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I. INTRODUCTION

Taylor's theorem and the theorem of Lagrange both express the value
of a function at one point in terms of its properties at another point.
These two theorems have a reciprocal nature, and, in part, our purpose
here is the exploration of many of the details of this reciprocity.
Although Taylor's theorem is routinely employed in many branches of
mathematics, the theorem of Lagrange is encountered much less freguently.
Lagrange'sl series for the one-dimensional development of functions was
first described in 1770. Laplacee later devised a more general series
expansion, demonstrating the one-dimensional series of Lagrange as a
special case. Similar series expansions in many variables were also
reported by Laplace in this work. By means of a simple transformation,
Darboux3 expressed Laplace's two-dimensional series in a particularly
convenient form similar to that given by Lagrange. This form for the
Lagrange theorem has now become classic, the Jacobian of the transforma-
tion taking a prominent role in the statement of the theorem. Stieltjes;4
in correspondence with Hermite, reported that Darboux's result could be
obtained by double integration over two complex variables, except for an
uncertainty in the sign of the result. A short time later, Poincaré,5
through a careful examination of the theory of double complex integra-
tion, removed the ambiguity noted by Stieltjes. In the meantime,
Stieltje56 published an elegant extension of Lagrange's theorem to the
N-dimensional case. In this latter work, Stieltjes did not employ complex
integration; he remarked that the demonstration by Heine7 of the one-
dimensional Lagrange theorem (obtained by using the calculus of varia-
tions), could be generalized to the N-dimensional case.

The work of Stieltjes6 has been overlooked in the recent papers by
Good,8 Sturrock,® and Dedrick & Wilson,*© Through the use of complex
integration, Good obtained the Lagrange theorem in N-dimensions. Stur-
rock, with the aid of Fourier analysis, generated the Lagrange series as
the solution to a physical problem. Dedrick & Wilson reported an inte-
gral theorem in which both the N-dimensional Taylor and Lagrange series
are involved. Lagrange's theorem is discussed in the works by Whittaker

& Watson, ' Pélya & Szegd,”> Goursat, > Osgood, ~ etc. The article by
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Osgood contains many references to the early work on this sub.ject,
The Taylor and Lagrange theorems can be considered to be generated

by application, respectively, of the Taylor differential operator &

and the Lagrange differential operator  to the fuhction which is to

be developed. As described above, the statement of Lagrange's theorem
requires, in addition, use of the Jacobian J of the transformation
involved. The reciprocal nature of the Taylor and Lagrange theorems
suggests that relations can be written between the Jacobian and the
Taylor and Lagrange differential operators; it is shown below that this
is indeed the case. Perhaps th& most useful relation of this kind is
the theorem that the operator JZQ 1is the unity operator at all points
where the operand is infinitely differentiable and the Jacobian is non-
singular. Proof of the validity of this theorem does not require the use
of either the Taylor or the Lagrange theorems; furthermore, through the
use of this fundamental relation, Lagrange's theorem follows if Taylor's
theorem is valid, and vice versa.

As used in the theories of elasticity, hydrodynamics, and continuum
electrodynamics, the displacement vector is defined to be the difference
between the perturted position and the corresponding unperturbed position
of a material point. The definitions of the Taylor and the Lagrange
operators given here are based on the coordinate transformation defined
by the displacement vector. Since the concept of the displacement vector
1s readily extended to N—dimensions, we shall consider the N-dimensional

problem throughout this work.

The coordinate transformation and the Jacobian are treated in Sec-
tion II. The Taylor operator and Taylor's theorem are described in
Section IIL, and the theorem of Lagrange is discussed in Section IV.
Section V is devoted to the proof of the theorem: JXQ = 1. In Section VI,
other useful operator relations are derived and discussed, and in
Section VII, some applicaticns to various areas of mathematical physics

are briefly described.



e —

IT. TRANSFORMATION OF COORDINATES AND THE JACOBIAN

> 1 2 N > 1 2 N
Let x = (x", x, ... ,x) and x_ = (x_, x, ... ,x_ ) be two
0 o] 0 o)
vectors in an N-dimensional manifold. These vectors can be expressed
. > . > > k - - k
in terms of N base vectors a by: x=4a, x and x_ =a X,
k k 0 kX o

where repeated indices are to be summed in accordance with the summa-

*
tion convention.

Let x and ;o be related by the displacement vectors E and z'

as {follows:

Sk 4 EG) (2.1a)
x, = x - LX), (2.1b)

The transformation given by (2.1a) is considered to be continuous and
t

non-singular so that the inverse transformation (2.1b) exists, and vice
versa. These equations are the same as those used in the theory of
infinitesiml transformations, although here the displacement vector and
its derivatives may not be sufficiently small to justify the usual

linearization procedure.

*

The notation of vector analysis of Gibbs'® is ordinarily used only
if a Euclidean metric has been introduced. Here, a metric need not be
defined. Nevertheless, we shall use the Gibbs notation because it may

be readily extended to permit writing many of the equations discussed

here more compactly than if the notation of tensor analysis is employed.

=
A vector x may either be given as above in terms of its contra-

. k . . !
variant components x or, alternatively, in terms of its covariant

components XZ' Thus we also have x = Eﬂ X The two sets of base

4
and a are derivable from each other according to the
+4
a

>

vectors a
k
-
a

relation = 6&, where Si is the Kronecker delta. In this

o
c C s \ SIS/

paper, it is permissible to consider the base vectors gk and a to.

+ >k

be the unit vectors in a Cartesian coordinate system so that a, =a.
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Differentiation of (2.la) and (2.1b) yields, respectively,

dx = dx_ - ©_ (2.2a)
o o
&% = ix . T, (2.2p)

> €y
where the dyadics ®o and ¢ are defined by

o oo —
T =Vx=-T+77, (2.32)
T=Vi =T-T0 . (2.3v)
4> > >1 . .
In Egs. (2.3), I = a;a” is the idemfactor (unity dyadic), and the
gradient operators _; and 57 are defined by

il

7 =2y, (2.ha)

<
il

ot 3/t . (2.4v)

Substitution of (2.2b) into (2.2a), and vice versa, yields

T . % -T-T_ .9,

3 A AR - (2.5)

0

<>
The inverse of the dyadic ®O, for example, can also be obtained by

solving Eq. (2.2a) directly. However, if the elements of EZE are



sufficiently small, the expansion

e}

ol S A RN CAINCAI TR SN E AL (2.6)

m=0
is often useful.
. 3 ] > - °
Derivatives with respect to X, and x can be expressed in terms

of the gradient operators defined by Egs. (2.4). These operators are

related to one another by

- .1 =
v = ! ° ? = ° °
o] o = % Vo (2.7a)
— “«r = € -1 —
V =0 .V=20 -V, (2.70)
o] o
In addition to the transformations between io and §, we shall
also consider successive transformations between %oo and Eo’ and
between ; and §1° The equations of these transformations are exten-
sions of Egs. (2.1), i.e.,
X =%+ LX) x=% -U(x); (2.8)
> -> > > > >
= + = - ¢ . .
X, = X t(x,,) » X o = %, Ti(x,) (2.9)
Pertaining to each of these transformations is the dyadic defined by
extending Egs. (2.3). The determinants of these dyadics are the corre-
sponding Jacobians. For convenience, we introduce the following
definitions:
J = azl/asz = det(9) (2.108)
-3
I, = ax/a?co = det(ﬁ?o) , (2.10p)



J' = aio/a§ = 3et(T") , (2.10c)

oy
il

' =k fOx = det (3 ) (2.104)

- > -
Clearly, J' = Jol because @ =4301 .

In the remainder of this section, we shall be mainly concerned with
the evaluation of the Jacobian J defined by Eq. (2.10a). The other
Jacobians defined by Egs. (2.lOb—d) may be readily calculated by using
this result.

The Jacobian J can be written in terms of the characteristic poly-
nomial Q(un) associated with the dyadic 5?2' (or the matrix agk/axi).

This polynomial is given by

Q(u) = aet(VE - uD) (2.11a)
= (u, - )y, - w) e (g - o) (2.11b)
= (-p)N + Gl(-p)N—l + (}2(—u)N“2 + ..+ GN s (2.11c)

where the quantities My are the eigenvalues of 572. The Jacobian is

equal to the characteristic polynomial evaluated at u = -1. That is,

T=Q(-1) =1 +C +Gy+ ... + G- (2.12)

| We shall evaluate the coefficients Gk in the characteristic poly-
nomial (2.1lc) according to the method of Leverrier-° (see, e.g.:
Gantmacher,l7 Bodewigla). In this method, we use Newton's formula which
expresses the coefficients in a polynom;al in terms of sums of powers of

jts roots. For the polynomial (2.1lc), Newton's formula states:



- kG = z G.Dy . 3 (k = 1,2, ... ,N) , (2.13)

where

and GO = 1. Leverrier shows that the sums of powers of the eigenvalues
of a matrix are equal to the traces of the corresponding powers of the

matrix in question. Hence in the case of the dyadic €?E, we have
m = 2\ = <>
b= ()" eV = (VO T, (2.1k)

where, in the latter form, the double scalar product notation of Gibbs
is employed.
The quantities G, can be calculated successively with the aid of

k
Egs. (2.13-14), so that:

G, =tr(VE) =V . T
6, =3V D - (¥ T

etc. This procedure can be used to show (by induction) that Gk is of
order k in the displacement vector E. Furthermore, all the Gk are
invariants (under the similarity transformation) of the dyadic 572. It
is clear from (2.11b) that GN is equal to the product of all the eigen-
values Hys and therefore: GN = det(i?Z). In the case of three dimen-
sions (N = 3), the Jacobian may be written explicitly as

T+ (T T (TEXTD T+ IR T, (2.19)



where the double vector product of Gibbs is employed (see also Chulg).

According to the Cayley-Hamilton theorem,17 the dyadic 5?2

satisfies

0= (- §7Z)N + Gl(- ﬁ?E)N'l + ..+ Gﬁﬁ?, (2.16)

In Section V, we shall require the set of relations obtained by first l

multiplying (2.16) by (- §7z)q, (g =0,1,2, ... ), and then taking the

trace. This procedure yields:

=

0 = G , (g =0,1,2, ... ). (_2.17) |

r DN+q-r

I

=
1l
e}

We note that Eg. (2.17) for q = O is the same as Eq. (2.13) for k = N.

IIT. TAYIOR'S THEOREM AND THE TAYLOR OPERATOR

2

Cauchy'o presented the N-dimensional Taylor theorem in a form that

is particularly suitable for our discussion here. With the aid of the
vector notation introduced in Section II, the result of CauchyA(see, e.g.,

21 )
Love ") can be written as

£(x) = £(x, + LX) =2 (%), (3.1)

where the N-dimensional Taylor differential operator Zo is defined by

2= exp(E(x) - V) E i—_,{fn(?co)l?f”f} : (3.2)

~

The vertical bar in the differential operator {Zrk§ )I%;lf

o

o}
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ropresents  an extension ol the notation uced for the scalar product, and
> ) ] _
denotes that n vectors ( be completely contracted with n gradient

—> ) .
operators VO in the following manner:

(T9) =t-9 =),
(%) =T T2 97, = (00 (/) (3:2)

and sO on.

Taylor's theorem may also be stated in the reversed sense by using

(2.1b) instead of (2.la) to define the displacement. That is,

() -2 - T -2 ) (3.4)
where
e n oy R |
o= exp(- E'(;) . %U = £> (;? <E'n(x)’€nk . (3.5)

In addition tc the operators ZO and Z', we shall also need two
other Taylor operators £ and Zé. These operators are pertinent to the

transformations given by Eqs. (2.8-9) and are defined as follows:

=t Y, =es(- TG T (3.6)

o

™
i

A distinection should be pointed out here between Taylor's theorem

las exemplified by Egs. (3.1) and (3.4)] on the one hand, and the result:

- T
h(xo) o L i(xo)



on the other. If h(§o) is equal to f(X) as in Eq. (3.1), then
f(zo) is said to be a member of the class of functions  which can be
developed by Taylor's theorem. A broader class A’ includes all functions
that consist of piecewise segments of functions that are members of the
class (. . If f(;o) ie not a member of  , but is a member of A ,

then Taylor's theorem is not always valid, although
> >
h(}{o) = ZO f(XO)

remains meaningful except at the discontinuities of f(;o), Hereafter,
unless explicitly stated otherwise, the operands and the displacement
vector functions E and E' will not be assumed to be members of the
class C , but are restricted to the class A , and are therefore piece-
wise differentiable.

The inverse Taylor operators, as well as the inverses of other scalar

operators, are ipnvariably defined by a pair of operator equations, e.g.,

s 85T a1=5"5 . (3.7)

The Taylor operators and their inverses obey the useful product rule

2 23 o(3) = |2 20 [z 6] (3.8)"

In addition, the Taylor operators defined previously satisfy the follow-

ing relations:

£, =12 e (3.9)
*
In order to state results unambiguously, we employ the convention

that differential operators enclosed by the square brackets: [ ... },

operate only upon other quantities enclosed by the same pair of brackets.

- 10 -



(tec) (3.10)

1) J

st , (ee) . (3.11)

All the relations (3.8-11) can be readily verified through the use of
Taylor's theorem. However, such proofs are satisfactory only if the
operand is a member of the class ¢ . For this reason, we shall prove
these relations as point relations, valid for operands that are members
of the class A .

Our proof of (3.9) requires the use of the operator relation

v £, =T, ‘v’gl (3.12)

which, in turn, is based on the identity

- >
V. ¥ =90
o

o “IoV (3.13)

o}

Equation (3.10) can be proved by using the product rule and either (3.12)

or the equivalent statement
- n_-
viox —v>o st (3.1k4)

while (3.11) can be obtained from (3.10) by means of a simple change in

variables.

- 11 -



Let f(;o)eeﬁf be an operand. Equation (3.13) is proved by noting

that
e
1, =In.|=n
= —( LV
VE S z:o_v’of + z (V¢ leo £ o,
n:l
>N |—Nn e d >n-1|—n0=-1 —
— \V/ \Y v T
((VE V. )r = nlv 0] - ( v,
Hence
— —
Vef=1T+98.5ve-% .2Vr ,
o o o o 0 o} oo

as required.
Equation (3.12) is readily proved by inducticn. Under the assump-
tion that (3.12) is valid for n = k, we obtain

i

1 —k
OE s VsV or
(e} O O

-1 - k+1
- v S SRS A
o] 00O o) o) oo
—k+1
= %00 £,

using Egs. (2.7a) and (3.13). The proof of (3.12) is completed by
noting that the case n = 0 1is trivial.
The product rule (3.8) can be proved through the use of an extension

of the Leibnitz formula, viz:

n
(Enlgn) fg = y (f;) [(Em,lvm)f][(f n—m\%n_m)gl , (3.15)

m=0

- 12 -



where ('rrl) = E‘—(n—n_l—m are the binomial coefficients. This expression
is also_ proved by induction. The proof is straightforward, but is too
lengthy to be included here. The product rule is then readily proved by
forming the series %fg and using the Leibnitz formula (3.15).

Equations (3.9) are proved by showing that L' is the unit oper-
ator. Using (2.lc) and (3.12), we obtain

00

z' z:o f Z (;1)'n \lzn(;o)‘—%n} %o T

i

o]
Q

8

1
8
m_,}__.
- \___‘\.
\4(/)
1
SN——”
—
I
z 1
‘——/\
vy
0
—~
Xy
o]
—
4
\—\/——/
Hy
I
L

as required. In the final step in this proof, we note that the binomial

nz (&)

is equal to unity if s = O, and vanishes otherwise.
Our proof of Eq. (3.10) requires the use of (3.8) and (3.14). 1In
addition, we must assume that the displacement vector E can be devel-

oped according to Taylor's theorem. That is, if

>

Z(}—E) = ZO E(X ) b

e}

- 13 -



then the quantity Zf(go) becomes

, n? o} o
n=o
[oe]
1 n,—» n -1
-z = v\
ol Z n! E(Xo) o} o
n=o0

= Zof s

as stated in (3.10).
If the displacement vector can be developed according to Taylor's

theorem, then the Jacobian can be developed as well to give

[
i

g, » (tel) ; (3.16a)

(tet) . (3.16D)

The former expression is readily obtained by writing the Jacobian JO
as the determinant of the dyadic 85 as in (E.lOb), and then using
(3.8) and (3.12). Equation (3.16b) follows immediately from (3.16a)

after a simple change in variables.

- 14 -




IV. LAGRANGE'S THEOREM AND THE LAGRANGE OPERATOR

The extension by Stieltjes6 of Lagrange's theorem to the N-dimen-
sional case, is based on properties of the derivatives of the Jacobian.

The result of Stieltjes can be written

f(?co)/Jo = of(x) , (k.1)

where X and §o are related by Eq. (2.la), the Jacobian Jo is given

by Eq. (2.10b), and the Lagrange differential operator  1is defined by

n

QEemtg-aQ)siibf(%n?&§. (k.2)

Here, the gradient operators vh differentiate both En and the
operand. The vector notation used in (4.2) is to be interpreted accord-
ing to the prescription given by Eq. (3.3), so that, for example, the

n =2 term in Qf(x) is
5(/0x ) (3/3x) ¢'e? £ (%)

An interchange in the independent variables transforms the Lagrange

theorem (4.1) as follows:

£(x)/3" = al £(x) , (4.3)
o) =emlV - TR (. 4)

where J' 1is given by (2.10c). Replacement of f£(x) by J £(X)

- 15 -



in (4.1), and of f(;o) by Jg f(zo) in (4.3), yields, respectively,

f(io) - qJ (%) , (4.5)

£(x)= 030 £(x) (4.6)

These equations express the Lagrange theorem in the same form as reported
by Good_8

We shall also have need of the Lagrange operators
. _+ > '.‘
o =exp-7 - Ex) . o= ex(7- TG (4.7)

These operators, together with Q and Q' , satisfy operator identities
o

analogous to those given in the case of the Taylor operator by

Egs. (3.8 - 3.11). Proof of these identities as point relations is

given in Section VI, where more convenient methcds are available

V. THE FUNDAMENTAL RELATION BETWEEN THE LAGRANGE AND THE TAYLOR OPERATORS

The Jacobian J, the Taylor operator X, and the Lagrange operator

0 [defined respectively by Egs. (2.10a), (3.6), and (4.2)] satisfy the
operator identity:

JZq =1 . (5.1)
This is a point relationship. At any point X where f(g) is differ-
entiable, the identity (5.1) indicates that
- ->
Jzn f(x) = £(x) (5.2)

Equation (5.2) is suggested by operating upon the Lagrange theorem

(4.1) with the Taylor operator £, and interpreting the results according

- 16 -



to Taylor's theorem; that is,

£(X) = f(?co) = %30 £(x)

]

[25,] =0 £(x%) = J=0 £(%) ,

where we make use of Egs. (3.8), (3.10), and (3.16a).

The objective of this section is to prove Eq. (5.2) directly without
the use of either the Lagrange or the Taylor theorems. Such a direct
proof is necessary in order that (5.2) be a point relationship. The

proof will be carried out in two steps. First we shall show that
A(x)= A £(x) (5.3)
where the operator A 1is defined by
A=zq, (5.4)

and A is the result obtained by operating with A upon unity (the unit
function). In the second step in the proof of (5.2), we shall show that

A is equal to the inverse of the Jacobian, i.e.,

N =1 . (5.5)

The operator A can be written as a sum of operators AP, each of

order p 1in the vector E, as follows:

~
y

s - {exp@ - v>} {.exp<- 7. z>} -V (5.6)

p=0

P n
N O L N (5.7

P n)in!
n=o

- 17 -



Hence, in order to prove Eg. (5.3), it is sufficient to show that

A, 2(F) =) (%),

where %p is equal to Ap(l). This relation is verified by induction.
Under the assumption that (5.8) is valid for p = 0,1, ... , q , it is
shown to be valid for p =q + 1. We begin by writing Aq+1 £(%)
according to (5.7). By adjusting the coefficients and the summation

indices in the resulting series, we obtain

q

1 n -n -n, ,=2n+l|n+a
Aqﬂf:'quiﬁ_f%m_z@q [gamy @27 ¢

n=0

q
(' i l-n |—2,Q+1- ni+n
frEr ) ke G R @ ¢

These two series can be transformed with the help of

ﬁn+l‘-€n+l) £ o= Z‘ Tl’l_i-l—‘w @»n-m‘En-m) ? (fz ¢ {7E]m) b
VT £ = ) iy @Y e I
m=0

The two latter expressions are derived by performing successive differ-

entiations so as to form the (m = O) terms in the series on the right,

together with remainder terms which are then differentiated to form the

(m = 1) terms, etc. In Bg. (5.11), the dyadic Zvﬁ? is the transpose
— >
of V (.

- 18 -
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Substitution of (5.10 -11) into (5.9) yields

q

Equation (5.8) can be used in this result to give

q ;
1 m = . = | f 2
Bger T= 7 75T E: ()" Ay Lv (¢t - T - F \6? (£[E V] %}] :
m=0
The factor enclosed by the brackets [ ... ] may be simplified by differ-

entiation, so that

q
1
Aq+1 r= q+ 1 £ }Q D1 7\q—m , (5.12)
m=o

where D . is defined in accordance with Eq. (2.14).
In the special case where the function f 1is chosen equal to unity,

Eq. (5.12) becomes

q
(@ +1) Agar = E: Dpis Ngem - (5.13)
m=0

This result can be combined with (5.12) to give Eq. (5.8) for the case
p=q+ 1 as required.

Equation (5.5) will also be proved valid order by order in the
vector E. Through the use of Eq. (2.12) for the Jacobian and the

expansion for A derived by operating upon the unit function with A

- 19 -



according to Eq. (5.6), we obtain

I
=
o)
.
[~]s
>
03]

JA
k=O S=0
m 00 N
- ;; }j Gk 7\m—k + Ez Ej Gk )m_k (5.14)
m=0 k=0 m=N+1 k=0

where GO = 1, and the terms in the sums over the index m are of mth

order in the vector E. Hence Eq. (5.5) is proved if it can be shown

that

G A =1, (5.15)
o ©
m
Ej G Apie = © , (m=12, ..., N, (5.16)
k=0
N
z Gk 7\P+N-k =0 , (p=21,2, ..., ). (5.17)
k=0

Equation (5.15) is satisfied identically, while (5.16 - 17) can be proved
by using Eas. (2.13 - 1k4) and (5.13). In our proof of (5.17), we shall
also use the Cayley-Hamilton theorem.

To prove Eq. (5.16), we consider the series

m-1 m
m Ej Gy Moy = Ej Gy (m - %) Ny * j{j Koy Nik . (5.18)
k=0 k=0 k=1

Substitution of (5.13) into the first series on the right-hand side of

- 20 -



(5.18) yields

Eﬁ ks e }: Gy }j s-k 'm-s
k=0 =0 k=0 iy
m (/s-l -
) ; V" Ds-kj M =7 ) 5 G N
=1 \ k=0 / S=1

so that the first series on the right-hand side of (5.18) is the negative
of the second series. Hence Eq. (5.16) is proved.

Our proof of (5.17) proceeds similarly. Corresponding to (5.18), we
shall show that the right-hand side of

N N N
(p + W) ;j Gy xp+N_k = X Gy (p+ N - k) %.wN_k + 7 kG, %.p+N_k (5.19)
k=0 k=0 k=21

vanishes. The first series on the right is also transformed by using

(5.13) as follows:

N p+N-k-1 N p+N
G G
251 k r+1 "p+N-k-1-1 Ei k
k=0 r=0 k=0 S=K+1 s-k  p+N-s
N /s-1 \\ p+N N \
= ! k
}: Cx Ds—k; xp+N-s + }: Ej Gy Ds_k/ %p+N—s .
s=1 \k=0 / s=N+1 \ k=0 J

In the final form, the second series vanishes since each term in the sum
over the index s contains the null factor given by (2.17), while the
first series is simplified by using (2.13 - 14) and becomes equal to the
negative of the second series on the right-hand side of (5.19). This

completes our proof of (5.1 - 2).

- 21 -



It is clear at this point that the corresponding identities

=1 Jtel el =1, (5.20)

are also valid.

VI. OTHER RELATIONS SATISFIED BY THE TAYLOR AND LAGRANGE OPERATORS

To the fundamental relation discussed in the foregoing section we may
add two similar ones. These are obtained by cyclic permutation of

J, %, and § as follows:
JI0 = 20T = QJ% = 1 . (6.1)

In the permutation group of three objects, there are altogether six
elements. Three elements have appeared in Egqs. (6.1). Of the remaining
three, the operators QXJ and JOX are equal to each other. This can

be shown by considering the operator QX. Since

or = I = 27NNy

according to Eq. (6.1), and since

-1 - - - - - -
s - 27T 27 = (27T

according to the product rule for the Taylor operator, it follows that
oz = [27107)
Hence
QL7 = Jar = [J=737h) (6.2)

An operator enclosed by the square brackets [ ... ] denotes the
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functional value of the operator, i.e., the result obtained when the

operand is chosen equal to unity.
The remaining element Z.J0, which incidentally may be taken to be the
identity element of the permutation group, is equal to a scalar function

different from all the other elements:

= [d7'=T) .

~ All six elements are functional multipliers when they operate upon
any operand. Let Xi be any of these six elements and let f(i) be

any permissible operand. The result obtained by operating upon f(i)

with x, is equal to the product of £(x) and the functional value
[Xi], i.e.,

X, £(x) = f(i)[xi] .

Because of this, the Taylor and the Lagrange operators may be said to be
reciprocal operators within a functional factor.
Each of the relations (6.1 - 3) has its inverse. The inverse rela-

tions are

-l - -1 - - -1 - - -
PN R e TSI i R/ S
- - -1 -]l -l - -l -
tThTT = 1 SRR e B
-1 - =1 -
Qe = [anaTh)

The Jacobian J may be expressed exclusively as the functional

1 - [Q—lz—l]

value of the inverse Lagrange operator. From J = Q_lZ_

-1
and [£ "] =1 = [£], we obtain

(6.3)

(6.1a)

(6.2a)

(6.3a)

(6.4)



The inverse of Eq. (6.4) is

S (R (6.4a)
Here, it should be noted that [a] £ [Q'l]'l, and  [0)7F # [077], but

(=707 = [l (6.5)

(2751 = [a]7", (6.52)

Many operator relations attain a more symmetrical form when [Q]
-1 -1
and [0~ ] are introduced. Consider the inverse Taylor operator z .

Since

- -1 - -1 -1 -1
s =Tyt =2 alsTT,
we have, according to Egs. (6.la) and (6.5a),
-1 Q
L= . 6.6
Q)] (6-6)
Similariy,
g1
5 o= . (6.6a)

These two equations exhibit the reciprocity between > and O most
clearly. The product rule for the Lagrange operator is obtained by
direct substitution of Eq. (6.6) into the product rule for the inverse

Taylor operator to give

Qfg  Qf Qg
G =l Tl (6.7)

In addition to the reciprocal nature of X and Q, we can show
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that & and § are adjoint operators.*

lished as follows:
-1 - -1
fog - £ 207 = (0] 27 g
-1
=[] &7 gIf =

Qerf,

Hence,

i
i

fog - gif = (0 ~ 1) goif

i
8

()"

nt

I‘
<

[

=
L]
RS

Since the right-hand side of (6.8) can be expressed
of a vector, the adjoint property is-verified. The

~1 -
by and Q :

-1 -1 -1
Mg -y =-(@-1)f0 g

= (-)7 gn-

n.

™>~7s

]
i
P

;§n~1lznng

are shown to be adjoint operators in a similar manner, i.e.

et

The adjoint property is estab-
t. t.

1

—~
(02N

O

~—

|
E—

as the divergence

inverse operators

Tt is clear that all of the foregoing formulas in this section with

the exception of (6.9) and (6.9a) are valid if J,
placed respectively by &

Z, and Q

are re-

o Zo’ and Qo, or by J', Z',land Q', ete.

Furthermore, all of these expressions are point relations derived from

operator identities, including the theorem JZQ = l.

The proof of this

latter identity, as given in Section V, depends neither on the Taylor

theorem nor on the Lagrange theorem.

We shall now use the fundamental

theorem (6.1) to show that the Lagrange theorem follows from the assump-

tion that Taylor's theorem is valid, and vice versa.

* o
See, for example: Courant & Hilbert}g‘ Vol. II, p. 235.
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Taylor's theorem can be written:

1 N

) =7 f(X)

£f(x) =5
(e] (@]
or:

£(x) = =, f(zo) - % f(zo) :

Equations (6.1 - 2) may be used in these two expressions to give,

respectively:
(%) =57 £(%) = a0 £(x)
> > -1 -1 > - >
= i = (% =
Q f(x) = a2 f(xo) (=770 7] f(xo) I f(xo)

Tn turn, these relations are identified as the Lagrange theorems given
respectively by Egs. (4.5) and (4.1). Proof of the converse assertion
proceeds in a similar manner.

There are also operator ifentities connecting QO, Q, and Q', that
are similar to those connecting the corresponding Taylor operators.
Corresponding to Eq. (3.9), we have

0,0 = (o 10" 1

= (o o "], (6.10a)
o]

-l,-1 -
Q'QO = [2"1007)7" = [2')a! Y, (6.10b)
and corresponding to Eqs. (3.10 - 11), because of (6.1) and (6.6), we
have
[ ' -
07 =3, @3 =03, (L,tel); (6.11)
1] 1 -1 -1
Q QO ) Qo Q QO
- = 1 ) D = ; ’ 1. - 1 ’ (C;C’é‘(/) . (6-12>
o) lag 'l o) ) o,
Tn addition, we have
Q =2 25 d =[8J ]38 =Jn =J%
Yo 0“0’ o o
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Hence,

aae=1=0'", (¢tel) . (6.13)
Equations (6.12) can also be written

0 =20% , 0 ==X Qs , (ted) . (6.14)

“0"070 oo o

Thus the rule for transforming ( is the same as the rule for trans-

forming V' given by Eq. (3.14).

VII. APPLICATIONS

Lagrange's theorem has been applied by Laplace to problems in celes-
tial mechanics, and by Jacobi to the theory of Legendre polynomials.
References to these works are listed in the article by Osgood.14 More
recently, Good8 has used Lagrange's theorem in the theory of stochastic
processes,

In many areas of applied mathematics, the Jacobian and Taylor's
theorem are used together. Problems in these areas can often be discussed
more conveniently upon introduction of the Lagrange operator § defined
in Section IV. The fundamental operator relation JrQ = 1, given in
Section V, provides the required connection between the Ilagrange oper-
ator, the Taylor operator, and the Jacobian. Two topics in which this
procedure is particularly useful are discussed below.

The density of a strained elastic medium has been calculated by
Cauchy23 in terms of the displacement vector and the density of the
medium in the unstrained state. 1In this work, use was made of Taylor's
theorem and the Jacobian; the result is given through first-order terms
in the displacement.

With the help of the JZQ theorem, this problem can be solved in
terms of the Lagrange operator. The result is correct to all orders in
the displacement vector. Iet po(;o) be the density of matter in the

unstrained or unperturbed state, and p(;o> be the density in the
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corresponding perturbed state. The small volume of matter initially
located at ;o is, in the perturbed configuration, located at %, which
is considered to be related to ;o by the displacement vector ( as in
Eq. (2.1a). At the perturbed position z, the density in the perturbed
configuration is given by o(x) = J;lpo(io), according to the law of
conservation of matter, With the help of Taylor's theorem and the fun-

damental relation (6.1), we transform this conservation law as follows:

-1

- >
p (%) =z e(x)) = a  plx))

Hence

X)) - (7.1)

o(x,) = 2.0,
Through first-order terms in the displacement, this is the result given
by Cauchy.23 The second-order terms of (7.1) have been calculated by
Chu19 and by Sturrock;g it is aelso clear in both these works how to pro-
ceed to any desired order. Equation (7.1) is derived by Dedrick & Wilson™~
with the &aid of an integral theorem that can be shown to be equivalent to
the adjoint property given by Egs. (6.8 -9). Fourier analysis is used Dby
Sturrock® and by Dedrick & Wilson'® in their treatments of this problem.
An advantage gained in the method given here is that Fourier analysis is
unnecessary.

The theoryof infinitesimal transformations has been applied success-
fully in many fields. Of particular note is the use of this method in
deriving conservation laws and the equations of motion in the theory of
relativity (see, e.g., Pauli =% Weylas). For example, the equations of
motion are obtained by setting the variation of the action integral equal
to zero in accordance with Hamilton's principle. The variation is ex-
pressed in terms of the infinitesimal transformation of coordinates, which
in turn is written in the form of the transformation (2.la) for the case
of four dimensions. In certain perturbation calculations however, the
displacement vector may not be considered infinitesimal. The JELQ theorem

enables us to examine the effects of a perturbation order by order in a
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convenient manner. Consider, for example, the volume integral of a
function F(%), which may be a scalar, vector, or a tensor. Through
the use of (6.1), we find

-> N > -1
‘/d’r F(x) = / at I I F(xo) = deOQO F(xo)
v \ %
o o)
- -1 >
- T F(xo) + t/ﬁdTo (QO - 1) F(XO) . (7.22)
v \%
o} o

The second integral on the right-hand side of (7.2a) may be transformed
into a surface integral over the closed surface bounding the volume

Vo because the integrand is the divergence of a vector or a tensor.

Similarly,

%
o))
P
=
"y
O
-

il
\
e
4
C_*._
M-.
A

bR 2
g
i

\

o
a

o]

=
b3 2
p—

i

de F(x) + de (o - 1) F(x) . (7.2b)

\ Vv

We conclude from Egs. (7.2) that finite (rather than infinitesimal) per-
turbation in a volume integral can be written as a surface integral.
This important property of the operator JX = Q-l has been used by

Chu®® in the perturbation theory of classical electrodynamics.
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