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7. Theoretical Models for 77 --+ 7r+7rT- 

In principle, the process 77 --+ ?r+7rlr- should be described by QED coupling of 

the photons to quarks, with the interactions of the quarks and gluons within the 

mesons calculated from quantum chromodynamics (QCD). In practice, however, 

such calculations may only be carried out in the  perturbative regime of QCD. 

If the pion-pair invariant mass is large enough, and  the pions are produced at 

large angles with respect to  the incoming photons,  then the amplitude factors 

into two parts?O The first consists of a parton  distribution  amplitude 4(z;, Q) 

for each pion-the probability amplitude for finding valence quarks in the pion, 

each carrying a fraction xi of the pion’s momentum,  integrated over transverse 

momenta  up to kli M Q, where Q is the  momentum  transferred in the process. 

The second  is a hard-scattering  amplitude T for scattering the clusters of collinear 

valence partons from each  pion. Thus  the amplitude is 

where Qz M min(z, 1 - s)@I sin BI and AA’ are  the photon helicities. 
N 

Brodsky and Lepagel have carried out  this calculation with leading-order 

QCD. The  parton  distribution functions are determined by relating  them  to  the 

known pion form factor F,(s), and  the  hard  scattering  amplitudes  are calculated 

from the diagrams shown in Fig. 7.1. There remains some unknown z dependence 

of +(z, Q) for which assumptions must be made. However, the result is almost 

completely independent of those assumptions and takes the form 

where F,(s) M 0.4 GeV2/s,  and s and  t  are  the usual Mandelstam  invariants.t 
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Figure 7.1. Leading-order QCD diagrams  contributing to  the process 
77 + T+T-. The amplitudes are calculated with the quarks collinear 
with the incoming and outgoing pions 

Equation 7.2 is a  beautiful  and simple parameter-free prediction, but  it is 

valid only when s-channel resonance effects can  be neglected. .We have seen 

that  the energy range accessible to DELCO is in fact  dominated by resonance 

effects. Furthermore, that energy range  probably is too low to give momentum 

transfers large enough to place the process in a regime where QCD perturbation 

theory becomes valid. Unfortunately, it is not possible to extend the DELCO 

measurement to higher energies, because there is no way to  separate pions from 

muons. As seen in Eqn. 7.2, the pion-pair cross section at high energies falls like 

1/s2 relative to  the muon-pair cross section. Therefore, the background quickly 

dominates the signal to such  an  extent that  there is no possibility of subtracting  it. 

It is clear that a more phenomenological model must  be used to  study  the 

low energy pion-pair spectrum.  The physical picture of single-hadron exchange 
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and  formation  has been useful  in some low-energy phenomenology and may be 

expected to work  well  for this case. One expects a large contribution  from single- 

pion exchange in the t-channel, 77r* + 77r*, which may be used to describe 

the low-energy continuum  production,  and the s-channel resonance effects can  be 

modeled according to a relativistic Breit-Wigner shape. Such a model has been 

used by a  number of experiments?' and  it  has been found to give a good description 

of the  data when interference between the single-pion exchange and  the resonance 

production is included. We will see that such a model also gives a good description 

of the DELCO data.  But first it is important  to consider the motivations for the 

model, its  theoretical problems and  limitations,  and also some possible extensions. 

7 . 1  DESCRIPTION OF THE INCOMING TWO-PHOTON STATE 

It is necessary first to describe the initial two-photon state in such  a way that 

the conservation laws  for angular  momentum  and parity  are easily incorporated 

into  the  matrix elements. The formulas used for partial wave expansions can  be 

found in the textbook of J. Werlet2 and  the phase  and  normalization conventions 

used here  are the same as his.  Let R(a,P,r) represent the  operator  to produce  a 

rotation  through  the  three Euler angles about, respectively, the z axis, the y axis, 

and  the new z axis, and let L,(v)  represent  a Lorentz boost in the 2 direction to a 

relative velocity v ,  with no rotation of the coordinate axes. Then  the basis states 

for a single particle  are  written as 

This  notation  represents  a  particle of mass m, spin s, and helicity X, moving as a 

plane wave with  momentum p in the direction given  by the polar angles 4 and 8 

(from here on,  the  notation ms will be  suppressed). The  state lOOOX) is just  the 
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particle at rest,  with  its  spin component in the 2 direction given  by st = X. The 

important phase convention assumed is43 

IO7rpX) = 100 -PA) = e - a T q 7 r ,  7r,o)L,(v)(oooX) , (7.4) 

and  the normalization is (p”X’1p’X)  = Eb3(p” - $)6x,X, where E = d m .  
A state with two particles may be formed as a direct product of the two single- 

particle  states.  In the center-of-mass system, for particle 1 going in the direction 

(4, e), the  appropriate definition is 

where W 2  E PpPp and P = p1 + p2. The normalization follows from that of 

Eqn. 7.3 and is found to be 

where we have  made use of the identity 

d3p1 d3p2 P 
El E 2  w W -- = - d   P d + d c 0 ~ 6 =  -d P d 2 n ,  P 4  

One should  note that  the basis vectors of Eqn. 7.3 are  not defined properly for 

the case of real  photons, which have m a s  zero and, hence, no rest  system.  They 

may still  be defined the same way, however, if one assumes as a starting point 

the vector lOOpo[X]) rather  than (OOOX) and keeps in mind that in this case X is a 

property of the particle,  with a value of +s or -s, and does not  change  from one 

Lorentz frame to another.  Then  the two-photon state may be defined exactly as 

in Eqn. 7.5. Note, however, that whereas Eqn. 7.5 may usually be  expanded in 

another basis represented by 1 ,  the relative angular  momentum, and 0, the  total 

spin, that cannot  be done for the case of two massless particles. 
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Another technical point is that  the two photons, being identical bosons, must 

be in a state which  is symmetric  under  interchange of the two. Interchanging 

the two  particles in Eqn. 7.5 is equivalent to interchanging the helicities and  then 

rotating  about  the y axis by ?r radians. Therefore the four possible incoming states 

for the two  photons  are, in their center-of-mass system  traveling in the z direction 

with  momenta f q ,  

'$' Jz=O =&+ R(O,*,O)]13 = o;ooq+ +) 

'$';z=o =f i  [l + R(O,T,  o)] 13 = 0; ooq - -) 

& = 2  ==fi [ 13 = 0; ooq + -) + R(O,7r, 0 ) J P  = 0; ooq - +)] 

&=-2 = f i  [ IP = 0; ooq - +) + R(0, 7r, 0) 13 = 0; ooq + -)I . 

(7.8) 

Our goal is to project out components of the incoming 77 states which have 

definite spin  and  parity. A state of definite angular  momentum may be formed 

from the basis defined in Eqn. 7.5 according 

where X E X1 - X2 and 

If P is the  operator for space inversion and A1,2 is the exchange operator,  then45 

where r]l and 772 are  the intrinsic  parities  and the second equation, of course, 

applies only to identical particles. If the two  are  identical and X1 = -X2, then  both 

operators have the  same  effect, which means that for a state  to be  an  eigenstate 
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of both  operators,  the  parity eigenvalue must  be positive for bosons and negative 

for fermions. Hence we immediately get two of the desired components of the 77 

state: 

@M=k2 J+ - - fi [ l i '  = O;M= f 2 [ W J ]  + -) + ( - l ) J l ?  = O;M= f 2 [ W J ]  - +)] , 
(7.12) 

for which J 2 2. The  other two possibilities are easily seen to be 

$M=O J* - - [I? = O;M=O[WJ] + +) f I? = O;M=O[WJ] - -)] . 
(7.13) 

Note that equations 7.12 and 7.13 immediately yield  Yang's theoremf6 which says 

that a state of two real photons  with definite parity  cannot have J = 1. Also,  for 

J = 0 and for all odd  parity  states, M = Jz = 0 is the only possibility. 

Using Eqn. 7.9, the four incoming states  can be  expanded in terms of the 

partial waves of equations 7.12 and 7.13: 

(7.14) 

where the D functions  with the given arguments all actually  are  unity. Overall 

the result is simple and obvious, except for the  important limitation on J for the 

helicity-zero states. 

7 . 2  T H E  SCATTERING c ROSS s ECTION 

Consider the process a + b + c + d in the center-of-mass system. The initial 

and final states may be described as in Eqn. 7.5, and  with the normalization given 

in Eqn. 7.6, the density of final states within the phase space  d3pc d3pd  is 

(7.15) 
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Let S f ;  be the  matrix of scattering  amplitudes,  and define the  transition  matrix 

by S f ;  = 6 f ;  + iS4(Pf - P,)Tf;.  Then  the probability  per unit  time  and volume 

for the  transition is 

1 p = -  
V T  S!f sf; 

f fa 

(7.16) 

The integration over the  total momentum  has been facilitated by the use of 

Eqn. 7.7. For the initial state,  the relative flux density is the  number of states per 

unit volume d3pa d3pb times the relative velocity va + vb: 

(7.17) 

Hence the differential cross section is  given  by 

Now consider the process 77 -+ mr, where the initial state is as described 

in the previous section. The final state may be described by Eqn. 7.5, with 

X1 = X2 = 0, and  expanded  into states of definite isospin I :  

where the  notation on the left is I m r ;  I I 3 )  and  the charged pion state is 

(7.19) 

1 7 r + ? f - >  fi IT; 1 +1)17T; 1-1) + fi IT; 1 -1)17r; 1 +I) * (7.20) 
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Define j i ( s ,  t ) ,  where X = IX, + X*(, to be the amplitudes for 77 + m r ,  with the 

normalization as specified  in Eqn. 7.18. Assuming no  polarization of the incoming 

photon  beams, the cross section for 77 + T+T- is expressed as an average over 

the two possible relative polarizations: 

(7.21) 

Using Eqn. 7.9, these  amplitudes  are easily expanded  into partial waves of 

definite angular  momentum: 

00 

J=O 
00 (7.22) 

J=2 

where fJIX(s) = %TfX(s) and T J X ( s )  i ( m r ; s  JIITl77; X[sJ]X,Xb). In both of 

these  sums, only even J contribute.  That is because, from equations 7.12 and 7.13, 

the 77 states of odd J all have even parity, but  the  parity of a mr partial wave 

is, from Eqn. 7.11, ( - l )J .  Also, the relative phase e-2*# of the two helicity 

amplitudes is of no consequence  for unpolarized beams and is dropped henceforth. 

7 . 3  DESCRIPTION OF mr ELASTIC SCATTERING 

Let us apply the same formalism as in the previous section to  the process 

mr + mr. With g ' ( s , t )  defined to be the isospin amplitudes,  the  partial wave 

expansion is 

(7.23) 
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where PJ(z) are  the Legendre polynomials. The  partial wave amplitudes A f may 

be  written in terms of phase  shifts as 

(7.24) 

For elastic scattering  the qf(s) are unity. 

Now let us briefly consider some of the general knowledge of mr partial waves. 

For s < 1 GeV2 and J 2 2, a very good approximation is 6f(s) k: 0. For 

J = 0 the  situation is somewhat confused. The phase shift 6:(s) appears  to 

pass  through resonance in the region @ = 0.5 + 0.7GeV,  but  there is  lack 

of good direct evidence for the so-called u resonance at that energy. In any 

case, the 6i(s) are  substantial from the mr threshold on We will not be 

concerned with the 6[(s), which are  dominated by the p resonance, but 6i(s) above 

s = 1 GeV2 is  of particular  interest,  due to  the relatively narrow f resonance at 

fi = 1.274 GeV. These strong-interaction effects have important implications for 

the process 77 + T+T-, as may be  understood in detail by studying  the general 

unitary  and analytic  properties of the  matrix elements. 

7 . 4  UNITARITY,  ANALYTICITY AND THE MODEL FOR 77 + T+T- 

The  scattering  matrix S(s,t ,u)  is believed to be  an  analytic  function of the 

Mandelstam variables s, t ,  and u. Also, it is required by conservation of probability 

to  be  unitary: StS = 1. In  terms of the  transition  matrix, T = -i(S - l), the 

unitarity requirement is 

i(Tt - T) = TtT. (7.25) 

These  properties  can be used to provide a number of useful constraints on any 

model of hadronic  interactions. A brief  review of how that is done is provided 

here, but for a much more complete discussion, one may refer to Ref.  49. 

Consider T, for the process a + b -+ c + d, as a function of s at a fixed value of 

t = t'. All of the singularities in T of the first Riemann  sheet are believed to lie  on 
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the real s axis, which is compatible with the  unitarity requirement. Considering 

Eqn. 7.25, the right  hand side requires a sum over all kinematically accessible 

channels, so it changes drastically with s as additional channels open. Therefore, 

there  must be a  singularity in T at each point s > (ma + mb)2 where a reaction 

threshold is. Perturbation theory shows that  the singularities take the form of cuts 

with  branch  points at the thresholds and extending to s = 00, so possible values of 

s can extend over many Riemann sheets. The sheet containing the real axis  below 

the first branch  point is called the physical sheet, and  the physical amplitude is 

defined  for real s = s' in the s-channel physical region (s > (ma + mb)2 and t < 0) 

by 

(7.26) 

Furthermore, if there is a particle  with the  quantum  numbers of a + b but with a 

mass m o  < ma + mb, then  there is a pole on the real axis at s = so = m;. The 

contribution to T of such a pole  is  called the Born term. 

But  that is not all. The same analysis may be applied to  the crossed reaction 

u+Z + c+E, called the u-channel. Since with t fixed at t = t', s and u are directly 

related by the expression s = mi2 - t' - u, then all of the poles and  cuts in the 

u-channel must  appear on the unphysical portion of the real s axis, with the  cuts 

extending to s = -oo. Thus  the complex s plane looks something like what is 

shown in Fig. 7.2. 

7.4.1 The Born Term and Fixed-t Dispersion Relations 

Let  us consider how these generalities apply to 77 + T+T-. There can be no 

pole  in the s-channel, but certainly there is  one  in each of the t and u channels, 

7,* -+ YT*, from single-pion exchange. The residue of the pole  is calculated from 

the first term in a  perturbation expansion for a field theory with  point coupling of 

photons to charged spin-zero mesons. Figure 7.3 shows the  three relevant Feynman 

diagrams. A vertex of two pions and one photon contributes to  the  S-matrix  a 
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Figure 7.2. The complex s plane for the  transition  matrix  T(s,t) at 
constant  t = t'. The contour C is that used to derive the fixed-t dispersion 
relations. 

factor -ie(p + P ' ) ~ ,  where p and p' are  the pion momenta and p is the Lorentz 

component of the photon14 The vertex of two pions and two photons  contributes 

2ie2gPv,  and the meson propagator is i/(p2 - m:). Otherwise the calculation 

proceeds as in QED, and  the result is5' 

helicity-0 : Bo = -fl a 1 -p2 1 
w 1 - p2cos2 e - 2T 

= - f i F E  (s, t) (7.27) 

where ,6 = d(s - 4mz)/s is the pion  velocity. The reduced amplitudes FO and 

F 2  are defined such that they  are free of all kinematic sing~larit ies~l and may be 
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Figure 7.3. The Feynman diagrams for the Born term in the process 
77 -+ 7r+7r-. 

written in terms of the Mandelstam variables as 

FOB =27ra m: 

FF =27ra 

(m? - t ) ( m i  - u) 
1 

(mi  - t ) ( m i  - u)  

(7.28) 

To include formally the contributions of the  cuts, fixed-t dispersion relations 

may be used. Figure 7.2 shows an  integration  contour C in the complex s plane. 

Consider the integral 

(7.29) 

which has been evaluated by using Cauchy's theorem  and including the residue 

of the single pole of F within the contour. By letting  the arcs of the contours go 

to infinity, the integral may be evaluated from only the  contributions along the 

real axis. Using the  property of hermitian  analyticity, T ( s  + ic, t )  = T* (s - ic, t ) ,  
results in the dispersion relations 
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where the first of the two integrals  has been rewritten as an integration over 

u' = 2m: - t' - s' and S denotes the imaginary part.  The two  integrals, which are 

the  contributions respectively of the left hand  and  right  hand  cuts of Fig. 7.2, are 

defined  for real s by approaching the real axis from above. They  are exceedingly 

complicated, so the equations  cannot  be solved without making some explicit 

assumptions about  the form of S F ( s , t )  in the region of integration. 

7.4.2 Resonant Partial  Waves 

The approach to be  taken is to consider only contributions  from exchanges, in 

the s or u channels, of single resonances. Since a resonance has definite spin  and 

parity,  then only a single partial wave must  be considered. The analytic  properties 

of a partial wave amplitude follow directly from those of the full amplitude  and 

the DXJl,x2 functions!2 In  particular,  there  are  cuts along the positive real s axis 

extending  from the first threshold to s = 00. Since there is no fundamental 

difference between a resonance and  a  stable  hadron besides the mass (assuming 

all other  quantum numbers to  be  the  same),  then one expects the exchange of 

a resonance to result in a pole  in the complex s plane  near the real axis, but 

above the first branch  point. The pole can  neither  be on the real axis nor on the 

physical sheet, so hermitian  analyticity  demands that there  be in fact  two poles, 

placed symmetrically on opposite sides of the real axis and on an unphysical sheet. 

Only the one which is  below the real axis is  close to  the physical sheet, since the 

unphysical sheet is reached from the physical sheet by crossing the real axis from 

above. Assuming that  this pole, located at sr  = mr-imrI', dominates the behavior 

of TJ(s) for s near sr, so only the first term of a series expansion of TJ(s) about 

s = sr need be  kept, gives the relativistic Breit-Wigner shape for the resonance: 

(7.31) 

Such a  formula may be improved by including contributions from other 

singularities. In  particular, consider the  branch point at the two-particle threshold 
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st = (ma + mb)2.t If the branch  point is not too close, then  the amplitude  can 

be approximated by the first terms in an effective range expansion about st.52 

This  results in an energy dependence for the width I'. In particular, I' contains 

a threshold factor p 2 J + 1 .  In Ref. 53, Lyth suggests the parameterization, for 

(7.32) 

where so = m2 and a - m2f. This is the form assumed in the remainder of this f 
analysis. For the f resonance: 

m, = mf  = 1.274 f 0.005 GeV, I'o = I'f = 0.178 f 0.020 GeV, (7.33) 

and we use a = 0.5 GeV2. The resulting m r  phase shift for the I = 0, 

J = 2 amplitude is given  by tanbi(s) = rnfI'(s)/(rn2f - s), and this gives a 

favorable comparison with measurements from pion-nucleon scattering, as shown 

in Fig. 7.4.54 

Another modification of Eqn. 7.31 is  necessary to include inelastic effects. 

Note that it is  only the position of the pole which is characteristic of the resonance 

itself, and  that is all which remains constant for the resonance when observed in 

several different reactions. What needs  modified  is the residue. That depends on 

the coupling of the resonance to  the initial and final states.  It  can be factored 

into  a  product of two partial widths, of which one depends on only the initial state 

and  the  other on only the final state. For example, for 77 --+ f --+ 7 r + ~ - ,  the 

t In general there could be several such thresholds. For example,  the f resonance is affected by 
the TT,  4 ~ ,  and K K  thresholds. We neglect the latter  two, because the branching ratios of the f 
to those channels are relatively  small. 
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Figure 7.4. The I = 0,  J = 2 mr phase shift as measured from 
pion-nucleon scattering. The solid curve is the best fit, by varying the 
parameter a,  of Eqn. 7.32, for which a = 0.5GeV2. The  dotted curve 
shows the Breit-Wigner shape  with no energy dependence for the width. 

appropriate expression for the amplitude is 

(7.34) 
where rr7 =BR(f -+ 77) - I' 

and I'7rn =BR(f 4 m )  - I' . 
The factor of fi is from Eqn. 7.19, and X denotes the fact that  there  are  separate 

amplitudes for each of the two possible 77 helicities. The s dependence of rrlr(s)  

should be the same as that of I'(s), since m r  is  by far the dominant decay mode. 

For the s dependence of rV7(s) we assume the same form as in Eqn. 7.32, except 

that mA is replaced by m7 = 0. 

A little reflection on the meaning of the  constants m f  and I'f is  in order. 

Ideally they should give the position of the resonance pole as s r  = m2f - irnfI'f = 



148 

1.62 - 0.2272', since that is the  quantity, given in Ref. 6, which characterizes the 

resonance. However, when the form in Eqn. 7.32 is used for the  width,  then  the 

pole  moves to  the position s r  = 1.59 - 0.2252', which is a change of the order of one 

percent. Changing rnf from 1.274 GeV to 1.284 GeV  is enough to  return  the pole 

to  the position given  in  Ref. 6, but one must keep  in mind that all experiments  from 

which those  measurements were taken  had to do a similar sort of extrapolation to 

determine the pole position. Hence there is a lot of potential for 1% errors caused 

by the parameterization of the resonance shape.t 

7.4.3 Estimate  of Contributions from the  Left Hand Cut 

Now let us use the parameterizations for resonance exchange to estimate 

possible contributions  from  the left hand  cut in Eqn. 7.30. To do so, we consider 

the reaction 77r + y?r (these calculations are by Lyth in Ref. 51). Using the inverse 

of Eqn. 7.9 with X ,  = f l  and X ,  = 0 gives the description of the 77r state, which 

leads to  the  partial wave expansions for the amplitudes, aside from overall phases 

of ef4,  of 
M 

(7.35) 
J=O 

where the + or - refers to  the relative helicity of the photons. 

Consider the  contribution of vector resonances to  the J = 1 partial wave. 

From Eqn. 7.11, one can see that a J = 1 partial wave with negative parity 

is formed by the combination TI +(s) - TI - (s), so the resonance must couple 

equally to  the two helicities if parity is to be conserved. Hence 

(7.36) 

t Note  that  the change in mf is significant, since it is greater than the error quoted for mf in 
Ref. 6. However, even that error estimate is said to be no more than an educated guess. 
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When the pion mass and  the finite resonance width  are neglected, then  the 

imaginary parts of the J = 1 resonant  contributions to Eqn. 7.35 are 

3 r77r S ~ - ( s , t )  = - - - t t ( m ,  2 - s) 

3 r77r S ~ + ( s , t )  = ---uS(m, 2 - s). 

4~ m r  

47r mr 

(7.37) 

These  relations  are  rewritten in terms of the reduced amplitudes (see Eqn. 7.27), 

after which crossing symmetry is used to give the corresponding amplitudes for the 

reaction 77 + mr. 2'- becomes the helicity-zero amplitude  and T+ the helicity-two 

amplitude: 
r SF0 M 6 7 r 2 3  S(u - m;) 
mr (7.38) 

Inserting  these into  the first integral of Eqn. 7.30 yields the estimates for the 

resonance contributions to  the left hand  cuts: 

(7.39) 

In Ref. 51, these expressions are used to  estimate  the u-channel resonance 

contribution  relative  to  the Born term. The result is that  the resonance terms  are 

completely negligible near the TT threshold but may be significant in the region 

near one GeV  for large-angle scattering.  But that estimate is very conservative, 

using I'7n/mr M O.la, which  is about eight times greater than  the experimental 

value now found in Ref. 6 for the p. For the helicity-zero amplitude,  the 

contribution from p exchange may be as much as half the Born contribution in 

the f region at large angles. But  that is not  important since even the helicity- 

zero Born term is  negligible in that region, compared with the helicity-two Born 

term.  Figure 7.5 shows the effect of p exchange in the helicity-two amplitude. At 
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Figure 7.5. The effect of p exchange on the 7r+7r- continuum in e+e- + 
e+e-?r+?r-. The solid curve shows the  contribution  from single pion 
exchange, while the  dotted curve includes the  pexchange  contribution. 
The photon flux  is calculated from EPA, and  the final pion-pair state 
is integrated over the acceptance defined  by -0.6 5 cos 0 5 0.6 and 
ICJW 5 0.2. 

W = 0.6 GeV there is an increase of only 0.5% over the Born term;  at W = rnf 

the increase is 5.3%; at W = 2.0GeV the increase is 17%. Thus  the  pexchange 

contribution is almost completely negligible compared with pion exchange. 

The w ,  which has a relatively large 77r width, does not  contribute  to  the 

charged channel, and one expects the heavier vector mesons, such as the A I ,  to 

contribute considerably less than  the p,  since their masses place them  further 

from  the physical region. Also, higher partial waves  give  even more negligible 

contributions, so all indications point  to complete dominance of the Born term in 

the t and u channels. 

7.4.4 Corrections Required by Unitarity 

It is a useful  exercise to write explicitly Eqn. 7.25, the  unitarity relation, for 

the process 77 -+ ~ 7 r .  To simplify the discussion, it is best  actually to work with 

the pure isospin states of Eqn. 7.19. Let A'(@; #6'; s) be the  amplitude for elastic 
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mr scattering in the center-of-mass system from the initial angles (#,e’) to  the 

final angles (#,e). Ti(+& s) is the amplitude for photons incoming along the z 

axis and pions outgoing in the directions given  in the center-of-mass system by 

the angles (4, e). Amplitudes for purely QED processes  like 77 --+ 77 are small 

compared with hadronic amplitudes, so any term including them may safely  be 

neglected. Then  the  unitarity relation is (with the isospin index I suppressed) 

+ inelastic contributions, 

where p i  refers to one pion of the pair corresponding to  the angles (dl, e’). 
The only significant inelastic contributions to Eqn. 7.40 are those coming from 

strong  interaction processes, such as 77 --+ K + K - ,  and of those, only the ones 

energetically accessible are included, depending on the value of s. 

Now  we may use Eqn. 7.7 to transform to  the center-of-mass variables 

(p’, 4’, e’) and integrate  out the b4(p: + pi). Also, let us substitute in the  partial 

wave expansions of Eqn. 7.22 for Ti(r$B;s), using the definitions fi = ?Ti 
(Eqn. 7.18) and ff, F :Ti, (Eqn. 7.22). For Ar(&I;q5’8’;s) we substitute  the 

expansion of Eqn. 7.23, suitably  rotated: 

After these substitutions,  the angular integrations become trivial,  and we are left 

with  a  separate requirement for  each partial wave: 

STi,(s) = [ A ; ( s ) ]  * T$,(S) + inelastic contributions. (7.42) 
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If the inelastic contributions  are negligible or zero, as they  must  be for small 

enough s, then Eqn. 7.42 may be solved. Using Eqn. 7.24, one finds 

(7.43) 

This is equivalent to Watson’s theorem for photoprod~ction:~ and essentially says 

that  the phase of the 77 --$ mr amplitude is given  by the mr phase shift if the 

energy is  low enough that no significant inelastic channels are open. One can 

consider this phase to be  due to final-state  interactions of the pions after  they  are 

produced from the photons. 

7.4.5 Justification of the Born Approximation 

From the discussion of Section 7.3, below the f region the only significant 

phase shifts are 6;. There  are no inelastic contributions in that region, so Eqn. 7.43 

must  be considered to be  exact.  In Ref. 51, the rough  measurements available for 

r!$, along with the fixed-t dispersion relations of Eqn. 7.30, are used to calculate 

the necessary corrections to TJo(s), and one finds that, although large corrections 

( m  30% enhancement) are necessary near  threshold,  from non-resonant effects, 

they become negligible above & = 0.4 GeV.56 When nearing the f region, the 

phase shifts of the 6$ partial wave begin to become significant. We will  see that, to 

a good approximation,  Eqn. 7.43 must  be satisfied even throughout  the f region, 

up to  about 1.4 GeV, leading to corrections to a simple model of the Born term 

combined with a resonant  amplitude. 

Such corrections, though,  are well  defined  by Eqn. 7.43. Furthermore, we 

have shown that contributions  from vector meson exchanges are negligible with 

respect to  the pion exchange, so the Born term,  with  unitarity corrections, is 

all that is needed to describe the  continuum production itself. The remaining 

question concerns to what  extent  the Born term actually is described by the 

diagrams of Fig. 7.3. We have assumed that  the pions are  point  particles. That 
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seems physically reasonable for low enough photon energy, since the  actual size of 

the pion will be  small compared with the photon wavelength. A fairly rigorous 

justification for the applicability of the point-coupling calculation  near  threshold 

may be  arrived at through  the hypothesis of a  partially conserved axial current 

(PCAC)  and  current algebra:7 which are  theoretical ideas that have  met  with 

much success  in describing phenomena of  low energy pion physics. The result is 

that  the point-like coupling is valid up  to  the addition of terms  with  a relative 

magnitude of approximately s / m z .  In  fact, we will see that a good description 

of the  data is achieved for the  entire region  below the f ,  which agrees with the 

typical  theoretical prejudice that such approximations  can  be expected to be good 

up  to energies of about 1 GeV. 

The Born cross section falls like l/s, whereas from  Eqn. 7.2 we expect at high 

energies that  the cross section must fall as l/s3, due to  the 1/s behavior of the 

form  factor. However, since the Born term agrees well with the  data below the f ,  

it is reasonable to use it as an  extrapolation  through  the full range of the f, up 

to  about 1.4 GeV. It only  is necessary to make an  estimate of what  errors  this 

extrapolation might cause for the measurement of the resonant part of the cross 

section. 

7.4.6 Constraints on the Coupling of 77 to the f Resonance 

We have determined that for the region  well  below the f resonance and above 

,/i = 0.4 GeV, the cross section should be  adequately  represented by the Born 

term alone, unless there  happens to be some large direct coupling of 77 to low- 

mass  scalar resonances. For the region near the f ,  the resonant  contribution  to 

the J = 2, I = 0 partial wave must  be included. 

In general there  are two amplitudes to consider for the f ,  with one for each 

possible helicity. However,  in Chapter 1 we have seen that there is considerable 

evidence that  the helicity-two amplitude is strongly  dominant. For now, let 
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us assume zero coupling for  helicity-zero, so the cross section is written, for 

77 + 7r+7r-, as 

where the Bx are as defined  in Eqn. 7.27, and  the I = 0 resonance contribution is 

defined as in Eqn. 7.34: 

Suppose that  the inelastic channels still  are small in the f region. Then  the 

J = 2 partial wave should satisfy the  unitarity  constraint of Eqn. 7.43. It is 

interesting to see what  that implies  for the phase of g in Eqn. 7.45.1 The J = 2 

component of B2 (s, t )  is 

(7.46) 

Consider the  sum of the I = 0, J = 2 amplitudes, m 8 2  2(s) + T;,(s), for 

s = m2f. Equation 7.43 requires that  the  sum have a phase of earl2 at  that energy, 

so setting  the real part of the  sum  to zero constrains the imaginary part of g: 

(7.47) 

As for the real part of g ,  the experimental data definitely require Xg > 0, since the 

f peak is shifted downwards in fi relative to its position when observed without 

interference with the Born term. 

t This analysis closely follows that of Ref. 56. 
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Equation 7.47 essentially means that  the  sum of the I = 0, J = 0 amplitudes 

may be written as 

(7.48) 

with g' 3 !Rg + m ( m ;  - s)B22(s). This  has the form of a resonance pole with 

an energy dependent coupling g' and explicitly satisfies Eqn. 7.43. The difference 

here from a more typical resonance amplitude is that g' has  a relatively rapid 

variation across the resonance, due to  the l /f i  energy dependence of the Born 

amplitude.  This phenomenon causes difficulties when measuring the 77 width of 

the f from charged pion pairs. The problem results both because of the large 

resonance width I' and because of the large J = 2 contribution from the Born 

term. If either of those  quantities were small, then from Eqn. 7.47 it is clear that 

g would be essentially real and  there would be no issue about whether the energy 

dependence is properly described. 

The process 77 + f + TOTO has no Born term from pion exchange, so 

one expects that  the Crystal-Ball measurement does not suffer from any serious 

theoretical ambiguities. Therefore, assuming that their measurement of the 

,Oro spectrum yields a value for the magnitude of g ,  as defined above, then 

Eqn. 7.47 may be  used to predict the phase of g. The Crystal-Ball result: 

rrr = 2.7 f 0.2 f 0.6keV (assuming only helicity-two coupling) yields 191 = 

0.00080 GeV2,  and hence we predict a phase for the coupling of 77 to  the f of 

4 = sin-' (Sg/ 191) k: 0.32radians. 

7.4.7 Further Consideration of the Unitarity Condition 

The prediction for the phase of the 77 + amplitude relies upon the 

assumption, implicit in Eqn. 7.43, that  the contributions from other inelastic 

processes  in the J = 2, I = 0 partial wave are negligible. The validity of 

this  assumption can be checked  by a  method due to Lukaszuk!8  He writes the 
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inelastic contributions to Eqn. 7.42 as CnflFlranbz, where an is the J = 2, 

I = 0 partial wave  for 77 -, n, and b, is the corresponding partial wave for 

7r7r + n.t Only states n which are hadronic  and kinematically accessible at the 

energy fi are included in the  sum. In this case, for s = m2 the possibilities are 

n = { K K ,  47r, Kmr, qq, qmr},  of which only the first two have been measured in 

two-photon scattering. 

f' 

First let us consider how the inelasticity q$ of Eqn. 7.24 is related to  the 

reaction cross section. The result of squaring Eqn. 7.23 and  integrating over the 

full solid angle is the  total elastic cross section 

,I=O 7FA--rAA = /lgo(s,t)12dn = - 47r c ( z J  + 1)1q:(s) ezis9(s)  - 112, (7.49) 
s - so 

J 

where so E 4m:. The reaction or inelastic part of the cross section then is 

identified as 

- - c ( 2 J  + 1) [l - ( o : ) ~ ]  , r 
47r 

s - so 
- 

J 

from which it follows that  the bn have the  property 

nfm 

Similarly, the  total I = 0 cross section for 77 + 7r7r may be calculated: 

(7.50) 

(7.51) 

(7.52) 

If we let 0:; denote the  total 77 cross section for I = 0 ,  J = 2 and a:.&,, the 

part of that cross section into two pions, then  the an have the  property 

(7.53) 

t Actually, Lukaszuk considers the form factor for the process e+e- + m ,  but the  calculation 
is closely  analagous to that presented here. 



157 

After substituting Eqn. 7.24 and T;,(s) = IT202(~)lei$(s), then Eqn. 7.42 may 

be  written as 

(7.54) 

Lukaszuk’s bound now  follows from taking the absolute value squared of this 

equation and applying Schwartz’s inequality to  the right  hand side: 

Using equations 7.51 and 7.53, this may be  written in the convenient form 

(7.56) 

where r = ar7 /077+nn- 
0 2  0 2  

Now, at s = m2 the inelasticity is known to  be $(m2f) = rnn/I’ = 0.84, 

so we have the limit sin2($ - 6,”) 5 0.088(r - 1) - 0.0076. In Ref. 53, Lyth uses 

the present-day  results from 77 physics to estimate r and  arrives at the result 

r - 1 < 60nb/240nb = 0.25,  which  in turn implies that  the phase of the J = 2, 

I = 0 amplitude  for 77 + m r  must  be  within  about 0.1 radians of the value of the 

corresponding mr phase shift. Relating  this to  the analysis of the previous section, 

we find that  the imaginary part of g must  be  within  the  range 

f ’  

9 g  = 0.00025 f 0.00007 GeV2, (7.57) 

and  the phase of the 77f coupling, assuming the  Crystal Ball result for rr7, is 
predicted to be in the range 4 = 0.32 f 0.10. 
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7 . 5  T H E  MODEL OF MENNESSIER 
Mennessier has produced a complete model for  meson pair  production  from 

two photons59 which is similar to  the model presented in the previous section 

but considerably more complicated in some respects. He begins with an effective 

Lagrangian, so there is the usual pion-exchange Born term,  but also additional 

vector-meson exchanges. The vector-meson exchanges, which  give contributions 

to  the left hand  cut in the complex s plane,  are  determined  from the crossed 

channel  reactions, so the coupling strengths of the vector mesons to 7r7 are  taken 

from the known radiative  partial  widths.  That is the  same approach  taken in 

Section 7.4.3, except that there  the effects of the crossed channels are  estimated 

from the fixed-u dispersion relations, while Mennessier introduces  terms  such as 

~ ~ ~ ~ a h ~ j i  [ap& - dv$p]Fa,g into  the Lagrangian density.t Although such  point 

couplings often work  well  for single pion exchange at sufficiently low energy, it is 

well  known that form  factors  must  be  introduced, when using such a formalism 

for the heavier mesons, in order to describe hadronic  scattering  data. Mennessier 

himself states in  Ref. 59 that his model must  overestimate even the  pexchange 

contribution. Therefore, the analysis of Section 7.4.3, which  is due to  Lythfl may 

be more correct.  There, we saw that  the  pexchange  contribution is  negligible 

when compared  with pion exchange, so when considering the Mennessier model, 

we always will  neglect all of the vector-meson exchanges. Only pion exchange is 

included for the t and u channels. 

Corrections required by unitarity  are  made for the t and u-channel contri- 

butions  through  an  analytic, coupled channel K-matrix formalism for final state 

interactions, in which both pion and kaon intermediate states  are included. All 

partial waves for the Born term  are included, but only the S and D waves are uni- 

tarized. The solutions for these lowest partial waves of the  K-matrix formalism 

are  obtained by fitting  to available hadronic  scattering  data. It is interesting to 

t In this expression, h, is the 77rp coupling constant, ii is  the pion field, where the arrow  refers 
to the three isospin components, p' is the p field, and Fa@ is the electromagnetic field strength 
tensor, which is composed of the photon field. 
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Figure 7.6. The Mennessier model at 8 = 7r/2 with  and  without  unitarity 
corrections for  final state interactions. The dashed line shows the simple 
Born term, which is identical to Eqn. 7.27, the  dotted line includes 
unitarization of the D-wave, and  the solid  line includes unitarization 
of the S-wave as well. No direct resonance couplings are included. 

see the effect of unitarization on the Born term.  Figure 7.6 shows the invariant- 

mass spectrum at 8 = 7r/2 with no terms in the Lagrangian for coupling of 77 to 

s-channel resonances. We find that even with no resonance coupling, the S* (980) 

scalar resonance forms a quite prominent peak. The effect of the J = 2, I = 0 

phase shift in the f region actually is a dip rather  than a peak. This is similar to 

the result  obtained in Section 7.4.4. From equations 7.45 and 7.47, one can see 

that  the additional  term, involving the imaginary part of g,  which was added to 

the J = 2, I = 0 part of the amplitude in order to satisfy unitarity, is negative at 

the resonance peak with respect to  the Born term. In fact, it precisely  cancels the 

J = 2, I = 0 part of the Born term at s = m2f. 

Finally, there are direct s-channel resonance contributions, for both  scalar  and 

tensor mesons, which have 77 couplings to be adjusted at will. These couplings are 

the only parameters in the model which are not determined by strong  interaction 

data, so they may be measured by fitting the model to  data. 
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7 .6  COMPARISON OF THE TWO MODELS 

In this section we  look at the shapes of the invariant-mass and angular 

distributions of the models for 77 4 ?r+?r- presented in the previous two sections, 

which we refer to as the Lyth model and  the Mennessier model. When fitting  these 

distributions to  the  data in Chapter 8 ,  it is necessary to convolute them with the 

two-photon luminosity function  and to integrate over the detector acceptance. 

Here we simply present the 77 4 ?r+?rr- predictions for the  invariant mass 

spectrum at a fixed angle of 8 = 7r/2, which  is the center of the DELCO acceptance. 

First, consider the Born term, which  is, before unitarity corrections, exactly 

the same in both models. As must  be  the case for two photons  annihilating to form 

two particles of spin zero, the helicity-two cross section goes to zero at cos 8 = fl. 

However, as the energy increases, the angular  distribution becomes more and 

more flat, and  the points where it begins to fall to zero move  closer to cos 0 = 3 1 .  

In contrast,  the helicity-zero amplitude is sharply peaked toward  small angles. 

However, it falls rapidly  with increasing energy, compared with the helicity-two 

amplitude,  and is not very significant within the DELCO acceptance, as one can 

see from Fig. 7.7. Thus  the Born term is, within the DELCO acceptance, rather 

well approximated by a 1/s energy dependence and a uniform angular  distribution. 

The f (1270) resonance contributions  are  not  identical  for the two models. 

However, they  do have the same  angular  distributions, since a single resonance 

is produced only in a single partial wave. Both models allow the  introduction 

of a resonance contribution  to  the J = 2 partial wave in both  the helicity-zero 

and helicity-two amplitudes, for  which the angular  distributions  are  plotted in 

Fig. 1.2. In  such a case, the two-photon width of the f must  be described by two 

independent  parameters, {X = 0,2}, such that rr7 = I':, + I';,. The energy 

dependence of the resonance terms, however, differs between the two models. To 

see that, let us compare them for the most simple case, where unitarity corrections 

are neglected. 
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Figure 7.7. Prediction  for the 77 + rrr+rrrr- cross section at 6 = 7r/2, 
assuming a simple model of the Born term plus the helicity-two Breit- 
Wigner amplitude,  with interference of the helicity-two amplitudes. 
rrr = 3.0keV is assumed, and  the  partial waves are  not required to 
satisfy the  unitarity condition. 

The energy dependence of r(s) in the Lyth model is determined by Eqn. 7.32. 

Note that  it affects both  the phase and  the magnitude of the resonance amplitude. 

The phase is consistent with the measurements shown in  Fig.  7.4, which is the 

same data as that which Mennessier  used to fit his model. However, the energy 

dependence of rrr in the numerator of the Breit-Wigner amplitude, Eqn. 7.34, 

need not be the same as that of I'(s), which appears in the denominator and in 

the phase. Changing the energy dependence shown in Eqn. 7.32,  by changing the 

parameter a, for example, actually produces only minor changes to  the resonance 

shape itself. That is because although the tails are strongly affected, they already 

are small. With the interference shown in Fig. 7.7,  however, the lower tail 

of the resonance plays an  important  part,  and  its energy dependence becomes 

significant. As a result, it is difficult to infer from the  data whether any  additional 
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contributions,  from  broad  scalar resonances, for example, are necessary in the 

region between about 0.5 GeV and 1.0 GeV, unless one is very confident with 

the parameterization of the f .  Fortunately, the  fitted value of the two-photon 

width itself remains insensitive to  the detailed parameterization of the energy 

dependence. 

Figure 7.8 shows a comparison of the invariant-mass  distributions of the two 

models. Below the f the Mennessier model gives a significantly lower cross section 

than  the  other, even though  the two use exactly the same  formula for the Born 

term  (no  unitarization corrections are included in either). When an  additional 

energy dependence, or form  factor, defined  by 

(7.58) 

is introduced into  the resonance contribution of the Mennessier modelfjO then  the 

two models agree quite well for a = 1.25 GeV2. It  turns  out  that  the Mennessier 

model fits the  data on the low side of the resonance peak very poorly without  this 

modification. Therefore, all subsequent calculations made  with the Mennessier 

model assume the energy dependent  width given  by Eqn. 7.58. 

Now let us consider the effects of requiring the models to satisfy the  unitarity 

condition. Here is where some troublesome differences between the two  appear. 

From Fig. 7.9, one sees that in the resonance region both models suffer a decrease 

in the cross section at  the f peak when unitarity is required, but  the decrease is 

much more severe for the Lyth model. We do  not  understand why that is so,t 

since one would expect about  the same  result  from each. In the Lyth model we 

have required elastic unitarity of the amplitude. Mennessier includes in addition 

the effects of the coupled K K  channel, but  the branching  ratio of the f to K K  is 

only 3%, and  the  total inelasticity is but 16%, so it is hard  to imagine how that 

could make much difference. Furthermore,  the effect of unitarization when there 

t The Mennessier model is essentially a black box  to us, in the form  of 700 lines of FORTRAN 
code. Only the details of the Lyth  model can  be given here. 
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Figure 7.8. Effect of the energy dependence of the f resonance on the 
mass distribution of the Mennessier model at 8 = 7r/2. The  parameter a 
determines the  strength of the form factor, which goes at zero as a -+ 00. 
Also shown for reference is the same calculation using the Lyth model. 

is no direct coupling of 77 to  the f ,  as shown in Fig. 7.6, does not seem to be 

consistent with  what we see  in  Fig. 7.9 with rrr = 3.0 keV. This question has not 

been  resolved, but  there is yet another difference to consider. 

The two curves shown in  Fig. 7.9 of the Lyth model differ from each 

other only  by the addition of an imaginary part, according to Eqn. 7.47, to 

the unchanged real part of the coupling g.  The real part of g thus remains 

%g = rnf[I'rrI',,]1/2, with rrr = 3.0 keV. But  Lyth defines53 the two-photon 

width by 191 = rnf[I'v.hI',,]1/2. Thus he considers the  unitarity correction to be 

part of the coupling of the resonance to  the two photons. 

Mennessier's definition is  different. The  unitarity correction is considered to 

be  part of the Born term, yielding the unitarized Born term, to which the "direct 

coupling" of the resonance to 77 is added. Thus in Fig. 7.6, we  see an obvious S* 

peak and a big  effect from the f even though all direct couplings of resonances 

were set  to zero.  Also, consider Ref. 61, in which the f signal observed with  the 
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Figure 7.9. The effect of requiring unitarity for the D-wave on both  the 
Lyth  and Mennessier  models. 

CELLO detector is fit by the model of Mennessier. The  authors  state, 

". . .the only free parameter  fitted to our data is I'rr(f0) which describes 
the 'direct' rrfo coupling. This does not correspond exactly with 
the observed fo signal since the helicity 2 projection of the Born 
term may give a small contribution to  the fo signal by final state 
scattering effects.. . I'rr(f0) is the relevant parameter for comparison 
with  theoretical predictions based on internal meson structure (e.g., the 
quark  model), whereas in evaluating dispersion relations or sum rules 
the full partial wave amplitudes measured by the fit to  the experimental 
distributions should be used." 
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It is true  that in the quark model, the coupling of photons to a meson must be 

real, but  then  the quark model also has no provision for describing the finite width 

and associated energy dependencies of a resonance. Recall that if the resonance 

width may be neglected, then  the imaginary part of the coupling, as specified 

in Eqn. 7.47, may also be neglected. Thus  it is clear that comparisons with 

quark model predictions, such as the S U ( 3 )  predictions for the ratios of two- 

photon  widths, always will be limited in validity by the simple fact that in reality 

the tensor mesons have relatively large widths, compared with the pseudoscalar 

mesons, for example. 

Perhaps a more important question about  the definition of rrr is  how to 

relate  the charged and  neutral pion-pair channels. The non-resonant part of the 

neutral cross section is small enough that whether the resonant coupling is complex 

becomes irrelevant-there simply are no significant interference effects. One would 

like to define rrr such that, for both  the charged and  neutral cases, the resonant 

contribution to  the cross section is proportional to  it. In  other words, the same 

quantity should  be measured whether one studies 7r+r- data or ro7ro data. 

Recall that  the prediction for Qg was obtained  from considering the  sum of 

the f resonance and  the I = 0, J = 2 projection of the Born term  and requiring 

it  to satisfy the  unitarity condition. The Born term contains  contributions to 

both I = 0 and I = 2, while the resonance is only I = 0. The unitarization 

procedure  adds a contribution to  the I = 0 amplitude,  but  the I = 2 amplitude 

is unchanged. The observed cross section then is calculated by taking the  sum of 

the I = 0 amplitude  and  the  unitarized I = 2 amplitude, projecting it onto either 

\7r+7r-) or 17roro), according to Eqn. 7.19, and  squaring the absolute  magnitude. 

The Born term, of course, vanishes for the  neutral final state,  but  the contribution 

of the  term required to unitarize the I = 0 amplitude  remains for both  the charged 

and  neutral final states. Therefore, in order for the model of Lyth to be  consistent, 

his definition of the two-photon width  must  be accepted when using his model. 

A simple physical picture of  how the Born term  can affect 77 + 7r07ro in the f 
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region is to imagine charged pion pairs being formed from  the Born term  and  then 

resonating  in the final state  to T’T’. 

It is not clear exactly how to  interpret Mennessier’s model. In  particular, 

it is difficult to  understand  what is the physical significance of the distinction 

between “direct coupling” of 77 to  the f and  the  contribution coming from 

unitarization. After all, the  strong interactions occur on  such a short  time scale 

relative to  the electromagnetic interactions that they  cannot  be considered in  any 

meaningful sense to have  occurred  after and  separate from the 77 coupling. In 

any case, in Chapter 8 we give results  from data for both definitions and also 

for the case where no  unitarization corrections at all are made. We will  see 

that in  fact the  experimental  errors  are  small enough for our T+T- measurement 

that these  problems  cannot be neglected. Unfortunately, the  statistical  errors  on 

measurements of the corresponding  neutral  channel are  not yet small  enough to 

check for consistency. 

As a final note, we should  point out  that  the f peak observed in TOT’ by the 

Crystal Ball experiment is about 40MeV, or 3%, low compared  with the known 

value of 1274MeV. That is about  the same  magnitude of downward shift as 

observed in the charged  channel. However, it is not clear whether  it is real, because 

the  systematic  uncertainty in the energy scale is as large as 2%,  and  the  statistical 

error  on the  determination of the peak position is l.l%.t Such a downward shift  in 

the  neutral  channel is not explained by either model so far considered. Presumably 

the  neutral channel  must  have some continuum  production  from  such processes as 

w exchange, but  its level cannot  be  determined  from the available data-certainly 

there is no obvious large continuum as in the charged  channel. Mennessier includes 

vector meson exchanges in his model and predicts that  the TOT’ peak is at least 

30MeV  above the T+T- peak.$ 

t The fit of the resonance width in the Crystal Ball data yields I’f = 248 f 38 MeV, which is 
almost two standard deviations high and also is unexplained. 

4 However, in Ref. 61, it is stated  that a calculation using the Mennessier model with  all vector 
exchanges set to zero yields a 20MeV decrease in the position of the 7r07ro peak. It is not clear 
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In a recent  paperg2 a model has been proposed to explain why the T+T- and 

TOTO peaks might be identical. The model assumes some sort of I = 2 contribution 

in the f region, from a non-resonant process or an exotic resonance, in  addition to 

the large I = 2 component of the 77 + T+T- Born term.  This  additional I = 2 

component effectively  cancels that of the Born term in the f region. Then  the 

amplitude  in  the f region is purely I = 0, in which case the TOTO cross section 

must  be  the same as that for T+T- in shape  and half as large. 

Nonetheless, we shall  continue to assume that  the Born term describes the 

continuum for the charged channel. The deviation of the peak position in the 

neutral channel could very well be  an experimental effect. 

whether  that is consistent  with Mennessier’s  conclusions. 
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8. Fitting  the T+T- Spectra 

8 . 1  SUMMARY OF THE 77 + T+T- MODEL 

The T+T- data is to be fit to  the phenomenological model of Chapter 7, 

consisting of the Born term calculated  from exchange of point pions (Eqn. 7.27) 

plus terms for the f resonance calculated according to Eqn. 7.34 with the energy 

dependent  width of Eqn. 7.32. The resonance can  be formed in both helicity-zero 

and helicity-two states, so there  are two parameters to describe the coupling to 

two photons: I?:, and I?;,, where I?,, = I?:, + F;,. The resonant  partial wave 

amplitudes of Eqn. 7.34 must  be multiplied by the  appropriate angular  factors, 

as given  in Eqn. 7.22, in order to obtain  the full amplitudes.  Furthermore,  the 

amplitudes are forced to satisfy the  unitarity condition of Eqn. 7.43 by the  addition 

of an  imaginary part  to  the resonant coupling, according to Eqn. 7.47. However, 

no unitarity correction is made for the helicity-zero amplitude, because the J = 2 

part of the helicity-zero Born term is negligible  in the f region. 

In summary,  the cross section is  given  by 

where doo(8) =?cos 8 - 2,  2 3 2  1 

Recall that FT,(s) = 0.843 - r(s) and that  the s dependence of r(s) is given  by 

Eqn. 7.32. The s dependence of rO(s) and I'~(s) also is  given  by Eqn. 7.32, but 

with m, replaced by my = 0. This cross section is multiplied by the  appropriate 
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77 luminosity function to give the prediction for e+e- 4 e+e-?r+?r-, and finally, 

the two-photon widths to be fitted are defined  by the expressions 

Thus  the complete two-photon width may be written as 

=ro(m!) + r2(m2f) + 0.257 keV. 

This corresponds to  the definition by Lyth. The definition of rr7 used  by 

Mennessier  is roughly the same as that of Eqn. 8.3 without the additional 0.257 keV 

added (see Section 7.6). 

8.2 THE FITTING METHOD 

The fit  itself may be done in two ways. Either the  true ?r+?r- spectra  are 

unfolded from the  data  and  then compared directly with the calculation, or else 

the detector effects are folded into the Monte Carlo  calculation, giving Monte 

Carlo spectra  to be compared directly with the  data. We take  the  latter approach 

for reasons of convenience. The Monte Carlo prediction for the pion spectrum is 

added to  the QED prediction for the muon  spectrum plus the estimates of the 

other minor backgrounds. That  sum is compared to  the uncorrected data.  The 

precise normalizations of the backgrounds are allowed to vary within  experimental 

errors and hence depend on the results of the fit. 

There  are several parameters which are  adjusted simultaneously in the fit 

besides the two-photon widths. However, that does not  mean that  there is a lot of 

freedom available to fit the model to  the  data, because all parameters except for 
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the two-photon widths  are considered to be known within certain  error limits and 

are  constrained to remain within those limits. That is done by adding  a  penalty 

function to  the X 2 . t  For n bins in the  data  and Monte Carlo and m constrained 

parameters, we have 

The yi are  the bin contents,  and the p i  are  the adjustable  parameters, pj their 

nominal values, and api their uncertainties. In addition, we will consider some 

fits in which the Born terms  and the interference terms are multiplied by factors 

(most appropriately  termed fudge factors) which are allowed to vary freely  in the 

fit  in order to judge the sensitivity to some assumptions  made in the model. 

In cases where an assumption is made to constrain to a fixed value the  ratio 

I':7/I';7, only the invariant-mass distribution is included in x 2 .  When the  ratio 

is allowed to vary in the fit,  then it is  necessary to include in x2 the distribution 

of cos OCms as well. 

The complete list of parameters which may be  adjusted simultaneously in the 

fit  is 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

The 77 width of the f .  

Ratio of widths. 

Helicity-one contribution. 

The  unitarity correction. 

The f mass. 

Full width of the f .  
Effective luminosity. 

The q' background. 

The K+K- and pi3 background. 

r77 

r:7/Il;7 

r;7/r77 

3;92(m2f) = (2.5 f 0.7) - GeV2 

mf = 1.274 f 0.013 GeV 

rf = 0.178 f 0.020 GeV 

 le^ = 102.3 f 2.3pb-' 

N,,, = 468 f 87 events 

Ntof = 342 f 34 events 

t Doing  the fit  by  minimizing x2 assumes  gaussian,  rather  than Poisson, distributions for the 
contents of each  bin. In this case that is a very  good  approximation,  because  the  number of events 
is greater than 200 for  every  bin  of  the  untagged data. 
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10. The remaining background. Nhad = 150 f 50 events 

11. T+T- efficiency error at 0.6 GeV. &T = 0 f 0.10 

12. T+T- efficiency error at 2.0 GeV. E; = 0 f 0.05 

13. Fudge factor for the Born term. aB = 1 

14. Fudge factor for the interference. “I = 1 

The values given here are  appropriate for the untagged analysis, although nonzero 

1’+7 is considered only in the tagged analysis. The  error on the f mass has been 

increased over the published value to account for uncertainty in the energy scale 

of the experiment. Parameter  number  ten refers to  the hadronic background 

estimated from the  number of pion-pair events found with non-zero charge. It 

and  parameters eight and nine refer  only to background  normalizations; the 

shapes of the backgrounds are fixed. Note that these backgrounds are almost 

insignificant, especially in the f region, so the normalization  parameters  introduce 

little  additional freedom into  the fit. Normally ag and CUI are fixed at unity. 

Parameters 11 and 12 deserve some further discussion. They refer to Eqn. 6.3, 

which gives the  uncertainty limits on the measurement of the detection efficiency 

as a  function of the invariant mass. The fit allows the normalization of the T+T- 

Monte  Carlo to vary within the limits given  by Eqn. 6.3, but  the individual bins 

are  not allowed to vary independently. Only the normalization corrections at  the 

upper  and lower W limits may vary independently-the corrections for each of the 

bins in between are  determined by those at the  upper  and lower limits by Eqn. 6.3, 

which represents  a  smooth  parabola  with zero slope at the  upper limit. 

Since the theoretical model must  be  calculated by a large number of Monte 

Carlo  iterations,  then  it is not completely straightforward to vary simultaneously 

all parameters for the purpose of doing the fit. But  a  method  has been found which 

works well and is efficient. It relies upon the use of weighted events in the Monte 

Carlo. When generating  events, the  dominant l /W3 behavior of the cross section 

is produced by an analytic change of variables (see Appendix B for a discussion 

of importance sampling in Monte  Carlo  integration),  and all remaining  factors  are 
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lumped  together to produce an event weight. Instead of using a rejection algorithm 

to produce unweighted events, one may simply accumulate  histograms of weighted 

events. Such an approach is the more efficient one, unless the detector  simulation 

is very long and  there is a large fraction of events with very small weights. 

The method also relies on the fact that, for all but two of the  parameters, 

the T+T- prediction plus background may be expanded into  a  sum of terms  such 

that  the parameters  appear as factors multiplying various terms. That obviously 

is the case for the normalization corrections of the various backgrounds. Also, the 

correction to  le^ is a  factor multiplying both  the p+p- and T+T- predictions, 

while the pion efficiency correction multiplies only the T+T- prediction. The mass 

and  width of the f are exceptions and  are  handled by a special technique. For the 

other  parameters, we define two more factors by I'o + aero and I'2 =+ 4 ' 2 ,  so 

the cross section in Eqn. 8.1 may be  written as 

where Rx =5fidio(e)- 

dS1 =; ( B i  + B i )  , 

2 

& 
d"B 

In the Monte  Carlo  calculation,  a weight is calculated for each of the seven 

terms, assuming some nominal values  for the two radiative  widths.  Furthermore, 

for all but  the first term, a different weight  is calculated for each of twenty-five 

combinations of values for the f mass and  width. After the detector  simulation, 

weighted histograms of both  the W and cosOcms distributions  are produced for 

each of the  total of 151 weights. To  allow  for the fitting  program to have access 

to values of m f  and I'f between those included in the 5 X 5 arrays, each array, 
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one for each bin of each of the six terms, is interpolated by bicubic splines before 

beginning the iterations of the fit. Thus  the fitting  program is able quickly to add 

up  the cross section defined  by Eqn. 8.5 for any  set of values of the 13 parameters 

(except that  the values of m f  and rf are limited to  the range of the spline  fits). 

Since all of the weights are  calculated in a single Monte  Carlo job,  and every 

weight in a single event is calculated for the same W and cos O,,,, then  there  are 

no statistical  fluctuations of one term of Eqn. 8.5 relative to another. Therefore, 

the  statistical  error of the  sum of terms is just a linear sum of the  statistical  errors 

of the individual  terms (the resulting  error is the  same as if all terms  had been 

added  together in the Monte  Carlo  job  and  accumulated  into  a single histogram). 

Finally, the general fitting  program MINUIT63 makes the  job of fitting the Monte 

Carlo  histograms to  the  data easy, convenient, and reliable. 

8.3 FIT RESULTS FOR THE UNTAGGED ANALYSIS 

In this section we compare the results for the fit of the f two-photon width 

under various theoretical  assumptions. First, let us consider the most simple 

model, in which no unitarization corrections are made and  the f is assumed to be 

produced only with helicity-two. 

8.3.1 Fit to the T+T- Model  Without  Unitarization 

The theoretical model is almost identical to  that used in the 1984 publication 

of DELCO results on 77 -+ 7rr+7r-.64 There  are only three differences: First,  the 

parameterization of the energy dependent  width is different. In Ref. 64 a form 

due to  Blatt  and Weisskopp5 is used, which  gives a  result for the phase shift 

almost identical to  that obtained from Eqn. 7.32 with a = 1 GeV2. However, 

using a = 0.5 GeV2 gives a better fit to  the  data shown in Fig. 7.4. The second 

difference  is that Ref. 64 assumes an energy dependence for r r r  according to 

r r r ( s )  = ( , /Z/mf)rr7,  whereas the form used here is Eqn. 7.32 for both r r r  and 

I'1FIF. Finally, Ref. 64 uses a value for the branching ratio of the f to mr which is 
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1.5% lower than  the value now found in  Ref. 6. These differences all are  minor, 

and one finds that  the two predictions can only barely be  distinguished  from each 

other  on a plot like that found in Fig. 7.7. 

The invariant-mass  spectrum to which the Monte  Carlo predictions are fit is 

shown in Fig. 5 . 7 ~ .  When only the two-photon  width is allowed to vary in the fit 

and only the  points in the range  from 0.95 GeV to 1.40 GeV are included in the fit, 

the result is r r r  = 2.68 f 0.07 keV. The x2 for the nine bins of data included over 

the range of the f peak is 6.7. Below the f peak the Monte  Carlo  prediction is on 

average about 7% higher than  the  data,  but  that is within the  uncertainty limits 

on the trigger efficiency  in that range. From this we conclude that  the model gives 

a  reasonable fit to  the  data even with the efficiencies and effective luminosity fixed 

exactly at  the measured values.  Also, the  statistical  error on the two-photon width 

coming only from  fluctuations in the bins of the  data  and Monte  Carlo is 0.067 keV, 

or 2.5%. However, we  know that  the efficiencies and effective luminosity, and even 

the f mass and full width,  can  be varied considerably about  the measured values 

and  still  be  within  experimental  errors.  This reduces the predictive power of the 

model, allowing it  to fit the  data more closely and resulting in systematic  errors 

on the two-photon  width which are much larger than  the  statistical  error. 

Table 8.1 shows  in detail the results of allowing all of the experimental 

parameters to vary within  their known error limits. The region below the f is 

included in the fit, and as usual, the two-photon width is allowed to vary freely. 

All of the  parameters remain within  their  error  limits, including the f mass and 

full  width. Note that  the  fitted error  estimates for mf and l?f actually  are smaller 

than  the  constraints imposed on them in the fit. In  fact, if mf and l?f are allowed 

to vary completely freely in the fit, they  still remain within  their  error limits. 

However, the  data in the low range of W prefer that  the T+T- detection efficiency 

be almost 5% lower at W = 0.6 GeV than  it was measured to be, and  the effective 

luminosity is decreased by 1.5% in order to predict fewer muon pairs  and pion pairs 

in that region. Furthermore, by shifting the f mass down slightly, the Monte  Carlo 
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prediction fits in the peak of the f better. All of these changes are well within the 

respective error  limits, but they  together have the effect of increasing the fitted 

two-photon  width by 4% over the value obtained when all other  parameters  are 

fixed. Nonetheless, this shift in rrr, though  greater than  the  statistical  error, is 

well within the  total  error shown in Table 8.1 of f 7 % .  

If only those bins with 0.95 5 W 5 1.40 are included in the fit, then  the 

result is rrr = 2.712::;: keV,  which  is almost the same as the result  obtained 

when all parameters  but rrr were held fixed, although  here the systematic  errors 

are included. Another systematic  error which has  not  yet been included is the 

uncertainty in the  momentum resolution of the experiment (see Section 3.1). The 

fits presented so far have assumed that  the resolution of the  track  curvature is 

a,/rc = 7%. When it is varied from 8% down to 6%, the two-photon width  from 

the fit varies by  less that  the  statistical precision of 2.5%, while the fitted value 

of the full width varies from 0.164 GeV up  to 0.187 GeV. Thus  the result is not 

sensitive to  the value assumed for the  momentum resolution, and  the observed f 

peak is completely consistent  with the known value of the f width. 

A check  is made on the validity of using the Born term  to describe the 

continuum below and  under the f by doing a fit with the coefficient ag left free to 

vary. The range in W from 0.6 GeV to 1.4 GeV  is included in the fit, and  the main 

effect  is that ag decreases by 7% from unity, while the T+T- trigger efficiency 

returns to its measured value. The value for the two-photon width increases by 

only 1.4%, while the size of the error  estimate increases by 0.01 keV. Therefore, 

within  experimental  errors the Born term describes the  continuum adequately at 

least below the f peak,  and the  fitted two-photon width is not changed when the 

normalization of the Born term is allowed to vary freely. 

Figure 8.1 shows a histogram of the  data with all of the background 

subtracted. It is compared with the T+T- prediction as given  in Table 8.1. Note 

that  the fit is excellent for W 5 1.40 GeV, but above that  and  up  to 1.75 GeV 

the  data  are much higher than  the prediction and  are only slightly lower than 
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Table 8.1. Results of fitting the d m -  model with  no  unitarization  and  with  the 
helicity-zero two-photon width of the f fixed to zero.  More complete definitions 
of the  parameters may be found in Section 8.2. 

Parameter  Fit Value  Lower Error Upper Error 

1. 77 width 

0.169  GeV  -0.011 +0.011 6. full width 

1.262  GeV  -0.004  +0.004 5. f mass 

2.82  keV  -0.19  +0.20 

7. Lerr 100.7 pb-l  -1.2 +1.2 

8. Q' background 

150 events -50 +50 10. Q # 0 background 

336 events -34 +34 9. K K , p p  background 

423 events -83 +83 

11. &I 
-0.003  -0.050  +0.050 12. &T 
-0.047  -0.085  +0.086 

Covariance Matrix  Correlation Coefficients 
1 5 6 7 8 9 10 11 

5 -0.056 
6 0.490 0.366 
7 0.011 -0.248  -0.073 

8 0.063 -0.064  -0.052  -0.037 

9 -0.043 -0.015  -0.026  0.004  -0.007 

10  -0.013 -0.017  -0.036  -0.023  -0.014  -0.009 

11 -0.324 0.297  -0.217  -0.803  -0.101 -0.002 -0.019 

12 -0.729 0.104  -0.082  0.021  -0.016  0.001  -0.004  -0.023 

Fit range: 0.6 < W < 1.4 GeV 16 bins 
x2=11.8 
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Figure 8.1. The background-subtracted T+T- invariant-mass  spectrum 
compared with the Monte  Carlo  prediction (solid histogram)  with no 
unitarization  and  with no helicity-zero coupling to  the f .  The  smooth 
curve shows the prediction for T+T- from the Born term alone. The 
values of all the fit parameters  are as given in Table 8.1. 

the  spectrum predicted from the Born term alone. It is the interference with the 

resonance which makes the prediction so low in that region. Why the full effect  is 

not seen in the  data is not known. 

If the  entire range of W is included in the fit, then as expected, the effective 

luminosity is increased by almost 2% in order to reduce the  data above the f peak 

by subtracting more muon pairs.  To  compensate  then below the f ,  the T+T- 

detection efficiency  is  lowered to  the point of being two standard deviations below 

the measured value. The net  result is only a 2% increase in rrr. The fit still is not 

good above the f peak,  with x2 = 48 for the  entire 28 bins of data.  It is clear that 

this model cannot  be used  over the full energy range  without some modification. 

This disagreement above W = 1.4 GeV  is worrisome because it indicates 

that something is wrong with the description of the  continuum background. It 

is important  to assess what affect this  has on the measurement of the two-photon 

width of the f .  It is possible that some of the effect  is from non-gaussian tails in the 
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momentum resolution which are  not reproduced by the Monte  Carlo  simulation. 

However, the  same effect  is seen by the PEP-4/PEP-9 experiment! Most of the 

disagreement is  believed to be genuine. 

In Ref. 5 the problem is handled by introducing  an arbitrary  parameter, which 

we call a1, to multiply the interference terms of the cross section. This does yield 

a good fit over the full energy range, but only with a1 as low as 0.5. When a1 

is allowed to vary freely in the DELCO fit, good agreement is achieved over the 

full energy range ( x 2  = 26 for the 28 bins),  but  with a1 = 0.72 for the  best fit. 

However, the fit forces the f mass down to 1.249 GeV, which is getting  rather  far 

from the preferred value. That is to be  expected, since the interference is necessary 

to shift the peak down to  the observed position. The best fit for r r r  is raised by 

only 1.8% compared  with the result for a1 = 1. 

The  parameter a1 is justified in  Ref. 5 by arguing that one really does not 

know if the  continuum is properly described by the Born term, in which case 

one cannot  be  sure that  it really is all in helicity two in the f region.  However, 

multiplying the interference terms by a fudge factor is a perversion of the model 

which makes it difficult to interpret physically. Another possible explanation for 

the discrepancy is resonance production in the S-wave (perhaps  the E (1300)). To 

assess the effect of such  a possibility, we try adding an additional non-interfering 

background to  the fit. This is done with  a gaussian curve centered at Wo = 1.5 GeV 

with arbitrary  width  and height: 

B ( W )  = Aexp ( - (W;Qy)2) . 

The best fit over all 28 W bins has x 2  = 15.0 with A = 126 events  and 

Q = 0.13 GeV. The best fit for rrr is  lower  by 3.5% relative to  the result fit 

only on the range W < 1.4 GeV and  without the gaussian background. Note that 

adding the gaussian background changes the fitted value of rrr in the opposite 

sense from the effect of the fudge factor in the interference term. 
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Taking into consideration all of the systematic effects, and in particular 

the effects of changing the region included in the fit and adding the gaussian 

background of Eqn. 8.6, leads to  the result 

rrr = 2.77 f 0.31 keV, (X = 2, no unitarization). (8-7) 

Keep in mind that this  result assumes a model which violates unitarity  and also 

that  the helicity-zero coupling is assumed to be exactly zero.  Since this is identical 

to  the model used in the DELCO analysis of Ref. 64, we may compare the results 

directly. The result of the analysis of Ref. 64 is rrr = 2.70 f 0.21 keV.  Only 

about half of the presently available data were used, but  the  actual reasons for 

the difference with the present  result  are  systematic.  First of all, the analysis 

of Chapter 6 has been done since then. Reference 64 assumes that  the relative 

detection efficiency of pion pairs compared with  muon  pairs is independent of 

energy. Second, in Ref. 64 the correction to necessitated by bremsstrahlung 

from electrons passing through  the beampipe and drift  chamber  material was not 

made. These  two corrections largely cancel each other  with respect to  the fitted 

two-photon width,  but  they  do  contribute significantly to  the  estimate of the 

systematic  error. 

8.3.2 Effect of Requiring Unitarity 

The  unitarity correction is added to  the model by setting 392 nonzero and 

allowing it  to vary in the fit. If it is  allowed to vary completely freely, then one finds 

that  the  data give no constraint.  That is expected from Fig. 7.9, where it is evident 

that  the correction does not change the  shape of the  spectrum significantly but 

only lowers the peak a  bit. Therefore, 392 must  be  constrained to remain within 

the range of the theoretical prediction of Eqn. 7.57. That is done by using the 

bounds given  by Eqn. 7.57 as gaussian error limits. Assuming such  a gaussian 

distribution  cannot  be well justified, but  the bounds seem conservative enough 

that  the error  estimate is not likely to be an underestimate in any case. 
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We continue to assume that  there is no helicity-zero resonance coupling. The 

result of the fit is in all respects almost identical to  that done with  no  unitarization 

except that  the two-photon  width becomes larger and  has slightly larger errors. 

The  fitted value arrived at for Trr  when fitting over the range 0.6 5 W 5 1.4 GeV 

with c x ~  = 1 is rrr = 3.442::;; keV. This is assuming the definition given  by Lyth, 

as expressed in Eqn. 8.3. When all systematic effects, such as the dependence 

on the interval of W included in the fit, are accounted for as in the previous 

section, the final result for the unitarized model of Lyth,  assuming zero helicity- 

zero coupling, is 

rrr = 3.34 f 0.35 keV, (X = 2, unitarized). (8.8) 

8.3.3 Comparison  with  the  Mennessier  Model 

The Mennessier model may also be used to fit the two-photon width of the f .  

The procedure is similar to  that discussed above, except that  it is not possible to 

fit the f mass and full width simultaneously with the two-photon width in this 

case. It is not possible for us to separate  the model into all of its  separate  terms as 

is done for the more simple model in Eqn. 8.5. Therefore, Mennessier’s program 

was run once  for each of several values of the two-photon width,  and  the  result 

was interpolated by cubic splines. 

Table 8.2 gives the results of the fit when all data  up  to W = 1.4 GeV are 

included. The x2 is not as low as that shown in the fit of Table 8.1, but  that is 

partly  due  to  the inability to adjust  the mass and full width of the f .  Restricting 

the fit to only the region of the f peak has the  same effect as with the model of 

the previous section. Taking that  into account, plus the effects of changing mf, 

rf, and  the Monte  Carlo  momentum resolution within the allowed limits gives the 

final result for the Mennessier model: 

rrr = 2.93 f 0.30 keV, (X = 2, Mennessier). 
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Table 8.2- Results of fitting the Mennessier model to  the untagged rrr+rrrr- 
data  with  the helicity-zero two-photon width of the f fixed to zero. More 
complete definitions of the  parameters may be  found in Section 8.2. 

Parameter Fit Value  Lower Error Upper Error 

1. 77 width 3.01 keV -0.15  +0.16 

7- Lff 95.8 pb- l  -1.1  +1.1 

8. v' background 

147 events -50 +50 10. Q # 0 background 

342 events -34  +34  9. KK,pjj background 

412 events -87  +87 

11. E T  

0.00 -0.05  +0.05 12. &$ 

-0.043  -0.076  +0.076 

Covariance Matrix  Correlation Coefficients 
1 7 8 9 10 11 

7 -0.052 

8 0.109  -0.049 

9 -0.046  0.002  -0.009 

10 -0.003  -0.022  -0.009  -0.003 

11 -0.088  -0.844  -0.100  -0.004  -0.032 

12  -0.783  0.063  -0.037  -0.001  -0.002  -0.154 

Fit range: 0.6 < W < 1.4 GeV 16 bins 
x2=14.1 

Note that this fit does include Mennessier's unitarization corrections. How- 

ever, as we have seen  in Chapter 7, those corrections have little effect. Further- 

more, the definition used here for rrr is closer to  that of the  parameter I',(m3) 

in the model given by Eqn. 8.1 (Lyth's model) than  it is to rrr as defined  by 

Eqn. 8.2. The  unitarization correction is not considered to be part of the coupling 

of 77 to the f. According to Eqn. 8.3, I'2(m3) is 0.257keV less than I';7. Com- 



182 

paring the fitted value of I',(m2f) from Eqn. 8.8 with  Eqn. 8.9, we find that  the 

Mennessier result is about 5% lower. That is to be expected from the comparison 

of the two  unitarized models shown in Fig. 7.9 and corresponds to more than two 

standard deviations of the  statistical error (the systematic effects are  the same for 

each model). 

In summary, the two models fit the  data equally well. When no unitarization 

corrections are  made,  they give results for r r r  which agree with each other 

within the systematic  errors. The principle differences  lie in the definitions of 

r r r  when unitarization corrections are  made  and in the fact that unitarization of 

the Mennessier model produces little change whereas it lowers  by several percent 

the f peak in the Lyth model. 

8.3.4 Including  the Angular Distribution 

It is important  to consider the effect of a possible helicity-zero contribution to 

the resonant coupling, since there is no theoretical  justification to assume that it 

is exactly zero. To do so, it is essential to include into  consideration the measured 

angular  distribution. We use the  distribution of cos O,,, integrated over the range 

1.0 5 W 5 1.5 GeV, in order to be most sensitive to  the angular  distribution of 

pion pairs coming from the f resonance. 

First, let us consider the angular  distribution alone. There  are twelve bins 

of width 0.05 from cosOcrns = 0 to  the detector limit of COSO,,, = 0.60. The 

predicted distribution is a combination of the flat distribution  from  the Born 

term interfering with the d i o ( 0 )  functions from the resonance decay, plus the 

approximately (l+cos2 O)/(1-cos2 6) distribution  from  the muon-pair background. 

The experimental acceptance, given  for the most part by the single cut cos Olab 5 
0.60, falls sharply from a  maximum at cos O,,, = 0 to zero at cos O,,, = 0.60 

and  strongly affects the observed shape. The result of fitting to only the angular 

distribution is that  the  data prefer essentially zero contribution  from helicity-zero. 
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The 90% confidence  level upper limit is 

< 0.15 (90% confidence). (8.10) 
r;7 

It is interesting that this  ratio  actually is constrained  substantially by the 

invariant-mass  distribution alone. It is easy to see  why that is so. The  spectrum 

is dominated by the interference effect,  which enhances the cross section below 

resonance and decreases it above. Such an effect does not occur for helicity zero, 

because the helicity-zero Born term is negligible  in the resonance region. In fact, 

if the coupling is assumed to be only helicity zero, the model predicts  far  too few 

events below resonance and  far  too  many above, and  the  best fit to  the invariant- 

mass spectrum  has  a x2 of 150 for 16 bins (the two-photon width for that fit is 

6 keV) . 
Table 8.3 shows the results of fitting simultaneously to  the invariant-mass  and 

angular  distributions.  Both helicity amplitudes  are included, and  the  unitarization 

corrections to  the helicity-two amplitude  are included. Figure 8.2 compares 

the  fitted  spectra to the  data.  The additional  systematic effects, such as the 

dependence on the range of W included in x2, are  about  the same as for the fit 

with only the invariant mass distribution included. Taking them  into account 

results in 

rr7 = rO,, + r;7 = 3.42 f 0.37keV 

I';7/I';7 < 0.14 (90% confidence). 

(8.11) 

Here, Lyth's definition of rrr (Eqn. 8.3) is assumed. 

We have found that  the DELCO constraint on the  ratio of helicity amplitudes 

is much better  than  the  Crystal Ball result  (compare  with  Eqn. 1.3). That may 

be  surprising at first, but it is because of the relatively small  number of TOTO 

events observed by the Crystal Ball collaboration. Their  advantage lies  in being 
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Table 8.3- Fit of the complete model of Eqn. 8.1 to  the untagged T+T- invariant- 
mass and  angular  distributions. Definitions of the parameters  may be found in 
Section  8.2. 

Parameter Fit Value  Lower Error Upper Error 

1. r77 

0.00026  GeV2  -0.00007 +0.00007 4. 392(74) 

0.01  -0.01  +0.13 2. r;7/r$y 
3.51  keV  -0.22  +0.27 

5. f mass 

0.168  GeV  -0.012  +0.011 6. full width 

1.266  GeV  -0.005  +0.005 

7. Lff 100.8 pb-I -1.2 +1.2 

8. q' backround 416 events -82 +82 

9. KK,pjj background 

150 events -50 +50 10. Q # 0 background 

342 events -34  +34 

11. &T 
-0.002  -0.050 +0.050 12. &; 

-0.070  -0.085  +0.094 

Covariance Matrix Correlation Coefficients 
1 2 4 5 6 7 11 

2 0.374 
4 0.133  -0.038 
5 -0.106  -0.286  0.099 
6 -0.537  -0.060  0.031  -0.380 
7 0.041  0.116  0.003  -0.251  0.062 

11 -0.265  0.091  -0.016  0.216  0.224  -0.781 
12 -0.641  0.034  0.005  0.124  0.067  0.030  -0.035 

Fit range: 0.6 < W < 1.4 GeV, lcos 8,,,1 5 0.60  28 bins 
x2=17.3 
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Figure 8.2. Best simultaneous fit to  the W and cos Ocms distributions of 
the untagged T+T- data.  The points  with  error  bars are  the  data.  The 
values of the fitted  parameters are given  in Table 8.3. 

able to observe the region \cos Ocms I > 0.80, where the angular  distributions  differ 

greatly. However, their  error  bar in that region  is too large to provide a very good 

constraint. The region near \cos Ocms I = 0.70 is not very helpful, since it is around 

there  that  the angular  distributions cross. Thus DELCO is not at a disadvantage 

due to  its acceptance limit of \cosOcmsI < 0.60. Also, the Crystal Ball limit may 

be more stringent if the X = 1 fraction (which must be negligible  for an untagged 

experiment) were not included in the fit. 

If the  ratio I':7/I'& is  fixed at  the Crystal Ball 1-0 upper limit of 0.51, then 

the best fit has a x2 from the 12 bins of the angular  distribution of 16, which is 

an increase of 9 units from the best fit with the  ratio left free. This increase in x2 
comes from a systematic deviation which  is quite obvious when plotted-the Monte 

Carlo  angular  distribution with the helicity-zero contribution mixed in  falls too 

rapidly in the region 0.2 < [cos Ocms I < 0.6 relative to  the  data.  Part of the reason 

for such a good constraint is that all the systematic problems, such as the pion-pair 

trigger efficiency, have a small effect on the observed angular  distribution relative 

to  the effect of the  actual decay angular distribution. The major experimental 

effect is the detector angular acceptance, which is  well understood. 
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8.3.5 Extrapolating rrr to Q2 = 0 

For the energy range  subtended by the f peak, the EPA luminosity function 

predicts an average Q2 of 92 = 0.006GeV2, where Q2 is  defined to be the 

maximum of -q? for the two  photons. To extrapolate  the  results of the untagged 

analysis for the two-photon width to Q2 = 0, we assume the GVDM form factor 

of Eqn. 2.20. It predicts that all the untagged  results for rrr should  be  multiplied 

by a factor of 1.014. This change is small compared with the experimental  errors, 

which are 11% or more, so it is not  critical  whether or not  such a correction is 

made. 

8.4 FIT RESULTS FOR THE TAGGED ANALYSIS 

For the tagged events, the principle interest is to see the Q2 dependence of 

the two-photon width of the f .  To this  end, we ignore for  now the question of the 

unitarity correction and simply compare the result for a simple model of interfering 

Born plus Breit Wigner amplitudes  with the equivalent result  obtained at Q2 = 0. 

The question of the  ratio of helicity contributions  takes on a greater  importance, 

however. The average Q2 for events with a single tag in the DELCO luminosity 

counters is calculated by Monte  Carlo  from Eqn. 2.18 to be 92 = 0.44 GeV2. The 

authors of Ref.  66  give predictions, based on a non-relativistic quark model, for 

the Q2 evolution of the  three possible helicity amplitudes of the cross section for 

77 + f .  At Q2 = 0 the X = 1 cross section is, of course, zero, and  the X = 0 cross 

section is zero as well. But for an experiment with a minimum tagging angle of 

0.25 milliradians, the X = 0 contribution is 5%, and  the X = 1 contribution is 25%. 

To model the  continuum we continue to use the same Born term as given  in 

Eqn. 7.27, except that  it is multiplied by the GVDM form factor of Eqn. 2.20. 

This is justified by the fact that  the result gives a reasonable fit below the f 

peak. The first bin, from W = 0.6GeV to W = 0.65 GeV, is an exception. 

It  appears  to  be a factor of two too low, unless either the cross section or the 
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detector acceptance has some unknown sharply changing behavior at  that point, 

but a statistical  fluctuation  cannot  be ruled out. 

Experiments in the past5j3 commonly have analyzed tagged data with the 

assumption that  the f resonance is produced only in helicity two. But  then 

the results for the Q2 dependence often are compared with the GVDM form 

factor, which is inconsistent. GVDM explicitly includes contributions for  which 

one of the colliding photons is longitudinally polarized, which are suppressed 

only by factors of Q2/m$ (see Eqn. 2.20) relative to  the transverse-transverse 

contributions.  These  additional  contributions necessarily have helicity one. That 

is not a serious issue for the description of the  continuum,  but  to measure the 

resonant cross section accurately  within a limited angular  acceptance, one must 

assume the proper  angular  distribution for the resonance decay. A Monte Carlo 

calculation of the resonance term multiplied by the GVDM form factor  predicts 

that on average for the DELCO tagging acceptance 

(8.12) 

Furthermore,  it is safe to assume within this acceptance that  the transverse 

polarization  parameter E: of the 77 luminosity function  (Eqn. 2.16) simply is unity. 

The  parameters in the fit differ only slightly from  those  presented in 

Section 8.2  for the untagged analysis. The background from K+K- and p p  is 

negligible  in this case and is ignored. The  other  parameters which differ from the 

untagged analysis are 
Lee =94.1 f 3.3 pb-', 

N,,, =72 f 16events, 

Nhad =560 f 112 events. 

In  addition,  the tagged analysis makes use of the helicity-one coupling. The 

helicity-one contribution is not shown in Eqn. 8.1, but it differs from the  other two 

resonance terms only in the angular  distribution. For simplicity, the continuum 
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production is assumed not  to interfere with the helicity-one resonance amplitude, 

even though using the GVDM form  factor implies some helicity-one contribution 

in the  continuum. 

First, let us see  how  well the  data can  constrain the helicity ratios. When all 

three helicity contributions  are allowed to vary independently, the result is 

rrr = 1.42 f 0.33 keV, (@ = 0.44 GeV2), (8.13) 

rO,,:r;,:r;,=40:0:60. 

Included in the systematic  error  are the effects of changing the range of W included 

in the fit, but for the tagged data  the results  are  not very sensitive to  that change. 

In fact, even the prediction above the f peak agrees well with the  data,  partly 

because the  statistical  errors  are large compared with the untagged data.  The 

explicit results of such  a fit, with the W range  restricted to 0.65 < W < 1.4 GeV, 

are shown in Table 8.4, and Fig. 8.3. The  data prefer that there  be no helicity-one 

contribution. If the fit is repeated  with the helicity ratios fixed to  the prediction 

of Ref. 66, then x2 for the twelve  cos &,, bins increases from 4.8 to 10.7, so that 

prediction is not well supported by the  data. On the  other  hand,  the GVDM 

prediction of 8% for the X = 1 contribution is consistent  with the fit shown in 

Table 8.4. The fit does not  constrain very well the  ratio of the X = 0 to X = 2 

contributions, since their  angular  distributions  within the acceptance are relatively 

similar. If the X = 1 contribution is taken from GVDM and  the X = 0 contribution 

from Ref. 66, and if the result is fit only over the mass spectrum,  then x2 for the 

angular  distribution is 7.3 for 12 bins. The best fit for the two-photon width  then 

is found to be 

rrr = 1.16 f 0.18 keV, (@ = 0.44 GeV2), (8.14) 

rO,, : rt;, r;7 = 50 : 75 : 875. 
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Table 8.4. A fit to  the tagged r+7r- data with all three helicity amplitudes allowed 
to vary independently. Complete definitions of the  parameters may be found in 
Section 8.2. 

Parameter Fit Value  Lower Error Upper Error 

1- r77 

0.66  -0.66 + 1.09 2. q 7 / q 7  

1.40  keV 

0.00 -0.00 +0.13 3- q 7 & 7  

-0.29  +0.34 

5. f mass 

0.172  GeV  -0.019  +0.018 6. full width 

1.267  GeV  -0.010  +0.010 

7. &ff 92.3 pb- -2.3 +2.3 

8. q’ background 

538 events -112 +112 10. Q # 0 background 

72 events -16 + 16 

11. &T 
-0.002  -0.050  +0.050 12. &; 

-0.001  -0.095  +0.095 

Covariance Matrix  Correlation Coefficients 
1 2 3 5 6 7 11 

2 0.876 

3 0.066  -0.033 
5 -0.464  0.504  -0.005 
6 0.245  0.110  0.120  0.152 
7 0.005 0.278 -0.021 -0.113 -0.094 

11 0.046 -0.011 -0.234 0.144 0.132  -0.443 

12 -0.211 0.000 -0.026 0.053 0.018  -0.029  -0.103 

Fit range: 0.65 < W < 1.40 GeV, (cos 8,,,1 5 0.60 27 bins 
x2=11.4 
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Figure 8.3. Complete fit of the tagged T+T- data with all three helicity 
amplitudes allowed to vary independently. The results of the fit are 
detailed in Table 8.4. 

8 . 5  REMARKS ON THE FITTED f MASS 

Recall that in Section 7.4.2 we have predicted that  the energy dependence of 

the resonance requires that  the  parameter mf actually  be 1.284 GeV in order that 

the pole in the complex plane falls at the point specified in Ref. 6. Thus  the best 

values  for mf presented in the fits of this  chapter could be typically 2% low. If that 

really is so, then  it actually is consistent  with the Ks mass peak, which is observed 

to be 2% low (see Section 3.1). The fitted value of rrr, however, is not sensitive 

to  the assumption  made for amf. The  important point is that  the uncertainty in 

the  momentum scale does not affect the normalization of the p+p- subtraction, 

because the normalization is derived from a measurement of e+e- -+ e+e-e+e-, 

which  is  affected exactly the same by systematic  shifts of the  momentum scale as 

are  the measurements of muon and pion pairs. 

In this  chapter we have seen the results of many fits for the two-photon width 

of the f under various theoretical  and  experimental  assumptions.  In  Chapter 10 

the implications of these  results  are discussed, and  the unfolded spectra for the 

untagged pion pairs  are  presented. 
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9. The Time-of-Flight Analysis 

The analysis of kaon and proton  pairs differs from that of  pion pairs only  in 

that  the time-of-flight counters  must be used  in addition to  the  other systems. The 

trigger is the same,  although the response to  the trigger differs. The tracking is the 

same,  though for  kaons it is essential to include in the Monte Carlo  simulation  the 

effects of in-flight  weak  decays.  And the Cerenkov counters are used  in the same 

manner to reject electron pairs,  although when analyzing kaons and protons they 

are not as important, since the time-of-flight analysis would reject most electrons 

anyway. So up  to  the point of actually analyzing the timing information, the 

analysis is almost identical to  that of the pion pairs. The main exception is that 

the lower cut on the invariant mass is changed to W K K  > 1.3 GeV, and no explicit 

upper cut is made. This  chapter first discusses the performance of the time-of- 

flight system  and how best to extract the maximum  amount of information from it. 

The  resulting analysis then is used to measure the cross sections for 77 --+ K+K- 

and 77 + p ~ .  

The system consists of 52 plastic scintillators, 2.5 cm thick and of varying 

widths and lengths, mounted on the faces of the six aluminum boxes which house 

the barrel shower counter system and  are  arranged in a hexagon about  the inner 

detector. Most of the counters actually are Ionger than  the barrel shower counters, 

but two are  cut a few centimeters shorter because of obstructions. Also,  in addition 

to  the gaps between sextants,  there  are  a some 4 gaps which do not appear in the 

shower counters. Therefore, within the range -0.6 < cos B < 0.6, the time-of-flight 

acceptance is slightly smaller than  that of the shower counters. The tracking is 

not used to define strictly the acceptance. Instead, since there  are only two well 

separated  tracks in each event,  a fired counter is assumed to  be associated with a 

track if the track passes near to it and  there is a good time reading at  both ends 

of the counter. 
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9.1  CALIBRATION OF THE TIME-OF-FLIGHT SYSTEM 

Calibration of the counters is done using the low-energy electrons from two- 

photon  events. In  fact,  the detector was  allowed to be triggered by events  with only 

a single electron detected (usually produced by the process e+e- --+ e+e-e+e-), 

so there is an  abundant supply of such electrons for every few hours of data  taken. 

That allows one to remove slight fluctuations in the timing which occurred on the 

time scale of a few days or less. Large fluctuations which occurred on time scales 

of several days or more divide the  data  into 30 run blocks, for which the  entire 

calibration was done separately for each. 

Muons and pions, also from two-photon events, also were used in the 

calibration,  but only for measuring light attenuation  and pulse-height gain. The 

corrected pulse height for a particular  phototube is calculated from the raw pulse 

height by the formula 
AzlAj a, = a, - g; - e , ( 9 4  

where gi is the pulse-height gain for the  ith  phototube, Az is the distance  from the 

hit to  the  phototube,  and Xi is the  attenuation length for the j t h  scintillator. For 

each run block, the g; and Xi were adjusted such that  the corrected pulse-height 

distributions  from minimum-ionizing particles all consisted of relatively narrow 

peaks centered about a pulse height which  is independent of the  phototube  and 

its distance  from the position of the  hit. Evidence of large variations in counter 

quality is found in the measured attenuation lengths, which vary from 70 cm to 

270 cm. 

Then, using electrons, plots were made of the average time residual for each 

phototube versus the measured pulse height and  the distance of the electron hit 

from the  tube, as measured by tracking. The time residual is the measured time 

minus the  time predicted by tracking. Since the electrons travel  with essentially 

the velocity of light, the predicted  time is t ,  = t o  + l / c  + Az/v;, where t o  is the 

time of the  beam crossing, l is the measured arc length from the interaction  point 

to  the  counter,  and v; is the effective velocity of light in the scintillator. Corrected 
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times are determined from the measured times by adding a consta7t pedestal plus 

a term in l/& to correct for pulse-height  slewing, where ar is tne uncorrected 

pulse height. An additional polynomial correction is made for very large pulse 

heights (greater than 15 times minimum ionizing), since there  the l/& a behavior 

no longer holds. Also, a nonlinear correction is made for the z dependence when 

the  hit is near the  phototube, because  in that region the z dependence cannot 

be fully described by a  constant effective  velocity.  All of these constants for the 

pulse-height slewing corrections, non-linear z dependence, the pedestals, and  the vi 

were adjusted iteratively for  each phototube or scintillator  until the time residuals 

formed a peak centered about zero and as narrow as possible. 

9 .2  MONTE CARLO SIMULATION 

The performance of the various components of the time-of-flight system  must 

be measured in order to calibrate the Monte Carlo simulation. The same results 

also are needed  in order to calculate probability weights for particle identification. 

The first priority is that  the Monte Carlo simulate the pulse height distribution 

well. There is no interest in measuring the velocity of electrons, so only the heavy 

particles need to be handled properly. 

For heavy charged particles, the energy deposit in the scintillator is approxi- 

mately given  by67 

“ c c l [ l n (  dx p2 2m,q2c2 I )-@‘I, 
where I is a phenomenological constant, PC is the incident particle’s velocity, 

and q2 = p2/(1 - p2) .  Fluctuations  about  this  mean energy deposit are given 

by a Landau distributiony8 which forms a peak with a width almost an order of 

magnitude more narrow than  the resolution of the counter  system  and  with  a long, 

low tail extending to pulse heights more than twice as large as that of the peak. 

The proportionality  constant for Eqn. 9.2 is measured for each counter from the 

position of the peak in a histogram of pulse heights, corrected for attenuation  and 

the incident angle, of minimum-ionizing muons  and pions. Also measured for  each 
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Figure 9.1. Energy deposit of kaons  in the time-of-flight counters. The 
points  with  error  bars show the corrected pulse height distribution for 
time-of-flight identified kaons, and  the solid histogram is the Monte Carlo 
prediction. The  dotted histogram shows the distribution for minimum- 
ionizing muons  and pions, for which the counters were calibrated. The 
units of the abscissa are  arbitrary. 

phototube is the width of the pulse height distribution. In the Monte Carlo, the 

energy deposit is calculated from the  path length through the counter by Eqn. 9.2. 

It  then is smeared by a random  number  drawn from the Landau  distribution, 

attenuated according to  the distance from the  hit  to  the  tube,  and smeared by 

a  random  number  drawn from a gaussian distribution of the  appropriate  width. 

Figure 9.1 shows that  the Monte Carlo performs well when predicting the pulse 

height distribution for incident kaons. 

Next, the time resolution must be simulated.  There  are not enough data 

to measure accurately the pulse-height dependence of the resolution for each 

phototube.  Instead,  what is done is to make a histogram of the time residual 

of each phototube using  only those electrons which produce a pulse height greater 

than 0.5 gs, where gs is an  arbitrary  unit defined  by the calibration. Since above 

that cutoff the resolution is almost constant,  then  the resulting histograms are well 
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Figure 9.2. The pulse-height dependence of the resolution of the time-of- 
flight counters. The  points show the gaussian widths of the  distributions 
of time residuals divided by phototube-dependent  widths. Hence the 
units of the  ordinate  are  arbitrary.  The  smooth curve is the best fit to 
the parameterization described in the  text. 

fitted by gaussian curves. Then  a new set of histograms is made by combining 

all phototubes  and  accumulating  the  time  residual divided by the sigma of the 

gaussian fit for the  particular phototube. One histogram is made  for each of 

several ranges of pulse height,  and each is fit to a  gaussian curve. Figure 9.2 

shows a plot of the resulting gaussian widths versus the square-root of the pulse 

height. The  smooth curve is a fit to a constant plus l/&, changing to a  straight 

line at  about 1.5 gz. This  parameterization is what is used in the Monte Carlo 

simulation  and the analysis. As a check of the  method, Fig. 9.3 shows a histogram 

of the  time residual divided by the expected resolution for a sample of high-energy 

muons from the process e+e- --+ p+p-. The Monte  Carlo agrees well with the 

data,  and  both samples are well fitted by a gaussian curve of width close to unity 

and mean close to zero. 
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Figure 9.3. The time-of-flight phototube  time resolution for 14.5 GeV 
muons,  comparing data (solid histogram)  with  Monte  Carlo  (points  with 
error  bars).  What  are plotted  are  histograms of the  time residual divided 
by the expected resolution. The smooth  curve is a  fitted  gaussian  curve 
with a width of u = 0.964 and a mean of p = -0.037. 

9 .3  TIME CONSISTENCY AND THE TIMING RESOLUTION 

The time-of-flight analysis relies heavily on tracking information. Especially 

the  momentum measurement is important, because it  must  be used along with 

the time-of-flight in order to identify kaons and  protons. The tracking cuts of 

the pion-pair analysis are used again here, but with the  addition of one cut. 

Both  tracks in each event are required to have a x2 per degree of freedom 

less than 2.5 for the fit to  the drift  chamber  hits.  This helps to reduce the 

incidence of measurements  with large non-gaussian errors. However, the most 

powerful cut in that respect is one made on the timing information itself. The 

time is measured independently at  both ends of the  counter, so it is possible to 

have a cut which requires the two times to be  consistent  without biasing the 

average. 
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Let t l  be  the time residual measured by the  southern  end of the counter  and 

t2 the time residual from the  northern end, where time residual is defined to be 

the difference between the measured time  and the time expected for a particle 

traveling the speed of light. With At E t l  - t2, the time consistency is  defined 

to be AtlOAt. The main contributions to  the error  estimate Oat are  the timing 

uncertainties, atl and at2, which are calculated from the measured pulse height 

by using the parameterization shown in  Fig. 9.2. There also is a contribution 

from tracking which introduces a small anticorrelation between t l  and t2. The 

error in the prediction for the z-position of the point of impact of the particle 

on the time-of-flight counter (denoted by zt) comes primarily from errors in the 

tracking  parameters zo and  tan X. X is the  dip angle of the  track,  and zo is the z 

coordinate of the track at the point nearest the beam line. The error  estimate for 

zt is expressed in terms of the tracking covariance matrix by 

The parameter peff is the effective moment arm between where the measurement 

occurs (in the drift chambers-not at  the origin) and  the counter. It has been 

found from Monte Carlo to be approximately half of the  actual  arc length. Finally, 

the error  estimate for the time consistency is 

Figure 9.4 shows a histogram of AtlaAt for the entire  sample of non-electron pairs 

used  for time-of-flight analysis. The histogram is  well  fit  by a gaussian curve with 

o = 1.05 and p = 0.003, verifying the validity of the error  estimates. Before 

continuing the analysis, all events are rejected which do not have two tracks with 

Atlaat  < 2.5. Outside the 2.50 limit the gaussian curve begins to fall  well  below 

the  data, which have a long tail extending as far as &loa. This cut reduces the 

data sample by about 5%. 
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Figure 9.4. Histogram of the time consistency of the two measurements 
of the time residual made for each minimum-ionizing particle  hitting a 
time-of-flight counter. Each entry of t l  - t 2  is divided by the expected 
error, as calculated from Eqn. 9.4. The  smooth curve is a gaussian fit. 

Two more cuts  are  made on the  data  to reject tracks  with inordinately large 

expected timing  errors. Four of the counters consistently give time residuals more 

than twice as large as those of all the remaining counters, so events with  tracks 

hitting those counters  are  not used. And those tracks which have a corrected 

pulse height, averaged over both phototubes, less than 0.2 gs are rejected because 

of the large timing  errors expected from such a small pulse height. Also, events 

including tracks  with pulse heights greater than 5.0 gs are rejected because they 

are  suspected of being associated with some sort of noise contribution. 

The best value for the time residual is a weighted average of t l  and t 2 :  

Figure 9.5 shows a  histogram of 2 for high-energy muons. One does not expect 
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Figure 9.5. The time-of-flight resolution. The histogram is of the time 
residuals measured from 14.5 GeV muons, and  the  smooth curve is a 
gaussian fit. 

the  shape  to be  truly gaussian since the entries come from samples with varying 

resolution. However, as one can see, a gaussian curve does not fit too badly, and 

its  width, u = 0.327ns, can  be considered to be the average time resolution of 

the system. When a  histogram is accumulated  with the  time residuals divided by 

the expected error,  then  the gaussian fit is excellent. One finds that 0.50% of the 

entries  are  outside of the f 3 a  range, compared with 0.26% for a true gaussian 

distribution.  Thus  the non-gaussian tails  are well suppressed. 

Consider now the two-photon data  set, which contains kaons and  protons as 

well as muons and pions. The difference  in time of flight between particle  types 

decreases as their  momentum increases. This can  be seen clearly in Fig. 9.6, which 

shows a scatter plot of the inverse of the measured velocity as a  function of the 

measured momentum.  Both  tracks  are included from all events which have passed 

all analysis cuts except for cuts on the  time of flight itself. It is clear that kaons 

can be statistically  separated from pions only  in the region  below p M 1 GeV. 
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Figure 9.6. The  momentum versus the inverse of the measured velocity 
for tracks from events of the two-photon data set. The smooth curves 
show the expected trajectories for muons, pions, kaons, and protons. 

9.4 MASS DETERMINATION AND EVENT WEIGHTS 

The time-of-flight mass measurement is calculated from the measured mo- 

mentum  and  time by 

where PC = l/(E + t / c )  is the measured velocity. The error in the  momentum 

measurement comes primarily from errors in the  curvature IC and  the  dip 

angle X. The correlation between n and X is  negligible, so we calculate from 

p = d w / n  the linear propagation of errors: 
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The  error  estimate for m2 is  given  by 

Figure 9.7 demonstrates that mass resolution is properly  calculated  and that  the 

errors  are very close to being from gaussian distributions.  The histogram is  of 

the  quantity (m2 - mi)/a,2, so one expects a gaussian shape centered  about 

zero and of unit  width.t  That is found to be the case to within  a few percent 

of one standard deviation. From the plot with a logarithmic scale, one can see 

well the non-gaussian tails in the  data. They are very small. However, the overall 

number of muons  and pions compared with kaons is enormous, so the tails remain 

a problem. For the most part, their effects can  be avoided by requiring both 

particles in an event to be positively identified as kaons before calling the event 

a kaon pair. When the m2 histogram is accumulated  without dividing by the 

expected resolution for each entry,  then a gaussian fit is rather  poor,  due  to a 

significant variation in the resolution from one event to  another. Nonetheless, the 

Q of the fit, 0.037 GeV2,  can  be considered to be  approximately the average m2 

resolution of the system. 

To identify the particle  type, a x2 value is calculated for each of the four 

possible mass hypotheses m,, where x E { p , ~ , K , p } .  The x 2  is calculated by 

comparing the expected time residual 

2 

x: = (ti  - 
i , j = l  

where t ,  is the expected time residual 

to both of the measured  time residuals: 

t,) ( Q - ' ) i j ( t j  - t,) 3 (9.9) 

for a  particle of mass m, traveling the arc 

of length e and is given  by t ,  = ( e / p , c )  (1 - p,), with p, = 1 / d w .  The 

t About a quarter of the events in the  sample actually are pion  pairs.  But mz - m: is  only 
about 20% of the  average  resolution of m2, which is a relatively minor  effect. 
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Figure 9.7. The time-of-flight m2 for non-electron pairs. The histogram 
is of the difference of the time-of-flight m2  and m i ,  divided by 0,2,  

the expected resolution. The solid curve is gaussian with Q = 0.94 and 
p = 0.16. 

covariance matrix o includes the effects of errors in the two  time  measurements 

and  the  errors from p ,  zo, and  tan X. The non-diagonal terms come from only the 

last  two variables, so a 2 x 2 derivative matrix is defined: 
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where Tx E t / p x c  = t x  + l / c .  Also needed are  the derivatives of the times with 

respect to  the track  curvature: 

ah - at2 = Tx(l - p;)pcos x .  arc arc (9.11) 

Let V;j {i , j  = 1,2} be  the 2 X 2 covariance matrix for zo and  tan X, as obtained 

from  track  fitting.  Then  the covariance matrix u takes the form 

(9.12) 

Finally, the weight of a given track is defined  for each particle type  to be 

proportional to  the gaussian probability that such a particle would produce the 

measured times: 

(9.13) 

The event weight is determined by the  product of the weights of the two 

tracks. To normalize it properly, however, it is necessary to determine roughly 

the relative  abundance of the various event types in the  data. To do so, a  scatter 

plot is made of m2 of the positively charged particle versus m2 of the negatively 

charged particle.  Figure 9.8 shows such a plot including all data after all analysis 

cuts have been made, excepting those cuts made on the  time of flight itself. The 

concentrations of events consisting of pp, ?r+jj, and ?r-p are clearly separated 

from each other  and  from  the  rest of the  data, so it is simple to determine the 

abundances of those event types. The ?rp events come primarily from beam-gas 

scattering, as is evident from the fact that more protons  than  antiprotons  are 

observed. K+K- events also are fairly well separated  from muons and pions, so 

an  estimate of their  fraction is possible. KT events are possible, though  they  must 

always come from  interactions from which at least one final-state  particle  has been 
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Figure 9.8. Scatter plot of time-of-flight m$ us m?. The abscissae of 
each  point is m2 of the positive track,  and  the  ordinate is m2 of the 
corresponding negative track. The  total number of entries is  37,536. 

missed by the detector. It is not possible to separate  them  from ~F+Z- and p+p- 

data, so their  fraction is simply a guess based on what  can  be seen in Fig. 9.8. 

The relative  abundances of events  types  are 

fpp = 0.7000, frr = 0.2895, f r K  = 0.0005, 

fKK = O.OG80, f p p  = 0.0005, and frp = 0.0015. 

(9.14) 

Using these  fractions, the weight for each event type is determined by multiplying 

the  appropriate fraction by the  product of the two single-particle weights. To 

normalize, the six weights are  summed,  and each weight is divided by that sum. 

Hence, the  sum of all weights for a given event is unity. 
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Figure 9.9. The pp and K+K- event weights for the time-of-flight 
analysis after the x2 have been made. 

9.5 SELECTING KAON AND  PROTON  PAIRS 

The first cut imposed on time-of-flight residuals is to require that for  both 

tracks rn? > 0.01 GeV2.  It is shown by two intersecting lines on Fig. 9.8. Clearly 

it does not reject any kaon pairs which could be  separated  with confidence from 

the background. The second cut requires that each track  have a xz, as calculated 

from Eqn. 9.9, less than 6.0 for  kaons and 8.0 for  protons. There  are two degrees 

of freedom, so x2 = 6 is the 95% level of the x2 distribution. 

The final cuts  are on the event weights. Figure 9.9 shows histograms of the 

event weights for  kaon pairs  and  proton  pairs for only those  events in  which both 

tracks pass the corresponding x2 cut. Keeping only those  events  with  either  a 

K+K- weight or a pji  weight greater than 0.7 results in the final samples of 

240 K+K- events and 23 pji  events. A sum over events of the difference of the 

event weight from  unity gives background estimates of five background events 

in the K+K- sample  and none in the pji sample. Note that these background 

estimates include only contributions  from time-of-flight misidentification and 

explicitly assume gaussian distributions for the errors. 
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9.6 BACKGROUND ESTIMATES 

From the way that  the event weights are defined, it is simple to estimate how 

much background is present  from gaussian distributed  fluctuations of the large 

pion-pair and muon-pair samples. The effect of non-gaussian tails, however, is 

more difficult to estimate. A rough idea can  be  had  from looking at the size 

of the  tail on the negative side of the  time residual distribution. An easy way 

to do that is simply to repeat the analysis and look  for particle  pairs in which 

each has, assuming we are  studying kaon pairs, a time-of-flight mass squared of 
m2 = -mk + m i .  It is reasonable to  translate by mi in this way because the 

expected time residual is approximately  proportional to  the  square of the particle 

mass. The whole analysis based on x2 and event weights follows without change. 

One finds that 81 events pass the "kaon-pair" x2 cut,  but only 4 pass the  cut 

on event weights. These numbers  actually  are  consistent  with gaussian tails, so we 

conclude that  the background from time-of-flight misidentification in the kaon-pair 

sample is only the order of 5 to 10 events. The gaussian distributions  predict zero 

background in the proton-pair  sample, but 2 events pass the  cuts when analyzed 

for negative m2. Thus  the corresponding background in the proton-pair  sample is 

about 2 events. 

Another  potential source of background is from beam-gas collisions. Only 3 

kaon-pair events  with non-zero charge pass all of the  cuts. Also, the  distribution 

of the z-component of the event vertex is completely consistent  with assuming all 

observed K+K- events to be  from beam-beam collisions. For the  proton  pairs, 

there  are 23 events consisting of two positively charged protons,  but  there  are 

none with  two  antiprotons.  The events of charge 2 have a vertex  distribution 

which  is consistent  with being uniform in z,  while the charge 0 events  are 

clustered well within the beam-beam region.  Since the probability for an incident 

electron to  scatter two  protons from a gas  molecule  is expected to  be much 

greater than  the probability for pair  production of protons in such  a collision, all 

evidence indicates that none of the observed p p  events  are produced from beam-gas 
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collisions. Additional background from beam-beam events in which some particles 

are  not  detected  must  be proportionally less than  the corresponding background 

in the pion-pair sample  and is completely negligible with respect to  the  statistical 

precision of the K + K -  and p p  samples. 

9.7 ANALYSIS OF THE K + K -  MASS SPECTRUM 

9.7.1 Data Reduction and Normalization 

The K + K -  data are analyzed in the region 1.3 5 WKK 5 2.3 GeV. Below 

the lower cut  the trigger inefficiency  is too severe to be  adequately modeled. 

Except for the invariant-mass  cut  and the time-of-flight cuts which have been 

presented, all other  cuts on the  data  are identical to those used in the pion-pair 

analysis. 

Because of the dependence of the time-of-flight cuts on details of the detector 

geometry, and because of the greater  importance of kaon decays compared with 

pion decays, all Monte  Carlo  results include the complete detector  simulation. 

Simulation of the time-of-flight system  has been discussed in Section 9.2. The 

decay products of kaons which have decayed  in flight and of positive kaons which 

have decayed after ranging out in the detector  material are included in  full 

detail. The trigger is simulated in two ways. First,  the  dominant effect at low 

momentum is caused by electromagnetic range-out and is simulated  during the 

detailed detector  simulation by use of Eqn. 9.2. Second, the inefficiency due to 

nuclear interactions is assumed to be the same as for pions and is parameterized 

by Eqn. 6.1. While this surely is a crude  approximation, the effect  is not so 

important in the kaon-pair analysis because of relatively large statistical  errors 

and because of greater  importance of the simple electromagnetic energy loss. The 

error  estimates on the efficiency are expanded by a  factor of 1.5 relative to those 

for the pion pairs.  Figure 9.10 shows a plot of the detection efficiency as calculated 

by the detector  simulation for events generated  within the  cut lcosBlabI < 0.65. 
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Figure 9.10. The detection efficiency  for K + K -  as calculated by Monte 
Carlo detector  simulation assuming an angular  distribution in the K + K -  
center-of-mass frame of sin4 e. 

The angular  distribution assumed is appropriate for a tensor resonance produced 

with helicity two. 

The normalization again is obtained from the electron-pair data. To avoid 

a relatively difficult analysis of electron pairs in data taken  with the nitrogen 

Cerenkov radiator, small angle Bhabha  scattering data from the luminosity 

monitors is  used to  extrapolate  the effective luminosity measured from data taken 

with the isobutane  radiator.  Within a given data-taking season the luminosity 

monitors remain in the same position relative to  the beam, so they  are reliable 

when used to  obtain  the ratio of luminosities for two data samples taken within 

the same year. 

The normalization from isobutane data is determined before making any cuts 

on the time-of-flight information, and it is measured within a fiducial cut requiring 

both  tracks to pass at least one centimeter inside the edge of a barrel shower 

counter. Full detector  simulation, including EGS for electromagnetic interactions 

in the beam pipe and  drift  chamber  material  and in the material preceding the 



209 

shower counter  trigger, is made for Monte Carlo electron pairs in order to calculate 

the effective luminosity corresponding to  the  number of electron pairs observed 

in the isobutane data. Note that in this case the effective luminosity is  close 

to  the  actual  beam luminosity, since the detector  simulation includes all known 

inefficiencies. The result  from the 1985 isobutane data alone agrees with the result 

calculated in Section 4.10 for the same data  but with different cuts.  The  total for 

the combined data  set is 

L = 169.6 f 5.lpb-l, (full data  set). (9.15) 

In Fig. 9.11 is a histogram of the K + K -  invariant  mass  from data.  The 

spectrum in dominated by a peak centered about 1.525 GeV, which is identified as 

the f’ resonance. But  there also is a relatively large number of events below the f’ 

peak, suggesting a significant background under the resonance. The overplotted 

histogram and  smooth  curve refer to  the model which  is presented  and fit  in the 

following two sections. 

9.7.2 Model for 77 + K + K -  

The model which is used to fit the  data is a coherent sum of Breit-Wigner 

resonant  amplitudes including all three  tensor mesons. All resonances are assumed 

to  be produced only with helicity two, as there  are  not enough data  to consider 

seriously the angular  distribution.  The  relative phases of the  three resonances are 

taken to be real  and positive, in accordance with SU(3)  quark model prediction~6~ 

For the purpose of fitting the  data,  the cross section for 77 + K + K -  is 

written in this convenient form: 

(9.16) 
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Figure 9.11. The measured K + K -  invariant-massspectrum. The points 
with  error  bars  are data, while the overplotted histogram is the best fit 
of the model presented in Section 9.7.2. The smooth curve is an  estimate 
of the continuum background, which is included in the histogram as well. 

The phase shifts  are given  by tan& = mrr(s)/(m; - s), and  the resonance terms 

are 

(9.17) 

The factor of @ comes from the fact that  the isospin-zero amplitude is half 

K+K- and half KO@. The energy dependencies of the widths  are parameterized 

as in Eqn. 7.32, except that mT must be replaced by mK for rr(s) and r K X ( s ) ,  

and by m7 = 0 for rr7(s). The properties assumed for the f and A2 resonances 

are given  in Table 1.1, except that  the DELCO result, rf-,77 = 2.77 f 0.31 keV, 

is used. This is the result obtained when the coupling is assumed to  be only  in 

helicity two and  the amplitudes  are not unitarized. Questions of unitarity  are 

not considered in the kaon-pair analysis, because the continuum  production is not 

understood  and, anyway, the  statistical precision is not sufficient that  it  matters. 

In addition to  the f ,  A2, and f' there is another J p  = 2+ meson called the 

0 (1690) in the relevant mass range which has been observed to decay to K K .  
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However, neither  its  branching ratio  to K K  nor to 77 are known. Furthermore,  it 

is in a region which still is dominated by the  other  three tensor mesons. Certainly 

one can see no evidence of it in the DELCO data. We do  not  attempt  to  set a hard 

limit on the  product of branching  ratios, because any  such  result would be highly 

model dependent  due to interference with the long tails of the  other resonances. 

In Ref. 5 one finds the  upper limit BR(8 6 K+K-) - ro+77 < 0.08 keV. 

Figure 9.12 shows a plot of the resulting cross section with the two-photon 

luminosity function folded in. The  spectrum is integrated numerically over the 

angular  range -0.6 5 cos 8 5 0.6 and assumes a cut on total transverse  momentum 

of ICl/W,, 5 0.2. Compared with that is a plot of the result  with the f and A2 

resonances not included. One can see that  the interference has  a large effect  on 

the predicted f' peak. That raises the issue of how dependent is the  spectrum in 

the f' region on the parameterization of the energy-dependent widths of the f and 

Az. In  fact, if the widths are given no energy dependence at all, then  the cross 

section in the f' region and above is decreased by 25% or more. However,  when 

the  parameter a in Eqn. 7.32 is changed from zero to infinity, the change in the 

spectrum is  negligible with respect to  the  statistical  errors of the  data.  Thus  the 

results are  not  too sensitive to  the details of the parameterization of the resonance 

shape,  but  it is essential to assume some reasonable parameterization. 

Some amount of continuumproduction  must also be  expected, but  there exists 

no reliable prediction for it in the energy range accessible to DELCO. The Born 

term gives a prediction which is much too large to fit the  data, as one can see  by 

comparing Fig. 9.11 with Fig. 9.12. There  are  three reasons why that would be 

expected. First,  the assumption of point coupling generally is  worse  for  kaons than 

for pions. Second, the K K  phase shifts  are known to be large even near  threshold, 

so Watson's theorem  (Eqn. 7.43) would require substantial modifications of the 

Born term.  Third, inelastic effects are more important  than for f + T+?T-, so 

even Watson's theorem is not useful. Furthermore,  the energy is too low to rely 

on QCD predictions. Therefore, we follow the procedure of Ref. 7 and  introduce 
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Figure 9.12. Predictions for the K+K+ mass spectra.  The solid curve is 
a coherent sum of the  three tensor meson resonances. The dot-dash curve 
shows the f' contribution alone. The two-photon widths are assumed to 
be as given in Eqn. 1.1. The  dotted curve is the cross section for K+K- 
production as given by the Born term (Eqn. 7.27 with m, replaced by 
mK) - 

arbitrary functions of WKK to describe the background for the purpose of fitting 

the two-photon width of the f'. The functions used are of the forms 

B l ( W )  = A - exp ( - (W2;y)2), W < l . lGeV, 
- 

(9.18) 

and 

The  parameters A,  Wo, and Q are allowed to vary freely, and several fixed  values are 

tried for n and W. Both forms give  good fits to  the  data, whereas the resonance 

terms alone fail to describe the  spectrum below the f' peak. Also, both forms 

have a reasonable shape in the resonance region, since one generally expects 

the  continuum  spectrum  to be continuously decreasing with increasing energy. 

Note that QCD predicts that  at sufficiently high energy the  spectrum should fall 



213 

as l /W7 when convoluted with the EPA spectrum, while the Born prediction 

decreases as l /W3. Probably, the  truth in the f' energy range is somewhere 

between those  two extremes. 

Events  generated by this model are processed through  detector  simulation  and 

the full analysis procedure. Because of the limited statistical precision of the  data, 

it is not necessary to vary the resonance masses and full widths in the fit. It is 

important  to  be able to vary the two-photon widths of all three resonances. That 

is simple to do with the cross section expressed as it is in Eqn. 9.16. One simply 

retains  throughout  the analysis the fraction of the  total event weight contributed 

by each of the six terms. Each term is proportional  either to one 77 width or else 

to  the  square root of the  product of two 77 widths, so the fitting  program can 

vary all three 77 widths  independently by appropriately varying the contributions 

of the six terms to  the sum. 

9.7.3 Fitting  the Invariant-Mass Spectrum 

There  are a total of nine parameters which may be varied within  a single run 

of the fitting program: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

BR(f' + K K )  - l?p-,77 

BR(A2 KK) ' rA2+77 

BR(f 4 KK) * rf-77 

Luminosity. 

Norm. of ToF background. 

Efficiency error at W = 1.3 GeV. 

Efficiency error at W = 2.3 GeV. 

Background parameter #l. 

Background parameter #2. 

= 0.040 f 0.013 keV 

= 0.080 f 0.011 keV 

L= 169.6 f 5.1 pb-' 

Ntof= 1.0 f 1.0 

0 f 0.14 

a2= 0 f 0.10 

Parameter  number 5 refers to  the background estimate which  follows from the 

gaussian  event weights. That background is only a few events total  and is confined 

mostly to  the invariant mass range above the f' region. This  parameter allows 
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the normalization of that background to vary within reasonable limits and is not 

important.  Parameters 6 and  7 account for the uncertainty in the trigger efficiency, 

which is assumed to vary linearly between the values, el and ~ 2 ,  specified at the 

upper and lower limits of the invariant mass range. The  last two parameters  are 

those of the background parameterizations specified  in equations 9.18 and 9.19. 

As a specific example, consider a fit  in which the background parameterization 

of Eqn. 9.19 with n = 3 is assumed and all nine parameters are allowed to vary 

within the specified limits. Table 9.1 shows the explicit results of the fit,  and 

Fig. 9.11 shows a comparison of the result with the  data. A large part of the 

contribution to x2 comes from the single low bin at W = 1.925 GeV. When only 

the first 10 bins are included in the fit,  then x2 = 9.8, and  the fitted f' two-photon 

width decreases  by 0.003 keV. 

Such a fit as is shown in Table 9.1 assumes gaussian distributions  for those 

parameters which are constrained within known error limits. The resulting overall 

error  estimate for the f' two-photon width corresponds to addition of the various 

error  contributions in quadrature. Let  us  consider the contributions to  the 

error individually. When only the f' two-photon width and  the background 

parameterization  (with n = 3) are allowed to vary, then  the best fit for 

the two-photon width does not change, but  the error  estimate becomes only 

f0.017keV. Fixing the background as well  yields an estimate of the statistical 

error of f0.015 keV. Contributions to  the error from the  other  parameters  are 

determined by  fixing them one  by  one at their  upper  and lower limits and  then 

fitting the  spectrum by varying all remaining parameters. Table 9.2 lists the 

individual contributions. That from the background parameterization takes into 

consideration the varying results  obtained from using Eqn. 9.18 as well as Eqn. 9.19 

and also the effects  of changing the exponent n between 1 and 10 and  the  mean 

of the gaussian between 0.1 GeV and 1.1 GeV. Hence the error is larger than in 

Table 9.1, where n is  held  fixed at n = 3. With all things considered, the final 
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Table 9.1. A fit of the model for 77 --+ K+K- to time-of-flight identified data. 
The parameterization of the background is  given  by Eqn. 9.19 with n = 3. 

Parameter Fit Value  Lower Error Upper Error 

I. B R ( ~ '  --+ KK) . rfl+77 0.070  keV  -0.021  +0.025 

2. BR(A2 --+ KR) - rA2+77 0.039  keV  -0.013  +0.013 

3. BR(f + KK) - rf+77 

1.4 -1 .o +1.0 5. ToF background 

169.5 pb-l  -5.1 +5.1 4. luminosity 

0.080  keV  -0.011  +0.011 

6. ~1 

1.09  -0.10  +0.08 9. Wo (Eqn. 9.19) 

0.31  -0.22  +0.49 8. A (Eqn. 9.19) 

-0.03  -0.10  +0.10 6. ~2 

-0.03 -0.14  +0.14 

Covariance Matrix Correlation Coefficients 
1 2 3 4 5 6 7 8 

2 -0.201 
3  -0.102  0.024 
4 -0.140  0.017  -0.048 
5  -0.012  -0.013  -0.006  -0.013 
6  -0.531  -0.004  0.034  0.030  0.004 
7  -0.155  -0.013  -0.079  0.005  -0.019  0.053 
8  -0.280  -0.234  -0.131  -0.054  -0.080  -0.132  -0.065 

9  0.330  0.139  0.090  0.035  0.080  0.057  0.062  -0.972 

Fit range: 1.3 < W < 2.0GeV 14 bins 
x2=18.1 
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result for the f' is obtained by adding the systematic  errors in quadrature: 

rf I+77 - BR(f' + KK) = 0.07 f 0.04 keV.  (9.20) 

Unfortunately, the branching  ratio of the f' to KK is not yet known to sufficient 

accuracy to quote a measurement of the two-photon width alone. 

Table 9.2- Contributions to  the error on BR(f' + KK) - l?fl+77 from 
the fit to  the K+K- invariant-mass spectrum. 

Source of Error Error in  keV 

size of K + K -  sample 

f 0.002 (syst.) luminosity measurement 

f 0.015 (stat.) 

detection efficiency f 0.015 (syst.) 

BR(f -+ KK) - rf+77 and 
BR(A2 * K T )  rA2+77 f 0.015 (syst.) 

background parameterization f 0.027 (syst.) 

9.8 MEASUREMENT OF 77 -+ p p  

Not enough proton  pairs have been detected to allow any analysis of the 

shapes of kinematic distributions. Therefore, we consider only a measurement of 

the average cross section for 77 + p p  over the range in which data  are available 

(2.2 < W < 2.9GeV). 

There is no large sample of protons in any data set which may be used to 

measure the detector response for protons, so the Monte Carlo detector  simulation 

must be relied upon to calculate the detection efficiency  for p p .  The dominant 

systematic effect again comes from the barrel shower counter  latch efficiency. 

The contribution  from electromagnetic range-out is calculated the same as for 
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the K + K -  analysis, using Eqn. 9.2. For protons, the resulting  momentum cutoff 

is predicted to  be at about 0.6GeV. Above that momentum, some inefficiency 

is caused by nuclear interactions. An HETC  calculation  predicts that  the shower 

counter  latch efficiency  for protons incident on a counter is 92% at p = 0.7  GeV 

and rises slowly to 98% at p = 2.0GeV. The  HETC  program does not  handle 

antiprotons, so the  same efficiency  is assumed for them. Thus  the loss of events 

from nuclear interactions is estimated to be about 15% overall. The  error in this 

result  can only be guessed, but even a very conservative estimate gives an  error 

bar no larger than  the  statistical  error. 

To measure the detection efficiency, Monte Carlo  events of the  type e+e- + 

e+e-pp  are  generated using the EPA luminosity function and a unit cross section 

for a77,pF. Thus  the Monte Carlo assumes a uniform angular  distribution.  The 

detector is simulated for the generated  events, and  the full analysis procedure is 

applied, just as for data. One finds that  the predicted  detection efficiency  rises 

sharply from zero at W = 2.2  GeV and peaks at  about 2.7 GeV, falling slowly 

above that point.  The maximum efficiency  is about 5%. 

The luminosity of the  data is 170pb-l,  and 23 p p  events  are found within 

the range 2.2 < W < 2.9 GeV. Assuming a uniform angular  distribution  to 

calculate the detection efficiency, this corresponds to a cross section for 77 + p p ,  

integrated over the acceptance )cos 8,,,1 < 0.6, of 1.01 f 0.21 nb. The observed 

angular  distribution may be  taken  into account by calculating  with  Monte  Carlo 

the detection efficiency as a function of both W and cos8cms. When such a 

calculation is used to correct the  data event by event,  then  the result is a cross 

section of 1.25 f 0.32nb. The errors quoted are  statistical only. Including a 20% 

uncertainty in the detection efficiency and accounting for the dependence on the 

assumed angular  distribution, we arrive at  the result 

O77,PF = 1.2 f 0.5 nb [COS 8,,,1 < 0.6, (9.21) 

averaged over the region 2.2 < W < 2.9 GeV. 



218 

10. Conclusions 

10.1 THE QED  CHANNEL 

Kinematic  distributions from a sample of over 45,000 events from the process 

e+e- + e+e-e+e- have been compared with leading-order QED predictions. The 

shapes of the  distributions for untagged (Q2 M 0) data  are in complete agreement 

with leading-order (a4) QED predictions within  statistical  error  limits which range 

over the histogram bins from 1% at Wmin. = 0.6 GeV to 10% at W m u -  = 2.6 GeV. 

Figures 4.14 and 4.16 show comparisons between data  and QED predictions for the 

invariant mass and  angular  distributions of the detected electron pair.  The shapes 

of distributions  from tagged data (@ = 0.4 GeV2) agree as well, with  statistical 

errors  ranging  from 4% to 22%. Figures 4.19 and 4.20 show those  results.  Other 

experiments also have published results on this  reaction  channel, but only with 

far less statistical precision and only  for relatively large70 (W > 1 GeV) or smal171 

(W < 0.5 GeV) invariant masses. 

Absolute normalization of the measured cross sections has been obtained  from 

the  beam luminosity as measured from  another QED process, e+e- + p+pL-, but 

only within  systematic  errors of 7 to 10 percent. At  that level the cross sections 

agree with  QED predictions. The measurement of the four-electron final state 

is itself used to determine the normalization of the e+e-p+p- channel  and the 

two-photon hadronic channels to  an accuracy of better  than 3%. 

10.2  CROSS  SECTION FOR 77 + T+T- 

10.2.1 Measurements  from  Untagged  Data (Q2 rn 0)  

The cross section for 77 + T+T- has been measured at Q2 rn 0 from 

a  sample of 21,000 pion pairs plus 50,000 muon pairs  within the  laboratory 

acceptance 0.6 < W < 2.0GeV, lcos81 < 0.6. DELCO has an  advantage over 

previous measurements  due to  the fact that electron pairs need not  be  subtracted 

from the  data  and  that  the normalization for subtraction of muons pairs  can  be 
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obtained  with  an accuracy of 2.3% from a measurement of the four-electron final 

state.t  The normalization of the pion-pair cross section is normalized to  the same 

QED measurement, but  uncertainty in the detection efficiency, due to nuclear 

interactions,  contributes  systematic  errors of 5 to 10 percent. 

Figure 10.1 shows the differential cross section measured for the invariant 

mass of the pion pair,  with all known detector effects, including the momentum 

resolution, corrected for  by the procedure detailed in Appendix C. The prominent 

peak is due to production of the f (1270) resonance. Figure 10.2 shows the 

measured angular  distribution of the pions in their center-of-mass system. It 

has been corrected for detector effects, of which the most important by far is the 

loss of acceptance caused by the boost of the 77 system in the  laboratory frame of 

reference. The  data  are compared with predictions for helicity-two and helicity- 

zero coupling of 77 to  the f resonance. It is clear that  the helicity-two assumption 

is preferred. A detailed simultaneous fit to  both  distributions, assuming that  the 

continuum is described by the simple Born term prediction, gives a limit on the 

ratio of the helicity-zero to helicity-two 77 coupling (see Eqn. 8.11): 

X=O 
rf-'77 < 0.14 (90% confidence). (10.1) 
q 3 7  

This is consistent  with  theoretical  expectations  and may be  compared  with the 

best previously published limit of 0.12 f 0.39.' The  latter result was obtained 

from 77 + ?ro?ro and is somewhat less model dependent, because of the lack of a 

significant continuum  contribution to  the  neutral channel. 

In Chapter 2 we have seen how the cross section for e+e- + e+e-?r+?r- 

may be decomposed for untagged  events into a luminosity function for  quasi- 

real photon  pairs times the cross section 077+T+T-. By using the equivalent- 

photon  approximation (EPA),  the luminosity function is easily calculated as a 

function of Wr7. .Therefore, one can  determine 077+T+T- from the  data of 

t The recent results of the PEP-d/PEP-9 experiments have roughly the same advantages. 



220 

c 
0.6 

% 

2 
a 
2 0.4 
d 
P ; 0.2 
d 

0.0 E -43- -* 

0.5 0.75 1 1.25 1.5  1.75 2 
w, (GeV) 

Figure 10.1. The measured differential cross section for the invariant 
mass of pion pairs  from e+e- -+ e+eV7r+7r-. The  data have been 
corrected for all known detector effects within the acceptance defined 
by lcos 81abl < 0.6, k l / W  < 0.2, and kl < 0.3 GeV. 

Fig. 10.1. First,  the  data  are corrected for the loss of acceptance due to  the 

boost of the 77 system in the fz direction. That is done by using the EPA 

Monte  Carlo to predict the  distribution of the boost and  then  calculating the 

inefficiency from the  cut (cos 81abl < 0.6. The angular  distribution of the resonance 

decay  is assumed to be sin4 8 ,  as is appropriate for helicity-two production.  Then 

the result is divided by the calculated luminosity function.  Figure 10.3 shows 

the result. It is not  extrapolated to  an acceptance of 47r steradians, so when 

comparing  with  a  theoretical model, the cross section must  be  integrated over 

the range -0.6 < cosBcms < 0.6. Note that  there is a  small  amount of model 

dependence in the  result, because in order to correct for the effects of the detector 

acceptance, some assumption  must  be  made about  the angular  distribution.  It is 

assumed to be given  by a coherent sum of the Born term  and  the f resonance in 

helicity two, which has been shown to give an excellent fit to  the observed angular 

distribution. The angular  distribution  cannot  be observed by DELCO outside of 
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Figure 10.2. The measured differential cross section for cos 8,,, of pion 
pairs  from e+e- + e+e-7r+7rrr-. The smooth curves show predictions 
for helicity-two (solid curve) and helicity-zero (dashed curve) coupling 
of 77 to  the f resonance. The  data have been corrected for all known 
detector effects within the acceptance defined by 1.0 < W < 1.5GeV, 
k l / W  < 0.2, and kl < 0.3 GeV. 

(COS 61 < 0.6, SO to  extrapolate  to  the full solid angle would be even more model 

dependent. 

The smooth curve shown in Fig. 1 0 . 3 ~  represents a calculation of the 

unitarized Lyth model (Eqn. 8.1)  for 077+T+T-, integrated over the range 

-0.6 <  COS^^^^ < 0.6 with I';z:7 = 0 and I'f+77 = 3.34  keV (from Eqn. 8.8). 

There  appears  to be substantial disagreement both below and above the f peak. 

However, systematic  errors  are  not shown in  Fig.  10.3. The uncertainty in the 

beam luminosity and in the 7r+7r- trigger efficiency  is larger than  the disagreement 

below the f peak. Also, there is some uncertainty in the energy scale of the 

experiment, and  the agreement is better if the f mass is shifted downward by 

about 1%. The disagreement just above the f peak is not understood. Figures 8.1 

and 8.2 show how  well the measured spectra agree with the model prediction 
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Figure 10.3. The cross section for 77 --$ T+T- measured from  untagged 
data for -0.6 < cosBcms < 0.6. The error  bars include only statistical 
errors. The  smooth curve in (a) is the theoretical prediction of Eqn. 8.1 
assuming purely helicity-two coupling to  the resonance. The  smooth 
curve in (b )  is the QCD prediction for continuum  production given  by 
Eqn. 7.2. 

when systematic  errors are  taken  into account. For reference, in Fig. 10.3b the 

QCD prediction of Eqn. 7.2 is compared with the  data  points between 1.4 GeV 

and 2.0 GeV. 

The two-photon  width of the f has been determined  from the  data by 

fitting the observed mass  spectrum  with  the  theoretical model. With  systematic 

errors  accounted  for, good fits are  obtained up  to W = 1.4 GeV. There is 

significant disagreement above that point,  but  it has been found to contribute 

only a minor amount of uncertainty  to  the measured two-photon width.  Results 

have been presented in Chapter 8 for several different theoretical  assumptions 

about  the  angular  distribution  and  unitarity  constraints. In  order to compare 

with previous measurements, first the results  are presented under  theoretical 

assumptions common to most of the measurements. Most experiments have 

assumed a simple model of a coherent sum of the Born term (Eqn. 7.27) and a 

Breit-Wigner amplitude  (Eqn. 7.34) with no corrections made to satisfy unitarity 
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constraints.  The coupling of 77 to  the f is assumed to occur only in the helicity- 

two  amplitude.  With  those  assumptions, the DELCO result is, after  extrapolating 

to Q2 = 0 by the GVDM form factor (see Eqn. 8.7 and Section 8.3.5), 

rrr = 2.81 f 0.31 keV, (X = 2, no unitarization). (10.2) 

This is compared in Table 10.1 with previously published measurements. All 

of the measurements quoted assume that  the coupling is exclusively helicity- 

two. The CELLO result assumes the Mennessier model (see Section 7.5), which 

satisfies unitarity  constraints which are essentially elastic except for a  small K f f  

contribution. However, as stated by the CELLO collaboration in Ref. 61, the 

unitarity  constraint  has negligible  effect.  None of Mennessier's options  for vector 

meson exchanges and scalar resonances are used in the CELLO analysis, so their 

model is not significantly different from the simple Born term plus Breit-Wigner. 

The Mark I1 and PEP-4/PEP-9 results allow the normalization of the  term 

describing the interference of the resonance and  continuum to float free in the 

fit, and  the Mark I1 analysis of PEP data assumes that  the  continuum is described 

by a QCD prediction (see Eqn. 7.2) above W = 1 GeV.  However, these differing 

assumptions  do  not affect the results for the two-photon width significantly with 

respect to  the  stated  error limits. The Crystal Ball result is unique in that it 

is from  a  measurement of e+e- 4 e+e- roro ,  instead of the usual charged pion 

channel. The  neutral channel  has negligible continuum  background, so the Crystal 

Ball result  should  be relatively model independent. 

When corrections are  made to  the simple model of the Born term plus a Breit- 

Wigner amplitude in order to satisfy elastic unitarity  constraints according to  the 

prescription by Lyth (see Section 7.4.6), we find that  the fitted two-photon width 

increases by 20% over the value quoted in Eqn. 10.2 (see Eqn. 8.8). When, in 

addition,  the  contribution from helicity-zero coupling is  allowed to be free in the 

fit and  both  the invariant mass and  angular  distributions  are fit simultaneously, 
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Table 10.1- Summary of published measurements of rjTr7 in  chronolog- 
ical order. All measurements assume helicity-two coupling. The DELCO 
result is without  unitarity corrections. For each measurement quoted, 
the first error is statistical  and  the second is systematic. 

Collaboration 

PLUTO, 1982 analysis 
TASSO 
Mark 11, SPEAR data 
Crystal Ball 

Mark 11, PEP data 
CELLO 
PLUTO, 1984 analysis 
PEP-A/PEP- 9 

DELCO,  this thesis 

Reference 

72 

73 

41 

9 

3 

61 

74 

5 

q 4 7 7  b V 1  

2.3 f0.5  f0.3 

3.2 f0.2  f0.7 

3.6 f0.3  f0.5 
2.7 f0.2 f0 .6 
2.52f0.13f0.38 

2.5 fO.l f0.5 

3.25f0.25f0.50 

3.2 f0.1 f0.4 

2.81f0.07f0.30 

then  the result is (from Eqn. 8.11, but extrapolated to Q2 = 0 )  

rf-+77 = 1':7 + r;, = 3.47 f 0.37 keV. 

Final State 

7r+7r- 

7r+7rr- 

7r+7r- 

7ro7ro 
7r+7r- 

x+7r- 

7r+7r- 

7r+7r- 

7r+7r- 

(10.3) 

The  statistical  contribution  to  the  error is only f0.07keV  and is included in 

quadrature with the systematic  error.  The  systematic  error includes contributions 

from the uncertainty in the  ratio of helicity amplitudes and in the degree to which 

elastic unitarity should be satisfied (see  Section 7.4.7), but it is dominated by 

the uncertainty in the pion-pair trigger efficiency. The result in Eqn. 10.3 is 

best compared with the Crystal Ball result with no constraint on the  ratio of 

helicity amplitudes.' Their result of rr7 = 2.92::: f 0.6keV is in agreement 

with DELCO. However, it is unfortunate that  the error  estimates  are so large, 

because this  result gives no information on the consistency of the unitarization 

procedure applied to  the model for charged pion-pair production (see Section 7.6). 

When unitarization corrections are  not made, the result for rr7 is  lower than  that 

presented in Eqn. 8.11 by a factor of 0.83. 
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10.2.2 Measurements from  Tagged Data (@ = 0.44 GeV2) 

The tagged data have been analyzed according to  the same theoretical model 

as used for untagged data, except that  the prediction for the continuum is 

multiplied by a GVDM form factor F ( Q 2 )  according to Eqn. 2.20. The Q2 

dependence of the single-tag luminosity function is  given  by Eqn. 2.18, and  the 

range of Q2 is limited by the geometric extent of the DELCO luminosity counters. 

The average over the acceptance is Q2 = 0.44 GeV2. This model is found to give 

an excellent fit to  the  data within statistical  error limits. 

- 

For tagged events, the incoming two-photon state consists of all three 

possible helicity states,  and  the theoretical expectations for are that 

the helicity-zero and helicity-one contributions increase rapidly with Q2. The 

measured angular  distribution of pion pairs constrains the helicity-one contribution 

to less than 15% of the two-photon width but allows the helicity-zero contribution 

to  be as large as or larger than  the helicity-two contribution. In Section 8.4 

one may find the results of fitting the two-photon width  under two different 

assumptions  about the angular distribution. In order to account fully  for the 

uncertainty in the angular  distribution,  it is best to use the result  with the ratio 

of helicity amplitudes left free in the fit: 

= 0.44 GeV2) = 1.42 f 0.33 keV, (no  unitarization). (10.4) 

The result  with the ratios of helicity amplitudes  constrained to certain theoretical 

expectations (see Eqn. 8.14) is consistent with Eqn. 10.4, but  the error bar is, of 

course, much smaller. Figure 10.4 shows a comparison of the tagged measurement 

with the untagged measurement. Both values assume the theoretical model without 

unitarity corrections. The decrease in  cross section with Q2 is consistent with the 

prediction of the GVDM form factor. 
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Figure 10.4. The measured Q2 dependence of l?t+rr compared with the 
GVDM form factor (solid curve).  The horizontal error  bar indicates the 
large range of Q2 over which the tagged measurement is made. The point 
are placed at  the average value of Q2 predicted by the  appropriate 77 
luminosity function. The  dotted curve shows  for comparison a simple 
gpole form factor. 

10 .3  MEASUREMENT OF THE f' TWO-PHOTON WIDTH 

A sample of 240 events from the process e+e- + e + e - K + K -  have been 

identified by  time-of-flight measurements in the kaon-pair mass range from 1.3 GeV 

to 2.3 GeV. The mass spectrum  may be found in Fig. 9.11. One  can see clear 

evidence  for production of the f' resonance. There also is a relatively high cross 

section below the f' peak. The  spectrum has been fit to a coherent sum of 

three interfering tensor resonances, but it still is necessary to assume a significant 

amount of continuum production. Lacking a reliable theoretical description of 

the continuum  production, the simple parameterizations given  by equations 9.18 

and 9.19 are assumed. The branching ratio of the f' to KK is not known, so the 

result is expressed as (from Eqn. 9.20) 

rf I477  - BR(f' + KK) = 0.07 f 0.04 keV. (10.5) 
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Figure 10.5. Predictions for the resonant  contribution to u ~ ~ ~ ~ + ~ -  
integrated over the center-of-mass acceptance defined  by -0.6 < cos 0 < 
0.6. The values  used  for l?f+77 and rf,+77 are  the DELCO measure- 
ments, while rA2+77 is taken  from Ref. 6. 

The  statistical  error is 0.015 keV, and  the principle contribution to  the systematic 

error is from the  uncertainty in the  shape of the  continuum  spectrum. Figure 10.5 

shows the resonant  contribution to  the cross section assumed  in the fit, including 

the fitted value of the f' two-photon width. The resonances all are assumed to be 

produced purely with helicity two. 

Table 10.2 compares the DELCO result  with previous measurements.  The 

DELCO spectrum  has been analyzed in the same way as that of  TASSO,' so some 

of the systematic effects should be  the same for the  two experiments.  Therefore, 

there  may  be some discrepancy between TASSO and DELCO. The PEP-4/PEP-Q 
spectrum is analyzed without including interference between the  three tensor 

resonances. If the same is done for the DELCO spectrum,  then  the  data fit just as 

well as with interference included (assuming the  same background shape), while 

the fitted  two-photon  width for the f' is increased by a factor of 1.8 up  to 0.13 keV. 

The  ratio of the DELCO measurements for the two-photon  widths of the f 
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Table 10.2. Comparison of measurements  and limits on l?p+77 between 
several experiments. For each measurement  quoted, the first error is 
statistical  and  the second is systematic. 

Collaboration 

0.11 f0 .02   f0 .04  7 TASSO 
< 0.6 75 Mark 11, SPEAR data 

rf I-77 - BR( f' + KK)  [keV] Reference 

PEP-d/PEP-9 0.12 f0 .06   f0 .06  5 

DELCO, this thesis 0.070f0.015f0.035 

and f' may be compared with the SU(3) predictions expressed by Eqn. 1.10. To 

do so, the branching ratio for the f' decaying to KK is assumed to be  greater than 

0.5, as is consistent  with the  estimate rf,-tKE = 55 f 22 MeV from Ref. 76. Since 

the quark model does not consider any consequences of the finite width of the 

resonances, and since the experimental  errors on the f' two-photon width  are so 

large that it does not  matter anyway, the value of the f two-photon  width  obtained 

from the non-unitarized model is used. Figure 1 0 . 6 ~  compares the DELCO results 

with SU(3) predictions as a function of the mixing angle. Two separate regions 

are allowed when solving for the mixing angle, but prior knowledge favors the 

solution  most near to ideal mixing: 

0 = 2a0 f 4O. (10.6) 

This agrees well with the prediction 0 M 28' obtained from the mass differences of 

particles in the tensor nonet?' Figure 10.6b shows the comparison between SU(3) 

predictions and  data for the  ratio of the f and A2 two-photon widths, where the 

value for the A2 two-photon  width is taken from Ref. 6. For a mixing angle of 

28O, the SU(3) prediction is outside of the experimental  error  limits, but only 

slightly so. Both  theoretical  and  experimental  uncertainties  are large enough that 

one must conclude that  the  data  are in agreement with  these simple predictions 

of the nonrelativistic  quark model and SU(3) symmetry. 



229 

0.15 

0.10 

0.05 

0.00 
0 10 20 30 40 

Qp (degrees) 

0.5 

0.1 

0.0 
0 10 20 30 40 

8 (degrees) 

Figure 10.6. SU(3) quark model predictions for the  ratios of two-photon 
widths as functions of the mixing angle. The solid curves represent the 
predictions of Eqn. 1.10,  while the dashed lines  give the  upper  and lower 
one-standard-deviation limits on the measured ratios of partial widths. 

10.4 CROSS SECTION FOR 77 -+ pF 

From a  sample of 23 events from the process e+e- --+ e+e-pp  in the proton- 

pair  mass  range 2.2 < W < 2.9 GeV, the average cross section within the angular 

acceptance -0.6 < cos O,,, < 0.6 has been measured to be 

O77-+PF - - 1.2 f 0.5nb, (2.2 < W < 2.9GeV, lcos 81 < 0.6). (10.7) 

The TASSO collaboration  has published78 results for this channel based on a 

sample of 72 events, which are enough to see the forms of invariant mass and 

angular  distributions. The angular  distribution is flat, while the invariant-mass 

distribution falls from  about  4nb  at W = 2 GeV to less than  0.5nb above 

W = 3 GeV. Averaging the TASSO points over the range measured by  DELCO 

gives o ~ ~ , ~ ~  w 1.8 nb for -0.6 < cos Ocms < 0.6, which is in agreement with the 

DELCO result. 
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The Born cross section for 77 -+ pji integrated over -0.6 < cos B,,, 0.6 

is an average of 24.5nb over the range 2.2 < W < 2.9GeV, which is a factor 

of 20 greater than  the DELCO measurement. That is not surprising, since the 

proton is a poor approximation for a point Dirac particle. QCD calculations 

for this process have been attempted using methods which are similar to those 

discussed  for meson pairs in Chapter 7, but considerably more complicated, with 

many more Feynman diagrams and  greater  uncertainty  about the wave functions 

and normalization. TASSO compares the calculations of Damgaard7' with  their 

measurements, and they find that  the calculated cross sections are a factor of 3 to 5 

low. Another calculation of the same process  by Farrar e t  d 8 O  predicts that  the 

cross section is a  factor of 20 to 100  lower than  the prediction of Ref.  79 and has 

a flatter  angular  distribution, even though the same assumptions  are  made  about 

the proton wave function. Farrar et aZ. estimate that  the  momentum transfer 

in the collision should be  greater than 5 GeV  for such calculations to be valid, 

especially with an asymptotic form for the proton wave function. Since that is at 

least a factor of two greater than  the momentum  transfers observed by DELCO 

and TASSO, they repeat the calculations with a  proton wave function recently 

proposed by Chernyak and Zhitnitsky'l and find better agreement with the  data. 

For example, they predict a cross section of 0.17nb  integrated over the angular 

range -0.6 < cos B,,, < 0.6 at W = 2.4 GeV. 
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Appendix A. Integration of the EPA spectrum 

The  experimental implications of the EPA spectrum  can  be  studied by 

making  simple  integrations  with  limits  determined by only the most significant 

features of the detector acceptance. For two-prong production, if some additional 

approximations  are  made,  then  the  integrations  can easily be done analytically, 

with  the nice result that  the salient  features quickly are exposed in an  intuitive 

manner.  Integrations of more complex  final states  and over more  detailed models 

of the acceptance are done  with  Monte  Carlo techniques. 

It is instructive to carry  out an integration of the differential cross section 

for e+e- --+ e+e-e+e- over what is roughly the DELCO  acceptance, in order to 

obtain  the  distribution of the invariant mass of the electron pair which is observed 

in the  central detector. This exercise  gives an understanding of the behavior of the 

invariant-mass spectrum for production of pairs of fermions and also provides an 

understanding of the effects of the limited detector  acceptance.  Electron  pairs  are 

of special interest because ultrarelativistic  approximations can readily be made 

and because that is a channel which  is  easily observed by DELCO. 

A procedure for doing such  integrations for general two-prong final states  and 

a number of typical  acceptance cuts  has been given  in detail by A. Courauf)2 

Here  we  give just  an outline of the calculation as it is done to  obtain  the 

invariant-mass  distribution of the electron pairs. The first step is to  integrate 

over the Q2 dependence of the  photon flux of Eqn. 2.4 from Q&,. up  to some 

value which generally is determined by experimental  constraints. Defining 

A = (Q&=. - Q2 mm. . )/Q$,. , one finds 

with 

S(X;) = (1 - X; + ;X:) ln(1 + A2) - (1 - xi)[l- 1/(1+ A2)] 
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Using this  photon flux along with the cross section for 77 + e+e-, given for the 

case of relativistic electrons by 

results in the differential cross section 

d3u a4 S ( X ~ ) S ( X ~ )  2E 1 + u2 
d x l d ~ 2 d u   2 ~ E 2   ~ 1 x 2  W 1 - u2 * 

- - -- 

In the limit of zero-angle scattering of the beam electrons, the relations 

Z2 G (W/2E)2 = ~ 1 x 2  and x; = Ze*Y may  be used, where y = tanh-lp and 

PC is the velocity of the 77 system along the beam axis. Changing variables in 

Eqn. A.4  gives 

Already it is evident that  the behavior of the invariant-mass  spectrum is dominated 

by a  factor of l/W3. To complete the calculation, both u  and y must  be  integrated 

over the experimental acceptance. 

Let us define the acceptance in such a way that only the most significant 

limits of DELCO are accounted for. These are  the angular acceptance in 6 and 

the lower momentum limit defined by the detector trigger. Neither quantity is 

cut off sharply at its limits by the detector itself. In the analysis, however, sharp 

cuts  are  made which are well inside the complicated boundary of the detector 

hardware.  These cuts  are made on cos 61ab and  W, which is convenient for the 

integration. 

If first the  rapidity, y, and  then  cos6  are  integrated  over,  the  integration 

limits are as follows. The  rapidity is limited by both  the energy (since x; < 1) 

and  the angular acceptance (lcos 61 5 UO), so the  upper limit on y is the  minimum 

of ln(l/Z) and (tanh-’ uo - tanh-l  u). Because of symmetry in  cos 6, it is only 
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necessary to integrate over  half of the angular  range, so the lower limit can be 

taken to be zero. Then  the  integration over u can  be done from 0 to u g .  

Finally, the  upper limit on the integration over Q2 is yet to be specified. If 

the experimental limit is imposed by anti-tagging of the  scattered electrons, then 

where 8 ,  is the  minimum tagging angle.  Usually, a more important limit is 

produced by cuts on the transverse  momentum, kl, of the electron pair. When 

applying  either of these limits to  the integration, it is possible to assume that all 

of the  contribution near the limits comes from  scattering of one beam  electron, 

because the probability for both electrons to  scatter at large angles is relatively 

minute. In that case, Q2 M k:, so a cut on k l  is directly a cut on the Q2 of the 

virtual  photons. 

For DELCO, some typical values used are uo = 0.6, Wmin. = 0.6GeV,  and 

IC1 5 0.2W.  Integrating  the cross section of Eqn. A.5 over this acceptance yields 

the mass  distribution of Fig. A.la .  Because the  integration region  is rectangular 

for most values of W ,  there is little deviation of the mass  distribution  from  the 

simple l / W 3  behavior. Included in Fig. A . l  are  two  additional curves for larger 

angular acceptances, so one can see the  drastic reduction in the cross section due 

to  the limited angular acceptance. 
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Figure A. l .  The  invariant-mass differential cross  section for e+e- pairs 
from e+e- + e+e-e+e-. The  acceptance for the pair observed in the 
central  detector is defined to  be k l  5 0.2W and (a) [cos61 5 0.60, 
( q  lcosol 5 0.80, (c) lcosel 5 0.95 
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Appendix B. Monte  Carlo  Integration  and  Event  Generation 

In Appendix A an integration of the e+e- ---+ e+e-e+e- cross section 

was done over a simplified detector acceptance by using the equivalent photon 

approximation. Any integration involving a more complex region or a more 

complicated spectrum is best done by Monte  Carlo  methods.  This  chapter first 

provides some general background about  the use of Monte  Carlo  integration  and 

then discusses the specific calculations used in the  data  analy~is8~ 

B. 1 T H E  MONTE  CARLO METHOD 

The basis for Monte  Carlo  integration is the integral expression for the mean 

of a function: 
- 1  f = , l f ( z l  ... z n ) d V ,   V =  

Since the mean  may  be  approximated by an average over many  randomly selected 

points  within the n-dimensional volume, then so may the integral.  In  practice, 

the integration region often is so complex that  the integral  V = SdV also must  be 

done by Monte  Carlo  methods. The usual approach is to use a hit-or-miss method. 

One  randomly chooses points  from a uniform distribution in an n-dimensional box 

which contains the  actual region. If a point falls outside the region, then  it is 

rejected. The  ratio of the  number of points  retained to  the  total  number selected 

times the volume of the box gives the volume of the desired region. 

Extending  this idea gives a method for generating differential distributions of 

f(zl  . . . zn) in any variable v = v ( z 1 .  . . zn). Any bin in the range of v defines 

an n-dimensional integration region which is contained  within the full region. It 

follows that each time  a  point is selected which gives a value for v which falls within 

the  ith bin,  then that bin should be incremented by the  amount f / (Avi  . N ) ,  where 

Avi is the bin width  and N is the  total  number of points selected. 

The Monte  Carlo  procedure gives  only an approximation to  the integral, so 

it is important  to evaluate the  uncertainty in the result.  In  contrast to most 
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numerical  integration  methods,  this  estimate is easy to produce. Its  square is 

given  by a2 = V ( f ) / N ,  where V ( f )  is the variance of the function f .  Calculating 

it requires  integrating  the  square of the  function, which is done  by  Monte  Carlo 

also. Thus  the variance is calculated  from the formula 

If the volume of the region is calculated by the hit-or-miss method,  then  that 

introduces further  uncertainty.  It becomes especially important for the case of 

small  bins in a  differential distribution, for which the  number of counts in a given 

bin  have  a  Poisson  distribution. Then  the  additional  uncertainty is approximately 

a, = f;/fi, where 7; is the average of f over the  ith bin and n; is the  number 

of bin  entries. 

It is clear that in all cases the  uncertainty decreases like l / f l  as N increases. 

It is remarkable that  this remains true no matter how many  dimensions are 

included in the  integration. Even so, the variance  may in fact be so large that  an 

absurdly  large N is necessary to bring the  error down to a reasonable level. That 

is bound to be a  problem if the function to be integrated  has  one or more  large 

peaks.  In  such  cases,  special  methods  should  be used to reduce the variance.  One 

way is to divide the region into  a  number of pieces, so the  integral is a sum of 

integrations over small regions in which the function does not  vary  greatly. That 

alone  generally will reduce the variance, but  a  better reduction is obtained if the 

number of points chosen in each region is taken  to  be  proportional  to  the average 

function value within that region. An iterative  procedure  can be used which  uses 

the  results of the  integration  from one iteration  to provide the  number of points 

to be  calculated in each region for the next  iteration. 

Such  importance  sampling  often  can  be  done  analytically  by  using  explicit 

knowledge about  the behavior of the function to be integrated.  The  method 

simply amounts  to a change of integration  variables.  Consider  a  one-dimensional 

, 



237 

case  for simplicity. The trick is to find a simple function, g(z), which has  the 

same behavior in the peaks as the more complicated f(z). For convenience, the 

normalization Ja g(z) dz = 1 is assumed, where a and b define the  boundary for 

the  Monte Carlo  integration. For each iteration a uniform random  number Rj 

between 0 and 1 is generated, and a new variable zi is calculated  from 

b 

After N iterations, an  estimate of the integral is given  by (l/N) xi f(zj)/g(zj). 
Note that if g = f then  the variance is zero. To make use of that fact, however, 

one must already know the analytic  solution to  the integral. It is important  to 

realize that, in the multidimensional case, even if f = g the integral  still will have 

some uncertainty if the region boundaries are so complicated that  the hit-or-miss 

method  must  be used. 

In experimental physics, the most useful aspect of Monte  Carlo  integration 

is that  it is a simple  method for integrating over arbitrarily complex regions. In 

fact,  the region may be  taken to  be defined by a very detailed  simulation of the 

apparatus,  with all sorts of inefficiencies and resolution effects included. Usually 

histograms are  made of the various kinematic  variables, just as is done  with data. 

In such a case the analysis is  simplified if the histograms  can be accumulated 

without including weights. That may  be  done by using the hit-or-miss method. 

The  point in the space (z;} is chosen as usual, using some  variance  reduction 

technique if necessary.  Let w represent the weight, which simply is f ( q  . . . zn) if 

importance  sampling is not used. A uniform random  number R is selected, and 

with wmm. being the  maximum weight over the region, the  point is rejected if 

R - w m u .  > w .  A lot of calculation time will be wasted if w has  any significant 

peaks, so in practice it often is necessary to divide the region into  many subregions 

and  then  estimate  the  maximum weight for each. 

An integration  made  without weights almost always is considerably less 

efficient than one which  uses the weights, so it should be avoided unless there 
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is a good reason for  it. The advantages of an unweighted event  generator often 

can  be more important, however. The simulated  events  can  be treated  just as the 

data  are,  and  the  uncertainty in each bin always is simply the  square  root of the 

bin contents.  Furthermore,  it is common for the simulation of the  apparatus  to 

require much more computation  than  the event generation, so there is a danger 

of wasting  a lot of time  simulating events with very small weights if unweighted 

events are  not produced. 

B . 2  MONTE CARLO INTEGRATION OF THE E P A  SPECTRUM 

A Monte  Carlo  program was written for the DELCO analysis to generate 77 

states according to  the EPA  spectrum of equations 2.14 and 2.15.84 It can  be used 

in conjunction  with a variety of other  programs for generating the final state from 

the 77 system,  and  it is interfaced into  the DELCO  detector  simulation software. 

Here the program is illustrated by considering the specific case of production of 

lepton pairs. 

We assume that  the 77 + X cross section has the typical  form 

For the  EPA  spectrum, a change of variables is made  from the set {Q;, Qi, XI, 22) 

to  the  set (2, y, t:, t i } ,  where we have defined 

The limits between which these variables must  be  integrated  should  be chosen 

to  be somewhat outside the acceptance of the detector.  In  particular, 2 is only 

approximately  proportional to W ,  so it is a mistake to set the 2 limits exactly 

at  the acceptance limits in W. For all the produced particles to be  within the 

angular  acceptance,  it is necessary, though  not sufficient, that ltanh yI be smaller 
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than u g ,  the  upper limit on cos8. Since the cross section is dominated by events 

with t2  close to unity, while the experimental  limits are well out on the  tail of the 

distribution,  then  the efficiency  is not  unduly  harmed by taking  the limits  on t2  to 

be large and rejecting events  with  scattering angles too large for the experiment. 

1 5 ti2 5 E/me is  chosen as the  appropriate  integration  range. 

In the new variables, the cross section is 

where S(x,t2) = [(l - x + ;x2) - (1 - x)/t2].  The l/t; and l /Z3 behavior must 

be removed by importance sampling. To do so, the variables are generated as 

follows from four uniform random  numbers R;. 

y =(2R4 - 1) tanh-l u g .  

The first two expressions of Eqn. B.7 are easily inverted to give the formulas 

Once the variables have been chosen, it is possible to calculate the  momenta 

of the  scattered electrons and of the 77 state. At that  point,  the event  should  be 

rejected if the  scattering angle of either electron is larger than  the  maximum value 

allowed experimentally. The weight for the  event, aside  from  additional factors 
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resulting  from the cross section for 77 + X ,  is 

X [1n(E2/rn;)l2 [ (-$ - $)] [2 tanh-' U O ] ~ .  2 2  (B.9) 

The variance of this weight is small, especially compared with the variance of 

the original integrand,  Eqn. B.6. Therefore, the Monte  Carlo is efficient, and  it is 

practical to use it for generation of unweightedevents. To do so, first the  maximum 

weight is estimated,  and  then all events with R5 - > wr7 are rejected. 

B . 3  INCLUDING THE CROSS SECTION FOR 77 + l+ l -  

The cross section for production of lepton pairs  from  two  real  photons is, to 

leading order in QED!5 

do a2 - - d R - w ? [  2(2 - p;) - (1 - P;u2) - 2 (B.lO) 

where dR = du  drj is the volume element in the center-of-mass of the 77 system. 

The variable  u = cos 8 is  defined with respect to  the axis made by the colliding 

photons in their center-of-mass system, but for untagged  events, that is very close 

to being parallel to the  laboratory z axis, along which the electron beams  travel. 

Note that = dl - ( rnl /k0)2 ,  where ICo = W / 2 ,  so the cross section contains  a 

dependence on W ,  which in turn is a function of both 2 and y. Therefore, the 

integration does not  contain the angular  integral as a separate factor.  When doing 

importance  sampling in such  a multidimensional integral, it usually is only possible 

to consider one dimension at a time. Since importance  sampling is equivalent to 

a change of variables, if the transformation  function used depends on more than 

one of the variables, one must  be careful to include properly the Jacobian of the 

transformation. So far, all the changes of variables made to Eqn. B.6 have involved 
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only one  variable at a time. Here we make  a  change of variables  from  u to  R(u) 

with  a  dependence  on p, which in turn is a function of both 2 and y: 

tanh-lplu 
tanh-lppo ' 

R(u) = 

In  this  case,  the  contribution  to  the  Jacobian simply is 

1 - pfu2 
1/R'(u) = tanh-'  puo 

Pl 

(B.ll) 

(B.12) 

In other words, we can  generate R uniformly  from 0 to 1 and calculate 

u = tanh(R  tanh-l  puo)/p.  Then  the overall weight for an event is Eqn. B.9 

times 

2(2 - p2) - (1 - P 2 U 2 )  - 2 (' - p 2 ) 2 ]  tanh-' &uo, 
1 - p2u2 (B.13) 

where an  extra  factor of 2 has been introduced so that  the  integration can  be done 

on only half of the symmetric  range of -UO to uo. 

B . 4  MONTE CARLO FOR THE SINGLE-TAG LUMINOSITY FUNCTION 

For the analysis of tagged  events which are not  entirely  governed by QED, the 

single-tag  luminosity  function of Section 2.4 is used in place of the EPA  spectrum. 

The  set of variables to generate are for this case {SI, x2,02}, where 02 is the 

scattering  angle of the tagged  electron. An equivalent  set is (2, y, 02}, where 2 

and y are defined in Eqn. B.5. Again, 2 and y are  generated  according  to  the 

formulas of equations B.7 and B.8, but fl2 is generated  according to a cot f 0 2  

distribution, between the limits Bmin and Omax, by the  formula 

02 = 2 sin-' {sin $Omin exp [.In (sin sin '"-->1> ;emin , (B.14) 

where R is a  uniform  random  number  between zero and one. 
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The event weight follows from  Eqn. 2.18 and is  given by 

( B . 1 5 )  

where K = (W2 + Qi)/4E2, amin is the  minimum tagging angle for the  apparatus, 

and w x / W 2  is the weight for the process 77 + X .  Although it is  by no means 

obvious at a glance, for the range of B available for tagging in DELCO  this weight 

has a reasonably small variance, so it can  be used  for generation of unweighted 

events without  any serious inefficiency, as long as w x  also is reasonably well 

optimized. 

B . 5  CALCULATIONS  WITHOUT E P A  

If it is necessary to investigate  a region of Q2 in which EPA is not valid, 

then more complex calculations must  be performed. Monte  Carlo  programs have 

been written to handle some specific When the Feynman  diagrams  are 

complicated and large in number,  it is prohibitively difficult to  sum  the amplitudes 

and  square  them analytically. Therefore, the programs  calculate the complex 

amplitudes numerically, add  them  together,  and  square  them.  Much  care  must  be 

exercised to avoid numerical instabilities. 

The program which we use is the one of Ref. 22 for the process e+e- + 

e+e-Z+Z-. There  are  contributions to this process in addition to  the two 

double-bremsstrahlung (multiperipheral) diagrams, but they give no significant 

contribution to  the cross section in the experimental  situation where only the l + l -  

are observed in the detector?2 Six diagrams  are included in  Ref. 22, whereas for 

the four-electron final state  there actually  are a total of thirty six. The six which 
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Figure B.l .  Six diagrams for the process e+e- + e+e-Z+Z-. These are 
the diagrams  included in the calculation of Ref. 22. 

are included are shown in Fig. B.l .  The diagrams in which the  beam electrons 

annihilate  are  entirely  neglected,  and for the case of four  final-state  electrons, 

interference  between the fermions  originating in the  beam  and those  originating 

from the 77 interaction is neglected. A general  purpose adaptive Monte  Carlo 

routine  called VEGAS86 is  used to do the  integration. VEGAS works by the 

method of importance  sampling,  but  rather  than using continuous  functions to 

approximate  the  integrand, which would require  prior knowledge of the  integrand, 

it uses step functions, which are  adjusted  iteratively to  adapt  to  the  integrand in 

use. 
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The procedure is to divide each axis of the n-dimensional space into N 

intervals. Then  the probability of choosing a  point from any given interval is 

defined to be a constant. Initially the intervals along an axis are of equal  length. 

During the first iteration  a specified number of function  evaluations are made. 

They give estimates for the mean values of the function in each interval, which 

are used to change the grid spacing for the next iteration. The intervals are made 

more narrow where the function value is relatively large, so in the next iteration 

more points will be concentrated  there than where the function is small. 

All function evaluations in all iterations are used in the determination of 

the integral  and  its  uncertainty.  Individual  iterations also produce a value for 

the integral and  an associated error  estimate. The x2 of all the values should 

not  greatly exceed the  number of iterations, or else one must  suspect that  the 

procedure  has become unstable. Such an instability could be  due to making not 

enough function evaluations in each iteration. That number  and  the  number of 

iterations  must  be chosen by the user. A good choice  will result in a reasonable x2 
per iteration  and  a  standard deviation per iteration which decreases at first but 

levels off before the last iteration is made. 

The program also can  be used to generate unweighted events!' To  do so, 

VEGAS is run  through several iterations just for the purpose of finding the 

optimum  grid spacing. At this  time,  the rough limits of the detector acceptance 

are included by defining the integrand to be zero outside of it. Therefore, after 

the initial  iteration,  points will not  be chosen which lie outside of the acceptance. 

After the grid spacing is specified, another  program considers the behavior of the 

integrand  and  estimates  its  maximum for each interval. After that, points  are 

chosen according to  the optimized grid and  kept or rejected according the  ratio 

of the function value to  the  maximum of the interval.  This  procedure provides 

for  efficient generation of events  within the detector acceptance even with  such  a 

complicated integrand. 

It is of interest at this point to compare the Vermaseren program  with the 
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Figure B.2. Two calculations of the e+e- invariant-mass  distribution. 
The line histogram is from the EPA  Monte  Carlo, and  the points  are 
from the Vermaseren Monte Carlo. 

EPA  Monte  Carlo described in the previous section. Figure B.2 and Fig. B.3 

show for the electron pair observed within the DELCO acceptance the invariant 

mass and  angular  distributions. The acceptance has been simplified and is 

defined by only the  cuts 0.6GeV 5 W 5 2.6GeV, -0.6 5 cos0 5 0.6, and 

Icl 5 min(0.2W, 0.3 GeV).  Within such an acceptance, EPA  calculates well  even 

the  distribution of total transverse  momentum (kl), as shown in Fig. B.3. It is 

clear that as long as a strict  cut is made on kl, one can expect the EPA to be 

valid for all of the untagged analysis. Any resulting  theoretical  errors will be  much 

smaller than  the  statistical  uncertainty of the  data. 

The full leading-order calculation, including all 36 diagrams,  has been done by 

Berends, Daverveldt,  and K l e i ~ s . ~ ~  They also use variance reduction techniques to 

handle the  sharp peaks that  the cross section makes in various regions of the seven- 

dimensional space, but they  do so explicitly, rather  than rely upon an  adaptive 

Monte  Carlo  integration  routine. Different subsets of diagrams have differing 

peaking properties. For example, we already have seen from the EPA calculation 

of the first two  diagrams in Fig. 4.1 (the multiperipheral  diagrams) that they  are 
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Figure B.3. Two calculations of the e+e- kl and 6cms distributions. The 
line histogram is from the EPA  Monte Carlo, and  the  points  are from the 
Vermaseren Monte Carlo. 

characterized by sharp peaks at low invariant mass and low Q2.t Other  subsets 

have peaks in different regions of phase space. 

The procedure used works by separating  the diagrams into six  subsets, where 

all diagrams in a particular  subset give amplitudes which have a sharp peak, 

arising when the q2 of one or more of the propagators becomes small, in the same 

region of phase space of the external particles. In each Monte  Carlo  iteration, 

one of the  subsets is chosen with a probability  proportional to its  approximate 

contribution to  the  total cross section. An event is generated according to  just 

the cross section for the chosen subset, so it is possible to choose the kinematic 

variables in a way which will cancel the peaks in that  subset.  The resulting  sample 

of events is corrected by calculating for each the full cross section according to  the 

entire  set of diagrams  and applying a rejection algorithm. 

One  result of their calculations is that for the experimental  situation where 

only two of the electrons pass through  the  central  detector,  the two multiperipheral 

diagrams completely dominate the cross section. Therefore, for the DELCO 

t For the four-electron final state, EPA includes only two of the permutations of the outgoing 
electron lines, thus ignoring interference between the scattered beam electrons and those from the 
77 system. 
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analysis it is a safe approximation to use  the Vermaseren Monte Carlo, or even to 

use the EPA Monte Carlo when untagged events are analyzed. 
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Appendix C. Unfolding Methods for Experimental Distributions 

The procedure used  in this  thesis for unfolding kinematic  distributions  from 

the measured  histograms is due to V. Blobel. In Ref. 88 he gives an excellent 

account of the justification and need  for the  method, a derivation of the  equations, 

and  an example  calculation. Here we provide only a brief summary of how the 

calculation is done. The principle difference from Blobel’s example is that, whereas 

his data is one dimensional,  here we always must  consider a multidimensional 

problem. 

Even  here,  though, only one dimension is considered at  a  time.  The problem 

with  the  other dimensions is only that they  must  be modeled properly in order 

that  the efficiency corrections for the variable  under  consideration  be  correct. 

As a concrete  example,  let us consider  unfolding the two-particle  invariant mass 

distribution.  In  this  case, for example, it is clear that  the  result will be correct 

only if the  angular  distributions  are  correct in the Monte  Carlo which is used to 

calculate the efficiency.  Let W represent the  invariant mass, and let W, 5 W 5 Wb 

be the  range in which we are  interested. f ( W )  represents the function to be 

determined-the result of the unfolding  procedure. 

The  data is in the  form of a histogram  with n bins of equal  width, where 

the value chosen for n depends  on the  number of events  available and also on 

the  experimental  resolution of W .  The  extent  to which f ( W )  can  be resolved is 

limited by the  statistical precision of the  data, so it must  be  represented by a finite 

number of parameters a l ,  a2 . . . am, according to some  expansion 

m 

a= 1 

The  number chosen for m must  be less than n, but otherwise  it is not  critical, 

unless  it is much  too  small,  because the regularization  procedure to be discussed 

will automatically  adjust  the  number of independent coefficients in the final  result 

to be  consistent  with the  statistical precision of the  data. 
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Figure C.l. A sequence of 20 cubic B-splines. They  have the  property 
that  at any  point x between a and b, the  sum of all of the B-splines is 
unity. 

The functions used  for the p;(x) are cubic B-splines with  equidistant  knots. 

The  range from W, to Wb is divided into m - 3 intervals of equal  length 

d = (Wa - Wa)/(m - 3), and each of the B-splines is non-zero over a range of 

4d.  Let t; represent the position of the  ith knot, so t 4  = W,, tm+l = Wa, and in 

general, t; = W, + (i - 4 ) / d .  Then  the cubic B-splines are given by 

b; ( X )  = 

Q z3 z = ( x  - t ; ) / d  t; 5 x < t;+1 

Q[1 + 3(1 + ~ ( 1  - z ) ) z ]  2 = ( x  - t ;+1)/d t;+1 6 x < t;+2 

Q[l + 3(1 + ~ ( l  - ~))(l - z ) ]  z = ( x  - t i+2 ) /d  t;+2 5 z < t;+3 - 
;[I - 4 3  z = (x - t;+3)/d t;+3 5 x < t;+4 

. o  

Figure C.l shows an example of 20 cubic B-splines spanning  the interval in x 

between a and b. 

Now let us  represent the response function of the  detector as A ( y ,   x ) ,  so the 

invariant-mass  distribution which is observed is  given by 
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where the A;(W) are given  by 

A;(W) = lwy A(W, z)p;(z) dz  . 

The function g(W) is what  actually is measured, but only as a histogram  with  a 

limited number of events,  and therefore some statistical  errors.  The A;(W) also 

are produced as histograms from Monte  Carlo events. The Monte  Carlo  events 

are  generated according to some distribution fo(W), and all detector effects are 

simulated. After analyzing the Monte Carlo events just as is done for the  data, 

m  histograms of the measured invariant mass W are  accumulated  with weights 
N 

given by N - p;(W) ,  where W is the generated  invariant mass. N is an overall 

normalization given by the  ratio of the  integrated luminosity in data  to  the 

integrated luminosity generated by the Monte Carlo. 

Since this really is a multidimensional problem, in order for the efficiencies to 

be  calculated correctly and efficiently by Monte Carlo, it is best if fo is a reasonable 

approximation to f ,  and  it if  is necessary that all other kinematic variables are 

distributed in a close approximation to reality. That always may  be checked by 

comparing the observed distributions  with the Monte  Carlo  distributions  after 

detector  simulation. Thus  the bin  contents of the  m histograms  form an n-by-m 

matrix of elements A;j, and Eqn. C.3 becomes 

m 
g; = A;jaj . 

j =  1 

Actually, this is completely true only if fo = 1; otherwise the resulting A,j are 

such that  the f(W) produced by the unfolding procedure  must  be multiplied by 

fo(W) to give the desired result. 

Given ij;, the measured bin contents, Eqn. C.5 may  be solved by a maximum 

likelihood method. The observed bin contents follow a Poisson distribution, for 

which the probability of observing the  number ij; of events in the  ith bin is P(ij; [ g ; ) ,  
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where 

P(t.lP) = e 
- Pr 

r! 
p- r E {O,I ...co}. (C.6) 

The g, are  the average or expected values of the bin  contents, which we take to 

be given by Eqn. C.5; hence P(ijiJg;) is a  function of the  parameters ai. The 

likelihood function is formed from the  product of the P(&(gi) for all n bins,  and 

its negative logarithm is proportional to 

n n 

a= 1 i= 1 

The desired solution is the set of a, which minimizes S ( a ) .  However, one finds 

that such a solution is dominated by large oscillations due to amplification of the 

statistical  errors  inherent in the  data. 

To damp  out  the oscillations, a regularization term - r(a)  is added to the 

log likelihood function, where r(a)  is a measure of the  curvature of the solution 

f (W):  .~ 
m 

r(a)  = [f"(z)I2dz = a,C;jaj. 
i,j=l 

.~ .. W. m 
r(a)  = 

i,j=l 

C is a constant, symmetric, positive-semidefinite matrix  and is easily calculated for 

the cubic B-splines. The regularization parameter T is adjusted to  an  appropriate 

value as explained below. 

The solution is calculated as follows. First define the derivative matrices 

These  must  be  calculated assuming some initial guesses iii of the  parameters ai. 

What is done is first to calculate the solution assuming Gaussian  distributions for 

the bin contents, in which case the log  likelihood function is quadratic in a and 

no initial guess is needed. The Gaussian result  then is used as a starting point 

for the first iteration of solving the problem with Poisson statistics.  In  practice, 
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few iterations  are necessary-for high statistics  the Gaussian  approximation is 

itself good enough. Once the derivative matrices have been calculated,  then the 

matrix U1 is found which diagonalizes H ,  and  another  matrix U2 is found which 

diagonalizes the  matrix 

First consider the unregularized solution ( r  = 0), which we denote by 

accenting with  a  bar. It may  be  written as 

m 

a= 1 

where the p' . ( z )  are  orthonormal polynomials given by 3 

n 

j= 1 

a' = U,TD-1/2UT(Hti + h) . 

(C.11) 

(C.12) 

In this orthogonal space, denoted by accenting with  a  prime, the covariance matrix 

of the coefficients  is simply the  unit  matrix. Therefore, any coefficient which 

satisfies (ai)2 5 3.84 is statistically  compatible  with zero at  the 95% confidence 

level. 

The  contributions  to  the  curvature of the individual  orthonormal polynomials 

are given by S;;, where S = UTClU2. The coefficients iii should  be  arranged in 

order of increasing Si;. Let mg be the smallest integer such that for i > mg, all iii 
are  compatible  with zero. The coefficients of the regularized solution are given by 

1 
1 + r S;; 

= a; , 

so if  we choose r such that 

(C.13) 

(C.14) 



253 

then  the coefficients are. cut off smoothly at the  point where they become 

statistically  compatible  with zero. The covariance matrix of the regulated solution 

is 

and  both  it  and  the coefficients ci' may be transformed 

by use of the  matrix U1D1/2U2. 

(C.15) 

back to  the original space 

The final task is to convert the coefficients to a  set of mo data  points by 

integrating  the solution j ( W )  over small contiguous regions of W and dividing 

each integral by the length of the  particular region. The regions are chosen as 

being between the  extrema of the polynomial pho+l(W). Thus  they  are located 

about  the mo zeroes of that polynomial, which has the effect of suppressing the 

contribution to  the solution from the  term ci~o+lpho+l(W) and also tends  to 

give wider bins in  regions of less statistical precision and reduce the correlations 

between data points. Since the integrals over the function j ( W )  are linear 

functions of the coefficients &*, then  it is straightforward to calculate the covariance 

matrix for the  data points as a linear transformation of the covariance matrix for 

the coefficients. 

As mentioned above, if it is  necessary, as is usually the case, that  the Monte 

Carlo input  distribution fo(W) not  be uniform, then  the unfoIded data  points must 

be  multiplied by fo(W) to obtain  the final result.  In  fact, for a multidimensional 

problem, fo is itself the result of an integration over several dimensions and is 

therefore usually not known analytically. What is done is to use the Monte  Carlo 

generator itself to do the integration, giving a  histogram  representation of fo. 
That histogram then is interpolated by cubic splines and  integrated over the same 

regions in W as was the solution j ,  which gives a  set of Monte  Carlo  points to be 

directly multiplied by the mo points of the unfolded solution. 

Finally, one has  a  measurement of the physical distribution of interest  without 

any  distortion  due  detector effects  which are unique to  the  particular experiment. 
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The procedure is complicated  because  it is necessary to smooth  oscillatory  behavior 

in a  manner which is compatible  with the  statistical precision and therefore 

unbiased. But  the complications are worthwhile,  because the  result is meaningful 

even to one who is not  familiar  with the details of the  experimental  apparatus 

and methods.  Often the result does not  contain as many  points as the original 

histograms,  and  the  error  bars may be  larger. But  that also is an  advantage, 

because the  points  and  error  bars represent the  true  limitations of the  apparatus. 

Resolutions effects inevitably  decrease the  statistical accuracy of an  experiment, 

so the result  should  properly reflect those  limitations. 
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