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I. INTRODUCTION

In this report the magnetic field measurements in multipole magnetic
fields, which are used to measure magnetic field parameters in the strong-
focusing lenses for the Stanford two-mile linear accelerator, will be
reviewed. Specifically, the theory and the measurement processes used
to determine such important parameters as the magnetic center in multi-
poles, the length of the gradient fields, and the harmonic content in
strong-focusing lenses will be described. Finally, the results of these
accurate measurements will be related to the optical parameters of the
multipole lenses.

Before starting to describe the individual measurements, a short sum-
mary about the properties and field distribution of these lenses will be

given.

II. FIELD DISTRIBUTION IN MULTIPOLES

A. The Ideal Quadrupole Magnet

The gquadrupole magnet was introduced in 1952 by Courant, Livingston
and Snyderl along with the strong-focusing synchrotron, and by Christo-
filos® as a means of focusing charged particle beams. This section will
be concerned with the theoretical properties of these lenses and the
distribution of their field.
In order to study the field configuration, let us consider the in-
terior of the quadrupole magnet as shown below, which is bounded by four

equipotential electrodes maintained respectively at the potential Zu.




Because the interior of the quadrupole is current-free, one can define
the scalar magnetic potential which can be calculated from the two-
dimensional Laplace equation assuming that the length effect is negli-

gible (infinite length)

3 du 33y
PFu(r,8) =r — |r — J+ — = 0
or or d6%

Assuming the existence of a product solution in the form
u(r,0) = R(r)e(s)

the field equation can be written in the following form:

rd < aR) 1 9%
R dr dr T g gg;

Because the left side of this equation depends only on r and the right

side only on &, both sides must be equal to a constant, ki. Then

ace
— + k%@ =0
ae? n
and
da dR 25 _
T 3r (r dr ) knR =0

and the solutions of these equations can be written for kn £0
® = A'cos kO + B sin k 6
n n n n

K, -k
r



and for k =0
n

@
I

E + T6

¢ + Har

=
it

Hence the general solution can be written as

> k -k
el T
u = ;{j (A! cos k 6 + B! sin k 6){C'r 7 + D'r
n n n n n n
n=1
+ (B + 76)(G + Blnr)

Using the following boundary conditions,

a. u(r,8) = u(r,0 + 2x)

b. u(r6) must be finite at the origin
c. -u(r - 6) =u(r,8) = —u(r,e + %)

one gets from a,

F =0 and kn - s are integers

from b,

from c,

EG

1l
=3
]

O and n =2, 6, 10, 1k .



Then the magnetic potential is given by

o

and the magnetic field intensity is
ﬁ:-—Vu

A constant-gradient quadrupole is one in which the first term is the

only non-venishing term, i.e., B__ # 0, but B,, =0 for n=6101k...
It is convenient to express the scalar potential for a quadrupole

in the XYz . and xyz coordinate systems. Using the following linear

transformation

>
It

r sin 6

[}
]

r cos @

one can express the magnetic potential in the XYz system as

o
i

Bzr2 sin 26 + BsrG sin 66 + . . .

i

252r2 sin 6 cos 6 + B6r5 {32 cos® 6 sin 6 -~ 32 cos® 6 sin 6

+ 6 cos @ sin 6 } + .

2B_XY + B, { 32Y°X - 32Y3x(X° + Y°) + 6x7(x° + Y°)?

]

10
2B2XY+6BSXY{X4——3—-X‘2Y2+Y4} + .

In the xyz coordinate system, using the following linear transforma-

tions
X cos(-45°)  sin(-45°)\ [x\ [ 3 Vex - & |2y
Y -sin(-45°)  cos(-45°) [ \y 1% + 1 2y
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one obtains
u(x,y) = BZ(Xz - ¥%) + 3B, [Xs - 15575 (x5 - ¥7) - yG] + ..

Similarly, for a "constant" gradient sextupole and octupole where

Eﬁgl = const and Eé%l = const (a = semi-aperture of the system), the

magnetic potential in the XYz system can be written as

sin 36
sin 6

I

Bj(sin 36)r® =B3r°X

p

. _ .3
B 2% 3 sin 9- 4 sin® 6
3 sin 6

i

B3r2X R 2(cos® 0 - sin® 6)}

B,r°X {1 + 2 (§ - iz)}

B_(3¥°X - %) = BI(¥?X - % )

It

]

1]

for the sextupole and

o
]

B4(cos 49)r*(8 cos®* 6 - 8 cos® 6 + 1)

8 1
B4Y4 8 - +
cos® 6 cos* 6

8(x® + ¥3)  x* + Y% + 2X°YF
B,Y*|8 -

i

+
Y2 V&

B, (X* + Y* - 63X°Y)

Il

for the octupocle.

The magnetic potential for higher poles can be calculated in a simi-
lar manner, using the symmetry conditions to reduce the general solution.
In the following table we list the symmetry properties and magnetic sca-

lar potentials for guadrupole, sextupole, and octupole.

_5_



Symmetry properties Magnetic scalar potential

Multipole of u u(rle)
uz(r,e) = —u2<r,9 + %) u, = }: an(sin no)r’ .
N=2,6,10
= -u_(r, - 6) .
2 For constant gradient
)
— _ . 2
g, u2p = B2(51n 26)r= .
g In the XYz system
(ﬁ .
& Uy, = 2BXY
+ 6BSXY{X4 - %X‘ZYZ + v*
+ .
[o¢]
T . n
i u3(r,6) = -u}(r,e + 3) u, = Ez B}n(51n né)r
ot = -~u_{r, 6 _ . =
E 3 u,p = B3(51n 30)r
& = B,(3Y°X - ¥°)
1l .3
—_ ) - —
= BL(Y?X = X )
Y ” n
‘%_ u4(r,9) = -u (\r,0 + 73 u, = B4n(cos nf)r
n=4, 12,20
= -u (I‘, = 9) _ 4
. 4 Ugp = B4(cos 4o )r
~
2 - B,(X% + Y - 61°7)
i
Q
S




B. Origins of Higher Poles in Quadrupole Magnets

Thus far our discussion has been concerned only with pure multipoles,
whereas in practice there is some higher pole content in every multipole
magnet. We will briefly discuss gualitatively the source of these
higher poles.

In order to see more clearly how these higher poles occur and how
they affect the field distribution of a given magnet, let us discuss
here a "practical" quadrupole and the origins of the higher poles in it.
(The term "practical" quadrupole refers to one that can be built and
used as an optical element in a beam transport system.) Figure 1 shows
some of the differences between an ideal quadrupole and a practical one.
One can see that in the practical quadrupole the pole surfaces have the
required hyperbolic shape over a considerable extent, but must be trun-
cated laterally at some point to allow sufficient space for the excita-
tion windings. In the ideal quadrupole the pole surfaces are shaped
according to the equation X - Y = iRg/E. In order to discuss the ef-
fects of mechanical imperfections in the practical magnet, we will desig-
nate the pole tip spacing along X as A and the pole tip spacing
along Y as B. Let the letters a, b, c, and d stand for the spacing

between adjacent poles measured at the point of truncation (see Fig. 2).

C. Origins of Poles with Four-fold Symmetry

We shall first concern ourselves with a mechanically perfectly fabri-
cated quadrupole as far as symmetry of the location of the four poles is
concerned, that is, where A =B =2R and a =b =c¢ =d. In this case,
the fabrication of the poles themselves would be the only source of the
higher poles. Let us further assume that the poles themselves are per-
fectly symmetrical about their own centerline axes along X and Y.

The fact that the extent of the hyperbolic pole pieces is not infinite
would result in a pole configuration that has the four-fold gquadrupole
symmetry; however, because the magnetic equipotential of the pole stops
at the point of truncation, the field would appear too low at the trun-
cation. These truncations then result in a situation like that in

Fig. 2 (which depicts one pole only). Near the points of truncation,

the field of the pole (N) suffers a weakening of the N field and can

...7_
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FIG. 2 - QUADRUPOLE CONSTRUCTED PERFECTLY WITH HYPERBOLIC POLES
BUT POLES TRUNCATED AT POINTS p AND g-



be represented as a virtual S field superimposed on the N field. The
cause of this weakening can be attributed to two factors, a leakage of
flux beyond the truncation point and a saturation of the pole at the
truncation point. The multipole so produced is the duodecapole, as each
pole acts as three poles. The factor causing the guodecapole field can
be ascertained by examining the percent of duodeégpole field at various
magnet excitation currents. If the cause if field leakage, the percent
of duodecapole will be found to be constant with different magnet
strengths. If saturation at points p and q dis the cause of the duo-
decapole field the percent of duodecapole will be current dependent;
thus, the duodecapole percent will increase with magnet strength.

If the pole is made by taking a circular approximation to the re-
quired hyperbolic shape, even higher poles will be present in the quad-
rupole, If the pole is made symmetrically, these higher poles will
result in some of each of the possible poles having four-fold symmetry,
that is, each will have an odd number of poles in each quadrant. There-
fore, the higher poles that can possibly exist in the magnet when all
elements of construction are perfect (i.e., A=B =2R and a =B =c =4d)
are 4-pole, 12-pole, 20-pole, 28-pole, or L(2n - 1) poles where
n=1,2, 3. ... TFigure 3 illustrates that, by using a circular shape
on the pole as an approximation to the ideal hyperbola, the resultant
pole is rich in 12-pole and 20-pole.

From this discussion one can see how the shape of the pole itself

can contribute to many combinations of higher poles with four-fold

symmetry.

D. Origins of Poles with Two-fold Symmetry

Thus far the origins of only those poles with four-fold symmetry have
been explained and we have concerned ourselves only with those cases
where the quadrupole is symmetrically assembled mechanically. Now let
us assume that the poles are perfect hyperbolas but that the mechanical
construction is such that the opposite pole spacing A is not egual to
B, but a =b =c¢ =d. An exaggerated picture of this situation is
shown in Fig. 4. This is only one way in which the octupole perturba-

tion can be generated. The other usual way is when A =3B, a = c,

- 10 -
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and b =4, but a ¥ b. Such a situation is shown in Fig. 5. Here
again octupole is present, but the octupole contribution is of different
phase from the previous example. From a élight extension of this analy-
sis one can see how these misalignments can account for the whole set of
multipoles with two-fold symmetry. These are the multipoles contained
in the set octupole, 16-pole, 2h-pole, 32-pole, or 2(Ln) poles where
n=1, 2, 3,

E. Origins of Asymmetric Poles

In quadrupoles so constructed that a ¥ c or bd % d, various higher
poles can occur; these are in general poles that are asymmetric, that is
they have neither two- nor four-fold symmetry. These poles are the di-
pole, sextupole, decapole, 1lh-pole, 18-pole, or 2(kn*l) poles where
n=0,1,2, 3. .., and there are an equal number of these asymmetric
higher poles as there are poles with two- or four-fold symmetry. Figure 6
shows an asymmetric perturbation in a gquadrupole and illustrates the

source of the dipole and sextupole in a guadrupole magnet.

III. MAGNETIC CENTER LOCATION

A. Experimental

The magnetic center of a gquadrupole magnet does not necessarily cor-
respond to the mechanical center. For alignment of a quadrupole one
must know the relationship of the magnetic center to the mechanical cen-
ter. Of the many methods of determining the magnetic center of a quadru-
pole, three will be discussed here.

Rotating colls provide one method of determining the magnetic center
of a gquadrupole. Since the field at the center of a quadrupole is zero,
the output from a rotating coil is zero when the axis of the coil coin-
cides with the magnetic center of the quadrupole. With a symmetrical
rotating coil the method is reasonably simple since the quadrupole field
induced voltage is canceled by the symmetry of the coil and the output
is proportional to the magnitude of the dipole field which is strictly
a function of position. The accuracy of this method of locating the
magnetic center is no better than several thousandths of an inch because
of uncertainties in the coll geometry, coil vibrations, and runout of
the coil shaft.

- 13 -
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A floating wire is another method of center determination for a
guadrupole. This involves putting a taut wire through the magnet at the
approximate center. First, the magnet is energized, then a current is
passed through the taut wire, and deflection of the wire is noted as evi-
dence that the wire is not at the magnetic center. The wire is then
moved and the process repeated until no deflection of the wire is ob-

served as the wixa

gurrent is turned on. The wire is then in the magne-
tic center. The fl?%ting wire technique is probably good for center
location to an accuracy of a few mils, but requires a considerable amount
of elaborate equipment.

The third, and in our case the most important method of magnetic cen-
ter determination, is the use of a colloidal suspension of ferrous oxide
particles. This technique was proposed and used by R. M. Johnson” to
locate the magnetic center of quadrupole fields. The physical mechanism
of this method was explained recently4 as scattering of polarized light
on aligned colloidal particles in multipole fields. 1In this system a
small vial of the suspension is placed in the magnetic gquadrupole field
such that the mechanical center falls within the area of the vial. White
planerpolarized light is directed through the vial of solution from one
end of the magnet. The experimental arrangement is shown in Fig. 7.

The observer at the opposite end of the magnet then looks at the vial
through a plane-polarizing analyzer which is aligned with the polarizer
of incoming light such that complete cancellation of light should occur
when the magnetic field is turned off. With magnetic field, complete
cancellation does not occur except along two mutually perpendicular
axes which cross at the magnetic center of the gquadrupole. The accuracy
of this type of center determination is of the order of *0.001l inch.

Typical scattering patterns in multipole fields are shown in Fig. 8
for a quadrupole field, in Fig. 9 for a sextupole field, and in Fig. 10
for octupole fields.

The scattering centers in the colloidal solution are FeBO4 crys-
tallites. The preparation of such a colloidal solution is described by
D. J. Craik and P. M. Griffiths.® The individual crystallites of the
magnetite (Fe304) have been measured with an electron microscope by

Craik® and it was found that the particles are of the order of 100°A.

- 16 -
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MAGNETIC FIELD.



FIG. 8--Light sgatterimg pattern in a quadrupole magnetic field.
(6 =907)



FIG. 9--Light scattering pattern in a sextupole magnet fileld.
(6 = 0)
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FIG. 10--Light scattering pattern in an octupole magnetic field.
(6 = 0)
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The alignment of these magnetite crystallites in the magnetic field
might be explained by the theory of paramagnetic aligmment. If N, 1is
the number of crystallites per unit volume, the number of aligned scat-

tering centers is given by the following formula

mH _ kT
N = N,L(a) = N, [cosh ¥ o

where m dis the magnetic moment of the colloidal particle, H is the
applied field, T 1is the temperature of the solution, and L(a) is the
well-known Langevin function used in the classical theory of paramag-
netism. In the case of very strong field or very low temperature, the

Langevin function becomes unity, so

If all the dipoles are aligned with the field, the number of scattering
centers is independent of the applied field, that is, the number of
scattering centers is saturated.

The dependence of the sharpness of the scattering pattern on tem-
perature and field can be easily observed by a simple experimental set-

up, such as that shown in Fig. 7.

B. Symmetry Relations in Multipole Fields

The theory of anisotropic light scattering is very complicated and a
rigorous solution of the problem exists only in a few special cases. 1In
this case the symmetry properties of the magnetic multipoles allow a num-
ber of simplifications in the calculation of the intensity distribution
of the scattering pattern. Such a symmetry relation in a guadrupole
field is that any line passing through the center of symmetry with an
angle 6O, with respect to the X axis, will cross the magnetic field

lines at an angle B, where

- 21 -



In order to prove this relation, write the magnetic field in a quadru-

pele in the following form

o/
=ic

--18

~le

where u = 2B2XY is the scalar magnetic potential. Thus
> + *
H = 2(iYy + %)
The line which gives the direction of the magnetic field at point Q

intersects the X axis with an angle 7 (see Fig. 11) which is given by

tany:—:—:—:——————=cot9=tan(ﬂ/2—9)

or

y=x/2 -6

Hence, since 7y +x -6 + B =1,

But B is defined as the angle between two vectors; therefore, one must
consider B and P + n as the angles between the direction of the mag-
netic field line at point @Q and the line passing through the center.
This yields

s
3——2-+29
T
B = - 5 + 20
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FIG.Il - INTERRELATION OF ANGLES y, 8, AND 8 IN
A MAGNETIC FIELD WITH QUADRUPOLE SYMMETRY.



A similar analysis can be carried out in the case of the sextupole

field. There

i=-B {E(-

This leads to

2xy) + (¥° - ¥°)

Y= - X rZ sin® 6 - ¢ cos® 6

tan 7y =

HX -2XY

- cos 26
- sin 26

2

-2r< cos 6 sin 8

2

= ——= " = cot 20 =tan(£ - 29>

From this one obtains 7y = % - 20, and y + 1w -8 +B =7 gilves

Quite similarly, for an octupole

be written as

+ 36

A

field the magnetic scalar potential can

u = B4(X4 + Y - 6X°Y%)

and

B = -3, |17 - 12x7%) + J(4¥? - 12%X7Y)

- oL -



%

and from this we have

HY by - 12X°Y 12 sin 9 - 3r> cos® 6 sin 6
tan ¥y = — = =
HX by - 12xY* r3 cos® 6 - 3r3 cos 8 sin® 8
- . sin 30 _ _
cos 36 tan 39
Then
7 = - 30

and from ¥ + w7 + 6 + B = x, one gets

Lo

™
Il

1 + 4o

™
Il

It was observed that the scattering pattern does not change with a
change in polarity, which means that a particle aligned parallel with the
magnetic field scatters the same way in the scattering process as a par-
ticle that is aligned opposite to the field. Particles with induced mag-
netic moments are aligned along the field lines irrespective of the re-
lative directions of the magnetic field H and the moment m. Therefore,
the relative orientations of m and ﬁ are not taken into account
in further calculations. The symmetry relations used for the following

calculations can be written as

B =28 for gquadrupole fields
B = 36 for sextupole fields
B = Lo for octupole fields

- 25 -



C. Theory of Light Scattering on Aligned Particles in Multipole Fields

In order to explain the intensity distribution of the scattered po-
larized light on the aligned magnetite crystallites, one can assume ani-
sotropy in the scattering process. One of the simplest assumptions is
that the aligned magnetite has a different polarizability along the
magnetic field than it does perpendicular to the field. The net effect
of this anisotropy in the scattering is a rotation of the initial angle
of polarization along certain lines going through the center of the
multipole fields. The polarizability tensor in the coordinate system

of the aligned particle (X*-Y?) can then be written as

In order to calculate the polarizability tensor in the X-Y <coordi-
nate system, it is desirable to use the symmetry properties of the
multipole fields. Figure 12 shows the relative orientation of the (x'-Y")

coordinate system, where

to the (X-Y) system in a quadrupole magnetic field.
With these relationships, the polarizability tensor in the X-Y

system can be expressed using a rotational transformation (see Fig. 12):

oy

‘aik}xy=s<%—e+6>

- 26 -
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FI1G.12 ORIENTATION FOR A MAGNETIC DIPOLE p IN A MAGNETIC
FIELD WITH QUADRUPOLE SYMMETRY.

- 27 -



where S(6 + B) is the transformation matrix, i.e.,

cos (3 - 6 + B) -sin (£ - 0 + 8)
s(e + B) =
sin (5 - 6 + B) cos (£ -6 +8)

Using lo&k'XY, all quantities can be expressed in the X-Y co-
ordinate system and the scattering amplitude can be calculated easily.
The size of the scattering centers (lOO - 1000°4) is small as compared
to the polarized light, so the Rayleigh approximation can be used. In
this case the total intensity of the scattered light is the sum of the
scattered intensities of each of the scattering centers, and the scat-
tering amplitude by the i-th volume element of the system at the loca-

tion of the observer is given7 as

>

3

A; = K(P; - 0) cos k(¥4 = 3)
The induced dipole in the i-th volume element is ﬁi’ which is located

a distance 1r; from the origin k = Eﬂ/h (% = wavelength in the medium);

1
- -

> > .
s =s' - s, where ' and s, are unit vectors along the scattered

s
and incident beams; 6 is the unit vector perpendicular to the scattered
light beam and along the polarization direction of the scattered light;
K is a proportionality constant.

The dipole moment P; 1s given by

In the X-Y coordinate system the components of E are given as
E = E, {(cos 0)i + (sin cp)j]

where ¢ 1s the angle of polarization. The components of ¢ can be
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expressed as
0 = (sin @)3 - (cos @)3]

when observation is perpendicular to the X-Y plane and along the sym-
metry axis of the multipoles. In this case
-> >
s S5

| B

and  cos k(;i ©8) =1

The total amplitude of the scattered light from the X-Y plane can be

written

R 2axn
A=sA; = K’f f(% « B)rdrdp
r=0 0=0

By squaring the total amplitude, the intensity is obtained.
The angle 6 relative to the X axis at which the intensity is

zero for a given polarization angle ¢ is given by the expression

(% . 6) =P, sin ¢ - P

X y cos ® =0

Scattering processes in different multipoles will now be considered.

D. TILight Scattering on Aligned Particles in a Quadrupole Field

In a quadrupole field, the dielectric tensor in the X-Y system can

be written as




and the induced dipole moment as

& cos 6 cos @ - & sin 6 sin @

. N I
P = 'a|XYE=

@, sin 6 cos ¢ + a” cos O sin ©

With the above, and using the condition for zero intensity

> > .
(P - 0) = Py sin @ - Py cos @ = 0

one obtains € in terms of ©:

O tan © = @, tan 6

Q) tan @ ) tan(9OO +0)

From the experimental observation, the location of the two dark lines as
functions of the polarization angle (w) are consistent within the experi-

mental error with the following equations

I

tan © tan 6

tan @ = tan(90° + )

The scattering intensity is proportional to the square of the ampli-

tude; consequently,

The numerical value for the constant K might be obtained from the

Rayleigh formula, from which
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where N; 1s the density of scattering centers in volume element Vi’

and

Along the Z axis, the scattered light intensity from volume element

Vi can be expressed as

cosh — - —

X' mH

8r*N E® mH kT =
A { ][ . ]

E. Light Scattering on Aligned Particles in Sextupole and Octupcle Fields

In sextupole and octupole fields, the magnetic field intensity changes
as (BO/Ri)rZ and (B,/R7)r’, respectively, where B, is the field at

the pole faces, R is the half-aperture, and re = = o+ Y2.

0

Therefore, the magnetic field intensity is very low near the 27 axis
and 1s not sufficient to align the scattering centers in the field direc-
tion. This might be the reason for the unclear scattering picture near
the Z axis as seen in Figs. 9 and 10.

In a sextupole field the dipole moment can be written as

laL 0 cos @
P=lal E=8 F+o26 E,
0] ay sin @
—Qi sin 20 cos @ —Oi. cos 20 gin O
=EO
Q, cos 26 cos ¢ -Oﬁ_ sin 26 sin ¢

when the angle of polarization is @®. The azimuth angle 6 for zero in-

tensity lines was obtained from

> >
(O« P) =P, sing - P

X v cos = 0,
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and with this one finds that

tan ¢ = tan 26

tan @ = tan(90° + 20)

Quite similarly, for an octupole field the dipole moment of the

aligned colloidal particles can be written as:

-&, sin 36 cos @ —allcos 36 sin @
> >
P = laly® -

Ol‘cos 36 cos @ —allsin 36 sin @

> >
from which, using (O + P) = 0, one obtains

tan © = tan 36

tan ¢ = tan(90° + 30)

In both cases the observed locations of dark lines characterized by the
azimuth angle 6 agree with the calculated values for a given polari-
zation angle ¢. At zero polarization angles, as shown in Figs. 9 and 10.

the dark lines are located at

6 =0° 45°, 90°, and 135°

for the sextupole field, and at

o = 0%, 30°, 60°, 90°, 120°, and 150°

for octupole fields. It is interesting to note that the angular sepa-
ration of the dark lines is MBO in a sextupole field and 300 in the
octupole field (see Figs. 9 and 10).

Table I lists the calculated azimuthal location of the dark lines
as a function of the polarization angle (0 < o < 60°).
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¢=30°

QUADRUPOLE

§:45°

b =45°
8=30°
SEXTUPOLE

$=45°

g=225°

OCTUPOLE
$=45

f=15°

TABLE I.

ANGULAR POSITION OF ZERO INTENSITY LINES

$=60°

¢:60°j
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F. Applications

One of the most interesting applications of this light-scattering
effect was that proposed by R. M. Johnson and which is described in
Section III.A above. The vial with the polarizer and analyzer is moun-
ted in a small carriage which can be moved along the 7 axis of the
magnet. With this device the "magnetic center line" can be measured.

A typical measuring setup in a quadrupole magnet is shown in Fig. 13.

Figure 14 shows a measuring setup8 for aligning a quadrupole trip-
let collinearly for the accelerator with an accuracy of 0.00l-inch.
Here, to align the triplet magnetically, the center detector is inser-
ted in quadrupole number 3 and the magnet is energized to its normal
operating current. The telescope is then focused on the vial and the
vial moved back and forth inside the cavity until the telescope is
aligned along the magnetic center line of the quadrupole. This estab-
lishes the center line through all the magnets. As the alignment pro-
gresses, in order to assure that the telescope has not moved, a target
is placed on the wall directly behind the magnet apertures, and once
the center detector has been removed from the third quadrupole, the
telescope is referenced to this target.

The center detector is now placed in quadrupole number 1. The vial
is moved to the midpoint of the magnet and the location of the magnetic
center is observed. The magnetic center at the midpoint of the quadru-
pole must be within 0.00l-inch of the magnetic center line from the
third quadrupole. Adjustments are now made to move the magnet until its
magnetic center coincides with this magnetic center line as referenced
to the alignment telescope. The vial is then moved near either end of
the pole faces to determine whether or not the magnetic field is per-
pendicular to the center line.

When quadrupole number 1 1is correctly aligned, the center detector
is removed and placed in quadrupole number 2. The magnet will be ener- |

gized and the same procedure will be used as in quadrupole number 1;
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that is, the magnetic center of the magnet is adjusted to within 0.00L
inch of the triplet's magnetic center line. By use of this method, any
set of quadrupole magnets may be aligned collinearly to an accuracy of
$0.001 inch. Figure 15 shows the required accessories for the triplet
alignment.

Using the orientation of the dark cross, one can use this device to
find the relation between the magnetic and mechanical axes in a quadru-
pole. Because of the unclear center portion, this method probably can-

not be used for center location in higher poles.

IV. MEASUREMENT OF THE EFFECTIVE LENGTH IN MULTIPOLES

The action of a transverse magnetic field on a particle beam can be

characterized by the integral

(o]

fBr(r,z)dz

=00

where the line integral is taken along the particle trajectory in the
magnet system, and Br(r,z) is the magnitude of the transverse field
component at a distance r from the center line (0z) of the multipole

field.
It is also very useful, especially for magneto-optical calculations,
to define equivalent lengths for the multipole field components in a

magnet system. Using the analog to the definition of the equivalent

length in a dipole field,

1
L =% fB(z)dz
© «00

one can define the effective length of the gquadrupole, sextupole, and
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octupole fields as

1 JF aB(Z,r)
L. = —_— dz
= 5—5? (0,7) o dr

1 s BZB(Z,r)

dr®

L dz

3%

32 (O)r) -

and

1 ~ 33B(z,r)
e [T,

One can simply show that there exist relations between Ll off? L

2 eff’
L orf and L4 ofP For example, the relation between Ll off and
L2 off can be obtained® from the following formula:
n(x) 1 Fom(nr) () F
= JF —_— dz - ——— B(z,r)dz
or B(O,r) - or B2(0,r) -
3B
OB /\ z,r)dz JPB z,r)dz
5; (O,r) A 5; ( b ) I, ( > )
B(O;r) g% (o’r) B(O’r)
1
-2 o) - 1)
Then
BLl(r)
Lg(r) = Ll(r) +r
or
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Similarly, using the general relation

aLn(r)
Ln(r) = L(n_l>(r) +r ~
we get
dL %L
L (r) =1L + 3r ——i-+ re =
2 * r dr?
oL 2L 331,
Lé(r) =L + Tr — 4 6r2 L3 z
* or dr”® or”

which means that the lengths of the sextupole and octupole field are
calculable when the length of the dipole field and its first, second,
and third derivatives are known.

The effective length of a quadrupole is one of its most important
characteristics because it is used in the matrix element when calcu-
lating the beam dynamics in a magnetic lens system. In general, the ef-
fective length is a function of the radial position r from the magnetic
axis of the guadrupole. There are several methods of finding the effec-
tive length. One involves using normal mapping procedures, plotting the
field at a point r as a function of the axial position =z for

-0 < 7 < o and integrating the area under the curve from -» to o,
This area is then divided by the maximum field, and thus the effective
length of the dipole field LB as a function of radial position is ob-

tained. From this, using the formula

oL (r)
L(r) =L (r) +r —

or
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the length of the quadrupole field L2 is calculable.

A second and easier method of effective length determination in-
volves the use of four coils rotating on a single shaft*® (see Fig. 16).
Two of the coils are long compared to the field while two are located
in the central field of the magnet. The outputs from the long and short
coils add in a quadrupole field but exactly cancel in a dipole field.
The total output sinusoidal wave from the long coils is divided down on
a precision potentiometer and compared with the total output sinusoidal
wave from the short coils. The phase of the outputs is exactly the same
because the long and short coils are built in the same plane. The two
signals are thus compared until the divider potentiometer is set for
complete cancellation of signals. Cancellation is facilitated by in-
version of one signal with respect to the other, so that when the sig-
nals are equal they appear as a null. Then, measuring the ratio of the
induced voltages and knowing the coil dimensions, the effective length
of the quadrupole fileld 1s calculable. In this way, accuracy of about
0.1% is assured.

Figure 17 shows the experimental setup to measure La‘ The rotating

coil with the brush assembly is shown in Fig. 18.

V. BSPECTROSCOPY OF MULTIPOLES

A. Experimental Setup

One of the most important methods of evaluating a multipole magnet
is the determination of the harmonic content of its field. In any prac-
tical multipole magnet there are some higher harmonic fields present,
and these, if sufficiently large, can affect the beam dynamics in the
magnet. In some cases 1t is desirable to build magnets in which there
is a large harmonic content in order to correct optical errors. One can
use the information about the harmonics of a multipole magnet to design

11512 op fringing fields for the magnetic multipoles.

special pole faces
Using the symmetry conditions for the scalar magnetic potential, the
harmonics contained in the field with quadrupole, sextupole, and octu-

pole symmetry can be listed as shown in Table IT.

- 3 -



/77272227

________________________________

7707727

QUADRUPOLE MAGNET

FIG. 16 ROTATING COILS METHOD OF
EFFECTIVE LENGTH DETERMINATION e -4



- L3 -

. - p p q p rem .
u
e
r
E}(
l
F



FIG. 18--Rotating coil assembly for effective length measurement.
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TABLE II

2x2 ' I L ' l | I 1 .
2x 3 i|| 1 lJt 1 1 I1 ) ¢|>

2x 4 | J;fl | L I 1 | | IL_,
4 20

HARMONICS
NUMBER

The corresponding magnetic scalar potentials can be written as

u = }: an(sin n@)rn for quadrupole fields
N=2,6510y14, 18,
u = }z B, (sin no)r" for sextupole fields
N=359,15,21y =+
and
u = }: Bén(cos n@)rn for octupole fields.

Nn=4,12,20

When the proper boundary conditions are satisfied, only one term remains

in the summation. For example, in the case of the guadrupole only B22
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is the non-vanishing coefficient when the equipotential pole tip sur-
faces are in the form of equilateral hyperbolas in the X-Y coordinate

system. By measuring B in a guadrupole, one actually

256’ Be,lo...
gets a measure of how well the pole faces approach the theoretical shape.
In the case of pole saturation, because of the distortion of the ideal
equipotential surfaces, the higher harmonic content increases. In a
quadrupole, for example, B2,6, B2;lO
values even when at low field only Beﬂ is not zero. If the symmetry

will be non-vanishing at high field

conditions in a gqguadrupole are not completely satisfied, other coeffi-
so? B = 3,9, 15, 21,..., and B, , n = L) 12, 20 ...

will be present. Then, measuring 333 and 344, one might draw con-

cients such as B

clusions about the quadrupole symmetry. One can analyze other multipoles

in a similar manner.

To summarize, one might say that by measuring Bon in a multipole
(mn), where n =m, m+2n, m+hkn, ..., one gets a measure of how well the
actual multipole approaches the theoretical multipole with ideal boundary
conditions, and by measuring 3B .+ where m' =mt+l, m+2, ...,

n' = m+l, (m+l)+2n', (m+2)+2nY one obtains a measurement of the symmetry
of the multipole.

The existing harmonic content with all the amplitudes (B ) can be
considered as the spectrum of the multipole. Naturally the amplitudes
of the higher harmonics decrease rapidly with harmonic numbers. For ex-
ample, in a guadrupole magnet, the pure quadrupole field (Bae) 1s much
larger than other multipole field components, and some provision must be
made to cancel or at least reduce the quadrupole field coefficient suf-
ficiently so thgt its presence does not mask the other multipole coeffi-
cients.

To measure the higher harmonics one can use a special, asymmetrically
wound, rotating coil which 1s designed to minimize the contribution due
to the quadrupole field while enhancing the contributions from the other
multipoles.13 The coil rotates at a fixed frequency synchronized to the
A-C line. The output from the coil is Fourier-analyzed with a narrow
bandwidth wave analyzer and the amplitude of each Fourier coefficient
is noted. In this system, the Fourier coefficient corresponding to the

frequency of rotation w of the coil is the dipole field; the coefficient
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corregsponding to frequency 2w 1is the quadrupole field; the coefficient
of 3w 1is the sextupole field, and so forth for higher fields. The
rotating coil can be calibrated in multipole calibrating magnets of
known field strength, or its response can be calculated for a given
coil geometry.

A block diagram of such a harmonic analyzer system is shown in
Fig. 19. Figure 20 shows the actual experimental setup used for ana-

lyzing a quadrupole magnet.

B. Coil Design and Calibration

The rotating coil used for harmonic analysis in a multipole field
should be sensitive to the harmonic field components which are being
measured. If a field component with large harmonic number is measured,
it is desirable to suppress the coill sensitivity for the other har-
monics, particularly when the corresponding fields are large in magni-
tude. TFor example, if one wants to measure st in a quadrupole field,
it is necessary to minimize the coil response for B22; otherwise the
small signal corresponding to B26 would be lost in the large signal
background. With special coil design one can decrease the coil sensi-
tivity for any one harmonic.

The coil response, the normalized voltage induced in the coil cor-
responding to the measured harmonic Brm in a multipole (En), can be
calculated or calibrated in a multipole magnet set at equal pole-field
strength. In the following the coil response will be calculated for

simple coil geometries used mostly for quadrupole harmonic analysis.

1. TFlat Coil
The induced voltage in a single wire moving with an instantaneous

velocity ; = rago where w = %% in a multipole magnetic field can

be expressed as

E' =8 - E-x v=3B- [{rw(io X go)] =-Ara - T = -LarB

->
where 4 is the length of the wire, ({,= {Eo) and B = MoH.
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However,

T =-Vu = 12{3 [anrn-l(sin ne);o - anrn-l(cos n@)éoi

and with this

Ef = udfw zgjanrn sin né

et A be the linear wire density, i.e., the number of turns per
unit radial distance; then the induced voltage in the multi-wire system

can be written as

n+1

b
E = f AB'dr = u e ZBH sin (n9) = [p™+t -t
a

n

In a symmetrical flat coil the return bundle is running in the opposite
direction and located at 6 = 1800. Therefore, the total voltage in-

duced in the rotating coil is

=
|

- (a,b,8) - E(a,b,8+x)

pOXUQ\ Z{jBn ;T%Eji (bn+l - an+l) ‘sin né - (—l)n sin né
From this it is obvious that
E. =0 for n=2,4 ... 2m

This type of symmetric flat coil therefore cannot be used for quadrupoles,

octupoles, etc.
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2. Asymmetric Flat Coil

The next simplest coil configuration is the asymmetric flat coil,
where the return bundle is located at the center of the axis of rotation
and the coil has only one turn.

In this case the induced voltage in a one-turn coil is

E. = uo{w z{janrn sin né
n

n-1
but with 6 = wt and B, = Bo(’i) » where a 1s the half-aperture

size of the multipole, one obtainsg for the induced voltage in a dipole

field

El = uoBo{ur sin wt

for the induced voltage in a quadrupole field

B, -
E2 = Hg — Luxr® sin 2ot
a
and in a sextupole field
B
E.=p — Lur® sin 3wt
3 Oag

To find the ratio of the induced voltages for the rotating asymmetrical
coil in quadrupole, sextupole, and octupole fields with equal field in-
tensity at the pole face, one must average the output voltage over a

half-revolution of the coil. Thus

B r r ordB
<El> =ES;—9— f sin(wt) a(wt) = - "o

o b
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and because
7
d/\ sin(nat) d(nwt) =2 for n =1,2,3 ...

e}

one gets

<: Er{BO r oot
Ep = - -
;> 1t a

and the coil response for different harmonics is

(z) (=7
(5 )

Figure 21 shows calculated and measured response curves for an asym-
metric flat coil with (g) = i% .

As mentioned earlier, the coill response can be measured with the
harmonic analyzer system in different multipoles with equal half-apertures
and field strength of the pole face. Such a coil response calibrating
multipole magnet set is shown in Fig. 22. If the response of the mea-
suring coil is known, then using the formula for the induced voltage,

the field corresponding to any multipole content can be calculated.

3. Asymmetric Coil

W. H. Lamb calculated*> the induced voltage in a rotating asymmetric
coil where two return bundles are used. The return bundles are located
at an angle O from the main bundle so that 6 =6 - & for one and
' =6 + 0@ for the other. Figure 23 shows the arrangement of the wire
bundles on the rotating coil. The induced voltage in this coil is

given as

Ey=u {Uﬂ\}: ;ﬁ?-sin ne' [(rn+l - an+l) - <rn+l - bn+l) 2 cos ne’]

1b
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D

With this formula the coil response EI can be calculated by a
method similar to that demonstrated for the asymmetric flat coil.
Using the formula for the induced voltage in an asymmetric rotating
coil, it is possible to make the voltage response of the coil for the
n-th harmonic vanish. For example, the condition that the voltage re-

sponse 1is zero for B22 1s such that

3 .3\ _ 3 _ .3 _
[(rla a > <b rlb) 2 cos 2« ]_ 0

Figure 21 shows the response characteristics of an asymmetric coil in
magnetic multipole fields with equal fieid strength at the pole faces.

The coil parameters are:

o =155°
a =2.77 x 10°n
r =10.9 x 10 %n
la
b = 7.62 x 102
_ -3
T, = 11.7 x 10™"m

It can be seen from the response characteristics that the coil is
more sensitive for measuring B33 than it is for B22. This coil is
particularly designed to measure the sextupole field in a quadrupole-
sextupole magnet. Figure 24 shows a few of the coils which were used
for multipole field measurements.

Table IIT summarizes the multipole field amplitudes which can be

measured with the different coil geometry considered here.

C. Center Location with Rotating Coil

Using a rotating symmetrical or an asymmetrical coil, the center of
a multipole can be located. The output signal is minimum when the axis
of the coil coincides with the axis of the multipole. In a quadrupole
it is desirable to use a symmetric flat coil because it does not respond
to the gquadrupole field. Figure 25 shows the amplitude of the first

harmonic vs the vertical displacement in a gquadrupole magnet. It can be
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seen that with this method the center of the quadrupole can be located
better than *1 mil. Any change in the field value at the pole face in a
quadrupole will result in a shift in the position of the center. TFig-

ure 26a shows the change in the amplitude in the first harmonic as a func-

tion of the strength of the perturbation caused by an extra perturbing coil.

TABLE III
. . Flat Asymmetric Coil
t
Multipole Flat Coil Asymmetric Coil for Quadrupole
Dipole Bll, Bl3’ B15 . All Al
Quadrupole 0 All Less sensitive
ior izz tgan
°r Pale7 Fz,10..
Sextupole B31’ B32, B33 v All All
Octupole 0 All A1l
Decapole B51’ Bsz’ B53 All Al

With this very sensitive measuring technique one can observe a

change in the position of the magnetic center with increasing field.

From this measurement one might estimate the change in symmetry due to

the forces acting on the poles.

In the case of an actual spectrum

measurement in a multipole, one first centers the rotating coil by mini-

mizing the first harmonic, then measures the amplitude of each harmonic.

In a quadrupcle field E,

is independent of the position of coil;

thereforeE in a qﬁadrupole field the meaningful normalized a%plitudes B
E 4 n . . . EE 4 Es 1
are SRR N Similarly, in a sextupole field T’ E’E R

2 2 2 > 3 3 3

are the useful amplitudes.

D. Bffective Length Measurement with Rotating Coil

Using the harmonic analyzer with a rotating pickup coil moving along

the
The

z-axis, one can measure the effective length of any multipole field.

selective amplification of the required multipole field induced sig-

nal makes it possible to measure the length of any harmonic field in a

multipole.
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E. Effect of the Field Perturbation in Multipole Fields

The field configuration in a multipole is perturbed when the field
strengths at the pole faces are different in absolute values or when the
shapes of the pole faces are not identical. 1In both cases the symmetry
conditions are not satisfied and higher-order multipole field amplitudes
do not vanish. When one of the pole faces has a different shape, higher
harmonics belonging to the same symmetry condition will have non-zero
values. Figure 26a shows a quadrupole spectrum without perturbation
(curve 1) and in the same position but with perturbation (10-turn coil
excited by l-ampere current) on one of the pole faces (curve 2). One of
the obvious effects of this perturbation is the change in the location of
the quadrupole's magnetic center. The first harmonic (B11> has increased
appreciably, showing that the center moved. The spectrum of the gquadru-
pole after the coil was recentered is shown in Fig. 26b. Comparing this
perturbed spectrum with the spectrum without perturbation, one can see
" the new higher harmonic content (Bss’ B77, Bas’ B39, Bll) which is the
result of the lack of symmetry in the quadrupole.

Figures 27a, 27b, and 27c show the perturbation effect of a ferro-
magnetic wire placed on one of the pole faces in the quadrupole and sus-
pended near the pole face. Figure 27a shows the unperturbed spectrum
taken by a rotating coil which is centered on the magnetic axis. 1In
Fig. 27b, the spectrum is shown when a l-mm-diameter steel wire is
placed along the pole face and the coil again centered. Figure 27c shows
the spectrum taken by the centered coil when the wire is suspended in the
quadrupole field. Comparing these spectrums, one can observe that the
new higher harmonics appeared due to the perturbation (B44, B77, 399)
which spoiled the symmetry, and other harmonics with guadrupole symmetry
(B26> increased in amplitude because the "ideal" boundary surfaces were
changed.

Generally then, a change in the boundary conditions changes the sym-
metry in the multipoles. This property of the multipoles can be useful
in designing, for example, a quadrupole-sextupole magnet in which the
relatively large sextupole content might correct the aberration of the

quadrupole pairs in a certain momentum region.
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VI. GRADIENT MEASUREMENT IN MULTIPOLES

One of the best methods of specifying the quality of a given quadru-
pole is the constancy of the gradient BBr/Br over the aperture of the
magnet. Because the direction of the field vector is a function of azi-
muthal angle in the aperture, the gradient is usually determined along
the two axes, one principal and one secondary. The simplest method of
examining the deviation of the gradient along an axis is by normalizing
the gradient at a point to the gradient at the center of the magnet.

Thus referring to the axis X, the gradient deviation would be expressed

/()
39X 39X o

and along the axis x the equivalent expression would be

n /m)
ox / Ox

X=0

as a function of X as

Among the methods available to measure these quantities, one of the
easiest to use is a pair of closely matched linear hall probes mounted
so that they are spaced ©Y for the measurement of the gradient versus
displacement in X and Ax for the measurement of the gradient versus
displacement in x (see Fig. 28).

Since the procedure for making the measurement is essentially simi-
lar along the two axes,this description will be about the measurement in
X only. Figure 29 shows the system instrumentation. The hall probes
are calibrated first so that they generate an equal signal when in an
equal field. The difference between the hall probes output is deter-
mined for the case when the probes are at the center of the magnet, and
this difference signal is then nulled with an external voltage. DNext,
the probes as a unit are displaced along the principal axis and the

change in difference versus position from the center is recorded. This
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operation yields the quantity JB/dx - O0B/dx Normalizing this to

| x=0"

the gradient at the center of the aperture 5B/Bx[x=o, one obtains
aB>
> (5;
3
Sx X=0

the nonlinearity of the gradient over the aperture. In an ideal gquadru-
pole magnet this would be zero for all values of x. In a practical
quadrupole there is some nonlinearity caused by the factors mentioned
earlier in Section II.B. Referring to that discussion, one can construct
what nonlinearity of gradient will result from the truncation of the
poles and from various misalignments and asymmetries in the construction.
The ways that various multipole fields will scale as a function of
the radial position r are as follows. The dipole field is of course
constant; the quadrupole field increases linearly with r/R as one
moves from the center to the aperture radius R. The sextupole goes as

(r/R)2 and the other multipoles can be seen to scale as

r\3
octupole, <§>
r\*
decapole, (§>
r\®
duodecapcle, <§>
a.

r\ = -

n-th pole field, <§)

If the observed higher pole magnitude is normalized to the quadrupole

magnitude, the resultant curve of a field will look like

., 0
2 z-2
z



Therefore, if a sextupole field is present in the measured field it will

show up as a straight line with constant slope. The quadrupole contri-
bution of course will be zero over the aperture. The octupole will be
indicated by a field distribution that will be parabolic or proportional
to Tg’, the decapole by an r° dependence, and the duodecapole by an
r* dependence. Thus an examination of the gradient over the aperture
will show immediately which higher multipoles are present. Of course,
the higher multipoles are usually present in some combination rather

than some pure perturbation; the field perturbation can be expressed as

a polynomial as:
G = Ax° + Bx' + Cx° + Dx° .

where the coefficients are fractional parts of the field gradient caused
by the presence of various multipoles. Figure 30 is a sketch of the ex-

pected gradient deviations caused by various pure perturbations.

VII. OPTICAT, PROPERTIES OF MULTIPOLES**

This section will review briefly how the measured parameters of a
multipole can be used to calculate the optical properties of the magnet.
It was shown earlier that the magnetic field distribution in a per-

fect quadrupole field can be derived from the magnetic scalar potential
u = -GXY

so that the field components of the field are

3u
By=-x =&

du '
By=-x =™
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where gradient G completely characterizes the field. Then, identifying
the particle velocity v with 2z, the time t can be eliminated from

the motion equations with the relation =z = vt, and we can write that

x"-S8, =x"-Lx-0
P Y p
and
Y"+’e‘B =Y"+-e—§-Y=O
p X p

where p =mv 1is the relativistic momentum of the particle.
When the quadrupole length {éff is so small that the deflection
inside the gquadrupole can be neglected (X,Y are constant in the magnet),

the motion equations can be integrated directly

A;(if) _ eG{éff X

dz P
dy eGl
dz jo)

In this approximation the quadrupcle acts as a thin lens with the

focal length

£ = _p __ 3 rB
ec{ﬂeff aEeff

that is, focusing in the XZ plane and defocusing in the YZ plane.

Introducing
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and taking z =0 at the entrance of the guadrupole, we can write the

solution in a matrix form:

X cos Kféff Eif_gféii X,
X! — -X sin K{éff cos Kiéff X}
and
Y cosh Kiéff EfEE_Eféfi Y,
\Y' K sinh Kﬁéff cosh Kﬁéff Yé

Now the reciprocals of the focal lengths in the converging and diverging

planes are given as

1 . _ i 2
fC_Ksm Ié&eff_K%eff<l-GK%eff+...)
L . K simm KL = - KA, 1+ & g2

T, sin eff = ~ eff tg et

It can be seen that the focusing properties of a quadrupole depend on
the particle momentum. This effect, analogous to light optics where the
location of the focal point depends on the light frequency, is called
chromatic aberration. The chromatic aberration limits the momentum band
that can be accepted if a given unsharpness of the image is not to be

exceeded. The total apparent increase of the object size for a particle
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with momentum p + Ap 1is

b
2

o 15
|

)

P
f (x')%dz
Po

where 6, 1s the initial divergence and the trajectory is taken between
points py and p.

It was proposed16 that an achromatic gquadrupole lens could be com-
posed of two quadrupole lenses: an electrostatic lens and a magnetic
lens. Figures 3la and 31lb show the achromatic quadrupole lenses with
small and large apertures. The electrostatic field of the lens can be

described by the scalar potential

1 a%f (z)
— {r () (- ¥?) - — ——— (x* - ¥*) 4 ...
2 12 4az®

Eo

C@:

and the magnetic field is given by the magnetic scalar potential zs

1 daf (z)
o ()XY - ——2—2xy(x2 +Y3) + ...
12 dz

u =H

When the two guadrupoles are not separated spacially and the electric

and magnetic configurations are the same,

and the motion equations can be written as

eHy ek
X" - x£(z) <—— - ——9> =0

mvce mv



FIG. 3la- ACHROMATIC QUADRUPOLE LENS WITH POLES
AND ELECTRODES OF HYPERBOLICAL FORM

191-21-A

FIG. 31b- ACHROMATIC QUADRUPOLE LENS WITH
ENLARGED APERTURE
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where v 1s the speed of the charged particle and the primes denote

differentiation with respect to z. Introducing
Q(v)::———————,
2

the requirement that the trajectory be independent of the speed of the

particle is that (é@

= 0, which gives
dv>V=VO ’

. . cvy
0_02
2¢T - Vo
and
2
eEo c” - vg
s mve 2
o c

It has been shown that the chromatic aberration can be corrected in a
quadrupole by using a sextupole magnet.l7’l8

Similarly, for a sextupole field the magnetic scalar potential can

B 1 1
u=—(x2Y-—Y3> =k<x2Y-—Y3)
a 3 3

B
where k = = is the sextupole gradient. The magnetic field components
a

be written as

BX’ BY may then be defined by
B, = - QE = -2kXY
X dX
ou

By =" & = x(:® - ¥®)
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and with these, the motion equations can be written as

X”+§-15(X2—Y2)=O

Y - ————gzk XY = 0

These motion equations may be sclved by numerical integration; how-
ever, simple approximate methods give good estimates in many practical
cases.>®

The motion equations in higher poles are even more complicated, and
because of their infrequent use in transport systems, their optical pro-
perties are not well known. From this short discussion it is evident
that for first-order optical calculations in guadrupoles, the effective
length of the quadrupole field, the higher harmonic contents, and the
gradients are needed as input data. From these and similar quantities
for higher pole fields, the optical properties of the multipoles can be
calculated.
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