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History of 7cF machine design

January 1987 Informal working group on CERN Ski Club bus.

May 1987 Jasper Kirkby proposes a 7-charm Factory as an experiment
on the CERN site. Storage ring integrated with detector design.
Exploits LEP pre-injector system and existing infrastructure.

J. Kirkby, “A 7-charm Factory at CERN", Proc. International

School of Physics with Low-Enerqy Antiprotons, 2nd course,
Erice 1987, CERN-EP/87-210.

Autumn 1987 First version of machine design completed—many
discussions at Geneva English School bus stop.
Concept for micro-f3 quadrupoles from Tom Taylor (CERN).
J.M. Jowett, “Initial design of a 7-charm Factory at CERN" CERN
LEP-TH/87-56 (1987).

January 1988 Ski-bus working group re-convenes.

June 1988 Improved storage ring design presented.

J.M. Jowett, “The 7-charm Factory storage ring”, 1st European
Particle Accelerator Conference, Rome, CERN/LEP-TH/88-22
(1988).

1988 Jasper Kirkby continues to promote the idea, interest emerges

from particle physicists—but not enough machine designers—in
several places.

1989 New input from several directions—this workshop.
Carrying coals . ..
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Design requirements

Wanted:

e Centre of mass-energy /s = 3-5 GeV.
e Luminosity L =~ 103 cm~2sec! at top energy.

e Comparable luminosities at the lower energies.

Concessions:

e High bunch frequency (20 MHz) OK.
e Quadrupoles close (80 cm) to IP.

e Beam pipe getting “large” inside detector.

Initial design adopted double storage ring with a single
interaction point. Vertical separation scheme used to
ensure head-on collisions.

(Similar to some B-factory ideas.)
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Design approach

Luminosity formula:

k2

= 2 * %
e f()(fmay

kyI? ( 1)
= - K+ —1.
ame? foe, [B:8; \ w
“Unperturbed” beam-beam tune-shift parameter:

(Is/efo)r.p,

= 2 (Bofmed)o: + 7)oy

Ly

Maximum luminosity by arranging

gyo - gmo

with the largest possible current = “optimal coupling”

_ & _ 1By

Bunch current determined by

. QWCfO(EO/meCQ)EmfyO
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Luminosity at high intensity |
Near beam-beam limit, €,. is blown up somewhat.

Take into account with simple prescription: unperturbed &, set to
€40 = 0.06; then beam-beam effect reduces the effective value to
saturated ¢ ~ 0.04.

More realistic value for luminosity:

L — Log(gyO)’
Eyo
_ mhy(1 + k%) fo(E /m.c?)?
N ris;
Numerically, with bunch separation S, = ¢/ fyks,
(1 + k3)[Ey/GeV]? e, /m]
[Su/m][; /)

Next we must evaluate parameters 3, and Sy which are critical in

L EmEyoE(&yo) :

[L/cm™%sec™!] = 1.09 x 10%

determining the performance of the machine. Then we will know the

emittance which is required.
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Original design used doublet focussing to achieve 7 = 1 cm with two
superconducting quads protruding into detector.

'frEF detector
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Lower limit on S, set by the accumulated length of the micro-f3
insertion and the separation scheme which follows it.

7cF detector design allows closest quadrupole at L; = 0.8 m with an
outer radius not greater than 20 cm.

We can envisage (idea of Tom Taylor) a pair of 0.6 m long iron-free
superconducting quadrupoles (Q1 and Q2) whose coils can be
separately rotated inside their common cryostat to compensate the
betatron coupling induced by the 4 tesla detector solenoid.

Total length of (half) insertion is 7.6 m including generous 5 m for
electrostatic separator plates (VSEP).
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Optics of the experimental insertion

and dispersion suppressor (doublet focussing)

Maximum quadrupole strength |K| = 2.8 m™*
= field gradient dB/dz ~ 24 Tm™! at 2.5 GeV.

Design quad for 30 T m™!, take half-aperture 50 mm

=>max field in winding Bg; ~2.5T

should be achievable without a cold bore.
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Separation scheme

Vertical electrostatic separator plates separate beams and avoid
parasitic interactions between bunches of the opposing beams.

Limit on the electric field: £, <2MV m~ .

Simulations done for LEP (S. Myers) found separation criterion
Ay 2 20, = 2/e.B;.

Satisfied comfortably with S, ~ 15 m (safety margin).

Aspects requiring study:

Backgrounds collimators, masks, etc., geometry?

Heating of plates by irradiation, parasitic mode losses. Outgassing,
breakdown.

Coupling impedance this machine must have a very low Z.

Amplification scheme for initial separation angle by downstream
magnetic separation with quadrupoles and weak bending magnets.

RF-magnetic separators should also be considered.
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Triplet focussing

Initial design had too small a ration g3, /8; = 0.01/0.8.
Reduced to §; = 1cm, B: = 20 cm.
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Extra quadrupole before separator, separator length reduced to 4 m.
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Larger horizontal beam size in Q2.
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Injection and geometry

Initial design was largely determined by injection scheme using LEP
Pre-Injector (LIL, EPA, PS) which can supply beams at all the
operating energies of the 7cF.

Avoiding ramping is very important!

t-CHARM FACTORY
{2.5+2.5 GeVY)

ISR
tunnel

SPS
{20 GeV)

LEP

50+50
~100 » 100 2¢Y )

Possible layout on the CERN site
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Choice for bunch separation and circumference:

Sp[rcF]

I

Circumference C[rcr] = 3C|[rs]/5 allowing efficient injection into each
of 24 7cF bunches in 3 cycles of the CPS.

Smaller circumferences are possible, but we preferred to keep flexibility
in the optics.

Some 15-21 CPS cycles needed to reach design intensity.
Fast injection kickers, rise to flat top and fall in 27, ~ 104 uscc.
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Schematic design of the storage rings
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Optics

e Bending radius p = 12 m small to provide rapid damping between
beam-beam collisions.

o 7cF lattice built from modules with basic length 1/60 of
circumference.

e Each arc contains 12 normal FODO cells with bending angle
6 = 7 /15, phase advance ;. = 60°.

e Four dispersion suppressors, each consisting of 3 cells with

6 = /30.

e Experimental straight section contains matching cells, separation
scheme and the micro-3 insertion. Space kept for weak vertical
bending magnets, electrostatic separators, skew-quadrupoles, etc.
Try to maintain flexibility to adjust i at IP for monochromator
scheme.

e Utility straight section (also dispersion-free) has several matching
cells (Q-adjustment, control of optical functions etc.), space for
the RF system, wigglers etc.

e Need to add injection insertions.

e Variation of J, (damping partition number) by use of Robinson
wigglers = keep emittance constant ( L o< £ ). Also reduces
energy spread (shorter bunches).
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RF system

Initial design proposed to use Cornell/CEBAF type 1.5 GHz
superconducting cavities.

Advantages:

e High frequency and voltage to shorten bunches.

e Shape gives lower coupling impedance and higher mode losses than
with copper cavities.

e Available "off the shelf” (almost).

Disadvantages/unknowns:

e Cryogenics (but we have it for the SC quads anyway).

e Input power couplers for > 150 kW per beam in radiation power
alone.

e Higher-order mode couplers for high beam current and small bunch
separation.

Needs study ...
Bunch-lengthening can be avoided if |Z/n| is small.

Coupled-bunch instabilities = need feedback systems (narrow-band
scheme of Kohaupt?).
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Bunch-lengthening

Imperative to keep 0, < 3, = 1cm.
Natural bunch length o, = 6 mun as I — 0.
Boussard criterion for absence of turbulent bunch-lengthening:

L|Z/n
A2/l <)
27 (E/e)a.o?

where peak current in bunch is I, = ecN,/ V27 g, ~ 550 A. From
this parameter list = |Z/n| $ 0.2 (we had higher a. in
earlier versions).

Can we design vacuum chamber and RF system to get
such a low impedance?

e small number of superconducting cavities,

e very smooth chamber

At lower energies, N,/ E is constant
= need to keep 0,02 constant

= controlled blow-up with wigglers or simply allow bunch
to lengthen itself.
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Parameter list at top energy

Energy E
Circumference C
Bending radius p
B-function at IP B
- B
Betatron coupling K2
Betatron tunes Q.
2y
Momentum compaction  «
Natural emittance €x
Encrgy spread T
Energy loss per turn Uy
Damping times Tr
Ty
TE
RF frequency fry
RF voltage Var
Radiation power J L
Synchrotron tunc (RF2) @,
Stable phase angle O
Number of bunches ks
r.m.s. bunch length T,
Total beam current I
Particles per bunch Ny
Beam sizes at IP o
o

Beam-beam parameter
Luminosity L

2.5
376.99
12

0.2
0.01
0.045
~ 10.8
~ 04
0.0189
281
5.66 x 107
0.288
35

22

9
1.489

9

0.309
0.106
3.3°

24

6.1

537

1.75 x 10"
232

~ 10

0.04

1.2 x 1073

GeV
mn
m
m
m

1

McV
msec
msec
msec
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MW (2 beams)

1mn

mA

J7354!
L

cm‘Qsoc‘

1
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Variation of parameters with energy

Emittance/nm
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U, Vp/MV

Total current/mA

Longitudinal parameters
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Conclusions

e Exploiting the best of current technology and
experience, the 7cF design luminosity appears feasible.

e The design needs more work, especially on the separator
scheme and instabilities. That's what we're here for ...

¢ New or unconventional ideas (crab crossing, round
beams, monochromator schemes, ...) should also be
considered—there has to be a first time!

e The 7cF has many of the same problems as hadron
supercolliders on a smaller scale—it could serve as a
test-bed.

o Efficient, high-performance injection system is vital!
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