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ABSTRACT 

An essential consideration in the design of “tau-charm factory” storage rings is the 
control of coupled-bunch instabilities. In this paper, examples of calculations of the growth 
times of these instabilities are presented. With careful attention to the I”,c~i~t! of the RF 
and feedback systems, it should be feasible to control these instabilities and achieve the 
desired luminosity. 
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1. INTRODUCTION 

An essential consideration in the design of high-current “tau-charm factory” storage 

rings is the control of the potentially severe coupled-bunch insta.bilities. In this paper, 

calculations of the growth times of these instabilities are given for some representative 

examples. 

There exist various approaches to calculating coupled-bunch instabilities:‘2 especially 

for bunches placed symmetrically about the ring circumference. The method used here3’4 

was recently developed for calculating coupled-bunch instabilities in damping ring designs 

for future linear colliders, and was motivated partly by the fact that in such rings the 

bunches are not symmetrically placed about the circumference. In storage ring designs, 

the bunches are usually symmetrically located, so the instabilities could be calculated 

either by the method used here or by the formalisms that are specific to the symmetric 

case. 

The present method is very efficient provided the number of bunches is not too large, 

and is used here to study the Jowett design: which has 24 bunches. Its main utility, 

when detailed knowledge of cavity modes is available, may be to study the dependence 

of the instability growth rates on the RF system modes, so that one can tune the fre- 

quencies of these modes to minimize coupled-bunch instability growth rates. Also, one 

could quantitatively study the effects of missing bunches on the growth rates, if this were 

desirable. 

The Voss design6 with 444 bunches and an average beam current of about six amperes, 

will probably require cavity feedback to strongly reduce the transverse and higher-order 

longitudinal cavity modes, as well as tuning of the frequencies of individual modes. With- 

out such measures, the growth rat,es of the instabilities are much too fast to be handled 

by beam feedback. 

The goals of this paper are (1) to obtain estimates of the expected longitudinal and 

transverse coupled-bunch instability growth rates, for the Jowett design with a reasonable 

example of an RF system, (2) to get some quantitative idea of the sensitivity of the growth 

rates to variations in the higher-order mode frequencies. 
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2. METHOD OF’ CALCULATION 

A “normal-modes” approach is used to obtain the n modes of coupled oscillation of n 

rigid bunches. Each such mode has its own coherent frequency R, the imaginary part of 

which gives the growth or damping rate of the mode. Details of the method are discussed 

in Refs. 3 and 4; only a brief summary will be given here. 

Let the n rigid bunches, each with N particles per bunch and design energy &, 

travel at the speed of light c in a ring with design orbital period 7’0 and momentum 

compaction factor cy. The equation of longitudinal motion, that is, the equation for the 

time displacement ri of bunch i from its synchronous position, is 

(24 

where w,,i ‘I’ is the perturbed synchrotron frequency of the 2 bunch, which will be approxi- 

mated by the unperturbed synchrotron frequency wS. Lij is the distance between bunches 

i and j (positive for i < j, negative for i > j). The parameter Xi can be used to include 

the effect of damping due to, for example, synchrotron radiation. The rj,, denotes the 

offset of bunch j, upon its passage through the cavity 4 turns ago. 

The longitudinal wake W(z) is taken to be a sum of modes in the RF cavities, of the 

form 

(2 > 0) 
(2 < o>, (2.2) 

Here k, is the wavenumber w/c of the cavity mode m, the Wm are constant coefficients, 

and z/c is the time since the passage of the bunch that excited the wake in the cavity. 

Let us look for solutions in the form of normal modes of oscillation 

Ti(t) = UifZeiRt a (2.3) 

Here the ai are constants, and R is the coherent frequency of the mode. Then the problem 

can be reduced to solving the following eigenvalue equation for the coherent frequencies 
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$2 and their corresponding eigenvectors: 

Ma’=Ra’ , 

where the elements of the matrix M are given by 

Ai 
llfij = (Ws - iy)bij - 

Xij(-iws) 

2w, ’ 

where a’ is the vector (al, . . . . a,), and the functions xij(s) are given by 

ikmeiknaLi, 

1 _ e(ikmc-3)To 

ik’ ,-ikk L;, 
- 

1 _ z-ik$c-s)To 1 (i > j> 
ik,e ik,L,, e(ik,c-s)To 

1 - e(ikmc-s)To 

ik* ,-ik:Li, e(-ikkc-s)To 
m - 

1 _ e(-ik&c-s)To 1 (i5.i) . 

(2.4) 

(2.5) 

(2.6) 

Note that, the km are complex to account for damping of the wake. 

2.1. TRANSVERSE CASE 

The equation for the horizontal or vertical displacement xi of bunch i is 

2; + XiTi + W,$,lTi = $f$ $2 W'(Lij + qTOC)Xj(t - qT0) . (2.7) 
J=l q=o 

Here the betatron frequency wp = c/p, where 6 is the average beta function (i.e., a 

“smooth focusing” approximation is used). 
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I Energy I 2.5 GeV I 

Ring circumference I 376.99 m 

Momentum compaction factor I 0.026 

Harmonic number I 1872 

RF frequency I 1.5 GHz 

I Synchrotron frequency 9.54 x 104secW1 I 

I Average beta. function I 9.68 m I 
The transverse wake function is of the form 

WI(%) = Cm W$ sin( kmz) o (2 ’ 0) 
(2 < 0). (2.8) 

One may then solve for the coherent frequencies and eigenvectors in the same form 

as in the longitudinal case, the only difference being that xij(s) must be replaced by 

i,ikmLtj 
1 _ e(ikmc-s)To 

i,-ik;L,, 
- 

1 _ ,(-ik&c-s)To 1 0-j) , 

- 
1 _ ,(-ik&c-s)To 

3. THE JOWETT DESIGN 

(2.9) 

For definiteness, the examples given here will be based upon the Jowett design. The 

parameters used are shown in Table 1. 
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Results are given for the case of an RF system using superconducting “single-mode 

cavities” 7 The RF system consists of ten such cells. The frequencies and loss factors of the 

modes for the 1 GHz cavities calculated by Weiland were scaled to the desired accelerating 

w-mode frequency near 1.4887 GHz (this gives the harmonic number 1872). In addition 

to the fundamental accelerating mode, there is a single “higher-order” longitudinal RF 

mode, and there are also two transverse RF modes in this cavity. The other longitudinal 

mode has a scaled frequency of about 1.42 GHz; the loss factor of this mode is about twice 

that of the accelerating mode, but since it is a O-mode, the contributions of different cells 

tend to cancel, so only one cell’s worth of this mode was included. The scaled frequencies 

of the two transverse modes are about 1.58 GHz and 1.87 GHz, and the loss factor of the 

1.87 GHz mode is about three times larger than that of the 1.58 GHz mode. The Q’s 

of the modes are about 30000. The parameters of the Weiland single-mode cavities at 1 

GHz (not yet scaled to our desired value near 1.5 GHz) are shown in Table 2. 

1 Table 2: Weiland Single-Mode Cavities (Unscaled, 1 GHz) 

Longitudinal modes: 

Frequency (r/Q)Weiland Loss factor Q 

(MHZ) 
959. (O-mode) 

1005. (r-mode) 

(f--u 
83. 

40. 

(V/PC) 

0.2501 

0.1263 

31000. 

30000. 

I Transverse modes: 

Frequency (r/Q)Weiland Loss factor 

(MHZ) P/cm2) (V/PC) 

1066. 0.23 0.03254 

1261. 0.71 0.1188 

Q 

31000. 

29000. 

The program LTMODES, which is used to solve for the eigenvalues and eigenvectors 

of the matrix given by (2.5), re q uires the loss factors of the RF cavity modes as inputs. 

Weiland’s longitudinal r/Q (per cell, units 52) was converted to longitudinal loss factor 
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~0 according to: 

where w denotes the circular frequency of the RF mode. Weiland’s transverse r/Q (per cell 

per transverse dimension squared, units R/cm2) was converted to transverse loss fa.ctor 

~1 according to: 

wa2 r Kl=- - 
0 2Q * Weiland 

(3.2) 

Here a is the iris radius. 

The coherent frequencies R of the 24 modes of coupled-bunch oscillation were cal- 

culated, for both the longitudinal and transverse directions. The results for the most 

important coupled-bunch modes are given for several examples, in Figures 1 through 4. 

The vertical axis of each plot is the imaginary part of the coherent frequency of the 

coupled-bunch mode being plotted. Note that the growth time (or damping time, if Im R 

is negative) of the mode is just l/lm $2. 

In doing these calculations, the damping parameters Xi were set to zero, thus the 

growth rates are “bare” growth rates without coherent damping or synchrotron radiation 

taken into account. 

The variation of the growth rates as a function of an overall scaling of the RF cavity 

mode frequencies was examined, to get an idea of the variation to be expected as these 

cavity mode frequencies are tuned. In reality the RF modes in a given cavity could be 

individually tuned if desired, in particular the accelerating mode should be tuned to a 

particular value independently of the other modes in the cavity. However, for the present 

calculations, this overall scaling factor was applied to all the RF modes in the cavity. This 

overall scaling corresponds to the horizontal axis of the plots, which shows the ratio of 

the fundamental cavity mode frequency (longitudinal or transverse, depending on whether 

the plot is for a longitudinal or transverse coupled-bunch mode) to the orbital frequency. 

Thus for the longitudinal case, this ratio is near 1872, the harmonic number. 

Another factor should be taken into consideration in calculating the growth rates, 

namely the possibility of a cavity-to-cavity spread in the frequencies of corresponding 
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higher-order modes. Such a spread reduces the largest instability growth rates if it is 

sufficient to keep the resonance lines in different cavities from overlapping. For compari- 

son, results are shown without this spread in Figures 1 and 2, and with a *O.l% spread 

uniformly distributed among the ten cavities in Figures 3 and 4. The horizontal axes in 

Figures 3 and 4 are of course derived from the average frequency of the spread. 

The effect of finite bunch length uZ, which gives a factor edk2“f in the strength of a 

wake mode with wavenumber k, has been ignored here. For bunch length N 1 cm and 

wavenumbers k of about 30 to 40 m-r, it would give a correction of the order of only 10% 

in the growth rates, which is too small to be of interest here. 

In Figure 1, the longitudinal coupled bunch instability is examined. In part (a) 

is shown the growth and damping of the barycentric mode of oscillation (the mode in 

which all 24 bunches oscillate in phase). The vertical axis is Im R, where R is the 

coherent frequency of the barycentric mode. The horizontal axis is the ratio WRF/W() of 

the fundamental longitudinal RF mode frequency W&T to the bunch orbital frequency 

ws G l/L”0 When this ratio is just below the harmonic number 1872, the barycentric 

mode is Robinson-damped; when the ratio is just above 1872, the barycentric mode is 

Robinson-antidamped. One would of course choose to run with the ratio just below 1872, 

to take advantage of the Robinson damping. There are 23 other coupled-bunch modes of 

longitudinal oscillation, and in part (b) the largest Im 0 of these modes is plotted as a 

function of WRF/WO. The largest growth rates in part (b) are overly pessimistic, because 

no cavity-to-cavity spread in the higher-order RF mode frequencies has been included yet. 

In Figure 2, the transverse coupled bunch instability is examined. The largest growth 

rates in this example are again too pessimistic, since no cavity-to-cavity spread in the 

higher-order RF mode frequencies has been included. The horizontal axis is the ratio 

w~‘/wo between the lowest transverse RF mode frequency wt’ and the bunch orbital 

frequency WIJ Z l/To In part (a) is plotted the growth rate Im Q of the mode with 

the largest growth rate, and in part (b) th e g rowth rate Im 0 of the second-fastest mode. 

Figure 3 is the same as Figure 1, except that a spread of &O.l% in the frequency of 

the higher-order longitudinal mode has been included. The growth rates in Figure 3(a) 

are essentially the same as those in Figure l(a), since the barycentric mode growth or 
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damping rate depends almost entirely on the Robinson tuning or detuning of the funda- 

mental accelerating mode, which is assumed to be tuned to the same frequency in all RF 

cells. Comparing Figure 3(b) with Figure l(b), one sees that the spread in cavity mode 

frequencies has reduced the large values of instability growth rates of the other oscillation 

modes. This is because the higher-order cavity resonances that drive these modes do not 

overlap as much. 

Figure 4 is the same as Figure 2, except that a spread of ztO.l% in the frequencies of 

both transverse cavity modes has been included. The largest values of the growth rate, 

seen in Figure 2(a), are reduced due to the spread in wake mode frequencies to give the 

result shown in Figure 4(a). 

4. CONCLUSIONS AND ACKNOWLEDGMENTS 

From Figure 3(b) and 4(a), one sees that the longitudinal and transverse instability 

growth times are about 0.1 to 0.2 msec. These growth times include the effects of a cell-to- 

cell spread in RF mode frequencies, but do not include coherent damping or synchrotron 

radiation damping effects. At the tau-charm factory energy, it is reasonable to expect 

that instabilities with such growth rates can be controlled with a well-designed feedback 

system. However, it will certainly be worthwhile to carefully design the RF cavities to 

minimize their higher-order modes. 

I thank R. Ruth, P. Wilson, M. Zisman, E. Paterson, K.Bane, J. Jowett, and G. Voss 

for interesting discussions related to this work. 

363 



REFERENCES 

1. For a review, see A.W. Chao, in Physics of High Energy Particle Accelerators, AIP 

Conference Proceedings, 105, American Institute of Physics, New York (1983). 

2. M.S. Zisman, S. Chattopadhyay, and J.J. Bisognano, “ZAP User’s Manual”, LBL- 

21270 and UC-28 (Dec. 1986). The program ZAP uses the formalism of B. Zotter 

and F. Sacherer, and that of J.M. Wang to calculate symmetric coupled-bunch 

instabilities. 

3. K.A. Thompson and R.D. Ruth, I.E.E.E. Particle Accelerator Conference (1989), 

SLAC-PUB-4872. 

4. K.A. Thompson and R.D. Ruth, in prepara.tion (1989), SLAC-PUB-4962. 

5. J.M. Jowett, CERN/LEP-TH/87-56 (1987) and CERN/LEP-TH/SS-22 (1988). 

6. G.A. Voss, J.M. Paterson, and S.A. Kheifets, these proceedings, and SLAC-PUB- 

5011. 

7. T. Weiland, DESY note (June 1983). 

364 



Fig. 1 (a) Inverse growth (or damping) rate for the barycentric mode, and (b) inverse 
growth rate of the fastest longitudinal mode (excluding barycentric mode) of coupled- 
bunch oscillation. The horizontal axis is the frequency of.the accelerating mode divided 
by the orbital frequency. No spread in the higher-order mode frequency is included. 
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Fig. 2 Inverse growth rates for the (a) fastest growing, and (b) second-fastest grow- 
ing, transverse mode of coupled-bunch oscillation. The horizontal axis is the frequency 
of the lowest-order transverse wake mode divided by the orbital frequency. No spread in 
the transverse wake mode frequencies is included. 
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Fig. 3 (a) Inverse growth (or damping) rate of the barycentric mode, and (b) inverse 
growth rate of the fastest longitudinal mode (excluding barycentric mode) of coupled- 
bunch oscillation. The horizontal axis is the frequency of.the accelerating mode divided 
by the orbital frequency. A spread of &O.l% in the higher-order mode frequency is 
included. 
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Fig. 4 Inverse growth rates for the (a) fastest growing, and (b) second-fastest grow- 
ing, transverse mode of coupled-bunch oscillation. The horizontal axis is the frequency 
of the lowest-order transverse wake mode divided by the orbital frequency. A spread of 
=tO.l% in the transverse wake mode frequencies is included. 
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