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I. INTRODUCTION

In studying the dynamical properties of electron and ion beams mov-
ing through various kinds of electric and magnetic fields, it is usually
convenient to chooge one known trajectory as the reference axis and cal-
culate the other neighbouring orbits surrounding it by the method of
perturbation. Many authors in the instrumentation field of nuclear
physics, notably, Herzog,™ Klemm,2 Streib and Brown,” have calculated
in this manner charged-particle trajectories through bending magnets,
guadrupole magnets, and magnetic spectrometers. These devices have a
symnetry plane so that the chosen reference trajectory lies in this
plane. A curved plane trajectory has no torsion, and the resulting
coordinate system is orthogeonal.

A more general coordinate system refers to some trajectory or vector
line which is a space curve. A non-planar curve has both curvature and
torsion. It seems clear that such a curvilinear coordinate system may
be set up, but it is not at all cobvious whether this system may be
orthogonal or not.

The coordinates measured with reference to vector lines are called

by Bjorgum* the "natural coordinates”™ for the vector lines. According

to Bjorgum, these coordinates were used previously by Bjerknes5 et al.,
later by Ramsay,6 and more recently by Milne-Thomson,7 all in connection
with hydrodynamical studies. BjJorgum generalized their method for his
investigation of Beltrami vector fields and flows. (If 7 X % X ¥ = Q,
? is a Beltrami field.) This method of treating vector problems newly
generalized by Bjorgum appears to be simple and effective, and generally
useful for many vector problems in several branches of mathematical
physics.

There are, however, some undesirable features associated with
Bjorgum's method, which were clearly noted by him. The most restrictive
one is that the coordinate variables used by him do not in general con-
stitute "an ordinary system of coordinates." There exist no orthogonal
surfaces to the coordinate lines except in very special cases, and the

directional derivatives with respect to coordinate variables are usually
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not commutable with each other. Much skill and intuition are needed in
order to obtain correct results. It seems, therefore, advisable to lay
more groundwork for "natural coordinates” to facilitate the use of
Bjorgum's analyses for varied purposes.

The objective of this paper is to set up the curvilinear cocrdinate
system which has a curved non-planar vector line for its coordinate axis.
This enables us to discuss "natural coordinates" in an elementary manner.
We shall start from basic principles, collect and develop many relevant
formulas including the metric and the Riemann-Christoffel symbels of
this coordinate system, and elucidate how the afore-mentioned difficulties
may be avoided. When the fundamental metric of a coordinate system is
determined, all the relevant geometrical relations will be known in their
standard forms and the carrying-out of analyses will beccome straight-
forward. By simply putting the torsion of the reference axis egual to
zerc, the coordinate system becomes orthogonal, the same as used by the

authors mentioned in the first paragraph of this section.

II. NATURAL COORDINATES FOR VECTOR LINES

Consider a certain vector line (a space curve)
-
r =T (s) (2.1)
shown in the following figure:

(s increass., 7 )
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Here, s denotes the arc length along the vector line; %, H, b are unit

> > -+ -+
vectors, © being the unit tangent vector (f = dr/ds), n the unit

principal normel pointing in the direction of dt/ds , and b the unit

binormal. These three unit vectors, in the above-enumerated order, form
a right-handed orthogonal set of coordinate axes at any given point on
the vector line; they vary in directions from point to point along the
vector line, all being functions of s.

Since %, H, g are orthogonal unit vectors, the dyadic

>+ A o &
tt+mn +bb =171

is an idemfactor,® which satisfies, for any arbitrary vector K, the

identity
£ -P=T-1=%. (2.3)

-
Thus, the gradient operator V becomes, on decomposition into its

components,

%%+K%+g—— . (2.4)
The coordinates (s, n, b) measured in the directions (%, n, b) are

called by Bjorgum the natural coordinates. Here, we may note that the
directional derivatives, ©/5s, 5/®n, and 5/8b, are neither the ordi-
nary partial derivatives, nor the ordinary covariant derivatives. These
directional derivatives are usually not commutable with each other. De-
gpite this inconvenience, Bjorgum made fruitful use of the natural co-

ordinates in his investigation of Beltrami vector fields.

(2.2)



IIT. FRENET'S FORMULAS

> > >
The variation of the three orthonormal vectors (t, n, b) along the

tangential direction of the vector line are governed by Frenet's formulas.®

These are as follows:

B%/bs = k0, (3.1a)
on/6s = - kt  + 7b (3.1v)
5b/8s = -m . (3.1c)

Here, k and 7 are scalar functions of s; k denotes the curvature
of the curve, always positive; 1 denotes the torsion of the curve,
either positive or negative. The sign of T 1is a property of the space
curve, independent of the choice of the direction of increasing s . For
a plane curve, T = O.

Equation (3.la) is, in fact, a definition of the curvature « and
of the normal direction 3 , because 6%/65 must lie in the plane per-
vendicular to £ at the point (s) under consideration. Similarly,

Eq. (3.lc) is a definition of the torsion 1 . This equation is proved
by showing that ®b/8s is parallel to n , because 8b/Bs is perpen-
dicular to b and b = £ Xn . The remaining formula, Bq. (3.1b),
follows readily from these two definitions and the relation K = E X .

The three unit vectors (%, K, E) are defined in the whole domain of
a vector field ? = v% , except where v =0 and g =0 . When v =0,
% is indeterminate; when g = O, K is indeterminate. It may be assumed
that the difficulty at such singular points can be removed by the condi-
tions of continuity. These unit vecltors vary not only along the s-
direction of one vector line, as stated by Frenet's formulas, but alsc
along transverse directions from one vector line to another. The func-
tional dependence of the reference vectors (%, E, B) on coordinate vari-
ables are determined by the characteristics of the vector field. This
is, apparently, the reason that Bjorgum called the coordinates (s, n, b)

natural coordinates.



Ta circumvent the attendant difficulty menticned earlier, we shall,
from here on, refer to one and the same vector line, for which the ortho-
normal set of vectors will be denoted by (%6, Ho’ g&) . The coordinates
measured with reference to this vector line along these three directions
will be denoted by (t, g, v). On the reference line {u = v = 0), the
¢~ , u~ , and v-directions coincide, respectively, with the s- , n- ,
and b-directions; off this line, the corresponding two directions are
different from each other. As will be shown later, the coordinates
(¢, w, v) do constitute & proper system of curvilineer coordinates,
though, generally, non-orthogonal. These coordinates will also be

called, conveniently, natural coordinates,

IV, TFUNDAMENTAL GEOMETRIC RELATTONS

Before proceeding to discuss the natural coordinate system specifi-

cally, we consider a general system of coordinates (x, xZ

, X°), curvi-
linear and non-orthogonal. In this general system, the infinitesimal

displacement vector d; of components (dxl, dxa, dx®) is given by

d-)- > a > 452 > -
r=e dx +e, + e, dx-~ ,
i.e., .
ar = e; dx (1 =1,2,3) (4.1)

-
Here, the e.'s are the three non-coplenar (covariant) base veetors.

i
Obviously,
gi = a?/axi (h.2)
and
3¢ /o = 38 Jaxt . (4.3)
i K
From Eq. (4.1) we obtain
dr® = d; . d; = gik dxidxk 5 (M.M)



where
gik =% * ek = gki (LL'B)

are called the covariant components of the metric tensor.

> > >
Reciprocal to this covariant set of base vectors (e ,e , e ) there
2’ 3
. + -
exists the contravariant set of base vectors (et, &%, e®). These are

called reciprocal sets, because |

1 if i =k |
2, - F=of- (4.6) |
0 if i#k |
Thus, :
+ +k > a > 2 -+ =k
e, =& K zhal e =e - e
In other words,
> > o g
e, e =e e = I . (4. 7)

. ik . .
The contravariant components gl of the metric tensor are defined

in a similar manner, namely,
=e e =g . (4.8)

If we denote by & the determinant of the matrix (gik) end by Gy

the minor of gik in the determinant g, so that

g , it i =k
) Ry G - { (.9)

T 0, if 1 £k ,



then,

ik
g =G,/8 , (4.10)
and
det (25) = 1/g = 1/det (8,,) - (k.12)

e o,
Here, we may note that the metric tensor (or dyadic) g is just the

idemfactor,
o2 ok -3 2 ik _ iz ( kz)
&= Sik T %1 %k 8 k Eig &
+ ¥k if hnd
- i e (g gkﬂ) I .

=
Apparently, it is the current usage to write I for E? and Bf for
k

&

From the properties of recivrocal base vectors ss given by Eq. (%.6),
it also follows that

&= (1/vE) 3 %8, (4,130

and

I

>
(SN

) \/g-e*k'x i (4.130)

Here, (i, k, 1) ere even permutations of (1, 2, 3).
->
In terms of these base vectors we may decompose any vector A into

its components, either covariant or contravarient, Thus,

- . .
A=¢g, At =eta, (4,14)
i i
i 7 =i . o>
A" =A - e being the contravariant components and Ai =A - e the

covariant components.



In particular, the gradient vector may be decomposed &s

v
-2 @ =TG- . (%.25)

Since

o= () o/t = T (4.168)
and

. () = T (k. 16b)

are identities independent of the coordinate system, we obtain by
using Eq. (%4.2)

+i

-3t (4.17)

Hence,

+ ik 9
= €. & 3

23
axt + axk

v = (4.18)

> > >
Similarly, we may decompose the reference vectors (t, n, b) into
N .

their covariant (ti, n, bi) and contravariant (t-, o', b') components.

since (¥, n, ©) are orthogonal unit vectors, we must have

tt7 =nn =bbT =1 . (4.19)

and

-tin = tlb = nib =0 . (u.lgb)

. > > ->
Purthermore, we obtain from b =1 X n

o
1

. (l/\._/é)(tknﬂ - o) (4.202)

and

o'
¥

, = Ve G A (4.200)
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(i, &, ¥ being even permutations of 1, 2, 3). Two similar pairs of
equations may be obtained by cyclic permutations.of (t, n, b).
To use Frenet's formulas in curvilinear coordinates we need perform

the indicated differentiations. Thus,

o
I S - A S
k i
X dx
+
* ox ox
> k{ath > agﬁ m
—eit --—'E'l‘ e ——Ti.)t
ax ox

]
@ ¥
ot
ot
-

where t%k is the covariant derivative of +t  with respect to Xk .

’ »1 “ X
The scalar product of e~ and aem/éx is usually denoted by the

Riemann-Christoffel symbol,*® namely,

. . oe >
i o+ m_ Qe | ,
Tym = € =" T% Sy - (h21)
Ox ox
Thus,
. i .
i ot i om
= . L,
t;k ¥ + Ty b (4.22)
In Carfesian coordinates every such symbol I"  vanishes.

> - -> - km
The g-derivatives (t - V)of n and b are similarly calculated.

Thus, Frenet's formulas become, in curvilinear coordinate systems, as

fellows:
ki i
T, = 1)
ik ’ (4.23a)
¥ i i i
t D = - Kt + Th s (4.23p)
2
k.1 _ i
t b;k = - m . (4.23¢)



V. TRANSFORMATION OF COORDINATES

Consider the transformation from one general coordinate system
1 1 ]
(x*, x2, x3) into another (x Yox® x )

i . i
13 H
ax T = ox 4.k ; dxt = §§f—-dx ko (5.1)
k K
ox ox
Since
- - i 31 tk
dr = e, dx =¢ & , (5.2)

+ - L3 . - -
dr being a vector, an invariant quantity under any coordinate trans-

formation,
'
t 1 14
ax't = @1 L2y, e, STy (5.3a)
k k axk
and i
i S 'k . »>1 ox
dx= = (e” - ek) dx , il.e., e’ - ek) === - (5.3b)
%
Noting that the idemfactor T is an invariant, namely,
Py > - - T >t >tk >tk
I = e, € = e e =6 & =e €
we obtain
> ->i -1 >l 6}{1 +1k
N L (5.4)
ox
'k
- > +1 ! ox -t
e; =8 " & e =TTy 8 (5.4p)
3
>14 >t + =k 3 1
-
szt . e =& gk s (5.4¢)
k aXk
and k
-1 >t +k » ox -
e, =€ K =TT Sk . (5.4d)
ox
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In other words, the contravariant base vectors transform like contra-
variant vector components and the covariant base vectors transform like
covariant vector components. Using the foregoiné transformation laws
we may easily transform any kind of vector and tensor components.

In this connection, it is very helpful to note that not only scalars
but also vectors (e.g. dz, %m, etc.), dyadics (e.g. &, EK, ete. ),
trisdics (e.gz. g(eﬁ), %3K, etc.), ete, are invariant quantities under
coordinate ftrangformations. Vectors, dyadics, triadics, etc. are,
regpectively, tensors of rank one, two, three, etc. For example,

K _ gi »>1 1k _ glk '

A, = =
1 5 ey A By ’
+ =+ jk > 2k + >k i » + k
= g, =e e . =&, e = & .
¥ e; & @ D1 ;S0 ey O
5! 31 lmn +1m ->ln 1 -1 +ln lm "*'m 51 1n
=e e ( = e e o] =g e =g e
mn m n nonm

These identities lead to the following equations of transformations:

owmt ok Tt
Al=akA s A=A . (5.5)
X Ax
, ax_'m ax: iE )
ot dx
t Bxi an >
IR (5.6)
ete. J

VI. THE NATURAL COORDINATE SYSTEM

Now we come to consider (¢, u, v) to be the curvilinear coordinates

(x*, x5, x®). The two reciprocal sets of base vectors will be denoted

- 11 -



vy (e,, & , . ) and (gg, &, e”). According to Eq. (4.2), we have
£ S0 Sy ,

+ + O0x , > dy , > Oz
eg = S.X gg— + ay gc— + a.Z gE (6.la)
- > ox + Oy > Oz
WTEmE AT RN 6. )

- - 3¢ > dy - é&

e, (6.1c)

{
©
&1
+
o
e
¢
+
ju
S|
Q/
<

. . > > >
Here, (x, ¥, z) are Cartesian coordinates and (ax, 2. a_) are constant

unit vectors. The contravariant set of base vectors may be obtained
from the covariant set by using Eq. (%.13a).

Let the equations of coordinate transformation be as follows:

X = ®(C, Hs V): y = Y(C; Uy V), z = Q(g: Hs V) . (6-2)

When p =0 and v =0,

X =290 (C, g, O) =09 (E) ’
y=v(t, 0,0)=v () , (6.3)
z =0 (¢, 0, 0) =w ()

These equations represent the reference trajectory or vector line in
terms of its arc length ¢( .

The unit tangent, the unit principal normal, and the unit binormal
vectors of the reference trajectory are, respectively, %o’ Eo’ and go'

As discussed in differential geometry,™*

1

> > t > > ]

b, ma, 0 tay yota o, (6.4a)
n n "

KEO=§X¢ +'§y¢ a0 (6.4b)

- - r v T - t n T e y " t n

kb, =8, (Vo -0y )ra (0y -go)+a (v -vo) .(6.h)

- 12 -



In these equations, ©' =dg/dt, ¢ = d%p/dt®, etc. Evidently,

@2+ (") + (@) =1 ; (6.5)
2= (") + ()2 + ()3 (6.6a)
= (¥'o o'V P (09" -0 0" oy 4" )2 . (6.6b)

Furthermore, by using the third Frenet's formula, namely

it can easily be shown that the torsion of the reference curve is

q‘)! Wl wT

l n n "
Tzl et Vo (6.7)

(P!If W‘H (DIH

In order to set up the simplest coordinate system (g, My v) we ime

pose the condition that the functions ¢, ¥, and 0 are linear functions

of g and v . Under this condition,
= (L) + ¢ %2 + v 5— ’
y=ﬂf(€)’ru§§+\/§ ) (6.8)
z =o(t) + u %% + v g%

All the p~ and v-derivatives of ¢, ¥, and Q are independent of
both p and v . Hence,

S, =% 5 + By " +a, S ' (6.92)



and

> > 3, > oY, > o0
TR STy TS (6.90)

are functions of ¢ only. Now we note that we are at liberty to choose
the scale factors for p and ¥ so that both gﬁ and g& are unit

.
vectors. Since 3@ is along the principal normel and €, along the

binormal, we may simply require:

Eu = EO ; (6.108a)
Ev = ﬁo . (6.100)
We thus obtain
a3 _ n oY 1w N I
gu-_;(p 3 éﬂ Ell,l 3 gJ—E'(D H (6.11)
%f—'} == (e - o)
B L (gt - ) (6.12)

éri =":]E_ (Cp’\if" . \,f'q)") .

Having obtained the equations of transformation from the curvilinear
coordinates (g, 1, V) to Cartesian coordinates (x, ¥, z) we may now
determine the metric properties of the curvilinear system. From Egs.
(6.8), (6.11), and (6.12) it is clear that the curvilinear coordinate
system is determined entirely by the geometrical properties of one

chosen curve of reference represented by Eq. (6.3). Since

P! %% + oy %E + o %% =0 , (6.13)
! %% + ! %% + %% =0 , (6.13p)

- 14 -



and

30 00 , O¥ Q¥ . on o0 _
ENTESTENC (6-13)

we easily obtain the following relations:

(x-0) o' + (y-¥) v' + (z-0) &' =0 , (6.14a)

(x0) 24 (-0) L+ (a0) =, (6.11b)
and

(x0) L+ ) &+ (z0) B =y (6.1%)

Squaring Egs. (6.14b) and (6.14c) and adding them together, and simpli-
fying the resulting equation by making use of Egs. (6.5) and (6.6), we
then obtain

w2+ v = (x-0)% + (7-4)7 + (z-0)® = (x-9)o" + (y-y N + (z-w)o'!Z .

Clearly, Eq. (6.1ka) represents the plane, normal to the reference curve
at the point (¢, O, 0). The square of the distance from the point
(¢, 0, 0) to the point (¢, p, v) is

pE 4 v = (2-0)% + (y-¥)% + (z-0)® . (6.15)

The remaining base vector in the covariant set is

> + ab > Qv + 30
¢ = a 5% + ay EE +a St (6.16)

- 15 -



having Cartesian components

S0 . 3030, .23 o .z, o, , o
-a—E—Qp +p-a—c--al—+\#g§§v—q) -l-ax(p,dg-I-Vd-g 3

oY _ .+ o o¥ O ¥ _ i 4 3. ?ﬁé E:E
S5t LA T TVSES T vt ey (f £ TYEE ) :
and
30 ., d A0 3 AW _ o, L. aii, aBe
SE=® RS TVSESY T o E, <H EE"* M azf'>

Using Frenet's formulas we obtain

+ -> > >
o = (L -ue) £ - vrn  turd, . (6.10c)

s . e then b
By = €y * & ey then e

evaluated. The resulting matrix is as follows:

The covariant metric tensor components

= 0
() =) 8¢ B
gvl_; 0 gw
(1-uk)® + (u2+v2)r® - vr e
= - YT 1 0 (6.17)
wT O 1
The determinant of this matrix is
g =det (g,) = (1 - u)® . (6.18)

- 16 -



Now we use Eg. (4.13a) to evaluate the contravariant bage vectors.

2L

> -> ->
= (1/VE) e X e, = (1/ /&) t, (6.19a)
-> > T
= (1/VE) &, x &, =1, + (m/VE) T (6.190)
-+ —_ > > —— >
e’ = (1/\Mg)e, xe =b - (ut/\g) t (6.19)
¢ M o 0
. > . .
Since e> = , this base vector is normal to the surface ¢{ = const.
Similarly, ¥ is normal to the surface u = const., =and eV is
normal tc the surface v = const. The surfaces of constant ¢ are

planes, while the other two sets of surfaces are not.

-
7 = 0, these sets of surfaces are non-orthogonal, because eC s gp

and gv

are not mutually perpendicular,

Except when

J

The contravariant metric tensor components are evaluated from the

contravariant base vectors, also by taking scalar products.

and

8gg g
c%)

(g g

= VT

I+

-uT

Eu

b

Ev
v

gu

A%

g

VT

(1-pk)Z+(vr)?

2
4T

A - -
det (7)) =g = (1 - ue)"2

T

Vs (6.20)

(Lpr )+ (ur)?/

(6.21)

Here, we may note that, in general, none of the contravariant metric

tensor components vanishes, On the reference curve, where

n=v=0,

both (g_,) and (g“k) become equal to the unity dizgonal matrix.

-17 -



The differential of the position vector is

> > ->
dr = ar + e, dp + e, GRY (6.222)

I

%O (1 - uk) dt + Eo (du - wrdt) + ﬁo (dv + urdt), (6.22b)
and the invariant (fundsmental)} quadratic form is
ar? = (1 - pr)® at® + (ap - viat)® + (v + wadr)®
= g (1 - w )2+ (ur)? + (w)a} ae? + 42 + w2
- 2yr dtdp + 2ut dvdl . (6.23)
Thig agrees with Eq. (6.17) as expected,

VII. THE GRADIENT OPERATOR

According to Eq. (4.18), the gradient operator is simply

$=g25%+;v§%+;v5

5 (7.1a)

When referred to the three mutually perpendicular unit vectors

> -
(%, Eo’ bo) , it becomes

> > 1 {0 3 3 > 3 > 9
= e + - + + = . .
v to@(& e “Tsv) "o 31 " Po 5 (7.10)
. > - > -+ - +§ .
Since n, = eu P bo =€, and to = Vg e’ , these three unit vectors

are neither a covariant nor a contravariant set of base vectors.
- -
On the reference curve, dr = to dt , the expression of the gradient

operator 1s reduced fo

—>_—>-_a_ > 3 + 3 _ _
V—‘coag+no§“—+bova—v . {(p=v=0) (7.2)

- 18 -



In studying the properties of vector fields, one may be more in-

> >
terested in the components of ¥ along the directions (%, n, ﬁ) than

along (%5, Eé, g;).' As noted before, Bjorgum used. the components

> > e - > Ik . . . . . . .
teV,n.V,and b - ¥V in his investigation of Beltraml fields.

These components are obtained easily from Eq. (7.1z) or Eq. (7.1b).

Ilet =% ,o0r n,or b, orany vector, we have
K'§=A§§E+A“§J+Av§; (7.3a)
- (11 \/i_g_(% v % - e 5‘2\7) + (£3) %— v (£3) &
=A§§E+(A“+VTA§)§’E+(AV-“TAE)g% . (7.9b)
From these equations it follows that
A =n s v AT (7.la)
AY = A, - ur A (7.4%)

Also, as can be obtained easily from Eq. (6.10c),
A vr A - A, e
g ¢ TA -HuT A, (7.4¢)

z g
Of any vector A , (\@;A., A Av) are the three rectangular com-

> - &
ponents referred to (to, n, bo) .

- 19 -



VIII. RIEMANN-CHRISTOFFEL SYMBOLS

These symbols are defined by Bq. (4.21); they appear in the differ-

entiation of vector and tensor quantities. For example,

m
a g [+~ ik} _ + -+ ik ax
e (eiek ° ) =& Y ds (8.2)

ik
where the covariant derivative @_m is given by
3

. ik ) .
oK _ 3¢ R S S e ¥ (8.2)

sm S mé mé

The significance of these symbols becomes even c¢learer when one con-

siders the partial derivatives of the base vectors. Thus,

> -
TP PURS B (8.38)
5X£ - m ax.e B m l.e o8
de wm f - Bel') sm 4
—=e | e —]=-¢e T (8.3b)
Bxﬂ' m axﬂ mﬂ
Clearly, P;£ = Fzm according to Eg. (4.3).
An alternative definition of P;g is through tze metric tensor
components.
5 .
Pi - ik i gkm + agkﬂ _ agmﬂ (8 u)
me & Z\1.2Z T K ‘
X Ax Ox

This is proved by showing that

de d 3
T =£_(z.;)+_(z.;)-_(g.;),
k 3 2 BXZ k m me k A Bxk m J4

X

S

=

We prefer %o use the former definition to evaluate these symbols.

- 20 -



> E
As noted earlier, eu and ev are Tunctions of £ only.

> > > >
IS
Beu. eM aev aev

3. dv  du  dv

The ¢-derivatives are cbtained from Frenet's formulas. Thus,

o2 o2
T .

- >
o
e " e

D¢ ° v

il
1
)
sy
I

3, . [fove \ .
st - % %T*W”,+no(\fé““”‘

2
[
+ b (pr VT )
From these equations we obtain
i i i _ o3 .
D =Ty = Ty = r,, = O- (i = €, u, v)
R .
QH UC K/\/é >
=3 o
=T = - VTK
gg pg /\/é >
r.o=r =14 pTR/E
En mE :
£ _pl -
PVC = ng =0 ,
o
PVC = ng = T
% v
PVQ = ng = 0 .

Hence,

(8.5a)

(8.5b)

(8.5¢)

- pt)

(8.54a)

(8.6a)

(8.6b)

(8.6c)



¢ 1 ovg K
thﬂ JE Bg + o v

L

PZQ = '(\}g agég+ §@ v-r) ur + (ur' - V)

As required, the foregoing set of symbols satisfy the following

identities:
¢ VE
s > £ v v 1 .y -\
Ve, =02 +07 +T  =— Cox =t e, v) (8.7)
£ tL ¥/ v JE axﬂ 7
A > > ik
I LA wl (8.8)
'Y ‘/'g a 2 VvE 8 ml g S = ’ .
X
They also satisfy
—>1§_>_—> > > ik _—>£+—> ik
VI=V (eiek g ) =e ese, &y = a,
agib—
ik i km X im
i.e., g, =7 * sz g + Pmﬂ g =0, (8.9a)
: ox
“ x> ,aisk \ _+£+1+k _
and VT =v (28 jp) S €€ gik;ﬂ =0 ,
g
- —2E - = 8
Tege Bixs T 7 Tep 8im = Tig B = O (8.90)
The foregoing set of symbols may be grouped into three 3 X 3 matrices,
nanely,
: rfot oo oot
£e e 6L e LV
g — C H _ PP-
(Pﬂm = PHC 0 0 s Pﬂm, = Lt 0 0 s
; (L
o] 0] 0 Fvg C 0
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r r ¢
v g tu
Vv
and Pﬂm = PH§ 0 0
0 0

These matrices correspond to the following gradient expressions:

%_é‘l = % xl = _‘é‘ﬁ‘e*m I‘z—m . (i = g, My V). (8-10)

We may tentatively call these expressions 'base dyadics.”

By using the transfbrmation laws of the base wvectors, it may easily
be shown that, under the coordinate transformation from (¢, p, V) to
(C’J u', V');

(' ox * [axp it + il (8.11a)
m’ 3t axﬁn 8x|n Pq Bx'm'axln ’ .
- 32"
i.e., 3 (Pmn) = T E qu + m—g{q (8.11p)

Christocffel symbols do not transform like tensor components, except
when all the second derivatives agxg/ax'm dx'" vanish. In other words,
the "base dyadics" do not transform like dyadics. This should not dis-
turb us, as we may recall that base vectors do not trarsform like vectors
(they transform like vector components ) .

If desired, one may, however, avoid using these seemingly complicated

> >
symbols by considering , instead, the gradient expressions Vto, Vno,

and ego’ tentatively called the "reference dyadics.” A1l of these

have quite simple expressions:

> K =+ =

Vi = NG t, 1 (8.12a)

> 1 > > > >

Vn_ = — - . .

n, 72 (T tph, -k toto) (8.12b)

W o= m=t A (8.12~)
o] v [eJlNe]



> -> >
It is advantageous to use (to, n_, bo) as reference vectors, because this

)
usually results in simpler expressions. On the other hand, the coveriant
and contravariant base vectors are preferred for general theoretical dis-

cussions.
IX. DIFFERENTIAL EXPRESSIONS OF VECTCOR FIELDS

In previous sections we have already discussed the differential oper-
> >3 N > . .

ators V and d/ds =a~ -V = s/lef) . , together with some differ-
ential expressions of the base and reference vectors, such as g - ;i
5;1’ 3%0, ete. Now, we shall present, for ready reference, the oft-used
differential expressions of vector fields. We shalil alsc discuss several
characteristic gquantities of infinitesimal vector tubes, used in Bjorgum's
work, for the purpose of illustration.

The vector field will be denoted by

- = i >3
V=e Vi o=e" v, (9.1a)
> C -> >
=%, Veve+n v, +B_ v, - (9.1p)

To cobtain the differential expressions of v requires the corresponding
—_— >4

expressions of the base vectors, e. or e, or of the referece vectors
(. %, ) )
o’ o ol - -
First we observe that, since e = Vx,
> -3
Vxe =o0. (9.2)
On the other hand,
-~
> > >g aei >£ >m > agl
vV Xe, =& X —p= (e X e ) e s —
i £ m z
Ax ox
d e
>Z >m > > >
=’(e X e ) — (e e )— e —_— .
aﬂ L m 1 aj/
x x



>£ >m :
Since the last term, {e” X e )(gi ) agm/axﬂ), reverses its sign by inter-

changing £ end m and thus drops out, we obtain

ag. 1 ag.
Sl - +J +m im _ > fmn - im i
X e, (e x &™) ax£ e € 7E S;F— s (9 3)

where

1, (£, m, n) being even permutations of (f, u, V)
£ R .
€ = (-1, (£, m, n) being odd permutations of (¢, u, V)

0, otherwise.

From Eq. (9.3) we obtain

> > .._3'_ > . > LA
v X & =75 eg(QT) + eu(EVTe - urh
+ ‘év(en VE - 2um - vy, (9.ha)
7 S = - I B) .Ll-
VXE, (t/ V&) Y (9.4)
v x‘év = - (/&) 15\) (9. 4c)
Hence,
Eg . % X EC =27 , I
é*u-%xe?“:'e*v-ﬁxgv:-v/\/é.j (9.5)

Equations (9.2) and (9.5) tell us that, while the contravariant base
vectors gl are normal to a family of surfaces xl = const., the co-
variant base vectors gi are not. There exists no family of surfaces

on which the so-called "covariant ccordinate" X, is constant. This is

the same as to say that, contrary to the contravariant set of coordinates
(&, u, v), the covariant coordinates do not actually exist. The covariant
coordinates do not always have physical significance. For example,
5 O . i O J
5ot So-t gt ey T
i k 1 k
ox dx axk
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The operator B/BXk does not mean differentiation with a varlable x

in real ex1stence, it 1is merely a symbolic notation for g /Bx .

The divergence of any vector is given by

L (Ve VD)

-7
VE axl

This is the seme as Eq. (8.7) when v =2
the following results:

<¥
o
e
il
]
E =
3
~
N

<+
¥

H
]
<
=

<
o+
g
i}
(@]

Cn the other hand,

> 1 9 o ti im Lt
AV gC = e —— - - T
VE axl (\/g g ) g im
= g-3,2 (uk® + vrk)
Similarly,
S > 1 ' 1 ? 2 VT t )
V. = — - B = (VT - T 4o — e + VTK .
B 1

T - Y- .= 7 (uv' + v1°%) + %F (ue' + VTK)I .

)

The curl of any vector is given by

LA zmn 1 avm
XV = en el -
VE aX

This equation contains Eq. (9.2) and Eg. (9.3) as special cases.
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(9.6)

IR Such specialization gives

(9.7)

(9.8a)

(9.9)



Similarly,

o
= I S - fmn 1
VXVXV—én‘E —J_E.g'){—ﬂ(VXV)m
2 Jm gk 1 3 gmkavj
=28 e J L) (9.10)
n VB 3yt VE 3%

An alternative expression of curlcurl is the divergence of an antisym-

metric tensor, namely,

-

VxUxV=-0 - (W-W)
N} .m
nvgaxm (Vg g ™ V]Tli - Eet VL) . (9.11)

The equality of these two expressions, (9.10) and (9.11), can be proved
without much difficuly by straight-forward calculation in genersl curvi-
linear coordinates. The proof is trivial in Cartesian coordinates.

The Laplacian operator is varicusly denoted by A, or 7 - §—7*, or 9=,

d ., 0 d 3
> > 1 ik 1 -
2=V V= —[vEg = AL - (9.32)
VE 3t ( axk> VE axl( axi>
T=T. 0N -0 - — —
A (W)= 7o = axl(\/ég ~

> 0 i i }
safeensfeall o

Alternatively, we have according to Eq. (9.11)

- -

A=V - (W) -TxTxT . (9.14)

This equation is usually written as
A?:%’(@-\?)-%x%xi}’:, (9.15)
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>
because ¥ (¥ V) =V - (%) 4in Cartesian cocrainates and, therefore,
in every system of coordinates which can be transformed into Cartesian.

Here, we may note that, in general,

> ->

Avﬁ(iy*-v)-%x%xmzﬂvkam (9.16)

In tThis ecuation,

Ry = o (9-378)

are the second-rank tensor components obtained by contraction from the

Riemann-Christoffel curvature tensor which has components

3 o . .
m o i om o
Rent = g Tieg 7 Mo * Tin Tz = Tis Tim
X >4
d 32 3 3¢
R ) (917)
dx  Ox 3x  Ox

In Fuclidean space every component of this curvature tensor vanishes, so
R, =0 and the last term in Eg. (9.16) drops out.

All the expressions, discussed so far in this section, refer to either
the covariant or the contravariant base vectors. These expressions are

discussed in detail in most treatises of tensor analysis and of relativ-

ity.12 Now we shall present the corresponding forms by referring to the

> -

orthogonal set of unit vectors (to, ;o’ bo).

The divergence and curl of the reference unit vectors may be obtained

readily from Eas. (8.12a, b, and ¢). Thus,

> - > - - >
V- =0, V.= - s/\E 7.b, =0.  (9:18)
VXt =—=1b ¥ xn —n I xb =1t .(9.19)
= = - — X = - - .
VRt T g TR TR AN
Hence,
%O .U x %O =0 - (9203-)



while
> > > > P
no-f7"><n =3P -6><bo=—'r/\/g'. (9.200)

Let us denote
%O-6=\/’g(g§€§-é-+g§“§7+g§”§;)ss\/‘g% , (9.21)

where B/Bx‘g is the contravariant {-component of 7. Then, according
to Eq. (7.1b),

v:?o\/féag—c+’£o§;+%og% ) (9.22)

Using BEge. (8.12), (9.1b), and (9.22) we cbtain

=_‘E—%2\/é a—(\/évg)-iv +%tn \/éav—“+m1;-_—r.v %4.—{_1;;\/"3?_\:4. T v
oo m VE Tl T e 5 vE vy TS o
Tz o) < > > BVH . aVV
+nooﬁ(\/év> +nn  —*= +n b —

3 S
o> 3 C > > avp_ > > av\). .2
+bOtOW(\/éV) +,b0noa_v-— +bo‘bog\_}___ (9 3)
Thus,
TV =T:NW
3 /i v w 6vu av,,
={veé — (Ve v=) - Vit — . (9.24)
3\/ Bx; VB uf 3 dv
’v’xif':‘fk%:%‘fk(%—%)
=% Ve (v x )& n_ (v X V), +%’o @ xv), (9.25)
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where
¢ oV oV
Vé (VXV)— r.——‘v-----~--E
au 3V

>

>
(V xv), = = (/& V) R ey A
¢

3v _ d )
(Vv xv), =VE S;E + KV - Qﬁ'vv "5 e v5)
£

Similariy,

>

> > > > s
V XV XV -V - (VW - W)

(9-26a)

(9.26b)

(9.26c)

= %o VE(V x ¥V x )¢ - KO(V XV X V)u + %O(v x v x V), (9.27)

where

~ , £ 3 3 )
VE{Z X7 xV)> = S5a (v x V)V -5 (v v)H 5

(<,.28a)

(7 X9 % V)“ = é%;gvé(v X V)C i- VE—S%E (v x v)V - §§ vV x V)u,(9.28b\

(VXV xV), =V&E SSE (v x v)Ll + k(¥ xV)S - é%-(v X V), - g%%\jg(v x V)C§ ;

(9-28c)

The Laplacian operatcr in the (;, K, V) system may be written as

N

e = 3 > 13 3}, 12 a)
A=V -V =Ve az-g‘(@ ax—c)”ﬁ—r-ga—u(\/é 3:) \"‘fgﬁ(vg 3%,
’ 3= 3=
_ IS 3 kK O
= \/é‘ssc'g(\f% ax§)+apz Y IE e
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)

t - >
V) +n_ AV +b AV
e} K o} v
B A RO RE AL A
? 0 I o v o
£ > - -
+ gVt At 4V AR+ Y AD (9.30)

where the Laplacian expressions cf the unit vectors are cobtained from

(8.12) and (9.18).

B
/’::;\

(e ) @ (@] () oo

K T >/ -5 T + T\
Abo= OJ—g_-ﬁ—no(\/gg—ga—_-) bo(ﬁ) . (9.31c)

Equation (9.30) and Egs. (9.23) fo (9.28) inclusive are the general
expressions for any vector field G It is often very instructive to
specialize by considering the field of the orthogonal unit vectors
(t, E, g) These unit vectors become the reference vectors (—‘EO, Eo’ ’go)
by putting p = v = 0. To make such specializations we simply replace,
respectively, the components (Jg ve, v K v ) vy (& tc, tu, tv), or by
& ng, n nv), or by {\fg b , “, bv)'

For example, we obtain from Egq. (9.24)

> 2 3 ¢ at“ ot,
v g — t)-——t +—_— — . (9.32)
"V ng e Ve b o v
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If the particular vector line % = v%

then
tH = tv = Q,
VE tg =1,

(p=v=0)

g=1

and g =Ll 8
VE &%, T JE 3T

ig taken to be the reference axis,

(9.33)

if not acted upon by differential operators. Thus, Eq. {9.32) becomes

N 3t atv
Vot +Z=g (p=v=0),
S Y
and
V.ovt=w T+t . W

v 8 + ov/dt , (b= v

In passing, we may note that

2
(\[g‘gtc) +ti+ti=l,

SO
3 ot ot
~J§ £t T (ye tg) + v —& 4 t, -Y _0.
ox Mookt ax*
(x' =, u,v)
Hence,

S NE <5 (D) =5 (EtH =0

(b=v=0)
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(9.35)

(9.37)

(9.38)



Using these relations we obtain from Egs. (9.25) and (9.26)

UxT=% o+B_ k., (u=v=0), (9.39)
where
atv ot
L = ——— - —H - (9'1‘*‘0)
3p IS}V,
Thus,
TxvE =W x%T+ @) x%T
> > OV > ' ov
= ‘bo v + no ﬁ + bO (kV'K - 3}:) > (9')+l)

Here, we may further note that, while t=% 5

> > > >

Vet =Vt o +0, (b =v =0) , (9.42a)
and

> - - > >

VXt =YXt o+t 0, (p =v =0) . {(9.42b)

The scalar quantity @ is called by Bjorgum the divergence of g

vector tube or the divergence of neighbouring vector lines, and & the

torsion of neighbouring vector lines. Both ® and  are independent

of the magnitude v of the vector field % = v%. These gquantities de-
termine the geometric properties of infinitesimal vector tubes;
0 = % - % X % plays a unique role in the study of Beltrami fields.

The best way to iliustrate the usefulness of €@ and @ 1is, perhaps,
to consider the variation of the normal cross sectional area of an infin-
itesimal vector tube. Consider a small segemnt of a vector line passing

through the point (C, O, C). This segment is defined by

48 = T ds = (%o N &« 3 L %O t ) ds , (9.43)



where

%
t o= —su + o(8u) (9.44a)
[ du
tV & 2
tv=——5u+O(H) s (5. 4kp)
op

end \Jg = 1 - xBu. Let this segment begin from the point {¢, B, O) and
end at the point (¢ + &f, dp + d(du), dv). Then, according to Eq. (6.220),
we also have

ds = “-EO Jg at + EO a(ap) +%O (av + TBudt) . (9.45)
From Egs. (9.43), (9.44), and (9.45) follow:
tu ds = a(dw) and ds = ~— = ag{l + o(ap‘)}

Hence,

gnd, when bu — 0,

ot
& g‘- log 5“ =0 . (9.&63)
Ol ¢ M

Similarly, if we consider the small segment of a vector line connecting

the two points ({, O, 8v) and (¢ + 4¢, du, BV + a(sv)), we obtain

3t

_a-‘i - %E log 8V = 8, . (9-46p)
y

Since ©®udv = Bo is the area of the small rectangular section normal to
-

T, Egs. (9.46a and 9.46b) yield immediately

=0 +06 = & log Bo = £ &5 . (9.47)



This equation states that ©® is the rate of change of the normal
sectional area per unit area along the tangential divection of an infini-
tesimal vector tube. However, & dJdoes not tell us in what manner the
normel cross-sectional area varies. As discussed by Bjorgum, the latter
guestion leads to further illuminating results. It seems advisable to
describe his discussion here for the purpose of illustrating the useful-
ness of natural ccordinates.

Following Bjorgum, we consider a small segment of a small vector tube,
surrounding the reference axis between the two points (¢, O, O) and
(g + da¢, 0, 0). This segment of the vector tube has a circular cross
section of radius dp at (f, O, 0).

ip = _ﬁo du + ‘go av . (9.148)

The problem at hand is to determine how the cross section varies as
{ changes.

Let the radius vector EE be changed to aﬁ' when £ 1is changed
to ¢ + df. The reference unit vectors will also change with {, from

-> o> 1 > hd!
(¥o’ n_, bo) to (%O, ', bo),

Ip

Il
n]
o

k=

+

o'
o
<

(9.49)

¥
ne
o
...|..
o
o))
Ve
1l
ct+
+
=
S
[T
e

(9.50a)

> >

= A+ (boT - %On) at (9.500)

Sy
i
=
+
o
[Fan
1

o'
I1ry
o'y
_|.
o
ue
1

b -n Td (9.50¢)
o o y o~ n Tdf . 9.50¢

A representative vector line segment on the boundary surface of this

infinitesimal vector tube has the following expression:

> _ > t _ - ‘
s =% \fzat+ n, (au' - au - Tavag)

+ go (av' - av + Tqdt) . (9.51)
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Compering this equation with Eg. (9.43) we obtain

(t“/tg) at = dp' - dpg - Tdvat = t“dg ,
(tv/tc) ¢ = av' - dv + Taud¢ = t, dt
Here,
ot ot
t (¢ du, av) T —Fap+ —FHav
M O v
ot ot
6, (¢ au, av) ¥ _Yoau + —2 gy
ap. ov

We then calculate (dp - dp), using Egs. (9.50), (9.52), and (9.53).

(B an' + B! av') - (A au +B_ av)

o)
©
1
o)
o
Il

(-% kdu+n t +Db_ t)d
- K
o M TR, Yy o v ¢

->|_-> l_ -»,_-) T
+ (no no)(du ) + (bo bo)(dv av)

e

(-%T wdu+n t +D t)a
Ouno‘p. oVg

The terms neglected are cone order smaller than the terms retained.

Since

(%:EQL= V=0

1t
<]
A3

: >
= O+t n K + 0
.

+ 0+ ‘ﬁo (atu/au) +n B_(3t,/3u)

+0+B_ 7 (3t /ov) + B, B (3t,/3v)
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(9.52p)

(9.538a)

(9.53b)

(9.54)

(9.55)



26 may readily be shown from Eq. (9.23),
- - >
dp (¥ =n t +Db t . (9.56)

Thus, Eg. (9.54) becomes

i+ T capag=a+ & ) at
_ ';-) -> iH
= dp {(no n +b b+ (7t)O dg}

Multiplying both sides of this equation on the right by

> > > >
{n n +b_ b - (Vi) dt}
oo o o o 7

we obtain

. {Eo ER I SO dg} CE au(ea)? - B - & - () @) (a0)?.

When higher-order small terms are again omitted, this equation is reduced
to

i = dp - {Eo n +b B - (V) d;} (9.57a)
= {EO EO + %O %O - (%5)0 dg} T (9.57b)

Therefore,
- R R B3 - @AW ath B, (959)

Now we further introduce Bjorgum's notation.

~ atv atu

¥ o= — == (9.59)
uv ap av
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From Eg. (9.55) follows
(§E+f§)ozo +t n o« + 0

- > 5> > > &
+n t k+n n 2@ +n b ¥

o O c 0 M. O O MV
> > > >
r;@ . .
+ 0 +b, 0, Yuv +b b 28, (9.60)

Substituting Egs. (9.49), (9.50), and (9.60) intc Eq. (9.58), we obtain

s = (1 -2 ®, at) aut® + (1 - 2 ®,4at) av'e - 2¢ , dt du' av' , (9.61)

again neglecting small terms of higher orders. This equation tells us
that the normal cross section of an infinitesimal vector tube changes
with ¢ from a circular area at the point (¢, 0, O) to an elliptic at
(¢t +ac, 0, 0). The change of its boundary from section to section,
dt apart, is determined by the three quantities @ , Cb, and Yuv'

The curlcurl and the Laplacim. expression of ¥ = vt under the
specialization u = Vv =0 remain to be given. It must now be noted that
we cannot differentiste the specialized equations, such as (9.39), (9.41),
and (9.55). We must always specialize from the corresponding general

expression. Thus, from Egs. (9.27) and (9.28), we obtain

@ xV xvt) =% S (v ®) + - i_a {A(\/‘ti) 2}

3t
+K[B(6v L, L w
Su v Y v

+a{v(ﬁ_a_*’ﬁ>}_75v]
v du ¥V v

ot : t ot
> 3 v v v v 3 _ v U
[6‘@6‘ T “%@"g‘)}

+ KV +T(%— mv)]; (b=v=0). (9.62)
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In this egquation,

82 aa . 62 a
Av = (Av)o = ace + 5 + 7 ) A (9.63)

and, as may easily be derived from Egs. (9.37).and (9.38),

-
-0y _ SYI — ) /¢
5 -fo e ) - )
= -{ @i + @”3 + % (0% + ‘i’iv)} : (9.6k)

Similarly, from Eq. (9.30),

{A(v%)}o = %o [Av + V{Q( g tg) - Ka}]
+'£O[2nglc’-+22% @u+g‘5(ww-g)+v(mu+g—g)]
+'€O %E(‘HHV+Q)+2§% ®v+V(A‘tV-I- m‘)] . (9.65)

Here,

> 3 3
Ati=(At.) =———+—-—-K.H‘ti,(i=uorv,‘,
because (aati/age)o =0 .

X. CONCLUDING REMARKS

In Section VI we have shown from fundamentsl principles how a simple
non-orthogonal curvilinear coordinate system may be set up by referring
to one given vector line or space curve. The metric tensor components
contain the coordinates g and VvV explicitly and the coordinate ¢
implicitly through the curvature «k(¢) and the torsion T(t), (t, p, ¥)
being measured, respectively, along the tangential (%O), the principal

normal (EO), end the binormal Cgo) direction of the reference curve.
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Analyses may be carried out with reference to either the non-orthogonal

sets of base vectors, covariant and contravariant, or the orthogonal
-> >

n b .

o’ o)

Prior tc Section VI, introductory and preparatory materiasls were

-
set of unit vectors (to,

discussed. Many important formulas concerning the metric properties of
non-~orthogonal curvilinear coordinate systems were included. Special
emphases were given to the concepts of covariant and contravariant base
vectors. TFrenet's formulas were discussed in detail. These formulas
play an important role in using the natural coordinate system; they enable
us to introduce, in a simple manner, Riemann-Christoffel symbols of the
coordinate system and the covariant derivatives of vector components.
The transformation of coordinates and of vector and tensor components
from one system to another, and the transformation of vector and tensor
components in the same system from covariant to contravariant or to a
mixed kind and vice versa, have alsc been discussed. These subjects be-
come very simple when base vectors are explicitly used. Our discussion
is based on the sole fact that not only scalars but alsc tensors of
different ranks (vectors, dyadics, triadics, etec.) are invariant gquan-
tities under all the aforementioned transformations.

The all important gradient operator was discussed in Section VII.
The next section was solely concerned with Christoffel symbols. We have
developed specific formulas for these symbols in the natural coordinate
system, and have collected some general ones concerning the basic proper-
ties of these symbols in any curvilinear coordinate system, including the
law of transformation from one system to another.

Christoffel symbols do not transform like tensor components except

under linear coordinate transformations. According to Eg. (8.11a), we
note that
2K
TmImY (el S/ ok LTmTRY
i mn kel 3™ 3y
k
>1m = >p > »>tm > ax‘ -
i.e., e Fle'y =e¥ (Vel)+e Vi —) e -
m P 3y ' k



Since

axk
>+iml > _ >ty &, > 1111y >

= € = (Vvx) & @'e'D e,

and
> >
5'$‘xk=$v£‘ =V;k ;
we obtain
M @E) s FEM T P EFIT) L FY T . (10.1)
m m P D

Such quantities as e (V e;) + o' ¢ Tgé) and (¥ &0) gp ¥ @'s'm g&
may tentatively be called "base triadics.” They are not tensors of the

third rank, but the sum

- > &> > -

F (@ ep) + (V eP) ep} ig. TIn fact, the
latter quantity is a null tensor which vanishes identically. Quantities
cbtained by applying successively the gradient operator on the metric

ot
tensor §°= elzk gik =T are all null tensors, namely,
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In Section IX, many oft-used differential expressions of vector
fields were compiled. Corresponding formulas referring to the orthogonal

- - -
unit vectors (to, n_, bo) in the natural coordinate system are also given.

ol

In particular, we have discussed the curl of the covariant base vectors

-+ - - > ES > -+ -+

eg, eu, and e, Not only ¥V X e, but also e, - v X ei, i=2¢, u, and v,

do not vanish, because the torsion T 1is non-zero. This implies that
there exists no family of surfaces X, = const. to which the covariant
base vectors are orthogonal. 1In other words, the differential equation
dxi = 8.y dxk = O 1is not integrable amd the covariant coordinates X
do not actually exist. One may, however, still use the covariant coordi-
nates symbolically, for the sake of brevity, as we did in Eq. (9.22) and

elsevwhere.
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In orthogonal coordinate systems, the two corresponding families of
coordinate surfaces Xi = const. and ;i = const. are the same; the two
corresponding base vectors Ei and &  can only differ in magnitude by
a scale factor.

The Laplacien expression of a vector field has been discussed in de-
tail. The usual definition of Aﬁ, as given by Eg. (9.15), is the same
as either Eq. (9.13) or Eq. (9.14) except in non-Euclidean spaces, where
Eq. {9.15) should be replaced by Eg. {9.16).

From the general expressions which are valid for any vector field,
e.g., % = v%, in the whole domain, where the natural coordinate system
is defined, we may specialize to cbtain local relations by putting
p=v=20,i.e., %= %o (tp =t,=0; \Je 8 = 1) and g = 1. The spe-
cilalized expressions are the ones Bjorgum derived and used in his work
on Beltrami fields. As exemplified by the derivation of various equations
in Section IX, including Eg. (9.47) and Eq. (9.61), using the reference
vectors (%O, 30, go) defined by one vector line, enables one to carry out
easier and clearer gnalyses than using (%, E, E) defined by the vector
field. The former set of unit vectors are functions of ¢ only, while
the latter are functions of all three coordinetes. We believe that the
mathematical tools discussed in this note can be quite useful in studying

vector problems especlally by the method of perturbation.
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iz.
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