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ABSTRACT 
The semileptonic tau-decay provides useful information on the algebra 

of currents of QCD. It is shown how good experimental data on the decay 
modes of the tau lepton, can be used for testing fundamental aspects of the 
strong interactions (chiral symmetry, resonance structures, vacuum conden- 
sates, A=,...). 

1. INTRODUCTION 

Besides its intrinsic interest as a sequential lepton in the standard mo- 
del of electroweak interactions, the tau is the only presently known lepton 
heavy enough to decay into hadrons. Therefore, its semileptonic decays appear 
to be an ideal laboratory for studying the hadronic weak currents in very clean 
conditions, Contrary to the well known e+e’dy*--t hadrons process, which 
only tests the electromagnetic vector current, the semileptonic tau-decay 
modes offer the possibility to study the properties of ,both vector and axial 
currents. 

Within the standard model the ‘I lepton decays via the W-emission dia- 
gram shown in figure 1. Since the W coupling to the charged current is of 
universal 

t- 

Plg.1. Paynmandirgramforthadccayofther Iepton. 

strength, 

L cc = g 
2lT 

C~,YP(l--YsH 
I 

+ li yNl-yg)ds + h.c. , I 
(1.1) 
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there are five equal contributions (if final masses and gluonic corrections are 
neglected) to the t- decay width. Two of them correspond to the decay modes 
v,e-ij’, and v=p V,, while the other three are associated with the three possible 
colours of the quark-antiquark pair in the final v,dsii mode 
(ds= cosQcd + sin$.=s). Hence, the branching fractions for the different chan- 
nels are expected to be approximately, 

Br (T--+v,l-VI) N-!- = 20%, (I=e,u) 
5 

RHi l--(1 -+v= + hadrons) *u N 
- c q 3, 

lY(r-+ v, e-5,) 

which should be compared with the formal”) experimental averages l) 

Br (I- -y e- 7,) = (17.5 f 0.41% 

Br (~--+v,p- cP) = (17.8 f 0,4)% 

RH = (3.54 f 0.08)% . 

(1.2) 

(1.3) 
The agreement if fairly good. Notice that the measured tau hadronic width pro- 
vides strong evidence for the colour degree of freedom. We will discuss later 
whether the QCD dynamics is able to explain the difference between the mea- 
sured value of R, and the lowest order prediction R, = N,. 

The tau-decay partial width for the leptonic modes T 41~~1 V1 (I=e, ~1 is 
easily computed, with the result (neutrinos are assumed to be massless) 

n .- 

rts--+v, 1- V,)’ 
Gc rnz 
192 x3 

f(ti/rnT)r , (1.4) 

where f(x)= 1-8x+8x3-x4-12x2 Inx. The factor r takes into account radiative 
corrections not included in the Fermi coupling constant G,, and the non-local 
structure of the W-propagator. It has been estimatedz) to be r = 0.9960. 

Eq. (1.4) gives a relation between the tau lifetime and the electronic 
branching ratio, 

Br (r--+v,e-i,) = r,/(l.600 10-12sec). (1.S) 

Using the world average measured r-lifetime’), ~~ = (3.04 f 0.09) lo-rssec, one 
gets the prediction 

Br (T5-+vre-u,)th = (19.0 * 0.61% , (1.6) 

which is about two standard deviations higher than the measured branching 
fraction of (17.5 f 0.4)%. Given the present limita) of m,,<3SMeV (95% C.L.), 
this small discrepancy cannot be due to a non-zero value of the tau neutrino 
mass. 

The agreement is slightly better in the muonic.channel. Taking into 
account the phase space mass correction, f(mE/rnT) = 0.9728, one predicts 

*) The number quoted for RH results from averaging three different values 

which slightly disagree. See section five for details. 
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Br(r--+ v, u- iPIth = (18.5 f 0.6)X, 

which compares reasonably well with the measured value of (17.8 f 0.4)X. Note, 
however, that in both cases the experimental bra’nching fractions are below the 
values extracted theoretically from the measured lifetime. 

The semileptonic decay modes of the tau, ~-3 V~ H- , probe the matrix 
element of the left-handed charged current between the vacuum and the final 

hadronic state H, 
<H-Ia,yW-y&1(0>. (1.8) 

For the decay modes with lowest multiplicity, T--V, TC- and T--,v~K-, the rele- 
vant matrix elements are already known from the measured decays 
K--+ u-G,and K-4 p-I;,. The corresponding r-decay widths can then be pre- 
dicted rather accurately. Including the computed electroweak radiative 
corrections 2), one gets 

I-(r--+Vr Tc-1 = 0.601 rw-+v,~-) = 0.0399. (1.9) 
r(r--+ v,e--V,) m--,v,e--i7,) 

These numbers are in good agreement with the experimental ratios, which are 
measured to be (0.617 A 0.037) and (0.038 f 0.011) respectively’). 

In the Cabibbo allowed modes with Jr= 1, the matrix element of the vec- 
tor charged current can also be obtained, through an isospin rotation, from the 
isovector part of the e+ e- annihilation cross-section into hadrons, which mea- 
sures the hadronic matrix element of the I=1 component of the electromagnetic 
current, 

<H”lGiy~u-aycld)lO>. ’ (1.10) 

The tau-decay width for these modes is then expressed as an integral over the 
corresponding e’e- cross-section4), 

= 

2 

3cos2a~ mTds(m$-s)2(m$+2s)s al=* s e+e- 
2na2mF 0 

-vo (s). (1.11) 

Electroweak radiative corrections have been estimated2) to increase this result 
by 2.36%. Taking this into account, the available e’e-+2x, 47t data imply5’ 

r(~--'~r7t-+) = 1.26 exp.: 
rw-+ V,e-Te) 

[ 1.27 A 0.071 

r(~=+~~2lt--~+d9 = 0.281 
lY(K-4 VT e- Vef 

[ exp.: 0.25 f 0.091 (1.12) 

r(r--,v, K-3x0) = 0 056 
r(f-+vT e-ie) . 

C exp.: O.-l7 f O.lS] , 

where the measured experimental ratios’) are given inside brackets for compa- 
rison. The predictions agree quite well with the data. Note, however, that the 
extraction of the isovector part from the measured e+e- cross section requires 
model dependent assumptions (e.g. Q-W interference has to be taken into 
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account) and moreover, there is an additional systematic error due to the over- 
all normalization of the e’e-annihilation cross section. 

The exclusive tau-deca s into final hadronic states with Jp= l+, or Ca- 
bibbo suppressed modes with J t: - = 1, cannot be predicted with the same degreeof 
confidence . We can only make model-dependent estimates with an accuracy 
which depends on our ability to handle the strong interactions at low energies. 
However, that just indicates that the decay of the tau lepton is providing us 
new experimental hadronic information . Due to their semileptonic character, 
the hadronic tau-decay data can be then a unique and extremely useful tool to 
learn about the couplings of the low-lying mesons to the weak currents. In the 
following, 1 will try to give a few examples to show how tau-decay data can be 
used for testing different aspects of strong interaction phenomena. 

2. EXCLUSIVE SEMILEPTONIC DECAYS 

At low momentum transfer, the coupling of a state H of n pseudoscalar 
mesons to the V-A current can be estimated in a very easy way by using the 
effective chiral realization of QCD, which, to lowest order in derivatives and 
masses, is given by (f, = 93.3 tvleV)b) 

L 1 f~Tr(&U3~U’) + uTr(MU+U’M) . strong z- 
4 

(2.1) 

The 3x3 special unitary matrix Urexp(iJ2 a/f,) incorporates the octet of pseu- 
doscalar mesons, which appear as Goldstone coordinate fields T(x), 

I 
; (2.2) 

M denotes the diagonal quark mass matrix, M=diag (mu, md, m,), and 

IJ = 

2(mu+md) 2(mu+ m,) 2(md+m,) 

In this realization, the vector and axial currents are given by 

VP = i(cPT,,Q) + O(a4) 

iN, 
6-,%- ~2 f3 

Ep,,,p [dW ilao d-j@ + Om?“)] 
7r 

(2.3) 

(2.4) 
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where the odd-parity pieces, proportional to the Levi-Civita pseudotensor, 
come from the Wess-Zumino-Witten term of the chiral lagrangian’) , which 
takes into account the non-abelian chiral anomaly of QCD. 

Tau decays involve, however, high values of momentum transfer, where 
the formulae given above no longer apply. Nevertheless we can still construct 
a reasonable model, taking into account the low energy theorems contained in 
the chiral realization. The amplitudes 

JJp,,..., pn) f <HI(V-A)cl exp( iJd+z L,,,,,,(z))~0~ (2.5) 

obtained from eqs. (2.1)-(2.4) must be continued from threshold by suitable fi- 
nal state interaction enhancements, which take into account the possible reso- 
nance structures present in each channel in a phenomenological waya*‘)) , This 
can be done by weighting the contribution of a given set of pseudoscalars, with 
definite quantum numbers, with the appropriate resonance form factor. The 
requirement that the chit-at predictions must be recovered below the resonance 
region, fixes the normalization of these form factors to be one at zero invariant 
mass. I take the standard ansatz 

FR(s) = M6 I (2.6) 
Mi-- S -i MRrR(S) 

where MR(TR) denotes the mass (width) of the resonance R. 
Let’s try to apply this model to the decay ~-4 vr TC+ R-K-, which is 

expected to be dominated by the J P=l’a1(12601 (before Ar(1270)) resonance.This 
mode has been measured in recent years by four different experiments which 
have extracted the mass and width resonance parameters from a fit to the total 
invariant mass distribution of the three pions. The published results are shown 
in table 1. For comparison 1 have included the Data Particle Group values for the 
al-parameters, before (86) and after (88) the tau-decay measurements. 

Table 1 
B, (~-3 V~X+K-X-) (“/.I Ma,(MeV) Fa,(MeV) 

DE LCOr”’ s.0 f 1.0 1oso f 30 476 f 140 
MARK II”’ 7.8 f 0.9 1194 f 20 462 L 70 
ARGUSj2’ 5.6 f 0.7 1046 f 11 521 A 27 
h4AC13’ 7.8 f 0.8 1166 A 21 40s f 79 

PDG ’ 86’4) 8.1 L 0.7 1275 it 28 316 f 4s 
PDG’88” 6.8 zt 0.6 1260 f 30 300 - 600 

The measured three pion effective mass spectrum is practically identi- 
cal in the four experiments. However, the use of different parametrizations 
when fitting the data, leads to same disagreements in the extracted al- para- 
meters. Nevertheless, all results clearly indicate a lower mass and a substan- 
tially larger width for the al resonance, than the ones obtained from hadronic 
experiments (PDG’ 86 values). More refined fits of the same data, including the 
q2-dependence of the a,- width which significantly shifts the value of the reso- 
nance-mass, have given the results shown in table 2. 
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Table 2 

Reference Mat(MeV) Tat(MeV) 

(IS) 123s f 40 400 f 100 
(16) 1250 f 40 600 zt 100 
(17) 1260 t 25 396 zt 43 
(18) 1180 * SO 450 f 100 _ 
(19) 1220 f 1s 420 A 40 

Using the chiral information, the hadronic amplitude for the c~w~K+x-K’- 
2 decay takes the form (q= p++pI + p- , u=(p +p’ J2 t=(p + _ , + + p-2 j2 1 

T,(P+, p’, p?)= 
2 fYi Fai (q2) 
3 f7t 

(g,, -q,q,,/q2)[(p+- p’_P’F&r) + (p +-p?)“FP(t)], 
(2.7) 

where the effect of the Q and a, resonances has been already included. There 
are additional JP=Ocontributions, but they are suppressed by a factor m”,/q2 
and therefore are completely negligible (notice that this implies Br(r-4X-7PX”) 
2 Br (T-+x+TI-x-)). 

We can use this amplitude for making a fit to the three pion mass spec- 
trum, taking Mz, and r,, = T,,(MaT 1 as free parameters. However, the normali- 
zation is completely fixed by the rigorous low-q 2 behaviour extracted from the 
chiral realization. Thus, once Ma, and Tat have been fitted, eq. (2.7) gives us 
a non-trivial prediction for the branching ratio. Figure 2 compares the obtained 
q2-distribution 2o), taking Ma,= 1200 MeV and Tal =47S MeV, with the ARGUS 
dataI?). The result is surprisingly good; fitting the a,-mass and width to agree 

‘T-- n-n*n-v 
i- t 

3 

Plg.2.Comperl~onbetweenthemer~ured12) q2-dlatributionforthe 
t-+ ~~x+x~x"decry,rndthetheoretlc~lreeultobtrinedfromeq. 

(2.71, wIthM~~=1200MeVrndI'~~=47SMeV.Thenormrlirrtion 
correepondrtopt(q2)-l/xIm~~)(q2)12(eeeeq.(3.2)). 
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with the shape of the invariant mass distribution, one finds that the normali- 
zation of the resulting curve is also in nice agreement with the experimental 
measurement. It is important to point out that, if one’takes the old (86) par- 
ticle data group values 14) for the resonance parameters, not only the shape of 
the predicted spectrum disagrees with the data but, in addition, the normali- 
zation at the maximum of the distribution is off by a factor of two. 

The same approach has been applied to estimate the branching frac- 
tions for r-decays with eta particles in the final state”). These modes where 
expected , two years ago, to provide some light on the so called missing 
one-prong problem Sa*21) (-the sum of exclusive one-charged-particle modes is 
smaller than the measured inclusive branching fraction to one-charged- 
prong). Using the available information on the relevant resonances, one gets 
the results”) shown in table 3, in order of increasing branching ratio. 

Table 3 

X- Br (.E-+ w,qxx-) 

7r-7co (0.2-0.31% 
K- lO-4 
7CC-/7t-iTo/K-7+ 10-” 
?K-7ro7To IO+ 
K-K0 10-7 
n-7)/K-q 10-9 

The inclusive production of q particles in ‘c decay is therefore dominated by the 
T-“w~T)7t-xo mode, with an expected ‘j.22) branching ratio of (0.2-0.3)%. This 
rules out a possible explanation of the missing one-prong branching fraction in 
terms of modes with q particles 23). Nevertheless the decay into the final 1l7t-x~ 
mode is interesting by itself. Due to the even G-parity of the q, this decay can 
only proceed through the vector current, which requires a vertex with a Levi- 
Civita antisymmetric tensor. The needed coupling is provided by the Wess-Zu- 
mino-Witten term of the chiral lagrangian, which gives rise to the odd-parity 
pieces in the currents given in eqs. (2.4). Therefore, the detection of the 
t-4vr q 7c-7r” mode would constitute an experimental signal of the non-abefian 
chiral anomaly of QCD9*24). 

3. CURRENT CORRELATORS 

It is convenient to consider the two point correlation functions 

i 
s 

d4x eiqx <OIT(VP(x)ij V”tO)G)lO> 

i (-gwJq2 + qvq”) rp(q2)‘i + qclqv flr)(q2)ij 

i 
s 

d4x eiqx <OIT(Ap(xIij Av(OJi: I/O> 

(0) = (-gc’vq2 + qpqv) ny)(q2)ij + qpqv nA tq2)jj , (3.1) 
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associated with the vector V~(~)~l=q~y~q~and axial A”~x) il=sjr 5 sq i currents. 
Here i, j denote the quark flavours and the two different Lorentz structures in 
the r.h.s. correspond to J=l and J=O angular momentum. We can write down a 
spectral decomposition for these correlators 

n:‘:X’ tq2)lj = 
1 Imrr:y’(sP’ 

ds rc + substractions. 
s-q2-is 

(3.2) 

The associated spectral functions govern the 1 SYNC+ hadrons decay width, 
which can be written as an integral over the invariant mass of the final 
hadronsa), 

R l’(t--+u, + hadrons) 
H 

~ 
= 

T(r--+ ur e-F; ) 

= 12g~~ A$ (I-?-)” { (1 +S) Irnl-r”‘(sl + Im l-Y(s) }, (3.3) 
T -i 

where (r=O,l) 

Imp-)(s) 5 cos2ac Im n(G) (Sf2 + Im fi:’ (SY2 } 

+ sin23= Im n:’ (SY3 + Im ny’ (sjy3 
1 1 

. 

In the chiral limit (m,=md=m. =O), the longitudinal vector spectral 
functions vanish, while the corresponding axial ones have only the pole contri- 
bution from the Goldstone bosons, (f 2 f, 2: 93.3 MeV) 

1 - 
x 

Imrp(s)‘2 = -!- Im l-$ysp= 0 
K 

$. Im nr’(S)12= $- Im nioO’(S)13 = 2f26(S). 

In principle the vector and axial spectral functions are calculable in 
QCD, but in practice we are still very far away of being able to do that in the low 
energy region. The semileptonic tau decays offer the, possibiIity to obtain 
experimentally these spectral functions, for s-values below rn:, from the total 
invariant mass distribution of the final mesons. This analysis has been done by 
Peccei and Sol625) in the Cabibbo allowed sector, where quite good data is 
already available. From a fit to the ~f+v~~~+n:o, T-~-+V,TC+TC+TC- and 
t*-‘V,X’K+K-Ko s-distributions, measured by the ARGUS collaboration12*2c’), 
and assuming the r *-+u~x*KOXO contribution to be equal to the T~+V~XLX+TC- 
one, they obtain the spectral functions shown in figure 3. Their notation corre- 
sponds to 

V(S) a 2 Irnnv)(S)12 ; a(s) = 2 Im ~“‘tS)12 . A (3.0) 
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Plg.3.Thehadronicvector(v=~,~ +v,x) andaxlal-vector(a= aax) mpecttal 
functIon~,extractedfromremlleptonlcr-decaydatn,r~afunction ofr. 
Thede~hedlinr~denotetheregion~wheretheerrorbar~~tarttobetoo 

bigfortheflttobetruatworthy.(Takeafromref.(2S)). 

The two and three pion contributions are clearly dominated by the Q and 
al peaks respectively, while the four pion contribution, which gives the bulk of 
the vector spectral function in the high s-region, doesn’ t show any prominent 
resonance structure. As one approaches the kinematical limit s=m:, it becomes 
difficult to extract a reliable value for the spectral functions; thus the fit has 
rather large errors above s=2 GeV? 

We know from QCD that these spectral functions should have the 
asymptotic behaviour a(s) =v(s) = 1/2x = 0.159. Therefore, large variations in 
both v(s) and a(s) are still to be expected at higher values of s. The axial spec- 
tral function, in particular, should substantially increase. Nevertheless, the 
experimental information summarized in figure 3 is good enough for testing 
some QCD expectations, at least qualitatively. 

More than twenty years ago 27), Weinberg derived two sum rules for the 
vector and axial-vector spectral functions, using some general arguments re- 
lated to the expected asymptotic behaviour of the strong interactions. In our 
notation, they read 

ds$ r-(rr’:‘+rr:“‘-rrk”-rrk”‘)(s)ij=~ 

(3.7) 

Although these sum rules were derived before the development of QCD, one 
can show28) that they are actually approximately valid within QCD in the chiral 
limit. There are nowadays more refined versions of the. Weinberg sum rules, 
which take into account the precise form of the leading short-distance beha- 
viour of the current-correlators at large s-values and the explicit chiral sym- 
metry breaking effects due to the finite quark masses28129). However, since 
m,,d<<m,(3.7) are precise enough for analyzing the (i, j) = (1, 2) spectral func- 
tions. 

Another classical sum rule, which makes use of these spectral 
functions, is the formula derived by Das et al. for the x+- ~0 electromagnetic 
mass difference30). In the chiral limit and making use of the second Weinberg 
sum rule, it can be written as 
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s 

co 
3a 

mx+ -m ,o = ds s $ Im(nx)- nv)) (s)‘21n s (3.8) 
16nm,fz o 

Assuming that the spectral functions are saturated by the p and al mesons and 
using the KSFR relation, Das et al obtained30) 

mX+ 3a M,2 ln2 -mnO z-- (3.9) 
47~ m, 

r 5 MeV, 

in amazing agreement with the experimental value’) of 4.6 MeV. 
Eqs. (3.7) and (3.8) involve integrations of the relevant spectral functions 

from zero to infinity. However, the asymptotic behaviour predicted by QCD 
implies that the contributions of the very high s-region are completely negli- 
gible. Therefore, it is interesting to see how well one does when one inte- 
grates up to a maximum limit so. Using the spectral functions shown in figure 
3, Peccei and Sola have studied the integrals25) 

SO 

Ii = 
s 

ds (v(s) -a(s)) 
0 

s 

SO 

12(so) = ds s (v(s)-a(s)) 
0 

SO 

A(Tc+ -To) = 3a 

32x2 m,f2 s 
ds s 

o x 
Ins (a(s) - v(s)). (3.10) 

Their results are plotted in figures 4, as function of the integration cut off so. 
The crosshatched area represents the region in which the determination of the 
spectral functions is less certain. Remarkably, all three quantities approach 
the closest to the predicted asymptotic values (4~ fz = 0.11 GeV2, 0 , and 4.6 
MeV, respectively) at the same so= 2 GeV2value. This suggests in fact that the 
vector and axial-vector spectral function contributions cancel each other 
already at quite moderate values of s. It is for this reason that the resonance 
saturation formula (3.9) works so well. Note however that using the exact 
form of v2rc and a3x extracted from the semileptonic tau-decay data, the con- 
tribution of v4-rr is rather important. Neglecting this term, one would obtainz”) 
A(n+- x0) = 7 MeV at so = 2 GeV” rather than about 4.6 MeV. It is also clear 
from the figures, that to recover the expected QCD predictions it is ne- cessary 
that eventually, for some higher region of s, a(s)>v(s), to compensate the 
wrong behaviour observed in the so-range between 2 and 2.5 GeV? That was 
already apparent in figure 3, because at s= 2.5 GeV’a(s) is much smaller than 

v(s). 
By making a Laplace transform of eqs. (3.7j2P)one can exponentially 

suppress the contribution of high values of s to the Weinberg sum rules. The 
truncated inte rals are then 
(K2- l-l.S GeV ZF 

z5), for moderate values of the Laplace parameter 
1, 

GeV20r s 
essentially independent on whether one cuts off them at so= 2 

,=2.S GeV? The Laplace transform version of the first Weinberg sum 
rule appears to be in good agreement with the asymptotic QCD prediction’“). It 
remains, however, a larger discrepancy for the case of the second sum rule, 
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which can be understood since the additional power of s makes the exponential 
suppression less effective and therefore the contribution of the tail integral 
(s > soI is not negligible in this case25). 

n^ 

B 
Ql85 

m70I= \ 
'ij -E \ 

lo 1.5 20 25 

(a) (b) 

(cl 

Fig.4.Behsvlourofthel~T(r) and2"" (b) Welnbergaumrulesand 
theelectromrgneticpionmr~rdlfference~c~,rrrfunctlonof 

thrupperlimitofintegration a.. Thedaahedareraurev.x 
lntheque~tionableregionofflgure3. 

(T=kenfromref. (2s)). 
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4. VACUUM CONDENSATES 

At high values of q2 one can use perturbative QCD to evaluate the two 
point correlators defined in eq. (3.1). Moreover, non-perturbative effects, 
which are parametrized by a set of vacuum expectation values of quark and 
gluon fields, can be included as power corrections to asymptotic freedom3”. 
For the Jp= l-, (i, j) = (I, 2) correlator, one gets31*32) (Q2 % -q2) 

3 12 47&?-Q-) =-In-$ 3 + ?- + O(mt,d/Q2) 

a,(v2) 
In K 

$+ 0( (as/nJ2) 

+c C2n<02n’V 

n=2 (Q2)” ’ 
(4.t) 

where the leading non-perturbative correction is given, in the mu = md = m limit, 
by3’) 

c*<o 4>v = 5 <a,G2> + 4x2 
3 rk <iiu + ad> (4.2) 

Due to the conservation of the vector current, ~~)(q211’ is zero in the i- 
sospin limit. For the axial two-point function, the Goldstone nature of the pion 
makes difficult to separate the O-and l+correlators, so it is better to work with 
the sum 

(4.3) 

The perturbative QCD expression for nA(q21t2is the same as that for nV(q2?? 
except for small quark-mass corrections. The leading non-perturbative term 
is given by3*) 

x C4~04>~ = x<asG2> - 4x24 <iiu +ad>. (4.4) 

Note that the difference between the dimension four non-perturbative terms in 
the axial and vector correlators, can be estimated through PCAC, 

c4<0 4’A - c4c04’V = -8~2 A ciju+& 

= 87t2fz m$ cv 0.013 GeV” . (4.5) 

Information on these non-perturbative power corrections can be 
obtained experimentally, by using Finite Energy Sum Rules (FESR) in the way 
derived in reference (33): 
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s 

SO 

C4N+2<04N+2>V,A = 4X2 ds s2N 1 Im~v,A(s)‘2 
0 

lc 

2N+l 
SO 

2N+1 II 1 + F~N++o)] 

(4.6) 

s 

SO 

CL$N+L&<OL$~+L&>V,A = -4n2 
0 

ds S2N+1 -+ Im j-jV,A(s)‘” 

2N+2 
+ SO 

2N+2 C 1 + &J+&o)] 

Here, N = 0, 1, 2, . . . . and the functions Fp(sO), with p= 4N+2 or p = 4N + 4, contain 
the perturbative a,-corrections. Selecting the appropriate moment of the 
spectral function distribution, eqs. (4.6) project a specific combination of va- 
cuum expectation values of operators of a given dimension*). 

The 1.h.s. of eqs. (4.6) are obviously independent of the chosen value 
for the asymptotic freedom onset so. In practice, the r.h.s. will give a so-de- 
pendence either if so is not high enough for the perturbative calculation con- 
tained in F,(s,) to be reliable, or if the hadronic information contained in the 
spectral function is not good enough in the whole s<so region. The predictions 
from the FESR should only be trusted provided they are stable against reason- 
able changes of so inside some duality region, where both informations CQCD 
and hadronic) are simultaneously valid 34). This dualit re ion can be deter- 

4 5 mined by using the lowest moment N=O. Since the m /Q corrections to the 
two-point correlators, formally equivalent to a C2<02> effective contribution, 
are negligible, one has 

1+ F2 (so) = I&O)V,A’ -k2 
s 

SO 
ds 1 

so 0 lt 
Im IIv,A(S)‘~, 

which gives an eigenvalue equation to fix the parameter so. The more accurate 
the parametrization of the experimental data is, the wider the duality 
so-region, solution of the above equation, will be. Once so is determined, one 
may proceed to estimate the values of C,<O,> using eqs. (4.6). 

Figures S to 8 show the results obtained in reference (3.51, using the ha- 
dronic spectral functions extracted from the semileptonic r-decay data?“’ The 
duality test of eq. (4.7) is plotted in figures S and 7 for the vector and axial vec- 
tor spectral functions respectively. Curve (a) corresponds to the behaviour of 
the hadronic integral in the r.h.s. of the FESR (4.7), while curve (b) gives the 
smooth so- dependence given by the QCD 1.h.s. In the vector channel one finds 
a duality region inthe range 1.44 GeV2< so s 1.75 GeV2 , while for the axial-vec- 
tor channel the duality region is somewhat wider, 1.75 GeV2< so I 2.25 GeV” . 

*) This nice feature disappears when two-loop corrections to the Wilson coef- 
ficients Cp are taken into account. 

428 



lb 16 16 2 22 

SO IGev’l 

P1g.S. Bchaviour of the hadronic 
lntegralinthe r.h.e.ofthe FESR 
(4.7) (curven) togetherwlththe 
behaviour of the QCD1.h.a. (cur- 
veb) Inthsvectorchannel.(Te- 
ken from ref. (35)). 

Pig. 6.Bchaviour of CP<Op> v 
forp=+ (curve (~1, 6 (curveb) 
and 8 (curvec),fromthe FBSR 
(4.6). (Teken from ref. (35)). 

Fig. 7. Same am flg. S In the axial- Fig. 8.Snme a~ fig. 6Inthe ax- 
vectorchannel. Ial-vector channel. 

Solving next the FESR (4.6) for values of so inside these regions one finds the 
results shown in figure 6 for the vector channel and in figure 8 for the axial- 
vector one3s). Curves (a), (b) and (c), correspond here to C4<04>v,A , 

C6<06>v,A and CB<GB>v,A respectively. The vacuum condensates turn out to 

be reasonably stable against changes within the duality region. Note that the 
axial-vector results are more stable, and therefore less inaccurate, than the 
ones obtained in the vector channel. Numerically the results are 

C4<04>v = (0.025 - 0.11) GeV4 ; C4 <04 >A = to.‘045 - 0.10) GeV* 

Ch<O6’V = -to.16 -0.32) GeV” ; C~<O~>A = (0.16 - 0.28) GeV” 
Ce<Oe>v = (0.28 - 0.5.5) GeV’ ; C8<08’A = -(0.36 - 0.54) GeV”. 

(4.8) 

Eqs. (4.2), (4.4)and (4.5) allow to extract the value of the gluon con- 
densate both from C4<04>v and C4<04>~, 
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(0.03 - 0.12) GeV4, (vector channel) 
5 <as G 2, = 
3 (0.04 - 0.09) GeV4, (axial-vector channel) . (4.9) 

It is rewarding that the use of two independent sets of experimental data lead 
to essentially the same value for the gluon condensate. This result is consi- 
stent with the ones obtained using experimental information on charmonium or 
e’e-cross sections36). 

The values found for the dimension d = 6 four-quark condensates 
C~<O~>V,A indicate, in agreement with earlier claims, a clear deviation from 
the standard vacuumm saturation approximation, which predicts31) Cc,<Ot,>V 
.-.,- (7/11) c(,<o(,>A N -0.06 GeV6. On the other side, the rather large values 
obtained for the dimension d= 8 condensates and the clear sign difference bet- 
ween Ce<On>V and C~<O~>A could have important theoretical consequences. 
This condensates are usually assumed 37)to be dominated by four-gluon ope- 
rators, which should give the same contribution to the vector and axial-vector 
channels. This suggest that other contributions apart from gluons could be re- 
levant. 

The values of the vacuum condensates can also be extracted by using 
Laplace transform sum rules 31). Because of its exponential weight, the Laplace 
transform places more emphasis on the low energy part of the hadronic spec- 
tral function, which is a clear advanrage. However, now all of the condensates 
appear in the same sum rule, in contrast with the FESR where vacuum conden- 
sates of different dimensionality obey uncoupled equations. Although higher 
dimensional condensates become factorially suppressed by the Laplace trans- 
form, this may be not enough to safely neglect them when trying to determine 
the condensates of lowest dimension. In practice, one needs to truncate the 
l/Q2 power series in eq. (4.1) keeping only a finite number of terms. This intro- 
duces an unavoidable bias in the sense that the values obtained for the conden- 
sates will depend on how many terms of the series have been taken into 
account. Using the axial spectral function extractedas) from semileptonic tau 
decay data, this dependence has been analyzed in reference (381, where it is 
shown that, although the results change substantially with N when only a 
small number N of terms are included, the procedure is convergent with in- 
creasing N. The obtained results38) 

C4<04’A = (0.28 f 0.01 3 0.0s) GeVW2 
CL<OL’A 

C6<06’A = -(O..Sl f 0.03 f 0.08) GeV2 (4.10) 
C8<08’A 

are in agreement with the determination3s) with FESR. 

The results (4.8) and (4.10) have been derived using the computed per- 
turbative contributions to the n 
The a:- 

,,, A(q’) correlators up to third order terms. 
correction to these two-point functions has been calculated recently 

and it has been found to be rather large 39). It would be interesting to analyze 
how much the condensate values change when this higher order correction is 
included. 
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S. DETERMINATION OF /\E 

We have already seen in eq. (3.3) that the semileptonic decay width of 
the tau lepton is governed by an integral, over the invariant mass of the final 
hadrons, of the vector and axial-vector spectral functions. In fact, eq. (3.3) is 
just a combination of different moments of the spectral functions of the type 
appearing in the FESR 14.61, with so= mz. Only the moments so, s2 and s3 appear 
in the dominant J=l channels; therefore, the semileptonic tau decay width will 
only get non-perturbative contributions from condensates of dimension 0 and 
840). Including 40) the four-loop calculation of reference (391, the ratio RH is 
given, in the MS-scheme, by40141) 

astmT) + 5.20 ( as (mT) )2 + 104.q asy )” + ... 
x Tt 

C2<02>V+A 
+ 

n-2 

-3 C~<O~>V+A -2 C8<08>~+~ 
mt: 

- 1.0215 2 0.0050 is the estimated electroweak correction (including 
YieiGf~~ iZ TV, s I2 2 0.9979 mixing factor), and C2<02>V+A stands for the small 
perturbative quark mass effectsao). 

Since the leading non-perturbative condensates of dimension four 
doesn’ t contribute to RH, non-perturbative effects are suppressed by additio- 
nal powers of the tau mass. Moreover, as shown in eqs. (4.81, there is a strong 
cancellation between the vector and axial-vector contributions to the dimen- 
sion six and eight condensates. Taking also into account information on the va- 
cuum condensates coming from other sources 36), the total effect of non-per- 
turbative contributions to RH was estimated in reference (40) to be in the range 
-0.6% to -l/3%. 

The most important corrections are due to the radiative gluonic contri- 
butions, which are of positive sign as needed to reproduce the experimental va- 
lue of RH. The large coefficient of the as “-term is, however, rather uncomfort- 
able, since it can cast some doubts on the meaning of the perturbative QCD- 
calculation. The question is to know what is going to happen with the uncalcu- 
lated next-order contributions. Note, that this problem has nothing to do with 
the tau mass scale; it is the az-correction to the vector and axial-vector spec- 
tral functions, which happens to have a large coefficient. Therefore, the same 
comments apply to the QCD-prediction for the total e+e- hadronic cross sec- 
tion at higher energies. On the other side, this large &-contribution makes the 
predicted value of RH strongly dependent on the QCD scale Am. One could 
then use the semileptonic tau decay to obtain a determination of Ars 4O). Var- 
ying /‘/KS (defined in the 3-flavour theory) from 100 to 300 MeV, one gets the 
results shown in table 4. In order to have a feeling on the possible error due to 
the uncalculated higher order perturbative corrections, I have computed RH in 
two different ways. The values shown in column (a), have been obtained4O) 
expanding the strong coupling constant as(rnT) in powers of as= 
-l/l31 In(mr//“\IZs I, and keeping the contributions to RH up to order a$. In co- 
lumn (b), the complete three-loop calculation of a,(m,) has been used to eva- 
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luate the different terms appearing in eq. (S.1). The quoted errors are an esti- 
mate of the small uncertainties associated with th-e non-perturbative contri- 
butions. 

Table 4 

A\MS 
(MeVI (a) 

RH 

(b) 

100 3.40 f 0.01 3.34 f 0.01 
200 3.67 f 0.01 3.51 f 0.01 
300 4.03 f 0.01 3.71 f 0.01 

The differences between the two columns clearly indicate that the uncertainty 
of the theoretical predictions is completely dominated by the effect of the 
large a;-correction, and grows for increasing values of //KS. 

The ratio RH is related to the total tau-decay width through the equa- 
tion 

IY(s-) = T(r--+ wr e- V,) (1.9728 + RH ) . (5.2) 

So, RHCan be obtained experimentally either from the leptonic branching ra- 
tios, or from the lifetime measurement, if the theoretical prediction (1.4) for 
the leptonic width is assumed. One finds 

r 3.74 f 0.13 from Br(s--+w.e-c,) 

RI-i lexp = ( 3.49 f 0.12 

L 
I from Br (r-4 wT u-v,, 1 (5.3) 

3.29 f 0.17 f from lifetime 9 

which shows another time the discrepancy between the lifetime and leptonic 
branching ratios measurements, mentioned in section 1. One can also estimate 
RH by directly summing the measured exclusive widths of the different ha- 
dronic channels; this gives a smaller value a*), RH= 3.22*0.10, reflecting the 
well known missing one-prong problem. If one does a formal average2) of the 
three RH-Values in eq. (5.3), one gets 

RH = 3.54 * 0.08 , exp. (5.41 

which seems to favour a value of Ars around 200 MeV. Given the present 
experimental discrepancies, however, we can anly conclude40) that the life- 
time and exclusive decays measurements require AMs” 100 MeV, while higher 
values for the QCD scale are preferred by the experimental leptonic branching 
ratios. Future high precision experiments will certainly clarify the present dis- 
agreements among different measurements, allowing for a more accurate de- 
termination of A\Ms. In this respect, it would be useful to get a better under- 
standing of the large a $correction appearing in the vector an axial-vector 
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spectral functions. Since the same perturbative QC.D-calculation can be tested 
with two different experimental measurements, hadronic tau-decay width and 
e+e-+ hadrons cross-section, the comparison of the results obtained from the 
two experiments, including the a$- term, will provide some light on the pheno- 
menological role of this large higher-order contribution. At present, the 
r\rS-Values extracted from both experimental measurements do, in fact, 
agree. 

6. SUMMARY - 

The semileptonic tau-decay data is an ideal laboratory for studying the 
algebra of currents of QCD. Information on both vector and axial-vector cur- 
rents can be obtained in a very clean experimental environment. The invariant 
mass distribution of the final hadrons, in addition to provide clear signals of 
resonance structures, allows to test different aspects of strong interaction 
phenomena (non-abelian chiral-anomaly, Weinberg sum rules, pion mass dif- 
ference , -..), which are related to the global chiral symmetry properties of 
QCD. Information on the structure of the QCD-vacuum is directly obtained 
from appropriate weighted integrations of the hadronic spectrum. Perturbative 
QCD predictions can also be compared with the measured total hadronic tau- 
decay width, to infer a value for the QCD-scale //MS . Therefore, accurate 
experimental information on the decay modes of the tau, coming from future 
high-luminosity machines, will become an extremely useful tool for our un- 
derstanding of the strong interactions. 
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