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ABSTRACT 

The application of QCD to the inclusive semihadronic decay rates of 

the 7 are described. It is argued that the QCD corrections, both 

perturbative and nonperturbative, can be systematically calculated within 

the framework of the short-distance expansion. Phenomenological evidence 

is presented that indicates that M, is safely within the region of 

validity of the QCD predictions. 

The inclusive semihadronic decay rate of the 7 lepton is 

conveniently expressed in terms of the ratio 

R- I'(T- -+ Y, + hadrons) 
l?(7- + vr + e- P, ) * (1) 

A naive estimate [l] of R can be obtained by ignoring the strong QCD 

interaction and approximating the numerator by the decay rate into v7 plus 

a free quark-antiquark pair, either da or su. The result is 

R = Nc(tvudi2 + IVusiz) = 3 . (2) 

The simplest way to determine this ratio experimentally is to measure 

the branching fraction for the 7 to decay into electrons (Be) or muons 
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(BP - .973 Be ). The ratio R is then given by 

- 1 973 B, R-l ; 
e 

(3) 

The direct measurement of Be yields R - 3.68 + -13 [2]. Given the 

universality of lepton couplings, R can also be measured indirectly by 

measuring the T lifetime and this indirect measurement yields R - 3.32 + 

.16 [2]. While they differ by two standard deviations, both of these 

measurements are reasonably close to the naive prediction (2). Since the 

accuracy of both determinations would be improved dramatically at a Tau- 

Charm Factory, this presents the challenge of understanding the 

corrections to (2) and predicting the ratio R. 

The corrections to the naive prediction (2) can be classified into 

electroweak, perturbative QCD, and nonperturbative QCD. The electroweak 

corrections are small but not negligible, because they contain a large 

logarithm log(Mz/M,). The coefficient of this logarithm has been 

calculated by Marciano and Sirlin [3], and a calculation of the constant 

under the logarithm is in progress [4]. Using only the logarithm, the 

electroweak corrections have been estimated to be +2% [3]. 

The QCD corrections to R may be classified into perturbative and 

nonperturbative. For the perturbative corrections, one simply aprroximates 

the numerator of (2) by the decay into du or se plus gluons and additional 

qq pairs, ignoring the fact that the QCD interaction binds these quanta 

into color singlet hadrons. The correction has been calculated by Narison 

and Pith and by Braaten to order os3 [5,6], with the result 

Rpert = 3 ( 1 + a,O + 5.20( "(M,) I2 i- 104.( a,(M7) I3 >. 
7r n 'x (4) 

When the running coupling constant of QCD as determined from e+e- 

annihilation (71 is evolved down to the scale M,, we find os(M,) = .33 5 

.08. The as3 correction is comparable to the as correction, which is 

around 10%. This gives us reason to worry that higher order corrections 

may be even larger, so that the perturbation expansion breaks down 

altogether. There are two points that should be made about the large as3 
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correction in (4). First, if the perturbation expansion is indeed 

breaking down, it is not because the scale M, is too small. The running 

coupling constant is still reasonably small at the scale M,; the large 

=S 3 correction is due to the large coefficient and would still be 

uncomfortably large if M, had been much larger. Second, the calculation of 

the ~~~ correction was based on a calculation to order as3 of the ratio R 

for e+e- annihilation [8] which has not yet been confimed by an 

independent calculation. However if we take the calculation (4) at face 

value, the perturbative prediction for R is 3.85 (+.50/-.35), with most of 

the uncertainty arising from the order as3 term. This is much larger than 

the experimental uncertainty in R, so a much more precise determination of 

oS is required before (4) would have any predictive power. Alternatively, 

we can exploit the sensitivity of (4) to the value of czS to obtain a 

precise low energy determination of as. 

The nonperturbative QCD corrections can be organized into an 

expansion in powers of l/M,*. We first express R as an integral over the 

hadronic invariant mass s from s - 0 to s - Mr2. The analytic structure 

of the integrand is then exploited to express R as an integral around the 

contour IsI = MT2 in the complex s plane [9]. In this form, we can apply 

the short-distance operator product expansion to expand the integrand in 

powers of l/s and to systematically separate the perturbative short- 

distance effects from the long distance effects, which have 

nonperturbative contributions. The long-distance effects are factorized 

into vacuum expectation values of local operators such as <&>, <GGVGP,,>, 

and <&,6~$> [lo], which can either be determined phenomenologically or 

calculated using a nonperturbative method such as lattice gauge theory. 

The coefficients of these matrix elements can be calculated perturbatively 

in terms of Q~(s). After applying this expansion to the integrand and 

evaluating the contour integrals over the invariant mass s, the final 

result is an expansion in powers of l/MT2 whose coefficientsare matrix 

elements multiplied by functions of as(MT). Incidentally, this 

justifies the choice of M, for the scale of oS in (4), because the 

perturbative QCD corrections are simply the coefficient of the unit operator 

in this expansion. 
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This method was first applied to 7 decay by Schilcher and Tran [ll]. 

In addition to making predictions for inclusive decays of the 7 [12,5], 

this method can be used to test the Weinberg sum rules [13] and to 

determine the values of nonperturbative matrix elements such as <GpvG+- 

and <z&7&> [14]. These specific applications are discussed in more detail 

by Pith [15]. I will simply describe the quantities that can be 

calculated using this method and discuss some objections that have been 

raised concerning the reliability of these QCD predictions. 

The short-distance expansion method can only be used to predict 

inclusive quantities that are summed over all final states with a definite 

set of quantum numbers and are suitably smeared over the hadronic 

invariant mass s. For example we can calculate R itself and the first few 

moments of the invariant mass distribution, 

2 

<sn> - 'ds s" 2 . (5) 

We can not calculate the invariant mass distribution dR/ds itself because 

it is sensitive to nonperturbative resonance effects which can not be 

treated systematically using the short-distance expansion. 

We can also resolve the predictions for R and <sn> into the 

contributions from different currents, namely into vector (V) versus axial 

vector (A), and into nonstrange (dfi) versus strange (su). For example, 

the predictions for the vector and axial components of the nonstrange 

contribution to R are 

RV 2 557r a 2 a,<GG> 
dii - Iv,dl I i Rpert - 8 (51 4' 

+ 7 128~~ ~~<$phj~> 
9 v 3 , (6) 

A 
Rdfi = Iv,dl 2 

( $ Rpert + 48x2 ( m,,+md)<&> 
MT4 

- 11 y v 3. (7) 

The l/MT8 and higher order terms are assumed to be negligible. Note that 

the matrix element as<GG>, which in many applications provides the largest 

nonperturbative correction, is suppressed by two powers of as. The 

contribution from the matrix element <&> is also small, because it is 

suppressed by the light quark masses. Therefore the only significant 
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source of nonperturbative corrections is the b-quark matrix element 

-a&j*>. The difference Rv - RA is particularly sensitive to the value of 

this matrix element. 

The predictions for R-3"> can also be decomposed into the two 

possible values J - 0 and J = 1 for the total angular momentum in the rest 

frame of the hadrons. Unfortunately this can not be done for R itself, 

because it is sensitive to long distance effects associated with the 

single pion decay mode which can not be resolved into J - 0 and J = 1 

within the short distance expansion. 

One common objection to applying QCD to 7 decay is that the mass 

scale is to small to allow reliable predictions. However, the derivation 

of the short-distance expansion for R indicates that the appropriate mass 

scale is M, = 1.8 GeV. For some applications of QCD like deep inelastic 

scattering, this scale would be uncomfortably low. But this is because 

the l/Q2 (higher twist) corrections to deep inelastic scattering can not 

be estimated reliably since they depend on 2-parton correlation 

distributions which are not easily extracted from experimental data. For 

r decay, the corrections up to l/MT6 can be computed systematically in 

terms of a few phenomenologically determined matrix elements. 

Another common objection is that the 7 decay spectrum is dominated by 

resonances, which can not be treated in a short-distance expansion. We 

certainly could not use such an approach to calculate dR/ds as a function 

of s for individual decay modes. Summing over decay modes to get 

inclusive decay rates tends to smooth out all but the lowest and most 

dramatic resonances, and it is an experimental observation that QCD 

predictions seem to be valid above these resonances. By constructing 

weighted integrals of dR/ds, such as R and <sn>, the resonances are 

smoothed out even further and the QCD predictions can be extended to lower 

energy. Of course the QCD predictions would certainly break down if M, 

was too small. The question we must answer is whether the physical value 

4 - 1.784 Gev is in the region of validity of the predictions. 

This question can be answered by comparing the QCD predictions with 

the data as a function of M,. While we cannot actually vary the mass of 

the 7, we can determine the dependence on M, of the da vector current 
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component of R by using isospin symmetry to extract dR/ds for this channel 

from data on e+e' annihilation into 2, 4, and 6 pions 1161. The ratio R 

for this channel can then be calculated as a function of the lepton mass 

and the result is shown in the figure below. The curVe plotted in the 

form of data points is the experimental prediction, with the size of the 

error bars reflecting the statistical error in the data only. There is 

also a systematic error on the order of 10%. The upper solid curve is the 

prediction (6), with the nearby dotted curves representing upper and lower 

error bars due to the uncertainties in as and in the matrix element 

-+jyhp$> . Near the 7 mass, the uncertainty is due almost entirely to Q~. We 

have not included the controversial as3 term given in (4). For 

comparison, the lower solid cume is the prediction (7) for the axial 

vector current. The shape of the theoretical prediction for the vector 

current agrees very well with the experimental data for lepton masses 

above 1.3 GeV. The corrections to the asymptotic prediction R - 3/2 are 
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also reasonably small in this region. We conclude that the physical value 

MT - 1.784 GeV is well within the region of vali-dity of the QCD 

predictions. 

Further progress in the applications of QCD to decays of the 7 lepton 

is certainly possible. On the experimental front, it requires accurate 

measurements of the invariant mass spectrum dR/ds for all possible 

hadronic final states. A Tau-Charm Factory would be ideal for such 

measurements. On the theoretical front, the most urgent problem is to 

repeat the calculation of R for e+e' annihilation to see if the large 

order as3 correction is correct. Improved methods for calculating the matrix 

elements such as <$&j> that appear in the nonperturbative QCD corrections 

would also be of great value. 

This work was supported in part by the Department of Energy under 

contract DE-AC02-76-ER022789. I thank I. Phillips for his help in 

preparing the figure. 
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