There should be at least 10° “usable” electrons per S-Band bunch, for cathode
current densities of less than 100A/cm?, i.e., at least 10° electrons per bunch
with momentum greater than 80% of the maximum momentum. This momen-
tum window was established because it seemed feasible to transport a +10%
momentum spread from the gun to the linear accelerator without excessive
losses, and because this momentum range turns out to contain about half the

current that exits the gun.
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2. The average momentum in the useful beam should be 2 to 3 MeV/c, for surface
fields below the breakdown limit. The primary reason for choosing this momen-
tum range was to reduce the influence of space charge after the gun. Operating
in this momentum range also results in more efficient extraction of current from

the gun than does operating at lower momenta.

3. The longitudinal phase-space should be suitable for magnetic compression. As
I will discuss in detail in Chapter 4, this implies that the momentum-vs-time
characteristic of the gun longitudinal phase-space should be near-linear and

monotonically decreasing with time.

4. The focusing structure around the cathode should provide a gently-converging
beam for a wide range of current densities. Since it was initially not known what
current densities would be achievable in normal operation, it was desirable that
low current beams should not be over-focused and that high current beams
should show some convergence. In the absence of focusing noses, the beam
would fill the exit tube in the first cell or even hit the cell noses (for high

current density).

5. The normalized RMS emittance for the useful beam, defined by equation (1.9),
should be less than 157 - m.c-pm over the entire range of current densities,
where the averages are taken over the useful electrons in the beam. This cor-
responds to a geometric emittance of less than about 37 - mm - mrad, and was

selected based on what seemed feasible from initial studies.

6. The average beam power returning to hit the cathode should be manageable,
i.e., not greater than the filament power (about 11W) used to heat the cathode,
and preferably below 5 W, in order to ensure stable operation and long cathode

lifetime.
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2.2 Simulation Codes and Methodology

As Iindicated in the introduction, the nature of particle motion in the RF gun is such
that analytical methods are of little use if one wants detailed, accurate predictions.
(This is less so for photocathode RF guns, where the beam is emitted in a short pulse,
triggered by a short laser pulse[37, 12, 13].) Electrons go from thermal velocities at
the cathode to relativistic velocities in the space of a few centimeters, meaning that
neither non-relativistic nor highly-relativistic approximations are adequate. What is
more, the rate at which an electron is accelerated depends on the phase at which it is
emitted from the cathode. Depending on when it is emitted and what the fields are
in the gun, an electron may exit the gun with § = 0.98 or 8 = 0.01, or it may not exit
the gun at all, returning rather to hit the cathode (again, with a wide range of possible
velocities). Some electrons even oscillate between the first and second cells one or
more times before finally exiting the gun or hitting the cathode. When one adds to
 this complexity the additional complexity of space-charge effects, the problem is even
more.clearly out of the realm of analytical solution. Rather than attempt to find
approximate analytical tools, then, I have employed numerical methods exclusively.

I will not attempt to explain the detailed workings of the codes that I have used.
This is treated in the references[51, 52, 50]. While the version of MASK that I use
is non-standard, the modifications I have made are primarily to the user interface.
In addition, I have added a number of capabilities that were necessary for simulation
of the RF gun. My version of MASK has the capability to simulate a cathode with
emission limited at some specified uniform current density. It also allows one to easily
inject simulation particles from one MASK run into another MASK run, which proved

necessary because the two cells of the gun had to be simulated separately.

2.2.1 Tuning and Boundary Conditions

Before simulating the gun with MASK or rfgun, one must first check the cavity profile
using SUPERFISH, in order to determine that the computed resonant frequency for
the fundamental mode is as expected. Because of the off-axis coupling cell, it is not
possible to run SUPERFISH for the entire gun, since SUPERFISH is for cylindrically

symmetric cavities only. Hence, I have run SUPERFISH for the first and second cells
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separately. Simulation of the entire gun cavity could be done with a three-dimensional
code like MAFIA[59], but I have not done this.

If the cavity had a uniform #/2-mode, then the longitudinal field at the junction
between the cells (i.e., at z = A/4, measuring from the end wall of the first cell) would
necessarily be zero for the 7/2 mode, since the fields in the two cells are 180° out of
phase. In this case, one would use Dirichlet boundary conditions at z = A/4 for both
cells. The boundary condition at z = 31/4 is less clear, since there is no following
cell to provide symmetry—the boundary condition is a combination of Neumann and
Dirichlet. Dirichlet boundary conditions would be appropriate at z = 3)/4 only if
there were following cells to provide the necessary symmetry. What is more, since
the RF gun has a non-uniform #/2-mode, one cannot conclude that Dirichlet bound-
ary conditions are appropriate at the z = A/4 boundary either. Because one cannot
decide exactly what the boundary conditions should be without first simulating both
.cells (which SUPERFISH cannot do) and the structure following the second cell, the
problem is in fact only solved by implicitly giving up the approximation of inde-
pendent cells. Rather than do this, I elected to use Dirichlet boundary conditions at
z = A/4 and z = 3)/4, since these are most likely to be closest to the actual boundary
conditions. '

To see that this is a justifiable approximation, consider that the cutoff frequency
of the beam tube (which has a radius of Ry = 3.8mm) is[31]

2.405¢

—_ 2.2
R, (2.2)

fcutoff =

or approximately 30 GHz, compared to f = 2.856GHz for the fundamental mode of
the gun. Hence, the fields in the beam tube should fall off rapidly in moving into the

beam tube from either cell. The 1/e distance is given by

d= ¢ , (2.3)

2 _ {2
2 fcutoﬂ' f

which comes out to 1.6mm for the present case, compared to about 7Tmm for the
distance from the beginning Qf any cell nose to the nearest boundary plane. Hence,
one expects that the fields in the cells and the resonant frequency of the cells will be

insensitive to the boundary conditions, and this is indeed what I have found to be the
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case. I find that the resonant frequencies of both cells change by less than 400kHz
in changing from Dirichlet to Neumann boundary conditions in SUPERFISH. The
on-axis longitudinal fields differ visibly only near the boundaries, and then only by a
small fraction of the peak field.

The actual dimensions of the gun cavity are different from the original design. In
particular, the re-entrant noses (not the focusing noses, but those belonging to the
Varian cell design) were of different lengths than specified in the design. This was
a result of cavity tuning during machining. All of the data I present will be for the
first RF gun as it was actually built (which I refer to as "the gun as built”), unless
otherwise noted.

I found that when the cavity shapes for the gun as built were put into SUPER-
FISH, the frequencies of the cells were different from each other and from measure-
ments, with the second cell calculated frequency being about 2838 MHz. This dis-
crepancy is most probably a result of imprecise knowledge of the exact actual cavity
dimensions and the effect of the coupling slots and the coupling cell. Upon modeling
the second cell in MASK, I found that I obtained very nearly the same frequency as
in SUPERFISH. I decided to tune the first cell to 2838 MHz also, as this frequency is
within 0.5% of the goal of 2856 MHz (I will show below that the error introduced by
this is small). Even after tuning the first cell to within 1 MHz of 2838 in SUPERFISH
(which was done by slight alterations of the upper radius of the cell nose), I found
that the frequency given by MASK was 30 MHz low. This is probably attributable to
the coarseness of the mesh in MASK, implying that the agreement obtained for the
second cell was fortuitous. I found it necessary to insert an artificial tuning plug into
the MASK simulation of the first cell (see below). This plug is far from the beam
and makes no significant change in the on-axis fields.

Figure 2.4 shows the SUPERFISH-generated field lines for the first and second
cell. Table 2.1 lists SUPERFISH-generated parameters for both cells, some of which
are self-explanatory, others of which are explained below.
 While SUPERFISH calculates cavity resonant frequencies explicitly, MASK calcu-
lates only the time-dependent field evolution. In order to find the resonant frequency
of a cavity simulated in MASK, I “hit” the cavity with a relatively broad-band signal

and looked at the frequency of the ringing. How this was done is discussed below. For
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Figure 2.4: SUPERFISH Field Line Plots for RF Gun Cells
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Table 2.1: SUPERFISH-generated Cell Parameters

quantity Cell 1 | Cell 2 unit
length 2.624 | 5.248 cm

Q 11777 | 18671

shunt impedance 2.44 8.45 MQ

100 | 161 MQ/m

K, 0.0831 | 0.1473 | mJ/(MV/m)’
Epe/Epi 1.79 | 1.92

transit time factor 0.766 | 0.787

effective length V/Epeax | 1.82 3.45 cm

now, suffice it to say that the simulated frequencies of the first and second cells were
2834.5 MHz and 2837.8 MHz, respectively, where I determine the frequency from the
time between subsequent zero-crossings of the electric field at some fixed point in
each cell. This is a valid procedure provided there is only one mode that is appre-
ciably excited, which I took pains to ensure was the case, as I discuss below. Fourier
analysis would have required simulating the cells for 1 usec in order to determine
the frequencies to within 1 MHz. This would have taken about 20 days of dedicated
computation by SSRL’s VAX 8810. While these frequencies are the same to within
0.1%, the difference is not negligible and must be compensated for.

The final cavity profiles used in MASK are shown in Figures 2.5 and 2.6. The
solid lines show the desired profile (which is the actual profile, except for the tuning
artifice in the first cell), while dots show the grid points that were filled with “metal”
in MASK in order to achieve that profile. The choice of boundary conditions in MASK
is even more complicated than for SUPERFISH, since the beam-induced fields have
no definite symmetry and are not constrained to frequencies below cutoff. I chose to
use Neumann boundary conditions in all of my MASK simulations, because the copy
of the code that I have does not implement Dirichlet boundary conditions. I have
verified that the influence of the boundaries on the beam is negligible by simulating
the first cell with a long exit-tube, and comparing the results to a simulation which
ends 0.43 mm (one longitudinal grid spacing) after z = )\/4.

Figure 2.7 shows on-axis longitudinal field amplitudes from SUPERFISH and
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Figure 2.6: Profile Used in MASK for the Second Cell
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MASK, along with the results of a bead-drop (or "bead-pull”) measurement[60] taken
at Varian. Each profile is normalized so that the maximum value is 1. Note the small
differences between SUPERFISH and MASK at the cell boundary. These are a result
of the boundary conditions used in MASK, as just mentioned. There are also some
differences near the electric-field peaks, due to inaccuracy in simulating the cell noses

and beam-pipe radius in MASK (a result of the coarseness of the grid).

2.2.2 Gun Cavity Parameters

While SUPERFISH gives parameters for the individual cells directly, it does not give
results for the gun as a whole. I will digress briefly to show to obtain such results.
These will prove useful in analysis of experimental results in Chapter 5. The definition
of the Q for either cell is[56]
_ Q== (2.4)
where Uj; is the stored energy and P; is the power dissipated in the cavity walls, for
the i** cell, where i is 1 or 2 for the first or second on-axis cell (I ignore the coupling
~ cell, since there is no field stored in it in the 7 /2 mode, as discussed earlier in this
chapter). The stored energy may be expressed in terms of the peak, on-axis electric
field as

U, =K;-EZ, (2.5)
where the K; are constants that can be deduced from SUPERFISH output (see Table
2.1). Since Ep; = Epa/a, where a ~ 3 is a constant, the total stored energy is

K,
=U;+ U, = . 9.
U=Ts+Up=TUal+ ) (2.6)

This form is convenient, since if K; and K, are of the same order, as one expects,

then U is dominated by U,. Similarly, the total power lost in the cavity walls is

1 KiQ;
P=P,+P,=Py(1+— 2.7
1+ P =P+ =5 o) (2.7)

Hence, the predicted Q of the cavity in the /2 mode is

U, 14 2%
Q = wpiTahe (2.8)

T K, Q
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1+ g5
= Q 1 lki K Q)
T K2 Ql
from which one sees that for K; and K, of the same order and a? > 1, then Q ~ Q.
Table 2.2 lists the results of cold-test measurements performed at Varian and along

1 3 haoad +h3 I RN o nf tha infarsad
with inferred pererties for the g gun, vasea On tnis &ua.x) sis. For some of the inferred

properties, I have used the values of K;, K,, and Q;/Q, calculated with SUPER-
FISH. I have also listed certain “desired” values, along with predictions based on
SUPERFISH results, with a = 2.9 (the measured value) used where necessary.

I have calculated the peak electric field in the second cell as a function of total

_ U _ [ Qe
b2 = \/I% =05 VP, (2.9)

_ Q.
E,; = JwKz(Haz;;%f)ﬁ' (2.10)

wall power using

or (using 2.7)

Table 2.2: Measured and Desired Cavity Parameters for the RF Gun

quantity desired (predicted) | measured (inferred) unit

Q for 7/2-mode (18008) 14000

frequency at 20° C, air
0-mode — 2922.975 MHz
7 /2-mode 2855.8 2855.835 MHz
m-mode — 2802.960 MHz

a = Eyn/Epy 2-3 2.9

8 4 4.15

Epeax,2/VP1 + Ps (79.9) (70.5) MV /m/MW?2

2.2.3 Methodology of MASK Simulations

I return now to the discussion of simulations, and in particular MASK simulations.

My methodology in using MASK was heavily influenced by the need to economize
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computer time. A single cycle of the RF gun with beam takes approximately 30
hours of CPU on SSRL’s VAX 8810. Part of the reason for this is the need to use
a large number of simulation macro-electrons. The emission algorithm in MASK is
such that charge is emitted at each step in order to obtain the desired current density.
Hence, if the macro-electron weight (the number of electrons that each macro-electron
represents) is made too large in an attempt to decrease the number of macro-electrons,
the simulation may end up emitting no macro-electrons at all, because one macro-
electron per time-step may exceed the allowed current density. Thus, having many
- simulation particles is a result in part of having a small time-step. The time-step, At,
is chosen under the constraint of the Courant stability condition [61] (for integration

of Maxwell’s equations), which requires that

minimum(Ar, Az)

V2 ’

“where Ar and Az are the grid spacings in r and z, respectively. In order to accurately

At £

(2.11)

simulate the fields in the vicinity of the cathode, I chose Ar = 0.25mm, which gives
12 grid points across the cathode and 3 grid points spanning the recess between the
cathode and focusing annulus. Az = 0.43mm was also chosen, based on the need to
have 64 grid points between the recess around the cathode and the end of the first
cell (the power of 2 is required by MASK.) Hence, the time step would need to be
less than about 0.6 ps. I found that a smaller time-step was needed in order to get
stability (perhaps a result of the fact that MASK uses single-precision), and chose a
conservative value of 0.171 ps, which is convenient in that it gives 2048 time-steps
per 2856 MHz RF period.

As T will discuss below, the longitudinal mesh spacing was belatedly discovered
to be somewhat larger than needed to accurately fulfill the boundary conditions on
the slope of E, at the cathode. However, this has no significant effect on the results.
Test runs with smaller radial and longitudinal mesh sizes were found to give virtually
identical results to those with the mesh sizes listed in the last paragraph.

I then chose the ratio of the macro-electron weight to the current density in order

to ensure that several macro-electrons were emitted per time step. The number of
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macro-electrons emitted per time step is

2
= IR A (2.12)

N, =
eNn

where Ny, is the number of electrons represented by each macro-electron. In order to

obtain good statistics, it is desirable that there be several thousand macro-electrons
in the simulated useful beam. For examining the results of filtering small momentum
spreads from the beam, it is necessary to have even more macro-electrons. Roughly
speaking, N, useful-beam macro-electrons requires 2N, macro-electrons total exiting
the second cell, which requires roughly 4N, macro-electrons emitted from the cathode
during the accelerating phase in the first cell (the reasons for these factors will be
discussed below). This analysis would lead one to conclude that, for 2048 time-steps
per cycle, Ng = N,/256. I chose N, = 15, which gives about 4000 useful-beam macro
particles and gives good statistics even for analysis of small momentum intervals. In
““retrospect, this is probably higher that it needs to be, but I have used in throughout
in order to avoid changing simulation parameters which would confuse comparison of
different MASK runs. ’

Because of the long running times, I decided to simulate only the steady-state
behavior of the gun, that is, the behavior after the RF fields and beam current have
come to stability. This happens in the last half of the 2us RF pulse used at SSRL.
Even taking N, = 1 would not help to decrease the running time sufficiently to allow
simulation of the entire operating cycle of the gun in a reasonable time. There are a
number of assumptions upon which the validity of this procedure rests. It assumes
that it is sufficient to simulate only the 7 /2 structure mode, which allowed simulation
of the cells separately. If, for example, the beam drives significant power into the zero
or 7 modes, this approximation would be invalid. Since MASK cannot simulate the
coupling cell, there was little choice about this.

This methodology also assumes that each bunch sees the cavity with only the
fundamental mode excited—i.e., that the higher-order-mode fields excited by previous
bunches have no significant influence on any particular bunch. This is equivalent to
saying that the only significant effect of previous bunches is to remove power from
the fundamental cell mode. In the steady-state, this power is assumed to be replaced

by the RF power source, so that each bunch sees that same fields; hence, if the



CHAPTER 2. GUN DESIGN AND SIMULATIONS 62

assumptions are valid, only one cycle needs to be simulated with particles. Similarly,
this methodology assumes that electrons left in the gun from the previous operating
cycle have no significant influence on newly emitted particles. These assumptions
can be checked by simulating the gun for several operating cycles; results of such
a simulation are present in the next section. Normally, however, I simulate only a
single operating cycle with beam, in addition to simulating several RF cycles for the
build-up of the cell fields.

Since MASK is a time-dependent code, the cavity fields must be built up by means
of some suitable simulated RF power source. The program allows the simulation of
both RF ports and antennae. I chose to use an antenna because of the greater sim-
plicity. Since I wished to simulate only the steady-state behavior of the gun, it made
no difference how the cavity was driven. (I was not attempting to simulate the evolu-
tion of the beam during the charging of the cavity.) In driving an RF current in the
.antenna, MASK creates fields in the vicinity of the antenna that propagate through-
out the cavity via Maxwell’s equations. The sinusoidal RF current was modulated by
the envelope shown in Figure 2.8, in order to avoid excitation of higher-order modes
(the particular shape is composed of two cubic splines, using a standard feature of
MASK). In this way, the Fourier amplitudes excited in the first three higher-order
modes were kept below 1072 of the fundamental. In addition, the antenna was placed
at the intersection of nodes of the first two higher-order modes, to reduce the exci-
tation of these modes even further (shaping the current envelope is by far the most
important consideration).

In general, a simulation of the gun with MASK consisted of the following steps:

1. The fields in the first cell were excited to the desired level, or else the fields
saved on disk from a previous run were read in (and optionally scaled) . Once
the driving current envelope has fallen to zero, the fields can be saved for use

in subsequent runs, or used immediately in the next stage.

[ S

. Particle emission from the cathode, limited to some fixed current density and by
space-charge forces, was then allowed for one RF period, beginning during the
accelerating phase of the fifth RF period since the excitation began. During this
period, MASK “pushes” the macro-electrons through the first cell, in addition
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Figure 2.8: RF Current Waveform for Exciting Cells in MASK
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to simultaneously integrating Maxwell’s equations. As macro-electrons pass
z = A/4, the end of the first cell, their phase-space coordinates are saved to
disk.

3. The fields in the second cell were excited to the desired level or read in from
disk, as for the first cell. Of course, these fields should be 180° out of phase with
the first-cell fields. (In fact, they were driven 178° out of phase, to compensate

for the difference in frequency, as discussed below.)

4. Macro-electrons from the simulation of the first cell were injected at z = A/4 in
the second cell. Since both simulations start at time t = 0, each macro-electron
is injected into the second simulation when the time counter is the same as it

was when the macro-electron left the first simulation.

The measured field ratio in the gun is a = 2.9. The MASK simulations reported
“on here used @ = 3.0, as a result of a mis-reading of the data that was not noticed
until the simulations had already been run. Because the simulations take so long,
time does not permit me to repeat them. I will show below that this error has only
a small effect on the results. Given the many other approximations being made
(e.g., independent bunches, ignoring the three-dimensional nature of the cavity with
coupling holes, having the simulation cell frequency differ from the actual frequency),

this is not a serious error.

2.2.4 Cathode Simulation

Cathode emission was simulated by injecting a total charge of wR’;’JemimdAt during
each time interval, where R. is the cathode radius, Jemitiea the emitted current density,
and At the time interval (i.e., the time-step for the integration). The space-charge
limitation on the current density was assumed to follow the Gaussian emission law (a
‘standard feature of MASK), namely,

- (Jcmittcht + qurf) S "foEz,cathode (213)

where E, cathode must be negative for the emission of electrons (negative J), and where

Q.urr < 0 is the existing “surface charge” (i.e., charge just above the cathode surface)
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due to previously emitted macro-electrons. In other words, the emitted charge density
cannot be so high that, in combination with previously emitted charge density, the
newly emitted charge depresses the field at the cathode so much that the sign of the

field is such as to push electrons back into the cathode. In addition I required that
— Jemitted < —Jlimits (2.14)

where [Jymi¢| is the user-specified maximum current density available from the cath-
ode, which in actual operation is controlled by controlling cathode temperature. In
addition to adding this feature, I modified MASK to emit a bona-fide uniform random
distribution from the circular cathode surface (the standard code uses an approxima-
tion to such a distribution). Each macro-electron emitted in the simulations has
the same charge, in order to make the interpretation of graphs and other data more
straigh{-forward. This implies that in order to have a uniform emission over the
surface, fewer macro-electrons should be emitted near r = 0 than near r = R.. The
reader will see this effect in some of the graphs that follow.

It is interesting to look at the details of this emission process. SUPERFISH
calculations give the peak field at the cathode as E,c = 0.258E, (assuming o = 2.9).
Hence, for a typical operating value of E,o = 75 MV/m, E,. is about 20 MV/m.
As the field at the cathode passes into the accelerating phase for electrons, emission
begins. -Around this time (call it t=0), the field at the cathode may be approximated
as E. * —E,.wt. Hence, if the integration time step is At, and if I momentarily

assume Jymie — —00, then
Jemitted(t = NA)At = —Quus(t = nAt) — ¢, EpcwnAt (2.15)

where n is the number of time steps since t=0. Emission can occur as long as
Jemitted < 0.

One expects that, initially, the surface charge will simply be the sum of all charge
emitted since t=0, since the fields have not had time to accelerate that charge away
from the cathode. It is possible to approximate the distance a macro-electron will
move and confirm this expectation. Ignoring the variation of the field with position,

the Lorentz equation gives
dp  eEpcwt

dt m.c

(2.16)
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where p = 7. For a macro-electron that starts from the cathode at t=0,

_ eEjcwt?

p(t) =~ (2.17)

2m.c

For a non-relativistic particle, the velocity is approximately pc, so that the position

18

ek, wtd
2(t) = ;T (2.18)
For E,. = 20MV /m,
z(t) ~ 10783, (2.19)

where z is in meters and t in pico-seconds. The cathode radius, R. = 3mm, provides
a natural length scale, and one sees that it will take about 70 ps for the first macro-
electron to move by R.. In other words, the effects of space-charge on emission might
be expected to be quite large, since it takes so long for emitted charge to be moved
away from the cathode.
Since the charge is moved away from the cathode so slowly, one can assume that

the surface charge is just the sum of all previously emitted charge:

n-1
Qeur(t = DAL) = Y Jemisiealt = iAt)AL, (2.20)
i=1
so that )
Jemittea(t = nAL) = = Jemiteea(t = 1At) — €Epcwn. (2.21)
i=1

Subtracting this expression from the same expression with n — n — 1, one obtains
Jemitted(t = IlAt) = _EoEpcw- (222)

. For E,. = 20MV /m, one obtains Jemitiea = —318A/cm?. Since the cathode is capable
of no more than 140 A/cm?, we see that the space charge limitation will never come
into play. I will hereafter use J = |Jym;| to refer to the cathode current density
assumed in any simulation.

MASK supports the inclusion of a initial thermal velocity distribution for the

macro-electrons emitted from the cathode. I found that inclusion of this effect made
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no significant difference in the results. To see why, consider that the RMS thermal

momentum (837) is given by the Maxwell velocity distribution[62] as

3kT
Prms = 5"
m.c

A cathode temperature of 1000°C or 1273°K gives pms ~ 107%. The RMS radial

momentum will be of the same order. During acceleration, this radial momentum

(2.23)

be adiabatically damped. Assuming acceleration to a typical value of p, = 5, the
slope due to the thermal velocity would be of order pims/p, ~ 0.2mrad. A typical
angular half-width for an RF gun beam is 20 mrad, and hence one sees that thermal
effects may safely be ignored. This is confirmed by MASK simulations done with and
without thermal effects. While adding thermal effects to MASK entails little cost
in computer resources, I have ignored thermal effects in all the MASK simulations
reported on here, since this permits cleaner comparison with rfgun, which did not
" originally su~pport an initial thermal velocity distribution.

A number of different types of output are available from MASK. I have upgraded
MASK extensively to improve the ease with which one can make use of these outputs;
in particular, I have used my self-describing data format (awe format) extensively.
This is discussed in more detail in Appendix A.

MASK allows one to sample the cavity fields along any line in r or z at intervals in
time, aé well as to sample the fields at a fixed location as a function of time. The initial
coordinates of macro-electrons emitted from the cathode may be saved, as well as the
phase-space coordinates (time, positions, and velocities) of every macro-electron as it
crosses a number of user-defined planes of constant z coordinate. This later capability
is the principle means of getting information about beam energy and emittance, and
for keeping track of particles that return to hit the cathode. It is also used for the
re-injection of macro-electrons from first-cell simulations into second-cell simulations.
MASK keeps a record of particles lost by hitting metal boundaries or exiting the
simulation region, so that the total power going into particles can be calculated. This
is important for assessing how much power is needed to produce a given beam, since
not all the power that goes into electrons goes into the electrons in the beam. MASK
can also produce output containing “beam-snapshots”, which record the positions of

all particles at a given time during the simulation. Examples of all of these output
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facilities will be seen in the next section.

2.2.5 Compensation of Cell Frequency Mismatch

I mentioned above that the phase-shift between the driving RF currents for the two
cells must be different from 180° to compensate for the difference in resonant fre-
quencies between the first and second cells[63]. The first simulated cell resonates at
2834.5 MHz, and the second at 2837.8 MHz. Particles from the simulation of cell 1
are injected into the simulation at cell 2 during the fifth RF cycle since the beginning
of the RF excitation. Hence, one wants the fields in the cells to be 180° out of phase
during the fifth RF cycle. The phase in each cell is

¢ = wit + Aoy, (2.24)

_where A¢; = 0 and A¢, =~ 180°. Setting t = 5T,, with T, the average RF period of
the cells, one obtains the phase difference at the beginning of the fifth RF period

@2 — ¢1 = 5To(we — w1) + Ay, (2.25)
requiring ¢, — ¢; = 7, one obtains the necessary value of A¢,
Adyg =7 — 5T, (wy — wy). (2.26)

Using the values of the simulated cell frequencies that I gave just above gives
Ady = 3.105, or 177.9°. I used this value in of my all MASK simulations of the
gun as built. I shall use 2836 (the average frequency) as the nominal frequency of the
MASK simulations. In the next section, I shall show what the effect of this frequency

error is.

2.2.6 The rfgun Program

VHHaving dealt with MASK at some length, I now turn to rfgun. As I have mentioned
above, rfgun uses the longitudinal field profiles generated by SUPERFISH (or any
equivalent program) to calculate particle motion in the gun. rfgun works in carte-

sian coordinates (x, y, z), allowing the imposition of both transverse and solenoidal
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external magnetic fields. The cavity fields are assumed to have a perfect sinusoidal
variation in time,i at some user-specified frequency. (Since the fields for the whole cell
are specified at once, there is no need to worry about the individual cell frequencies.)
Macro-electrons are emitted from the cathode at discrete phase-intervals and from dis-
crete radial positions on the cathode, with macro-electron charges adjusted to achieve
approximately uniform current density. The solution for macro-electron motion pro-
ceeds from the Lorentz equation, which is integrated numerically using fourth-order
Runge-Kutta[61]. Like MASK, rfgun supplies the user with phase-space coordinates
of exiting particles as well as those of particles that return to hit the cathode. Unlike
MASK, rfgun does not include space-charge, nor does consider the positions of met-
al structures that macro-electrons might hit (a maximum radius may be specified,

however, to simulate the collimating effect of the beam tube).

-2.2.7 Off-Axis Field Expansion

It is well known[31] that the modes for a cavity like one of the RF gun cells can be
separated into independent transverse-electric (TE) and transverse-magnetic (TM)
modes. TM modes have B, = 0 and involve only E,, E;, and B, whereas TE modes
have E, = 0 and involve only B,,B;, and E4. While the gun cavity can support
TE modes, the fundamental mode is TM, which has a non-zero accelerating field E,.
(Note that a cylindrically symmetric beam will induce only TM modes, since it always
produces E; # 0 and B, # 0, but never E; # 0 or B, # 0.)

Knowing E, along the axis allows one to compute series expansions in r for E,,
E:, and By. One starts with Maxwell’s equations (in MKSA units):

V- E(z,1,t) = 0 (2.27)
V x E(z,1,t) = -0,B(z,1,t) (2.28)
V x B(z,1,t) = po€,0.E(z,1,t). (2.29)

Expressing these in cylindrical coordinates (r,¢,z) and assuming that the electric

fields vary like sin(wt) (and hence that By ~ cos(wt)), one obtains

8.(tE:(z,1)) + 18,E,(z,1) = 0, (2.30)
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0,E.(z,1) — 8.E.(z,1) = wBy(z,1), (2.31)
0.(tBy(z,1)) = rpoc,wE,(z,1). (2.32)
and
—0,By(z,1) = po€wEL(z,1), (2.33)
(2.34)

Because of cylindrical symmetry, E;(z,1) must be an odd function of r, and hence
from equation (2.30) one sees that E,(z,r) must be an even function of r. Equation
(2.33) implies that By(z,r) has the same symmetry as E.(z,r). Thus, I can expand

these functions as

E,(z,1) = Y E,2(z)r? (2.35)
i=0

Er(Z,I‘) = ZE,JH.](Z)I%-H (236)
i=0

B¢(Z,1‘) = ZB¢,2i+1(Z)I2i+1, (237)

..
I
<)

where the tildes are used to emphasize that the coefficients do not necessarily have
the same units as the fields.
Inserting expressions (2.35) and (2.36) into the divergence equation, (2.30) and

equating terms with the same power of r, one obtains

. 1 . ‘
Er,2i+1(z) = _21 +282Ez.2i(z) 1= 0’17-“00- (238)
Inserting expressions (2.35) and (2.37) into (2.32), one obtains
- Lo€ol =
B i = Ez i 2.
s,2i+1(2) 5 1 o9 2 (z) (2.39)

Using equations (2.38) and (2.39) in (2.31) one obtains

oo p2it1 . o
- 02 + k?) E, 2i(z) — 2ir®7'E, %(z)| = 0, .
‘:4:0[ 2i+2<z+ ) E.i(z) ~ 2ir ,2(z)] 0 (2.40)

where w = kc. Equating terms of the same power in r yields

- 1

Ez.25+2(2) = —(

2 + 2)2 (azz + k2> E,i(z), (2.41)
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which completes the solution for the radial expansion coefficients by providing a
recursion relation that gives all the Emi’s, from which all the Er,giﬂ’s and Br,zi’s can
be obtained via equations (2.38) and (2.39).

It is useful to work out these expressions for the first few terms:

. 1 -
Er‘l(Z) = —;azEz,o(Z), (242)
- 1 -
E.al2) = 7 [0 + K] Euol2), (243)
- 1 .
E.a(2) = —3 [02 + k2] B..o(z), (2.44)
-~ W -~
qu,l(Z) = r)-c-_zEz’O(z)’ (245)
.- and
- w 2 2] =
Boal(s) =~ (02 + k2] E.o(2). (2.46)

rfgun' includes terms up to third order in r, with the option to use only the linear

terms in 1. This allows investigation of the importance of higher-order terms. Note
that E,o(z) = E,(z,1 = 0), where values of the latter function are given by SUPER-
FISH. Since it has the units of an electric field, I'll drop the tilde from E, ¢(z) in what
{follows.

2.2.8 Non-Linear Field Terms

To see how influential the nonlinear terms might be, note that the importance of the
nonlinear magnetic fields is related to their magnitude relative to the linear terms,
which is characterized by the function

Re

Ti(z) = SE.
P

[33 + kz] E.o(2), (2.47)

where R. is the cathode radius, which gives an upper limit on the radius of any
particle that makes it out of the gun (as will be seen in the next section). Note that
the average radius of particles emitted from a uniformly-emitting circular cathode is

2R./3. If T1(z) is small compared to E,o(z)/Ep2, then nonlinear magnetic fields are
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unimportant. Ti(z) is also related to the importance of the nonlinear longitudinal
electric fields, though 4T;(z) is a more accurate measure.
Similarly, importance of the nonlinear radial electric fields is characterized by the

function
R?

Ta(z) = SE.,
P

[02 + %28, Boo(z). (2.48)

If To(z) is small compared to (—%Ez,o(z), then nonlinear radial electric fields are unim-
portant.

Figure 2.9 compares T;(z) and Ts(z) to the relevant lower-order terms. One sees
that the non-linear magnetic fields are quite small, and one infers that the non-linear
longitudinal electric fields are small as well. The non-linear radial electric fields are
more significant, particularly in the vicinity of the cathode and near the cell noses. Of
these, the fields near the cell noses are less important, since most particles of interest
pass the cell noses well off the RF crest.

Finally, I note that T;(z) is completely dominated by the 8?E, (z) term, while
Ts(z) is completely dominated by the §°E,o(z) term. This is as expected, since the
fields (and their derivatives) are changing rapidly on the scale of 1/k ~ 1.7cm. I shall
return to the issue of non-linear fields, specifically their effect on the beam, in the
next section. For now, I simply point out that if one wants to reduce the effect of non-
linearities, one must reduce 8’E,(z) and 8°E, o(z). In particular, it is important to
avoid non-linear terms in z near the cathode, where the beam is particularly sensitive
(because of its relatively large radial size and its low momentum). This was not
attempted for the SSRL RF gun design.

2.2.9 Boundary Conditions for rfgun

The data shown in Figure 2.9 was assembled from SUPERFISH output for the indi-
vidual cells. SUPERFISH gives values of E, along the axis at equi-spaced intervals
in z. However, these values are calculated with boundary conditions for the individ-
ual cells that do not properly reflect the boundary conditions appropriate to the full
cavity, as discussed above. Hence, the two solutions do not join smoothly at z = A/4.
One is tempted to smooth the solutions in order to eliminate the discontinuities in the

fields and its derivatives at this point, but I have found that this can be done only at
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the expense of smoothing away real, significant derivative information in the rest of
the cavity. Hence, the data in Figure 2.9 as well as that used in RF gun simulations
is simply composed from concatenating the solutions for the individual cells, with
appropriate scaling to get @ = 2.9 and a 7/2-mode configuration.

In order to calculate the non-linear field terms, rfgun takes z derivatives of E, o(z),
up to the fourth derivative (so that the third derivative can be interpolated in between
data points). Each derivative is calculated using the second-order formula[64]

F(z + Az) — F(z — Az)
2Az

0.F(z) = + O(Az?). (2.49)

There is no problem in the interior of the cells, where each point has two neighboring

points with well-defined field values, but problems do arise at the boundaries. In
order to be able to calculate the required derivatives at the beginning and end of the
gun, rfgun needs data outside these intervals.

I have provided this data for the beginning of the gun by applying an idea gleaned
from the above analysis of non-linear fields. Since z=0 is a metallic surface forr < R,
E.(z = 0) = 0 for r < R, and equation (2.38) implies that

(8.E..2:(2)) = 0. (2.50)

2=0,r<R¢ -

Taking the partial of equation (2.41) with respect to z, one then sees that

(afﬁz*zi(z)>z=o,r<m = 0. (2.51)
Taking 82 of (2.41), one then sees that
(3B 20(2)) —0= |- (8 + K26%) Bui(2) (2.52)
222t 28] o cr, (21202 \* )] o B9
and hence that
(8°Eui(2)) _, g = O- (2.53)
Proceeding in this fashion, it is clear that
(3Z2HHEZ*°(Z))Z=OJ<RC =0 n=0,1,...00, (2.54)

and hence that Ez,zi(z) is an even function of z. Therefore, one can easily supply

rfgun with the necessary information by taking E,o(—z) = E, o(2).
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For the end of the gun (z = 3A/4), the boundary conditions are ambiguous, as
I discussed above. Since the field amplitude is small here and the beam is at full
energy by the time it is in this region, what one does in at this boundary is of little
importance. This being so, it is reasonable to simply extend the beam tube beyond the
nominal end of the gun in order to obtain information necessary for taking derivatives
up to the end of the gun. The primary benefit of doing this is aesthetic, and I have
not done the equivalent in MASK, since this would force me to use a coarser mesh in

the part of the gun that is really important.
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2.3 Simulation Results and Predictions

Having outlined the capabilities of the codes and the methodology of their use, I
now present results of my simulations of the SSRL RF gun. In addition to giving
predictions of how the actual gun is expected to perform, I also report on simulations
done to evaluate design alternatives, to check the assumptions of my methods, to
compare the predictions of rfgun and MASK, and to evaluate the importance of
different effects (e.g., space-charge, non-linear fields) on the beam. Experimental

results and comparison of these with simulations will be presented in a Chapter 5.

2.3.1 Effects of the Cell Field Ratio

I will discuss rfgun results first, and in particular the effect of varying @ = Epy/Ep.
I have done a series of rfgun simulations for a range of « values from 1 to 4. For
.each series, I varied Epo in 20 MV/m steps from 40 to 120 MV /m (the latter being

close to the break-down limit in the second cell).

Longitudinal Phase-Space

Figure 2.10 shows longitudinal phase space results for « = 1,2,3, and 4. For each
value of a, a series of curves appears, one for each value of E,,. Each curve represents
the momentum (p = £v) for macro-electrons as a function of the time of exit from
the gun (i.e., the time at which the plane z = 3)/4 is crossed). t = 0 corresponds
to the emission of the first particle from the cathode, which occurs just as the field
enters the accelerating phase in the first cell. For these simulations, I directed rfgun
to emit macro-electrons at 2° phase intervals, the individual macro-electrons being
represented by the points on the graphs. The macro-electrons where emitted from
r=0, and hence no radial motion was involved.

Note that for « = 1, p(t) is non-monotonic over most of the range of E., exhibiting
a distinctly sinusoidal shape for higher values of E,,. This sinusoidal shape results
from the arrival of particles in the second cell ahead of the accelerating crest in
that cell. Obviously, if the first particles arrive ahead of the crest, then those that

follow will arrive nearer to the crest, and thus gain more momentum. (This issue is
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discussed in Chapter 4, as is the need for a monotonic p(t) curve in order to allow
the use magnetic of bunch compression.) As a is increased, p(t) becomes monotonic
for increasingly higher values of E,, and also for increasingly high momentum levels.
For a = 4, p(t) is monotonic for the full range of Ey, > 60MV /m, but for E,, = 40
the fields in the first cell are too weak to deliver any significant beam to the second
cell; hence, few particles exit the gun. For a = 3, which is approximately what was

achieved in the gun as built, p(t) is reasonably monotonic over 60 < Ey, < 100.

- Effective Cathode Area

Figure 2.11 shows the dependence on @ and E;, of several beam properties. Each set
of connected points corresponds to the value of a indicated by the plotting symbol.
The effective cathode area A.g is a measure of how efficiently charge is extracted from
the gun. It is defined by : Q

Ag=2>=—,
S

where Q is the total charge exiting the gun during one RF period (i.e., the total

(2.55)

charge “in the beam”), T, is the RF period, and J is the current density. As one
might expect, the effective cathode area increases as Eyo is increased and as a is
decreased. This is due to the increase in the field in the first cell that accompanies
both of these changes, which results in more rapid acceleration of charge from the
cathode and hence more efficient extraction of beam from the gun. Recall that the
physical area of the cathode is A. = 0.28cm?®. One expects A.g < A, since the RF
field in the first cell is only in the accelerating phase half the time. A further decrease
in A.g results from the fact that not all particles that leave the cathode make it out
of the first cell. Many that do not exit the first cell before the RF goes into the
decelerating phase will not exit the first cell at all, their momentum being insufficient
to overcome the decelerating fields. These particles return to hit the cathode.

Figure 2.11 also shows the normalized beam power and the average momentum

in the beam. As expected, both of these increase with increasing E,, and decreasing

a (i.e., increasing E,;).
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Back-Bombardment Power

Figure 2.12 shows corresponding quantities for the particles that return to hit the
cathode. B.g is the effective back-bombarder area, defined by

Qback
By = —, 2.56
=T (2.56)

where Qpaqc is the charge that returns to hit the cathode during one RF period.
One expects that A.g + Beg will be constant, and this is found to be the case by
comparison with the last figure (slight discrepancies are due to particles that do not
exit the gun or hit the cathode within the total time interval of the simulation).
The Figure also shows the back-bombardment power normalized to the cathode
current density. Paradoxically, there is a strong dependence on E;o, but no clear
trend with a.
It is actually unclear what one should expect to see here, since increasing E, or
"decreasing ais expected to increase the efficiency of charge extraction (as the graphs
of A.g confirm), thus decreasing the number of back-bombarding electrons (as the
graphs of B.g confirm). However, increasing E, or decreasing a is also expected
to increase the momentum of any electrons that do return to hit the cathode. This
expectation is confirmed by Figure 2.12. What one sees is that for constant E;2 and
a > 2, the increase in the amount of back-bombarding charge is compensated by the
decrease in the average kinetic energy carried by each particle. As Ey, is changed, a
different effect comes into play, namely the change in the back-bombardment power
due to highly energetic electrons returning from the second cell. This accounts for the
difference between increasing E,, and decreasing a. The Figure shows the maximum
momentum of any back-bombarding electron as a function of & and Eyp,, confirming

this analysis.

2.3.2 Effects of the RF Frequency

Next, I investigate the effect of changing the RF frequency while keeping the field
profile the same, choosing o = 2.9 for this and all subsequent rfgun studies. Note
that it is sensible to imagine changing the RF frequency while keeping the on-axis

fields the same, since this can be done by means of a tuning device far from the axis,
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as I did for the MASK simulations of the first cell. Figure 2.14 shows the longitudinal
phase-space as a function of the RF frequency, while Figure 2.13 shows other beam
properties as a function of frequency. Higher frequencies are equivalent in some ways
to having a phase-shift of less than 7/2 between the first and second cells, and hence
the macro-electrons are seen to arrive nearer to the RF crest in the second cell.
This is why the longitudinal phase-space exhibits an increasingly sinusoidal shape as
the frequency is increased. For lower frequencies, the macro-electrons arrive further
behind the crest in the second cell; hence, the total momentum gain is less, and
the monotonic p(t) curve is retained. Lower frequencies are equivalent to having a
lower-than-velocity-of-light structure.

For assessing the effect of frequency errors in MASK, it is only the region around
2856 MHz that is of interest. One sees from the Figure that the phase-space curves
for £100MHz around 2856 MHz are not greatly different from those for 2856 MHz.
That is, there is no dramatic effect on the slope or curvature. I find that the change in
the average momentum between 2856 and 2836 MHz is 1.7%, while the change in the
maximum momentum is 1.0%. The change in the total charge is similarly small, being
2.0%. Hence, the errors made in using 2836 as the frequency in MASK are negligible.
Uncertainty in the value of o and in the knowledge of the exact field distribution,
plus the effects of higher-order modes induced by the beam, will contribute errors as

large as those introduced by the frequency errors.

2.3.3 Effects of Non-Linear Field Terms

Next, I look into the effects of field non-linearities. In particular, Figure 2.15 shows the
normalized RMS emittance and normalized transverse brightness for various initial
phase intervals (explained presently), where the normalized transverse brightness is

defined as Q

and the normalized RMS emittance is as given in equation (1.9). Note that B} is
not the same as the normalized brightness, B, defined in equation (1.21). B} differs
in begin normalized to the current density and in having no reference to the bunch

length.
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The units for Q, J, and € used for the graphs are pC, A/cm?, and 7 - m.c - pm,
respectively. Results are shown for calculations that include non-linear RF field terms
(see equations (2.35) through (2.37)), and for calculations that include only linear
terms in E;, By, and E,. In order to make a valid comparison between the linear and
non-linear cases, it is necessary to ensure that one is looking at the emittance of the
same particles in each case. That is, one wants to compare the emittance of particles
emitted over the same range of initial phase. This has been done in the Figures, where
I plot the results for the linear and non-linear cases for particles emitted during the
first A¢ degrees of phase (measured from the beginning of the accelerating phase). As
one would expect, the non-linear fields increase the emittance. Just how this occurs,

and what the significance of the brightness is, will be discussed shortly.

RF Focusing

To better understand the effects of non-linear fields and time-dependent focussing
forces, it is useful to look at a pair of rfgun runs in more detail. In pafticular, I ran

rfgun at Epp = 75MV/m with the initial particle distribution given by

Xy = i-6r, i=0...N, (2.58)
yig = 0 (2.59)
G = j-66, j=0...Ng, (2.60)

where ér = R./(N,; — 1) and where ¢;; is the phase of emission from the cathode,
¢ = 0 being the beginning of the accelerating phase in the first cell. Taking such
an initial distribution allows one to see with particular clarity what the effects of
the initial coordinates are on the final coordinates. Figure 2.16 shows the resultant
transverse phase-space for linear and non-linear fields, with N, = 6, N, = 1441, and
b¢ = 0.125°. While at first glance the non-linear fields would appear to decrease the
emittance, this is not so. For the linear case, macro-electrons leaving the cathode at
the same phase lie along a line in x-x’ space. Hence, the emittance for such a group
of macro-electrons is zero, since (x'x)? = (x"?)(x2?). For the non-linear case, macro-
electrons leaving the cathode at the same phase do not lie along a line in x-x' space.
This increases the emittance by decreasing (x'x). This will be seen more clearly in

other data, below.
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This Figure also illustrates the effects of “RF focusing” on the emittance. The
first macro-electrons emitted from the cathode are those on the right side of the
figure (x > 0,x’ < 0). Subsequent particles are focused differently by the time-varying
(and hence initial-phase-dependent) E, and By fields. As a result, the RF sweeps
the particles in a clockwise sense in the Figure. This is all consistent with Figure
2.15 where one sees that the emittance increases as a larger initial phase interval
is considered, and that, for the linear case, the emittance falls increasingly rapidly
as A¢ is decreased, whereas for the non-linear case, the emittance seems to reach
a lower limit as A¢ is decreased. The brightness clearly saturates in the non-linear
case, whereas it does not do so in the linear case. From Figure 2.16 it is also clear
that curvature of the x—x’ path traced by particles starting at the same radius is a

result of the sinusoidal nature of the RF fields, rather than non-linearities in r.

Longitudinal Phase-Space

Figure 2.17 shows the lohgitudinal phase-space for the non-linear and linear cases.
The non-linear fields produce a broadening of the momentum peak and of the time
distribution as well, since particles starting at different radii experience different ac-
celerating fields. In the linear case, all particles starting at the same phase receive,
to first order, the same momentum and take the same time to exit the cavity. I infer
from the sharpness of the momentum and time peaks for the linear case that any de-
viations in momentum gain or time-of-flight that result from longer path-lengths due
to transverse motion are small. The momentum and exit-time distributions predicted
by MASK are considerably broader than those predicted by rfgun, even with non-

linearities included in rfgun. The reasons for this will be seen later in this chapter.

Transverse Phase-Space Evolution

It is instructive to look at the evolution of the transverse phase-space as the beam
travels through the gun. To do this, I have run rfgun with an initial particle distribu-
tion defined by equations (2.59) through (2.60), with N, = 41, Ny = 19, and é¢ = 10°.
Figure 2.18 shows the resultant transverse phase-space at a series of z positions in

first cell. The lines connect particles emitted at the same phase but different cathode
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radii. (All of the graphs have fewer than N, lines, because particles emitted with
¢ increasingly near to 180° traveling increasing short distances in the first cell, and
hence do not reach the z-planes of these phase-space plots.)

Even from the first of these plots one can see both non-linear and RF focusing
effects, the later causing the fanning out of the lines, while both contribute to the
curvature (I shall show below why this last point is true). As the bunch proceeds, one
sees that curvature is more severe for the particles emitted at later phases, a result
primarily of the large phase-spread these particles end up with. One also sees that the
RF focusing is not simply fanning out the beam according to initial phase, but is also
“mixing” the beam in transverse phase-space. This is simply a result of the sinusoidal
variation of the focusing forces (i.e., if the variation in time were monotonic, there
would be no mixing). The number of lines is seen to decrease with successive graphs,
due to the slowing down and back-accelerating of the later parts of the beam.

The evolution of the beam in the second cell is shown in Figure 2.19. One sees that
here is a dramatic increase in the curvature of the lines, i.e., the effect of non-linear
fields, that occurs in this cell. While would appear that this change is a result of
fields in the center of the second cell, this is an incorrect conclusion. What happens
is that as the beam continues to converge, the effect of non-linearities from the first
cell and the beginning of the second cell becomes much more evident. As one sees

from Figure 2.9, the non-linear fields in the center of the second cell are very small.

Relative Importance of Different Non-Linear Field Components

I stated earlier that the curvature of the lines is due only partly to non-linearities, and
partly to the time-variation of the fields. The reason is that the non-linear E, terms
cause particles starting at the same phase but at different radii to be accelerated at
different rates, and thus to go through the gun at different phases relative to the RF.
rfgun allows one to selectively “turn off” the non-linear E,, E;, and/or By fields. By
turning off the non-linear E, terms in RF gun, I have verified that this is significant
effect.

Figure 2.20 shows the effect of turning off each of E;, E,, and By in turn. Each
graph has both the results for all non-linear fields (in the lighter pen) along with the

results with one non-linear field eliminated. Non-linear E, terms have a dominant
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effect on later particles, while E; is the dominant source of curvature for the particles
emitted closer to ¢ = 0. This is plausible, since the velocity spread for the later
particles (which have lower momenta) will be larger, since they are less relativistic.
The effect of nonlinear By terms is seen to be insignificant (the differences caused
by removing non-linear By terms cannot be seen on the graph, though there are
differences). This is also plausible, since By is 90° out of phase with the accelerating
field (i.e., E; ), while the particles themselves are largely in phase with the accelerating
field; in addition, one sees from Figure 2.9 that the non-linear By terms are smaller
compared to the linear B, terms than are the non-linear E, terms compared to the

linear E, terms.

2.3.4 Effects of Parameter Errors in MASK Runs

Next, I look at the effect of using o =3 and { = 2836MHz in MASK. I use rfgun
'to do this e~valuation, since it is faster (and since I don’t have simulation cells
tuned for 2836 MHz for use in MASK). In particular, Figure 2.21 shows phase-space
plots for z = A/4 and z = 3)\/4 for a = 3.0 and { = 2856 MHz, and for @ = 3.0 and
{f = 2836MHz, compared to the results for a = 2.9 and f = 2856 MHz. One sees that
while there are effects, they are confined to the particles that come later in the
beam-—i.e., the highest momentum particles seem least effected. The principle effect
is a rotation in phase-space. The curvature of the lines is not noticeably changed.
Figure 2.22 shows the normalized emittance and normalized brightness for a = 3
and { = 2836MHz, along with those for @ = 2.9 and f = 2856 MHz. The emittance is
somewhat smaller, and the brightness correspondingly larger, for the former than for
the later. Thus, one expects that the MASK simulations will under-estimate the emit-
tance by perhaps as much as 15% (though generally less) in the range Eyy > 60MV /m,
with the error decreasing as E,, increases, and decreasing as a smaller initial phase
interval is taken. This difference is overwhelmingly a result of the difference in a,
‘rather than the difference in frequency. This indicates that the difference is due to
the more-rapid acceleration for a = 3 than for a = 2.9, which reduces the effect of

non-linear E; fields by increasing the momentum of the particles.
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2.3.5 rfgun Predictions versus Momentum Spread

In the foregoing, I have looked at properties of subsets of the beam based on initial
phase. This is useful, but in reality one cannot choose such subsets directly. However,
since there is a high degree of correlation between initial phase, ¢, and final momen-
tum, one can to a large extent filter for initial phase by momentum filtration. In the
above, I have chosen to work in terms of ¢ directly, because it makes the analysis
more straight-forward. Because the non-linearities affect the momentum distribution
as well as the transverse coordinates, the final momentum interval corresponding to
a given A¢ for the linear case is different from the final momentum interval corres-
ponding to the same A¢ for the non-linear case. Hence, if the above analysis were
done with momentum filtration, the difference between the linear and non-linear cases
would have been blurred.
Because MASK does not provide the initial phase of particles, it is not impossible
'to do the an;ﬂysis based on initial phase for MASK results. Hence, for the MASK
results given below, I employ momentum filtration. For comparison, I do the same
for the non-linear case in rfgun. Figure 2.23 shows the normalized RMS emittance,
normalized transverse brightness, and normalized charge per bunch, for fractional
momentum intervals defined by
%pmax < P < Prmaxs (2.61)
where Pmax 18 the maximum momentum in the beam and =+f is the fractional momen-
tum range about Pmax/(1 + ). The central momentum for the interval is pmax /(1 + 1),
and is not the same as the average momentum of the particles in the momentum in-
terval. For typical gun operating parameters of Ey,s = 75MV/m and J = 10A/cm?,
rfgun predicts a normalized RMS emittance of less than about 4 7 - m.c-um and
useful charge of as much as 100 pC, for momentum spread of less than +£10%. Other
relevant data for comparison of rfgun results with MASK can be gleaned from the
data for @ = 3 presented in Figures 2.11 and 2.12.
The brightness is useful in comparing rfgun and MASK results. The merit of this
quantity is that it is related to the density of particles in phase-space, rather than
simply the area. It should thus be less insensitive than the emittance to momentum

filtration “errors” (i.e., the inclusion of different subsets of the beam in the same
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momentum fraction f). Of course, the emittance numbers are important as well, and
having them as a function of the momentum interval is also important, since in reality
one is constrained by the momentum acceptance the beamline after the gun, and since
chromatic effects in this beamline will worsen with larger momentum intervals. (This

is discussed in Chapter 5.)

2.3.6 MASK Beam Snapshots

rfgun is able to simulate the gun with non-linear fields and with accurate longitudinal
and transverse dynamics. However, it does not include any of the effects of space-
charge. To look into these effects, I next discuss the results of MASK simulations.
I have discussed my methodology in using MASK in the previous section. Here, I
concentrate on what MASK predicts and on tests of the validity of my methodology.

Figures 2.24 and 2.25 show a series of beam snap-shots taken at various RF phases
‘during the RF gun cycle, where a phase of 0° marks the beginning of the accelerating
phase in the first cell. These were made for the nominal operating parameters of
Epe = 75MV/m and J = 10A/cm®. The graphs in Figure 2.24 have a vertical to
horizontal aspect ratio of 1, while those in Figure 2.25 have an aspect ratio of 3. The
dots represent individual macro-electrons, while the solid line is the actual cavity
shape (which differs slightly from the mesh approximation used in the simulation, as
seen in Figures 2.5 and 2.6). (In some cases, dots appear inside the “metal” of the
cavity walls or outside the simulation boundary; this is because MASK dumps the
particle coordinates before checking for particles that have been lost.)

The beam in these graphs appears to be hollow in part because each macro-
electron represents a ring of charge and because each ring represents the same amount
of charge, so that more macro-electrons are needed at larger radii in order to achieve
the same current density. The desired current density is a constant, J. Hence, the
number of particles inside a radius R is 7R2J, and the number within an annulus of
width AR about radius R is 2rRARJ. Hence, the number of macro-electrons within
an interval AR about R increases linearly with R. Another reason for the hollow
appearance is that non-linear focusing terms that cause an increase in the radial

field magnitude with increasing r, tend to produce an increasing particle density with
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increasing r (see Sections 2.3.11 and 2.3.12).

Notice that the lead particles in the beam have not moved more than about 6mm
after the first 90° of the cycle, while after another 90° of the cycle, the lead particles
are about to exit the first cell, having traveled more than 25mm. This testifies to
the rapid increase in velocity that accompanies the particles’ trip across the first cell.
Indeed, for E,» = 75MV/m, the lead particles have 8 ~ 0.8 upon exiting the first cell.
Note that the beam travels most of the length of the second cell in 180°, even though
the second cell is twice the length of the first. After 270° of the cycle have passed,
the RF in the first cell is at the decelerating crest. One sees that there are still many
particles in the first cell. These particles are in fact being accelerated back into the
cathode.

The relatively slow initial motion of the particles also underlines the importance
of the cathode region in determining beam properties, since particles spend a dispro-
portionate amount of time in the region of the cathode. It is this initially slow motion
in a region with large non-linear fields that, for example, leads to the large effect of
the non-linear terms in E, on the momentum spread. As the beam travels through
the first 5mm of the first cell, the front edge of the beam takes on a cupped shape,
due to the non-uniformity of the longitudinal field across the cathode.

The Figures clearly show the effect of the focusing noses in producing a converging
beam: the beam radius has decreased by a factor of about 2 by the time the beam exits
the first cell. If the focusing noses were not in place around the cathode, the beam
would fill the aperture of the beam tube. With the focusing noses, the beam converges
and passes easily through the beam tube, even for very high current densities. The
transverse beam size continues to decrease as the beam travels through the second
cell, partially due to additional focusing forces encountered in passing the first cavity
nose in the second cell. These are visible in Figure 2.25 by virtue of the “kink” they

produce in the radial beam envelope, as seen in the graph for 270°.

2.3.7 Calculating Emittance from Cylindrical Coordinates

Since MASK (unlike rfgun) works in cylindrical coordinates, the dynamics of macro-

electrons is calculated in terms of radial, azimuthal, and longitudinal momenta. Since
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I do not impose any external magnetic fields (e.g., a solenoidal field along the axis), the
azimuthal momenta are identically zero. Hence, the relevant phase-space coordinates
of any macro-electron are (z,r,p,,p:). Macro-electrons that pass through the origin
still have positive r coordinates, but have p, reversed in sign. To see how to obtain

the emittance, note that the x and y coordinates are related to r by
x =r1cosfy and y = rsinf;, (2.62)

where the subscript s stands for the spatial coordinates. Similarly, the x and y

momenta are related to p; by
Px = Prcosf, and py = p,sindy, (2.63)

where the subscript p stands for the momentum. Because there is no beam rotation,
however, one must take 6, = #,. The normalized emittance in the x plane is given by

‘equation (1.9), which implies

ax = ey (12c0526) (p2c0s6) — (p,1cos?d)?. (2.64)

Averaging over 6, one sees that

eax = /(%) (pF) = (pir)2. (2.65)

Clearly, €nx = €ny.

2.3.8 Tests of the Independent Bunch Assumption

I mentioned above that the MASK simulations are done with the implicit assumption
that each bunch is independent. To test this assumption, I simulated the first cell
for five cycles with beam (in addition to the cycles necessary to excite the cell). It
was not possible to simulate both cells, since the frequency mismatch between the
two cells in the simulation would have made the phase between the cells drift, thus
obscuring the effect. In any case, one expects that the predominant effect will come
in the first cell, where the energy of the beam is lowest and where more charge is
present during more of the RF cycle. In order to bring out any effect, I deliberately

chose a very high current density of 80A/cm?, though 10-20 A/cm? is the range used
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in actual operation of the gun at SSRL. In Figure 2.26, I show histograms of exit-
time (relative to the first particle in the bunch) and momentum for the five bunches,
offset for clarity, with later bunches being offset by a larger, positive amount. No
dramatic changes are evident, though the momentum peak is clearly occurring at
smaller momenta for later bunches. This is a result of the extraction of energy from
the cavity by previous bunches.

Figure 2.27 shows additional data. Here, I am compare the normalized average
momentum, (87) /(587 )max, and the normalized emittance for successive bunches, for
various fractions of the total charge in the first bunch, starting with the most ener-
getic particles in each bunch. This is less ambiguous than using momentum-spread
intervals, since in the present case the average momentum and the momentum dis-
tribution are changing. This is roughly equivalent to choosing the same initial phase
interval (ignoring longitudinal mixing caused by non-linear E, terms.)

One sees that the effect on the normalized emittance is not dramatic, producing
a spread of about 0.5 7 -m.c-gm and no clear trend toward an increase for less
than 60% of the charge in the beam. There is an trend in the normalized average
momentum, but the regularity of the trend suggests that it is simply a result of the
natural change in the momentum distribution as a function of field level in the cell. If
the effect were due to high-order modes, one would expect it to display less regularity.
Without proving this, I believe the data presented confirm the reasonableness of
using MASK in the single-bunch, assumed-steady-state mode, especially for current

densities significantly less than 80 A/cm?.

2.3.9 Transverse Beam Evolution

In order to better understand the bunch evolution within the gun, I have done MASK
runs with “emittance windows” at various locations inside the gun. These windows
are user-defined planes of constant z, such that whenever a macro-electron passes one
of the planes while traveling in a specified direction (i.e., toward positive z or negative
z), MASK dumps the macro-electron’s phase-space coordinates (i.e., radius, time, and
radial and longitudinal momentum). Because MASK checks the z coordinate of each

macro-electron against the z coordinate of each window at every time step, using
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too many windows is expensive in terms of CPU time. Hence, I placed only four
windows in the first cell and four in the second. In the first cell, one window was
in front of the cathode, to keep track of back-bombarding macro-electrons. The
other three were equispaced by Az = )\/12, being placed at z = A/12,/6, and A/4.
The last of these was used to record macro-electron coordinates for re-injection into
second-cell simulations. In the second cell, the windows were similarly placed. One
window was at z = A/4, in order to keep track of macro-electrons that get back-
accelerated into the first cell. The others equispaced by Az = /6, being placed at
z=MX4+X/6,1/4+ X/3,and 3A/4. The last window was used to record the macro-
electron coordinates at the exit of the gun.

Figure 2.28 shows the MASK-calculated transverse phase-space distributions in
the first cell from a simulation with J = 1073A/cm? (i.e., essentially turning off the
space-charge) and Eps = 75MV/m. Comparison with Figure 2.18 shows that the
'MASK results are qualitatively similar to the rfgun results, but quantitatively dif-

ferent.

2.3.10 Accuracy of MASK Field Calculations

These differences are a result of differences in the fields calculated by rfgun and
MASK. Recall that rfgun uses an off-axis expansion, starting from SUPERFISH-
calculated values of E,(z,r = 0.

Figure 2.29 shows derivatives of MASK- and SUPERFISH-calculated fields for the
mesh spacings given earlier in this chapter (i.e., Az = 0.43mm and Ar = 0.25mm).
SUPERFISH predicts somewhat smaller 8?E,(z,r = 0) and 82E,(z,r = 0) near the
cathode and in the vicinity of the cell noses.

Figure 2.30 compares the longitudinal fields calculated by MASK to those calcu-
lated by URMEL[65], showing that E,(z,r) has a increasingly large apparently linear
term in z as r increases toward R.. Thus, the fields calculated by MASK do not
exactly satisfy (2.54). (This comparison could not be done between MASK and SU-
PERFISH, because SUPERFISH uses an adaptive, and hence irregular, triangular
mesh, which makes it difficult to obtain the off-axis fields. The URMEL fields could

not be used in rfgun because they are too noisy to permit accurate higher-order
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numerical differentiation.) If the longitudinal mesh-spacing is decreased in MASK,
the MASK and URMEL results come into much better agreement, but the predicted
particle motion is not greatly changed. Hence, another explanation must be sought

for the differences between MASK and rfgun predictions.

2.3.11 Adequacy of Off-Axis Expansion

The real source of the discrepancies between MASK and rfgun is the inadequacy of
~ the off-axis expansion used in rfgun, which for E, is only third order in r. Figure 2.31
shows four different calculations of E.(z) at r = 2.87mm, which is close to the cathode
radius (3mm). An explicit MASK result was obtained by running MASK with a finer
mesh (Az = 0.215mm and Ar = 0.164mm) and sampling E,(z) at r=2.87mm directly;
MASK predicts larger a E, than any of the other calculations. The other three curves
are various calculations of E.(z) at the same radius using off-axis expansions. Two
‘third-order calculations are shown, one starting with SUPERFISH-calculated on-axis
longitudinal fields, E,o(z), the other starting with the same result from MASK. The
other expansion is a fifth-order expansion starting with the SUPERFISH-calculated
E,o(z) (the MASK data was too noisy to allow a fifth-order expansion, as the noisiness
of the third-order expansion shows). Clearly, the fifth-order expansion is the closest
to the explicit MASK result. Hence, the conclusion is that MASK is making more
accurate predictions of the effect of non-linear fields than rfgun is making.

In order to test this diagnosis, I used the E,(z,r = 0) profile from MASK in rfgun,
and repeated some of the analysis done above. Figure 2.32 shows the normalized RMS
emittance and the normalized brightness for the two cases. A significant, though hard-
ly dramatic, change in the predicted emittance is obtained when using the MASK-
calculated on-axis field profile. For larger initial-phase intervals, the predicted emit-
tance is smaller, while for smaller initial-phase intervals, it is larger. The brightness
follows the opposite pattern, as expected.

Figure 2.33 shows a comparison of MASK results for J — 0 with rfgun result-
s obtained using the MASK-calculated E,(z,r = 0). One sees that MASK predicts

larger emittances than rfgun, though not dramatically larger. The reason for this
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discrepancy is that, even using the MASK-calculated on-axis field profile, rfgun can-
not duplicate the fields used in MASK, since the expansion used in rfgun is not of
sufficiently high order.

Next, I show in Figure 2.34 a comparison of the momentum and time distribu-
tions for MASK and rfgun with Eys = 75MV/m and J — 0 in MASK, where the
MASK-calculated fields are again used in rfgun. As one would expect, rfgun pre-
dicts narrower spectra because of the larger non-linear fields in MASK. I have also
found that MASK consistently predicts about 3% greater maximum momentum than
is predicted by rfgun for the same value of Eys (with a =3 and f = 2836MHz in
rfgun in order to match MASK). (Because of this discrepancy, I ran rfgun with
Ep2 = 77.1MV/m in order to match the peak momentum to that of rfgun for com-
parison of the time and momentum spectra in Figure 2.34.) One possible explanation
for this is that the phasing of the first and second cell is imperfect. Because of the
frequency mismatch between the two cells (discussed in the previous section), the
.c-:ells drift out of frequency by about 0.5° during one RF period. This would seem to
be too small to have the observed effect, however. :

Another confirmation of the effect of the larger non-linear fields in MASK is
obtained by running MASK with a smaller cathode. While I will not take the space
to show these results, I have found that running MASK with R. — R./2 produces
a noticeably smaller momentum and time spread in the final beam. Quantitative

results can be found in Chapter 4.

2.3.12 Space-Charge Effects

Transverse Phase-Space

I turn now to the effects of space-charge as predicted by MASK. Figure 2.35 shows
the evolution of the transverse phase-space in the first cell for E;» = 75MV/m and
J = 80A/cm?. These are to be compared to those shown in Figure 2.28 for J — 0.
The effect of the space-charge forces for this high current density are clearly evident.
From these two figures, it is apparent that the space-charge forces tend to counter the
cavity fields, since the slopes are significantly more positive for J = 80A/cm?. This is

as expected, since the space-charge forces are radially defocusing. One effect of this
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defocusing is a significantly larger beam size at the exit of the first cell, as well as a
larger spread in slopes.

It would appear from the Figure that the space-charge forces not only counter the
linear focusing forces, but also compensate for non-linear fields as well. For this to
be the case, one would require that at some point the radial distribution of charge be
non-uniform and that the charge density increase with radius. To see why, consider
that for a longitudinally uniform, cylindrically symmetric beam the radial electric
field is given by Gauss’s law[31]:

Ertean(t) = — [ p(0)F di (2.66)

€T Jo
where p(r) is the charge density per unit cross-sectional area. For a uniform radial
distribution, p(r) = p, out to to some radius Ry (the edge of the beam), after which

it falls to zero. Hence, for this case,

Ip
Er,beam(r) = ()CO’

~to

r <Ry (2.67)

which is simply an additional linear field term.

Next, consider what happens if p(r) = po(1 + nr®) for r < Ry, where n is an integer:

Erbeam(r) = gp° (1 + 277nr+ 1) r<Ry (2.68)

As I discussed in the previous section, E; pcem must be an odd function of r, and

hence n must be even. In order for the space-charge forces to increase at a greater-
than-linear rate with radius, 7 must clearly be positive, which implies that the beam
must be somewhat more hollow than a radially uniform beam.
Figure 2.36 shows histograms of the intensity vs radius for z = A/12 for the cases
J — 0 and J = 80A/cm?. Each bin in the histograms represents an annulus, with
the height of the histogram being proportional to the charge in that annulus. For a
uniform distribution, one would expect a linear function of r, since for this distribution
the height of the bin that starts at r = nAr is
| ' (n+1)Ar
H, = 27p, /nm p(2)F df = 7poAr¥(2n + 1). (2.69)
For J — 0, one sees that H, increases faster than linearly. This is due to the non-

linear increase in focusing fields with radius, and might have been anticipated from
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Figure 2.28. For J = 80, the distribution is clearly much more uniform. The non-
linear cavity fields and space-charge forces in this case tend to balance each other,
since the non-uniform distribution that the non-linear cavity fields try to create is
just the kind of distribution that is necessary to counter these self-same non-linear
cavity fields. One expects the radial beam distribution to have just enough radial
non-uniformity to compensate the non-linear cavity fields.

It is not at all apparent from these Figures what the net effect on the emittance
is. The beam is larger over-all for the case with high space-charge, but the correla-
tion would also seem to be higher. I will show below that the emittance is in fact

substantially larger for the high space-charge case.

Longitudinal Phase-Space

I next look at the effects of space-charge on the longitudinal phase-space. Figure
2.37 shows the effect of space-charge on the longitudinal phase-space at the gun exit.
The longitudinal space-charge forces are seen to broaden the momentum and time
distributions, much as the non-linear forces do. This is to be expected, since particles
at the head of the beam are accelerated by the particles that follow, while trailing
particles are decelerated. This broadens the momentum spectrum because it amplifies
the existing distribution, namely that leading particles have more momentum than
trailing particles. It broadens the time distribution simply because momentum is
monotonically related to time-of-flight in the gun. Further broadening occurs because
the time-varying nature of the cavity fields results in additional acceleration of those
particles that are pushed ahead, and less acceleration of those that are pushed back.

In order to get a more detailed look at the phase-space distributions for the two
cases, I have compressed the longitudinal phase-space using a ideal alpha-magnet
and drift space system, as described in Chapter 3. The results are shown in Figure
2.38. Several effects are apparent in this Figure. First, the highest-momentum part
of the beam is more energetic for the high space-charge case, due to acceleration
by the fields of trailing particles that occurs in the gun; as a result, the “top” of
the beam falls further behind the centroid during compression, because the delay
in the alpha-magnet increases with increasing momentum. Second, the time-spread

for a given small momentum slice is significantly broadened; this is a result of the
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longitudinal space-charge forces being a non-linear function of radius, which produces
longitudinal mixing. Third, there is a clear oscillation in the p(t) curve, especially
evident near the top of the beam; this is apparently a plasma oscillation, resulting
from the longitudinal space-charge forces. Finally, one sees that the space-charge
forces broaden the beam significantly relative to the broadening by non-linear fields

(without which the phase-space distribution for J — 0 would be a line).

2.3.13 MASK Predictions of Gun Performance

Figures 2.39 through 2.41 show results for the emittance, brightness, and charge as
calculated by MASK, as a function of current density and peak on-axis electric field,
for various final momentum fractions. The smaller range of E;, in these results (as
compared to those for rfgun) is a result of my concentrating computer resources on
the range that is of most interest for actual running at SSRL. One sees that the
‘normalized charge per bunch decreases as current density increases, a result of the
longitudinal forces in the beam, which may be thought of as decreasing the current
density by forcing the electrons apart. As one might expect, this effect lessens as the
cavity fields are increased, since this decreases the strength of the particle-induced
fields relative to the cavity fields and results in faster acceleration, thus decreasing
the effect of the particle-induced fields further.

The trends in emittance and brightness hold some surprises. In particular, the
emittance does not always increase when the current density is increased: for small
momentum intervals, the opposite occurs. There are two effects that may explain this.
First, as was seen above, the particle-induced fields tend to counter the non-linear
cavity fields, which would in turn tend to limit emittance growth due to those non-
linear fields. Second, space-charge related changes in the longitudinal phase-space
result in there being a larger phase-interval represented in a given final momentum
~fraction for small current density than for a large current density. As was seen above,
‘emittance depends strongly on the initial phase-interval one considers. Hence, it
should not be surprising that when one takes a very small final momentum fraction,
this effect becomes apparent, since for small final momentum fractions the initial

phase-interval is smaller, whereas the effects of longitudinal space charge are great
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(since the charge distribution is so strongly peaked).

Note that the brightness shown here, as throughout this section, is normalized
to the current density. Hence, Figure 2.41 does not show the actual brightness de-
creasing with increasing current density. Figure 2.42 shows the transverse brightness,
B; = B}J, without normalization to the current density. One sees that the transverse
brightness increases rapidly with current density at first, then saturates as space-
charge effects on the emittance overcome the increasing charge per bunch.

Finally, to provide a more complete picture, Figures 2.43 through 2.45 show trans-
verse phase-space distributions for E;» = 75MV/m and AP/P = 10%, for a range of
current densities. As noted previously, the distributions for higher current density
show less curvature due to the balancing of non-linear cavity fields by space charge.
Printed on the graphs are the RMS beam-sizes and beam-divergences. One sees that
the beam is predicted to be quite small at the gun exit, but that the RMS divergence
is rather large.

Additional performance data will be presented in Chapter 4, where I include the
effects of the gun-to-linac transport line, and in particular the effects of the alpha-
magnet. In addition, Chapter 4 gives comparative data for other RF gun and DC

gun systems.



CHAPTER 2. GUN DESIGN AND SIMULATIONS
AT ol arrrrT 11 arrerv i LA TITTTT T T Frr e b RILERRE
2 e
£l £ g &) & 5
= || = ':' S| = "
o &
-2 (| 83 o 12 || 8 & {2
o= =
- @ 4 -s F < 4 -s
_ - L  — o
= Tl =
e o
[~ (¥ -]
- - F 4:
I it 11 Wt 2 Attt d 1 1 iy 4 it Uil g
- p— — ——
2 = S = = Z
— —
T YT T 1 Ty T 1 LA RN TTTT 1T T 1 e 1T Tt
= "T -% o -%
' e
3 &= v e
~ ~ [
S || = -+
wD> (Ve ]
L || 83 18 t 18
(=
=
2Rt 12 t 1=
- £ -~ L -2
E N N
(V)
- w
S r -“-O
1 [N (1IN | IR [T (TN R (IR R [ T R W
= S p 2 = L
ap— p— p— L

'l_og B zpC/(ﬂ MC MM )2)

Figure 2.42: MASK Results for Transverse Brightness

J (Mem?)

J (Aemd)



129

CHAPTER 2. GUN DESIGN AND SIMULATIONS

?_é X

gL 01 60 00 G0- e.__: Gl-

T ] T | ] 1 onl

R : 10z-

- a o—l

i 10

i . 101
u W e = 2

i \ £l i 0
udfy 0l =

1 N i 1 1 1 L lw On

GL 01 G0 00 &0- c._T m.w.

- T T T T oml

B 10¢-

ﬁ . opl

~ 10

i . 100
uowu ¥)7 =2

i A {0z
AN 08 = _._ . | .

¢l 01 G0 00 6G0- 01- ¢GI-
T S PP
R 10z-
: 101-
i 10
- 101
| w ww 7 {a
My Ol = g
51 oS-
05~
i 10z-
: 101-
- 10
l woww ugy = >
1 : 10
] N_S\<_o_¢ = __. | _ _

)

7

-Space Distribution, for E,y =

Figure 2.43: MASK Results for Transverse Phase

MV/m and AP/P = 10%—Part 1



CHAPTER 2. GUN DESIGN AND SIMULATIONS

T T T T T
~ o
E E
=
Wor)
= 3 :
s <«
ﬁ b“ p
| i 1 ] 1
o~ -— — I~~3 (~=7
1 1 | I I
~ -5
E E
<
<
: = 4
b— =
—-: °" -
| i — i i

DENSITY (1/mm)

1.5

1.0

-15 -10 05 00 05

1.3

-05 00 05 10

-10

-1.3

DENSITY (1/mm)

- T T T =1
L =
& E
>
L = 8
Nc
non
L - o~
o
1 1 1 § |
(=) u < ey o
o~ — —— [ (=]
T T T T T
S e
E E
}oo
L b
= B
m I
»<
. — (=)
i 1 1 ! ]
o~d — - o =

1.5

1.0

-10 =05 00 03

-1.5

1.9

-05 00 05 10

-10

-13

130

x (mm)

x (mm)

Figure 2.44: MASK Results for Transverse Phase-Space Distribution, for E,, = 75

MV/m and AP/P = 10%—Part 2



CHAPTER 2. GUN DESIGN AND SIMULATIONS

T T T T
= o~ (- %
g e
S— ——
| = o~ 4
[
o H
__’l‘
H =
L — -
- -
L -
N -
| 1 A L
[T -t o~
(— o (=1 (—)
T T T T
- o~ -1
=
<
-~
T = 7
~r
il
L -

002

=

. =
e~ -9

DENSITY (1/mm)

0.06]

[
N

20 -10 0 10 20

-30

-0 -0 0 10 2 X

-3

T T =T T
(] [
= (=
{
—
- c;
K
- »e
o~
-
1 ] ] ]
7= -t =
[ e ] = o ==
T T T T
o~ —
= 1=
{ o>
- 05.
[ ]
-— 1]
-~
N~
—
4 ] 1 ]
w -~ [ |
[ =) [ = [ =3 (-3

DENSITY (1/mr)

-20 -0 0 10 20 30
X (mr)

-30

=20 -10 0 10 2 X
X (mr)

-30

131

Figure 2.45: MASK Results for Transverse Phase-Space Distribution, for E,, = 75

- MV/m and AP/P = 10%—Part 3



	slac-r-402-Frontmatter.pdf
	slac-r-402-ch1.pdf
	slac-r-402-ch2.pdf
	slac-r-402-ch3.pdf
	slac-r-402-ch4.pdf
	slac-r-402-ch5.pdf
	slac-r-402-zbackmatter.pdf
	slac-r-402-zerrata.pdf



