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History of TCF machine design 

January 1987 Informal working group on CERN Ski Club bus. 

May 1987 Jasper Kirkby proposes a T-charm Factory as an experiment 

on the CERN site. Storage ring integrated with detector design. 

Exploits LEP pre-injector system and existing infrastructure. 

J. Kirkby, “A T-charm Factory at CERN”, Proc. In,tern,ntioruzZ 
Sch,ool of Physics with, Low- Enxrqy Antiproton,s, 2nd cour’,w, 

’ ’ Erice 1987, CERN-EP/87-210. 

Autumn 1987 First version of machine design completed-many 

discussions at Geneva English School bus stop. 

Concept for micro-,0 quadrupoles from Tom Taylor (CERN). 

J.M. Jowett, “Initial design of a T-charm Factory at CERN” CERN 

LEP-TH/87-56 (1987). 

January 1988 Ski-bus working group re-convenes. 

June 1988 Improved storage ring design presented. 

J.M. Jowett, “The T-charm Factory storage ring”, 1st European 

Particle Accelerator Conference, Rome, CERN/LEP-TH/88-22 

(1988). 

1988 Jasper Kirkby continues to promote the idea, interest emerges 

from particle physicists- but not enough machine designers-in 

several places, 

1989 New input from several directions-this workshop. 

Carrying coals . . . 
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Design requirements 

Wanted: 

l Centre of mass-energy fi = 3-5 GeV. 

0 Luminosity L N 1O33 cm-“set-l at top energy. 

l Comparable luminosities at the lower energies. 

C oncessions: 

a High bunch frequency (20 MHz) OK. 

l Quadrupoles close (80 cm) to IP. 

l Beam pipe getting “large” inside detector. 

Initial design adopted double storage ring with a single 
interaction point. Vertical separation scheme used to 
ensure head-on collisions. 

(Similar to some B-factory ideas.) 
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Design approach 

Luminosity formula: 

“Unperturbed” beam-beam tune-shift parameter: 

Maximum luminosity by arranging 

with the largest possible current + “optimal coupling” 

Bunch current determined by 

* Lo = 
Kkb(l + ~12)fo(E/m~,c2)2E 

T,"P,; 
E2 

n: 2/O' 
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Luminosity at high intensity 

Near beam-beam limit, eYC is blown up somewhat. 

Take into account with simple prescription: unperturbed cYO set to 

I - 0.06; then beam-beam effect reduces the effective value to - 

Zurated c N 0.04. 

More realistic value for luminosity: 

L = LoyYJ, 

YO 

Numerically, with bunch separation s1, = c/,f&o, 

[Ll cm-2sx -‘I = 1.09 x 1oZ8 
(1 + K2)[EO/GeV]2[c,/rn] 

[Sdml L/71!, brll ’ 

Next we must evaluate parameters p,’ and sb which are critical in 

determining the performance of the machine. Then we will know the 

emittance which is required. 
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Micro-/? insertion and separation scheme 

Original design used doublet focussing to achieve /?I; = 1 cm with two 

superconducting quads protruding into detector. 
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Lower limit on sb set by the accumulated length of the micro-b 

insertion and the separation scheme which follows it. 

zF detector design allows closest quadrupole at LI = 0.8 rrl with an 

outer radius not greater than 20 cm. 

We can envisage (idea of Tom Taylor) a pair of 0.6 m long iron-free 

superconducting quadrupoles (Ql and Q2) whose coils can be 

separately rotated inside their common cryostat to compensate the 

betatron coupling induced by the 4 tesla detector solenoid. 

Total length of (half) insertion is 7.6 m including generous 5 m for 

electrostatic separator plates (VSEP). 
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Optics of the experimental insertion 
and dispersion suppressor (doublet focussing) 

Maximum quadrupole strength IKI = 2.8me2 

*field gradient dB/dz N 24 T I& at 2.5 GeV. 

Design quad for SOT m-l, take half-aperture 50 mm 

+max field in winding BQ~ N 2.5 T 

should be achievable without a cold bore. 
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Separation scheme 

Vertical electrostatic separator plates separate beams and avoid 

parasitic interactions between bunches of the opposing beams. 

Limit on the electric field: E, 5 2 MV m-l. 

Simulations done for LEP @. Myers) found separation criterion 

Satisfied comfortably with sb N 15 rn (safety margin). 

Aspects requiring study: 

Backgrounds collimators, masks, etc., geometry? 

Heating of plates by irradiation, parasitic mode losses. Outgassing, 

breakdown. 

Coupling impedance this machine must have a very low 2. 

Amplification scheme for initial separation angle by downstream 

magnetic separation with quadrupoles and weak bending magnets. 

RF-magnetic separators should also be considered. 
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Triplet focussing 

Initial design had too small a ration pi/p,* = 0.01/O.& 

Reduced to p,* = 1 cm, p; = 20 cm. 
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Larger horizontal beam size in Q2. 
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Injection and geometry 

Initial design was largely determined by injection scheme using LEP 

Pre-Injector (LIL, EPA, PS) which can supply beams at all the 

operating energies of the TCF. 

A voiding ramping is ver,y 2mp or tan t ! 

(3.5 GeV) 

hall (bat 181) 1 

Possible layout on the CEHN site 
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Choice for bunch separation and circumference: 

s&F] = s6Fs1 = 11,.?)s nl. 

Circumference C[KF] = 3C[ ]/ PS 5 a owing efficient injection into each II 

of 24 rcF bunches in 3 cycles of the CPS. 

Smaller circumferences are possible, but we preferred to keep flexibility 

in the optics. 

Some 15-21 CPS cycles needed to reach design intensity. 

Fast injection kickers, rise to flat top and fall in 3T’l, Y 10-i IMY:. 

WlGGLERS/OISPERSION SUPPRESSION/ 

r-CHARM FACTORY RF CAVITIES 

BUNCH SPACING 

FOOO CELLS/ 
INJECTION REGION INTERACTION REGION INJECTION REGION 

(1.6m FREE SPACE) 

ELECTROSTATIC 
(VERTICAL) SEPARATORS 

/MINI p INSERTION 

DISPERSION CONTROL/ 
VERTICAL BENOW 

MONOCHROMAT3R OPTICS 

Schematic design of the storage rings 
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I I 

Optics 

l Bending radius p = 12 rn small to provide rapid damping between 

beam-beam collisions. 

l KF lattice built from modules with basic length l/GO of 

circumference. 

l Each arc contains 12 normal FODO cells with bending angle 

6 = 7r/15, phase advance 11, = 60”. 

l Four dispersion suppressors, each consisting of 3 cells with 

8 = r/30. 

l Experimental straight section contains matching cells, separation 

scheme and the micro-p insertion. Space kept for weak vertical 

bending magnets, electrostatic separators, skew-quadrupoles, etc. 

Try to maintain flexibility to adjust 7 at IP for monochromator 

scheme. 

l Utility straight section (also dispersion-free) has several matching 

cells (Q-adjustment, control of optical functions etc.), space for 

the RF system, wigglers etc. 

l Need to add injection insertions. 

l Variation of Jz (damping partition number) by use of Robinson 

wigglers + keep emittance constant ( L cc E ). Also reduces 

energy spread (shorter bunches). 
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RF system 

Initial design proposed to use Cornell/CEBAF type 1.5 GHz 

superconducting cavities. 

Advantages: 

l High frequency and voltage to shorten bunches. 

l Shape gives lower coupling impedance and higher mode losses than 

with copper cavities. 

l Available “off the shelf” (almost). 

Disadvantages/unknowns: 

l Cryogenics (but we have it for the SC quads anyway). 

l Input power couplers for > 150 kW per beam in radiation power 

alone. 

l Higher-order mode couplers for high beam current and small bunch 

separation. 

Needs study . . . 

Bunch-lengthening can be avoided if IZ/nl is small. 

Coupled-bunch instabilities --T, need feedback systems (narrow-band 

scheme of Kohaupt?). 
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Bunch-lengthening 

Imperative to keep a2 2 pi = 1 cm. 

Natural bunch length oz = 6mm as I --+ 0. 

Boussard criterion for absence of turbulent bunch-lengthening: 

where peak current in bunch is IP = ccN~~/~/%~, N 550A. From 
this parameter list --\, IZ/nl 5 0.2 0 (we had higher a, in 
earlier versions). 

Can we design vacuum chamber and RF system to get 
such a low impedance? 

l 

small number of superconducting cavities, 

very smooth chamber 

At lower energies, N&i!3 is constant 
* need to keep O& constant 
* controlled blow-up with wigglers or simply allow bunch 
to lengthen itself. 
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Parameter list at top energy 

Energy E 2.5 GeV 
Zircurnference c 376.99 m 
Bending radius P 12 m 
3-function at IP P 

* 
.T 0.2 rn 

P 
* 
?/ 0.01 m 

Bctatron coupling 2 

c;x 

0.045 
Bctatron tunes N 10.8 

0, 2i 9.4 
Mornentum compaction (1 0.0189 
Natural emittancc CT 251 nm 
Energy spread CT, 5.66 x 1o-d 
Energy loss per turn Uo 0.285 MoV 
Damping times 7, 35 mscc 

‘?J 22 mscc 
T& 9 msec 

RF frequency 1.459 GHz . f RI< 
R,F volt age h 1: 5 MV 
R,adiation power P rr7d 0.309 MW (2 beams 
Synchrotron tune (R.F2) Qv9 0.106 
Stable phase angle 4 s 3.3" 

Number of bunches h 24 

r.rn.s. bunch lengt,h 0.z 6.1 mm 
Total beam current I 537 rnA 
Particles per bunch Nb 1.75 x 10” 
Beam sizes at IP 4 232 /Lm 

6 2i 10 jf,rn 
Beam-beam parameter &, 0.04 

Luminosity L 1.2 x 1O33 cnl-2scc-* 
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Variation of parameters with energy 
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Conclusions 

l Exploiting the best of current technology and 
experience, the xF~ design luminosity appears feasible. 

l The design needs more work, especially on the separator 
scheme and instabilities. That’s what we’re here for . . . 

l New or unconventional ideas (crab crossing, round 
beams, monochromator schemes, . . .) should also be 
considered-there has to be a first time! 

l The KF has many of the same problems as hadron 
supercolliders on a smaller scale- it could serve as a 
test-bed. 

l Efficient, high-performance injection system is vital! 
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