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Leptonic and semileptonic decay amplitudes play a key role for a determination of the 
K&l quark mixing matrix as well as for a test of a wide variety of theoretical predictions on 
heavy flavour weak transitions. Thus considerable effort has been devoted to the theoretical 

estimates of the leptonic constant fD (and fB) and of the D13 (and B13) decay form factors. Here 
we will briefly present some results on these transitions, which have been obtained in the 
framework of QCD sum rules [ 1,2]. 

To just outline the main points of this formalism, in the version of finite energy sum 
rules (FESR) particularly convenient to the issue here, we recall that the starting objects are the 

current correlators 

qQ2>=i J d4x eiqx <vacl TJ(x)J(o)+lvao, (1) 

where the J’s are local currents, built out of quark fields, which interpolate the hadron one is 
interested in. These Green functions can be computed at short distance perturbatively in QCD, 

and extrapolated to longer distances, closer to the hadronic size, by adding power corrections 
parametrized by a set of non-perturbative quark and gluon operator vacuum matrix elements. 
The interface of this II lWD to hadrons is made by connecting it to the dispersive representation, 

allowed by analyticity of II(Q2): 

n(Q2) = iv JA 
‘Ic s+Q2 

ImII(s) + “subtractions”, (2) 

where the spectral function Im.II(s) contains physical hadron masses and coupling constants. 

Actually in the present case of heavy quarks, with m,,.,>>hQCD, it is convenient to consider 

“moments” of (2) of the form (n = 1,2 . ..). 

+ _ C-1)” d n -- - z!. ds 
n n! ( > 

dQ2 
I-I(Q2)I 

Q2= 0 x J --Imn(s>. sn+l (3) 

Corrispondingly $nlWD takes the form of an expansion in inverse powers of the heavy 

quark mass: 
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@II IQCD = 
@,I, + c c’, 

(4) 
K 

In eq. (4) the Cnk are numerical coefficients, which similarly to $+.,I~ can be computed 

in QCD perturbation theory. The ok are quark and gluon operators, ordered for increasing 

dimensionality. The lowest ones are: 
d = 3 : <vacl?jqlvao - quark condensate 

d = 4 : <vaclasGi, Tao gluon condensate 

d = 5 : <vaclgsG oPVq GPVlvao 

etc. 

quark-gluon condensate, 

The last ingredient is a phenomenological parametrization of the spectral function ImII(s) 

in eqs. (2), (3). A reasonable one, which has been widely adopted in the applications of this 

method, is 

Imqs) = Iml-@)lH + 8 (s-s,) Itis)IAF ) (5) 

where Imn(s)lH represents the contribution of the lowest lying hadronic states H, and 

IISI(S)IAF is the asymptotic freedom expression, calculable in perturbative QCD, which is 
supposed to start at some s&M2,. 

Collecting eqs. (3), (4) and (5) one finally arrives at the QCD FESR of the form: 

l Jds ws)~H =’ Jsg -- 
n Sn+l 

--Imq& +c c”, -acloklvac’ 
7t sn+l k m:,b 

(6) 

The vacuum condensates in eq. (6), which are there to allow the extrapolation to longer 
distances anticipated above, are not calculable in perturbative QCD, as they are genuinely 
nonperturbative. In practical applications their values can be inferred phenomenologically from a 

few cases where the corresponding LHS of (6) is best known experimentally, and then be used 
to make predictions for any other channel one is interested in. Implicit is the assumption (which 

on the other hand can be checked phenomenologically) that the expansion in powers of l/m,,b 

converges in such a way that the sum in (6) can be truncated to the first few terms. This makes 

the scheme economical, as depending on a limited number of QCD parameters, and predictive at 
the same time. Thus, in the present application to D (and B) mesons we must consider the RHS 
of (6) as known. 
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One can notice in eq. (6) that the l/sn+l integration emphasizes the lowest lying 

hadronic state for increasing n. On the other hand one finds that n can be increased only at the 
expense of increasing the power corrections on the RHS of (6), where only the first few terms 
are known. Thus in practice one does a compromise, and considers eq. (6) for only the fust few 
values of n. 

Finally, there is the dependence of eq. (6) on the threshold s, for the onset of the 

asymptotic freedom QCD regime, whose value is not a priori known. Clearly the physical 

hadronic masses and coupling constants should not depend on s,. Thus in practical applications 
on has to optimize the FESR, by looking for a “duality window” where the predicted LHS of 

(6) is stable against changes of s,. 
Having stated the rules of the game, we turn to the D-decays. 

a) For the determination of fD we have to choose in eq. (1): 

J(x) = aPAP (x) = (mc+md): E(x) i ys d(x) : 

This is connected to the D+lv coupling constant fD by the matrix element: 

<vacl J(O) 1 D>=d2 M2DfD , 

so that in the LHS of eq. (6): 

f_ b-I-l m)II+-o =2M;$ 6(s-M3 

(7) 

G-3) 

(9) 

(in this normalization fir = 93 MeV). 

The optimization procedure of (6) consists in this case in looking for a range where the predicted 

MDih 3 MD’expt. and is stable in so. We find for this duality window the rather wide range s, = 

(2 - 3) M2D. In this range we then solve for fD, which of course must also be stable there. 

The same procedure can be applied after trivial modifications to the D, and to the B. The 

results we fiid can be su mmarized as follows [33: 

fD fD 
f 

-= 1.7 f 0.2; 2% 1.2; += 1.3f0.2 (10) 
f 
x fD x 

where the + gauges the stability of the predictions in the duality window. To compare to lattice 

calculations [4,5], fD/fX as in (10) looks compatible, within uncertainties, with the upper side of 

the range of values found in that framework. The lattice seems to indicate fB/frr close to (or less 
than) unity. Finally the two approaches agree on the Su(3) violating fDs/fD as in eq. (10). 

To give an impression on the sensitivities required to measure leptonic decays according 
to these estimates, we report in Tab. 1 the branching ratios expected for different possible values 
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of fD/fx. 

Tab. 1: Leptronic Branching Ratios 

1.2 2.7 1O-4 6.2 1O-4 2.7 1O-3 2.6 1O-2 

1.5 4.2 1O-4 9.7 1O-4 4.2 1O-3 4.1 1O-2 

1.8 6.1 1O-4 1.3 10-3 6.1 1O-3 5.9 1O-2 

t- ------ 

fB/f7C 
------ 

0.9 

1.2 

1.5 

The values in Tab. 1 are obtained by using m,==o; fDs/fD=l.2; 
tentatively vbu/v~=o.07 With v&=0.045. 

---- 

B+pv 
----. 

9.0 10-8 

1.6 1O-7 

2.5 1O-7 
-------. 

From Tab. 1 we see that leptonic branching ratios are well within the reach of a charm 
factory, so that the important parameter fD could be measured. 

b) Turning to the semileptonic decays D+nlv and D-+Klv, the current of interest in eq. 
(1) is: 

J$x) = V&x) = : ‘;i (x) yP c(x) : (and : c(x) yP c(x) :) (11) 

Semileptonic transition amplitudes are determined by hadronic matrix elements of the form: 

<Np’YVP MP > = (pep’)$W + (PP’)~ f’Jt> (12) 

and similarly for D-K, with t=(p-p’)2. In practice only f+ (t) matters, as the contribution off- 

to the rate is depressed by the small lepton mass. 

The popular parametrization for f+ (t) is the vector dominance form: 

$ (t> = 
$ (0) 

1-t/M;* 
(13) 

and D*-+D*, for the D-+Klv transition. Correspondingly the semileptonic rate can be 
expressed as: 

T(D--+Xlv) = - 
192ns 

I Vij I2 I f+ (0) 12-!- I,, , 
4 

(14) 

where Xq, K, Vij are the appropriate KM matrix elements and $8 is a phase space integral. 
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Very little theoretical information on f+(o) is available a priori. We only know that 

f+(o)=1 in the SU(4) limit, and that on general grounds f+(o)<l. In this case the notion of 

symmetry is not so helpful, as we expect SU(4) breaking to be appreciable. This situation is 

quite different from the analogous K13 decay, where SU(3) breaking makes the corresponding 

f+(o) to deviate from unity by some percent at most. 

The application of the FESR eq. (6) to the present case, with VP eq. (11) into eq. (l), is 
completely analogous to the previous one, except for a few technical details and for the hadronic 
spectral function, which now reads- 

hn l-IJs) lH=% I f+(s+) I2 [( 1 - :) (1 - ;)])izgW . (15) 

In (15) n is a Clebsh - Gordon coefficient, BW is a Breit - Wigner form accounting for the D* 

resonance, and s+-= (Me)‘. Also the optimisation procedure, and the resulting duality 
window in so are the same as before. We finally find for f+(o) the result [6]: 

f+(o) = 0.75 * 0.05 (16) 

where, analogously to eq. (lo), the + gauges the stability of the predicted value. We may 

compare eq. (16) to lattice calculations [5,7] : f+(o) = 0.70 + 0.20 (D+x) and f+(o) = 0.74 + 
0.17 (D+K); and to constituent quark models : f+(o) = 0.75 - 0.82 [S] and f+(o) G 0.58 [9]. 

Combining eq. (16) with (14) and comparing to the semileptonic experimental rates [lo], 
we would find IV,,1 = 0.93 + 0.12, consistent with IV,,1 E 0.97 as derived from the unitarity of 
the KM matrix. 

The extension of this formalism to the decays D+K*lv and D+plv seems feasible. 

However in this case there are three form factors, and presumably such a more complicated 

situation could be dealt with only at the cost of an increased model dependence. 

Clearly, from the numbers exposed above, the high statistics available at the charm 
factory would be crucial for a severe test of model calculations of form factors and for increased 
sensitivity to the KM matrix elements. 

As a conclusion, there is room for decisive improvements at a facility such as the charm 

factory. The leptonic decay constants would be measured with significant accuracy, and this 

information would be really welcome, as it enters as a crucial parameter in many theoretical 

calculation of heavy meson decays. Refined knowledge would be allowed on the D13 form 
factors, in particular on the t-dependence, ultimately reflecting itself into f+(o) and thus into the 
rate normalization. In this regard very important would also be the improved measurements of 
the D+ and Do. lifetimes, leading to accurate branching determinations. 
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On the theoretical side there should be a corresponding improvement of the present 

situation, by reducing uncertainties and hopefully bringing the various calculations of fD and of 
f+(t) to a closer agreement. This is necessary in particular for the model independent 

determination of the KM matrix elements V,d and V,, from the data. Such a program is rather 

challenging, but we can be optimistic, and believe that substantial progress will be achieved in 

the future. Actually a simple point, just to start from, should be the consideration that from 
common experience calculations should be more reliable for ratios of matrix elements than for 
the matrix elements themselves, because a number of uncertainties should cancel in that way. 
This is seen for example in the pattern of the SU(3) violating ratios f&fD and fBs/fgd. Thus, 
why not pursuing ratios such as 

(17) 

This could represent the frst step on the way to model independence [ 111. 
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