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1 Introduction.

It is no exaggeration to say that the majority of particle physics experiments
are designed to measure either the masses of the quarks and leptons, or their
couplings to the W boson. There is no mystery about why this is so: we are
most interested in learning about the fundamental parameters of the Standard
Model, and 13 out of 18 of these correspond to quark and lepton masses and
mixingf. I am not trying to minimize the importance of the five parameters of the
gauge sector, which can be taken as a,a,,Gr, Mz and My; but it is a simple
fact that the large majority of the fundamental parameters belong to the flavor
sector.

Each of the 18 fundamental parameters is represented in the Standard Model
by a coupling constant. Conventional wisdom in particle physics has it that the-
ory got way ahead of experiment, and consequently became a victim of its own
success. What do you do after successfully predicting the existence and masses
of the W and Z particles? This masks an important point; the triumph of par-
ticle theory was the construction of the Standard Model, not the understanding
of the values of the 18 fundamental coupling constants. The,prediction of the
Z mass was possible because the four observables o, Gr,sin?# and Mz depend
on only three of 'the fundamental independent couplings, giving a prediction

*In collaboration with S. Dimopoulos and S. Raby.
tA simple extension of the Standard Model is to allow for dimension five operators of the

form £;¢;HH to generate neutrino masses. Here ¢; is a lepton doublet and H the Higgs. In
this case there are an additional 9 observables: the three neutrino masses together with the
three neutripo mixing angles and the three phases of the leptonic mixing matrix. I ignore 8.
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M3 = na/V2GFsin® 6 cos? §. The real problem with theory is that it has failed
to calculate any of the 18 fundamental coupling constants, while experiments
have measured, to varying levels of accuracy, all 18. Particle theory has hit a
brick wall. It is a victim of its present failures not its previous successes.

I do not know how to construct a fundamental theory which would allow
a first principles calculation of coupling constants. Does this mean I have no
hope of making predictions? No. It is always possible to obtain predictions by
reducing the number of free parameters. The Balmer formula provides a superb
illustration of this. A large number of observables (the hydrogenic spectral
wavelengths) are described by a single free parameter (the Rydberg constant).
Twenty-eight years after this incredibly successful formula was written down,
it played a dominant role in leading Bohr to his atomic model in which he
could compute the Rydberg, R = 2n?mZ2%e*/h3. This crowning achievement
was the birth of the quantum theory of atomic structure. It may will be that
a predictive scheme for fermion masses, depending on far fewer than the 13
flavor couplings of the Standard Model, is a prerequisite for the development of
a fundamental theory of fermion masses. Indeed such a predictive scheme for
fermion masses would start looking very much like a fundamental theory if it
involved few enough parameters.

Progress has been made in reducing the number of parameters in the gauge
sector. In grand unified theories (GUTs) the three independent gauge couplings
become related [1]. This implies predictions for the weak scale gauge couplings
g:(Mw), i = 1...3, of the form [2]:

gi(Mw) = Cini gc (1)

where gg is the GUT gauge coupling, C; are numerical group theory constants
and the 7;, which are radiative corrections computed with the renormalization
grou;g, depend on mass ratios such as Mw /Mg, where Mg is the GUT scale.
Let me define the number of predictions of any sector of a theory by

Predictions = (Independent observables) — (Free parameters) . 2)

How many predictions occur in the gauge sector of GUTs? While the C; are
purely numerical group theory constants, the n; depend on ratios of various mass
scales. If there are two or more mass ratios on which the n; depend, then there

are no predictions: together with gg there are three or more free parameters
for the three observables g;. The only hope is for the maximally predictive
possibility that the n; depend only on the single mass ratio Mw /Mg, in which
case there will be one prediction, usually chosen to be the weak mixing angle
sin? 6. '

There are many possible GUTs which have no new scale other than Mc.
How many different predictions for sin? @ can they give? The answer is just two:
.211 without supersymmetry and .233 with weak-scale supersymmetry [3]. What
is the accuracy of these predictions? There are GUT /supersymmetric model-
dependent corrections which are typically around .002 {4]. Since the Standard
Model is consistent with any value of sin?#8 from 0 to 1, I think that it is very
significant that the minimal supersymmetric scheme predicts precisely the ex-
perimental value of .233 + .001. Many people shrug this off, but let’s face it, it
is significant.

The successful prediction of sin? @ resulted from requiring a larger symme-
try than dictated by experiment. It is well known that this same enlargement
of the gauge symmetry can also yield predictions in the flavor sector. Flavor
observables at the weak scale, F,(Myw), can be given by predictions of the form

Fa(MW) =Cana (3)

where C, are again purely numerical group theory constants, while the dynam-
ical factors 7, depend on several parameters, including a, and mass ratios such
as Mw/Mg. The first such prediction was for m;/m.[5]. However, we now know
that in this case 7, depends on m; and a,, leading to uncertainties of 30% and
10% respectively. Hence this successful prediction is much less significant than
sin? @, especially as one successful prediction out of so many flavor parameters

is not convincing.

Recently Savas Dimopoulos, Stuart Raby and I have constructed a scheme
with only eight independent flavor parameters [6): we predict 14 of the 22 quark and
neutrino masses and mixings.}? Our scheme is based on two sets of symmetries:
an S0(10) supersymmetric gauge symmetry and the family symmetry of Georgi
and Jarlskog [7]. We have used these two types of symmetries, GUT and family,

tIn fact since the theory is supersymmetric there is an extra flavor parameter: tan g, the
ratio of VEVs. We predict 15 of the 23 total flavor parameters.



because they are the only known tools available for obtaining predictive flavor
theories, other than just phenomenological guesswork. Our scheme is by far
the most predictive that has ever been written down. It may not be the most
predictive, and it may not be correct, but it can be tested.

What is the level of accuracy of our predictions? This is determined by the
experimental uncertainties of the inputs used to determine our free parameters.
For example we use sin 8., m, and m,/mgy as inputs, and these are known only
to 1%, 10% and 30% respectively. Hence our predictions have accuracies which
are typically 1-30% depending on which inputs they are sensitive to.

Six of our 14 predictions occur in the charged fermion sector. Our scheme
may well be probed via the top mass. We are unable to give a very precise
determination of m, because it depends on inputs a,, m. and V. which all
have 0(10%) uncertainties. However, we will need to rethink if m, is outside
the range 165 + 25 GeV. A crucial and definitive test of our scheme will occur
if the angles «, 3,4 of the unitarity triangle of the KM matrix are accurately
determined through CP violating decays of neutral B mesons at a B factory.

These predictions are discussed further in Section III below.

The neutrino masses and mixings are completely determined in terms of
the charged fermion masses and mixings, with the one exception of the overall
mass scale of the neutrino masses. We do not know any way of predicting this
scale. As far as we know, this is the first time anything about the neutrino
masses and mixings has been predicted using the known quark and charged
lepton masses and mixings as input. We predict every element of the 3 x 3
lepton mixing matrix, and both neutrino mass ratios m,, /m,, and m,,/m,,. In
constructing our scheme for neutrino masses we have made several assumptions,
each motivated by the desire to obtain a maximum number of predictions. The
assumptions concern our choice of symmetries and how these symmetries are
broken. Before giving more details of our predictions, I will now discuss some

of the history of attempts to predict fermion masses in gauge theories.

2 A Brief Historical Review

A prerequisite for a predictive gauge theory of fermion masses is a proof that

gauge theories are renormalizable. This is because it is renormalizability which

H
i

leads to a gauge theory being completely determined by a finite set of param-
eters. It is interesting to note that in the very paper of 1971 in which sponta-
neously broken gauge theories were shown to be renormalizable [8] it was also
pointed out that certain mass ratios could be calculated.

The first attempts to obtain quark or lepton mass predictions in gauge
theories concentrated on m./m, [9]. In the Standard Model m. and m, are
independent; they arise from the two independent Yukawa couplings A. and A,,.
The idea of reference [9] was to increase the electroweak gauge group in such a
way that there was only a single Yukawa coupling, and such that electroweak
symmetry breaking gave rise only to a muon mass at tree level. The electron
mass was then to be understood as a finite and calculable radiative correction.
For example, with an electroweak gauge group SU(3) x SU(3) the electron
and muon leptons could be arranged as ¥y, = (e,ve, V)L ~ (3,1) and Y =
(p*,7,,e7)r ~ (1,3). The single Yukawa interaction A, ¢ involves scalar
mesons in the (3, 3) representation. A vacuum expectation value {¢a;) = v
leads to tree level masses m, = Av, m. = 0. Note that SU(2)L, lies in the first
2 x 2 subspace of the vector SU(3)r+r. This means that ¢s; is just the neutral
component of an SU(2);, doublet, it is the Higgs of the Standard Model. The
crucial point is that the gauge symmetry has been arranged so that this Higgs
has no coupling to electrons. Such a coupling is induced by ¢;3, but that is in
a different SU(2)r doublet which is assumed not to acquire a VEV.

In the Standard Model we could also arrange for the electron to be massless
at tree level by setting A, = 0. However, in this case the chiral symmetry of the
electron field is unbroken so that the electron remains massless to all orders in
perturbation theory. The crucial point about these extended electroweak gauge
models is that the masslessness of the electron is an accidental consequence of
the tree level structure of the theory. It is not guaranteed by & symmetry and
hence radiative corrections induce an electron mass. The point is that the chiral
symmetry of the electron is the same as that of the muon as they appear in the
same multiplet. This means that the muon mass term breaks electron chiral
symmetry! ‘The way to communicate this chiral symmetry breaking from the
muon to the electron is via the SU(3). and SU(3)r gauge bosons X r which
couple electrons to muons. Hence the one loop diagram for the electron mass

is as shown in Figure 1. The electron mass is finite and calculable precisely
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Figure 1: A one loop contribution to the electron mass. Xy,r are exotic gauge
bosons.
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because the theory is renormalizable. Furthermore the electron mass m. o« am,
looks as if it might be numerically in the right ballpark.

‘Although there is much which smells right about this approach it has a
crucial flaw; the electron mass depends upon the inasses of the X r gauge
bosons. This is a disaster because until such bosons are discovered, and their
masses measured, the theory has no predictivity in the sense of equation (2).
There is a vast literature on radiative fermion masses. However, 1 will not
discuss it further in these lectures: I simply have not seen such a scheme which
was predictive. While the radiative hierarchy is frequently quite appealing, there
are no hard numbers being predicted, which would render the theory testable.
In my opinion, the most important aspect of this early attempt at understanding
fermion masses is that it was the first example of how the number of independent
Yukawa couplings could be reduced by an increase in the symmetry. This is
the crucial tool which has led to theories which can make actual numerical
predictions for fermion masses and mixings. There are two symmetries which
have proved useful in this regard: grand unified gauge symmetries and global
family (or generation) symmetries. It is astonishing that it took a further five
years before either of these symmetries was used to make predictions in the
flavor sector, but in 1977 each of these types of symmetries was used to make
an apparently successful prediction.

The relationship tanf. = \/m—d/:. had been noticed in the 1960s [10]. In
the Standard Model the elements of the Kobayashi-Maskawa matrix are indepen-
dent of the quark masses. However, by using both a left-right extended gauge
symmetry and global family symmetries, it can appear as a tree-level mass re-
lation {11]. To obtain this mass relation we need only study the lightest two
generations. To see how tan, = y/ma/m, arises, consider the following 2 x 2

@) (5 1) () G

Since we do not wish to consider the up-quark mass matrix there is no loss
of generality in taking the parameters A, B, B',C to be real. Assume that
the Cabibbo angle arises from the diagonalization of this down quark mass

mass matrix:

matrix, with only a negligible correction from the up sector. Since there are four
parameters for three observables (m,,my, ) there are in general no predictions.



The mass relation follows only after symmetries have been introduced which set
B’ = B and C = O. In this case, taking A >> B, m, « A, mg B?/A and
tanf. = B/A = y/m4/m,. Since the Cabibbo angle is known to 1% accuracy,
the significance level of this relation is governed by the 20% uncertainties in the
determinates of mg/m,. Thus this prediction is good at the 10% level.

Exactly what symmetries are required to obtain the crucial parameter re-
ductions: B’ = B and C = O? Extend the electroweak gauge group to
SU(2)L, x SU(2)r x U(1) and have multiplets t,;, = (uyd)r, oL = (¢, 8)1,¥1p =
(u,d)r and ¥R = (c,s)r where left (right) handed quarks are doublets of
SU(2) L(R)'. The relevant Yukawa interactions are ¥ \ij¥rj$ + h.c., where
t,j = 1,2 are generation indices and ¢ are the Higgs mesons in a (2, 2) represen-
tation. So far we haven't got very far because Ai; still contains four independent
couplings. To obtain B’ = B, impose a parity symmetry under YL+ g (this
only makes sense if SU(2)r is gauged). This implies that A;; = Aji. It isn’t really
necessary to go any further, one can simply assume that A\;; = C << B%/A and
can be ignored. However, it is also possible to force it to zero by introducing two
parities and two Higgs meson multiplets: ¢ — ¢y, ¢,. The most general Yukawas
allowed by the symmetries P, which changes the sign of fields 1,1, ¢2p and ¢,
and Py, which changes the sign of fields 1,1, ¥1r, ¢1 and multiplies ¢y, 9op and
¢2 by 1, are

Ao tbards + B(Py ber + Yo h1r)$2 + hec.

These symmetries are not very beautiful. Who cares? We are out to predict
numbers which can be compared with experiment. Both terms are allowed by P,
and P,, while P, forbids El ¥1iré:1 and P, forbids Jl LV1r®2. There is another
set of Yukawa couplings obtained by ¢; — ¢; which generate the up mass matrix

of the form
0 B
B/ Ai N

This has two parameters which are fixed by m,, and m,, and one discovers that
the angle necessary to diagonalize this matrix 6, ~ \/m,, /m. is sufficiently small
not to substantially contribute to 6.

The trick to obtain the 6, prediction was to assume that mg — 0 in the
limit that 6. — O; i.e.,the light quark acquires mass only because of a mixing with
the heavier one. This idea can be extended to include a third generation [12],

in which case the pattern of the mass matrices is known as the Fritzsch texture:

0 C o0 0 F 0
U=|C 0 B|D=|F 0 E
0 B A 0 E D

Fritzsch imposed symmetries such that all six parameters were real. In this
case all three of the mixing angles of the Kobayashi-Maskawa matrix can be
predicted in terms of the ratios of the quark masses. The six quark masses are
just sufficient to determine the six free parameters. Today people have largely
forgotten the symmetries Fritzsch used and just remembered the pattern of zeros.
This allows one to take all the parameters complex and obtain CP violation. In
fact four of the six phases can be removed by field redefinitions. This “Fritzsch”
model therefore has eight parameters to describe ten observables. The two
predictions are usually taken to be |V3|/|Vs| = .07 & .01, which is a good
prediction, and the second is taken to be the top mass. One finds that m, < 95
GeV, which is currently right on the experimental limit. The most elegant
fermion mass relations are undoubtedly those given solely from an enlargement
of the gauge group, to which we now turn.

In the Georgi-Glashow SU(5) grand unified model with a 5 of Higgs, the
down quarks start out degenerate with their corresponding leptons. This works
well for the third generation [5] which provided the first GUT mass relation.
However it predicts the troublesome relation

d

S

o

which appears to bé wrong by one order of magnitude. This led H. Georgi and
C. Jarlskog to introduce the 45 dimensional Higgs multiplet [7]., This multiplet
when coupled to a given family, say the second one, gives ¢ = —3s at the GUT
scale. Georgi and Jarlskog make use of this multiplet and obtain the following

Yukawa matrices for the down quarks and electrons:

0 F 0 0 F 0
t D=|F E o| E=|F -3E 0 (5)
' 0 0D 0 0 D



The elements D and F arise from the VEV of 5s of Higgs and the entries £ and
—3E from a 45 of Higgs. The zeros are forced by discrete symmetries. The up
matrix has the Fritzsch form '

(6)

c
i
o QO o

c
0
B

» o

[

'
We will refer to the matrices D, E, and U given by Egs. 5 and 6 as having the

Georgi-Jarlskog texture. Harvey, Ramond and Reiss [13] studied this texture in
an SO(10) model. They were the first to realize that it led to a prediction for m,
in terms of V, and that the resulting KM matrix violated CP. However, they
did not renormalization-group-scale the Yukawa couplings to obtain predictions
for my, |Vis/Va| or the CP violating angle.

One could imagine choosing the Georgi-Jarlskog texture at the weak scale
for U and D alone (ignoring the leptons and any reference to GUTs) as suggested
recently [14]. Since the down quark mass matrix is diagonal in the two heaviest

generations, one has

This implies a very heavy top in the 220-800 GeV region [14], which, when
compared to electroweak data, is seen to be unacceptably large.

The unacceptably large top mass is a consequence of Eq. (7) which in turn
follows from the Georgi-Jarlskog matrices of Egs. (5) and (6). In deriving the
value of the top mass from Eq. (7), the low energy values of m, and V;, were used
[14]; thus, implicitly assuming that Egs. (5) and (6) were valid at the electroweak
scale. In a Grand Unified Theory [GUT], this assumption is not justified. Thus,
the fermion masses have the Georgi-Jarlskog texture of Egs. (5) and (6) only at
Mcguyr where the theory is defined. At energies below Mgyt the form of the
mass matrices can change. In particular, zero entries can become nonzero and

this can significantly change the connection between masses and mixing angles.
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For example, a nonvanishing 22 entry in the up mass matrix U will change Eq.
(7) and can therefore fix the heavy top mass problem.

The statement that zero entries in the mass matrices can evolve becomes
evident when we recall that such zeros originate at the GUT scale as a result
of a (typically discrete) symmetry Z. If, as is often the case, Z is spontaneously
broken at Mgyt then at low energies there is no symmetry to protect the zeros;
as a result they become nonvanishing but calculable quantities at the weak scale.

Under what conditions is Z spontaneously broken at Mgyr? The imple-
mentation of Z requires the existence of several Higgs doublets (belonging to
various 5s and a 45 in the Georgi-Jariskog model); if most of these doublets
become superheavy and are not available below Mgyr then Z cannot be imple-
mented and is necessarily broken [15]. Such is the case in minimal low energy

models where only one Higgs couples to quarks of a given charge.

3 A Recent Framework and Its Predictions

(I) Framework
Our objective is not to focus on a single grand unified theory [GUT] but

to propose a general framework which can result from a very large class of
theories. Only the features of the framework relevant to predicting the fermion

mass spectrum are of interest to us. These are:

1. Grand Unification: We work in the context of GUTs, so that we can relate
quark and lepton masses. This leads to an economy of parameters; we save
ourselves from having to introduce three additional new parametersto describe

the hierarchy of the three lepton massese, p and 7.

2. Low Energy Supersymmetry: The successful prediction of sin? 8,, makes
it preferable to work in Supersymmetric [SUSY] GUTS. In such a theory,
we have two Higgs doublets; thus the fermion mass matrices include a new
parameter, tan 3, the ratio of Higgs VEVs.

3. Georgi-Jarlskog Texture: The mass matrices will have the Georgi-Jarlskog
form (Eqgs. 5, 6) at Mgyr.



4. SO(10): The gauge group will be SO(10) or E(6) instead of SU(5). There
are many reasons for this: in SO(10) the mass matrices can be auto-
matically symmetric. This is important since otherwise we are forced to
introduce an extra eighth parameter for no fundamental reason and reduce
the predictive power of our model. Also in SO(10) we can relate neutrino
to quark masses and make predictions about the light majorana neutrino
masses. In addition, the Georgi-Jarlskog factor of -3 relating quark and
lepton masses can be easily achieved in several ways as a consequence of
the Pati-Salam subgroup contained in SO(10).

5. Coniplex Parameters: To allow for CP-violation we shall start with all the
parameters A, B, C, D, E, and F that appear in the mass matrices being
complex.

It is immediate to see that in our framework the top is necessarily heavy:
recall that we have to avoid the relation V, = \/g at low energies. This equation
is valid at Mgy since it is a direct consequence of the GUT scale mass matrices
given by Egs. 5, 6. Thus, to avoid it we must ensure that V3 runs between the
grand and weak scales; this can only happen if the top Yukawa coupling is large
Ae ~ 1.

The parameter counting for the quarks is as follows: the U and D Yukawa
matrices have nine nonvanishing entries. We have nine fields at our disposal - three
doublets and six singlets — thus eight relative phases that can be used to get rid of
all but one of the complex phases. For convenience we use this phase freedom
to make A, B, C, D, and E real and keep F complex, and the mass matrices
hermitean. Thus we have seven real parameters A, B, C, D, E, the magnitude of F
(call it F from now on) and its phase ¢. A, B and C describe the hierarchy of
up masses; D, E and F that of downs or electrons.

The lepton mass matrix E can easily be made real by using the phase free-
dom of the six fields — three doublets and three charged singlets. We discuss neutrino
masses later. Thus the seven parameters A, B, C, D, E, F, and ¢ in the fermion
Yukawa matrices, as well as tan 3, determine the 13 masses and mixing angles

and tan 3, itself; leading to six predictions for the charged fermions.
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We will take as inputs and outputs the following quantities:
iIlPUtsi Me, My, My, My, |Vcb|> Me, mu/mda |Vcd|,
outputs; mg, m,, my, sin 3, |¥,'::|, @.

(IT) Predictions (6]
(a) Top Mass and sin j3:

the top mass is given by

memy 1

e 7 f (g3,92,01)

where f is a known function of just gauge couplings. Plugging in we obtain

B me me @)2 146\ (1.84
me = 179 GeV (4.15 GeV) (1.22 GeV) ( Vs - el L)

The 7; are QCD renormalization factors which are plotted as a function of

as(mz) in [20]. Also, a general expression for m; is
v

my = —=

t \/5

. t
where A; is the top Yukawa coupling. Equations 8 and 9 imply that both sin 8 and
A+ must be near 1. Since the fixed point of \; is near 1 (/\tf’i = 1.09) and is

sinfB X =174 GeV sin B\ (9)

attractive, it follows that A will be at its fixed point for all practical purposes.
This was anticipated earlier. Furthermore, combining the above equations it is clear
that tan 3 is large; this has important consequences for SUSY phenomenology.
Detailed numerical calculations have now been done for this scheme [21, 20].
The relations between m;, tan 8 and V, are shown for a,(Mz) = 0.126 in
Figures 2, 3 and 4 taken from [20], which also contains figures for other values of
as(Mz). Tflese figures illustrate the level of accuracy which may be achieved in
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Figure 2: A plot of tan 3 versus {V| for a,(mz) = .126. On the solid (dashed)
[dotted] curve, the M'S values of the running quark masses are mp(my) =
4.25 (4.15) [4.086] GeV and m,(mc) = 1.27 (1.22) [1.186] GeV.
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Figure 3: A plot of the top quark’s pole mass m; versus tan f for a,(mz) = .126;
inside the dashed (solid) curve ,my(ms) = 4.25+.1(%.164) GeV, m.(m.) =
1.27 & .05(2.082) GeV, and |V| < .050(< .054). With these restrictions,
the top quark mass is predicted to lie in the range 1554 < m, < 195
(126 < m, < 195.5), while tanf is restricted to 1.3 < tanf < 56.4
(.83 < tanB < 64.3). The dotted line gives the prediction for the case
A = D with m.(m.) = 1.188 GeV.
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Figure 4: A plot of the pole mass m, versus |V3| for as(mz) = .126. The dotted,

dashed, and solid curves correspond to those of Figure 2. The additional
dotted and dashed curve is for my(my) = 4.35 GeV, and m.(m.) = 1.32
GeV. On each curve, the arrows indicate the direction of increasing tan 8
and menotonically decreasing, GUT scale top Yukawa, A. The diamonds
(circles) indicate points where A = 2.5 (2.0).
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predictions of this sort. Of particular interest is the fact that an extra prediction
can be gained by setting the b and t Yukawas equal at the GUT scale: A = D.
In this case m, is very large and must lie on the dotted line of Figure 3.

(B) d, s and ¢:

We find d ~ 6.2 MeV, s ~ 156 MeV. These should be compared with the
Gasser-Leutwyler values of d = 8.9 + 2.6 MeV and s = 175 & 58 MeV [16]. Our
s/d is a bit on the large side, but not uncomfortably so [17,18]. These predic-
tions are, of course, just a SUSY version of the predictions of Georgi-Jarlskog.
The CP violating phase ¢ is given by

+.05
in¢ = .91
sin ¢ ( _13 )
(7) CKM matrix, %:::
The CKM matrix is given by
cy ~— 51326""“’ 81 + 61326_i¢ 8283

V= —C182 — 316_"# cle““’ — 8182 S3

8183 —C183 €1¢ y

where

81 =sin 6y = .196
|

' 5= 05 muémd 1.25GeV _
' me

This value of Vi,;,/Vs was in the low end of the acceptable range when the

Y
Vo

prediction was first made. However, the CLEO collaboration has recently revised
their central value for this ratio down by about a factor of two so that the agreement



is now quite good. Also there are large uncertainties in extracting V,5/Vs from
data.

To obtain predictions in the neutrino sector several more assumptions must
be added to the framework, and these are detailed in [19). Here we
just summarize the results. Our predictions for neutrino masses and mixings
are shown in the table. The 3 x 3 mixing matrix has been approximated by
rotations 8., 8, and 6.,, and we have not shown the effects from CP violation.
There are two versions of our scheme, which we label I and II.

In Model 1,4,, is sufficiently large that the Fermilab E531 results imply that
m,, < 2.5 eV. This means that it is unlikely that planned neutrino oscillation
experiments will be able to detect the neutrino masses of this model. Although
the neutrinos are*all too light to be the dark matter, the value of 8., does allow
a resolution of the Cl, Kamiokande and Gallex solar neutrino experiments by
MSW oscillations, at the 90% confidence level. Our value of 6., implies that,
as the error bars on the Ga experiments are decreased, a low number of about
50410 SNUs will result. To test this region of parameter space in the lab would
require a long baseline v,v, oscillation search with sensitivity to smaller mixing
angles than the present proposals.

In Model 11, §,,, is just beyond the E531 limits. This is very exciting because
it means that the upcoming v,v, oscillation searches at CERN will probe a
large range of Am? in this model. In particular, if the v, makes a significant
contribution to the dark matter in the universe, then O(50) events will be seen
and sin?26,,, will be determined to be within 15% of 3.1073.

I 11
0., |(65+.3)102] .15+.04
0, 081+ .008 | —.027+.003

5.7+ .6)107* | (1.9 +0.2)10°*

my, [m,, 208 + 42 1870 + 370

m,,/m,, { (3.1 +1.0)10° 38+12
Myynas 25eV 710 eV

Table
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Grand unified theories are only interesting if they are testable. The suc-
cessful weak mixing angle prediction is the first crucial step, but is not sufficient.
Observation of proton decay could yield important information about GUT scale
physics, but is unlikely to provide a significant numerical test. If the flavor struc-
ture of GUTs is simple enough, there can be very many predictions of quark
and lepton masses and mixings. This may be the only real hope for definitive
progress on GUTs. In these lectures I have given some of the central ideas and
history behind making quark and lepton mass predictions, and have provided
an explicit example which is the most predictive known to date. While very
successfyl it has some shortcomings. This is a field in rebirth and this example
will soon be replaced with models with more symmetry and more predictions.
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