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Abstract 

A description is given of an experiment performed at  the PEP electron- 

positron  storage ring, using the DELCO detector, to measure the formation of 

charged particle  pairs from interactions of pairs of virtual  photons  radiated  from 

the colliding electron beams. The final states which are measured are electron- 

positron  pairs, charged pion pairs, charged kaon pairs,  and  proton pairs. 

Electron-positron pairs  are  separated from other data by use of gas  Cerenkov 

counters. The shapes of all kinematic distributions  are found to agree with 

predictions of quantum electrodynamics. These data also are used as an accurate 

normalization for subtraction of the muon-pair background and for measurement 

of the cross sections of the  three hadronic channels. 

Pion pairs are measured in the mass range from 0.6 to 2.0 GeV, where 

production of the f (1270) resonance is observed to interfere with significant 

continuum  production. The continuum is  well described by  single-pion exchange, 

allowing a measurement of the f two-photon partial  width of 3.47 f 0.37 keV. 

No Q priori assumption is made  about  the  ratio of helicity amplitudes,  and  the 

phenomenological model used  in fitting the  data is constrained to satisfy elastic 

unitarity. If unitarity is not required, then  the fitted  partial  width is a factor of 

0.83 lower than  the quoted value. The Q2 dependence of the cross section is found 

to be consistent with predictions of the Generalized Vector Dominance Model. 

Kaon  pairs  and  proton  pairs  are identified  by  time-of-flight measurements. 

Kaon  pairs are measured in the mass range from 1.3 to 2.0 GeV, where production 

of the f' (1520) resonance is observed. The continuum background is estimated 

by extrapolation, allowing a measurement of the f' two-photon partial  width of 

0.07 f 0.04 keV. The  ratio of the f and f' two-photon partial  widths is found to 

be consistent with SU(3) quark model predictions with  a mixing angle of 28 f 4 

degrees. Twenty-three  proton pairs are observed, and  the average cross section 

for  their  production from photon-photon collisions  in the mass range from 2.2 to 

2.9 GeV  is measured over the angular range -0.6 < cos 8 < 0.6 to be 1.2 f 0.5 nb. 
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1. The  Two-Photon  Particle  Production  Process 

1 . 1  INTRODUCTION 

The  quantum theory of electrodynamics (QED)  predicts that photons, the 

'quanta of the electromagnetic field, will interact  with each other  through  the 

exchange of virtual electron pairs-a phenomenon which necessarily is absent in 

the classical field theory of Maxwell.  However, such processes are  not observed 

from  usual sources of electromagnetic radiation because the cross sections are 

prohibitively small except at photon energies well above the electron mass. But 

in the energy realm of modern accelerators, interest in photon-photon  interactions 

goes  well beyond the relatively simple QED processes. Photons  interact  with many 

particles  other than electrons, so at high energies many possibilities are expected 

for two-photon  interactions,  with  hadrons as well as leptons in the final state. 

Unfortunately,  there are no sources of free, massless photons in the energy 

ranges of interest to high energy particle physics which are  intense enough to 

produce observable photon-photon collisions. Instead,  such collisions always have 

been studied indirectly as interactions of virtual  photons. The first methods to be 

used, such as the Primakov effect  for two-photon production of ro and 7 ,  involve 

the interaction of high energy photons  with  stationary  atoms. An incident photon 

interacts  with  a  virtual  photon from the electromagnetic field around  the atomic 

nucleus to produce  a ro, for example. A more recent method,  and  the one most 

widely used, involves the use of the high intensity  electron-positron colliding beams 

available in present-day  storage rings. 

The most simple process by  which two oppositely charged electrons can 

interact to produce  a  hadronic final state is through  annihilation  into  a single 

virtual  photon  with  an energy equal to twice the beam energy. That is contrasted 

with the process of interest to two-photon physics, in which a  photon is radiated 

by each beam. Schematic diagrams for both processes are shown in Fig. 1.1. The 

second is of higher order in the small electron-photon coupling than  the first, but 

the cross sections for two-photon processes can be very large in spite of that. 
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Figure 1.1. Production of non-leptonic final states in e+e- collisions. 
Two possibilities: (a) single-photon production and (b )  two-photon 
production. 

The reason is that single-photon production requires a spacelike photon  with a 

mass equal to twice the beam energy, while the two-photon process proceeds with 

timelike photons of generally lower energy and very low mass. Thus  the two-photon 

processes can  have relatively large cross sections in certain kinematic regions. In 

particular,  the two-photon process favors the production of states X which have 

much lower energies than  are available in single-photon annihilation. Also, the two 

processes produce states with differing quantum numbers, so they  are in many 

respects complimentary. For example, the two-photon states have positive G 

parity, while for single-photon production the  Gparity is negative. Also, a single 

photon always has spin-one and  parity negative, while two  photons  can couple to 

resonances with a variety of spin-parity combinations. 

Since two-photon collisions at e+e- storage rings are  dominated by interac- 

tions of photons of low invariant mass (small Q 2 ) ,  they resemble the interaction 

of two real photons. The electron beams act essentially as intense sources of 

bremsstrahlung  radiation, which interact as would two beams of high energy pho- 

tons.  This line of thought is developed mathematically in Chapter 2, where we 
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calculate the  spectrum of colliding photon  pairs expected from an e+e- storage 

ring and  thereby  justify  the  statements  made here regarding the scales of Q2 and 

energy involved in the photon-photon collisions. 

DELCO is an  experiment which has  taken  data at the PEP electron-positron 

storage ring of the Stanford Linear Accelerator Center  (SLAC). The emphasis 

of the detector is on tracking  and identification of charged  particles.  In the 

momentum  range  pertinent to two-photon physics, electrons are identified by a 

threshold gas Cerenkov counter,  and charged kaons and  protons  are identified by 

time-of-flight measurements. For both identification methods,  a  measurement of 

the particle  momentum is essential, and  that is made by drift  chambers positioned 

within a magnetic field. A more complete description of the detector  and  its 

performance is given in Chapter 3. 

The detector  components used for particle  tracking and identification cover 

about 60% of the solid angle, in a region centered about a plane perpendicular to 

the  beam line. That is not sufficient  for studies of inclusive particle  production, 

especially since the two-photon state is preferentially boosted along the direction 

of the  beam, causing most of the particles to escape out  the ends of the detector. 

The detector is suitable for studies of exclusive states of  low multiplicity, where 

all of the particles produced from the two-photon interaction  are  detected  and 

identified. In  particular,  the  ability of the detector to identify low momentum 

electrons gives special advantages in the  study of two-photon interactions which 

produce only two stable  particles in the final state. In this thesis, the reaction 

channels which are studied  are 

e+e-   +e+e-e+e- ,  

e + e -   + e + e - r + r - ,  

e+e-  + e + e - K + K - ,  

and e+e- +e+e-pF. 

For the QED channel, the kinematic distributions  measured from data  are 

compared in shape  with  theoretical calculations. Also, the QED channel is  used as 
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an  accurate  normalization for subtraction of the e+e- -, e+e-p+p- background 

from the remaining data  and for measurements of the cross sections of the hadronic 

channels. In the K+K- channel the two-photon partial  width of the f (1270) 

resonance is measured, and in the K+K- channel the two-photon partial  width 

of the f' (1525) is measured. As the measurements of these partial widths is 

a principle object of this research, this  chapter  concentrates on discussing the 

meaning of the two-photon partial width  and  its  theoretical significance. Chapter 7 

elaborates at length on the specific theoretical models used  in the analysis of the 

K+K- channel. 

1 . 2  HADRON PRODUCTION FROM PHOTON-PHOTON INTERACTIONS 

Since hadrons  are believed to be composed of point-like charged  quarks, the 

interactions of photons  with  hadrons should ultimately  be described by a QED 

type of coupling of photons to spin-; point fermions. The interactions of the 

quarks  among themselves should then  be described by Quantum Chromodynamics 

(QCD), in which the  strong interactions  are  mediated by vector bosons called 

gluons, with  additional  small  contributions from electromagnetic and weak  effects. 

However, we know that hadrons are tightly  bound  within regions with dimensions 

smaller than 1 fermi = 5 GeV-l. Therefore, it is clear than a photon  must  have 

an energy much greater than 0.2 GeV  before it could effectively  resolve any of the 

detailed structure of a hadr0n.t Otherwise, it may be  best to consider a physical 

description of photons coupling to point  hadrons,  with the  addition of some form 

factor to describe deviations from point-like behavior. In principle, the form  factor 

might be calculable from QCD; however, all that is possible at this  point in time is 

to calculate perturbative expansions which are valid only at very short distances 

in space-time. Thus  it is consistent to calculate  scattering  amplitudes in which 

photons couple to quarks  and  quarks  interact  through gluon exchange, but only if 

t That is not to say  that  the hadron  structure  cannot have  a large  effect on  the strength of the 
coupling to photons. In fact,  it is important, especially when the hadron is neutral, as we will see 
in Section 1.5. 
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all of that takes place on a very small  time and distance scale. What  that means 

is that  the wavelengths of the photons  must  be  small on the scale of a hadron, and 

there  must  be  a large momentum  transfer between photons and quarks. 

Even then, after  such  a  hard-scattering  interaction occurs, the quarks 

remaining in the final state continue to interact over a long time  interval,  and 

the  interaction, in fact, grows stronger as they  separate  from  the  point of collision 

with the photons. So one can  not get away from the fact that  the low-energy 

non-perturbative  strong  interaction effects must  be modeled phenomenologically. 

The best that one can hope for is a factorization of the  hard-scattering effects from 

the  non-perturbative  part, so that  they may be  dealt  with  separately,  and even 

measured separately to some extent. That has been done for the production of 

hadron  pairs by two  real  photons by Brodsky and Lepagel and extended to include 

virtual  photons by Gunion, Millers, and  Sparks? If the  hadron pairs  are observed 

at large angles with respect to  the incoming beams, which is experimentally 

necessary for most  present  experiments, anyway, then for sufficiently large two- 

photon  invariant mass, the photon energies and  the  momentum  transfer  are large 

enough that  the  perturbation expansion and factorization make sense. The first 

available experimental  results  indicate  agreement, of  low statistical precision, with 

the theory for pion  pair^^,^ and kaon pairs! for pair masses as low as 1.5 GeV  for 

kaons and 2.0 GeV  for pions. 

In  any case, DELCO is restricted by its  methods of particle identification to 

pair masses below 2 GeV (or 3 GeV  for proton  pairs). Therefore, in the DELCO 

data neither  do the photons have enough energy to finely  resolve hadronic structure 

nor is  QCD perturbation theory valid. Instead,  the  hadrons  and  hadron resonances 

must  be considered to be the elementary particles,  and  their couplings to photons 

and to other  hadrons  are described according to phenomenology which is  well 

known from low-energy (by today’s standards)  hadron physics. For the ?r+7rr- 

final state,  the relevant phenomenology is presented in Chapter 7. 
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1.3 RESONANCE FORMATION 

The energy range accessible to DELCO is, in fact,  dominated by resonant 

effects from the f (1270) in the &7r- channel and  the f' (1525) in the K+K- 
channel. These resonances both represent tensor mesons of zero  isospin and have 

been studied extensively in purely hadronic interactions. They are closely related 

to an isovector tensor meson called the A2 (1320). Some of the information already 

known about  the  three is shown in Table 1.1. 

Table 1.1. Particle  properties for the tensor mesons. The  data  are taken 
from Ref. 6 and represent averages of many  experimental  results, except 
for the f' branching ratio  to 77, which is from Ref. 7, the only published 
measurement to  date. No DELCO results are included. 

Particle 

f 

A2 

f' 

IG(  J ~ )  c 

0+(2+)+ 

1-(2+)+ 

0+(2+)+ 

Mass 

178 1274 

(MeV) (MeV) 

Width 

f5 f20 

1318 

f5 f 5  

110 

Decay 
% mode 

Fraction 

7r7r 84.3f1.2 

7r+7r-7r+7r-- 2.9f0.4 

K K  2.9f0.2 

77 0.0015f0.0002 

P= 70.1f2.2 

rlr 14.5f1.2 

W7rT 10.6f2.5 

KK 

0.00016f0.00006 77 

dominant KK 

0.00075f0.00016 77 

0.27f0.06 7r7 

4.9f0.8 

The cross section for producing a resonance X from two photons is propor- 

tional to  its two-photon partial  width rrr. Also, the probability for a resonance 

to decay into two photons is proportional to rrr. So if the  total  width of the 
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resonance is represented by I?, then  the two-photon partial  width is related to  the 

branching  ratio to two photons by rr7 = BR(X + 77) - I?. Thus  the two-photon 

partial  widths of the tensor mesons are, according to Table 1.1, 

rf+77 = 2.7 f 0.3 keV 

rA2+77 = 0.82 f 0.18 keV 

rf l+77 = 0.11 f 0.05 keV. 

These values  all have been measured by two-photon production at e+e- storage 

rings, so they all suffer from the same kinds of systematic effects  as do the DELCO 

measurements. For example, 

0 The measurements are  made  with  virtual  photons, so an extrapolation  must 

be made to Q2 = 0. We will  see that for the usual  experimental  situation 

this effect  is small. 

e Generally the resonance is not produced in isolation. Usually there is 

substantial continuum  production which interferes with the resonant effects, 

and  it  must be modeled properly in order to  extract  the resonant cross 

section. 

e The tensor mesons have widths which are large on the scale of the typical 

experimental resolution. Therefore, the energy dependence of the cross 

section must be appropriately modeled, leading to  partial widths which are 

not  constant with energy. One must be careful to  understand how the final 

number given for the  partial  width is defined. This is  closely related to  the 

previous point-interference with a background would be no problem if the 

width were  negligibly small. 

e A tensor meson may be produced from photon  pairs  with  a  total helicity of 

either zero or two with respect to  the axis  along which the photons  travel in 

the  center-of-mas system. Therefore, the angular  distribution of the decay 

products is not known a priori but depends on dynamics of the production. 

This problem is discussed at length in the following section. 
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0 Most experiments have not been optimized for studying the relatively 

low energy two-photon production processes. This complicates the always 

difficult problem of understanding the detection efficiency. 

1.4 ANGULAR DISTRIBUTIONS OF TENSOR MESON DECAYS 

Consider a spin-2 meson  in its  rest frame with spin component X = 0, f l ,  f2 

in the z direction. When it decays into two spin-0 mesons, the angular  distributions 

are given  by the squares of &functions, d i o ( e ) ,  where 8 is the angle between the 

momentum of one of the decay products  and the z axis. Figure 1.2 shows plots of 

the  three  angular  distributions, using 

Also shown is the  shape of the experimental acceptance for  pairs produced at  the 

angle 8 in the meson rest system, assuming that  the mesons are produced by 77 

collisions  in an e+e- storage ring and observed by a  detector  with  a  laboratory 

acceptance of cos elab < 0.6 (appropriate for DELCO). 

If the experiment is done with photons which are almost real, as is usually 

the case, then tensor mesons can be produced only with helicity X = 0 or 2, 

assuming an axis of quantization parallel to  the photon momenta in the center-of- 

mass system. Unfortunately, the angular distributions for these two possibilities 

are rather similar in shape in the experimental region of greatest acceptance, so 

the experiment is  severely limited in determining the fraction of each component 

in the  data. If that fraction is incorrect, then it is clear that  an extrapolation to 

the full solid angle, which is necessary to determine the two-photon partial width 

of the meson, can be greatly in error, since the two angular  distributions  are  not 

at all similar near cos 8 = fl.  Therefore, it is  useful to have some knowledge of 
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Lu 
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0.6 
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Figure 1.2. Angular distributions for the decay of a tensor meson into 
two spin-zero mesons  for helicities X = 0, 1,2. Also shown is the  shape of 
the acceptance of the DELCO detector. 

the  ratio of the helicity amplitudes  either from theory or from  other  experiments 

with  greater  angular acceptance. 

The  Crystal Ball collaboration, using a detector  with a maximum acceptance 

of 98% of the solid angle, measured the angular  distribution for 77 + f + ,Oro 

within the limit \cos 81 < 0.9 and  determined thatg 

I 
LU- = 0.12 f 0.39. r X = 2  
77 

Theoretical limits are even more stringent.  In Ref. 10, elastic 77 scattering is 

considered, and a sum rule is derived from fixed-t dispersion relations by  invoking 

crossing symmetry. When partial wave expansions are  inserted  into the  sum rule, 

with the  partial wave amplitudes  approximated by a series of narrow resonance 
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contributions,  then  the following inequality is obtained: 

(X = 2) (X =o)  
2 6 x + positive J p  = 4+ contributions, 

T T 4 
(1.4) 

where the  sums  are over all of the tensor mesons.  Because of the  factors of l /mt,  
only the f, f', and  the A$ contribute significantly, and from quark-parton-model 

predictions, one expects the main  contribution to be from the f .  Therefore, the f 

partial  width  into 77 with helicity-zero is expected to be  suppressed by at least a 

factor of six relative to  the helicity-two partial  width. 

The  authors of Ref. 8 and Ref. 5 claim that a six-to-one suppression of the 

helicity-zero amplitude may be  calculated from Clebsch-Gordan vector coupling 

coefficients. They show that if the 77 system is presumed to have an angular 

momentum given  by  only the  sum of the photon  spins, then  the J = 2, M = 0 

component of the 77 system is six times smaller than  the J = 2, M = 2 component. 

But that says  nothing about how strongly the meson couples to  the two helicity 

amplitudes. The two-photon  width is a dynamical quantity related to  the tensor 

meson structure. 

We describe the photon  pair and pseudoscalar-meson pair by helicity states 

because that is a proper  and convenient description of a pair of relativistic 

particles. For J = 2 there  are five such states,  but symmetry requires that  the 

coupling be  the same for +X as for -X, leaving only three  independent  amplitudes 

for an  interaction.  In a nonrelativistic case, one might find it convenient to make 

an LS decomposition and describe the two-particle state by the  total  spin s and 

the  orbital  angular momentum 1 ,  such that 3 = s'+ 5: One easily can see that 

for J = 2 there  are five possible combinations of s and 1 .  Symmetry  must again 

reduce the  number of independent couplings to three,  but  it no longer is so obvious. 

Hence we talk in this case of some sort of orbital  angular  momentum  amplitudes 

rather  than helicity amplitudes. One could make the dynarnical assumption that 

only 1 = 0 contributes,  but some sort of justification  must  be given. Then  the 
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number of amplitudes would be reduced to one. But when the relativistic regime 

is approached,  it does not seem to be of any greater  advantage to make an ad 

hoc assumption that 1 = 0 than  to assume that X = 2. Furthermore,  it is a fact 

that  an LS decomposition cannot be made for a  pair of massless particles such as 

photons (see Section 7.1). 

Finally, let us consider what modifications of these ideas are necessary  for 

an experiment done with virtual photons. We wish to measure the two-photon 

widths of tensor mesons for real photons, which requires a small extrapolation 

of the result  obtained from scattering of photons generated by  colliding electron 

beams. For real photons, the helicity-one amplitude is exactly zero, but it is 

possible for experiments done with quasi-real photons to see some contribution 

from helicity-one in addition to  the helicity-zero and helicity-two contributions. In 

making the extrapolation to real photons, one would want to isolate the helicity- 

one contribution and drop  it. We will not be concerned about  this problem, 

though.  First of all, the 77 collisions observed by DELCO are from photons which 

are sufficiently  close to being real that  the helicity-one component must already be 

negligibly  smal1.t Second, it is clear from Fig. 1.2 that  the acceptance of DELCO 

is small for the helicity-one component, relative to  the  others, so not  much of that 

component would be observed even if it were produced. 

1.5 UNITARY  SYMMETRY AND THE TENSOR MESON NONET 

The theoretical importance of the two-photon width of a meson stems from 

the general utility of electromagnetic probes. At  a fundamental level, photons 

are known to couple only to charged particles, and  the  nature of the coupling is 

known in full detail from QED. Therefore, the only  missing information about how 

the meson  is produced from photons is the detailed structure of charged currents 

within the meson. The  structure depends upon the composition of the meson and 

the  strong interactions of its  constituents, and  it is what is  of theoretical  interest. 

t That  is, for the untagged  experiment (see Chapter 2). 
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The most basic theoretical model is the quark-parton model, which assumes that 

each meson is composed of two spin-; quarks of flavor u, d, or s. The only 

dynamical assumption  made is that of (slightly broken) SU(3) symmetry  under 

transformations of isospin and hypercharge. The u,  d, and s quarks form a 3 

representation of SU(3), and  their  antiparticles form a 3 representation, as shown 

in the weight diagrams of Fig. 1.3. The mesons are formed from combinations 

of quark and  antiquark. Superimposing the two weight diagrams immediately 

generates the nine possible combinations of the I and Y quantum  numbers, 

but  there is an additional  quantum  number,  spin, which must be considered. 

Spin singlet states  are formed when the quark and  antiquark have their  spins 

anti-parallel, yielding the pseudoscalar nonet (7, q', T, K), while the vector nonet 

(4,  w ,  p,  K*) is formed when the spins are parallel. The intrinsic  spin of the quarks 

should not  be the only source of angular  momentum, so we expect higher spin 

states.  The J = 2 nonet has been observed, and  the particles of which it is 

composed are shown in  Fig. 1.3. We can consider these mesons to be composed of 

massive spin-2  quarks in a P-wave state of relative angular  momentum. 1 

The 3 83 representation of Fig. 1.3 may be reduced to a combination of octet 

and singlet irreducible representations, 8 @ 1. The charge neutral A2 obviously  is 

a  member of the octet. It is represented in terms of the direct product quark-pair 

states by 

IA2, Q = 0) = (Ida) - \uti)) . (1.5) 

One of the other  neutral 

They are respectively 

I '  

states is  in the  octet, while the last forms the singlet. 

The fact that  the mesons of the octet in Fig. 1.3 do not all have the same mass 

is a clear indication that S U ( 3 )  symmetry cannot be exact. The  strange mesons 
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0 - 
ds 

Figure 1.3.  SU(3) representations formed by the u,d ,  s quarks and their 
antiparticles. I3 is the third component of isospin, and Y is the hypercharge. 
The  electric charge  is given by Q = I3 + Y/2 .  The K states  shown in the  octet 
representation are the K* (1430). 
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generally have larger masses than  the others, which suggests that  the s quark is 

more massive than  the other two. In that case, the symmetric combinations of 

Eqn. 1.6 are unlikely to  be realized  in nature. In fact, from the branching  ratios 

to KK of the observed mesons f and f', one might guess that  the f has almost no 

s-quark content, while the f' is almost completely composed of s quarks. Let  us 

define these physical states in terms of the f8 and fl through a mixing angle 0: 

Then  the  situation called ideal mixing, in which the f' is purely ss, occurs for 

0 = 35.26'. 

The coupling strength g of 77 to a qg pair is proportional to  the square of 

the quark charge:8 

where Q q ( 0 )  and \Eh(O) are  the  radial quark wave function and  its derivative at 

the origin. Assuming that  the Qb(0) are independent of the qij flavor, the 77 

couplings of the tensor mesons then  are  proportional to coherent sums, given  by 

equations 1.5 and 1.6, of the squares of the quark charges: 

SU(3) requires that  the constant of proportionality in Eqn. 1.9 be the same 

for the A2 and f8. The singlet state is not necessarily related that simply to 

the octet states, however. If one  does assume that  the wave functions of the 
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singlet and  octet  states  are  approximately  equal,  then that implies approximately 

equal  binding energies!' That in turn implies, when SU(3)  symmetry is broken 

by the s quark mass, nearly ideal mixing of the f8 and f1. That is consistent 

with the observed tensor meson nonet (but  not  the pseudoscalar nonet), so it is 

reasonable to use Eqn. 1.9 along with  Eqn. 1.7 to relate the 77 widths of all three 

of the physical mesons. With  the  widths  related to  the coupling constants by 

rrr oc m3g2, we havet 

(1.10) 

These  relations give a reasonable fit to  the  data summarized in Eqn. 1.1, but 

we postpone  any more consideration of them  until  the  results of the DELCO 

experiment  have been presented. 

Finally, the importance of the 77 width goes  well beyond these simple 

predictions of the quark model. First, one would not expect Eqn. 1.10 to be 

satisfied to a high degree of accuracy, but  any clear deviations from it could 

provide useful experimental  input  into the problem of meson structure. Second, 

the 77 width  has a better  potential of being understood theoretically than most 

nonperturbative phenomena associated with mesons. In  fact, in the case of the T O ,  

the 77 width  has been rigorously calculated,12 due to  the  fortunate occurrence that 

it proceeds through  a fermion loop, the axial anomaly, which is dominated by large 

loop momenta. Similar success has  not yet been achieved for the tensor mesons- 

the theoretical predictions for rj+77 range  from about 1 to 20 keV.13 Nonetheless, 

the  strength of the 77 coupling is an  important  fundamental  parameter of any 

t Kolanoski points  out in Ref. 8 that there does not appear to be a rigorous  proof that this 
expression for the phase  space factor is valid-in some publications the width  is taken to be 
proportional to m, rather than m3. Fortunately, there is not a large variation of mass in the tensor 
meson nonet. 
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resonance, and  except for the T O ,  the  best way to measure it  is by 77 scattering 

at e+e- storage  rings. 



2. Two-Photon  Interactions at e+e- Storage  Rings 

2 . 1  KINEMATICS 

The object of this research is the  study of cross sections for particle  production 

from two-photon collisions. But  the photons  are produced over a range of momenta 

by electron beams, so the cross sections of interest always are convolved with  a 

two-photon  flux having a continuous energy spectrum. Also, the center of mass of 

the two-photon state generally is not the  laboratory system but is boosted with  a 

range of velocities relative to  the laboratory. Thus  the kinematics and  the cross 

sections both  are complicated, so it is essential to understand fully the  scattering 

of the  beam particles  and  production of the two photons before dealing with the 

interactions of the photons themselves. 

First, some conventions must  be established for the  notation used to describe 

the kinematics. Figure 2.1 shows a  schematic  diagram of the collision with some 

of the variables to be used, which are listed in greater  detail be1ow:t 

Pi  four-momenta of the electron beams (i = 1,2).  
E the storage  ring  beam energy. 

PI four-momenta of the  scattered electrons. 
E, = p I - 1.0 

a energies of the  scattered electrons. 
m e  = P;  2 the electron rest mass. 

P angle between the  scattering planes. 

6; polar angles with respect to  the  beam axis. 

4; azimuthal angles. 

cos P = (pi x 3;) - (pi x $4) 

Q; = Pi  - P; 

X; = $/E energies of photons  relative to  the  beam energy. 

I momenta of the  virtual photons. 

t Factors of h and c are omitted from formulas and kinematic expressions, and the electron volt 
is used a a  unit of m a s ,  momentum, energy, and,  often, of  inverse length.  Also, the term electron 
is used to refer to both  the electron and its  antiparticle, in the same way that  the terms muon 
and pion commonly are used.  Positron, or e+, is used  for the  antiparticle when the  distinction is 
important. 
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e+ 

- 
e 

Figure 2.1. A collision of two bremsstrahlung  photons.  This  schematic 
diagram shows the  notation  to  be used  for a description of the kinematics. 

is always positive. 

polarization of the photons. 

momenta of the j t h  particle  from the 77 system. 

total transverse  momentum of the 77 system. 

total energy of the 77 system. 

invariant mass of the 77 system. 

rapidity of the 77 system in the lab frame. 

gj is the polar angle of particle j in the 77 c.m.s. 

The kinematics of the production of the two photons is determined by the 

four-momenta of the incoming and outgoing electrons. The z axis is  defined in 

the  laboratory such that  the two incoming beams travel along it with  equal  and 

opposite  momenta  and  with energy E (14.5 GeV at PEP). The beams at PEP 

are  unpolarized, so there  can  be no overall azimuthal dependence. Also, the 

polarization of the outgoing electrons is not  measured, so the  total  number of 

variables to be used to describe the kinematics of the  scattered electrons is only 
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five. These  are commonly defined in the  laboratory system to  be 

0 two energies, E: and E;,  of the  scattered electrons, 

0 two angles, 0; and e;, that  the momenta of the  scattered  beam electrons 

make with the beam axis, 

0 and one angle, p, between the two scattering planes of the beam electrons. 

From  these variables, the kinematics of the 77 system  are readily calculated. 

The energies of the  virtual photons  are 

E,; = E X ;  = E - E’ 1 ,  

and  their  invariant masses are 

For all angles e:, q; is  less than zero, so the photons have spacelike momenta. 

Hence it is customary to define the positive quantities QZ 3 -q:. Since m e / E  << 1 

(3.5 - at PEP) ,  most kinematic formulas can  be simplified by neglecting terms 

with it as a factor. One must  be careful, though, in the region of very small-angle 

scattering, where the cross sections are  the largest.  In that case, 1-cos 0: - $0:” is 

the order of m z / E 2 ,  so the electron mass cannot  be neglected. In  fact,  substituting 

0: = 0 into  Eqn. 2.2 gives the minimum possible value for Q2: 

On  the  other  hand, if the  ith  scattered electron is detected at large angle (tagged),  

then  it is possible to use the simple formula 

Q: = 4E2(1 - x ; )  sin2(i0:) 0: >> m e / E .  
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For both tagged and untagged events, the invariant mass of the 77 system 

can be calculated accurately by  neglecting all factors of rn,/E. Using p i  = 

E: + O ( m z / E 2 ) ,  we find 

where 5: - 5; = cos 'p sin 6: sin 0; + cos 6: cos 6; is the cosine of the angle between 

the two scattered electrons. Since  in most cases the electrons scatter  through small 

angles, yielding photons with small Q2,  a good first approximation for untagged 

events is to use the simple formula Z 2  E ( W 7 7 / 2 E ) 2  M zlz2. 

2 . 2  CROSS SECTIONS 

The diagram of Fig. 1.1-b divides naturally  into  three parts, two of which are 

electron-photon vertices and  are  understood completely. The well understood 

factors can be written  out explicitly and reduced. Figure 2.2 shows a single 

electron-photon vertex  with the QED Feynman rules inc1uded.t It contributes 

the factor u(p, s)(-ie-yp)a(p', s') to  the scattering  amplitude, where u(p,  s) is the 

momentum-space spinor wave function for a free electron with  momentum p and 

spin s. When the amplitude is squared in order to calculate the cross section, and 

the spins of the unpolarized electrons are summed over, a factor like 

results, where l/(-q2) 

twice the formula 

Y ss' 

is a normalization introduced for later convenience.  Using 

t The rules may be found in Appendix B of Ref. 14. The conventions used  for the metric and 
other notation associated with field theory are those of  Bjorken and Drell. 
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Figure 2.2. An electron-photon 

A A  A 

vertex  with  external electron lines. 

where $ y P p P ,  gives the spin density matrix for the  virtual photon: 

1 pP” = -Tr[( $ + me)?”(  $ I  + me)7”] 
-292 

( 2 P  - d P ( 2 P ’  - q)” 
q2 

= ( g P ”  - !E$) - (2.8) 
7 

where 9’1” is the metric  tensor for flat space-time with trace -2. The density 

matrix is not diagonal, so the photons  are polarized even though  the electron 

beams  are  not. 

Now, consider the full amplitude for the reaction of Fig. 1.1-b. The 

components are  the two electron-photon vertices, the  propagators of the  virtual 

photons, and  the  amplitude for the coupling of two photons to  the final state X .  

The  latter is not specified at this  point  and simply is denoted by MP”, so the 

expression for the full amplitude becomes 

(2.9) 
where the limit E -+ 0 is to be taken. To form the cross section, this  amplitude  must 

be  squared and summed over all final states relevant to the  experiment, averaged 
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over all initial states,  and multiplied by the incident flux. The various initial states 

are the spins of the unpolarized beam electrons, while the final state consists of a 

number of free particles, including the  scattered  beam electrons and  the particles 

resulting  from the 77 reaction. The  latter have continuous spectra of momenta, so 

the  sum over final states becomes an  integration, weighted by the density of final 

states, as well as a discrete sum over the spins. For the normalization we assume 

for plane-wave particle states,  the density of final states for a single particle is E,F1,  

and  the incident flux is 4 [ ( p 1 p 2 ) ~  - m 4 m i ] 1 / 2 / ( 2 7 r ) 6 ,  or to sufficient accuracy for 

an electron storage ring, simply 3 = 4E2/(27r)6.  The factor of 4 comes from  a sum 

over all possible electron polarization  states. Define Sf; = 6f; + ib4(Pf - Pi) Tfi. 
Then  the cross section for two-photon particle  production at an e+e- storage ring 

is given by 

(2 .10)  

where 47ra e . 2 

As is shown above, the invariant mass and  momentum of the 77 final state 

are  determined by the momenta of the  scattered beam electrons. Therefore, it is 

useful to differentiate Eqn. 2.10 in order to obtain  the  distribution of momenta of 

the  scattered electrons. The resulting expression contains the tensor 

It  must be true  that W a p l p v  can  be expanded into  a  sum of the various products of 

the available vectors, q1 and 42, and  the metric  tensor, gpv. Budnev et d l 5  carry 

out  the expansion in such a way that  the result is ezplicitly Lorentz invariant, 

invariant  under  time reversal (ap t) pv),  and gauge invariant ( q y W a p > p v  = 
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41 a ~ a p , P v  = q5Wap,pv = q [ W a p , p v  = 0). When multiplied by the density 
matrices  for the  two  virtual  photons  and summed over a/?pu, the differential cross 

section becomes" 

where @ is the angle between the  scattering planes of the  two  beam  electrons in 

the 77 center-of-mass system,  and  the a,(, are  the cross sections for interactions 

of longitudinal  photons (a ,  b L) and  transverse  photons ( a ,  b = T).t  The 

terms  containing Tub are interference terms arising from  polarization of the  virtual 

photons. The  quantities p r b ,  with  superscripts referring to  the  photon helicities, 

can  be expressed as functions of only the  scattered electron momenta, and  they  are 

given explicitly in  equation 5.13 of Ref. 16. The one which is of special significance 

for  untagged  experiments is 

(2 .13)  

Equation 2.12 shows that  the e+e- + e + e - X  cross section consists of the cross 

sections for 77 -+ X convolved with known luminosity  functions describing the 

production of the  virtual photons.  In the next  section, we  will  see that under 

certain  experimental conditions only OTT is significant and  the luminosity  function 

factors  into  two parts-one describing each photon. 

t The term longitudinal  photon refers to the  component of the  virtual-photon field with zero 
helicity  (longitudinal polarization of the  electromagnetic field), while  transverse photon refers to 
the  component  with  helicity ztl (transverse polarization). 
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2 . 3  THE EQUIVALENT PHOTON APPROXIMATION 

Because of the factor of l/q:qi in Eqn. 2.12, it is evident that  the cross section 

is dominated by quasi-real (low Q 2 )  photons, which are associated with very small 

scattering angles of the beam electrons. If no requirement is made to tag the 

scattered electrons at finite angles, then  the observed spectra  must be  dominated 

by quasi-real photons. In such a case it is advantageous to use an  approximate 

form of the cross section. 

Near mass  shell, the cross sections for scattering of longitudinal  photons 

vanish+7 leaving only two  terms in Eqn. 2.12. Since the  scattered electrons are 

not  tagged in this case, then  the azimuthal angles are  not known, resulting in 

an averaging over @. Therefore, the interference terms average to zero, and all 

polarization information is lost. Finally, the approximation q: << W 2  simplifies 

the density-matrix  elements,  resulting in a  factorization of the cross section such 

that there is a separate factor for each photon: 

do = orrd2nld2n2, (2.14) 

where ar7 is the cross section for scattering of two real, unpolarized photons.  This 

is equivalent to  an expression for scattering of two beams of real photons  with the 

flux of each given  by 

(2.15) 

What we have arrived at is an equivalent photon  approximation  (EPA) for  two- 

photon  production, in which the electron beams have been replaced by equivalent 

fluxes of real  photons. 

Equations 2.14 and 2.15 are intuitively meaningful and  are especially useful 

for doing simple calculations. However, it is important  to keep in mind the 

approximations involved. First, all terms of order Q2/W2 in the expressions 
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describing the kinematics have been neglected. Second, contributions from 

longitudinal  photons have been neglected. For the case of lepton  production, 

77 + Z+Z-, the cross sections are known, and one finds that  the ratios OLT/OTT 

and OLL/OTT are  the order of Q 2 / W 2 .  The  third approximation is the neglect 

of the Q2 dependence of the 77 cross sections. Again, for leptonic final states 

the variation  from the cross section at zero Q2 is only the order of Q 2 / W 2 .  The 

relevant cross sections are  not known  for the case of hadronic final states,  but 

experience with  hadronic  form  factors  and y * p  collisions suggests that longitudinal- 

photon  contributions  and Q2 variations become important only when Q2 becomes 

the order of the  square of the p mass!8 

Therefore, EPA should  be good as long as Q2 << W 2  and, for hadronic final 

states, Q2 << mz. If the events are  not  tagged,  then the vast  majority of the 

observed events will satisfy these criteria. If effective antitagging is not available 

to restrict severely the accepted range of Q2, then  part of the observed cross section 

may  not satisfy the  criteria sufficiently  well. This  part will be  small enough in most 

cases, relative to  the peak at minimum Q2, that distributions which are integrated 

over the range of Q2 still will not  be  strongly affected  by the approximation. 

In Appendix A some techniques and examples are given on how to numerically 

integrate 77 cross sections with the EPA spectrum over a  typical  detector 

acceptance. And in Appendix B there is a discussion of how to do  such  integrations 

by Monte  Carlo  methods over an  arbitrarily complicated detector acceptance. 

There  the results  from using the EPA spectrum  are compared with  a  Monte Carlo 

integration of the first-order QED  cross section made  without  any  approximations. 

One finds that for untagged events the results of the two  calculations  cannot  be 

distinguished within the  statistical precision of the DELCO data. 

2 .4  LUMINOSITY FUNCTION FOR TAGGED EVENTS 

The equivalent photon  approximation of Section 2.3 is expected to be of 

limited usefulness for tagged events because of the neglect of terms of order 
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Q 2 / W 2 .  In DELCO, tagged events must have at least one photon  with Q2 greater 

than  about 0.13GeV2, so with W as low as 0.6GeV,  factors of Q 2 / W 2  are  not 

necessarily small. Therefore, let us consider again the exact differential cross 

section of Eqn. 2.12. We are not concerned with double-tag events, in which both 

scattered electrons are observed, because the cross sections are  too  small to  be 

useful in the present  experiment. Therefore, the  terms containing ?TT cos  2@ or 

TTL cos@  both average to zero. As for the rest of the  terms,  the  are known 

functions, but  that is not so useful unless one also has  detailed knowledge of ULT 

and ULL as well as UTT. Except for purely QED processes, such knowledge  is very 

limited. 

One expects that for small angle tags, the OTT term still  dominates.  Certainly, 

if one photon is antitagged, as in the DELCO experiment,  then at least terms 

with ULL still  are heavily suppressed. Thus  there  are only two relevant luminosity 

functions, which can  be  related by .CLT = ELTT. The polarization  parameter E 

may be expressed, for a single-tag experiment, as1’ 

(2.16) 
y =- = 1 - (1 - 52) cos2(e2/2), 91 92 

P 2  91 

where electron number 2 is tagged at an angle 82. For DELCO, cos2(02/2) - 1 for 

all tagging angles, so E M 2(1- z2)/ [1 - (1 - Z Z ) ~ ] ,  which is within  experimental 

errors almost constant  and  unity over the kinematic region typically of interest. 

In  practice, ULT cannot usually be distinguished from UTT, so what one measures 

is Oexp = OTT + COLT, for  which the luminosity function simply is LTT.  Even 

then, one must have some way of parameterizing the Q2 dependence of Oexp, but 

that problem is deferred to  the next section. Here we discuss only  how to calculate 

LTT without making the assumption used  in EPA that   Q2/W2 is small for both 

photons. 
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In Ref. 20 the calculations of Bonneau e t  uL21 are used to derive a single- 

tag luminosity function in which the Q2 dependence of the untagged electron has 

been integrated  out analytically, from the minimum given  by Eqn. 2.3 up  to  the 

maximum of 4E2(1 - x) sin2(5/2), where 8 is the minimum  tagging angle. As a 

result,  Eqn. 2.12 is approximated by 

(2.17) 

LTT is the desired tagged luminosity function: 

(2.18) 

where K F (W2 + Q;)/4E2. Electron number 2 is assumed to be the one which 

is tagged. 

It is difficult to estimate  the effects of the approximations leading to Eqn. 2.18, 

but some idea of its validity can  be  obtained by comparing with the Vermaserena2 

Monte Carlot calculation of e+e- ---+ e+e-e+e-. The Vermaseren program does 

an exact  calculation of the  matrix element for the two QED Feynman diagrams 

corresponding to Eqn. 2.12 and also includes four more diagrams which contribute 

to  the  same final state in leading order QED. Those four additional  diagrams, 

however, play a minor role within the phase space covered  by DELCO’s acceptance. 

This comparison has been made by using in Eqn. 2.17 a  formula for 077+e+e- 

which really is completely valid only for Q2 = 0. The acceptance is  defined 

such  that one of the final-state electrons scatters within 27 mrad of the beam, 

another is in the tagging range 27 < 8 < 93mrad,  and  the remaining two are 

within the  central acceptance -0.6 < cos0 < 0.6. Also, the two electrons in the 

t Refer to Appendix B for a discussion of how the Monte Carlo calculations are done. 
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Figure 2.3. The  distribution of IC1 for tagged Monte Carlo  events, com- 
paring the simplified calculation (solid line) with that of the Vermaseren 
Monte Carlo. The two distributions are normalized to contain  equal 
numbers of events  total. 

central acceptance must have an  invariant mass in the range 0.6 < W < 2.6 GeV. 

Obviously, the approximation used for UTT is not good since it contains no 

Q2 dependence. Nonetheless, the shapes of the invariant-mass and  angular 

distributions for the two electrons in the  central acceptance are  indistinguishable 

within the  statistical precision available to  the experiment. Even the  distribution 

of the  total transverse  momentum of the two electrons in the  central acceptance 

agrees quite well, as seen in Fig. 2.3. However, the integrated cross section is about 

10% higher than  that calculated by the Vermaseren program. Such a discrepancy 

is to be  expected, since the Q2 dependence of OTT is neglected. 

2 .5  EXTRAPOLATIONS OF CROSS  SECTIONS TO LARGE Q2 

Some simple models are available to predict the Q2 behavior of cross sections 

in 77 + hadrons. We consider just  the case in which only one of the two  photons 

has non-negligible q2 ,  so for example, Q2 = -qz and q; w 0. The vector dominance 
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model (VDM) predicts that for small Q 2 ,  relative to m;, for example,  such cross 

sections are proportional to a ppole form factor:23 

(2.19) 

This model is extended in  Ref. 24 to be valid  for somewhat larger Q2 by including 

contributions  from  the w and q5 vector mesons plus a term designed to  approximate 

the higher resonances and  the  continuum. Also,  for large Q2 it is important to 

include effects from longitudinally polarized photons. That is done by assuming 

terms for OLT identical to those for CTTT, only suppressed by a factor of Q2/4m$, 

where mv is the relevant vector meson mass. Overall, the prediction for the 

measured cross section is given  by a generalized vector dominance model (GVDM): 

The five parameters  are  determined by fitting to lepton-nucleon scattering  data, 

for  which this model  does  give a good fit. The numbers given in Ref. 24 are 

rp  = 0.65, rw = 0.08, '4 = 0.05, rc = 0.22, and mg = 1.4 GeV. 

The GVDM prediction may be used to extrapolate  the  measured two-photon 

partial  widths of the f and f' to Q2 = 0. However, a Monte  Carlo calculation of 

the model for 77 + r+?r- described in Chapter 7 reveals that  the cross section 

integrated over the acceptance for an untagged  experiment decreases by only 1.4% 

when the  form factor of Eqn. 2.19 is introduced, which almost  certainly is an 

overestimate of the effect. Such a correction is less than  the typical  experimental 

uncertainty  and  thus is not critical. It is of interest, however, to compare 

the prediction of Eqn. 2.20 with  the  ratio of results from untagged and tagged 

experiments. 
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3. Description of the Apparatus 

The DELCO experiment is a collaborative effort of groups from California 

Institute of Technology, Stanford University, and Stanford Linear Accelerator 

Center (SLAC). The DELCO detector accumulated data in one of the six 

interaction regions of the 2.5 km circumference PEP electron-positron colliding 

beam  storage ring for a period of three years.? The  beam energy was 14.5 GeV, and 

the luminosity ranged from about lo3' to 1031 cm-2s-1,  giving a total luminosity 

integrated over the running  time of about  170pb-l. 

Figure 3.1 and Fig. 3.2 show longitudinal and  transverse cross sections of 

the detector. The most important  detector components are designed to intercept 

particles which scatter  at large angles (> 45') from the beam line. Travelling 

outward from the interaction  point, such a  particle first passes through the wall of 

the vacuum pipe and  into the inner tracking  chambers. Just outside of those are 

Cerenkov counters, followed  by additional  tracking  chambers, a system of time-of- 

flight counters, and a shower counter system. 

The reference coordinates used to describe the experiment assume that  the 

positive z axis is along the beam line  in the direction of the positrons  (southward). 

The positive y axis points  upward,  and the positive x axis points  toward the center 

of the storage ring. The origin is at  the detector  center, where the beams collide. 

3.1 TRACKING SYSTEM 

The inner tracking  system consists of two concentric cylindrical drift  chambers 

placed between the poles of a dipole magnet. The magnet produces a nonuniform 

field  in the tracking volume. Its coils are  operated with a 3000 ampere current, 

which saturates  the steel pole  pieces at a level of about 20 kilogauss. The resulting 

field at  the interaction  point is 3.3 kilogauss, and  the  integral J$ X dffor a particle 

produced at  the center and travelling outward to infinity is 1.8 kilogauss-meters. 

t The running period was divided into three time blocks, which we denote by 1982,  1983, and 
1984. Actually, each time block includes the Autumn running period of the previous calendar year. 



31 

438988 

Figure 3.1. Longitudinal cross section of the DELCO detector. 

The drift  chambers  produce a maximum of 16 two-dimensional position 

measurements for each track.  Eight are from layers of cells, called Z layers, 

arranged parallel to  the  beam axis, which measure only the coordinates in the 

transverse x-y plane. Eight more layers consist of stereo cells, arranged  with  a 

transverse angle of f3O with respect to  the Z cells. They are called U or V layers, 

depending on the sign of the stereo angle. When used in conjunction  with the 2 

layers, they  measure the angle out of the transverse  plane (the  dip angle X), as 

well as giving additional information on  the z-y coordinates. The  arrangement of 

the 16 layers is UUZZVVZZUUZZVVZZ.  The  total  number of cells  is 1214. 

Each cell  is rectangular in  cross section, with  boundaries defined  by 120pm 
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Figure 3.2. Transverse cross section of the DELCO detector. 



diameter field wires and  guard wires at high voltage. At  the center is a thin 

(30 or 38 pm) gold plated sense wire at ground  potential.  Figure 3 . 3 ~  shows a 

cross section of a  typical cell. The drift  chambers  are filled with gas mixtures only 

slightly above atmospheric pressure. For the first year of running,  the  mixture was 

55% argon and 45% ethane,  and  thereafter  a  mixture of 89% argon, 10% carbon 

dioxide, and 1% methane was used. 

A particle travelling radially outward leaves clusters of ionization in the cells 

along its  path. Those which are  not  too close to  the cell boundary  drift  toward 

the sense wire along the electric field with a constant velocity of about 5  cm/psec. 

The field intensity increases as the wire nears, so close to  the  thin sense wire an 

avalanche occurs, giving a gas gain of the order of lo7. The  time of the resulting 

signal is measured with respect to  the beam crossing time to give the drift time. 

That is converted to a distance by a nonlinear relation  determined by an iterative 

fit to actual  data. Whether the track is to  the right or the left  of the sense 

wire by that distance  must  be  determined  from a global fit of all the individual 

measurements of a single track.  The resulting single-cell resolution varies from 

layer to layer between 150pm and  250pm. 

The  outer tracking  system consists of six planes of six layers each of drift 

chambers  arranged in a hexagon about  the Cerenkov counters. Four of the planes 

have cells parallel to  the  beam line, and  two have large-angle (30O) stereo cells. 

Each cell  is rectangular, as shown in Fig. 3.3b, with a solid aluminum  perimeter. 

Typical  operating voltages are  indicated in the figure. The maximum  drift  distance 

of 4 cm is much longer than  that of the inner chambers. The single-cell resolution 

is on average about  500pm. 

Tracking measurements in the x-y plane give the  curvature n of a  track, 

and that combined with the  dip angle X gives the momentum. The full set of 

parameters used to describe a  track  are n and  tanX, along with $0, zo, and xt; 

respectively the $ direction, z position,  and  distance  from the  beam line at  the 

point of closest approach of the  track  and beam. A pattern recognition program 
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Figure 3.3. Drift chamber cell configurations. ( a )  A typical cell of the 
inner cylindrical drift  chambers. ( b )  A cell of the  outer  planar drift 
chambers. 
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associates the individual  measurements, called hits, to form a track  and does a 

preliminary fit of these  parameters. A track  fitting  program then does a detailed fit 

of each track using all the information known about  the nonuniform magnetic field. 

For the events considered in this  thesis,  this  procedure is relatively uncomplicated 

and  error free, because the  tracks, being opposite each other, never interfere with 

one another. 

For electrons from  Bhabha  scattering,  the  tracking  system measures the 

momenta  with a resolution of o p / p  = 0.02 - p ,  where p is in units of GeV. For 

measuring such high momentum ( p  = 14.5 GeV) tracks,  the  outer  drift chambers 

are essential, since even at  that radius the  total track deflection from the magnetic 

field  is only about  2mm.  The errors come from single-cell time measurements 

and from survey measurements of the positions of the  outer drift  chambers. The 

opposite is true for two-photon events, where 0.5 GeV is a  typical  momentum. For 

them,  the measurement  error is dominated by multiple  scattering of particles in 

the detector  material. Due to  the relatively large amount of material preceding 

and within the  outer drift  chambers,  those  chambers  are  not useful  for momentum 

measurement in two-photon events. Consequently, their  measurements are heavily 

deweighted in the tracking fit. In fact, no significant change in resolution is 

observed when they  are removed from the fit entirely. They are useful  for 

projecting the  track  into  the time-of-flight and shower counter  systems, which 

lie immediately beyond them. 

Since the  outer drift  chambers do not  contribute to momentum  measurements, 

the  material which causes the multiple  scattering  limitation to  the momentum 

resolution is that located between the beampipe  vacuum  and the drift  chamber 

gas, plus the  thin wall between the two inner drift  chambers.  Additional small 

contributions come from the gas and wires within the tracking volume. The 

thickness of the beam  pipe plus the adjacent inner drift  chamber wall was 0.029 

radiation  lengths of aluminum for the 1982/1989 running  period. Before the 1984 

run  the beampipe was replaced, reducing the thickness to 0.013 radiation  length^?^ 
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The wall between the two inner drift  chambers was 0.005 radiation  lengths  thick. 

The detector  simulation  program calculates multiple  scattering of individual 

particles according to a simple gaussian distribution.  The angle of deflection  in 

three dimensional space is distributed according to 

where Bo depends on the momentum  and the  material according to26 

Variables p ,  P ,  and Zinc. are  the momentum  (in MeV), velocity, and  charge  number 

of the incident particle,  and L / L R  is the thickness in radiation  lengths of the 

layer of material  through which the particle passes. Equation 3.1 is an  accurate 

approximation to  the body of the  true  distribution,  but  it lacks the small and 

slowly falling tails which are caused by single hard  scattering effects. In the 

DELCO programs, the  material itself  is represented by simple concentric cylinders 

with thin walls. The gas and wires are  approximated by the equivalent average 

amount of material  and  are  treated in the same way as detector  boundaries. 

Measurement  errors for single cells are  approximated by smearing the 

expected drift times according to gaussian distributions of the  appropriate  width. 

Bhabha  scattering events are used to determine the  widths, which works  well 

because the 14.5 GeV tracks suffer very little  from  multiple  scattering. 

Such a Monte  Carlo  simulation of the process e+e- 4 e+e-p+p- predicts 

the resolutions given in Table 3.1 for the momentum  measurement of the muons. 

These predictions are checked against the  data by considering the  distribution of 

the  quantity IC1 = + $f2 I, which  is sharply peaked toward IC1 = 0 and  thus 

highly sensitive to measurement  errors. One finds poor agreement; the Monte 

Carlo prediction is more sharply peaked (smeared less) than  the  data. If instead 
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of using the detailed detector  simulation, the Monte Carlo  generated variables 4, 
t an& and rc simply are smeared by gaussian distributions of the widths given 

in Table 3.1, then  the same discrepancy is found. In fact, one finds that, for 

the 1982/1989 data,  it is  necessary to increase on/& to 0.08, with u4 and utanA 

fixed,  in order to achieve good agreement with the  data. Various factors besides 

the  momentum resolution, such as radiative effects and  the intrinsic p l  of the 

focussed  colliding electron beams, have been  checked to be sure  that they cannot 

account for the discrepancy, so the problem does seem to lie with the momentum 

resolution. 

Table 3.1. Monte Carlo predictions for the  momentum resolution of 
muons from the process e+e- + e+e-p+p- 

I I I 

04  0.0058 radian 0.0043 radian 

utan x 0.0060 0.0077 

U n / K  0.053  0.056 

A useful  process for checking the  momentum resolution is Ks + ?r+?r-. 
A clean sample of 188 such decays, in which the two pion tracks  are well 

separated from any others in the event, were found in the 1982/1989 data by 

searching for the characteristic decay vertex. The resulting ?r+~-  mass peak, 

along with a gaussian fit, is shown by Fig. 3.4. The  width of the fitted gaussian 

is om = 19.6 f 0.9MeV. Generating similar decays  by Monte  Carlo, including 

the detailed detector  simulation, yields a peak with = 18.2 f 0.5  MeV.  And 

when the Monte Carlo resolution 0% is increased enough to give good agreement 

with the IC1 distribution from two-photon pair production,  then the Ks width 

increases to  21.3f0.7MeV.  Thus  the width from data falls about halfway  between 

the two Monte Carlo assumptions. Unfortunately, there  are not enough Ks to 

make the result highly significant. We conclude that, for low-momentum  tracks, 
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Figure 3.4. The measured Ks mass distribution for 1982/1989 data.  The 
solid curve is a gaussian fit. 

a,/tc = 0.07 f 0.01. This result also is adequate for the 1984 data. Figure 3.5 

compares the k l  distribution from two-photon produced electron pairs  with Monte 

Carlo predictions for a gaussian resolution of a,/tc = 0.07. The angular resolutions 

are fixed as specified  in Table 3.1. It is clear that a gaussian resolution function 

does not reproduce the  shape of the observed kl distribution very well.  However, 

none of the other kinematic distributions of interest  are nearly as sensitive to  the 

momentum resolution. The uncertainty of &l% in the  momentum resolution is 

taken  into account when determining the systematic  errors in the analyses which 

follow. With the assumption O,/K = 0.07, the resolution for the invariant mass W 

of a pion pair in the f resonance region (0.9 < W < 1.4 GeV) is ow = 0.053 GeV. 

Finally, one can see from Fig. 3.4 that  the Ks peak is as much as 2% low. 

Measurements of the DELCO magnetic field,  however, indicate that  the energy 

scale of the experiment should be accurate to within *l%. In any case, the analysis 

in this thesis is done in such a way that it is insensitive to any such systematic 

shifts of the overall energy scale. 
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Figure 3.5. The measured distribution of kl. The points show 
1982/1989 data, which is compared with  a Monte Carlo prediction 
assuming a  momentum resolution of C T ~ / K .  = 0.07. The smooth  dotted 
curve shows the Monte Carlo distribution before adding resolution effects. 

3.2 CERENKOV COUNTER SYSTEM 

The DELCO  detector was  designed to accommodate a large system of highly 

efficient gas threshold Cerenkov counters  with  a minimal amount of material 

between the beam-beam  interaction  point  and the Cerenkov radiator. This 

dictates, for example, the configuration of the magnetic field, with the coils  placed 

outside the detector ends. The Cerenkov system consists of 36 cells  covering the 

region 7r/4 < 8 < 37r/4 and 0 < 4 < 27r, which is about 70% of the full solid  angle. 

There  are 18 divisions of the azimuthal angle, and  the polar acceptance is divided 

about  the z = 0 midplane of the detector. 

Two separate  data sets were accumulated by the DELCO experiment. In 

one, the Cerenkov system was  filled with atmospheric pressure isobutane. In the 

other, it was  filled with atmospheric pressure nitrogen, which is less dense and 

therefore gives higher particle thresholds. The  radiator  path lengths range from 

55 to 110 cm. For the isobutane radiator  and  an incident high momentum electron, 
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this  results in an average of 30 photoelectrons produced at  the light detecting 

photomultiplier tubes. Consequently the efficiency  is almost 100% throughout the 

active volume. Section 4.4 discusses  in some detail  this question of  efficiency as 

related to  the analysis at hand. 

The counter  optical  system is  designed  for  efficient  collection  of light produced 

by straight  tracks from the origin. That means that if the particle is  only slightly 

above threshold, so that  the light is emitted in a cone of large angle about  the 

track, or if the track is at such a low momentum  that  its  curvature in the magnetic 

field  is significant, then  the light collection  efficiency  suffers somewhat. Figure 3.6 

is a drawing of the optical system. Large  glass elliptical mirrors, one for each cell, 

are  situated such that one  focus  is at  the interaction  point and  the  other is at 

the face of the phototube. Therefore, all paths from the interaction  point to a 

phototube  are of the same length. Winston cones27  placed  before the phototubes 

aid in the collection of light which is not focussed directly onto  the photocathode. 

Each phototube is protected from the fringe field of the magnetic spectrometer by 

a  small compensating coil and four concentric cylinders of ferromagnetic material. 

Both the pulse heights and times of signals from the phototubes  are digitized. 

The system is calibrated by using electrons from the processes e+e- 4 e+e- and 

e+e- e+e-e+e-. The  path length of each track  through  the  counter is known 

from tracking measurements. The calibration procedure is  designed to correct the 

observed pulse height associated with  a given track for the track’s path length and 

the collection efficiency of the particular cell. The resulting corrected pulse heights 

are normalized to a path length of 100cm. The  time corrections are adjusted such 

that  the mean  time is  zero.  See  Ref. 28 for a complete description of the counter 

design, construction,  calibration,  and performance. 

3 . 3  BARREL  SHOWER  COUNTERS 

The barrel shower counters consist of six sextants  arranged in a hexagon sur- 

rounding the other  detector components. Each sextant  contains four longitudinal 
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Figure 3.6. The optical system of a Cerenkov counter cell. 

counter modules, each with three 1/2 inch thick layers of lead interleaved with 

three 1/4 inch layers of acrylic scintillator. An aluminum structure  supports  the 

four modules with a 1/4 inch thick plane in front facing the interaction  point,  a 

1 inch plane in back, and 1/4 inch thick planes on the sides and between adjacent 

modules. The first scintillator of each module is read out by phototubes at both 

ends, while each of the second and  third layers are  separated by mirrors at z = 0 

into two counters which are read out  at opposite ends of the detector. The  total 

amount of material preceding the last layer of scintillator is 6.9 radiation lengths. 

The counter system may be used to distinguish electrons from minimum 
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ionizing particles, especially at high momenta. However, they  are  not used for 

that purpose in the analysis of two-photon events. Such events  are low in energy 

and have widely spaced tracks, which allows identification of electrons by the 

Cerenkov system. The only purpose of the shower counters in this analysis is to 

reject background  from two-track events  with  additional  particles  not  detected by 

the tracking  system. Layers 7 through 16 of the inner tracking  system have a  small 

dead region at the y-z (vertical) plane which can allow some untracked  charged 

particles into  the  barrel shower counter region. But for the most part  the tracking 

coverage is more complete than  the barrel shower counter coverage, so the main 

objective of the shower counters is to veto events with  photons in the final state. 

The  barrel shower counters cover the range in polar angle from about 

cos0 = -0.6 to cos 8 = 0.6 (the exact cutoff depends on 4, since the counters 

are  planar).  The  azimuthal coverage is broken by 3/4 inch gaps between counters 

and larger gaps between sextants, so the  total solid angle covered is only 0.52 - 47r 

steradians.  Thus  it is possible for many  photons to escape detection. However, 

such background  can  be  estimated,  and as we will see, it is not  a serious problem. 

The only other use of the barrel shower counters which is relevant to this 

analysis is in the detector trigger. In  fact, all of the useful triggers  have a 

shower counter  component. That is unfortunate, for such  a  trigger is  inefficient in 

the detection of  low energy, low multiplicity  events, and  there is little trigger 

redundancy to exploit in understanding the trigger efficiency. Consequently, 

the most difficult and most important  part of the analysis is to understand  the 

efficiency of the shower counter  system. 

The individual  counters  are  said to  latch when the  phototube pulse height 

is above a low threshold  near the beam crossing time. The threshold is a 

small  fraction of the signal expected from a single ionizing particle, so one finds 

no noticeable inefficiency of the scintillation  counters themselves. However, to 

produce  a shower  counter  latch, the trigger logic requires two out of three of the 

layers in a single module to latch. Therefore, particles  must pass through all 
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of the detector  material between the interaction  point  and the second layer of 

scintillator before a shower counter latch can occur. That is a total of about 5 

radiation lengths or 0.3 interaction lengths. 

In later  chapters the shower counter latch efficiency  is determined for electrons 

and pions from the  data by exploiting what trigger redundancy  there is.  However, 

it is important  to check the results by calculation. That is done by  using the 

Electron-Gamma-Shower (EGS) Monte Carlo29 and  the High Energy Transport 

Code (HETC) Monte Carlo3' to predict the fractions of electrons and pions which 

will penetrate, in some form, through the material. Special code has been written 

for this analysis to interface these programs with the detailed geometry of the 

DELCO barrel shower counters, plus the layers of aluminum,  scintillator  and glass 

which precede the shower counters. That in turn is interfaced with the rest of the 

detector  simulation code  for the tracking  chambers and  the Cerenkov counters. 

3.4 POLETIP SHOWER COUNTERS 

The magnet pole tips  are covered  by another  set of lead-scintillator shower 

counters consisting of 0.53cm thick layers of lead interleaved with 1/4 inch thick 

acrylic scintillator. The  total thickness is 5 radiation lengths. Each poletip counter 

is divided into 18 azimuthal wedge-shaped segments, each of which is read  out by 

BBQ wavelength shifter and a single phototube.  There is no  radial segmentation. 

The counters cover the angular range 0.81 < [cos 61 < 0.98, which is 17% of the 

total solid angle. 

In this analysis, these counters  are used  only as veto  counters. No events are 

accepted which deposit energy above noise  level  in the poletip counters, whether 

the energy is from charged particles or photons. Combining the poletip counters 

with the barrel shower counters gives a total coverage of 0.69 - 47r steradians for 

vetoing events with photons and extraneous charged particles. 
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3.5 TIME OF FLIGHT COUNTERS 

A set of  52 1-inch thick by 8 inches  wide acrylic scintillation  counters  are 

mounted on the face of the barrel shower counters  with 8 or 9  per  sextant. Each 

is read out  at  both ends by phototubes. They are used  in this analysis to reject 

cosmic ray background (see Section 5.2) and  to identify kaons and protons by 

time-of-flight measurement. The average time resolution for minimum ionizing 

particles is roughly 330ps. Refer to  Chapter 9 for a detailed discussion of their 

use and performance in particle identification. 

3.6 LUMINOSITY  MONITOR 

The luminosity monitor is made of two sets of six lead-scintillator shower 

counters,  with one at each end of the detector  about  280cm from the interaction 

point. Each set forms a hexagon about  the  beam pipe and is segmented into 

sextants. Each sextant is composed of 16 sheets of 0.56cm thick lead interleaved 

with 1/4 inch thick scintillator. All sixteen layers of a sextant  are  read  out by a 

single phototube by  way of a BBQ wavelength shifter bar. In addition  there is a 

scintillator on the front of each sextant which is read out separately. The angular 

range covered  by the counters is roughly  25-90 milliradians with respect to  the 

beam axis. 

The counters are designed to monitor beam luminosity by measuring the  rate 

of Bhabha  scattering. In this analysis they are used to determine the relative 

integrated luminosity of one run with respect to  another,  but no attempt is made 

to obtain  from  them  an absolute normalization. The  Bhabha  scattering cross 

section varies like l / d 4  at these small angles, which necessitates a very accurate 

knowledge  of the counter acceptance in order to predict the integral of the cross 

section over the acceptance with sufficient accuracy to  be used as an absolute 

normalization. It  turns  out  that it is easier to normalize to measurements of QED 

processes  in the central  detector. 
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An important use of the luminosity counters in this analysis is to  tag (or anti- 

tag) two-photon events by detecting (or vetoing) the  scattered beam electrons. 

They  are  not used to help veto events with  photons in the final state because of 

the relatively large background of synchrotron  radiation from the beams at those 

small angles. Beam electrons scattered  with energies around 14 GeV, however, are 

well separated from the noise and  are relatively easy to  detect.t We defer further 

discussion of the  tag analysis to Section 4.9. 

3 . 7  EVENT TRIGGER 
Signals from the various detector  systems  are processed by on-line hardware 

immediately after each beam crossing in order to determine  whether  anything 

interesting occurred and  the  data should be  written to  tape.  This trigger process 

occurs in two stages. The first stage considers only information from  the various 

counters  and is fast enough to make the necessary decision between beam crossings 

(every 2.4psec).  There are several logical combinations of counters which can 

produce  such  a level-1 trigger,  and for a high-energy, high-multiplicity event most 

of them  are  redundant. For detecting  pair  production by two  photons, however, 

only three triggers are  relevant, and  there is not always a  redundancy. 

Each of the  three triggers, which we denote by KS, ZS, and LS, includes a 

barrel shower counter  requirement. The KS trigger requires at least one detector 

sextant  to have one or more Cerenkov counters fired  in coincidence with one or 

more shower counter latches. Recall that a shower counter  latch is  defined to be 

a coincidence of at least two layers of a single module. The  2s trigger requires at 

least two different sextants  to have one or more shower counter  latches, and  the LS 
trigger requires that at least one of the two luminosity counters fire in coincidence 

with one or more shower counter latches. For all of these  triggers, the coincidence 

time window is centered about  the beam crossing time  and is sufficiently large to 

accept all beam  related  events. 

t Such tagging cannot be done with the poletip counters, however, which are too thin to 
distinguish reliably between such high momentum electrons and photons at much lower energies. 
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The second stage of trigger processing considers the tracking information from 

the inner drift  chambers and commences only if an event satisfies the level-1 trigger. 

There also is a level-2 trigger which depends only upon  “neutral” energy, but it is 

not relevant for this analysis. We do  not discuss in detail how the  hardware defines 

a  “track”  but only mention that  the definition can  accommodate true tracks  with 

momenta as low as 0.1 GeV. The level-2 requirement is  for at least one “track” 

to be  found in the inner drift  chambers. For the 1984 data,  there is also the 

additional  requirement that  it  must point roughly toward a fired shower counter. 

If an event satisfies the level-2 requirement, then  it is read into  the  computer  and 

written to tape.  The  rate of events satisfying the level-2 tracking  requirement was 

typically 1-2 hertz. 

The level-2 trigger introduces no loss of efficiency  for event  types of interest 

in this analysis-any event leaving two tracks roughly back-to-back in 4, through 

enough cells such that they could be found by the full pattern recognition program, 

certainly will  fulfil this  part of the trigger requirement. That is  verified by the fact 

that all such two-track events have two or more “tracks”  found by the  hardware 

processor. 

The level-1 trigger is more of a problem. Aside from the obvious geometric 

inefficiencies of the various trigger components, the only significant inefficiency 

which has been found is caused by actual  absorption of particles by the  material 

of the detector. That of course depends on the  type of particle involved, so we 

defer all further discussion of trigger efficiency to  the sections in which the reaction 

channels of interest are studied one by one. For a more complete discussion of the 

hardware of the detector trigger and  data acquisition system, one may refer to 

Ref.  31. 
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3 .8  DATA PROCESSING AND REDUCTION 

3.8.1 Pass-1 Filter 

The first step in  off-line processing of data is to analyze all events  with  a  set 

of programs called the Pass-1 filter. This filter analyzes all the detector  systems, 

starting with the most simple, and rejects after as little  computation as possible 

those  events which cannot possibly be of any use for physics. The  cuts made 

generally cause no inefficiency for physics data beyond what is inherent in the 

trigger and  the detector  systems themselves. In this  section, only those processing 

steps which are  important  to  an understanding of the analysis in this thesis are 

considered. 

The first stage of processing considers the information from the shower 

counters  and time-of-flight counters.  There  must  be at least one counter of either 

system measuring a time-of-flight of less than 11 ns and  greater than 3 ns. Such a 

measurement requires a counter  with valid time  measuiements at both ends, but 

that much is almost certain for events satisfying one or more of the triggers, all of 

which require shower counter latches. Furthermore, in order to be so identified, 

kaon pairs  and  proton  pairs  must have good timing  information  from the time- 

of-flight counters for both  tracks. The only potential inefficiency, then, is from 

the l l n s  cut itself. However, it  turns  out  that kaon pairs  and  proton  pairs  with 

enough energy to satisfy the 2s trigger have times of flight to  the counter systems 

which are  short enough not to be affected  by this  cut. 

The next stage of processing considers the  hits in the tracking  chambers in a 

simple manner similar to  what already has been done by the  hardware processor 

of the trigger. The objective is to eliminate quickly events  with  not enough drift 

chamber  hits to form at least two separate  tracks  and to eliminate  events caused 

by large bursts of noise. These cuts introduce  no inefficiency. 

The following stage involves the detailed pattern recognition necessary to 

associate drift  chamber  hits into complete tracks, each with measured curvature 

and direction. It is important  that  the preceding stages  eliminate as many  junk 
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Figure 3.7. The efficiency of the  pattern recognition early abort  feature 
used in the Pass-1 filter for two-track events. 

events as possible, because the  pattern recognition is relatively time consuming. 

For the  same reason, the  pattern recognition programs are design to  abort early 

those  events which do  not look promising. The programs look first for relatively 

straight  tracks coming from close to the origin and having associated hits  from 

both  the inner and  outer  tracking systems. If no such  tracks  are  found in the first 

pass,  then the event is rejected. The result is that events in which no track  has a 

transverse  momentum pt greater than  about 0.2 GeV get rejected. Actually, the 

cutoff  is somewhat soft, as shown by Fig. 3.7. 

The Pass-1 filter requires that each event have at least two tracks found by 

pattern recognition. Details of the  pattern recognition are  not discussed here, 

because although the procedure is complicated in general, for events  with only 

two tracks  it is relatively simple and not  problematic. The only problem which 

occasionally arises is when a large amount of noise overlaps a  track or mimics a 

track. 

After pattern recognition is complete, the resulting  tracks  are  extrapolated in 

order to associate individual Cerenkov, time-of-flight, and shower counters  with 
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each track. At this  point,  the Pass-1 filter requires that at least one track have an 

in-time time-of-flight or  barrel shower counter associated with it  in this  manner. 

3.8.2 Event Classification 

After the Pass-1 filter has been applied, the results are passed through 

several filters designed to classify and  separate  the events into several physics 

and calibration categories. The categories are not exclusive, and  the  cuts applied 

generally are very loose.  By far the largest physics data  set is generated by the 

two-photon  filter, which is the only one of interest here. 

All of the  cuts of the two-photon filter are  superseded by analysis cuts 

discussed in the following chapters.  First, very obvious cosmic rays  are rejected, 

but  the cosmic-ray cut discussed in Section 5.2 is more severe. Second, all events 

with  greater than 4 GeV of energy detected in the luminosity counters  are accepted 

as tagged event  candidates. The remaining events are subjected to four additional 

loose cuts, designed to accept charged exclusive events: The  total event charge 

must  be no more than 2 in absolute value; the average of the z coordinates of 

the track origins must be less than  8cm in absolute value; the  sum of the track 

momenta  must  be less than 5.5 GeV; and  the  total transverse  momentum k l  must 

be less than 0.6 GeV. 

3.8.3 Track Fitting 

After classification, events are passed through  track  fitting  programs, which 

are designed to improved upon the fit obtained in pattern recognition by doing a 

more complete integration of each track  through  the non-uniform magnetic field. 

A track is described by the five parameters IC, tan& 40, a, and xt at the point 

nearest the beam.  These  parameters describe a helix, but because of the non- 

uniformity of the field, the overall track is not helical. However, each step of the 

integration covers a small region  in  which the field  is sufficiently uniform that  the 

track segment is a helix to a good approximation. 
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After the  track has been integrated  through the drift  chamber regions, for 

each cell through which it passes the distance of the  track from the measured 

hit position may  be  calculated. A x2 value is formed by the  sum of squares 

of such  residuals,  with each term divided by the  square of the expected error. 

Correlations between layers are not included, though  they  can  be caused by 

multiple  scattering. For low momentum  events, the expected errors for the  outer 

drift  chambers  are  expanded to large enough values that those  chambers  do  not 

contribute very much to  the momentum  measurement. That is appropriate for 

two-photon events, since there is a relatively large amount of material before and 

within the  outer drift  chambers. The derivatives of x2 with respect to  the five 

parameters  are  approximated analytically, which  allows x2 to be minimized in a 

linear approximation. That gives a new set of five parameters  to  be used as a 

starting  point of the next iteration. Also,  in each iteration  the program  has some 

freedom to choose new hits  and to change hits  from one side of the sense wire to 

the  other, in case such a solution is found which  gives a better fit than  the one 

determined by the  pattern recognition programs. However, time does not allow 

all possible combinations of hits to be  tried. 

When the  track fitting  results  are complete, they  are used as a basis for 

repeating the procedure of associating tracks  with  counters. That is done because 

the fit results  are more accurate  than  the  pattern recognition results alone. Finally, 

separate  summary  tapes  are made for the tagged and  untagged analyses which 

include only events  with exactly two tracks. The resulting data  tapes  then  are 

ready for physics analysis. 
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4. The  QED  Channels , 

4 . 1  COMPLETE CALCULATIONS OF THE  CROSS  SECTIONS 

There  are two common processes  in two-photon physics which involve only 

electromagnetic interactions.  They are 

Figure 4.1 shows examples of the leading order (a4) diagrams which contribute 

to these processes. When all possible permutations  are  made,  there  are  a  total of 

thirty-six  amplitudes for the four-electron final state  and twelve for the e+e-p+p- 

final state, all of which must  be  summed  together in each case before taking the 

square to calculate the cross section. It is prohibitively difficult  to  square  the 

amplitude  and reduce the result analytically to a manageable expression, so in 

practical calculations the amplitudes  are  summed numerically before squaring. 

That makes the algebra more straightforward,  but  care  must  be  taken to avoid 

numerical instabilities. 

The full leading-order calculation for both processes has been done with Monte 

Carlo  integration by Berends, Daverveldt,  and K l e i ~ s . ~ ~  The  method which they 

use is described in Appendix B. Their calculations demonstrate that, for the 

experimental  situation where only two of the leptons pass through  the  central 

detector,  the first two diagrams of Fig. 4.1 (commonly called the multiperipheral 

diagrams) completely dominate the cross section. In Appendix B, another 

calculation is made which includes the complete multiperipheral  amplitudes, 

except for interference of the beam electrons with  those produced by the 

two  photons, plus four t-channel radiative  Bhabha  scattering  diagrams. That 

calculation is done to a level of statistical significance comparable to  that of 

our data  and shows not only that  the multiperipheral  diagrams alone can fully 

describe the cross section, but also that for untagged  events the equivalent photon 

approximation  can  calculate  them  with sufficient accuracy. 
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Figure 4.1. The types of diagrams  contributing to e+e- + e+e-Z+Z-. 
There  are a total of 36 diagrams if I = e and 12 if Z = p. 

Thus  it is clear that  an untagged experiment is sensitive to only two of the 

thirty-six  diagrams for the process e+e- -, e+,-,+,-. That remains largely 

true even  for an  experiment  with small-angle (M 25mrad) tagging. These two 

important diagrams  are the  type which are  important  to two-photon physics 

because they  represent the interaction of two photons  after each has been radiated 

by opposing electron beams. Therefore we expect the electron-pairs which 

are observed in the  central detector to have kinematic properties which are 

similar to those of hadron  pairs observed in the same  manner.  That makes the 

QED measurement especially powerful  for normalization and  calibration of the 
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experiment. 

4.2 THE D E L C  0 EXPERIMENTAL ACCEPTANCE FOR e+e- 4 e+e-e+e- 

In the untagged analysis, only two of the electrons are observed in the  central 

detector. For such  a configuration, the geometric acceptance is determined by the 

limits of the  barrel shower counters, which are necessary for the trigger,  and the 

Cerenkov counters, which are necessary for identifying the electrons. Actually, 

any  track  from  the interaction  point which hits  a  barrel shower counter will 

have passed through  a Cerenkov cell, so the shower counters always give a more 

severe limitation.  Their coverage of the polar angle is almost the  same as that 

of the Cerenkov system, but they  have  many  azimuthal gaps. The inner  tracking 

chambers, which also are essential to  the measurement,  have  two  azimuthal gaps 

as well, since layers 7 through 16 separate  into two halves along the y-z plane. 

However, all of the  azimuthal gaps have no effect except to cause an inefficiency 

which is uniform with respect to all of the relevant kinematic variables. 

The coverage of the Cerenkov counters is complete within the range -0.6 5 
cos 0 5 0.6, which is used in the analysis to define sharply  the fiducial volume. 

The  barrel shower counters  do  not  extend  quite as far and, in fact, will not 

intercept  all  tracks in the interval 0.55 < cos0 < 0.60. Figure 4.2 shows the 

loss in efficiency incurred by requiring each particle to  be tracked  into  a shower 

counter.  Whether a counter is associated with a track is determined by using the 

fitted  track  parameters  to provide a starting point for an integration  through the 

magnetic field out to  the shower counter module. The exact edge of the counter 

with respect to cos 0 will vary from  track to track  partly because of the  spread of 

several centimeters in z of the beam-beam interaction point,  but mostly because 

the counters are planar-the edge is not at a  constant  radius  from  the  beam. 

Only one electron is necessary for the KS trigger, which requires a Cerenkov 

cell to fire in coincidence with  a shower counter in the same sextant of the detector. 

Also, it is only necessary to identify one electron before assuming the  other particle 
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Figure 4.2. The angular acceptance of the barrel shower counters 
integrated over 4. The points shows the efficiency  for a track produced 
near the interaction  point at a polar angle 6 to  strike a shower counter. 

also to be an electron, so it would be possible to do the experiment within  a 

fiducial volume which requires only  one track to fall within the shower counter 

and Cerenkov acceptance. However, the trigger is easier to  understand if both 

electrons strike a shower counter module, and  the rejection of non-electrons is 

better if both particles pass through a Cerenkov  cell.  Since the number of events 

is so large that  the measurement is dominated by systematic rather  than  statistical 

uncertainties, we choose to be conservative and require that  both tracks fall within 

the range -0.6 5 cos 6 6 0.6 and  that  both hit a shower counter. 

4 . 3  SEPARATION  OF ELECTRONS FROM MORE MASSIVE PARTICLES 

Electron pairs  are selected from the two-track data set by  using  only the 

Cerenkov counter information. Separation of electrons from more massive particles 

is much better for data where isobutane was  used as a radiator  than for data 

taken with a nitrogen radiator.  That is because the denser gas radiates more 

light and  thus gives a better efficiency  for the low-momentum electrons. It does 

not matter  that nitrogen has a higher Cerenkov threshold for muons, because 
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the isobutane  muon  threshold is above the  momentum range relevant to this 

analysis. Since the isobutane data itself has  a high enough statistical weight that 

the  errors  are dominated by systematic effects, there is nothing to  be gained from 

including the nitrogen data, which  would  only introduce larger systematic  errors 

from  background and efficiency corrections. Therefore, the analyses of electron 

pairs and pion pairs  are done with only the isobutane  radiator. 

With  the isobutane  radiator, the threshold for muons is about p = 1.8 GeV. 

The cross section for any of the particles produced from  two  photons to have a 

momentum  greater  than  that threshold  within  a Cerenkov cell  is not large enough 

to  be significant to any of our  measurements. Therefore, only electrons will fire 

the Cerenkov counters, which are used  only  for separating electrons from all of the 

heavier particles. 

As we will see, the  separation of electrons from muons, pions, kaons, and 

protons is especially good for the events of interest, which consist of a small  number 

of tracks spaced well apart in 4. However, the small  statistical  uncertainty in the 

experiment requires that  the efficiency and rejection be  understood at  the level of 

about one  percent. To do so, the  cuts  must be chosen to give optimal efficiency 

and rejection, and  an  accurate  method of determining the efficiency from the  data 

itself must  be found. 

The first step of the analysis is to plot the Cerenkov pulse heights and 

time residuals for both electrons and mu0ns.t Since two-electron events have 

no ambiguities resulting from multiple particles traversing the same or nearby 

cells, then  it makes sense to include the pulse heights of all cells  which the track 

passes through or nearby. That is  especially helpful near the z = 0 midplane of 

the detector.  There the efficiency  is relatively poor for a combination of reasons. 

The  path length  through  the  radiator is shortest  there,  the light falls on the 

mirror edges and is divided between at least two cells, and  there is a  small dead 

t To simplify  the discussion, the heavier  particles as a group  are  referred to as muons whenever 
the distinction between  muons, pions, kaons,  and  protons  is not relevant. 
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region between the mirrors. It also is helpful between cells adjacent in 4, where 

the light tends to be  shared between two cells, especially if the  track is highly 

curved. Another important  point is that near the edges one cannot  be  sure  from 

the tracking which cell the particle  actually went through. That problem is most 

severe at  the z = 0 midplane because the dip-angle measurement is not as good 

as that of the  azimuthal angle. A negative result of adding all associated cells 

together is that  the level of random noise is increased, but  the gain in  efficiency 

outweighs the loss in rejection caused by  noise. 

The events which are used to analyze the identification cuts consist of either 

two electrons or two muons. The QED process e+e- --+ e+e-p+p- can  produce 

a  muon  and an electron within the  central detector, but  the cross section is 

relatively minutet  and is further suppressed by the requirement of balanced 

transverse  momentum ( k l / W  < 0.2). Another possible background is from 

e+e- + e + e - d T - ,  but  it is  heavily suppressed by the kinematic cuts.$ Therefore, 

we assume that in all cases the two particles are of the same  type. That allows a 

strategy to be used which makes the histograms easier to understand. One of the 

two  particles, chosen at random, is classified as an electron or muon (or neither if 

the result is ambiguous) by the use of cuts which are designed to give high rejection 

of background at the expense of good  efficiency. Subsequent results verify that 

cuts  can easily be found which result in essentially 100% rejection of background. 

If the particle is in one of the two categories, then  the  other is assumed to be of 

the same type,  and  it is entered into one of two plots,  depending on whether it is 

an electron or a  muon. 

The Cerenkov time residual is used to reject background noise. Fast charged 

particles coming directly to  the  phototube from the interaction  point  produce times 

centered about zero, whereas the noise is distributed uniformly in time.  Figure 4.3 

shows a  histogram of the best  time of all cells associated with an electron. The 

t See Ref. 32 for some example calculations. For an acceptance cut of  25' < B < 155O,  for 

$ The background  from tau-pairs is estimated in detail in Section  4.6. 
example,  they  calculate a,,/a,, = 5.lO-*. 
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Figure 4.3. The distribution of Cerenkov time residuals from electrons. 

cuts for the remainder of the analysis are placed at f1.65 ns and reject less than 

1.4% of actual electrons. 

When the Cerenkov counter is  used to select particles with velocities above 

threshold, it is important for uniformity of the  cut  to consider the  path length of 

the  track through the  radiator  and  the efficiency of the cell in question. On  the 

other  hand, if it is  used to reject tracks  with associated light,  then the raw pulse 

height should be used because the noise  level  does not depend on the  path length. 

Therefore, when selecting electrons one considers the path-length-corrected pulse 

height.  Figure 4.4 shows the lower end of the  distribution for particles which 

have been assumed to be electrons. About 1% of the particles give essentially 

zero pulse height. A small number of these may actually be muons, but we will 

see that  the number of zeroes  is consistent with the inefficiency near the detector 

z = 0 midplane. That fraction would be rejected by any useful cut, so the best 

possible efficiency  is obtained  with a cut requiring the pulse height to be greater 

than  about 1.5 photoelectrons. 

When a single track in each event is identified, there is a contamination 
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Figure 4.4. The  distribution of Cerenkov pulse height for electrons. The 
pulse heights have been corrected to cancel differences resulting  from 
differing track  lengths  and different cells. 

of muons at the level of one half to one percent  due to  random noise  which 

forms a  narrow peak around  a pulse height of one photoelectron. However, when 

muons with out-of-time raw Cerenkov signals at  the level of one photoelectron  are 

used to make a histogram of the path-length-corrected pulse height, the result is 

that  the one-photoelectron noise peak is pushed up  to  the level of two to  three 

photoelectrons corrected. A cut placed high enough to give complete rejection of 

muons will seriously compromise the electron efficiency. Furthermore,  the analysis 

requires that  both tracks in each event pass the identification cuts. That increases 

the rejection at the expense of lowering the efficiency. Therefore, the final decision 

is to require all electrons to have a corrected Cerenkov pulse height,  summed over 

all associated counters  with  time residuals between -1.65ns and  1.65ns, which 

is greater than 1.5 photoelectrons. Then  the contamination of muon  pairs is  less 

than 0.Ol2, which  is completely negligible. 
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4 .4  ELECTRON IDENTIFICATION  EFFICIENCY 

The efficiency of the  cuts chosen  for selecting electrons can  be measured in a 

unbiased way directly from data.  The method relies on the fact that a cut on the 

Cerenkov pulse height placed well above three  photoelectrons  corrected, which is 

beyond the limit of the background noise, will reject 100% of muons. The analysis 

proceeds by choosing a  random  track  from each event and rejecting the event if that 

track  has  an in-time ( \ A t [  < 1.5ns) pulse height of less than six photoelectrons 

corrected. The remaining events have an insignificant contamination of muon 

pairs, so the opposite  track in each event can  be used to  study  the efficiency of 

the analysis cuts.  The six-photoelectron cut rejects only 3% of electrons overall 

and introduces no significant bias for the opposite  track. 

In the following  efficiency plots, the points  represent for each bin the  ratio 

of the  number of electrons which are identified correctly, by the  cuts detailed 

in the previous section, to  the  total  number of electrons. The  error  bar for a 

single bin is the  statistical  uncertainty of the  data in that bin only and represents 

95% confidence  level limits on the ratio.  Figure 4.5 shows the cos 8 dependence 

of the electron identification efficiency integrated over all momenta  within  the 

acceptance. For the isobutane  radiator it is about 99.5% in all regions except near 

the z = 0 midplane. The same plot also is shown for the  data sample  with the 

nitrogen radiator, so one can see the serious loss of efficiency caused by the less 

dense gas. There also is some momentum dependence, with  most of the inefficiency 

resulting  from low momentum particles. That is a result of the large curvature of 

the tracks lowering the light gathering efficiency of the optical  system, which  was 

designed to focus light coming straight from the interaction  point. 

Rather  than use a  smooth two-dimensional parameterization of the efficiency, 

the angular  range is divided into  cose bins and  the  momentum dependence is 

parameterized for the  central bins by an exponential: 

e(p) = A - [I - 0.6exp (-?)I . 
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Figure 4.5. The efficiency  for electron identification as a function of 
cos@  and integrated over all momenta. (a)  with the isobutane  radiator. 
(b )  with the nitrogen radiator. 

The fitted  parameter values are listed in Table 4.1. Note that these parameteri- 

zations represent the efficiency  for a single track, so the efficiency  for both tracks 

to be identified, as required in the analysis, is lower. 

4 .5  TRIGGER EFFICIENCY FOR ELECTRON PAIRS 

To determine the efficiency of the KS trigger, one somehow must measure the 

latch efficiencies of the Cerenkov and shower counters. Judging from the measured 

electron identification efficiency  of the previous section, we expect the Cerenkov 
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Table 4.1. A parameterization of the electron identification efficiency. 
The symbols A,  P O ,  and r refer to variables in Eqn. 4.2. 

lcos~lrnin r Po A lCOS~1,ax  

0.0 

- 0.995 0.60 0.10 

0.15 -0.280  0.990 0.10  0.05 

0.15 -0.092  0.975 0.05 

- 

latch efficiency to be close to unity except at  the z = 0 midplane, since the 

latch  threshold is  lower than  the  cuts used  for electron identification. However, 

the shower counter  latch, which requires two of three layers to  latch, will not 

fire unless the electron penetrates  through at least five radiation lengths of lead. 

The probability  for that is significantly less than unity in the lower end of the 

momentum range of interest. 

The Cerenkov latch efficiency  is  easily measured from data without any bias 

from the trigger itself. Only events with a 2s trigger are used. From  these, electron 

pairs are chosen  by identifying one particle, chosen at random from the  pair, with 

tight  cuts on the Cerenkov  pulse height, just as was done for the measurement 

of the identification efficiency. In this case, though, the identified electron is 

required to be well away from the z = 0 midplane in order to avoid any bias from 

the identification cut.  There is no possibility of bias in the region away from the 

midplane, because for \cos 8 )  > 0.10 the efficiency  is essentially 100%. 

The particle which is not identified  is  used to accumulate histograms of the 

latch efficiency. Figure 4.6 shows the cos8 dependence with the full momentum 

range included. It verifies that  the efficiency  is essentially 100% when away from 

the region near cos8 = 0. Fitting  the  momentum dependence of the central 

cos8 bins to  the parameterization given  by Eqn. 4.2 yields the set of parameters 

presented in Table 4.2. 

While we have seen that  the Cerenkov latch  has only a small and almost 
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Figure 4.6. The Cerenkov latch efficiency as a  function of  cos 8 .  The full 
momentum  range is included. 

Table 4.2. A parameterization of the Cerenkov latch efficiency. The 
symbols A,  PO, and T refer to variables in Eqn. 4.2 

ICOS elmin A lcos 8l,, 

0.0 

1 0.600 0.050 

1 0.050 0.025 

1 0.025 

negligible  inefficiency, that is not the case  for 

0.134 0.072 

0.030 0.072 

the shower counter latch It is 

especially important  to  understand  the shower counter efficiency because every 

trigger requires at least one shower counter to latch. It can be measured from the 

data because the trigger is redundant; only  one of the two electron tracks  must 

fire a shower counter. Therefore, the efficiency can be  seen directly by selecting 

electron pairs in which both particles hit a shower counter  and simply accumulating 

efficiency histograms using the latch information of both  hit counters. The result 

is, however, biased by the trigger, because it is not possible to include in the 
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histograms  any events in which both electrons have failed to  latch a shower counter. 

That bias must be corrected by Monte Carlo calculations. 

For the moment we concern ourselves  only with inefficiency caused by  lack  of 

penetration of electromagnetic showers. Geometric inefficiency  is more simple to 

understand  and does not have any  momentum dependence. Therefore, histograms 

are  accumulated using only events in which both  tracks are projected to hit well 

within (2 3 cm) the boundaries of a shower counter module. 

Figure 4.7 and Fig. 4.8 show the trigger-biased latch efficiencies as functions 

of the measured electron momenta for the  three individual shower counter layers, 

where only data taken in If284 are used.t Figure 4 . 9 ~  shows the result for the 

shower counter  latch, which requires two of the  three layers to fire. Note that 

the trigger bias is such that  the  true latch efficiency  is  lower than  that which 

is observed. The measured efficiencies are compared with calculations of the 

same quantities using the EPA Monte Carlo for e+e- + e+e-e+e- and  a full 

simulation of detector effects. The shower counter response has been simulated by 

the EGS Monte CarloTg  By  using  EGS  one can do a reasonable job of simulating 

the propagation and development of the electromagnetic shower through  the 

aluminum, lead, and  scintillator. However, when dealing with a sandwich of 

thin layers of scintillator between sheets of lead it still is  difficult to predict 

with high accuracy how much of the deposited energy actually is collected  by 

the scintillator.  Furthermore,  there  are  a  number of additional effects which are 

not  handled in much detail. For example, fluctuations in light transmission and 

phototube response are  not  simulated at all, and  the response of the electronics 

is treated in a simplistic manner. Therefore, one cannot expect perfect agreement 

of Monte Carlo with data,  and it is the measured efficiency which is used  in the 

ensuing analysis. Nonetheless, the extent of the agreement shown in  figures 4.7 

t During the summer of 1989, the gain  of the  phototubes was lowered to reduce  saturation  from 
large  pulse heights. The change  was  compensated  by installing amplifiers in front of the latch 
electronics, but the  latch efficiency  changed slightly nonetheless. 
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Figure 4.7. The shower counter layers-1,2 biased latch efficiency as a 
function of the measured momentum for electrons hitting well within the 
counter boundaries. Figure (a) is for layer-1 and (b )  is  for  layer-2. The 
smooth curves represent the EGS Monte Carlo calculations. 

through 4.9 is remarkable and indicates that  the reason for the inefficiency  is  well 

understood and  the measurements are correct. 

One expects some dependence of the efficiency on the angle of incidence X 
of an electron on the counter, because the amount of material that  the shower 

must  traverse increases with X. It is not obvious how much of an effect to expect, 

however, because once the electron enters the lead, the shower  does not  propagate 

only  in the original direction of the electron. Further complications are  that 
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Figure 4.8. The shower counter layer-3 biased latch efficiency as a 
function of the measured momentum for electrons hitting well within 
the counter  boundaries. The smooth curve represents the EGS Monte 
Carlo calculation. 

the effect may be  compensated to some extent by light attenuation  and  that X 

depends on the momentum  through the  curvature produced by the magnetic field. 

Figure 4.10 shows the measured efficiency as a  function of the angle of incidence. 

There is only a  small deviation from flatness at  the largest angles, and in that 

region the  number of events is relatively small. Variations in efficiency with the 

angle of incidence come from  three sources. It varies directly  with cos 8 ,  and  it also 

varies with 4 because of the hexagonal shape of the shower counter.  Then  there 

is some additional  variation  due to  the  curvature of the tracks. The  latter effect 

is included in the momentum dependence and  must  not  be double counted. It is 

not important  to include the 4 dependence of the angle of incidence in detail,  but 

only as an effect  uniform  with respect to  the relevant kinematic variables. That 

leaves only the dependence on cos8 to be concerned with,  and in fact no such 

dependence can  be seen in the  data or Monte  Carlo  with the available statistical 

weight. There is, however, an additional inefficiency of a few percent in the cos 8 
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Figure 4.9. The shower counter  latch efficiency as a function of 
the measured momentum for electrons hitting well within the counter 
boundaries. (a) The measured trigger-biased efficiency compared with  a 
smooth  curve  representing  the EGS Monte Carlo  calculation. (b )  The 
unbiased efficiency as calculated by EGS and fitted to  an analytic 
function. 

bins nearest the center of the detector. That is understood to be  primarily  a 

geometric inefficiency resulting from the small gap at z = 0 in layers two and  three 

between the scintillators covering the +z half of the detector and those covering 

the -2 half. It is accounted for  by treating  separately the regions \cos81 5 0.05 

and [cos 81 > 0.05. 

The Monte  Carlo  must be used to unfold the  true latch efficiency from what 

has been observed. The goal  is to arrive at a parameterization which describes 
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Figure 4.10. The measured trigger-biased shower-counter latch efficiency 
as a function of the angle of incidence of the electron on  the  counter.  The 
smooth  curve  represents the EGS Monte Carlo  calculation. 

the momentum dependence of the unbiased  latch efficiency with  an accuracy as 

good as the  statistical precision of the  data.  That is done in two  steps.  First, 

the EGS Monte  Carlo is used to calculate the unbiased  latch efficiency as shown 

in Fig. 4.96, and fitting it to  the form of Eqn. 4.2 yields the results A = 0.995, 

po = 0.161, and r = 0.116. 

To achieve the required precision, the  parameterization  must  be  adjusted  to 

give the best possible agreement with the  histogram of the biased latch efficiency 

measured from data. As already  mentioned, the efficiency varies slightly in the 

data over time, so what is done is to adjust  the  parameterization  until agreement 

is reached with a histogram  accumulated using all of the  data.  Thus  the result 

represents an average efficiency. 

The trigger bias in the  latch efficiency depends  on the momenta of both 

particles, so it is not trivial to calculate the biased efficiency  when  given the 

parameterization of the  actual efficiency. What is done is to use the EPA Monte 

Carlo  event  generator to produce  events  with the same  momentum and angular 
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distributions as are observed in the  data. For each Monte  Carlo electron track, 

the efficiency parameterization is  used along with  a uniform random  number to 

decide whether the shower counter will latch.  Then  a  histogram of the biased 

latch efficiency can  be  accumulated, just as is done for the  data, as a  function of 

the electron momentum. That is done for each of 100 pairs of values for p o  and T 

forming a 10 x 10 grid about  the values obtained  from the EGS shower simulation, 

and the pair is chosen which  gives the best fit. Figure 4.11 shows the  result, where 

the Monte  Carlo  distributions giving the best fits have been plotted over the  data. 

The final values for the parameterization of the shower counter  latch efficiency are 

given in Table 4.3. 

4.6 SUMMARY OF CUTS MADE O N  UNTAGGED ELECTRON PAIRS 

Many cuts were made on the  data,  but only a few are very significant in 

the sense that they reject a sizable fraction of the events. No background of 

any sort  can be seen in the sample of electron pairs from data,  and it is difficult 

to conceive of any source of background beyond the negligible contamination of 

muon pairs which sneak in due to noise in the Cerenkov counters. For example, 

let us consider radiative  Bhabha  scattering. For the two final-state electrons to 

be  within the  angular acceptance, the boost of the final e+e- system  must have 

-0.6 5 p 5 0.6. That limit is reached if one of the incoming beam electrons 

radiates 75% of its energy, and  the resulting  minimum  invariant mass of the final 

e+e- pair is 14.5 GeV-far enough above the 2.6 GeV cut  used in this analysis 

to give absolutely no background. If both beams radiate photons of equal energy, 

then  the final e+e- pair could have a mass below the  cut.  That process is the 

same  order in a as the four-electron final state,  but in order for both electrons to 

be  scattered  into  the DELCO acceptance, the two radiated  photons would have 

to have large and almost equal energies. Although a complete calculation  has 

not been done, the cross section into  the DELCO acceptance is  believed to be 

negligible. 
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Figure 4.11. The biased shower counter  latch efficiency as a  function 
of the electron momentum, including all available data.  The solid 
histograms are from a Monte Carlo calculation including a simulation 
of the trigger, where the  input unbiased latch efficiency  is taken to be 
the parameterization which  yields the best fit (a) for (cos 81 5 0.05 and 
(b)  for lcos8) > 0.05. 

Another possible source of background is tau-pair  production. The Monte- 

Carlo  generator used to estimate  it includes QED radiative  correction^:^ weak 

interactions,  and all known decay channels for the t a d 4  Of 4508 tau-pairs 

generated  and  simulated in the detector, only one produces an electron pair which 

passes all of the analysis cuts. When normalized to  the  integrated luminosity 

of the  data,  this gives an  estimate of only four background events  from  tau-pair 
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Table 4.3. A parameterization of the shower counter  latch efficiency. The 
symbols A,  PO, and T refer to variables in Eqn. 4.2. 

lcos'lmin l ~ ~ ~ ' I m a x  

0.995  0.160  0.116 
0.05  0.60  0.995  0.154  0.110 

production, which clearly is  negligible. 

Because there is no background, the  cuts made  after  separation of electrons 

from muons have only two purposes. Most serve to define the kinematic region to 

be observed and  the usable fiducial region of the detector. Then  there  are some 

which  only discard long, low tails in the distributions of some measured variables 

in order to avoid events  with large, non-gaussian measurement errors. 

The last category is comprised of several cuts on the tracking of charged 

particles. Each  track is required to have associated with  its fit at least 12 total 

hits in the inner cylindrical tracking  chambers,  and  track  fitting  must  be completed 

without  any  catastrophic  errors.  Each  track  must project back to within 0.5 cm of 

the beamline, and  the average of the z-positions of the points on the  tracks closest 

to  the beamline must  be  within  4.0cm of the interaction  point. The  cuts on the 

total transverse  momentum, IC1 < 0.3  GeV and IC1 < 0.2W, also reject poorly 

measured events. 

The fiducial volume is defined  by requiring each track to have /cos 81 < 0.6 and 

to intersect  a shower counter module. The  cuts on k l  along with the requirement 

that  there be no more than 4 GeV of energy measured in the luminosity  monitors 

restrict the measurement to events with quasi-real photons. The Pass-1  filter  cut 

which requires at least one track  with  a rough pt measurement,  from the first stage 

of pattern recognition, greater than  about 0.20  GeV  is superseded for simplicity 

by a hard  cut requiring at least one track to have a  fitted  transverse  momentum 

greater than 0.25  GeV. Finally, the kinematic range which is accessible without 
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unreasonably large trigger effects  is W 2 0.6GeV. The  upper limit on W is 

roughly determined by the decrease in statistics  with higher energies and by the 

muon Cerenkov threshold  and is set at 2.6  GeV. Table 4.4 lists all of the  cuts along 

with the  number of events rejected by each. The  cuts listed in Table 4.4 have been 

preceded by those of the Pass-1 filter and  the two-photon classification-filter, but in 

all cases the Pass-1 and classification cuts  are superseded by the final analysis cuts. 

4.7  T H E  MONTE CARLO SIMULATION 

After making the  cuts on the  data as listed in the previous section, it is 

possible to simulate  adequately all aspects of the detector response relevant to  the 

kinematic distributions  without making a detailed simulation of all of the detector 

apparatus.  That has the advantage of requiring far less computer  time, which can 

be significant when so many events are involved, but more important is the fact 

that no program exists which can properly reproduce,  from first principles, the 

Cerenkov and barrel-shower efficiencies to  the accuracy required. Instead, those 

have been measured from data,  and  it is a simple matter  to  put  the resulting 

parameterizations directly into  the Monte-Carlo integration. 

To proceed, the EPA Monte-Carlo program is used to generate  events of 

equal weight, using the cross section for production of relativistic electron pairs 

from  pairs of real photons: 

The momenta  are  smeared by gaussian random  numbers, using the widths 

determined in Section 3.1. The trigger is simulated by using the parameterizations 

of tables 4.2 and 4.3 for the Cerenkov and barrel-shower latch efficiencies. In each 

case, a uniform random  number is generated between 0 and 1, and  the event is 

rejected if it is greater than  the efficiency calculated  from the parameterization. 

Similarly, the electron identification efficiency  is simulated according to  the 
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Table 4.4. List of the final cuts for e+e- + e+e-e+e-. A total of 398,936 events 
were read from the  tape of skimmed two-particle events, and 41,328 pass all of 
the cuts. Excepting the first and  the last two cuts,  the  fourth  and fifth columns 
give respectively how many events would be killed  by the  cut before all other 
cuts  and how many would be killed after all others. “BSC acceptance” refers to 
the requirement that  both tracks pass through  barrel shower counter modules, as 
determined by the drift  chamber tracking. 

Quantity 

408 86 408 4.0 cm -4.0 cm z 

2 17405 00 1.5 pe Cerenkov ph. 

in order when last when first limit limit 

Failures Failures Failures Upper Lower 

- 

impact 

parameter 

150  22 220 0 0 fit errors 

5773 234  5823 0.5 cm 0 

P 3 3 815 1.7 GeV 0 

BSC acceptance 

2 0 0 E; Q; 
8253 
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parameterization of Table 4.1, and  the effect of requiring each track to intercept 

a shower counter is reproduced by the parameterization 

~ ( p )  = 0.092 - (0.65 - cos e) - 0.043 
0.012 

which is obtained  from a fit to Fig. 4.2. 

Finally, kinematic cuts  are  made  just as they were for the  data. In  summary, 

both particles must have -0.6 5 cos0 5 0.6, and at least one particle  must have 

a  transverse  momentum  greater than 0.3 GeV. The vector sum of the transverse 

momenta  must satisfy k l  < 0.3 GeV and k l / W  < 0.2, and  the electron-pair 

invariant  mass is restricted to  the range 0.6 5 W 5 2.6GeV. The histograms 

resulting from simulated events may be compared directly with  those  from data. 

As examples, Fig. 4.12 shows the electron-pair invariant mass distribution,  and 

Fig. 4.13 shows the angular  distribution of the electrons in the  laboratory and 

77 center-of-mass systems. Also, in Fig. 4.13, cos  for each entry is multiplied 

by the measured charge to demonstrate  the charge symmetry.  There  are 41,328 

events  from the  data sample  and twice that from  Monte Carlo. To compare the 

distributions,  the Monte Carlo  result simply is renormalized to  the  same number 

of events as in data, because there is no process by which the  integrated beam 

luminosity can  be measured accurately enough to allow an absolute  normalization. 

In fact,  it is this QED process which is used to normalize all other  measurements 

in this study. 

Figures 4.12 and 4.13 indicate that  the  data do agree well with the theory. 

However, it is desirable to present the final results in a way which is independent 

of the many  small  details of the acceptance which are peculiar to  this experiment. 

4.8  UNFOLDING DETECTOR EFFECTS 

It is  useful to present the measured spectra with corrections made for 

systematic  detector effects.  However, we do  not wish to go to extremes  and 
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Figure 4.12. The electron-pair invariant mass distribution with all 
detector effects included. The points  are from data, while the line 
represents the Monte Carlo simulation. 

try  to  extrapolate  the  data  to  an acceptance of 47r steradians or down to  the 

minimum  invariant mass, for what  has been measured is  only a very small part 

of the  total cross section of lo7 nb. Instead,  it is appropriate to specify only 

a minimal number of acceptance cuts within which the theoretical  distributions 

are  to be calculated. Then by correcting for all detector effects except for those 

acceptance cuts,  the desired distributions  are unfolded from the  data. Since there 

is no  absolute normalization which can be used, the results simply are normalized 

to  the areas under the distributions. Therefore, the absolute scale of cross section 

displayed on a plot does not represent a measurement but only the theoretical 

calculation. Only the shapes of the distributions have been measured to high 

precision. 

For untagged electron-pair production,  there  are only  five independent 

kinematic variables, which are  taken to be the set 93, W ,  y, and cos O,,,. The 

Q: contribute significantly only to  the distribution of kl, but  that one is very 

sensitive to resolution effects which are difficult to  understand  and dominate over 
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Figure 4.13. The electron-pair angular distributions in (a)  the 77 center- 
of-mass system  and (b )  the laboratory  system,  with all detector effects 
included. The points  are from data, while the lines represent the Monte 
Carlo  simulation. 

the Q2 contributi0n.t Therefore, no attempt is made to unfold the Q2 dependence 

from the IC1 distribution. 

It is convenient to use instead of the rapidity, y, a  related variable defined  by 

COS el sin 82 + sin 81 cos 82 
sin 81 + sin 82 

a =  
t See section Section 3.1 for a complete discussion of this problem. 
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For the case of minimal Q2 and  ultra-relativistic electrons, p is the velocity of the 

77 system,  and y = tanh-' p .  It has  the advantage of being defined only in terms 

of angles, which DELCO can measure much better  than momenta. 

The W and p distributions  are unfolded into  the acceptance defined by 

0.6 5 W 5 2.6 GeV 

-0.6 5 cos elab 5 0.6 

k l  < 0.3GeV 

k l / W  < 0.2. 

The EPA Monte  Carlo  and  simulation discussed in the preceding section are used 

to generate an unfolding matrix for each kinematic variable. Each column of 

such a matrix describes the effects of the experimental resolution and acceptance 

on a single cubic basis spline. The unfolding program uses the  matrix  and 

the corresponding experimental  histogram as input  and produces the unfolded 

distribution  from those.* The results  are compared with QED predictions 

obtained by running the EPA Monte Carlo  (identical  results  are  obtained  from 

the Vermaseren Monte  Carlo22)  with only the  cuts defined by Eqn. 4.6. The  data 

points which result  from the unfolding procedure  do  not directly correspond to 

the bins used to accumulate the histograms of Monte  Carlo or data  and  are not 

even equally spaced. So to compare with data,  the Monte  Carlo  histogram first is 

interpolated by cubic splines and  then  integrated over each of the regions defined 

by the spacing of the  points of the unfolded data.  That produces Monte  Carlo 

points which directly correspond to those in the  data,  and from  these the x 2  is 
calculated to give a measure of the agreement. The difference of the  data  and 

Monte  Carlo is plotted to give a visual display of the agreement, and  the  data 

points also are shown with an overlay of the smoothed Monte Carlo  distribution. 

4 See  Appendix C for a detailed description  of the unfolding  procedure. 
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Figure 4.14 shows the final results for the electron-pair invariant-mass 

distribution. Note that for all such  plots, the horizontal bar associated with  a 

point  represents only the region spanned by the  point  and is not an  error  bar. 

The vertical  bars give estimates of statistical  errors, which vary from about 1% 

at W = 0.6GeV to 10% at W = 2.6GeV. For this case, x2 is 19.4 for 14 degrees 

of freedom (one degree of freedom is  lost because of the normalization), which 

is at  the 85% level of the cumulative x2 distribution. If the QED calculation 

is assumed to give the correct description of the  data  and  the  errors  truly have 

gaussian  distributions  with  widths given  by the  error  bars,  then  there is a 15% 

probability for the x2 value to be larger than  what has been measured. 

For the  shape of the invariant mass distribution,  the  dominant systematic 

error comes from the correction necessitated by the trigger inefficiency. That 

error is limited by the  statistical accuracy to which the trigger efficiency can be 

measured by using all of the  data  and is about 1% for the first invariant-mass 

bin. That is, not surprisingly, the same as the  statistical  error on the first bin 

of Fig. 4.14. In  fact,  it is a good approximation to obtain  the  total  error for 

each invariant-mass bin by adding in quadrature with each statistical  error  an 

equal systematic  error. The agreement between Monte  Carlo  and data is fairly 

good  even with only statistical  errors included, so it is clear that after adding 

systematic  errors  there is no evidence for any discrepancy between the  data and 

QED. 

Figure 4.15 shows the final results for p ,  the velocity of the electron-pair 

system along the beam axis. This  quantity is, to  an excellent approximation, 

uncorrelated  with the invariant mass, so it makes sense to quote  a value of x2 in 

addition to and  independent of that already given  for the invariant mass. For 14 

degrees  of freedom, the x2 is 10.4, which is at  the 27%  level of the cumulative 

distribution. 

For the cos 8 distribution in the  laboratory system,  there  are some systematic 

errors  in  the  shape near the center  and the two ends due to corrections for the 
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Figure 4.14. The electron-pair invariant-mass distribution  with most 
detector effects unfolded. (a) The difference of the  data  and  the QED 
prediction calculated by the EPA Monte Carlo. ( b )  The  data points 
compared with a smooth curve representing the QED prediction. 

detections efficiency, which has significant variations in those regions. The errors 

in the corrections are only about 2% in the center (]cos 61 5 0.05) and 1% at  the 

ends (/cos 61 > 0.55). Such errors have no observable effect on the shapes of the 

angular  distribution in the center-of-mass system and  the  distribution of p, since 

the limited region of error in  cos 6 gets mapped over a large region of the other 

variables. Therefore, we expect that  the p distribution should agree well with 

QED after considering only statistical  errors,  and  that is indeed the case.  Again 
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Figure 4.15. The velocity, p, of the 77 electron pair  with most detector 
effects unfolded. (a)  The difference of the  data  and  the QED prediction 
calculated by the EPA Monte Carlo. (b )  The  data  points compared with 
a smooth curve representing the QED prediction. 

there is no evidence for any discrepancy between the  data  and QED. 

The last  result to present is for the center-of-mass angular  distribution. For 

this case it is desirable to see the results free from the effect of the acceptance 

cut  made on the  laboratory angle. Therefore the results  are unfolded into  an 

acceptance the same as defined in Eqn. 4.6, except that  the  cut on the  laboratory 

angle is replaced by a  cut on the center-of-mass angle: -0.6 5 cosBcms 5 0.6. 
Figure 4.16 shows the  result, which is compared with the theoretical  shape given 
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Figure 4.16. The center-of-mass electron-pair angular  distribution  with 
most detector  effects unfolded from the  data.  The  smooth curve is  given 
by (I + cos2 e) / (1 - cos2 e). 

by Eqn. 4.3. It is clear that even with  a severe acceptance cut  made in the 

laboratory  frame,  the high statistics available allows us to see quite clearly the 

center-of-mass angular  distribution, which is in excellent agreement with  QED. 

4.9  MEASUREMENTS OF TAGGED e+e- + e+e-e+e- EVENTS 

The sample of untagged events is dominated by collisions of quasi-real photons 

with Q2 not much larger than  the square of the electron mass. In  order to  study 

collisions of more virtual  photons  without  any  contribution  from  pairs of quasi-real 

photons, it is necessary to be  able to detect at least one of the  scattered beam 

electrons. Because of the factor of l/q;qi in the cross section given  by Eqn. 2.12, 

to get a reasonable level of statistical precision, the analysis is restricted to events 

with  a single luminosity counter  tag. 
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4.9.1 Analysis of the  Luminosity-Counter  Energy 

In DELCO, the only devices able to detect  particles at very small angles with 

respect to  the beam  are the counters of the luminosity monitor. The inner and 

outer  counter surfaces parallel to  the beamline form hexagons about  the beam 

pipe, and  the counter surface into which the  scattered electrons are incident is 

perpendicular to  the beamline and  subtends a range of polar angles, with respect 

to  the interaction  point, from 27 mrad  to 94 mrad.t  That corresponds to a range 

of Q2 from 0.13 GeV2 to 1.9 GeV2. However, each counter is a lead-scintillator 

sandwich segmented into six azimuthal segments with no radial  segmentation, 

and  there is no tracking information in front of the counters. Therefore, it is not 

possible to measure  from the luminosity-counter tag  what is the Q2 of the  radiated 

virtual  photon, except to say that  it is between the above limits. 

There is some noise background in the luminosity counters,  primarily from 

synchrotron  radiation, but even without  any  charged-particle  tracking, the signal 

is  well separated  from  the noise. The algorithm used to analyse the luminosity 

counter energy deposit is simple. For each counter, one at each end of the  detector, 

a search is made over the six sextants to find the one with the largest energy 

deposit. The energy then is summed over that  sextant plus the two  adjacent 

sextants  to give the  quantity used  in the analysis. Figure 4.17 shows a histogram 

of the luminosity counter energy deposit for four-electron events. The counters 

have been calibrated  such that  the position of the peak remains  constant with 

time,  but  the absolute energy scale is somewhat arbitrary.  In  fact,  the Vermaseren 

QED Monte  Carlo22  predicts that  the median energy of the  scattered electrons, 

for tagged events  within the DELCO analysis acceptance, is 13.7 GeV, with 95% 

of the energy deposits  within 0.6 GeV of that value. A Monte  Carlo calculation for 

Bhabha  scattering, including radiative effects:3 predicts that  the median energy 

deposit for Bhabha electrons is 14.45 GeV, with 95% of the energy deposits above 

t These limits refer to the inscribed  and  circumscribed radii of the  scintillation counter  covering 
the entire shower  counter face into which the electrons are incident. 



800 

600 

400 

200 

0 

0 5 10 15 20 
E (GeV) 

Figure 4.17. The luminosity counter energy deposit. The  points  are 
four-electron events, while the solid line is from Bhabha  scattering. 

13.45 GeV. Bhabha events do not suffer from much contamination of synchrotron 

radiation because they all have two back-to-back luminosity counter  hits, while 

only a  small  fraction of the four-electron events have even one luminosity-counter 

hit. Therefore, the  Bhabha events give some idea of what  the low-energy side of 

the  tag peak should look  like. In  Figure 4.17, a  histogram of the measured Bhabha- 

electron energy, multiplied by 0.95, is plotted as a solid line over the points from 

the four-electron data. 

Tagged events are defined as those  with one luminosity counter  with energy 

greater than 7.5 GeV. Judging  from the histogram of Fig. 4.17, we estimate that 

there is a  maximum background from the  tail  due  to noise of about 60 events and 

a  maximum loss of about 50 events from the signal. There  are 4051 entries above 

the  cut  (the histogram includes only about half of the  data), so the conclusion is 

that  the  cut causes an  uncertainty in the absolute normalization of no more than 

f1.5%. However, the relative normalization of pions, muons,  and electrons is not 

affected, because all of the tagged events are analyzed with the same cut. 
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4.9.2 Measured Kinematic  Distributions 

Once the  cut on luminosity counter energy has been chosen, the remainder 

of the analysis of tagged four-electron events proceeds almost the  same as the 

untagged analysis. All other analysis cuts  are  the  same, except that there is no 

cut on the  total transverse  momentum, kl, for the tagged events.  In  this section 

we compare only the shapes of the measured distributions  with  those  generated 

by the Vermaseren Monte Carlo  program. 

The acceptance of the luminosity counters is not well known, both because 

of inaccurate positioning and edge  effects of electromagnetic showers, so there is 

some error in the Monte  Carlo  program  due to integrating over an incorrect range 

of Q2. In  fact,  the shapes of the invariant-mass  and  angular  distributions  for the 

two electrons observed in the  central detector  are  not sensitive to  that effect  within 

the available statistical resolution. One distribution for the two electrons which is 

very sensitive to Q2 is that of the  total transverse  momentum kl. In fact, k: is 

approximately  proportional to Q2 for single-tag data. For untagged data,  the k l  

distribution is dominated by the detector resolution, but  that is not  the case  for 

the single-tag data, where most events have kl greater than 0.4 GeV. 

Figure 4.18 shows the measured k l  distribution compared with QED 

predictions for two  assumptions about  the luminosity-counter acceptance: (a) 

using the measured size and location of the face of the  counter,  and ( b )  using 

the same geometry, but with the inner and  outer edges  moved radially inward 

by 0.9 cm. One can see that  the efectiue inner edge is almost a full centimeter 

inside the nominal edge of the counter face. This  acceptance, which gives the best 

reproduction of the observed kl distribution, is used for the following analysis. 

There is a  change of 14% in the cross section when going from the acceptance of 

Fig. 4 . 1 8 ~  to Fig. 4.18b, but  the shapes of all distributions  other  than that of kl 

are  not significantly affected. 

To reproduce the lower  edge  of the k l  distribution in detail would require 

a complete modeling of the luminosity-counter response, which has  not been 
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Figure 4.18. The IC1 distribution for tagged events. The  points show 
the measured distribution of k l  of two electrons in the  central detector 
for tagged four-electron events. No corrections are  made for detector 
effects. The solid lines in (a)  and (b )  show the QED prediction for two 
assumptions about  the luminosity counter acceptance. 

done. Also significant are measurement errors on the counter locations and QED 

radiative effects. It is important  to emphasize that such  a detailed analysis is 

not necessary for anything except to reproduce in detail the IC1 distribution. In 

particular,  the  relative normalization between events with electron pairs in the 

central  detector and those with muon or hadron  pairs in the  central detector is 

not at all affected  by the lack of detail in modeling the luminosity counters. 

Figure 4.19 shows a comparison of the measured electron-pair invariant-mass 
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distribution  with  the QED prediction from the Vermaseren Monte Carlo. The 

points  are unfolded from the measured distribution,  into  an acceptance defined 

by  0.6 5 W 5 2.6GeV and -0.6 5 cosOlab 5 0.6  for the pair of electrons 

in the  central detector. Also, one of the  scattered  beam electrons must pass 

through a plane  perpendicular to  the beam, 282 cm from the interaction  point, 

within the region between two hexagons concentric with the  beam, where the 

inner hexagon has  an inscribed radius of 6.82 cm,  and the  outer hexagon has 

a circumscribed radius of 23.08 cm. Figure 4.20 shows the comparison for the 

laboratory-system  angular  distribution of the two electrons observed in the  central 

detector.  Both  distributions  are in complete agreement with the QED prediction 

within the  statistical error  bars. The systematic  errors are  the  same as for the 

untagged analysis, and in this case they  are completely negligible compared with 

the  statistical  uncertainty. 

4.10  MEASUREMENT OF THE  INTEGRATED LUMINOSITY 

Up to  this  point,  the discussion has been limited to comparing the measured 

shapes of various distributions  with QED predictions. It also is possible to measure 

absolute cross sections as long as there is an independent  measurement available of 

the colliding-beam time-integrated luminosity (hereafter often referred to simply 

as luminosity or represented by the symbol L ) .  For DELCO, the best  independent 

measurement of the luminosity comes from the process e+e- 4 p+p-. In 

this section, the luminosity is measured using untagged  events from the process 

e+e- + e+e-e+e- and compared with the result  from a measurement of 

e+e- + p+p-. 

The  error in such a measurement is completely dominated by systematic 

effects, so it is  of no advantage to choose cuts which  allow in the maximum 

number of events. Nor is there  any  advantage even to use all of the  data, so this 

discussion is restricted to  the  data accumulated  during 1989. Some systematic 

effects  differ slightly for other  data, so it is more confusing to consider all of the 
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Figure 4.19. Electron-pair invariant mass for tagged events The  data 
points  are corrected for most detector effects. (a) The difference of the 
data  and  the QED prediction. (b )  The QED prediction  plotted as a 
smooth curve over the  data. 

data simultaneously. The  other  data have been  checked separately,  and the results 

are  consistent  with  those  presented here. The 1985 data  are specifically chosen 

because for them  the most complete information is available on the e+e- + p+p- 

measurement. 

Most of the  cuts used are identical to those of Section 4.6. The most important 

exception is that here only those events  are  kept in  which both tracks  extrapolate 

to a  point at least 1 cm inside of the edge of a shower counter,  rather  than  just 
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Figure 4.20. Angular distribution for e-pairs from tagged events. The 
data points are corrected for most detector effects. (a) The difference of 
the  data  and  the QED prediction. (b )  The QED prediction plotted as a 
smooth curve over the  data. 

inside. That is done in order to eliminate errors  due to  the detector survey or to 

the simulation by EGS of the edge  effects.  Also, the lower limit for W is taken 

to be 0.7 GeV, rather  than 0.6 GeV, in order to avoid the region of the worst 

trigger problems, and events with  either  track within the region (cos 61 < 0.05 are 

discarded to avoid large corrections for the electron identification efficiency. The 

latter two changes are not essential, since the known corrections are  adequate,  but 

they  are  safe  and do not harm  the  statistical accuracy. 
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After removing seven short  runs for which no information is available from the 

luminosity monitors, the number of events from data which pass all cuts is 10,380. 

Several Monte Carlo  tapes have been generated using the EPA Monte Carlo and 

a full simulation of the detector, including the use of EGS for the beam-pipe and 

drift chamber  material and for the shower counter. The  total generated luminosity 

is 26.5 pb-l, which yields 4621 events after all analysis cuts  are made. 

Before quoting the measured luminosity, a number of small corrections must 

be made. They are due to various effects which are seen  in the  data  but  are not 

simulated in the Monte Carlo. The first concerns the requirement that exactly 

two tracks be seen  in the inner drift chambers. Occasionally, extra tracks  are 

produced either by  noise hits in the drift chambers or by low momentum electrons 

from electromagnetic interactions in the beam pipe and  drift  chamber  material. 

Such events can be found by considering all those with greater than two tracks 

and making pictures of those in which a subset of two tracks passes all of the 

analysis cuts.  When that is done, 90% of the resulting events clearly are  due to 

the hypothesized effects, and  the remainder are  consistent, but not certain. One 

finds that 0.7 f 0.2% of the signal is lost due to  extra tracks being produced in 

the beam pipe, compared with 0.65% in the Monte Carlo. Another 0.7% is lost 

due to tracks being produced from noise hits. That effect  is not  simulated at all, 

so a correction to  the luminosity of +0.7 f 0.3% is necessary. 

The electron identification has not been simulated in the Monte Carlo. 

Excluding the bins for -0.05 < cosfl < 0.05, which are not included in this 

analysis, the efficiency found from Fig. 4.5 is 0.994. Since both tracks in  each 

event in the  data must  be identified, then  that efficiency must be squared. To 

account for this effect, the luminosity is corrected by +1.2 f 0.5%. 

The noise  in the luminosity counters is not simulated in the Monte Carlo, while 

there is  in the  data a  small loss of events due to noise greater than  the 4 GeV cut 

imposed to reject tagged events. That loss has been estimated by extrapolating the 

observed distribution, which yields a correction to  the luminosity of +1.0 f 1.0%. 
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As discussed in Section 3.1, the Monte  Carlo  appears to give a better 

momentum resolution than seen in data.  That can cause less events to be  cut 

in Monte  Carlo by the IC1 cuts  than in data  and also may affect the lower cut 

on the  invariant mass. To reproduce the IC1 distribution seen in data, a gaussian 

resolution function of width 0.04n, where n is the measured  track  curvature,  must 

be convolved with the  curvature measured after the usual  drift  chamber  simulation. 

When that is done, the  number of Monte Carlo  events passing all cuts drops to 

4576, resulting in a correction to  the luminosity of +1.0 f 1.0%. 

The  cuts on the impact  parameter  and  the average z-position each reduce 

the  data by  only about 1%, but even  fewer events  are  cut  from the Monte Carlo. 

There is no known background which can  be  contributing to  the  tails, so one 

must assume that  the lost events are really part of the signal. These effects are 

accounted for  by applying  a correction of +0.6 f 0.6% to  the luminosity. 

In addition to these corrections, there  are  a  number of other sources of 

systematic  error. The largest is due  to  uncertainty  about  the  absolute  momentum 

scale of the experiment, which  is determined  from  measurements of the magnetic 

field. The scale is  believed to be  accurate to within 1%. Since the invariant-mass 

spectrum falls like l /W3,  and since the luminosity is proportional to  the  area 

under  the curve and above the lower cut,  then  the resulting  uncertainty in the 

luminosity is f2%. 

A related  uncertainty is due to  the EGS simulation of the  beam pipe  and inner 

drift  chamber  material. One finds that  the calculated effect of bremsstrahlung 

and  other  radiative processes  in the beam  pipe  and  other  material between the 

interaction  point  and  the  tracking  chamber volume in  which the momentum is 

measured is to lower the detection efficiency  by 13%. Only an insignificant part of 

that loss  is due to such  things as the  cut on the  track impact  parameter. About 

10% of the loss  is due to worsening of the  momentum resolution, resulting in 

more events being cut by the cuts.  But the major effect  is just a downward 

shift of the average momentum, causing more events to fail the lower cut on 
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Figure 4.21. The fractional energy loss of electrons passing through 
0.029 radiation  lengths of aluminum between the beampipe  vacuum and 
the innermost  drift  chamber gas volume, as calculated by the EGS  Monte 
Carlo  simulating 1983 data. 

invariant mass. Figure 4.21 gives an idea of  how that is  possible. It shows the 

fraction of energy lost by electrons in the Monte Carlo when passing through  the 

0.0294 radiation  lengths of aluminum between the beampipe  vacuum  and the gas 

volume of the inner drift  chamber. Seven percent of the electrons lose greater 

than  ten percent of their energy, and  that is not including the  additional 0.0054 

radiation  lengths of aluminum between the two inner drift  chambers. We make a 

conservative assumption that  the EGS calculation is  good to  at least 15%. Since 

the correction is 13010, then  the systematic  contribution to  the  uncertainty in the 

luminosity is only f2.0%. 

There is some uncertainty in the simulation of the drift  chamber wire 

efficiency. After all of the  other  cuts have been made, the  distributions of the 

numbers of hits look closely alike for data  and Monte Carlo. In  fact,  the  cut 

requiring at least 12 hits in the inner chambers reduces the  data by 5.2% and  the 

Monte  Carlo by 6.3%. It seems safe to assume that  the  uncertainty from this  cut 
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is no  greater than fl%. 

There is an additional source of systematic  error  due to theoretical consid- 

erations. All calculations have been done only to leading order (a4) in QED 

perturbation theory. The two multiperipheral  graphs by far  dominate the calcula- 

tions, so it is important  to consider possible radiative corrections to those  graphs. 

Unfortunately, no calculations or Monte Carlo  programs are available for the en- 

tire  set of graphs for the order a5 corrections. Those corrections include radiation 

of real photons from any of the seven electron propagators of the leading order 

graphs, which gives amplitudes of order e5, and all of the vertex corrections, elec- 

tron self-energy corrections, and vacuum polarization  corrections, which interfere 

with the leading order  graphs to give a5 contributions in the cross section. Also, 

there  are some entirely new graphs,  with five-point functions, which should be 

included to be completely consistent, but those have been shown to contribute 

very little to  the  c~rrection?~ 

The most thorough calculation of these corrections has been done for the 

related process e+e- 4 e + e - ~ + p - . ~ ~  Even that calculation neglects the graphs 

with five-point functions and those  with  three vertices on the muon 1ine.t As 

long as no cuts  are made which depend heavily on the energies of the  scattered 

beam electrons or on the  total  neutral energy, which is the case for this analysis, 

then  the differential cross section at each value of Wp+p- is found to increase 

by  less than 1% when the corrections are  introduced. It is not  surprising that 

the corrections are small, because the Q2 of the photons  are very small,  and the 

momentum  transfer is  only the order of one GeV. Due to  the impracticality of 

doing the complete calculation, we do  not  apply  any  radiative  correction,  but 

simply assume that  the resulting  error is &l%. 

Table 4.5 summarizes all of the luminosity corrections and  systematic  errors. 

After adding the systematic  errors in quadrature with each other  and  the &1.8% 

t Twenty-six diagrams are included, so even with the approximations which are made, the 
calculation is far  from simple. 



92 

statistical  uncertainty, we arrive at the result: 

LcQ83 = 62.2 f 2.5pb-' . (4.7) 

Carrying  through the exercise for the full data  set  taken with the isobutane 

Cerenkov radiator gives a total integrated luminosity of 122.4 f 4.5 pb-l. 

Table 4.5- List of the sources of error in the luminosity measurement 
from  untagged four-electron data  and  the associated corrections. 

I I i 

Source of Error Percent Correction 

two-track cut +0.7 f 0.3 

I electron identification I +1.2 f 0.5 I 
luminosity-counter cut 

+1.0 f 1.0 momentum resolution 

+1.0 f 1.0 

I impact  parameter  and z I +0.6 f 0.6 I 
momentum scale 

f 2.0 EGS  simulation 

f 2.0 

wire efficiency 

radiative effects 

statistical  uncertainty 

For each of the  runs which have been analyzed, there is a luminosity 

measurement  from the small-angle luminosity monitors. Those measurements  are 

not  absolute in themselves because of difficulty with  understanding  the luminosity 

monitor acceptance. But that acceptance is constant over each run-block, so 

the measurements  do give the relative luminosity for each run. Using them  and 

applying a correction determined from the measurement of e+e- -+ p p , + - 37 
one find that  the luminosity to compare with  Eqn. 4.7 is L ~ ~ ~ - + p + p -  - - 
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69.8f3.5 pb-l. If the  error estimates for these two  results  are  added in quadrature, 

then it appears that they disagree by 1.8 standard deviations. However, so far all 

the contributions to  the  error estimates have been added in quadrature, and that 

almost certainly gives an  underestimate of the  error, even though  the individual 

contributions listed in Table 4.5 are conservative estimates. Adding all the errors 

in Table 4.5 linearly (M 11%) is certain to give an overestimate of the  error  but 

would bring the two results  into good agreement. It also is interesting that if it is 

true  that  the experimental  momentum scale is  in error by -2%, as indicated by 

the measurement of Ks -+ T+T- (see Section 3.1), then  the result in Eqn. 4.7 must 

change by +4%, which  would bring it into reasonable agreement with the muon- 

pair  measurement. These difficulties  only underscore the  important fact that when 

using electron pairs to normalize the pion-pair sample, most of the  errors listed 

in Table 4.5 no longer contribute. In particular,  any  error in the momentum 

scale cancels. Obviously, none of the errors  inherent in the measurement of 

e+e- --+ p+p- contribute in that case either. 

4.11 INTEGRATED LUMINOSITY FROM TAGGED EVENTS 

The measurement of the luminosity can  be  repeated  with tagged events, 

although  then the  error is dominated by the lack of knowledge of the luminosity 

counter acceptance. The analysis of tagged four-electron events is repeated with 

the same changes that were made to  the untagged analysis: the  barrel shower 

counter acceptance is restricted, the center of the detector in cos8 is cut  out, and 

the lower limit on the e+e- invariant mass is  moved up  to 0.7 GeV. For the 1989 

data, 1826 events pass all the  cuts. 

Most of the corrections which apply to  the untagged analysis apply here as 

well. One exception is that because no cut is made on kl, the  uncertainty in the 

momentum resolution has very little effect.  Also, the  cut  on luminosity counter 

energy obviously is changed,  and it is appropriate to use the  systematic error 

estimate:.! in Section 4.9.1. Table 4.6 gives a list of the necessary corrections 



94 

and  errors. Note that  the  error  due  to  the luminosity counter acceptance is not 

included. 

Table 4.6. List of the sources of error in the luminosity measurement  from 
tagged four-electron data  and  the associated corrections. 

Source of Error Percent Correction 

two-track cut +0.7 f 0.3 

electron identification +1.2 f 0.5 

momentum resolution 

+0.6 f 0.6 impact  parameter  and z 

-0.4 f 0.4 

luminosity-counter cut 

momentum scale 

f 1.5 

f 2.0 

EGS simulation 

wire efficiency 

f 2.0 

f 1.0 

radiative effects f 1.0 

I statistical  uncertainty f 3.5 

When the measured location and size of the face of the luminosity counters is 

assumed for the acceptance, the measured luminosity is 76.3 f 3.7 pb-l. However, 

we have seen that it does not seem reasonable to assume that acceptance. When, 

instead,  the acceptance is used which  gives the best fit to  the measured  distribution 

of IC1 of the two electrons in the  central detector,  then the measured luminosity 

changes to Ltag = 65.4 f 3.5pb-l. The  latter result agrees with the untagged 

measurement.  In  spite of the  uncertainty  about  the luminosity counter  acceptance, 

we have seen that everything is in agreement if a reasonable assumption is made 

about  that acceptance. The  matter will not  be  pursued  any further, because it is 

not relevant to  the use that will be  made of tagged events in the remainder of the 

analysis. 
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5. Measuring the Pion-Pair Spectrum 

After electron pairs have been removed from the two-track data sample, 

most of the remaining  events  are muon pairs  and pion pairs  produced by 77 

interactions. DELCO has no capability of distinguishing between pions and muons, 

but  the majority of the events  are in fact muon pairs. It is essential to be able to 

predict  their  contribution to all of the  distributions in order to  subtract  it.  The 

QED Monte  Carlo  programs  are used with complete confidence to generate the 

theoretical spectrum of muon pairs. The only remaining problems are  to simulate 

the detector response and normalize the theoretical  calculation. 

Fortunately,  the  detector response is easy to understand for muons, compared 

with electrons or hadrons.  In  particular, the only trigger effects which must 

be  understood  are  the geometric limits of the shower counters  and  the effect of 

electromagnetic energy loss. The  latter is easy to predict for massive particles and 

simply results in a sharp momentum cutoff, at  about 180 MeV  for muons. 

The normalization requires a knowledge of the luminosity of the colliding 

beams. That can  be  predicted  from knowledge of the storage  ring  optics  and the 

measured  beam  intensity, but not to sufficient accuracy to be of any use to most 

physics measurements.  What generally is done instead is to measure  a physics 

process, resulting  from the beam collision, which can  be  predicted theoretically 

to  the desired accuracy. The obvious candidates  are simple QED processes. 

For studies of e+e- annihilation,  Bhabha  scattering  and  muon-pair  production 

commonly are used. Those processes, however, result in electrons or muons with 

energies close to 14.5 GeV at PEP, compared with energies of less than 0.5 GeV  for 

most particles  resulting from two-photon production. As a result,  the systematic 

effects  involved in measuring the two-photon events  are completely different from 

those  encountered  with  Bhabha  scattering or muon-pair production,  and one can 

expect uncertainties when extrapolating from high to low energy which  will greatly 

dominate all other  errors involved in the pion-pair measurement. 
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DELCO has  the unique ability to use the e+e- --+ e+e-e+e- process for 

normalization. The results of Chapter 4 demonstrate complete agreement of 

measurements of several kinematic distributions  from  this process with QED 

predictions. One general advantage gained is the similarity of the energy and 

angular  distributions of the electron final state  to those of the processes which 

require normalization. That is especially true for normalization of the process 

e+e- 4 e+e-p+p-,  since when well above the p+p- threshold,  the cross 

section is almost identical to  that of the four-electron process. Another important 

advantage is that  the initial state is the same for all processes c0nsidered.t 

As a result,  there  are  many specific sources of systematic  error in the 

normalization which cancel. If the process e+e- + p+p- were  used for 

normalization, there would be all of the systematic  errors associated with  the 

measurement of the high energy muon pairs plus all of the systematic errors listed 

in Section 4.10 for the measurement of the luminosity from  untagged electron pairs. 

Instead,  one finds that  it is not necessary to understand completely many effects. 

For example, radiative effects related to  the e+e-7 vertices largely cancel. Plus, 

for normalization of the muon-pair channel,  any final-state radiative effects  differ 

only  by small mass-dependent terms. Any errors in the knowledge of the detector 

acceptance cancel, and  the efficiencies of the various noise cuts  and tracking cuts 

need not  be well  known because they are almost the same for all channels.  There is 

no need to worry about  the momentum scale being slightly wrong, either, because 

the energy spectra for all of the processes behave almost the  same  and  thus would 

be  affected by the same  amount.  In  summary, using a two-photon channel for 

normalization  greatly reduces the error  estimate  and decreases the likelihood of 

additional  errors  from effects not considered. 

Of course, not all systematic effects cancel, but those which remain  are 

small  and relatively easy to pinpoint  and  understand.  They  result  from differing 

t That is true to the extent that only the  multiperipheral  diagrams  contribute to the QED cross 
sections. Refer to  Section 4.5 for a more complete  discussion of this point. 



97 

responses to electrons and muons of some parts of the detector. The most 

important problems involve the shower counters, and hence the trigger. First 

of all, the latch efficiency depends on the particle  type. It has been measuredt 

for electrons and is  easy to predict for muons, so the necessary corrections can be 

made. Second, the geometric acceptance of the trigger is larger for electrons than 

muons because of the lateral  spread of electromagnetic showers. That problem 

can be avoided by doing the normalization with only those events far  from  the 

shower-counter edge and  then  extrapolating to  the full acceptance. Also, there 

is a  small  amount of material between the beam-beam  interaction  point  and  the 

drift  chambers where the momenta  are measured. As a  result, electrons can lose a 

significant amount of energy through  bremsstrahlung before being measured, while 

that is not possible for muons and pions. That effect can be corrected for  by  use 

of the EGS Monte Carlo. The only other significant problem is with the different 

efficiencies  for particle identification by the Cerenkov counter. Those are measured 

from  the  data  and may be corrected for with minimal error. The remainder of 

this  chapter  concentrates on understanding these corrections and applying them 

to  obtain  the  subtracted pion spectrum. 

5.1 REJECTION OF FOUR- ELECTRON  EVENTS 

Events  with no electrons in the  central  detector  are easily selected by requiring 

that  there  be essentially no signal from any Cerenkov counter associated with a 

track. Since both of the muons or pions are required to pass through  the acceptance 

region of the Cerenkov system,  then the rejection of electrons is  close to 100% . In 

fact, a simple calculation using the efficiencies  in Table 4.1 quickly  shows that  the 

electron background is completely negligible. There is, however, a small loss of 

efficiency due to random noise  in the Cerenkov counters at  the one-photoelectron 

level. Such signals must be rejected as possibly  being from electrons if they have 

time residuals close to zero. 

t Refer to Section 4.5 for a discussion of the electron  shower  counter latch efficiency. 
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Figure 5.1 shows distributions of the  total in-time raw Cerenkov pulse height 

associated with each track, where in-time means those cells with  time residuals less 

than 1.65 ns. The first  histogram includes all particles, while the second includes 

only particles for which the opposing one has been unambiguously identified as a 

muon or pi0n.t Such identification is accomplished by accepting only particles 

which pass through  the highly efficient  regions of the Cerenkov system  with 

momenta  greater  than 0.3 GeV and have an associated raw pulse height of less 

than 0.1 photoelectrons. The noise peak in the pion-muon data overlaps with the 

electron data, so a cut at 0.2 photoelectrons is chosen such that  it is rejected. 

Figure 5.2 shows distributions of the  total out-of-time raw pulse height associated 

with each track. Note that a single track may have entries in both figures 5.1 

and 5.2, so the efficiencies cannot  be simply read from the histograms,  though 

they  do give a reasonable first estimate. The  cut on the out-of-time pulse height 

is placed above the noise peak at 1.5 photoelectrons. 

There  are a few “muons” with  quite large pulse heights. They are  not 

likely actually to be electrons, but probably  are pions passing through Cerenkov 

cells which have otherwise unseen photon conversions within.  In that case they 

would have to be considered as background events,  not as contributions to  the 

identification inefficiency.  To do  this analysis, all possible cutst have been included 

to reject background  from processes with multiplicities greater than two, except 

for those which could bias the identification itself. The very low incidence of 

overlap with  photon conversions is evidence in  itself of the resulting cleanliness 

of the  data,  and, in fact,  there  are few enough such events that one need not 

be concerned about  them giving a significant error to  the measured identification 

efficiency. With that in mind,  the efficiency, as determined  from  those  particles 

whose partner  has been unambiguously identified as a muon or pion, is 99.5% for 

each track  and  has no angular or momentum dependence. 

t There  are,  of  course, also a few  kaons  and  protons,  but  the distinction is of no  relevance  here. 
3 The cuts are listed in  Section 5.2. 
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Figure 5.1. The Cerenkov in-time raw pulse height  distribution for 
(a)  electrons and muons and (b )  for muons only. 

5 . 2  ANALYSIS CUTS FOR THE UNTAGGED T+T- SIGNAL 

The analysis cuts used on the untagged  sample of pion and muon pairs  are 

much the  same as those used on electron pairs,  with the  addition of several cuts 

necessary for reducing background in the hadronic  channel. The kinematic cuts  are 

unchanged except that pion, rather  than electron, masses are used for computing 

the two-particle invariant mass. There is only a slight change in the definition of 

the angular acceptance. Recall that for electrons, the r$ acceptance is  defined  by 

requiring the measured tracks to pass through where the shower-counter modules 
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Figure 5.2. The Cerenkov out-of-time raw pulse height distribution for 
(a)  electrons and muons and (b )  for muons only. 

are believed to be. However, the trigger for muon and pion pairs  already requires 

that  both  tracks  latch a shower counter, a requirement which  is enforced in the 

analysis by ensuring that no other  incidental triggers (from noise, for example) are 

allowed to contribute  events in which one of the  tracks has failed to latch a shower 

counter. An additional cut on the tracking  and survey information is not  made 

because it would only  confuse the understanding of the pion detection efficiency, 

due to lack of understanding of the effect of nuclear scattering on the  extrapolation 

of the measured  track.  This  point is discussed further in Chapter 6. 
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The  cuts which are used in the electron analysis for selecting events  with 

well measured  tracks are used here without change. However, many of them also 

serve to reject background processes, none of which are  present in the electron-pair 

sample. All of the remaining cuts serve only to reject background. 

The first background to consider comes from cosmic-ray muons. If they 

happen to pass near the detector  center  within about 20 ns of the  beam crossing, 

then  they  can mimic colinear pairs of muons produced by the beams. Simply 

rejecting pairs which are almost colinear is not  a desirable solution because pairs 

from  untagged  events  already are nearly colinear in the transverse  plane,  and such 

a cut would be applied just where the detection acceptance is a  maximum. The 

0.5cm  impact-parameter  cut and  the  cut on the average z of the  tracks near the 

origin immediately remove a large fraction of the cosmic-ray events  present on the 

data tapes. The rest  can be tagged effectively by measuring  with the time-of-flight 

counters and shower counters the  time required for the muon to pass  from one side 

of the  detector  to  the  other. 

The timing information is considered only if the angle between the two  tracks 

is greater than 168.5  degrees. A time-of-flight counter is used on a given side if 

one is hit  and  has times at both ends which are  consistent  within  three standard 

deviati0ns.t Otherwise, a shower counter is used if one is found which passes the 

same  requirements. Only 0.5% of the events considered have no usable timing 

information;  they merely are assumed not to be cosmic rays.  Figure 5.3  shows the 

distribution of the time difference, made before most of the analysis cuts, including 

vertex cuts,  are applied. The separation of cosmic rays  from the signal is clear; 

the  cut is chosen to reject all events with  a  time difference greater than 8.0ns. 

Another background source is scattering of beam electrons on residual gas 

inside the  beam pipe. Such events have a flat distribution of the z position of 

their origin, while the beam-beam  interactions occur within about 3 cm of the 

detector  center.  Figure 5.4 shows the  distribution of the average z of the track 

t Refer to Chapter 9 for a detailed  discussion of the time-of-flight  analysis. 
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Figure 5.3.  Cosmic-ray rejection. At is the difference  in time of a time- 
of-flight or shower counter associated with one track  and that associated 
with the second track. The  total number of events entered is  58,940. 
51912 fall in the bins from zero to two nanoseconds. Events which have 
an angle between tracks less than 168.5  degrees are  entered  with  a zero 
time difference. 

points closest to  the beam line  in each event. All other analysis cuts have been 

made-in particular, cosmic rays have been rejected. A cut rejecting events with 

121 > 4.0cm eliminates the flat tail without  cutting appreciably into  the signal. 

The  tail itself  gives an upper limit on the contamination from beam-gas scattering 

in the signal region, because the detection efficiency  for tracks  a few centimeters 

outside of that region  is approximately what it is within. 

The remaining background is from genuine beam  related  events,  either by 77 

production or e+e- annihilation.  Many hadronic final states can mimic a  pair of 

pions if all other particles in the final state escape detection. The analysis must 

rely on the  cut on ICl to reduce such background to a low  level. The tracking 

resolution does not allow a cut on ICl any tighter than what  has been  used for the 

electron analysis without causing an unacceptable loss of the signal. Therefore, 

some background remains, and  its level must be estimated. 



103 

102 

101 

100 

E 0 0 

-10 -5 0 5 10 
<z> c m  

Figure 5.4. The z position of the interaction  point. It is calculated by 
averaging the z coordinates of the  points of closest approach of the  tracks 
to  the beam-line. Only events  with two non-electron tracks which have 
passed all of the T+T- analysis cuts, except for the  cut on 2,  are used. 

It is important  that if any extra particles are detected by any means that 

the event be rejected. Therefore, cuts  are made on the pulse heights of shower 

counters and Cerenkov counters which are  not associated with  either of the two 

tracks. The  total pulse height of the pole-tip counters  must  be less that 0.1 GeV, 

and  the pulse height of the barrel shower counters,  summed over all counters 

not  hit by a track  and  not  adjacent  to one hit by a track,  must be less that 

0.15 GeV. Any event  with a Cerenkov counter which has  a  time  residual less 

than  1.65ns  and a raw pulse height greater than 3.0 photoelectrons is rejected. 

Finally, a search is made for track stubs in the  planar drift  chambers. If a stub 

is found  with at least one stereo wire, two axial wires, and four total wires 

and  has  a x2 per degree of freedom less than 4.0 from  fitting  a straight line 

to  the  hits,  then  the event is rejected, unless the  stub is found to be  sharing 

wires with one of the two tracks or using any wires adjacent to one used by a 

track. 
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These noise cuts  are designed primarily to detect  photons, which may leave 

a signal in a shower counter or convert in material in the Cerenkov counters or 

planar  drift  chambers.  They also serve to reject events in which a charged  particle 

has been missed  by the tracking  system but still  hits a shower counter.  The  cut 

values have been tuned  and  tested by  looking at single-event displays as well as 

histograms.  Their effect on the  actual signal can be checked  by applying the same 

cuts, except for cuts  on Cerenkov pulse height, to electron pairs, since there is no 

significant background to  the four-electron channel. After all other analysis cuts 

have been made, the noise cuts reduce the e+e- sample by only 1.2%. 

The analysis commences with  summary  tapes including two-track events with 

no cuts on particle type, since the electron-pairs must also be  present to provide 

the normalization. A total of 398,936 events  are input,  and  the trigger  requirement 

eliminates 2,969. Before separating  the particle  types, most of the  other  cuts  are 

made.  Those cuts  and  their effects are listed in Table 5.1. Of the 138,590 remaining 

events, 61,798 are positively identified as electron pairs and 75,094 as pairs of non- 

electrons. The 1698 events which fail the  cuts for both categories are rejected. 

Considering now  only the category of non-electron events, the requirement 

that each track at least pass near to a shower counter rejects 1180 events. The 

cuts on planar  drift  chamber  stubs  and barrel-shower and Cerenkov noise reject 

1413 events, and requiring both tracks to latch  a shower counter rejects 1670 

events. The  latter  cut is made in order to ensure that  both  tracks  are within 

the barrel-shower acceptance and that  the trigger for the event is not from some 

random source. That is necessary if the acceptance and  the trigger response are 

to  be  understood. Finally, 72 events are rejected because the two  tracks  are of the 

same charge. The result is a sample of 70,759 events, including muon and pion 

pairs  with  a  small  fraction of background from kaon and  proton  pair  production 

and  other  hadronic processes.  To produce the pion-pair spectra,  the corresponding 

muon-pair spectra  must be calculated and  subtracted,  and  the level of the  other 

backgrounds must  be  estimated. 
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Table 5.1. List of some of the  cuts for the ?r+?rr- analysis. The remainder 
are listed in the  text.  The  fourth  and fifth columns give respectively how 
many events would be rejected by the  cut before all other  cuts  and how 
many would be rejected after all others. 

impact 

parameter 11327 1370  24786 0.5 cm 0 

cos e 

250 241 23080 0.3 GeV 0 k l  

27140 27134 96288 0.2 0 k l / W * n  

114480 24206 156867 2.0 GeV 0.6 GeV w** 
62128  33699 74593 0.6 -0.6 

MAX(p, 1 2  , pt ) 
170 170 4626 0 0 cosmic 

783 782 85606 00 0.25 GeV 

5 . 3  SUBTRACTION OF THE p+p- BACKGROUND 

Once the proper normalization has been determined, it is straightforward to 

calculate how many  muons  are present in  each bin of any  distribution. QED is used 

to calculate the physical distributions, by means of the Vermaseren Monte Carlo, 

or in the untagged case, equally  well  by the EPA Monte Car1o.t We continue here 

with the untagged sample, but  the methods also apply to  the tagged sample. 

t For the case of muon-pair production, as well as the four-electron  final state, the EPA  program 
has been  checked to give results identical to those of the Vermaseren  program  when  an  untagged 
analysis is made. 
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Detector effects are especially simple to simulate for muons. The identification 

efficiency has no kinematic dependence within the fiducial volume, and  the shower 

counter  latch efficiency  is  affected  only  by electromagnetic range-out. The  amount 

of material  traversed by muons going  in various directions does not vary greatly, 

and range  fluctuations  are small (they actually are neglected  in the Monte  Carlo), 

so the result of the electromagnetic effects  is simply a rather  sharp cutoff where 

the efficiency drops to zero  below a  particular value of the initial  momentum.  This 

cutoff can be predicted by using the full simulation of the detector, including the 

program for detailed simulation of the shower counter geometry and materials. 

To  check the program, the calculation is made for a combination of tagged 

Monte Carlo  muon  pairs  and pion pairs in approximately the proportion found in 

the  data. Only tracks which pass through  a  counter well away from the edge are 

used, so the histogram shows the probability of the particle  actually  stopping in 

the material before the second layer of scintillator. Tagged events are used because 

their LS trigger, which requires a coincidence of a luminosity counter  and a barrel 

shower counter, allows events to  be seen  in which one particle fails to latch the 

shower counter. Therefore, the Monte Carlo can be compared directly with the 

data as long as the trigger is simulated. Figure 5.5 shows that  the  sharp edge seen 

in the Monte  Carlo agrees well with that seen  in the  data,  although, as expected, 

the  data show an additional  and more slowly varying inefficiency due to nuclear 

interactions of pions. 

Electron pairs  are used to provide the normalization, but care  must be 

exercised to correct for  differences  in acceptance of the trigger for electrons and 

muons. It is  of no help simply to require the same trigger for the two types, because 

the 2s trigger has a dramatically different response for electrons as compared to 

muons. Instead, electron events with only a KS trigger still  are accepted, and  the 

inefficiency caused by ranging out of electromagnetic showers is corrected for  by 

using the measurements of Chapter 4. Likewise, the effect of range-out on the 

muons is corrected for  by  using the curve in Fig. 5.5. There is the additional 
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Figure 5.5. The Monte  Carlo shower counter  latch efficiency  for a  mixture 
of tagged pion and muon pairs  (points) is compared with that measured 
from tagged data (solid histogram). The Monte  Carlo does not include 
nuclear interactions. The  smooth curve represents  Eqn. 4.2 with the 
parameters A = 1, po = 0.177, and T = 0.0219. 

problem of edge effects,  however. Electrons have a larger  acceptance in the 

shower counters than do  muons, because showers in the  aluminum  surrounding 

the counters  can  spread into  the scintillator.  To some extent,  that is simulated 

by EGS, but  it is best  not to rely on a complicated Monte  Carlo  calculation.  It 

also is not  a good idea to  try  to use the tracking information to specify when a 

particle is within the shower counter edge, because of inherent  tracking  and survey 

errors. The approach that is taken is to define a muon or pion as being within the 

acceptance if it  latches  a shower counter. That means that  the few events  must be 

discarded which rely on triggers from some source besides the two shower counters 

actually  hit by the muons or pions. Electron pairs, on the  other  hand,  are kept 

only if both  tracks  are  determined by tracking to pass through  a shower counter 

at least 4cm from the edge. That gives a large enough margin for error that  the 

survey and tracking  errors  do  not affect the acceptance (see Fig. 5.6). The only 

remaining problem is to determine the difference in geometric acceptance for muon 
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Figure 5.6. The resolution of the shower-counter edge for electrons. The 
efficiency  for the first layer of the shower counter to latch is plotted as a 
function of the distance from the nearest edge of the counter. 

pairs between the case where the 4-cm cut is made as for the electron pairs  and the 

case where only two latches are required. After making all of the analysis cuts,  the 

muon-pair Monte Carlo  with full detector  simulation gives an acceptance ratio of 

1.469f0.020, while the non-electron data gives 1.450f0.007.  The  fact  that  the two 

agree shows that  the width of the counters is correct in the Monte Carlo and  that 

there is not  much of an edge  effect from pion-nucleus interactions; the more precise 

value  is  used  for the analysis. Note that  the corresponding ratio for electron pairs 

is found to  be 1.493 f 0.010. Thus  the edge  effect from electromagnetic showers 

could cause as much as a 3% increase in acceptance. 

Of the 61,798 electron pairs, 6455 are rejected because one track does not have 

an associated shower counter. The  cuts on planar  drift  chamber stubs  and barrel- 

shower and Cerenkov counter noise reject 678 events, and 20,366 are rejected in 

order to satisfy the 4-cm fiducial cut in the shower counters for each track. Of 

the remaining events, 14 have two electrons of the same charge and  are rejected. 

Since the final n+n- invariant-mass spectrum  must be calculated by assuming 

pion  masses  for both particles,  then the  cuts should be made for all particle  types 
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by assuming pion  masses.  However, the  cut of W,, 2 0.6  GeV  is  lower than  the 

invariant-mass cut made in the analysis of Chapter 4. For that reason, the region 

between W,, = 0.6GeV  and W,, = 0.7GeV  cannot reliably be corrected for 

systematic effects. Only the 23,645 events in the range from 0.7  GeV to 2.0  GeV 

are used for normalization. 

To proceed, the same  number of Monte Carlo  events  are  generated,  and 

all detector effects are included as in Chapter 4, including the trigger and 

identification efficiencies. One finds that  the  data represent an effective luminosity 

of 64.0730.42 pb-l. It is not the  true beam luminosity because not all inefficiencies 

of the detector have been included in the calculation. In particular,  many with only 

a 4 dependence are neglected. Effects which differ between electrons and muons, 

such as the electron identification efficiency and  the electron shower counter  latch 

efficiency, have been included. The one exception is the effect of the beam-pipe 

and drift-chamber material. 

We have seen that  the material in the shower counters and in front of them 

affects the normalization by reducing the trigger efficiency  for electrons relative 

to muons. In that regard, the material in the beam pipe and  the inner drift 

chambers is insignificant. However, the innermost material that  the particles must 

pass through is unique in that  it affects the particles before their  momenta  are 

measured. There  are two layers of aluminum which are  important in this respect: 

The first is the material of the beam pipe and  the inner wall of the innermost 

drift  chamber, comprising 0.029 radiation lengths for 1982/1989 data  and 0.013 

radiation lengths for 1984 data,  and  the second  is the material between the two 

inner drift  chambers, comprising 0.0054 radiation lengths. The material between 

the inner and  outer  drift chambers is not relevant because the  outer  drift chambers 

play little  part in the  momentum measurement for low-momentum  tracks. 

Electromagnetic interactions of electrons in the aluminum cause several losses 

in addition to those incurred by muons. In about 0.3% (in 1984) to 0.6% (in 

1982/1983) of the events, extra electron tracks are produced with high enough 
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momentum  to be found by pattern recognition. Energy loss from bremsstrahlung 

causes several other effects. The impact parameter  distribution is broadened 

slightly, as is the  distribution of kl, resulting in the loss of an additional couple 

of percent of the events. But by far the biggest  effect  is simply due to a slight 

shift in the energy scale caused by the average energy loss incurred by electrons 

before reaching the region where their  momenta  are measured. Of all of the  cuts 

made, most are placed  well out in the tails of distributions and hence are not 

very sensitive to  any effects. The exceptions are  the  cuts defining the angular 

acceptance, which are not affected  by the energy  loss, and  the  cut on invariant 

mass, which is very sensitive to any shift in the energy  scale. 

The EGS Monte Carlo is  used to determine the effect of the material on 

electrons. Figure 4.21 shows the fractional energy  loss of electrons in the first 

layer of aluminum for the 1983 data.  The average loss  is 3.3%, and 7% of the 

electrons lose greater than 10% of their energy.  Since the invariant-mass spectrum 

falls as l /W3,  a downward shift by z% in the energy scale will decrease by 2x% 

the number of events above any given cut, so one can see that  the bremsstrahlung 

must have a  drastic effect on the normalization. 

The bremsstrahlung is found not to affect noticeably the  shape of the 

invariant-mass distribution, so all that is necessary is to calculate a constant 

correction factor for each of the  data sets. That is done by taking the  ratio of 

the efficiency found from the Monte Carlo with full detector  simulation, including 

EGS where necessary,  for muon pairs with respect to electron pairs. The results 

are 0.889 f 0.008 for 1982/1985 data  and 0.946 f 0.009 for the 1984 data, or 

0.908 f 0.008 overall. 

There also is some unknown systematic error from the EGS calculation. EGS, 

along with the rest of the detector  simulation software, does predict correctly 

the number of extra tracks produced by electromagnetic interactions, which is 

0.7 f 0.2% in the 1982/1989 data.  It also has been shown to predict correctly 

the latch efficiency in the shower counters,  but of these two checks, the first 
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is not very significant statistically and  the second  is not directly related to  the 

beampipe. However, EGS has generally been found to  be reliable, and calculating 

the energy loss of an electron passing through  a  thin sheet of aluminum is 

a relatively simple application of the program. Therefore, it is reasonable to 

assume that  it gets the correction right to  at least 15%, and since the correction 

itself  is about lo%, then  the resulting error in the normalization is about 1.5%. 

Including this correction, along with  systematic  errors from the trigger and 

electron-identification corrections and  the  statistical  error  from  the sample of four- 

electron events,  results in a corrected effective luminosity for the four-electron 

sample of Llffe  = S e L  = 70.5 f 1.6pb-l. Here, represents the  part of the 

detection efficiency, such as gaps in 4, which are  not included in the Monte Carlo 

+ -  

calculation. 

The analysis of muon  pairs does not require the 4-cm fiducial cut, so including 

the corresponding correction factor leads to clC = e, = 1.450 &e and  an effective 

luminosity for the non-electron sample of 

LzL*- = LIC lC = E ~ L  = 102.3 f 2.3pb-l. + -  
eff. (5.1) 

The quoted error is the  sum, in quadrature, of the errors listed in Table 5.2. 

Another conceivable source of error is from radiative corrections to  the 

leading-order QED graphs. One may suspect that  the corrections could be different 

for the e+e-p+p- final state compared with the e+e-e+e- final state.  It has been 

shown that  the only significant contribution for either final state in leading order 

is from the two multiperipheral  graphs, so we need  only consider corrections to 

those two graphs. Therefore, the only  difference  in the calculations for the two 

final states comes from the muon-electron mass difference. The  matrix elements 

are otherwise exactly the same. Now, the  part  that  the mass plays in the result 

depends on kinematics; at high enough energy it should have very little effect. 

In fact, for the leading order cross sections, in the energy range and geometric 
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Table 5.2. Sources of error in the normalization derived from  the electron- 
pair  sample. 

I I I 
Source of Error 

f 0.9 (stat.) pre-tracking radiator 

f 0.5 (syst.) electron identification 

f 0.8 (syst.) trigger efficiency 

Percent  Error 

f 1.5 (syst.) 

barrel shower counter 
acceptance correction 

f 0.7 (stat.) size of e+e- sample 

f 0.5 (stat.) 

Monte  Carlo f 0.5 (stat.) I 
acceptance considered in this analysis, the difference  of the two cross sections 

is only 3.7%. Since the mass effect  is so small for the leading order,  and since 

the overall radiative corrections are known to be only  of the order of l%,t then 

it is reasonable to expect that  the difference of the  radiative effects  for the two 

processes  is much less that a percent  and  can  be neglected. 

Monte  Carlo muon-pair events  are analyzed just as electron pairs  are, except 

that  the effect  of the Cerenkov identification is simply an overall loss of 1% of the 

events, and  the shower counter  latch efficiency  is  given  by Fig. 5.5. The effective 

luminosity of Eqn. 5.1 yields 49,775 Monte Carlo muon pairs  within the analysis 

cuts.  Subtracting  those  from  the  data  sample of muons and pions leaves a total 

of 20,984 pion pairs,  with some remaining background, as seen in Fig. 5.7. The 

prominent peak around 1.2 GeV  is due to  the f (1270), and one can see that there 

also is a significant number of pion pairs produced in the  continuum. In  Chapter 8 

this  spectrum is fit to  the theoretical model developed  in Chapter 7. 

t Refer to Section 4.10 for more  discussion  of the radiative corrections. 
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Figure 5.7. The pion-pair and muon-pair invariant mass. (a) The  data 
sample of pairs of non-electrons is represented by the points, while the 
smooth curve shows the predicted muon-pair spectrum. (b )  The pion-pair 
spectrum which results after subtracting  the muon-pair prediction. 

5 . 4  CONSIDERATION OF OTHER BACKGROUNDS TO 77 + 7r+7r- 

Muon  pairs  are by far the largest background to  the selection of pion pairs, 

but their  are a few other minor sources of background which must  be considered. 

First let us consider cosmic-ray muons. Most of them have been removed by cuts 

on the timing, but due to  the resolution of the time-of-flight counters,  there is a 
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small tail toward  short times which contributes some background. An upper limit 

on such background is estimated by roughly extrapolating the lower  edge of the 

cosmic-ray peak below the  cut  at 8.0 ns. For that purpose, Fig. 5.3 is not useful 

because it shows the time  distribution as it is  before other  cuts have been made, of 

which many preferentially reject cosmic rays. To study  the background, the same 

histogram is reproduced, but  the  data  are entered only after making all analysis 

cuts  not  related  to  the timing. The result shows that only 0.31% of the events 

have times above the 8.0 ns cut,  and an  upper limit on the cosmic-ray background 

not removed by the time cut is 15 events. That is an insignificant background, 

even when considering the distribution of 3, where all the cosmic rays fall in the 

one bin about p = 0. 
N 

Next, we consider the background from beam-gas scattering. It should be 

characterized by a roughly uniform distribution of the z-position of the interaction. 

Figure 5.4 shows a histogram of the z-position of the estimated  interaction  point 

for events passing all analysis cuts except for the z cut. Note the long, low tails 

outside the  cut  at  f4.0cm. They are  partly due to tails in the distribution of the 

colliding beams and tails in the tracking resolution, but they  can be used to give 

an  upper limit on the beam-gas contribution. It is reasonable to assume no more 

than five events per bin coming from beam-gas scattering, which is a background 

of no more than 0.6% of the pion pairs. 

The background from e+e- + hadrons is estimated by  use of the Lund  string- 

model Monte with radiative corrections included for the QED ~ e r t i c e s ? ~  

The  cutoff energies  for photons  radiated from the incoming beams are  set from 

0.8561Eb to 0.9801Eb, depending on the quark flavor produced, and  the  total cross 

section is 1.276 - 3 - 11 - Q,+,-,~+~- = 0.4817 nb. Of 46,378 events generated and 

simulated in the detector, only three pass all of the analysis cuts for 77 --+ ?r+?rr-. 

When normalized to  the integrated luminosity of the  data,  that means that  the 

background from  this source is only about five events total, which is negligible. 

For the same reason that Bhabha  scattering does not  contaminate  the 
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electron-pair sample, the process e+e- p+p- does not  contaminate  the pion- 

pair  sample. The contamination from tau-pairs is estimated in the  same way as 

for the electron-pair analysis,  and  it is found to  be at only the level of eight events. 

Again, such a level of contamination is small enough just  to ignore. 

Probably a larger source of contamination than e+e- 4 hadrons is inclusive 

hadron  production,  not including exclusive pion pairs,  from 77 interactions. The 

77 interactions  produce  events of  low energy and  multiplicity, so such  events  can 

more easily mimic pion pairs. Unfortunately, there is no simple model which can 

be used to estimate  the background,  and the cross section for 77 hadrons is not 

even  known in detail empirically. However, one can  estimate  the background from 

the combination of all processes  which produce at least four charged pions (plus 

beam-gas scattering) by observing the  number of like-sign pion pairs in the  data 

sample  after all cuts  other  than  the charge  cut have been made.  There  are 70 such 

events, so one might expect approximately 70 more from the same  source, but 

with  a  pair of oppositely charged pions detected. However, there  are  an  estimated 

116 beam-gas events in the  data sample, which tend to have non-zero charge  and 

might alone account for the 70 like-sign events. In  fact,  there  are more events with 

charge +2 than -2, as one would expect from beam-gas collisions. On the other 

hand, we have not yet accounted for background events with two charged pions 

and several neutral pions. There should be fewer of them  than events with several 

charged pions, so it is reasonable to set an  upper limit on the  total background, 

including beam-gas events  and 77 -+ hadrons, of 150 f 50 events, which is only 

0.7% of the sample of pion pairs. 

Not yet accounted for are two specific backgrounds, both of which can  be 

accurately  estimated and  subtracted.  The first is resonance production from two 

photons, where the resonance decays into two pions plus one-or-more photons. 

The only such resonance which can in that way contaminate  the pion-pair data is 

the q'. In  particular,  the decay mode q' 4 p07 often produces two pions which 

pass all of the  cuts,  and  the photon usually is of too low energy to be  detected, or 
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else it escapes through cracks in the detector. 

The background  from q' production is estimated by Monte  Carlo, using as 

input  the measurements of 77 + q' by the  PLUTO collab~ration?~  The q' state 

is generated as a Breit-Wigner resonance according to 

with m,,' = 0.957 GeV, I'77 = 3.80 f 0.26 f 0.43 keV, and I?,, = 200 f 34 keV. 

When it is  allowed to decay through any of its possible modes by using the decay 

programs of the Lund Monte  then one finds that only the po7 channel 

contributes  any background. 

The Lund  programs  do  not  take into account the large width of the po or its 

polarization, so it is necessary to  study  that channel in more detail. The po has 

such a large width that a completely accurate description of the q' decay should 

properly include the three-body phase space. An adequate  approximation for this 

purpose is instead to model the decay as a two-step process. After selecting the 

po mass according to a Breit-Wigner distribution,  the po and 7 are produced in 

a uniform two-body phase space. The Breit-Wigner simply is cut off at  the q' 

mass, which is another simplifying assumption, but is not  a large effect. The po, 

which must, like the 7, have helicity fl, then is decayed into two pions with a 

center-of-mass angular  distribution of sin2 29. 

Of 6251 such  events  generated, corresponding to  an  integrated luminosity of 

89pb-l, a total of 340 pass all of the analysis cuts for  pion pairs, giving the mass 

spectrum shown in Fig. 5.8. The reason that  the peak is not  centered about  the po 

mass is because the efficiency  for such events is rising sharply in that energy range. 

Including the uncertainties of the  PLUTO measurement, of the measurement of 

the pion efficiency, and of the DELCO luminosity (122.5 f 4.5 pb-l), gives a total 

of 468 f 87 events to be subtracted from the measured 7r+7r- spectrum. 
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Figure 5.8. The q' --$ p07 background T+T- mass spectrum correspond- 
ing to  an integrated luminosity of 86pb-'. 

The last background to consider is that due to  the processes 77 4 K+K- 

and 77 4 p p .  Such events often can be identified by time-of-flight measurements. 

However,  only a fraction of the events in the  data have usable timing information 

for each track.  The  approach used here is to consider only those events which do 

have good timing information available for both tracks  and measure the fraction 

of kaon pairs plus proton  pairs for  each mass bin.t  The number found of pairs of 

heavy particles is corrected for background and inefficiency induced by the timing 

cuts,  and  the result is  scaled  for  each bin, by the  ratio of the number of all pairs 

to  the number  with good timing, to give the background of the whole data set. 

Figure 5.9 shows the final result for the K+K-, p p  background. Both it and 

the q' background are  subtracted from the  data in Chapter 8 when fitting the 

spectrum  to theoretical models.  However, these backgrounds are small enough 

that  the change in the  spectrum from what is  seen  in Fig. 5.7b is hardly visible. 

t Refer to Chapter 9 for a complete discussion of the time-of-flight analysis procedures. 
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Figure 5.9. The K + K -  plus pi, background to  the 77 + T+T- 

measurement, as measured from the  data  and corrected for the time- 
of-flight acceptance and efficiency. 

5 . 5  THE TAGGED PION-PAIR SPECTRUM 

The tagged analysis proceeds much  the  same as the untagged, and  the analysis 

of the luminosity counter  tags is done exactly the same as for the four-electron 

channel. The  cuts  are  the same as for the untagged analysis, except for the  cut 

on the luminosity counter energy and  the  cuts on the  total transverse  momentum 

k l  of the two tracks observed in the central  detector. Because a  strict  cut  on 

k l  cannot be made, the rejection of background is a more serious problem than 

for the untagged analysis. Therefore, the  cuts on  noise  in various counters  and in 

the outer  drift  chambers become more important. They reduce the final sample of 

non-electron pairs by 5.5%. Using the fact that 2.0% of the final sample of electron 

pairs is eliminated by the same cuts  and assuming the same effect on muon  pairs, 

we estimate  that  the  cuts reduce the sample of pion pairs by about 15%. 

An attempt is made to use the measurement of kl to reduce the background 

a  little further. Assuming that only one of the beam electrons scatters at a large 

angle, then  the  transverse  momentum of the tagged electron should balance that of 

the two particles observed in the central  detector. Unfortunately, the luminosity 
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Figure 5.10. Transverse  momentum cut for tagged data. A 4  is the 
angle in the transverse plane between the direction of the  sum of the 
momenta of the two electron tracks and  the direction of the center of the 
hit luminosity counter. 

counters  do  not give a good measurement of the transverse  momentum. They 

tell only whether it is larger than  about 0.3 GeV and  what  the  azimuthal angle 

is within f 6 0  degrees. Therefore, the only cuts  made  are to require that  the 

measured IC1 be larger than 0.1 GeV and  that  the angle A4, between the vector 

6; + $ measured in the  central detector  and the 4 direction of the center of the 

hit luminosity counter,  be larger than 0.6~ radians.  Figure 5.10 shows a  histogram 

of A 4  for tagged electron pairs,  made before any of the noise cuts. Only 1.8% 

of those events are  eliminated by the  cut, while it  eliminates 3.7% of the tagged 

non-electron pairs. Thus it is evident that even such a loose cut helps substantially 

to reduce the background. 

Because of the requirement of a high energy tag in the luminosity counters, 

backgrounds from all sources other  than two-photon scattering  are  greatly reduced. 

For example, when the  time difference from one side of the detector to  the other 

is plotted before other  cuts  are  made, only 5 of the 989 events  with  an angle 
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between tracks  greater than 168.5 degrees have At > 8.0ns. Thus  the cosmic 

ray background is  negligible, and likewise the beam-gas and e+e- --+ hadrons 

backgrounds are negligible. The remaining background, except for that  from q' 

production and charged kaon and  proton  pairs, is estimated  from the number 

of events found with non-zero charge. There  are 227 such events after all other 

cuts have been made, compared with only four electron pairs of non-zero charge. 

There should be an equal number of zero-charged events from the same background 

source, and  there could be as much as about half that many again of events from 

the same background but with extra  neutral,  rather  than  charged, pions. The 

charged background is relatively certain, while we can only  guess at  the number 

of neutral pions which may have escaped detection. Hence the background from 

multi-hadron  production is estimated to be 560 f 112 events. 

The backgrounds from q' production  and from charged kaon and proton  pairs 

are  determined in the same way as for the untagged analysis. In this case, the 

number of proton  and kaon pairs (45 total) is completely insignificant compared 

with the  statistical precision of the pion-pair sample,  amounting to no more than 

four events in any single bin. The calculation of 7' production assumes a pO-pole 

form factor, 1/(1- q 2 / r n z ) ,  which has been found by the  PLUTO collaboration to 

give an adequate description of their  data?9  The  number of q' yielding pion pairs 

to be subtracted from data is  only 72 f 16. 

In order to  obtain  the normalization for subtracting  muon  pairs,  the tagged 

electron pairs are analyzed within the trigger acceptance defined  by the fiducial 

cut 4cm from the shower counter edges. The number found in the range 

0.7 < W,, < 2.0GeV is 3719 events. Again, a correction must be made for 

bremsstrahlung energy  loss  in the beampipe and  drift  chamber  material. Using 

again the full simulation of the detector, including the EGS Monte Carlo, the loss 

of electron pairs relative to muon  pairs is 0.931 f 0.016 for the 1982/1989 data, 

0.966f0.017 for the 1984 data,  and 0.943 f0 .016  overall. The effect  is  less  for the 

tagged analysis than for the untagged partly because for the former there is no cut 



121 

on kl. In general the two differ kinematically, so some difference must  be expected 

in any case. Comparing the  data with a calculation from the Vermaseren Monte 

Carlo and applying the correction gives an effective luminosity of 62.7 f 1.6 pb-l. 

For tagged non-electron pairs, the 2 s  trigger is redundant  to  the LS trigger, 

which requires only one shower counter in  coincidence with the luminosity counter. 

Therefore, there  are some events in which only one pion or muon has hit  and fired 

a shower counter.  But both particles still  are required to fall within the shower 

counter acceptance. In cases where one of the particles does not  latch a shower 

counter,  the tracking information is  used  for that particle to determine whether it 

is within the acceptance. When the acceptance is so defined, there is an increase of 

the number of non-electron pairs by a factor of 1.501f0.024 over the number found 

within an acceptance defined  by the 4-cm fiducial cut. Including that correction 

results in an effective luminosity for the tagged non-electron sample of 

.C? = 94.1 f 3.3 pb-', 

where the quoted error is the  sum, in quadrature, of the errors listed in Table 5.3. 

Table 5.3. Sources of error in the normalization derived from the tagged 
electron-pair sample. 

Source of Error 

f 1.7 (stat.) pre-tracking radiator 

f 0.5 (syst.) electron identification 

f 0.8 (syst.) trigger efficiency 

Percent Error 

f 1.5 (syst.) 

barrel shower counter 
acceptance correction f 1.6 (stat.) 

I size of e+e- sample 1 f 1.6 (stat.) I 
Monte Carlo f 0.9 (stat.) I 
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From the  data, a total of 9366 tagged non-electron pairs pass all of the cuts. 

The invariant-mass spectrum for those events, calculated with an assumption of 

pion masses, is displayed in Fig. 5.11~. Using the luminosity of Eqn. 5.3, the 

muon-pair spectrum is produced as for the untagged analysis, except that in this 

case it is essential to use the Vermaseren Monte Carlo  generator. The calculation 

yields 6654 muon  pairs,  and  subtracting those leaves 2712 pion pairs.  Subtracting 

the estimates of the other backgrounds leaves the 2034 events for which the T+T- 

invariant-mass spectrum is displayed in Fig. 5.11b. 

As in the T+T- mass spectrum from untagged events, a peak near the f 

is prominent, and  there also is a large amount of continuum  production. As far 

as data analysis is concerned, what remains to be done is to measure also the 

angular  distribution for pions pairs  and to correct the observed distributions for 

resolution and efficiency  effects. Then,  to finish the measurement, a model must be 

constructed which includes both continuum  and resonance production, and  it  must 

be fit to  the  data.  But first, let us  finish the analysis necessary for determining 

the detection efficiency for pion pairs. 
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Figure 5.11. The invariant mass spectrum for tagged non-electron pairs. 
(a) The points represent the measured data,  the smooth curve is the 
prediction for the p+p- background, and  the  histogram  drawn as a line is 
the estimated of the random background, obtained from the  spectrum of 
pairs  with nonzero charge. ( b )  The points  represent the rrr+?r- spectrum 
obtained by subtracting all background. The  histogram  around the po 
mass is the calculated background from 77' production. 
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6. Measurement of the T+T- Trigger  Efficiency 

A good understanding of the trigger efficiency  for electrons and muons  has 

allowed an accurate  subtraction of the background from the sample of non-electron 

pairs. But before any information can be extracted from the resulting T+T- 

spectrum,  it  must be corrected for the trigger inefficiency of pion pairs. The 

necessary correction differs from that calculated for muon  pairs because of nuclear 

interactions of the pions with  material between the beam-line and  the scintillators 

of the shower counters. In order to latch a shower counter, an incident pion, or 

its decay or reaction products,  must  penetrate, when at normal incidence, roughly 

6 cm of aluminum, which is 0.15 nuclear interaction lengths, followed  by 2.5 cm of 

lead, which also is 0.15 nuclear interaction lengths. It is apparent that a significant 

fraction of the pions must undergo some sort of inelastic nuclear interaction, but 

it is impossible to make a simple estimate of the effect on the trigger efficiency. 

The best  approach is to  try  to measure it from data, as has been done for the 

electron pairs. 

6 . 1  SHOWER  COUNTER LATCH  EFFICIENCY FROM TAGGED DATA 

It is unfortunate  that  there is no trigger redundancy to exploit in the sample 

of untagged non-electron pairs, but it is possible to use tagged data for measuring 

the shower counter  latch efficiency, albeit with less statistical significance. The 

luminosity counter tag in  coincidence with  a single shower counter  latch provides 

an LS trigger, which is partially  redundant to  the 2s trigger. Since  in all cases 

at least one shower counter is required to  latch,  then  it is necessary, as in the 

analysis of the electron pairs, to unfold the  true efficiency from the trigger-biased 

efficiency plotted from data. However, there is an additional problem in this case 

which even further reduces the  statistical significance of the measurement. About 

3/4 of the non-electron sample consists of muon pairs, so their  contribution  must 

be accounted for when unfolding the pion  shower counter  latch efficiency from the 

data. 
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In this  chapter we are concerned  only with the inefficiency caused by  pions 

stopping before reaching the second layer of scintillator-inefficiency due to gaps 

between counters already has been accounted for. It is useful to review  why that 

is so. Recall that for non-electron pairs, no cut is made on the extrapolation 

of the drift  chamber  tracking information out  to  the shower counter region.  To 

do so would cause errors due to limitations of the survey accuracy and tracking 

resolution and  to multiple scattering in material preceding the shower counters. 

Survey and tracking  errors cancel  when normalizing pions and  muons to  the 

electron measurement, but scattering, which may include nuclear interactions, 

and electromagnetic showers depend on the particle  type. 

The problem of electromagnetic showers is resolved by analyzing the electron 

pairs, for the purpose of normalization, within a fiducial cut placed 4cm from 

the edges of the shower counter modules. For that it still is necessary to use the 

tracking information, but  the  cut is far enough from the edge that  the errors have 

no effect.  For non-electrons, no cut  at all is made on the tracking information; the 

acceptance simply is  defined  by the trigger, which requires both particles actually 

to  latch a shower counter. Thus,the geometric acceptance is guaranteed to be the 

same for pions as for muons. Even though pions may  scatter more than muons, 

because of nuclear interactions, just as many  must scatter  into  the acceptance as 

scatter  out, so that is not a problem. There  may be a slight difference  coming 

from inelastic nuclear interactions of pions  in the aluminum  adjacent to  the shower 

counters, but it must be a much smaller effect than for electromagnetic showers. 

That is because whereas every electron hitting  the aluminum produces a shower, 

only a small  fraction of the incident pions produce a nuclear or electromagnetic 

avalanche. Such effects change the acceptance for electrons by only a couple of 

percent, so they are believed to be negligible  for  pions. 

Therefore, the effect of nuclear interactions on the pion  efficiency can be 

analyzed completely separate from edge  effects. To do so requires making a fiducial 

cut inside the shower counters,  and as one can see from Fig. 6.1, a 4-cm cut is 
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Figure 6.1. Resolution of the shower counter edge  for non-electron tracks. 
The shower counter  latch efficiency  for each particle from tagged non- 
electron pairs is plotted as a function of the measured distance from the 
nearest edge of the counter. 

adequate. Except for the region within 4 cm of the counter edge, the efficiency 

is flat,  and  the only explanation for the cause of the observed inefficiency  is that 

a fraction of the pions in the sample are  stopped before traveling far enough to 

latch a counter. 

To produce efficiency plots from data, tagged events are analyzed just as in 

Chapter 4, except that some cuts  are  made on the time-of-flight information in 

order to reject kaon and  proton pairs. Since  kaons and  protons range-out with 

lower initial  momentum  than do pions and muons, their presence could confuse the 

efficiency measurement. Both tracks in  each event are required to  be within the 

acceptance of the time-of-flight system, as determined from tracking information. 

It is not possible to  cut on the timing information of all tracks, however, because 

to do so would require all particles to produce a significant signal in the time- 

of-flight counters. Since almost half of the material of concern here, in units of 

nuclear interaction lengths, is  in front of the time-of-flight system, that would 

cause a large bias in the result. However, it is possible to reject those events with 
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particles which do have good times and  are consistent with being kaons or protons, 

and doing so removes most of the problem. Of the non-electron tracks  with good 

timing  information, 2.1% are kaon or proton  candidates, compared with 0.06% for 

the electron sample. The remaining number of kaons and  protons is too negligible 

to have any noticeable effect on the efficiency plot. 

From the resulting sample of non-electron pairs, a histogram of the shower 

counter  latch efficiency  is accumulated using all those tracks which satisfy the 4-cm 

fiducial cut, resulting in the 12,175 entries shown in  Fig. 6.2. Using the electron 

pairs for normalization, the fraction of muon pairs in the sample is determined to 

be 0.72 f 0.02%. Their  contribution to  the efficiency plot is calculated by  using 

the Vermaseren Monte Carlo and  the efficiency parameterization given  in  Fig. 5.5. 

Recall that for muons the efficiency  is 100% for momenta well above 0.18 GeV, 

below which they range out before reaching the second layer of scintillator (see 

Fig. 5.5). Well above that threshold, the only  conceivable source of inefficiency  is 

from light collection and  the electronics. That possibility is removed by analyzing 

events from the reaction e+e- --+ p+p-, for which the muons always are above 

Cerenkov threshold and therefore have redundant triggers. Of 3379 such muons 

which satisfy the 4-cm  fiducial cut on the shower counters, only three fail to 

latch a shower counter. Thus  the counters are essentially 100% efficient  for  single 

minimum-ionizing particles which actually pass through the scintillators. 

In order to model the contribution of pions, the form used to parameterize 

their shower counter latch efficiency  is 

~ ( p )  = 0.995 - [l - 0.6 - exp (- )] x [ 1 - 0.6 - exp (- 1)] . (6.1) P - 0.177 P - Po 
0.0219 

The first exponential factor serves to produce the  sharp cutoff due to electromag- 

netic range-out,  and the second  is adjusted to reproduce the efficiency observed in 

the  data. For the same reasons as in the measurement of the electron efficiency, it 

is only  necessary to parameterize the  momentum dependence. However, one must 
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Figure 6.2. The shower counter  latch efficiency  for non-electrons as 
a function of the particle  momentum. The points  with  error  bars 
are measured from the tagged non-electron pairs,  and the overplotted 
histogram is the best fit from a Monte Carlo calculation. The solid 
smooth curve is the parameterization used  in the Monte Carlo for the 
pion shower counter  latch efficiency, and  the  dotted curves show the 
range of uncertainty in the fit. 

be sure  that  the Monte Carlo reproduces reasonably well the  actual momentum 

distributions for the pions, so that  the trigger bias is accurately reproduced. That 

is accomplished by  using the 77 luminosity function appropriate for single tagged 

events in conjunction with the model for 77 4 T+T-, which is introduced in 

Chapter 7. 

The fitting procedure begins with generation of an efficiency histogram  with 

35,000 entries from Monte Carlo muon pairs. Then  the pion-pair Monte Carlo 

is run,  and for  each of 100 pairs of trial values for po  and 7 of Eqn. 6.1, an 

efficiency histogram is produced by adding 13,611 pion entries to  the existing 

muon histogram. Comparing the 100 Monte Carlo histograms with the one from 

data produces a 10 x 10 matrix of x2 values. Those entries which are  no more than 
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one unit of x2 above the minimum roughly form  an elongated ellipse, showing an 

expected large negative correlation between po and r .  The center of the ellipse 

(PO = 0.070 , r = 0.270) is taken as the best fit and  the resulting efficiency curve 

is shown as the solid smooth curve of Fig. 6.2. The  set of dotted curves represent 

the  pairs of values forming the perimeter of the ellipse and therefore indicate the 

one-standard-deviation uncertainty limits of the efficiency measurement. 

This  result includes, in addition to losses from nuclear and electromagnetic 

interactions, some losses resulting from those weak decays of pions which occur 

after leaving the inner tracking  chambers. However, one expects the effects of 

such decays to be small. In  fact, when pion decays are  added to  the Monte Carlo 

simulation, which does not include nuclear interactions, the detection efficiency 

decreases overall by  less than 1.5%. With nuclear interactions included, the effect 

could be of the opposite sign. Because of the small difference  in mass between 

the pion and  muon,  such decays usually result in a  muon going in about  the same 

direction as the initial pion. Therefore, it is conceivable that decays could actually 

increase the trigger efficiency, since the  latch efficiency  for muons is very high. 

Whatever the case may be, the effect  is almost negligible and  most of it already is 

included in the efficiency measurement. The remaining effect from decays which 

occur within the tracking volume and result in a loss of the  track itself is negligible. 

6.2 CALCULATION  OF  THE  SHOWER  COUNTER LATCH EFFICIENCY 

It is worthwhile to  attempt a direct calculation of the pion shower counter 

latch efficiency just  to check that what  has been measured makes physical sense. 

However, the result of the calculation cannot  be expected to agree with the  data 

to  the  extent  that  the EGS calculation reproduces the electron shower counter 

latch efficiency. In the electromagnetic case the details of the physical processes 

are well known, but for nuclear interactions one must rely on relatively crude 

models which try  to reproduce  features of physical processes which are  not so well 

understood  and which are  great in variety. Furthermore, a determination of the 
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Figure 6.3. HETC calculation of the shower counter  latch efficiency 
for pions. The  points show the results of two HETC  calculations, 
covering two momentum  ranges,  and  the  smooth curves show the range of 
uncertainty in the measurement from data, including both  the  statistical 
uncertainty  and  the  uncertainty in the normalization of the muon 
contribution. 

latch efficiency requires a very detailed calculation, because it takes only one of 

many possible charged particles produced from a reaction to latch a counter. 

HETC30  is used along with the EGS2' code to simulate nuclear and 

hadronic  interactions in the detector  material. EGS is called only when a 

is produced  from a nuclear interaction.  HETC uses what is called the 

Intermediate  Energy  Intranuclear-Cascade-Evaporation  Model for pion-nucleus 

inelastic collisions (except for ?rp reactions, which are  not relevant here).  Running 

the Monte  Carlo model for e+e- 4 e+e-7rr+7rr- with the HETC-EGS simulation 

results in the histogram of Fig. 6.3. The efficiency from the calculation is 

consistently a little low, but  it does show the  same  trend as what is observed 

in the  data. 

Since the  HETC calculation does reproduce the general features of the 

inefficiency seen in the  data, it is interesting to look a  little more deeply into 
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the calculation to see what  types of physical processes are responsible for the 

loss  of  efficiency. One finds that a few  of the pions which fail to  latch a shower 

counter have undergone a charge exchange reaction such as ?r-p + no,, and 

the resulting electromagnetic shower has not penetrated  far enough. Then  there 

are a few other low-multiplicity reactions for which a neutron  has carried off 

most of the momentum. However, most of the cases of latch failure are due 

to reactions in which several protons  and  neutrons more-or-less share equally the 

momentum in the final state.  The neutrons seldom produce any interactions in 

the scintillators, and  the protons typically do not have enough momentum  to 

penetrate  through  much lead. In general, the reactions responsible for the loss 

of efficiency are, at least in the Monte Carlo, quite complicated, and  the result 

of whether the reaction products can latch the counter depends critically on how 

the  momentum is distributed  among the protons  and pions of the final state. 

Therefore, it is enough to conclude that  the calculation does  verify the  momentum 

dependence, and approximately the magnitude, of the inefficiency  seen  in the 

data-the measurement is what is actually used  in the following analysis. 

6.3 TRIGGER EFFICIENCY FOR PION PAIRS 

When fitting the invariant mass spectrum of the pion pairs to a model, it is 

necessary to know the uncertainty in the trigger efficiency as a function of the 

pion-pair invariant mass. That is obtained by  using the Monte Carlo to transform 

the upper  and lower limits on the shower counter  latch efficiency, shown in Fig. 6.2 

as functions of momentum,  into  upper  and lower limits on the trigger efficiency. 

It also is  necessary to include the uncertainty from the normalization of the muon 

Monte Carlo, as obtained from the electron-pair measurement. If E is the efficiency 

measured for the  sum of pions and muons, and f is the fraction of muons, then 

the efficiency of the pions alone is approximately 

E - f  
1 -  f '  

E n  = - 
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Figure 6.4. The pion-pair trigger efficiency as a function of invariant 
mass. The upper  and lower sets of points,  through which smooth curves 
are  drawn,  are generated by Monte Carlo, using as input  the measured 
upper and low limits of the shower counter latch efficiency. 

Using the predicted fraction f for  each momentum bin along with the estimated 

2.9% uncertainty in f, this equation is used to find the error in cn. for each bin. 

That error  actually already is included in the limits shown by the contours in 

Fig. 6.3, and using those contours in the Monte Carlo produces the result shown 

in Fig. 6.4. The percent difference  between the two curves gives the uncertainty 

in the efficiency measurement for  each invariant-mass bin. It can  be adequately 

parameterized as a  parabola  with zero slope at  the upper end of the mass range: 

where a = Wl = 0.6 GeV, b = W2 = 2.0 GeV, E? = 0.10, and E; = 0.05. 

When fitting  the model for 77 + T+T- to  the T+T- invariant-mass spectrum 

(Chapter 8), Eqn. 6.1 with po = 0.070 and T = 0.270 is used  in the Monte Carlo 

for the pion shower countet  latch efficiency,  while Eqn. 6.3 gives the uncertainty 

in the pion-pair detection efficiency. 
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