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ABSTRACT

The semileptonic tau-decay provides useful information on the algebra
of currents of QCD. It is shown how good experimental data on the decay
modes of the tau lepton, can be used for testing fundamental aspects of the
strong interactions (chiral symmetry, resonance structures, vacuum conden-
sates, A\ yg,...)

1. INTRODUCTION

Besides its intrinsic interest as a sequential lepton in the standard mo-
del of electroweak interactions, the tau is the only presently known lepton
heavy enough to decay into hadrons. Therefore, its semileptonic decays appear
to be an ideal laboratory for studying the hadronic weak currents in very clean
conditions, Contrary to the well known e*e™—y*— hadrons process, which
only tests the electromagnetic vector current, the semileptonic tau-decay
modes offer the possibility to study the properties of both vector and axial
currents.

Within the standard model the t lepton decays via the W-emission dia-
gram shown in figure 1. Since the W coupling to the charged current is of
universal

w—

Fig.1. Feynman diagram for the decay of the t lepton.

strength,
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there are five equal contributions (if final masses and gluonic corrections are
neglected) to the 1~ decay width. Two of them correspond to the decay modes
vie~ Ve and v i V,, while the other three are associated with the three possible
colours of the quark-antiquark pair in the final v.dsl mode
(dg=cosdcd +sindcs). Hence, the branching fractions for the different chan-
nels are expected to be approximately,

Br (17— v 1"v)) ~_1 _20%, (l=e,p)

1
5
g (1.2)
I'(t~—v, +hadrons) ~ N_= 3,

Ry

T(t—— v e V,)
which should be compared with the formal*)> experimental averages V

Br (17 =y € V) = (17.520.4)%
Br (m—v i v,) = (17.8+£0.4)%

Ry = (3.54:0.08)% . (1.3)

The agreement if fairly good. Notice that the measured tau hadronic width pro-
vides strong evidence for the colour degree of freedom. We will discuss later
whether the QCD dynamics is able to explain the difference between the mea-
sured value of Ryyand the lowest order prediction Ry =N, .

The tau—-decay partial width for the leptonic modes t — v v (I=e, p)is

easily computed, with theresult (neutrinos are assumed to be massless)
2 5
GFmt

— f(m /m3)r (1.4)

F(t——*vt 1~ ;])':

2r

where f(x)= 1-8x+8x>~x*~12x? Inx. The factor r takes into account radiative

corrections not included in the Fermicoupling constant Gg, and the non-local
structure of the W-propagator. It has been estimated?’ tober=0.9960.

Eq. (1.4) gives arelation between the tau lifetime and the electronic

branching ratio,
Br (1= —v e V) =1, /(1.600 1072 sec). (1.5)

Using the world average measured t~lifetime!), 1. =(3.04 £ 0.09)10"'3sec, one
gets the prediction

Br (17— vie " Vo)ep = (19.020.6)%, (1.6)

which is about two standard deviations higher than the measured branching
fraction of (17.5 £ 0.4)%. Given the present limit3) of m, <35MeV (95% C.L.),
this small discrepancy cannot be due to a non—zero value of the tau neutrino

mass.
The agreement is slightly better in the muonic.channel. Taking into

account the phase space mass correction, f'(mﬁ/m%) =0.9728, one predicts

=) The number quoted for Ry results from averaging three different values
which slightly disagree. See section five for details.
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Bri{t™= v = v,),, = (18.5£ 0.6)%, (1.7)

which compares reasonably well with the measured valueof (17.8 + 0.4)%. Note,
however, that in both cases the experimental branching fractions are below the

values extracted theoretically from the measured lifetime.

The semileptonic decay modes of the tau, 1= v H™ , probe the matrix
element of the left—handed charged current between the vacuum and the final
hadronic state H7, 3

<H7|dsye(1-vg)ul0>. (1.8)
For the decay modes with lowest multiplicity, 1= v .~ and 17— v<K7, the rele-
vant matrix elements are already known from the measured decays
n~= y~v,and K= u~ V.. The corresponding t-decay widths can then be pre-
dicted rather accurately. Including the computed electroweak radiative
corrections 2, one gets

(1= vy m™) - 0.601 Ir'i(t——v:K") - 0.0399,. (1.9)
Tt —vie Vo) Tt~ vee Ve)

These numbers are in good agreement with the experimental ratios, which are
measured to be (0.617 £ 0.037) and (0.038 £ 0.011) respectively!?).

Inthe Cabibbo allowed modes with JP=17 the matrix element of the vec-
tor charged current canalso be obtained, through an isospin rotation, from the
isovector part of the e* e~ annihilation cross—section into hadrons, which mea-
sures the hadronic matrix element of the I=1 component of the electromagnetic

current, O = - \
<HO{(uyru~-dyed)|l0> . (1.10)

The tau-decay width for these modes is then expressed as an integral over the
corresponding e*e” cross—section?),

2
_ - mey I=1
[(x=>veV7) _ 3cos?8c f ds (m2-$)2(m2+2s)s Oneae _yo (s). (1.11)
TF'(t™ > vre~ve) 2na2m8 Jo

Electroweak radiative corrections have been estimated?) to increase this result
by 2.36%. Taking thisinto account, the availablee*e™ 2n, 4t data implyS)

TltT=vemn® 9 [exp.: 1.27 £ 0.07]
F(T——")Vten-\je)
- —art e O
T2 ve 2727 7% 0281 [exp.: 0.25+0.09] (1.12)
r(t_'—’\)t e_Ve)
F'(r™> v x=379) = 0.056 [exp.:O._l7xO.lS] )

(i~ — vie ve)

wherethe measured experimental ratios?!) are given inside brackets for compa-
rison. The predictions agree quite well with the data. Note, however, that the
extraction of the isovector part from the measured e*e~ cross section requires
model dependent assumptions (e.g. p—w interference has to be taken into
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account) and moreover, there is an additional systematic error due to the over-
all normalization of the e*e~ annihilation cross section.

The exclusive tau—deca?;s into final hadronic states with JP=1% or Ca-
bibbo suppressed modes with JP=1-cannot be predicted with the same degreeof
confidence . We can only make model-dependent estimates with an accuracy
which depends on our ability to handle the strong interactions at low energies.
However, that just indicates that the decay of the tau lepton is providing us
new experimental hadronic information . Due to their semileptonic character,
the hadronic tau—-decay data can be then a unique and extremely useful tool to
learn about the couplings of the low—lying mesons to the weak currents. In the
following, I will try to give a few examples to show how tau-decay data can be
used for testing different aspects of strong interaction phenomena.

2. EXCLUSIVE SEMILEPTONIC DECAYS

At low momentum transfer, the coupling of a state H of n pseudoscalar
mesons to the V~A current can be estimated in a very easy way by using the
effective chiral realization of QCD, which, to lowest order in derivatives and
masses, is given by (fx = 93.3 MeV)6)

Letrong ._V__L_ F2Tr (0, Uo* U*) +uTr(MU+U'M) . (2.1)

The 3x3 special unitary matrix Uzexp(i¥2 ®/f, ) incorporates the octet of pseu-
doscalar mesons, which appear as Goldstone coordinate fields P(x),

lo* n n* K’
Y2 6
- - ® 7 KO
A - 7T -—+ —
Dx) = = P(x) = vZ 6 ;o (2.2)
Y2 - -0 2
K K -
3
M denotes the diagonal quark mass matrix, M=diag (my, mg, mg), and
o, fAmie _ fZmi. _ fPmho (2.3)
2(my+mg)  2(my+ mg) 2(mg+mg)

In this realization, the vector and axial currents are given by

V. = i(03,0)+ O(0%)

iNc e [ov0 0% Po + O(0%)
—— — fuvap
672 n2f3 ]

2
3 fr

(2.4)

Ap =72 fro,® - [0, (@3.0) ]+ O(@%)

~Ne  cvap[ov0 om0 (03P0) s 0(00]
1272 fi
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where the odd-parity pieces, proportional to the Levi-Civita pseudotensor,
come from the Wess-Zumino-Witten term of the chiral lagrangian?’, which
takes into account the non-abelian chiral anomaly of QCD.

Tau decays involve, however, high values of momentum transfer, where
the formulae given above no longer apply. Nevertheless we can still construct
areasonable model, taking into account the low energy theorems contained in
the chiral realization. The amplitudes

Tulpyopn) = <H|(V=A), exp(ifd%z L i ong(2))|0> (2.5)

obtained from eqs. (2.1)-(2.4) must be continued from threshold by suitable fi-
nal state interaction enhancements, which take into account the possible reso-
nance structures present in each channel in a phenomenological way8.9) | This
can bedone by weighting the contribution of a given set of pseudoscalars, with
definite quantum numbers, with the appropriate resonance form factor. The
requirement that the chiral predictions must be recovered below the resonance

region, fixes the normalization of these form factors to be one at zero invariant
mass. | take the standard ansatz

M2
Fr(s) = R : (2.6)
Mz -s-iMgTRr(s)

where M (I;) denotes the mass (width) of the resonance R.

Let's try to apply this model to the decay t-— vy ®* nw~ mw~, which is
expected to be dominated by the JP=1%a1(1260) (before A1(1270)) resonance.This
mode has been measured in recent years by four different experiments which
have extracted the mass and width resonance parameters from a fit to the total
invariant mass distribution of the three pions. The published results are shown
intable 1. For comparison 1 have included the Data Particle Group values for the
aj—parameters, before (86} and after (88) the tau—decay measurements.

Table 1

Br (17> vemr ) (%) Ma,(MeV) [q;(MeV)
DELCO!® 5.01.0 1056 + 30 476 + 140
MARK ItV 7.8+0.9 1194 + 20 462 + 70
ARGUS?2 5.6+0.7 1046 = 11 521 z 27
MAC!® 7.8+20.8 1166 + 21 405 = 79
PDG '8614) 8.1+£0.7 1275 + 28 316 = 45
PDG' 881" 6.8+0.6 1260 = 30 300 - 600

The measured three pion effective mass spectrum is practically identi-
cal in the four experiments. However, the use of different parametrizations
when fitting the data, leads to same disagreements in the extracted a;— para-
meters. Nevertheless, all results clearly indicate a lower mass and a substan-
tially larger width for the a; resonance, than the ones obtained from hadronic
experiments (PDG’ 86 values). More refined fits of the same data, including the
q2-dependence of the a;—-width which significantly shifts the value of the reso-
nance—mass, have given theresults shown in table 2.
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Table 2

Reference Ma;(MeV) Fay(MeV)

(15) 1235 + 40 400 £ 100
(16) 1250 = 40 600 = 100
(17) 1260 = 25 396 £ 43
(18) 1180 £ 50 450 2 100
(19) 1220 = 15 420 = 40

Using the chiral information, the hadronic amplitude for the ™ v r*n n~
decay takestheform(q=p_+p! +p2 ,u=(p +p! )2, t=(p, +p2 )2)

T,(p.. pl, p2) :3.@ Fa; (q2) (gu\,—q“q\,/qz)[(p*_ pl)V Fo(u) + (p *-p?;)"'Fp(t)],

3 fy (2.7)
where the effect of the p and a; resonances has been already included. There
are additional JP=0"contributions, but they are suppressed by a factor m2/qg?2
and therefore are completely negligible (notice that thisimplies Br(t™— =n~ o o)
~Br(17T=n*n"n7)).

We can Yse this amplltude for making a fit to the three pion mass spec-
trum, taking Ma, and [, = I‘a,(Ma, ) as free parameters. However, the normali-
zation is completely fixed by the rigorous low—q2 behaviour extracted from the
chiral realization. Thus, once Ma, and Ia; have been fitted, eq. (2.7) gives us
a non-trivial prediction for thebranching ratio. Figure 2 compares the obtained
q2-distribution29), taking Ma,;=1200 MeV and Tay=475 MeV, with the ARGUS
data!2). The result is surprisingly good; fitting the a,-mass and width to agree

b T —en'n'n"v
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Fig. 2. Comparison between the measuredl?) q2-dlatribution for the
TT— vix*n~n— decay, and the theoretical result obtained from eq.
(2.7), with Mg4 = 1200 MeV and I‘.1—47S MeV. The normalization
corresponds to pt_(qz)- 1/1:ImHA (q2)12 (see eq. (3.2)).
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with the shape of the invariant mass distribution, one finds that the normali-

zation of the resulting curve is also in nice agreement with the experimental
measurement. It is important to point out that, if one takes the old (86) par-

ticle data group values!4) for the resonance parameters, not only the shape of
the predicted spectrum disagrees with the data but, in addition, the normali-
zation at the maximum of the distributionis off by a factor of two.

The same approach has been applied to estimate the branching frac—
tions for t—-decays with eta particles in the final state?’. These modes where
expected , two years ago, to provide some light on the so called missing
one-prong problemS2.21) (the sum of exclusive one—-charged-particle modes is
smaller than the measured inclusive branching fraction to one-charged-
prong). Using the available information on the relevant resonances, one gets
the results?) shownin table 3, inorder of increasing branching ratio.

Table 3
X~ Br (== v x™)
n—nO0 (0.2-0.3)%
K~ 10-4
/1 KO®/K n© 10~5
- n9OxO 1076
K K©° 10~7
/K™y 1079

The inclusive production of n particles in 1 decay is therefore dominated by the
1= Vv~ mode, with an expected?.22) branching ratio of (0.2-0.3)%. This
rulesout apossible explanation of the missing one-prong branching fraction in
terms of modes with nparticles23), Nevertheless the decay into the final nn—=©
mode is interesting by itself. Due to the even G-parity of the 1, this decay can
only proceed through the vector current, which requires a vertex with a Levi-
Civita antisymmetric tensor. The needed coupling is provided by the Wess-Zu-
mino-Witten term of the chiral lagrangian, which gives rise to the odd-parity
pieces in the currents given in eqs. (2.4). Therefore, the detection of the
1T vyt~ n® mode would constitute an experimental signal of the non—abelian
chiral anomaly of QCD9.24),

3. CURRENT CORRELATORS
It is convenient to consider the two point correlation functions

iJ\d“x equ <OIT(VF(X)U VV(O)”)|0>
= (-guvq2+qeqV) H{,‘)(qZ)il + qeqV ]’I;O)(q,z)ii
ifd‘*x eiax <O|T(A*(x);; A¥(0);)|0>

. ) .
= (—guvq2+ quqv) HX)(qZ)U +qHqV H;O (q2)3) , (3.1)
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associated with the vector V¥(x), =E])Y&iq-,and axial A¥(x) Fqjy¥rsq; currents.
Here i, jdenote the quark flavours and the two different Lorentz structures in
ther.h.s. correspond to J=1and J=0 angular momentum. We can write down a
spectral decomposition for these correlators

o 1 I H(l O)(S)”
f ds T mv.a + substractions. (3.2)
o s—q2-is

My, (q2)ii=

The associated spectral functions govern the 1 — v+ hadrons decay width,
which can be written as an integral over the invariant mass of the final
hadrons4’,

IF'(t=—v_ +hadrons)

Ry

T(tm—>v eV, )

m2
=12n[ Tds (- =) {(1+ 28 )1mH‘”(s)+me‘°>(s)}, (3.3)

o mtz mg m'r

where (r=0,1)

ImIIF) (s) = cos28 {lml'[‘v” (sfZ+1m T2 (s)? }

+sinzsc{xmn‘v”(s)'i*+1mnf’(s>‘3}. (3.4)

In the chiral limit (m,=mg=m =0), the longitudinal vector spectral
functions vanish, while the corresponding axial ones have only the pole contri-
bution from the Goldstone bosons, (f~f _~93.3 MeV)

L (92 = D 1m 1 (0)13< 0
TC

(3.5)
1 0oy, az2_ 1 (0) 13 _ npe2
—T-r-lmHA (S) —-;'r'ImHA (S) —2f S(S),

In principle the vector and axial spectral functions are calculable in
QCD, but in practice we are still very far away of being able todo thatin the low
energy region. The semileptonic tau decays offer the possnblhty to obtain
experimentally these spectral functions, for s-values below m2, from the total
invariant mass distribution of the final mesons. This analysis has been done by
Peccei and Sol425) ijn the Cabibbo allowed sector, where quite good data is
already available. From a fit to the t*— v w*n0, *—>y nitn*n~ and
12—y nrn*n-n0 s-distributions, measured by the ARGUS collaboration!2.26),
and assuming the 12— v n+nO%x0 contribution to be equal to the tx—v;n*x*n~
one, they obtain the spectral functions shown in figure 3. Their notation corre-

sponds to M

vis)=21Imlly (s)'% ; a(s)=2ImII{(s)™" . (3.6)
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Fig. 3. The hadronic vector (v=v,x + v,t) and axial-vector (a=a,x) spectral
functions, extracted from semileptonic t—decay data, as a function of s.
The dashed lines denote the regions where the error bara start to be too

big for the fit to be truatworthy. (Taken from ref. (25)).

The two and three pion contributions are clearly dominated by the ¢ and
a; peaks respectively, while the four pion contribution, which gives the bulk of
the vector spectral function in the high s-region, doesn’ t show any prominent
resonance structure. As one approaches the kinematical limit s=m?, it becomes
difficult to extract a reliable value for the spectral functions; thus the fit has
rather large errors above s=2 GeV2

We know from QCD that these spectral functions should have the
asymptotic behaviour a(s)=v(s)=1/2n = 0.159. Therefore, large variations in
both v(s) and a(s) are still to be expected at higher values of s. The axial spec-—
tral function, in particular, should substantially increase. Nevertheless, the
experimental information summarized in figure 3 is good enough for testing
some QCD expectations, at least qualitatively.

More than twenty years ago27), Weinberg derived two sum rules for the
vector and axiakvector spectral functions, using some general arguments re-
lated to the expected asymptotic behaviour of the strong interactions. In our
notation, they read

f ds = Im (TIy’ + TIV” ~T -TI ) ts)i=0
(3.7)

o
f dss_l-lm(H{,”—H,i”)(s)ij=0.
o T

Although these sum rules were derived before the development of QCD, one
can show28) that they are actually approximately valid within QCD in the chiral
limit. There are nowadays more refined versions of the Weinberg sum rules,
which take into account the precise form of the leading short—-distance beha-
viour of the current—correlators at large s—-values and the explicit chiral sym-
metry breaking effects due to the finite quark masses28,29) However, since
my,d<<m¢(3.7) are precise enough for analyzing the (i, j) = (1, 2) spectral func-

tions.
Another classical sum rule, which makes use of these spectral

functions, is the formula derived by Das et al. for the n*- 0 electromagnetic
mass difference30), In the chiral limit and making use of the second Weinberg
sumrule, it can be written as
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[s9]
mn*_mn0=—-——ﬁ——f dSS—l (H(” H\(,”)(s)’zlns (3.8)
161tmnf§ o

Assuming that the spectral functions are saturated by the p and a;mesons and
using the KSFRrelation, Das et al obtained30)
2
m,.-mo ~~% Mo o5 Mev, (3.9)
41 my
in amazing agreement with the experimental value!) of 4.6 MeV.

Eqs. (3.7) and (3.8) involve integrations of the relevant spectral functions
from zero to infinity. However, the asymptotic behaviour predicted by QCD
implies that the contributions of the very high s-region are completely negli-
gible. Therefore, it is interesting to see how well one does when one inte-
grates up to a maximum limit so. Using the spectral functions shown in figure
3, Pecceiand Soléd have studied the integrals2s)

SO
l1(so) =f ds (v(s)—als))
o

SO
I2(so) =f ds s (v(s)—al(s))
(o]

3a

Alr*-n0) = —v——
32n2 mnfﬁ

f ds s Ins (a(s) —v{(s)). (3.10)

"Theirresultsare plotted in figures 4, as function of the integration cut off so.
The crosshatched area represents the region in which the determination of the
spectral functions is less certain. Remarkably, all three quantitles approach
the closest to the predicted asymptotic values (4nfZ = 0.11 GeVZ 0 , and 4.6
MeV, respectively) at the sameso=2 GeVZvalue. This suggests in f'act that the
vector and axial-vector spectral function contributions cancel each other
already at quite moderate values of s. It is for this reason that the resonance
saturation formula (3.9) works so well. Note however that using the exact
form of v, and a3, extracted from the semileptonic tau-decay data, the con~
tribution of v4 israther important. Neglecting this term, one would obtain25)
A(r*— m®) =7 MeV at so = 2 GeV2 rather than about 4.6 MeV. It is also clear
from the figures, that torecover the expected QCD predictions it is ne- cessary
that eventually, for some higher region of s, a(s)>v(s), to compensate the
wrong behaviour observed in the so-range between 2 and 2.5 GeV2 That was
already apparent in figure 3, because at s= 2.5 GeV2a(s) is much smaller than

vis).
By making a Laplace transform of eqs. (3.7)22ane can exponentially

suppress the contribution of high values of s to the Weinberg sum rules. The
truncated integrals are then25), for moderate values of the Laplace parameter
(K ~l—1 5 GeV<), essentially independent on whetherone cuts off them at sq=2
GeVZor 5,=2.5 GeV2 The Laplace transform version of the first Weinberg sum
rule appearstobeingoodagreement with theasymptotic QCD prediction23). It
remains, however, a larger discrepancy for the case of the second sum rule,
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which can be understood since the additional power of s makes the exponential
suppression less effective and therefore the contribution of the tail integral
(s>so) isnot negligible in this caseZ5),

02001 S RS R S S SN B BN BN S S T 000
< F ' i & g
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- : : Gl :
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© : ] - :
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£ 03L0 — 00366
- C 3
0325} 00183
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Fig. 4. Behaviour of the 1* (a) and 2"° (b) Weinberg sum rules and
the electromagnetic plon masas difference (c), as a function of
the upper limit of integration s,. The dashed areas use v ,xt
in the questionableregion of figure 3.

(Taken from ref. (25)). -



4. VACUUM CONDENSATES

At high values of q2 one can use perturbative QCD to evaluate the two
point correlators defined in eq. (3.1). Moreover, non-perturbative effects,
which are parametrized by a set of vacuum expectation values of quark and
gluon fields, can be included as power corrections to asymptotic freedom3?!).
For the JP=17, (i, j) = (1, 2) correlator, one gets31.32) (Q%= -q2)

2
41t2H§/1)(-Q2)12=‘l"?2 *%‘ +O(mﬁ_d/Q2)
a (v2) Q? 2
Con<05,>
.5 2 2n”v , (4.1)
n=2 (Qz)n

where the leading non—perturbative correction is given, in the m,=mg=m limit,
by31)

c4<o4>v=~§<ascz>+4n2fn <tu + dd> (4.2)

] (0) . . .
Due to the conservation of the vector current, Hv (q2)12 is zero in the i—

sospin limit. For the axial two-point function, the Goldstone nature of the pion
makes difficult to separate the O and 1*correlators, soitis better to work with
the sum '

Ma@2'2=TT"q2"2+ 1 (g2)'2. (4.3)

The perturbative QCD expression for HA(qZ)Izis the same as that for [Ty (q2)'?
except for small quark-mass corrections. The leading non—-perturbative term
is given by31

Ca<0474 = 5 <a G ~ 4n2m <Tu+d d>. (4.4)

Note that the difference between the dimension four non-perturbative terms in
the axial and vector correlators, can be estimated through PCAC,

C4<04>, - C4<04>y = -872m <uu+dd>

= 8n2f2m2 ~ 0.013 GeV* . (4.5)

Information on these non-perturbative power corrections can be

obtained experimentally, by using Finite Energy Sum Rules (FESR) in the way
derived in reference (33):



So
CanN+2<04N+2>V A= 41r2j ds s2N L lmHv,A(S)’z
- T
o

2N+1
-So
—m— [1 + F4N*2(SO)]

{4.6)
So
CaN+4<O4N+4a>V,A = -47t2f ds s2N*1 —11—{ Im[ly a(s)!?
o]
2N +2
o 30 " [1+Fyn.also) ]
2N+2
Here, N=0,1,2, ..., and the functions Fp(so), with p=4N+2 or p=4N+4, contain

the perturbative a -corrections. Selecting the appropriate moment of the
spectral function distribution, eqs. (4.6) project a specific combination of va-
cuum expectation values of operators of agiven dimension*),

The 1.h.s. of eqs. (4.6) are obviously independent of the chosen value
for the asymptotic freedom onset sg. In practice, the r.h.s. will give a so-de-
pendence either if sp is not high enough for the perturbative calculation con~
tained in Fp(sg) to be reliable, or if the hadronic information contained in the
spectral function is not good enough in the whole s<sgyregion. The predictions
from the FESRshouldonly be trusted provided they are stable against reason-
able changes of sg inside some duality region, where both informations (QCD

and hadronic) are simultaneously valid34). This dualitzv re;ion can be deter-—
mined by using the l[owest moment N=0. Since the m“/Q<corrections to the

two-point correlators, formally equivalent to a C2<02> effective contribution,
are negligible, one has

472 o
1+ F2(sg) = Iglsgly o= —= f ds L 1m [Ty a(s)'2, (4.7)
T

So Jo

which gives an eigenvalue equation to fix the parameter sg. The more accurate
the parametrization of the experimental data is, the wider the duality
spo-region, solution of the above equation, will be. Once sg is determined, one
may proceed to estimate the values of Cp<Op> using eqs. (4.6).

Figures S5to 8 show the results obtained in reference (35), using the ha-
dronic spectral functions extracted from the semileptonic 1~decay data?®’ The
duality test of eq. (4.7) is plotted in figures 5 and 7 for the vector and axial vec-
tor spectral functions respectively. Curve (a) corresponds to the behaviour of
the hadronic integral in the r.h.s. of the FESR (4.7), while curve (b) gives the
smooth sg—dependence given by the QCD |.h.s. In the vector channel one finds
aduality region inthe range 1.44 GeV2< sy <1.75 GeV?2 , while for the axial-vec-
tor channel the duality region is somewhat wider, 1.75 GeV2< sg < 2.25 GeV? .

») This nice feature disappears when two-loop corrections to the Wilson coef-
ficients Cp are taken into account.
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Solving next the FESR (4.6) for values of sq inside these regions one finds the
results shown in figure 6 for the vector channel and in figure 8 for the axial-
vector one35). Curves (a), (b) and (c), correspond here to C4<O3>v A ,
C6<06>v,Aand Cg<Og>y arespectively. The vacuum condensates turn out to
be reasonably stable against changes within the duality region. Note that the
axial-vector results are more stable, and therefore less inaccurate, than the
ones obtained in the vector channel. Numerically the results are

C4<0,4>y = (0.025-0.11) GeV* ;. Cy<O4>4 =(0.045-0.10) GeV*

Ce<0¢6>v = =(0.16 —0.32) GeV® ; Ce<0e>a = (0.16 — 0.28) GeV?®

Cg<Og>v = (0.28 - 0.55) GeVB ; Cg<Og>a = -(0.36 -~ 0.54) GeV 8,
(4.8)

Eqs. (4.2), (4.4)and (4.5) allow to extract the value of the gluon con-
densate both from C4<04>v and C4<04>4,
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(0.03 - 0.12) GeV*, (vector channel)

I <ag G2> = { 4 -

3 (0.04 - 0.09) GeV?®, (axial-vector channel) . (4.9)
Itisrewarding that the use of two independent sets of experimental data lead
to essentially the same value for the gluon condensate. This result is consi-
stent with the ones obtained using experimental information on charmonium or
e*e~cross sections36),

The values found for the dimension d = 6 four—-quark condensates
C6<06>v, A indicate, in agreement with earlier claims, a clear deviation from
the standard vacuumm saturation approximation, which predicts3!) C<Ogq>v
~=(7/11) C6<06>A ~ —0.06 GeV®. On the other side, the rather large values
obtained for the dimension d= 8 condensates and the clear sign difference bet-
ween Cg<0g>y and Cg<Og>a could have important theoretical consequences.
This condensates are usually assumed37’to be dominated by four—gluon ope-
rators, which should give the same contribution to the vector and axial-vector
channels. This suggest that other contributions apart from gluons could be re~
levant.

The values of the vacuum condensates can also be extracted by using
Laplacetransform sum rules3!). Because of its exponential weight, the Laplace
transform places more emphasis on the low energy part of the hadronic spec-
tral function, whichis a clear advan.age. However, now all of the condensates
appear in the same sum rule, in contrast with the FESR where vacuum conden-
sates of different dimensionality obey uncoupled equations. Although higher
dimensional condensates become factorially suppressed by the Laplace trans-
form, this may be not enough to safely neglect them when trying to determine
the condensates of lowest dimension. In practice, one needs to truncate the
1/Q2 power series in eq. (4.1) keeping only a finite number of terms. This intro-
duces an unavoidable bias in the sense that the values obtained for the conden-
sates will depend on how many terms of the series have been taken into
account. Using the axial spectral function extracted25) from semileptonic tau
decay data, this dependence has been analyzed in reference (38), where it is
shown that, although the results change substantially with N when only a
small number N of terms are included, the procedure is convergent with in-
creasing N. The obtained results38)

£4<9474 . (0.28 £0.01 £0.05) GeV~2
C6<06>A

L6<06>A  _ _(5.51+0.0320.08) GeV~2 (4.10)
Cg<0g>Aa

are in agreement with the determination35) with FESR.

The results (4.8) and (4.10) have been derived using the computed per-—
turbative contributions to the [[y A(q2) correlators up to third order terms.
The a3-correction to these two—point functions has been calculated recently
and it has been found to be rather large3?). It would be interesting to analyze
how much the condensate values change when this higher order correction is
included.
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5. DETERMINATION OF AmMs

We have already seen in eq. (3.3) that the semileptonic decay width of
the tau lepton is governed by an integral, over the invariant mass of the final
hadrons, of the vector and axial-vector spectral functions. In fact, eq. (3.3)is
just a combination of different moments of the spectral functions of the type
appearing in the FESR (4.6), with sg=m?. Only the moments s©, s2and s3 appear
inthe dominant }J=1channels; therefore, the semileptonic tau decay width will
only get non—perturbative contributions from condensates of dimension 6 and
840) Including49’) the four—loop calculation of reference (39}, the ratio Ry is
given,inthe MS-scheme, by 40.41)

Rpt=3 ry {1+ as{me) + 520 ( asg {mq) )2+104.O( as{myq) )3+
s b s

(5.1)

Cg<Og>v+a
...2 ,
mé m3

C2<02>v.a 3 Ce<O6>vaea
> -

T

m

where?) r;; =1.0215+ 0.0050 is the estimated electroweak correction (including
the [Vyal?+ | Vusl? >~ 0.9979 mixing factor), and C2<02>v. A stands for the small
perturbative quark mass effects40),

Since the leading non-perturbative condensates of dimension four
doesn’t contribute to Ry, non-perturbative effects are suppressed by additio-
nal powers of the tau mass. Moreover, as shown in eqs. (4.8), there is a strong
cancellation between the vector and axial-vector contributions to the dimen-
sion six and eight condensates. Taking also into account information on the va-
cuum condensates coming from other sources39), the total effect of non-per-
turbative contributions to Ry was estimated inreference (40) to be inthe range
-0.6% to ~1/3%.

The most important corrections are due to the radiative gluonic contri-
butions, which are of positive sign as needed to reproduce the experimental va-
lue of Ry. The large coefficient of the a3-term is, however, rather uncomfort-
able, since it can cast some doubts on the meaning of the perturbative QCD-
calculation. The question is to know what is going to happen with the uncalcu-
lated next—order contributions. Note, that this problem has nothing to do with
the tau mass scale; it is the aS~correction to the vector and axial-vector spec-—
tral functions, which happens to have a large coefficient. Therefore, the same
comments apply to the QCD-prediction for the total e*e~ hadronic cross sec-—
tion at higher energies. On the other side, this large a3~contribution makes the
predicted value of Ry strongly dependent on the QCD scale AMS. One could
then use the semileptonic tau decay to obtain a determination of Axfs 49). Var-
ying /AMS (defined in the 3-flavour theory) from 100 to 300 MeV, one gets the
results shownin table 4. In order to have a feeling on the possible error due to
the uncalculated higher order perturbative corrections, I have computed Ry in
two different ways. The values shown in column (a), have been obtained49’
expanding the strong coupling constant as(m¢) in powers of as=
-1/B1In(m<//A\Ms), and keeping the contributions to Ry up to order at. In co-
lumn (b), the complete three~loop calculation of as(m¢) has been used to eva-—
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luate the different terms appearing in eq. (S.1). The quoted errors are an esti-
mate of the small uncertainties associated with the non-perturbative contri-
butions.

Table 4
AMS Ry
(MeV) (a) (b)
100 3.40+£ 0.0t 3.34+£0.01
200 3.67 £ 0.0t 3.51 £ 0.01
300 4.03x£0.01 3.71 £ 0.01

The differences between the two columns clearly indicate that the uncertainty
of the theoretical predictions is completely dominated by the effect of the

large a3-correction, and grows for increasing values of AXfS.

The ratio Ry is related to the total tau—decay width through the equa-
tion

T(17)=T(1—— vr e~ Ve) {1.9728+RH}. (5.2)

So, Rpycan be obtained experimentally either from the leptonic branching ra-
tios, or from the lifetime measurement, if the theoretical prediction (1.4) for
the leptonic width isassumed. One finds

3.74 £+ 0.13 , from Br{t™— vie~ Vve)
Ru |, = ¢ 34920.12 , from Br{tm—v.pg~vy)  (5.3)
3.29 2 0.17 . from lifetime ,

which shows another time the discrepancy between the lifetime and leptonic
branching ratios measurements, mentioned in section 1. One can also estimate
Ry by directly summing the measured exclusive widths of the different ha-
dronic channels; this gives a smaller value49), Ry=3.2220.10, reflecting the
well known missing one-prong problem. If one does a formal average?’ of the
three Ry-valuesineq. (5.3}, one gets

Ru =3.54+£0.08 , ’ (5.4)

exp.

which seems to favour a value of /ARfg around 200 MeV. Given the present
experimental discrepancies, however, we can anly conclude49 that the life-
time and exclusive decays measurements require A\ms~ 100 MeV, while higher
values for the QCD scale are preferred by the experimental leptonic branching
ratios. Future high precision experiments will certainly clarify the present dis—
agreements among different measurements, allowing for a more accurate de-
termination of AMs. In this respect, it would be useful to get a better under-
standing of the large a3-correction appearing in the vector an axial-vector
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spectral functions. Since the same perturbative QCD-calculation can be tested
with two different experimental measurements, hadronic tau—-decay width and
e*e~— hadrons cross-section, the comparison of theresults obtained from the
two experiments, including the a3-term, will provide some light on the pheno~-
menological role of this large higher-order contribution. At present, the
AMs-values extracted from both experimental measurements do, in fact,
agree.

6. SUMMARY

The semileptonic tau—decay data is an ideal laboratory for studying the
algebra of currents of QCD. Information on both vector and axial-vector cur-
rents can be obtained in a very clean experimental environment. The invariant
mass distribution of the final hadrons, in addition to provide clear signals of
resonance structures, allows to test different aspects of strong interaction
phenomena (non~abelian chiral-anomaly, Weinberg sum rules, pion mass dif-
ference, ...), which are related to the global chiral symmetry properties of
QCD. Information on the structure of the QCD-vacuum is directly obtained
from appropriate weighted integrations of the hadronic spectrum. Perturbative
QCD predictions can also be compared with the measured total hadronic tau-
decay width, to infer a value for the QCD-scale /ANfSs . Therefore, accurate
experimental information on the decay modes of the tau, coming from future
high—-luminosity machines, will become an extremely useful tool for our un-
derstanding of the strong interactions.
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