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I.A, I.B.

I. INTRODUCTION AND SUMMARY

A. GENERAL REMARKS

In a previous report,l some misalignment and quadrupole error problems
were considered with emphasis on a system consisting of guadrupoles of
essentially egual strength, alternating sign, and ejual spacing of nom-
inally 4O feet along the accelerator.

The present report presents similar calculations for several quadru-
pole multiplet combinations spaced at sector intervals. Four representa-
tive cases - the "Spaced Doublet" (SD), "Close Doublet" (CD), “Spaced
Triplet" (ST) and "Close Triplet" (CT) - are considered (see Fig. 1.1).
The optical properties of these lenses in periodic systems are summarized
in a previous report.2

The object of the present discussion principally is to compare these
alternative systems in such a way as to provide a basis for deciding which
would be more favorable for use in the two-mile accelerator. Consequently
the emphasis is on errors whose effects depend on the structure of the
multiplet, although some structure-independent effects are included for
completeness.

Stray magnetic fields, gross misalignments of the accelerator axis
and rf field asymmetries specifically are excluded from the discussion,
since beam perturbations by such effects are expected to be nearly in-

dependent of the multiplet type.

B. ERROR COMPONENTS

The various sorts of mechanical errors are illustrated schematically
in Fig. 1.2. Briefly, the errors which are considered in this report
are:

1. Parallel displacement of the optic axis of a multiplet from a

fixed reference axis.
2. BSkew, or rotatiocn about a transverse axis
(a) of a multiplet as a whole or

(b) of the individual quadrupoles.
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1.1--Schematic representation of multiplet types.
A I1s the spacing period, or one sector.
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(a) Parallel Displacement

T Axig

(b) Skew
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(ST case) rincipal axes; X,y are
reference axes.
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FIG. 1.2--Tllustrating various components of misalignment.
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I.B.

3. DNon-collinearity of the quadrupole centers, in the triplet com-

binations.

4, Axial rotation or rotation about the longitudinal reference axis

(a) of the multiplet as a whole or
(b) of the individual quadrupoles relative to one another.

5. Longitudinal displacement

(a) of the multiplet as a whole or
(b) of the individual quadrupoles relative to one another.

6. Quadrupole Strength Errors (not illustrated)

(a) in a multiplet as a whole (e.g., regulation of a common
power supply)
(b) in the individual quadrupoles (e.g., mechanical uniformity).
Practically any quadrupole misalignment may be represented as a
linear combination of effects (1) through (5).
For purposes of setting tolerances on the various listed error com-
ponents, it 1is assumed
(1) +that each of the components may be treated independently, as
if the others were absent;
(2) +that each of the components may be represented as an independent

random variable;

(3) that one may choose a straight longitudinal reference axis which

is essentially the accelerator axis.

C. NUMERICAL RESULTS

In order to assign tolerances to the various errors for the purpose
of comparing the different multiplet types, a consistent set of numerical
vaelues of the parameters will be adopted. The following points are per-
tinent:

(1) As a result of the present study (Sections IT through V, follow-
ing), it is found that all of the error components considered here have
their strongest orbit perturbing effect at the lowest beam energies.

(2) 1In a previous study of the optical properties of periodic mul-
tiplet systemsg it was shown

(a) that all the systems considered here are essentially
equivalent optically, in the sense of having nearly equal
admittance, 1f they have the same value of Yoo where 7e
is the low-energy cutoff of the periodic system;

L -
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(b) that a reasonable choice for the practical minimum energy

is given by

7min = 7(: \/—5

(3) As a consequence of point (2), above, the parameters of the
system must be essentially constant as a function of focusing period
(sector) number, in order to maintain broad-band transmission.

(L) As a consequence of points (1) and (3), above, it is sufficient
for purposes of setting tolerances, to consider the situation of constant
parameters and constant (minimum) beam energy.

The "standard" set of numerical values now may be listed:

*
Minimum beam energy;

7min - 7(: \/E

Number of focusing sections;

n =15
(corresponds to transmission of the beam at minimum energy through half
the machine),

Maximum allowable orbit perturbation (or beam deflection);

P

|§ = 0.1 em =~ 0.040 inches.

lmax

Maximum possible orbit amplitude;

[X| = accelerator hole radius

max - lYImax

~ 1 cm.

Length of standard focusing period;

1
A= 3333 £t = LOOO inches.

The important parameter turns out to be 7c/7 in all cases.

_5_
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Meximum multiplet spacing (Soaced-Doublet and Spaced Tri:let combi-

nations);

D = 80 inches
(corresponds to approximate spacing available in sector drift spaces
of nominal 108 inches length).

Maximum total length of quadrupole per sector;

T = 30 inches
(arbitrarily imposed to provide adequate space for other instrumentation
in drift spaces).
On the basis of these numbers and the formulae derived in

Sections II through V, the various tolerances have been calculated and

are listed in Table I.

D. EVALUATION AND CONCLUSIONS

The following comments apply to the tolerance figures listed in
Table I:

1. The most critical errors are

(a) Parallel displacement of the multiplet support (all cases);
(b) Skew (rotation about a transverse axis) of the common
support, in the Doublet combinations;

(c) Collinearity of the optical centers of the three gquad-
rupoles, in the Triplet combinations;

(d) Relative axial rotations (about the longitudinal axis)
particularly in the close-spaced configurations.

2. Because of such effects as earth movements, the parallel dis-
placement tolerance (% L0073 inch) probably cannot be held over long
periods of time.

3. The skew tolerance (< .002 inch relative transverse motion of
the ends of the Doublet) probably cannot be met by mechanical alignment
techniques.

L. For Triplets, the non-collinearity tolerances (< .001 inch),
probably cannot be attained by mrealignment techniques.

5. The tolerances on relative axial rotation, although critical,

P

probably can be attained in prealignment and should be expected to remain

-6 -
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TABLE T--Typical Error Tolerances for Periodic Multiplet Focusing for the Two-Mile Accelerator

I
RMS Tolerances(b’C>
hnl + H
Type of Error(a) Designation q. Ref. Notes SD CD { T i CT
|
Parallel Displacement € (2-12) 7.3 mils | 7.3 mils 7.3 mils | 7.3 nils
gkew: (1) Common e! (2-16) (a) 0.73 mils | 0.52 mils | 73 mils 178 mils
(2) Independent e' (2-21) (e) (large) 41 mils (large) 37 mils
Collinearity c" (2-25) 0.73 mils | 0.2% mils
Axial Rotation: o
(1) Common s (3-10) (a) 5.2 (large) (large) (large)
(2) Independent & (3-15) (e)(£) 0.15° | o0.052° 0.10° 0.037°
Longitudinal Displacement:
(1) Common 5L (4-7) (a) 6 ft 6 ft 6 ft s ft
(2) Independent 8D (k-11) (e) 2.1 in. | 0.26 in 1.5 in. 0.18 in.
Quadrupole Strength:
(1) Common 51/1 (5-6) (@) : 1.3% 1.3% 1.3% 1.3%
(2) Independent 50/Q (5-11) | (e) 37% | 0.13% 0.21% 2.075%
Notes:
a. See Section I.B and Eq. References for e. "Independent' means errors in individual
definitions and other details. quadrupoles, relative to cne another.
b. Computed for typical numerical values f. Tor Doublets, ®) denotes rotations of one
of parameters asg listed in Section I.C. gquadrupole relative to the other; for Trip-

lets, ®) denotes (independent) rotations
of the two outer quadrupoles relative to
4. "Common'" means errors which apply to the the center one.

tiplet as a unit.

Units as stated (l mil = .001 inch) .

T



satisfactory thereafter,

G. Because of points 2, 3, and 4, above, it is evident that two
degrees of freedom of compensation are needed in both the X and ¥y
planes, for either Doublets or Triplets.* These corrections could be
effected elther by appropriate mechanical motions or by dipole biasing
of the quadrupoles, but in either case four independent adjustments per
multiplet are required.

7. The skew tolerances for Doublets imply, in the SD case, an
angular misalignment tolerance of #.73 mil in 80 inches, or
1.8 X 107° radian; in the CD case, the figure is £.52 mil in 30 inches
or 3.5 % 10°° radien. Angular misalignments of this magnitude may
arise from earth movements, or even from temperature differences between
the support Jjacks at the ends of the 9-ft drift sections. Consequently,
frequent readjustment of the skew compensation might be necessary with
Doublets.

*
It should be mentioned that the orbit perturbation, &, has different

energy dependence for the different types of errors; thus,

— !7c/7!2
For parallel displacement; £2 «

I.D.

[Bq. (2-11)]
_ 2
1 (7c/7)
For Doublet skew and for > rER 1 ftEq. (2-15
Triplet non-collinearity; [Fq. (2-24
Y 1- (70/7)2 \LFa

Hence both of the critical error components must be compensated

independently for broad-band transmission.



8. The collinearity tolerances for the Triplets rejuire that the
common support structure have high rigidity and dimensional stability.
If these conditions can be met, the collinearity compensation, once
achieved, should be stable and reguire readjustment very infrejuently.

As a congejuence of comments 7 and & above, it appears probable that
Triplets are more favorable than Doublets as regards frejuency of steer-
ing adjustment. It 1s not immediately obvious which of the Triplets is
the better choice. The Spaced Triplet is less critical in some of the
tolerances (see Table I) and requires considerably weaker quadrupoles.2
On the other hand, the Clcse Triplet seems to offer the possibility of
an extremely rigid and rugged structure - for instance, the outer yoke
could be common to the three guadrupole elements. Probably the choice
between the Close and Spaced configurations should await study of the
mechanical problems.

In the event that future studies of site movements indicate that
angular motions are <1078 radian, rms, over periods on the order of

90 days, then perhaps Doublets should be reconsidered.

I.D
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1I. TRANSVERSE MISAIJIGNMENTS

A. DEFINITION AND FORMULATION
The present section will concern misalignments in which the principal
planes of the various quadrupoles remain parallel to a fixed reference

system. The quadrupoles may have accidental parallel displacements from

the correct reference axis, or they may have skew rotations -- i.e, rotations

about a transverse axis. It will be assumed that the quadrupoles are all
correctly programmed as to strength and spacing. Other types of misalign-
ments and errors are considered in Sections III through V.

1. Misaligned Optic Element

Consider a generalized optic element (e.g., a lens) which has the
following properties:

1) A well-defined neutral axis--i.e., a straight reference axis along

which a ray (particle) of any energy will suffer no transverse deflection.

2) Two mutually orthogonal principal systems [the (x,z) or X

plane and the (y,z) or y plane] such that there is no coupling be-
tween motions in the x and y planes.

3) In a system in which the reference axis is the neutral axis, the
effect of the optic element is described by a linear, homogeneous trans-
formation of the transverse dynamical coordinates; for example, in one of

the principal coordinate systems,

X = MX (2-1)

where
/X
P
X
and
m m
11 12
M =
\'m m
A= 22

- 10-
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The transformation has the usual property optic matrices,>

x-axis

) X-axis . —~ % //
/ 4 4
SIS S S 2
s optic element .
s e neutral axis
€2

dr -
S S / s l reference axis

/

FIG. 2.1--Il1lustrating misaligned optic element.

Suppose that the neutral axis is misaligned from some other reference
axis (see Fig. 2.1). Then to first order in the misalignments el and

€ , the transformation from the (x, p) system to the (X, Px) system is
2

b
X1,2 1,2 A7,

where P is the scalar momentum of the particle, and AZ 1is the length
of the optic element. Substitution in (2-1) gives

r— m + 1—)-~-m | (l - EL—m. 1
11 A e 1 A2 Tz |
x = Mx + e +’ € (2-22)
2 1 P 1 p 2
- mgl - AZ—_(l - mg%) 1AZ—_(1 - mze) !
i A L B



It will sometimes be convenient to make the substitution

m
i

%(%l + Gf) = mean displacement of optic element

1
¢! sle - €
2 1

then Eq. (2-2a) becomes

i
i

skew misalignment of optic element;

7 7
. 2P
1 - | 1+ - =

[ mllf My T2 M,
x, = Mx +i € + e (2-2b)
= ‘ ? 2P

P - ‘ + =1 -

% Moy ; o1 7 AZ ( mgg)

In general, then, the effect of the misaligned element is expressed

by the linear inhomogeneous transformation

X = Mx +m (2-2¢)
2 b
where
ox
m =
op

and ®x and ©®p are the perturbations of the orbit displacement and
momentum, respectively, caused by the misalignments.
In a system of ganged optical elements, successive application of

Eq. (2-2¢) gives

X=Xt EJ, (2-3a)
where
N\
X
X, = . =M(Jlo) X (2-3b)
X /.
@
: -
€. = = > M(jlk)mk (2-3¢c)
dJ o )
J k=1

IT.A.1



II.A.1, TT.A.2

and
M) = M MMy (x < 3)
1 o\ (2-34)
M(J!J) = |
o0 1,

Note that xj is the solution of the homogeneous system; é'j’ which

€

represents the orbit perturbations, is a particular solution of the in-

homogeneous system; and M(Jj|k) plays the part of the "Green's function"

of the system.

2. Periodic Focusing System with Independent Random Errors

A focusing system for the accelerator might consist of periodically
recurring groups of focal elements. The transformation for one of the

basic groups or focusing sections will be denoted as

X = A x + a (2-k)
n n n-i1 n
where
AN
a a \
11 12
A = )
n
a a
22 11
. Vg

the homogeneous transformation over the n-th section, is constant, or

adiabatically varying as a function of n, and
Bx}

Bp

/n

represents the orbit perturbation due to the various misalignments in the
n-th section.
For the present discussion it will be sufficient to describe the

gross properties of the orbits in terms of the adiabatic invariant function”



defined by

0 o= ! -a X%+ (a - a ) XP +a P’ (2-5)
11 2g x X

sin Qn 21
= constant for a given orbit,
where the characteristic phase angle 6 is defined by

cos 6 = %’GL + a ) (2-6)
n 11 22

The maximum orbit amplitude for a given value of u is”

\

a
@:)2 - 12 1,
max sin 8
n
? (2-7)
- a
(? .)2 . 21 |\,
Xn .
max sin 8

If the errors are random and independent, then the expectation value

of the orbit perturbation is given byl

v

5" |
i
N~
|

2 o
2 = o}
>_x Sum (2-8)

where

- _ 1
6um " sin 6
m

) Sx op + al,(sp)i’ (2-9)
2 2 m

- a (6x)2 + (g - a
21 11 :

2

[SX, dp are the components of the perturbation vector a ag defined

previously. ]

ITI.A.2



B. APPLICATION TO MULTIPLET SYSTEMS

1. Parallel Displacement of Multiplet Support

The assumption here is that the quadrupoles of a given multiplet are
correctly aligned with respect to one another on a common support, but
that the various supports have random parallel displacements from the
correct beam axis. With reference to Fig. 2.1, considering the "optic

element" to be the multiplet, we have

A
where xn’ xn are respectively the coordinate vectors Jjust ahead of and
just beyond the multiplet, and M is the transformation for the (unper-
turbed) multiplet.

The transformation over one focusing section, equivalent to Eg. (2—&),

now is
1l -m
11
x =(M L) x_ + €
n n n-i n
-m
2r /,
= A x + a
n n-i n
where
1 4
n
L =
n
O 1

II.B.1
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and
zZ +L
n-1 n
1 = dz (See Fig. 2.2)
n ) Y
z
n-i
rmultiplet ——
| N
n
i e
C/ 4 -
T 7/ | beam axis
s /,’/
-t L »-
n
zZn-1 zZn

FIG. 2.2--Basic section of periodic multiplet system
with parallel displacement of support.

Application of Egq. (2-9) gives after appropriate manipulation

S = 2(- a l—'.—ccﬁ—@) 2 (2-10)
n 21 sin 6 N

2 . . .
where € is the mean square expectation value of the En’ which are
assumed random and independent.

To the extent that the singlet approximation of Ref. (2) is valid, the

effect of this type of misalignment is seen to be independent of the struc-
ture of the multiplet. If we use the singlet parameters from Ref. (2),
(2-10) becomes

(o4
o
11

8 -10a
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where v  is the low-energy cutoff of the periodic system. [The assump-

tions are that L = A and v ¥ y .] If the parameters (y and A)
n n n-1 n c

are essentially constant, the effect is strongest at low energy; hence it
will suffice to calculate the beam deflection at constant (minimum) beam

energy. The result is, by use of Eq. (2-8),

— = (/) ,
£2 % 2ne? — (2-11)
1= (r /7)F
c
A reasonable low-energy band limit is given by2
[ 2
whence the tolerance on ¢ is given by
S .
<e> <22 (2-12)

rms \ﬁ;:

where EI is the tolerable beam deflection.
max

2. Skew Rotation of Support

Figure 2.3 illustrates the situation where the common support structure

is rotated about the geometric center of the multiplet.

multiplet —— /s
eé s/ //// / % €
WIS,
WOV 1
| / //// e
/ i /.
. L > A7 ey
A >
n
ZNn=~-3 zn

FIG. 2.3--Skew misalignment of multiplet supporting system.
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%
Application of Eq. (2-2b) gives

a s ! =172
€ (2-13)

In this case the orbit perturbation turns out to depend strongly on the
particular multiplet structure. Hence each of the combinations must be
considered separately.

a) Spaced Doublet (sD) (See Fig. 1.1a)

In this case we make the identification
N, = D = doublet spacing.

*¥
By use of the SD matrix elements from Ref. (2), Eq. (2-13) becomes

Qd

0 =z Gt
n n

2Q(1 - 3Qda)f

where d = D/7 and Q = strength of the individual quadrupoles.l’2

_x_
The approximation

P =Yy -1

N

i

Y

where P is total (scalar) momentum in units of mec and 7 1is relati-

vistic energy in units of mcz, will be used throughout.

*%
The matrix M (transformation through the multiplet) is recovered

readily from the matrix

1 4
A=ML-:=-M [given in Ref. (2)]
O 1,

by setting £ = o.

- 18 -
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As in Ref. (2), it is assumed that
D/L << 1
and
Qd = QD/y << 1

Then Eqg. (2-9), if we retain only the most significant terms, becomes

— 2 1\ 2
du = M_ (2-1&&)
n sin 6
where
Zn
A
- dz . n
?\n = 5
z 7n
n=-a
and2

sin 6 ~ Vo (1 - £3na)

If the parameters Q, D, and A are essentially constant the effect
is strongest at the lowest energy; hence it will suffice to calculate the
orbit perturbation at constant energy. Then substitution of Eg. (2-14) in
(2-8) gives

J— A (€1)2
tE< =~ 2np - ——mm—o— (2'158«)
D1 - (7, /7)*

2
n
1 . . .
where 7c ~5QVYAD is the cutoff energy in the SD case, and n 1is the
number of focusing sections.
It is reasonable to base the skew-misalignment tolerance on the condi-

tion 7y = 7c 2 which is the half-transmission energy.2 The tolerance

- 19 -



then is

v

~ 1
<et> oo <zlEl Ao (2-16a)

where |&| is the tolerable orbit perturbation.
max

b) Close Doublet (CD) (See Fig. 1.1b)

In this case we make the detfinitions

N, = T = doublet thickness;
t = T/v;
OB
g = S 4 magnetic gradient (B in units of
ox

meZ/e/em  or 1703 gauss);

Q = %gT = strength of the gquadrupoles;

k = Vg/7;
¢ = 3kT =V3Qt;
P;

g8 = sin Q; and S

it

cosh @;

@]

]
o
O
0

sinh Q.

it

Then the results of Ref. (2) combined with Eq. (2-13) give

l+cC—sS~-§;(sC+cS)
a = e!

n 1 n
—k’y{sC—cS+—(l-cC+sS)
~ CP n

Series expansion under the assumptions

/L << 1,
Qt << 1
gives
2t W
On = [
Q1 - wae)|
L -4

- 20 -
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I1.B.2

The phase-space increment is found by Eq. (2-9) to be

o\
o x) (e1)? (2-11)
n

where in the CD case

sin 0 E‘\/iQekt (i - i—-QZAt)
3 12

For constant parameters (Q; A, and T) and constant energy, the

orbit perturbation then is found to be

— A (€2)2
£

~
=

(2-15b)

Y] éﬁu

2 — ——————e e e e
n T1 - (y,/7)7

where

~
t
%y—t

LAt
]

is the CD cutoff energy. Hence the skew misalignment tolerance in this

case is (again taking 7 = YC 2 as the practical low energy band limit)

Z ! = ._.?.__ )
< e >rmS < |g|max /BnA. (2-16v)

c) Spaced Triplet (ST) (See Fig. l.lc)

The treatment is analogous to the SD case [Part (a), above]. The
results are:

Perturbation vector;

.21 -
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Phase-space increment;

du ¥
n

£

242
e d (¢')® sin © (2-1he)
A

n

where =in 6 SJ%QZKd(l - %~Q2Kd> in the ST case.?
6

Orbit perturbation with constant parameters and constant energy;

o

~
NG N

(e")

u e
N
i
no
=

(2-15¢)

> 1 -
=

where v, 2;%Q VAD is the ST cutoff energy.2

Skew misalignment tolerance (again taking 7 = Y. 2 as the practical

/1 A i
maxV n D (2-16c)

d) Close Triplet (cT) (See Fig. 1.1d)

low-energy limit);

<e' > < ¢ |

The definitions and treatment are analogous to the CD case [Part (b),
above]. The results are:

Perturbation vector;

1+ cC - % (sC + 8)

a = e!

n 1 } n
k -sC+ 35+ ={1L - cC
% [ s 9 ( cC) N
- %Qt
o !
o 1
N Q_)ta
26 n
Phase-space increment;
2,2
&u ¥ - (é.t (e')® sin é) (2-144)
n 1& A
n
where sin 6 % J}E Q5N (1 - iE Qekt) in the CT case.®

- 22 -



II.B.2,I1I.B.3

Orbit perturbation for constant parameters and constant energy;

—  3n T 9°
£2x — — S (e1)? (2-154)
n 2 A’}'E

vhere 7 T QY3 AT is the CT cutoff energy.®
Skew-misalignment tolerance (again setting 7y = 7E.V2 at the practical

low-energy band limit);

A

N T (2-164)

e

< e! >m2f§'ma

3. Independent Skew Rotations of the Quadrupoles

Consider a quadrupole which has & skew-rotation about the vy axis,
as illustrated in Fig. 2.4. If the quadrupole is focusing in the x
plane, the perturbation vector is given with the help of Eq. (2-2b) as

2
l+c¢c ~—=38
®

m= el (2-17)
ky [-s+%(1-c)

el

where

il

é

c =cos @, s sin @, ¢ =

and k is as defined in Section II.B.2, above.
x

A

FIG. 2.4--Skew rotation in a quadrupole.

- 23 -



Expansion in power series gives to first order in AZ

7 \a
where Q = gl¥.

The effect becomes vanishingly small in the thin-lens approximation
(ng-—+o); hence it will be sufficient to calculate the effect only for
the contiguous multiplets CD and CT.

a) Close Doublet (CD) (See Fig. 1.1Db)

In this case we make the identifications

i

L7 = I
1 2

v

- Q

Q =Q

1 2

and define t = T/7. Then the perturbation vector for the n-th focusing

section is

o -5
ky
a = m + m
n i, 2,n
- kvs c
n
where
(Qt -2
m = n '
2,N 2,n
ok Qn
(Qt) 2
m ~ el
1,0 1,0
2k Qn
Expansion to first order in T gives
L (at) -2
dn = (e' - et ) (2—18&)
N VAN

- 24 -

(2-17a)
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Assuming the €; N to be random and independent, using the appropriate
'
CD matrix elements from Ref. (2), and keeping only dominant terms, we find

by Eq. (2-9)

— 2@ [atVF] iz
Bu_ ”’[ETE"§ (EH) }n(e') (2-19a)

Application of Eq. (2-8) now gives for the orbit perturbation (in the

constant-parameter, constant-energy case)

n Y —
o S (1) (2-20a)

J_6 72? _ ,),2
(&4

5" |
¢

Taking 7y = 7C\/2, as in Section II1.B.2, as the basis for the misalign-

ment tolerance, we find

~ L
v — -
<e ms<“\In |§’lmax (2-212)

b) Close Triplet (cT) (See Fig. 1.1d)

In this case the definitions are

A7 = N = AT
1 3
.1
AZg—jI‘
Q =Q =%
1 3
Q =-Q
2

By a treatment analogous to the preceding example, one finds the following

results:

Perturbation vector (to first order in T);

(qt) 1 in -1
£ + e! (2-18b)
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Phase-space increment;

1 2 L\2 —
5T ~|E Q7N (%) (ef)g] (2-19p)
"N

n sin 8

where (e n)2 = (e")® = constant.
L)
Orbit perturbation (for constant parameters and constant energy);

- = 7 Z
2 — —2 (e (2-200)
6L y< - 7

Tolerance on independent skew misalignment of the quadrupoles (again taking

Y = 7c 2 at the low end of the energy band);

<eli> <

8
rms {rﬁ'[glmax (2-211b)

., Collinearity of the Multiplet Elements

In addition to the three components of transverse misalignments dis-
cussed so far, triplets are subject also to non-collinearity of the centers
of the three quadrupoles. Figure 2.5 illustrates a suitable representa-
tion of this component of the misalignment, in the ST case; the situation

is exactly analogous in the CT case.

) Q
-3Q -3Q
ell
L1 f
4 1 reference
? axis '
R — %D > %D ——ie}

FIG. 2.5--Representation of non-collinearity.
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a) Spaced Triplet

The perturbation vector for the misplaced (center) gquadrupole is given

in the thin-lens approximation by

Hence the perturbation vector for the n-th section, referred as usual to

the end of the multiplet, is

)._1
(@]
—

[ I
[oN
(@]

rzg-

, d
an = . e" = - e” (2-22a)
% 1) \lo 1 - Q a(1 - $Qd)

The phase-space increment, if only the dominant terms are kept, is by

Eq. (2-9)

du =~ (ng ) (e")® (2-23a)

n sin 6
n

The orbit perturbation in the constant-parameter, constant-energy case

then is found to be

2nA (e")®
~ (2-2ha)
D 1 - (76/7)‘2

ye
=" |

Finally, the collinearity tolerance, based as usual on the low energy case

where 7y = 'YCVE, is

(2-25a)

b) Close Triplet

In this case the perturbation vector, referred to the end of the

triplet, is

II.B. 4



where c! = cos %¢, g' = sin %@, and the rest of the quantities (k,

®, C, and S) are as defined in Sect. II.B.2(b), above. Expansion in

series to first order in T gives

DNl
2

~ 1" _
a = e (2-22v)

Q (1 -3gat)/)

Use of the CT matrix elements® gives for the dominant part of the

phase-space increment

I }\QZ "y -
By~ (sin G)n(e ) (2-23b)

and the orbit perturbation in the constant-parameter, constant-energy

case is

—  6nA (e™)®
£ = (2-24p)
S N R (7 /7%

The collinearity tolerance, based on 7 = 7C 2, then is

" 1 [T ,
<e" > el e (2-25b)

2
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ITI. AXTAL ROTATIONS

A. DEFINITION AND JFORMULATION

Axial rotation refers to misalignments in which optic elements (e.g.,
quadrupoles or miltiplets) sre rotated sbout the longitudinal reference
axis. Figure 3.1 illustrates the situation in which the principsl axes
(X,Y) of the element are rotated by an angle ¥ with respect to the fixed

reference axes (x,y). ¥

v

J

X

/(VF_

X

FIG. 3.1--Rotation of principal axes (X,Y) relative
to transverse reference axes (x,y).

In this case the (Xx,y) system is transformed into the X,Y system by a

b % 4 rotation matrix, i.e.,

X /lcos v lsin ¥\ x 'x\\
= = R ] (3—1)
Y -1 sin V¥ lcos ¢/ ¥ y/
where
X [ x
X = X =
P \
X X
Y y
Y; ==
P
Y py

ITT.A



and

To first order in the rotational error V,

I T
/ (3-2)

The transformation through the optic element, in the reference system,

now is given by

\

N a R LATRY o)/: i
T"' =R TR*(‘
1Y VAN I 'VACH AN
M (M- NV
~ (3-3)
(M- NV N/

(to first order in V), where M and N are respectively the (2 x 2)
transformations in the principal, or X and Y, planes.

In a first-order perturbation treatment cne makes the substitution

X=X + g’ g

Y=y + 7

(3-3a)

where &’ and 7) are presumed small. Equation (3-3), combined with

Eq.(3-2), gives for the tranformation through the optic element

X x, o+ (M- N)Y 4
1
~ (j'u)
y Ny + (M- N)X v
2 1 1

II1I.A
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Terms containing 5\11 and \1/'77 are considered second-order, and are dropped.
Then the perturbed solutions are given in terms of the unperturbed

solution by

X =MX
° 0 (3-ba)
-lha
{;!=:M£; + M
where
m= (M - N)Yl\l/ (3-5)

with an analogous transformation for the y vector. The discussion in
Section II.A.2 and the latter part of II.A.l1, and Egs. (2-3) through
(2-9), thus apply in the present case.

B. APPLICATION TO PERIODIC MULTIPLETS

1. Axial Rotation of the Multiplet as a Whole

Consider first the component of axial rotation associated with accidental
tilting of the common support of the multiplet quadrupoles. It will suffice
to calculate this effect only for the Spaced-Doublet (§9), which is the
most asymmetric combination. (Note that in a circularly symmetric lens
there would be no effect because M-N = 0.)

From Ref. (2) one finds for the SD lens

1+ qd d 1 - Qd d

=
]

-4
0
1

- Q2d 1-@Qd - QFd 1+ Qd

2Q4

"

whence by Eq. (3-5) the perturbation vector for the n-th focusing section,

—31—



referred to the end of the doublet, is

a - 2(ad)_ Y (3-6)

n

where

is the (unperturbed) solution in the y plane, referred to the beginning

of the doublet. We need the matrices

'—1
.

A=ML=M

O
—

{given in Ref. (2)], and

”~

B =LN

A

(the transformation for the Y vector) which may be shown to be given by
B = (3—7)

where a; . are the components of A.
Use of Egs. (3-7), (3-6), (2-9), and (2-7) gives, for the phase-space

increment,

I1I.B.1
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Q2d2
sin €

du = I

(3-8)
- hlp2a2 2
= +(Q a )n v uy
where uy‘ is the (unperturbed) invariant function in the Y plane.
The perturbation is again seen to be strongest at low energy; hence it

suffices to calculate the orbit perturbation at constant energy, which

by use of Egs. (3-8), (2-8), and (2-7) turns out to be

where 7c a2 %Q Vﬁﬁ- in the §g case.®
With vy = Y 2 as the practical minimum energy, the tolerance on

axial rotations for the doublet is

~ £
<y> <3 %;%Eﬁﬁ - (3-10)
max

= 0.1 cm, ‘Y‘ = 1 em, A = LO0OO inches,
max max

With typical numbers !g|
= 15, one gets

D = 80 inches, and n

~ o
Yy > . i = 5.
< Y s < .091 radian 5.2

Since the other combinations (CD, ST, and CT) are expected to have even
larger tolerances, it appears that axial rotation of the multiplet support

is no problem.

2. Relative Axial Rotation of the Quadrupole

Consider now the case where the individual quadrupoles of a multiplet

have independent random axial rotations relative to one another. It is

- 33-
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necessary to evaluate the orbit perturbation for each of the multiplets.

(a) Spaced Doublet (SD) (See Figwre 1.la.)

In this case the perturbation vector in the x plane, referred to the

end of the multiplet, is

9, =|ep@ - Q¥¥ + (@ - Qpavy, (3-11a)

n
”~
where Q, Q are the transformations through a quadrupole in the focusing

*
and defocusing planes, respectively;

~

is the transformation through the space between the gquadrupoles; Yn is
the (unperturbed) solution in the y plane, measured at the beginning of
the doublet; Wl,n and We,n are the rotations of the first and second
gquadrupoles, respectively.

Expanding Eq. (3-1la) and keeping only the most dominant terms, we

find

1,n 2n (3-12a)

and note that 6wn is the gquantity which is expected to be a random varisble.

*
In the thin-lens approximation,



Then evaluation of the phase-space increment LEq. (E-Q)J, with appropriate

SD matrix elements from Ref. (2), gives

(&y)% (3-13a)

The orbit perturbation in the constant-parameter, constant-energy case

then is found |[Eq. (2-8)] to be

A (o9)2 -
ﬁ.,g-.. ?
D1- (/0% L

m=1

Eﬂ&,
{

(3-1ka)

A (B2 (V2
D1 (y /93

where 7o Qf% Q YAD in the 5D case; and, because of the quasi-periodic

form of the orbits in periodic focusing systems,z’1 Yi_ has been replaced
1(v\2 . .

by Q(Y)maX in the summation.

Basing the tolerance, as usual, on the condition 7y = 7C-J§} we find

<oy > < 5lmax [F (3-15a)

(b) Close Doublet (CD) (See Figure 1.1b)

In this case the perturbation vector in the x plane is

a = Q@Q - Q)Y\y + (Q - Q)QY\J!} (3-11b)
n 1 o)

n

I111.B.2



where in the CD case

1
C — 8
Ky
Q:
- kys C
1
R C o S
Q —-
kyS C
¢, s, C, S, and k are as defined in Sect. II1.B.2(b); Yoo, and
b4

V, , are as defined in (a), above.
2

Expanding Eq. (3-11b) and keeping only the dominant terms, we again
find

a = - oy (3-120)

where bwn = Wz,n - Wl,n'
The remainder of the derivation is analogous to (a), above. Using
the CD matrix element from Ref. (2), we find:

Phase-space increment;

EN 2 2
Su g ¥ (By) (3-13b)

Orbit perturbation (constant parameters, constant energy) ;

£2 ~ 3n - (3-14D)

111.B.2
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where

in the QQ case.2

Tolerancs on relative axial rotation;

o e | T
< By > < TR
rms !Y 6nA

(¢) Spaced Triplet (ST) (See Figure 1.lc)

The treatment is analogcous to the preceding cases. The results are:

Perturbation vector (dcminant terms);

/o \
| Wy -2, ot v, L)

RN 1,n 2,n 3
\&

g =
n

(3-12¢)

o

) el

n

where W, n’ v, N’ and ¥, , are respectively the axial rotations of the
) 2 :

three gquadrupoles;

=

I

e
i
R3S

O

{_
W

Il

=
1

[SWl n and 5W3 0’ the rotations of the outer guadrupoles relative
> 0

to the center guadrupole, are assumed to be independent random variables.}
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Phase-space increment;

— o A
u, =2 (—9—5— Y2) (oy)2 (3-13c)
n

sin 6

Orbit perturbation (constant parameters, constant energy);

—_— A (8\1{)2 (Y)2
22 = 2n - = (3-1ke)

D1~ (y,/N*?

where 7y, = tQVAD in the ST case.®

Tolerance on relative axial rotation;

<sBy > <% lél@iﬁ — (3-15¢)

)
rms ~
max

(d) Close Triplet (CT)

The results in this case are:

Perturbation vector (dominant terms);

0]

a =~ (5¢l)n - By ) (3-124)

2,n
RAl n

where Swl’n and ng’n, as in the ST case, are the axial rotations of the

outer guadrupoles relative to the center gquadrupole.

Phase-space increment;

2 ~ R—
= YQ} ()2 (3-13d)
n

ITr.B2
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Orbit perturbation (constant parameters, constant energy) ;

— A (BY)E (Y)2
gi ~ 6bn — max (3-14a)

T1- (/7%

where 7, = 1Q\/2 AT in the CT case.?

To erance on relative axial rctation:

< 5y > ~;Ig'ma,x T
V2rms <2

-39 -



IV. LONGITUDINAL MISALIGNMENTS

A. FORMULATION

An optic element which has a small accidental longitudinal dis-

placement from its correct position may be described by the matrix

/1 - ol /l &L
M'='\ M|

0 1 \0 1

AN

where & = %; and 5L 1is the longitudinal displacement. To first

order in 8L,
sM=M - M= 5t (4-1)
If we make the substitution
X = X +&

where X 1is the solution of the unperturbed system and 5' is assumed

small, then the transformation through the optic element is

X2 = MX
(4-2)
£ ~wE, +m
where
m = (3MJX =(sM)M7'X (4-3)

1 2

The solution for the orbit perturbation thus is analogous to the

cases in Sections II and ITI.

-Lo -
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B. MULTIPLET SYSTIMS

1. ILongitudinal Displacement of the Multiplet

Suppose that the individual quadrupoles of a multiplet all have an
equal longitudinal displacement — c.g., displacement of the common sup-
port system. Then by Eg. (4-1) (using the singlet approximation® for
the multiplet), we find

whence by Eq. (4-3)

/X
a ~ K . (%)n &L (b-b)

A A
where X, Px are the coordinates measured just ashead of the lens, and

a is the perturbation measured just beyond the lens.
Use of the results of Section II.A and the singlet matrix

elements?® then gives, for the phase-space increment

f) SLAU A 16 e —— (4-5)
n 74 AP

where u is the adiabatic invariant in the unperturbed system. It

then follows that the orbit perturbation in the constant-parameter,

constant-energy case is

2~ 80 S L (32 (4-6)

Iv.B.1
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Then the tolerance on longitudinal misalignment, based on

7 = JE_VC) is

3
<B8L > < l_lﬁﬂf
™ms

— I
I (4-7)

| %]
max

2. Independent Relative Longitudinal Displacements of the Quadrupoles

(a) Spaced Doublet (SD)

Suppose that the first and second quadrupoles of the pair are dis-
placed by - %ﬁD and. %6D, respectively, from their correct positions.
Then the perturbation vector is given, with the help of Egs. (4-1) -
(4-3), vy

_ AT -1
e = [oo(aol) QD Q + (3Q,)Q ‘Jnx

n

A
where Q, Q, and D are as defined in Sect. III.B.2(a);

e.)

i
7~
(o4
[»}
N
N
i
. %H
o
joN]
TN
o]
]

and

5d = =

_hg -



The dominant part of the phase-space increment then is found to be

Q*x 8a® %2
Sun ~ | —— (4-9a)

sin @

The orbit perturbation in the constant-parameter, constant-energy

case then is found to be

— o (7,/7)%

éflzn P
D* 1 - (v, /7)®

(X}, (k-10a)

The tolerance on relative longitudinal misalignment, for vy = [Eiyc, is

~ 'glmax D
<BD > < — (k-112)
lemax \]E

(b) Close Doublet (CD)

In this case it is helpful to imagine that there is a small gap

of length D, between the two quadrupoles, such that
<BD ><KD KT

— i.e., the gap has negligibly small effect on the gross properties of
the doublet, but allows the errors to have a symmetrical distribution.
The calculation is then analogous to the preceding (SD) case.

The results for the perturbation vector and phase-space increment are

formally the same as Eqs. (4-8a) and (4-9a).

%@ s replaced by 2(X)2 in the summation
n 2\ max > '

_M“B—

Iv.B.



The orbit perturbation (for constant parameters and energy) is

— o0 (r./7)®
9 o Ry (x)2 (k-10b)
- /7

and the tolerance on the doublet spacing error is

(4-11v)

(c) Spaced Triplet (ST)

In this case it is appropriate to consider the displacements of the
outer guadrupoles, relative to the center quadrupoles, to be independent
random variables. Then in the same approximation as Eq. (4-8a), the

perturbation vector is found to be

1 0

~ 1 bl
a, 29 . X (Sdl,n + 6d3,n> (4-8c)
- 4Q -1
n
6Dl n
where Bdl = ——2=  etc.; ®D and ®D are the errors in
1,n y 1, 3,n
n

position of the first and third quadrupoles, relative to the second.
The results of the remainder of the calculation are:

Phase-space increment;

1 [Q% 8a® Ax°
Bu A~ — | —— (4-9¢)
8 sin 6

- Ly -
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Orbit perturbation (constant parameters and energy);

- 802 (r./7)®
.~ 2n (X2, (k-10c)
D 1- (y,/7)®

Tolerance on relative longitudinal errors;

~ léImax D
—_— (4-11c)
rms , ,

Xmax\/_é;

(d) Close Triplet (CT)

The calculation is analogous to the preceding cases. The pertur-
bation vector and phase-space increment, considering only the dominant
terms, are formally the same as Eqs. (4-8c) and (4-9c), above. The re-
mainder of the results are:

Orbit perturbation (constant parameters and energy);

8% (7 /7)?

gi ~ 18n - (x)2,, (4-10a)
™ 1 - (r,/7)®
Tolerance on velative longitudinal errors;
o1 lglmax
<epy T —mAX__ (k-110)
s 3 |y \fon
max

_)_{_5_
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V. ERRORS IN QUADRUPOLE STRENGTH

A. TFORMULATION

Suppose that the J-th quadrupole in a multiplet has an error, 5&Q
in its strength, Qﬁ. Then the perturbed matrix for the multiplet will
be '

M' =M+ (M) (9-1)

wvhere M 1s the unperturbed transformation and

(M) ~ Z —a—%(M) B (5-2)
J

(to first order in the error).

The situation is then analogous to the case of a longitudinally dis-
placed quadrupole, so that Eqs. (4-~2) and (4-3) of the preceding Section
apply, with &M defined by Eq. (5-2).

B. APPLICATION

1. Variation in the multiplet as a whole

Consider an error in which all the quadrupoles of a multiplet vary

proportionately. In this case we car use the singlet approximation,?

which gives

1 0
3
(5M) =¥ BF
__1:_‘___ 1
o 0 yOF
) o2
1 o/ T

Proceeding as in the previous sections, one finds the following

results: Perturbation vector;



V.B.1, V.B.2

Phase-space increment (assuming all multiplets vary independently);

L y\2 A sF2
o[ 2 F o
\F sin 6 P2 1,

Orbit perturbation (for constant parameters and energy);

5—2: . (70/7)2 6_1;1—2
n 1 - <7c/7)2 P2 ma.x

Tolerance on random variations in multiplet focal length (for vy = {5—76);

<F >rms ~ ’g lmax

P Ry,

(5-5)

This may be related to current-regulation tolerance, on the assumption
that all quadrupoles of a given multiplet have a common power supply. For

all the multiplets considered here,

FoeQ®a«1?

vhere I 1s the quadrupole exciting current.

Hence

< 8l >
ms

£
Z 1 | Imax (5-6)

1] “mxl

2. Independent Variations of the Quadrupoles

The effect of a variation in quadrupole strength on the matrix for

the quadrupole is given (in the focusing plane) by

1
a (o4 -}-{7 s
(8Q) = % 5Q
\; kys ¢

where the notation is the same as in Section II.B.3. Expansion of the

..)4,7..



terms gives (to first order in the thickness, AZ)

— 0

i

(8Q) =~ - 3Q (5-7)
1 - & QLZ
3

nf-

In the defocusing plane the result is the same except that the signs

of Q@ and B8Q are changed.

(a) Spaced Doublet (SD). The perturbation vector in this case is

o= |ap(sa,) @ D" + (5000 ' | X

n n

n

where [for the thin-lens limit of Eq. (5-7)]

(3Q,) = 3q.; (sq) = - 5Q ;
* 1 o/ * % 1 o/ 2

and the other quantities are as defined in Section III.B.2 (a).
Carrying out the products and keeping only the dominant terms,

we find
/o
a =~ & (an - 6Q2) (5-8a)
X
n
The errors 6Ql and 6Q2 both are considered random and independent
- e.g., errors in the construction or in the magnetic material of the

quadrupoles. The phase-space increment (dominant part) is found to be

— 2
- — 2 7\ X _
Bu_ =~ 28Q {Sin e)n (5-92)

The orbit perturbation (for constant parsmeters and energy) is

.. nA 'g§§ (x)2
62 ~ ~ — L (5-10a)

2D Q2 1 - (7(:/7)2

- 48 -
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The guadrupole uniformity tolerance, calculated for y = Jé'yc, is

< 8Q > e D
——ms o max | (5-11a)

Q xI . Vna

(b) Close Doublet (CD). 1In this case a calculation analogous to the

preceding shows that the perturbation vector and phase-space increment
(if only dominant terms are kept) are formally the same as given in
Eqs. (5-8a) and (5-9a). The remainder of the calculation gives:

Orbit perturbation (for constant parameters and energy);

2 2
2 ~ 2n f =R (Orax (5-10Db)

T Q% 1 - (7./7)3

Quadrupole uniformity tolerance (for vy = fé_yc);

< 3@ > e T
— 2 e [__ (5-11b)
Q \ 3nA

F

(c) Spaced Triplet (ST). In this case the dominant part of the

perturbation veclor is found to be

a zﬁ (-é«m +8Q, —%6Q3’n) (5-8c)

The phase-space increment to the same approximation is

LVE®Y]

— —_ 2
Bu_ ~ 2 8Q2 ( X ) (5-9¢)

n \sin 6

The orbit perturbation in the constant-parameter, constant energy case is

A2 2
aont F W,

T% D @ 1- (3 /23

(5-10c)

- 4o -
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. q . . I
nocuadrurole uniformity tolerance {(for v o
< 8G > £ D
s max [z \
< (o-1lc J
Q X InA
o max
{a> (lose Trivlet (CT). In this case the dominant part of thne
roally

irbation vector and phase-space increment are found to be fo

4
DETTUY
v

remainder of the calculation

br

The

e

)

the same as Egs. (5-8c) and (5-9c).

gives:
Orvit perturbation

. .

e
B
o]
H
&
Le]
.()
&
o

< 8Q > 2 T i
ms Y1 f— (5-11a
= X LonA
< max |

ny
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