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Abstract

Saw-tooth instability occurs during high current operation in the Stanford

Linear Collider (SLC) damping rings. This instability is single bunch, and it

can be cast as a longitudinal microwave instability. It is caused by the beam

interaction with short range wakefields in the ring vacuum chamber. The saw-

tooth instability manifests itself in the periodic blowup in quadrupole or

higher moments in the longitudinal beam distribution.

Most of our instability studies have been experimental. Since the

measurements of coherent particle motion within a short ultrarelativistic

beam are largely unconventional we had to develop some original diagnostics.

These includes, for example, the down-conversion of the high frequency

(~10 GHz) broad-band beam position monitor (BPM) signals. We have also

employed a state-of-the-art Hamamatsu streak camera that is capable of

resolving the longitudinal beam distribution with sub-picosecond accuracy.

As a result of our streak camera experiments we have quantitatively

described the phase space of unstable bunches. We have found the radial

structure of the instability mode and established that it only displaces a few

percent of the beam particles. In another series of experiments we have

correlated the instability signals from the beams before the extraction from

the damping rings with their trajectories in the linac downstream. This

showed that the instability results in a significant transverse beam jitter in

the linac which compromises the damping ring performance as an injector. In

addition, we have studied the instability behavior under the broad range of

stored beam parameters using both passive observation and driven excitation.

These measurements revealed unexpected beam behavior significantly above

the instability threshold. Finally, we performed several low current

experiments to estimate the damping ring vacuum chamber impedance.
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We also present some analytical results regarding the instability and

compare them to the observations. In particular, these include the explanation

of unequal sidebands in the spectrum of the BPM signal from unstable

bunches. In addition, we have obtained several results regarding the

instability onset criteria and proposed a new method of estimating the

instability threshold based on the steady-state solution of the Fokker-Planck

equation.
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Chapter 1

Introduction Chapter 1

1.0 Storage rings

The subject of this thesis is particle dynamics in storage rings. A storage

ring is a device used to hold a large number of relativistically moving charged

particles for a relatively long time maintaining their energy constant. Concep-

tually, a storage ring is a donut-shaped vacuum pipe surrounded by magnets

that bend particle trajectories around the pipe. Another set of magnets - so

called quadrupoles, produce additional fields to focus particles in the direction

transverse to their motion. Stored charge constantly loses its energy due to

synchrotron radiation and some other processes. To make up for this loss,

energy is supplied to the particles through the so-called RF cavities that pro-

duce electric field in the longitudinal direction. Another effect of RF cavities is

that they force particles to bunch longitudinally. Therefore, in the coordinate

frame comoving with the bunch a combination of quadrupoles and RF cavities

provides focusing in all three spatial coordinates. This is why in that coordi-

nate frame particle motion is similar to a 3D harmonic oscillator. The three

frequencies of this oscillator normalized to the revolution frequency are usu-

ally called the tunes.

When a charged particle follows a fixed radius bend its radiation energy

loss scales as the fourth power of the Lorentz factor γ=E/mc2. This is why the

dynamics of light particles like electrons and positrons (for which γ factor of a

thousand and more is routinely achieved) is significantly affected by radiation.

This is usually not the case for proton and other heavy particle storage rings.

In other words, there is a major difference in storage ring dynamics for light
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and heavy particles which largely comes from the effects of synchrotron radia-

tion. In this thesis we will only concentrate on electron and positron storage

rings.

Electron storage rings have many diverse applications, and their number

is still growing. Nevertheless one can talk about three major application

areas. First, there are collider rings that hold counterpropagating beams (usu-

ally e+ and e-) and are used for high energy physics needs. This field studies

fundamental laws of nature by observing the products of particle collisions.

Second, there are light sources that utilize the synchrotron radiation emitted

by electrons. Finally, there are preconditioners, like damping rings, accumula-

tors etc. that temporarily store beams until they achieve certain properties

before reinjecting them into another machine.

No matter what the purpose of a storage ring is, it is fair to say that beam

intensity, beam quality and beam stability ultimately define the ring perfor-

mance. Beam intensity is proportional to the total charge stored. The meaning

of beam quality depends on the application, but generally it is inversely

related to the total phase space volume occupied by a beam. Finally, beam sta-

bility characterizes how well given beam parameters can be maintained. For

example, for collider rings the performance is characterized by the so-called

luminosity which defines useful event rate for a given event cross section. It is

well known that after the so-called beam-beam intensity limit is reached the

luminosity is proportional to the ratio of the number of particles per bunch to

the vertical amplitude oscillation function β* in the interaction point. Further-

more, although β* inversely depends on the focusing quadrupole strength in

the interaction region, it cannot be made arbitrarily small. One of the lower

limits is , where σ is the rms bunch length. Therefore, to achieve maxi-

mum luminosity one has to either increase the amount of charge in each

bunch or reduce its length. Similarly, for the light source applications the

brightness of the synchrotron radiation is proportional to the beam charge and

inversely proportional to its transverse phase space volume. In addition, many

β* σ≈
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user experiments require very short light pulse duration which directly trans-

lates into requirement for small bunch length. And, of course, for all applica-

tions beams must remain stable, so that their size and trajectory do not

change in uncontrolled fashion.

To achieve higher performance considerable effort has been spent to

increase intensity and reduce the beam size in storage rings. It is intuitively

clear that one cannot infinitely increase particle phase-space density. Apart

from engineering issues, for example radiation destroying the inner surface of

the vacuum chamber, people encounter new physics problems. At certain

space charge density particle interactions with either themselves or their

environment causes beams to go unstable. They break into oscillations or blow

up in size which often leads to rapid beam loss on the walls of the vacuum

chamber. This is where the subject of beam dynamics enters into accelerator

physics.

2.0 Beam dynamics and collective effects in storage rings

Beam behavior in storage rings is extremely diverse and this subject has

accumulated considerable literature (e.g. [1]- [4], [30]). Below we will offer a

simplistic classification of beam dynamics effects with the purpose of better

defining the scope of this thesis.

Most beam dynamics effects could be divided into single particle (or inco-

herent) and collective phenomena. Incoherent effects can be explained by con-

sidering particle motion in external fields. One example is the so-called

dynamic aperture effect where focusing nonlinearity limits the maximum

amplitude of bounded motion for a single particle. This effect often shortens

the beam lifetime in storage rings. Some of the incoherent effects lead to insta-

bilities when a certain amplitude characteristic of the process grows exponen-

tially with time. For example, beams usually become unstable if one of their

transverse tunes or the longitudinal tune approaches an integer number. This
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is because sharp transitions of vacuum chamber as well as numerous end

fields create a periodic force on a beam causing parametric instability.

In this thesis we will not consider incoherent phenomena but rather con-

centrate on collective effects. These effects cannot be described as a motion in

external fields. Alternatively, in this case beam behavior is largely determined

by the interaction between the beam particles. This interaction may be either

direct or through third party, for example the residual ions in the vacuum

chamber. Usually particles in a bunch are loosely correlated in position. This

means that the motion of each particle is not strongly affected by its nearest

neighbors (like it would be in a neutral gas) but rather it is governed by a

large portion of the overall beam charge. Therefore, particles can move coher-

ently i.e. their motion is correlated on a macroscopic level. This coherent

motion may become unstable at certain conditions which are always intensity

dependent. Such behavior of beams in storage rings is similar to that of plas-

mas in external fields. Similar to plasma physics a large variety of collective

phenomena, usually deteriorating performance, was discovered in storage

rings. The most dangerous of them are fast collective instabilities which may

lead to the total beam loss during several revolutions if the beam intensity

exceeds some threshold value.

Over the years there has been significant progress towards understanding,

diagnosing and curing of coherent beam effects in storage rings. For example,

the phenomenon to which M. Sands refers in 1970 as “... strange bunch-

lengthening effect observed in many storage rings - which is, as yet, not

understood” [1] is now known as “potential well distortion” and described in

accelerator physics textbooks (e.g. [3], [4]). On the other hand, the general

problem posed by collective effects is far from complete solution. This is in

part due to constant push for higher intensities and shift to new parameter

regimes and partly because of extreme complexity of collective beam physics.

Indeed, particles in a stored beam compose an open system - they can have

energy and matter exchange with the environment. The behavior of such sys-
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tems is described by non-equilibrium thermodynamics, which is still an

actively developing field. It is known that open systems can have certain sta-

ble configurations that exhibit some spatial or temporal order and are differ-

ent from the thermodynamic equilibrium. This generally requires that the

systems are nonlinear and have some sort of a feedback mechanism. Both of

these are true in a storage ring where large amplitude motion is nonlinear,

and the feedback mechanism is created through the particle interaction with

environment by means of wake forces. These forces make a stored beam sys-

tem even more interesting for physicists because in the ultrarelativistic case

they invalidate Newton’s third law causing the system to become non-Hamil-

tonian.

The diagnostics of collective effects in storage rings also presents a chal-

lenge. Typical longitudinal beam size is on the order of a centimeter, and the

transverse dimensions are several orders of magnitude smaller. The only way

to nondestructively measure the bunch shape is to analyze the electromag-

netic radiation emitted by the beam. This could be synchrotron radiation, elec-

tromagnetic waves induced on the walls of the vacuum chamber or, perhaps,

the scattering of externally applied laser light. Beam sizes define the lower

frequency limit of the detecting apparatus to be in the microwave range for

the longitudinal to somewhere into the optical regime for the transverse.

Detecting coherent oscillations in such a system generally means resolving

certain time varying structure within a bunch. This puts even tougher condi-

tions on electronics generally requiring fast (ps) data acquisition.

In present thesis we will focus solely on longitudinal effects largely ignor-

ing the transverse beam dynamics. As it will be shown in Chapter 2 separate

consideration of transverse and longitudinal motion is often appropriate.

One way to get around single beam collective effects is to split the bunch

into many smaller ones. Many modern rings are utilizing this principle. For

example, the SLAC PEP-II asymmetric B-factory is running with 1658

bunches in both electron and positron rings. The bunch spacing there is
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1.26 m which is considerably longer than the rms bunch length of 1 cm and

makes single bunch collective effects less important. Of course, at practically

interesting intensities instead of dealing with single bunch phenomena people

have to deal with bunch to bunch interactions. These interactions are also a

collective effect; however, they are described by somewhat different physics

than single bunch effects, and they will not be considered in this thesis. We

should note that studying single beam collective effects is still important since

it establishes the ultimate factors limiting the intensity. For instance, one of

the future luminosity upgrades for the B-factory calls for running with beam

currents a factor of three higher than the single bunch longitudinal instability

threshold [5]. Clearly, thorough understanding of how to overcome this insta-

bility will be required. Another reason to study single bunch collective effects

is that they still govern beam physics at some older storage rings, for example,

in the damping rings of the Stanford Linear Collider.

3.0 Stanford Linear Collider

Experimental data for this thesis were taken in the Stanford Linear Col-

lider (SLC), specifically in the electron and positron damping rings (NDR and

SDR respectively)

The SLC was built for the purposes of high energy physics namely to test

the predictions of the Standard Model of elementary particles and forces

between them. More specifically, people study different aspects of the model

analyzing the decay scenarios of Z0 bosons. The Z0 resonance occurs at

93 GeV, and to create this particle the SLC collides head-on electron and

positron bunches of about half this energy. To achieve such energy electron

and positron bunches are accelerated by RF electric fields in the same two

mile long linear accelerator. Subsequently, they are separated into the arcs

and then brought into collision in the interaction region which is surrounded

by the SLD detector.
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The layout of the facility is shown in Figure 1. Main components of the

SLC are: 1) an electron gun to produce polarized electrons, 2) the preaccelera-

tor - linear accelerator section to bring the energy to 1.19 GeV, 3) two damping

rings - to increase the beam brightness, 4) the main linac - to accelerate elec-

tron and positron bunches to 46.5 GeV, 5) the positron target - to produce

positrons, 6) the positron return line - to return positrons to the preaccelera-

tor, 7) the arcs to bring copropogating beams into a head-on collision, 8) the

final focus magnet system - to squeeze the bunches before the collision,

9) interaction region - this is where two bunches collide, 10) the SLD detector -

to detect the collision products.

Nominal repetition rate of the SLC is 120 Hz. This is the rate electron

bunches are produced by the gun and also the collision rate at the interaction

region. The gun produces polarized electron bunches in pairs. One member of

the pair (the production bunch) finally collides with a positron bunch. The

other electron bunch is called the scavenger, and it is used to produce

positrons at the target. The total charge in each bunch is roughly 6 nC which

is about 4×1010 particles. To accelerate these bunches the SLC uses room tem-

perature RF accelerating technology and operates at S-band frequency of

FIGURE 1. The layout of the Stanford Linear Collider (from [6]).
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2856 MHz. The damping rings operate on the fourth subharmonic of this fre-

quency. Both damping rings store two bunches each, and the injection cycle is

defined by the repetition rate to be roughly 8.5 ms.

The SLC is a large and complex machine. To achieve design luminosity the

SLC has to deliver high quality beams to the interaction region operating at

the rate of 120 Hz. This would not be possible without a sophisticated control

system. This system assembles large amounts of data from numerous diagnos-

tic devices that measure beam characteristics (beam position monitors, wire

scanners, ionization chambers etc.) as well as environmental parameters (for

example, pressure and temperature sensors). Some of these data is analyzed

on-line and used in feedback loops to optimize the luminosity. Other portions

of data are archived for possible further analysis. The SLC control system is

based on ALPHA cpu computer which uses VMS operating system and runs

the main control program called SCP. For machine physics experiments this

program is a major source of information on current beam parameters and

machine conditions.

A complete set of SLC parameters can be found in [7]. Detailed discussion

of the damping ring parameters as well as some aspects of the control system

will take place in Chapter 3 of present thesis.

4.0 Scope of this thesis

In this thesis we will present experimental results on longitudinal particle

dynamics in the SLC damping rings. For the most part we were interested in

diagnostics and explanation of the high current phenomena called the saw-

tooth instability which can be classified as a single bunch longitudinal insta-

bility. We will also present the results of several low current experiments that

were primarily carried out to characterize the damping ring vacuum chamber

impedance and the RF system. Knowing these two factors is crucial for

explaining the instability phenomenon. Some experimental results on how the

instability affects performance of the SLC will also be presented. Finally, we



CHAPTER1. INTRODUCTION 9

will describe some theoretical models of the phenomena and compare them to

the experimental results.

The rest of this thesis is organized as follows. Chapter 2 offers some back-

ground on single bunch collective effects including the saw-tooth instability

observed in the SLC damping rings. Chapter 3 describes experimental appa-

ratus and techniques (including some specifically developed for this thesis)

that were used for this study. Original results are presented in Chapters 4

and 5 of the thesis. Chapter 4 describes experimental results while Chapter 5

is devoted to the theoretical side as well as to the interpretation of the experi-

ments. Finally, summary and conclusions are offered in Chapter 6.

The experimental part of this thesis (Chapters 3 and 4) uses MKS units

while CGS units are used elsewhere. If the units are not specified they should

be assumed in CGS system. Also, to simplify the formulas normalized vari-

ables will be used extensively in Chapters 2 and 5. For example, the bunch

length will be measured in units of natural bunch length. This will be further

explained when needed.
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Chapter 2

Single bunch longitudinal dynamics in
storage rings Chapter 2

1.0 Single particle motion

This section includes a mainly qualitative description of the fundamentals

of the single particle motion in storage rings. In our consideration we loosely

follow [1].

1.1 Coordinate system

Storage rings are usually designed utilizing a concept of a closed orbit. It

states that there exists a particle trajectory which closes on itself after one

revolution. Furthermore, if a nominal energy particle is put on this trajectory

at the right phase with respect to the ring RF system it will stay there indefi-

nitely without on average loosing or gaining any energy. This particle is often

called the synchronous particle. Its energy and revolution period will be

referred to as E0 and T0. We will assume below that the closed orbit lies

entirely in the horizontal plane which is true for most rings and simplifies the

analysis of the kinematics.

It is convenient to introduce a coordinate system with respect to the syn-

chronous particle. Longitudinal coordinate z is then defined so that a particle

in front of a synchronous one has positive z. It should be noted that about half

the accelerator physicists use the opposite sign convention, however, the con-

sequences of this are rather trivial.
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1.2 Small amplitude synchrotron oscillations

A particle with the energy slightly higher than nominal

will generally follow a trajectory different from a closed

orbit. The period of this trajectory (which may be defined as the average value

between the two consecutive passes through some azimuthal position in the

ring) will be longer than T0 because the magnets bend this particle’s trajectory

less. In the non-relativistic case this effect is offset by the depen-

dence, which, however, becomes negligible when the velocity approaches c and

weakly depends on the energy. To quantify this energy dependent orbit length-

ening ∆L=∆L(γ) the momentum compaction parameter α is introduced so that

. (2.1)

Momentum compaction factor is related to the ring optics and is usually a

positive number on the order of νx
-2, where νx is the horizontal betatron tune.

This typically makes the γ-2 term above negligible for the ultrarelativistic case

of interest.

To compensate for the energy loss due to the synchrotron radiation beam

particles are supplied with energy from RF cavities. For the synchronous par-

ticle the energy loss per turn U0 equals the energy gain from the RF

. Here we assumed a single RF cavity with a harmonically

varying voltage with amplitude ; ϕ0 is called the synchronous phase. For an

off-energy particle, which arrives at the cavity at a different phase, the above

equation transforms to

, (2.2)

where ωRF is the RF frequency. By definition of the closed orbit the synchro-

nous particle must always come at the same phase ϕ0 to the RF cavity. There-

E E0 1 δ+( ) , δ 0>=

T E1 2⁄∼

∆L
cT0
---------- α γ 2–

–( )δ=

eV̂ ϕ0( )cos U0=

V̂

∆δ eV̂
E0
------- ϕ0 ωRF

∆z
c

------– 
 cos=



CHAPTER2. SINGLE BUNCH LONGITUDINAL DYNAMICS IN STORAGE RINGS 12

fore, the revolution frequency has to be a subharmonic of the RF

frequency , where integer number h is called the harmonic num-

ber.

Usually z and δ change on the time scale much longer than the revolution

period. Hence, changes over the revolution period can be expressed in terms of

the time derivatives of these quantities. Now, assuming small oscillations in z

compared to the RF wavelength, we arrive to the equations of motion

, (2.3)

, (2.4)

where dot denotes the derivative with respect to time and the (zero current)

synchrotron frequency has been introduced as

. (2.5)

EQ 2.3 and EQ 2.4 describe pure harmonic motion where an off-energy

particle oscillates in energy and position with respect to the synchronous par-

ticle. These oscillations continue forever because the system described by

EQ 2.3 and EQ 2.4 is conservative. This is, of course, an approximation result-

ing from the fact that two important synchrotron radiation effects were

neglected. These effects are the radiation power dependence on the particle

energy and quantum excitation.

1.3 Radiation effects

An electron following a fixed radius curve radiates away energy in the form

of the synchrotron radiation. The radiation power Pγ is given by (e.g. [1])

, (2.6)

ω0 2π T0⁄≡

ω0 ωRF h⁄=

ż αδc–=

δ̇
ωs0

2

αc
---------z=

ωs0 ω0
ehαV̂ ϕ0( )sin

2πE0
-----------------------------------≡

Pγ Pγ E( )≡
cCγ
2π
--------- E4

R2
-------=
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where m×GeV-3, E is the energy and R is the bend radius.

EQ 2.4 was derived neglecting this energy loss dependence on particle energy.

Accounting for it adds another term to the right hand side of EQ 2.2, namely

where . Of course, a

more rigorous derivation should account for variable magnetic field strength

along the particle trajectory. Therefore, the damping constant should

include some integral measures of this field. Indeed, a more accurate expres-

sion for the damping constant reads [1]

, (2.7)

where and . The integrals

are taken around the closed orbit, K(s) is proportional to the gradient of the

magnetic field and η(s) is the so-called horizontal dispersion function also

related to the magnetic field strength along the trajectory. Usually the radia-

tion damping is much slower than synchrotron oscillations . Radia-

tion damping term modifies EQ 2.4 to the form therefore

leading to gradual damping of synchrotron oscillations.

Radiation damping comes from purely classical properties of the synchro-

tron radiation. Quantum nature of the synchrotron radiation leads to another

important effect called radiation excitation. Formally, this effect has not

showed up so far because it was assumed above that radiation is being emit-

ted continuously. This is not quite true. According to quantum physics radia-

tive emission occurs in discrete quanta of energy hω, where ω is the photon

frequency. The frequency distribution of the synchrotron radiation is well

known (e.g. [1])

Cγ 8.85 10 5–×≈

1
E0
------- Pγ E( ) Pγ E0( )–( ) γ̃dδ≈ γ̃d E∂

∂ Pγ E( )〈 〉
turn

U0

E0T0
--------------≈≡

γ̃d

γ̃d
Cγ E0

3

4πT0
-------------- 2I2 I4+( )=

I2 R s( ) 2– ds∫°≡ I4 1 2K s( )R s( )2
+[ ]η s( )R s( ) 3– ds∫°≡

γ̃d<<ωs0

δ̇
ωs0

2

αc
---------z γ̃dδ–=
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, (2.8)

where the critical frequency is defined as and K5/3 is a modified

Bessel function of the order 5/3. Note that according to EQ 2.8 synchrotron

radiation spectrum is peaked around ωc and rapidly falls off for ω>ωc. Also, in

the ultrarelativistic case the critical frequency tends to be many orders of

magnitude higher than the revolution frequency since the former scales as γ3.

The moments of time when each photon is emitted are purely random and

the emission can be considered instantaneous. Therefore, synchrotron radia-

tion acts as a white noise source added to the system. This source creates the

energy fluctuations with a standard deviation

. (2.9)

Hence, our system initially described by energy conserving equations

EQ 2.3 and EQ 2.4 now includes a damping term and a white noise source ξ(t)

, , so that

(2.10)

. (2.11)

According to EQ 2.9 the diffusion coefficient D is given by

(2.12)

Coupled first order differential equations with noise sources (as EQ 2.10

and EQ 2.11) are often called the Langevine equations and there are standard

ways to analyze them (e.g. [21], [23]). What is commonly done is to introduce

a particle distribution function in z and δ and transform this system to a

Fokker-Planck equation. This equation will be discussed in detail in

Section 3.0 of present chapter. For now let us simplify EQ 2.10 and EQ 2.11

P̃ ω( ) 9 3
8π

-----------
Pγ

ωc
2

------ω K5 3⁄ ξ( ) ξd
ω ωc⁄
∫=

ωc
3
2
---cγ3 R⁄≡

td
d ∆E( )2〈 〉 hω( )

2
P ω( ) ωd∫ 55

24 3
--------------hωcPγ= =

ξ̃ t( )〈 〉 t 0= ξ̃ t( )ξ̃ t'( )〈 〉 t 2δ t t'–( )=

ż αδc–=

δ̇
ωs0

2

αc
---------z γ̃dδ– Dξ̃ t( )+=

D γ̃dωs0δ0≡
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further by introducing unitless variables. It is clear that the characteristic

energy spread as well as the spread in z are defined by the balance of the radi-

ation damping and quantum excitation. Simple dimensional analysis (or,

amazingly Einstein’s formula for Brownian motion and even Nyquist’s theo-

rem from electric circuits theory) gives this characteristic (natural) energy

spread as

(2.13)

related to the natural bunch length σ0 as follows

. (2.14)

Hence, it is convenient to introduce unitless variables that make the

Langevine equations especially simple. If we choose

, , , (2.15)

and redefine the damping constant then

, (2.16)

, (2.17)

where the noise source ξ(τ) satisfies the relations

and . (2.18)

1.4 RF bucket size and the validity of linear RF approximation

Conservative part of the system EQ 2.16-EQ 2.17 can be described by a

Hamiltonian

, (2.19)

δ0 D γ̃d⁄≡

ωs0σ0

c
--------------- α δ0≡

τ ωs0t≡ x z
σ0
------≡ p δ

δ0
-----–≡

γd ωs0γ̃d≡

ẋ p=

ṗ x– γd p– γdξ τ( )+=

ξ τ( )〈 〉τ 0= ξ τ( )ξ τ'( )〈 〉τ 2δ τ τ'–( )=

H x p,( ) p2

2
------ x2

2
-----+=
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which is, of course, the Hamiltonian for a harmonic oscillator with unit fre-

quency. As long as we are interested in small oscillations and time intervals

much shorter than the damping time this simple Hamiltonian correctly

describes the longitudinal motion of a beam.

Whether oscillations for a given particle are small depends on its initial

conditions i.e. how far in phase space it was placed with respect to the syn-

chronous particle. Small oscillation approximation often breaks down at the

stage of beam injection when particles may fill a considerable portion of the

phase space. The figure of merit here is the so-called RF bucket size - the max-

imum phase space area where particles are still held by the RF. Bucket dimen-

sions can be easily obtained from EQ 2.1 and EQ 2.2. The maximum energy

spread is given by

(2.20)

while the bunch length is limited by

. (2.21)

On the other hand, away from injection the small amplitude (or linear RF)

approximation is usually a very good one for synchrotron oscillations in elec-

tron storage rings. Radiation damping keeps the bulk of the beam within sev-

eral σ0 in coordinate and within several δ0 in momentum around the center of

the RF bucket. Normally natural bunch length and natural energy spread are

both much smaller than the values given by EQ 2.20 and EQ 2.21. Hence, the

majority of beam particles are contained within a very small area near the

center of the RF bucket where they execute almost perfect harmonic oscilla-

tions. Of course, even very small RF nonlinearity brings in qualitatively new

effects not present in pure harmonic motion, for instance, frequency depen-

dence on the amplitude. It turns out, however, that there are much stronger

factors that make the restoring force on the particle in the RF bucket so non-

linear that the RF nonlinearity becomes negligible. These factors are related

δmax
2 2

αU0

πhE0
-------------- ϕ0( )tan ϕ0–( )=

lmax 2ϕ0
C
πh
-------<
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to the interaction between the particles and the vacuum chamber and they are

usually considered based on the concepts of wakefield and impedance.

2.0 Wakefields and impedances

2.1 The concepts of wakefield and impedance

2.1.1 Interactions between particles in a bunch; Resistive wall example

When categorizing the forces between the beam particles the direct

Coulomb interaction is the first one that comes to mind. However, further con-

sideration shows that in the ultrarelativistic case of interest the Coulomb

forces are negligible. The transverse force scales as γ-2 due to the cancellation

of electric and magnetic field components, and the longitudinal force has the

same scaling due to the Lorentz contraction. This argues that electrons in the

ultrarelativistic beam travelling in free space do not interact significantly.

Another simple consideration, valid for the travel in arbitrary surround-

ing, is often called the causality argument. It requires that the front particles

in a beam do not feel any effect of the trailing ones. This assumes that all par-

ticles travel at the speed of light, but it holds quite well for typical electron

storage ring energies. On the other hand, the trailing particles may, in princi-

ple, be affected by the front ones and this indeed takes place due to the pres-

ence of the vacuum chamber.

Generally, Maxwell’s equations with appropriate boundary conditions can

be solved for the force acting on any beam particle as it traverses the vacuum

chamber. Unfortunately, for realistic 3D chamber geometries this solution is

practically impossible to calculate numerically let alone to find analytically.

There are several important cases, however, that allow exact analytic solution

for the force and thus provide a valuable insight to the general problem. These

are the cases of two conducting planes, a pillbox cavity, and a smooth pipe

with circular cross section and finite conductivity. Solutions to these problems

are described in detail elsewhere (e.g. [3], [17], [18]).
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For illustration, we will reproduce one of the results of [18] where the

Maxwell’s equations for the smooth conducting pipe were solved in cylindrical

coordinates. It was assumed that the pipe walls were thick enough so that the

field leakage was negligible. According to [18] the test charge q1 travelling a

distance x behind the charge q0 experiences the force

, (2.22)

which assumes that both charges are travelling on axis and χ is given by

, (2.23)

where b is the pipe radius and σ is the conductivity. Note, that at small x the

force is finite and decelerating corresponding to the expected loss of energy by

a beam in resistive environment. At large distances |x|≥(b1/2δskin)2/3/σ0 the

force rolls off as |x|-3/2. This characteristic length can be understood since

the fields induced within the metal extend about one skin depth into the pipe

and roughly the same distance behind the test charge. The skin depth δskin

should be taken at the characteristic frequency of the pipe ωpipe~c/b.

2.1.2 Wake functions

In the resistive wall example the particle interaction is due to the electro-

magnetic fields left behind by the front charge in the skin layer of the pipe. Of

course, the skin layer is not the only place for those fields to be left. They can

get excited as well by any variation in the cross section of the vacuum cham-

ber as illustrated in Figure 2.

In this case the force calculations are more complicated, because, in con-

trast to the resistive wall, there is no translational symmetry. This makes the

force on a test charge dependent not only on the relative position of this

charge within a bunch but also on its instantaneous position. However, it is

F x( )
16q1q0

b2
------------------- 1

3
---eχx 3xχ( ) 2

π
------- z2ez2χx

z6 8+
------------------ zd

0
∫–cos

 
 
 

–=

χ
σ0

b
------ 2πσb

c
-------------- 

  1 3⁄
≡
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intuitively clear that only the average effect of this force matters for beam

dynamics (at least for the time scales of interest). This allows simplification of

the analysis by introducing wake functions that account precisely for the aver-

age force experienced by a particle.

In the longitudinal case the wake function of a cylindrically symmetric vac-

uum chamber component can be defined (see e.g. [3] for m=0) as the average

force experienced by a test charge q1 as it follows distance x behind the driving

charge q0

. (2.24)

In this equation L is the length of the component and is the longitudinal

position with respect to some fixed point in the ring. Both charges are

assumed to travel on axis and have δ-function charge density distribution.

Note, that applying the causality argument we get that for any wake function

FIGURE 2. Simulation of the wakefield lines from a Gaussian bunch traveling through a LEP RF
cavity (from [19]).

Wδ x( )
σ0

q1q0
------------ F x x, '( ) x'd

L– 2σ0( )⁄

L 2σ0( )⁄

∫≡

x'
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. (2.25)

A simple definition EQ 2.24 utilizes the fact that the integral over the elec-

tromagnetic force is independent of the transverse displacement of the test

charge in the ultrarelativistic limit (e.g. [16]). In principle, the force also

depends on the transverse offset of the driving charge which is ignored in

EQ 2.24. However, in most cases the transverse displacement of beams in

storage rings is small compared to the beam pipe radius which makes the lon-

gitudinal effects related to this displacement negligible. If these effects do

become important, as well as for the case of axially asymmetric structures,

more general definitions should be used in place of EQ 2.24 (see e.g. [3], [17]).

As seen from EQ 2.24 wake functions have units of cm-1 in CGS or Ω/s in

MKS. Traditionally, when MKS system is used wake functions are measured

in equivalent units of V/pC.

With the above remarks, the wake function definition EQ 2.24 is indepen-

dent of the beam properties and therefore a wake function Wδ(x) characterizes

the vacuum chamber component alone. Furthermore, since this definition uti-

lizes a δ-function excitation (charge q0) it is similar to a Green’s function. To

find the response of a vacuum chamber component to a finite beam distribu-

tion one has to convolute Wδ(x) with the longitudinal beam density ρ(x) (nor-

malized to 1)

. (2.26)

Function Wρ(x) defined in this manner is sometimes called a wake potential or

a total wake for the distribution ρ(x).

Utilizing the definitions EQ 2.24 and EQ 2.26 allows the introduction of a

wake function for the whole ring as a sum over all the components of the vac-

uum chamber. If one now understands the wake functions Wδ(x) and Wρ(x) in

Wδ x( ) 0 , for x 0>=

Wρ x( ) Wδ x x– '( )ρ x'( ) x'd
x
∫≡
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this sense, it is possible to write the wake-related beam energy loss per turn in

the ring as

. (2.27)

At high intensities this energy loss significantly affects collective beam

dynamics. Measurable effects related to this loss will be described later in the

chapter.

2.1.3 Single particle Hamiltonian in the presence of wakes

If electrons in a stored beam interact through the wake forces their single

particle Hamiltonian EQ 2.19 gets modified to

, (2.28)

where the wake contribution is obtained by integrating the force produced by

all the particles in front. The integration of EQ 2.24 yields

, (2.29)

where is intensity related parameter, r0 is the classical electron

radius and S(x) is the dimensionless integrated wake defined as

. (2.30)

It is important to note that although one can write the single particle

Hamiltonian EQ 2.28, the whole N-particle system is not Hamiltonian if the

causality is assumed in the usual form of EQ 2.25. Indeed, for the simplest

case N=2 the equations of motion for two particles are

, (2.31)

, (2.32)

∆EW e2N ρ x'( ) x' ρ x( )Wδ x' x–( ) xd
x'
∫d∫ e2N Wρ x( )ρ x( ) xd∫≡=

H x p ρ, ,( ) p2

2
------ x2

2
------ UW x ρ,( )+ +=

UW x ρ,( ) λσ0 x''d
x
∫ x'ρ x'( )Wδ x'' x'–( )d

x''
∫ λ x'ρ x'( )S x x'–( )d

x
∫= =

λ
Nr0

αγCδ0
2

-----------------≡

S x( ) σ0 Wδ x'( ) x'd
x
∫≡

ẋ1 2, p1 2,=

ṗ1 2, x1 2,– Θ x2 1, x1 2,–( )Φ x2 1, x1 2,–( )–=
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where the first term in right hand side of EQ 2.32 corresponds to the force

from the RF potential in agreement with EQ 2.17, Θ(x) is the step function,

and Φ(x) is some unknown force. It is easy to see that there exists no Hamilto-

nian H(x1,p1, x2,p2) that implies these causal forces acting between the parti-

cles

. (2.33)

The reason for Hamiltonian mechanics and the third Newton’s law to

break down for such a simple system can be explained as follows. By assuming

causality in the form of EQ 2.25 we allow both particles to emit electromag-

netic radiation, but only the trailing one to receive it. Since this radiation is

not considered a part of the system the two particle Hamiltonian no longer

exists. Of course, as soon as we relax the ultrarelativistic requirement v=c this

problem goes away provided we wait long enough for the radiation from the

trailing particle to reach the front one. In other words the absence of Hamilto-

nian properties has to do with the time scale of the problem we are interested

in. Strictly speaking, in order to apply causality all the time we have to intro-

duce, for example, some absorptive walls, so that the radiation emitted for-

ward by the trailing particle vanishes there.

2.1.4 Impedances

Wakefields describe the interaction between particles and the vacuum

chamber in the time domain. It is also useful to consider the same interaction

in the frequency domain. Specifically, the energy loss by a test charge in a vac-

uum chamber component can be viewed as a result of some effective decelerat-

ing voltage experienced by this charge. Similarly to electrical circuits this

voltage may be related to the current I carried by the test charge as

, (2.34)

ṗ1 2, x1 2,∂
∂

– H x1 p1 x2 p2, , ,( )( )≠

Vω I– ωZ ω( )≡
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where Z(ω) is the impedance, subscript ω defines the Fourier component, and

the minus sign accounts for the fact that the voltage V is retarding. Since the

current carried by a test charge is just a δ-function its Fourier transform is a

constant. Therefore, utilizing EQ 2.24 we conclude that the impedance Z(ω)

and the corresponding wake function Wδ(x) are related by Fourier transforms

, (2.35)

. (2.36)

Similarly to the wake function the impedance for the whole ring is just a

sum over all the components which goes along with the intuition that they

present themselves in series to the beam current.

As is clear from the last two equations the interaction between the beam

particles may be equivalently described in terms of wake functions or imped-

ances. Usually the choice between the two is made depending on whether a

particular problem is better treated in the time or frequency domain. It is

worth mentioning, that while approximate analytic methods exist for calculat-

ing both Z(ω) and Wδ(x), the most precise numerical techniques integrate

Maxwell’s equations in the time domain. On the other hand, experimentally

available methods usually measure impedance components and therefore,

work in frequency domain.

Finally, we rewrite the equation for the energy loss EQ 2.27 in the fre-

quency domain. It is easy to obtain for the Fourier transformed beam density

 that

. (2.37)

It will be shown shortly that due to the symmetric properties of impedance

only the real part of Z(ω) contributes to this energy loss.

Z ω( )
σ0

c
------ Wδ x( )e

iωxσ0 c⁄–
xd∫=

Wδ x( ) 1
2π
------ Z ω( )e

iωxσ0 c⁄
ωd∫=

ρ̃ ω( )

∆EW
e2N
2π

----------- Z ω( ) ρ̃ ω( ) 2 ωd∫=
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2.2 Some properties of wakefields and impedances

In spite of seemingly unrestrictive definitions EQ 2.24 and EQ 2.34 wake

functions and impedances possess a whole array of properties that follow from

the principles of causality, energy conservation, and others. Detailed discus-

sion of these properties can be found elsewhere (see e.g. [3], [17]). Below is

the list of a few essential properties that will be used later in this thesis.

These include symmetric properties of the impedance as well as the scaling

laws at low and high frequencies.

First of all, since a wake function is a real quantity it follows from the

properties of the Fourier transform that

, (2.38)

which implies that the real and imaginary parts of impedance are even and

odd functions of ω respectively.

Second, from the causality property EQ 2.25 it can be shown that the real

and imaginary parts of impedance are not independent but are related

through the Hilbert transforms

, (2.39)

, (2.40)

where P.V. denotes the principal value of the integral.

Finally, most asymptotic properties of impedances (and hence wake func-

tions) can be found from simple physical considerations. At ω=0 the definition

of a closed orbit (no losses) implies that the real part of impedance should van-

ish

. (2.41)

Neglecting for a moment the resistive wall contribution to the impedance

we conclude that at low frequencies the impedance is dominated by the largest

Z ω–( ) Z* ω( )=

Re Z ω( )( ) 1
π
---P.V.

Im Z ω'( )( )
ω' ω–

---------------------------- ω'd∫=

Im Z ω( )( ) 1
π
---– P.V.

Re Z ω'( )( )
ω' ω–

--------------------------- ω'd∫=

Re Z ω( )( )
ω 0→
lim 0=
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components of the vacuum chamber that present inductive-like impedance to

the beam current. Therefore, we conclude that

. (2.42)

However, at the lowest frequencies the dominant contribution to the

impedance comes from the resistive wall. Applying the Fourier transform to

EQ 2.22 (which is when divided by q1q0/σ0 becomes the resistive wall wake

function per unit length) results in the low frequency impedance behavior (see

e.g. [3], [17])

. (2.43)

High frequency impedance behavior is not as transparent. It is clear that

extremely short bunches are not affected by the vacuum chamber and there-

fore the impedance has to roll off at high frequencies. Sometimes it is assumed

that at ω>>c/σ0 the longitudinal impedance scales as ω-1/2. This dependence

can be obtained from the so-called diffraction model (e.g. [3]) as well as from

other analytic methods or numerical calculations. Most of them, however,

have limited applicability which is the reason why the topic of high frequency

impedance scaling is still being debated in the literature (see references cited

in [17]). Fortunately, for this thesis the subject of high frequency impedance

scaling has largely academic interest.

2.3 Major impedance components of a storage ring vacuum chamber

A cartoon drawing of a typical storage ring impedance is shown in

Figure 3. It shows that an impedance can be categorized into two major parts.

At lower frequencies the impedance has mostly isolated narrow-band compo-

nents. These are, first of all, the fundamental and higher order modes of accel-

erating cavities. Narrow-band impedance also includes resonator-like

contributions from other vacuum chamber components that have a cross-sec-

Im Z ω( )( )
ω

--------------------------- 
 

ω 0→
lim const 0 (no resistive wall)<=

Z ω( )
L

------------- ω 1 2⁄

bc 2πσ
--------------------- 1 i ω( )sgn–( ) (low frequencies, resistive wall only)≈
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tion larger than that of a beam pipe, i.e idler cavities, bellows, quadrupole

masks etc. Above the beam pipe cutoff frequency the picture becomes more

complicated. Various smaller components, like beam position monitors, vac-

uum chamber transitions, vacuum ports, and others produce wide resonances

that merge together, so that it is often impossible to distinguish the contribu-

tion of a particular element. This part is usually called a broad-band imped-

ance.

The resistive wall contribution, that varies smoothly with frequency, could

be cast as a part of a broad-band impedance. However, since it often makes

appreciable contribution at low frequencies (where narrow-band components

prevail) it is usually considered separately. As said above, the resistive wall

defines the low frequency ω1/2 impedance scaling. It reaches maximum at the

frequency of ωrw~cχ/σ0 and falls down rapidly after that.

Narrow-band impedance corresponds to the long range wake or interac-

tions over distances comparable to the ring circumference. For example, vari-

ous cavity resonances often have quality factors of Q≥104 exceeding the ring

harmonic number by orders of magnitude. Therefore, once initiated by a

bunch, the ringing of such a mode would last over many turns. As mentioned

in the introduction, the collective phenomena associated with multi-bunch or

FIGURE 3. Sketch of a storage ring impedance. Lower frequency scaling shown is due to
the resistive wall component. The upper limit is as given by the diffraction model.
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multi-turn behavior fall outside the scope of this thesis. Therefore, only the

broad-band impedance (starting from the frequencies on the order of c/σ) that

contributes to the coherent single bunch phenomena is relevant for further

consideration.

2.4 Other quantities related to wakefields and impedances

In principle, a knowledge of an impedance Z(ω) or a wake function Wδ(x)

for a storage ring allows quantitative description of the interaction between

the beam and the vacuum chamber. Unfortunately, neither one of these func-

tions is ever known exactly and even their approximate computation is usu-

ally involved. Similarly, it is impossible to measure these functions

experimentally. At best limited frequency range measurements for isolated

components or parameter measurements for some models of Z(ω) are feasible.

This is why several constants related to Z(ω) are often used to approximately

describe the beam-chamber interaction as well as for comparison with experi-

mentally measured quantities. The two constants most widely used for these

purposes are introduced below. It should be noted that knowing these con-

stants allows making order of magnitude estimates only. More detailed

description of longitudinal beam dynamics usually requires some parametric

and/or numerical models of wake functions and impedances.

2.4.1Z/n

As it was noted prior to EQ 2.42 the low frequency impedance is usually

inductive and is proportional to frequency. The limit of

(2.44)

is therefore a constant and it is often referred to as simply Z/n (where it is

assumed that n=ω/ω0). This constant is a measure of the impedance per unit

length at very low frequencies. However, as said above, the interaction

between the beam and the vacuum chamber at frequencies this low is not

Z
n
----

ω0Z ω( )
ω

-------------------- 
 

ω 0→
lim≡
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important for the phenomena studied in this thesis, specifically, coherent sin-

gle bunch longitudinal instabilities induced by short range wakefields. More

appropriate figures of merit are the ring impedance at the characteristic fre-

quency of a beam c/σ0 or Z/n weighted with the bunch spectrum. The latter is

sometimes called the “effective Z/n” and denoted as (Z/n)eff. The estimate of

this quantity is often found in the beam dynamics section of conceptual design

reports for storage rings.

2.4.2 Loss factor

The loss factor is the quantity characterizing the beam energy loss per

turn due to wakefields. Since this energy loss is proportional to the beam

charge eN it is convenient to define the loss factor k as

, (2.45)

where the last equality utilizes EQ 2.27. It also shows that loss factors and

wake functions share the same units.

Note, that the wake related energy loss depends on the bunch shape ρ(x).

Therefore, in contrast to Z/n, the loss factor characterizes both the vacuum

chamber and beam properties. Further discussion of measurable effects

related to the loss factor will take place later in this chapter.

2.5 Some impedance models

Before describing particular models we introduce the dimensionless inten-

sity parameter

, (2.46)

where A is a numerical factor of the integrated wake (this definition is not

mathematically sound but will become clear from the examples below). Intro-

ducing this parameter is convenient because the wakefields enter into the sin-

k
∆EW

e2N
------------≡ Wρ x( )ρ x( ) xd∫=

I λ A
Nr0

αγCδ0
2

----------------- A≡≡
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gle particle Hamiltonian EQ 2.28 linearly and multiplied by λ, which allows

combining A and λ into a single intensity parameter I. It is this parameter

that enters into various characteristics of single particle and collective motion

like, for example, incoherent and coherent frequency shifts. Consequently,

since the factor A is taken out from the integrated wake we have to renormal-

ize the latter by

. (2.47)

Throughout the rest of this thesis the integrated wake S(x) will be

assumed normalized as given by EQ 2.46 and EQ 2.47.

2.5.1 Resonator and the broad-band resonator models

As mentioned in Section 2.1.1 it is possible to calculate the force on the

particle as it travels through the pillbox cavity. This force can be integrated to

obtain the wake function. This case is important since accelerating cavities

and some other storage ring components can be modeled as pillboxes. Unfortu-

nately, this calculation is rather involved [17], and part of the difficulties

comes from the fact that the particles generally excite many resonant modes

of the cavity. However, if it is assumed that only one mode (usually the funda-

mental) gets excited then the calculations of Wδ(x) become simple. The wake

function found in this case is usually referred to as the wakefield of a resona-

tor.

The most intuitive (but somewhat hand waiving) way to find Wδ(x) is to

first calculate the impedance Z(ω) and then Fourier transform it. After

inspecting the EM fields in a pillbox cavity one can write its impedance as a

parallel combination of inductive and capacitive components (corresponding to

H and E fields respectively) plus a real shunt impedance Rs that accounts for

the wall losses

. (2.48)

S x( ) S x( ) A⁄→

1
Z ω( )
------------- i

ωL
-------- iωC– 1

Rs
------+=
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This can be rewritten in terms of the quality factor and the

resonant frequency  as

. (2.49)

Performing inverse Fourier transform (EQ 2.36) one can obtain the resona-

tor wake function

, (2.50)

where two dimensionless parameters are introduced as

, , and Q is assumed to exceed 1/2.

Finally, the integrated wake and the intensity parameter for the resonator

can be written as

, (2.51)

. (2.52)

It was speculated by many authors that the resonator model at low values

of Q approximates rather well the broad-band impedance region sketched in

the right half of Figure 3. When Q~1 (often Q=1 is used) the impedance

EQ 2.49 is called the broad-band resonator model. Since this model is flexible

and allows analytic calculations of many beam dynamics related quantities it

is often used in the single bunch stability analysis. It should be noted, how-

ever, that this model must be used with caution at high frequencies where it

has incorrect asymptotic behavior.

Q Rs C L⁄≡

ωR CL
1–

≡

Z ω( )
Rs

1 iQ ωR ω⁄ ω ωR⁄–( )+
-----------------------------------------------------------=

Wδ x 0<( )
µcRs

Q
------------- µx

2Q
-------- 

  µςx( ) 1
2ςQ
----------- µςx( )sin+cos 

 exp=

µ
ωRσ0

c
--------------≡ ς 4Q2 1–

2Q
------------------------≡

Sres x 0<( ) µx
2Q
-------- 

  µςx( )sinexp–=

Ires λ
cRs

ςQ
---------=
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2.5.2 Inductive and resistive impedances

At low frequencies the resonator model EQ 2.49 becomes essentially induc-

tive

. (2.53)

The wake functions and the intensity parameter that correspond to this

impedance are

, (2.54)

, (2.55)

. (2.56)

Note, that the factor c2 disappears from the formulas above if we measure

inductance L in nH and σ0 in cm.

Similarly, for intermediate frequencies on the order of ωR the resonator

impedance becomes strongly resistive and can be approximately modeled as

, (2.57)

or, equivalently,

, (2.58)

, (2.59)

. (2.60)

The δ-functions that appear in these two models often significantly sim-

plify many beam dynamics calculations. For example, it becomes straightfor-

ward for these models to find the single particle Hamiltonian given by

EQ 2.28. The drawback of both models is their limited flexibility and applica-

tion range. Indeed, S(x) for these models does not have any parametric depen-

Z ω( ) iωL–=

Wδ x( ) L

σ0c2
------------

x∂
∂ δ x( )–=

S x( ) δ x( )=

IL
λLc2

σ0
-------------=

Z ω( ) R=

Wδ x( ) Rc
σ0
-------δ x( )=

S x( ) Θ x( )=

IR λRc=
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dence and both models break down at high frequencies. On top of that, the

resistive model does not apply at low frequencies where Re(Z(ω)) should con-

verge to zero. Throughout the rest of this thesis we will use these two models

mostly for illustration purposes.

3.0 Beam dynamics from kinetic equations

3.1 Vlasov and Fokker-Planck equations

Electron bunches in storage rings typically hold N~108-1012 particles that

interact with each other through the wakefields. It is impossible and largely

useless to describe the individual motion of every electron. However, we may

expect that there are statistical laws that define some average characteristics

of the whole bunch. As routinely done in statistical physics a macroscopic sys-

tem is described in terms of distribution functions. Usually the n-particle dis-

tribution function f(n) is defined to give the probability for n particles to occupy

a certain element of their 2n-dimensional phase space independent of the loca-

tion of all the other N-n particles. It is possible to write general kinetic equa-

tions which describe the time evolution of all n-particle distribution

functions [21]. These equations (often called BBK or BBGYK equations) are

coupled so that the equation for f(n) includes the (n+1)-particle distribution

function f(n+1). This extremely large system of coupled equations is not too

useful by itself; however, significant simplifications arise in two important

cases i) the interaction between the particles is weak compared to their ther-

mal energy T and ii) an arbitrary interaction but small density of particles. In

both cases functions f(n) factorize into the products of the lower order distribu-

tion functions f(n-1), which corresponds to neglecting n-particle correlation in

position. Often it is sufficient to consider only the lowest order 2-particle cor-

relation, so that the kinetic equation can be written in terms of the single par-
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ticle distribution function , and the interaction is characterized in

terms of f(2), which is in turn can be represented as some functional of f.

When the interaction between the particles is small a kinetic equation lin-

ear in interaction strength can be written as [21]

(2.61)

, (2.62)

where denotes the Poisson bracket, H and U are the

single particle Hamiltonian and its potential energy. Equation EQ 2.61

together with the self-consistent Hamiltonian EQ 2.62 is called the Vlasov

equation named after A. Vlasov, who first derived it for collisionless

plasma [22].

The Vlasov equation is time inverse invariant. One can easily see that

because EQ 2.61 is formally equivalent to the Liouville equation which follows

from time reversible classical mechanics. Therefore, the Vlasov equation can-

not describe the evolution to thermodynamic equilibrium. As we know from

kinetic theory time inverse asymmetry comes from collision processes which

are non-deterministic and thus lead to the entropy growth. Formally collision

processes are described by adding the so-called collision integrals to the right

hand side of EQ 2.61 (one could say that collision integrals proportional to

to the second power and higher were omitted there). If a system has

more than one sort of particles then EQ 2.61 must be written for every compo-

nent and the collision integrals between this component and all the others

have to be included. Often, however, one sort of collisions dominates. For

example, as mentioned above for ultra-relativistic electron bunches the

Coulomb scattering is usually negligible. Therefore, only one type of collisions

is important. These are “electron-photon collisions” or simply radiation.

f f 1( )≡

t∂
∂f H x p f, ,( ) f{ , }+ 0=

H x p f, ,( ) p2

2
------ potential energy〈 〉+ p2

2
------ U x x'–( ) x' f x' p' t, ,( ) p'd∫d∫+= =

g f{ , }
p∂
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Langevine equations EQ 2.16 and EQ 2.17 properly account for the radia-

tion effects and are equivalent to the equation for the distribution function

f(x,p,τ)

(2.63)

which is simply the Vlasov equation EQ 2.61 with the radiation terms added

to the right hand side. Note, that we are now using the natural units intro-

duced in EQ 2.15.

EQ 2.63 belongs to the class of Fokker-Planck equations (e.g. [23]). Similar

equations (not necessarily with a self-consistent Hamiltonian) describe a vari-

ety of effects in physics, biology and other sciences. General feature of these

phenomena is a presence of a stochastic force or noise.

The Fokker-Planck equation EQ 2.63 is nonlinear because the Hamilto-

nian depends on the distribution function. It is this nonlinearity that makes

the general solution impossible even in one dimensional case. When there is

more then one dimension the situation is even more complex. For example, in

2D case, when the diffusion is allowed only in one coordinate, as in EQ 2.63, it

is impossible to say how many solutions with different long time asymptotic

behavior exist [23]. Another way to look at this is that behavior of the systems

described by the Fokker-Planck equation may be very diverse depending of the

parameters and initial conditions.

3.2 Haissinski solution

A steady state solution of the Fokker-Planck equation EQ 2.63 with the

Hamiltonian EQ 2.28 was first considered by J. Haissinski [24]. Since any

function of the Hamiltonian matches the left hand side of EQ 2.63

it is a steady state solution of the Vlasov equation. The right hand side of

EQ 2.63, however, requires this distribution function to have a Gaussian

τ∂
∂f H x p f, ,( ) f{ , }+ γd p2

2

∂
∂ f

p∂
∂ pf+

 
 
 

=

f f H( )=
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momentum dependence. Therefore, a steady-state solution of the Fokker-

Planck equation is given by

, (2.64)

where ZH is the normalizing constant. We will also call this the Haissinski

solution which explains the H subscript above.

EQ 2.64 is a nonlinear integral equation. It can be treated analytically only

for a few model wake functions. However, EQ 2.64 is a lot easier to solve

numerically than the Fokker-Planck equation EQ 2.63. And, more important,

it contains an essential qualitative result. The steady state distribution func-

tion can be factorized; it is always Gaussian in momentum with an intensity

independent rms value of σp
2=1. Therefore, as a stored charge grows, only the

coordinate-dependent part of the distribution function changes and deviates

more and more from the low intensity Gaussian shape. This corresponds to an

increase of the wake potential contribution to the Hamiltonian EQ 2.28. This

phenomenon is called the potential well distortion and will be considered in

more detail in Section 4.1.

3.3 Stability analysis based on the linearized Vlasov equation

The Haissinski solution describes stored bunches in thermodynamic equi-

librium with synchrotron radiation. The characteristic time scale of getting to

this equilibrium is given by the damping time τd=1/γd. Does it mean that every

beam stored several damping times ends up with the Haissinski distribution?

The general answer is no. First of all, for some wake functions the solution of

EQ 2.64 does not exist for arbitrary intensities. Second, even when the

Haissinski solution formally exists, for it to be physically realizable it has to

be stable. To find whether it is the case the stability of the Fokker-Planck

equation with respect to the Haissinski solution has to be studied. Often, how-

ever, instabilities develop on the time scale much faster than the damping

f H
1

ZH
-------- HH x p f H, ,( )–( )exp=
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time. In this case radiation may be neglected and the simpler Vlasov equation

is used to describe the fast dynamics.

Stability analysis of the Vlasov equation was first developed in plasma

physics (see e.g. [25]) and was later applied to storage rings by several Rus-

sian authors (see references cited in [26]) and also by F. Sacherer [27]. Since

the latter work was better known in the U.S. this approach is sometimes

called the Sacherer formalism. Another commonly used name is mode cou-

pling theory. In the simplest form this method is outlined below and a more

detailed derivation is given in Appendix B.

A distribution function is represented in the form , where the

perturbation is considered small . Substituting this to EQ 2.61 gives

the linearized Vlasov equation

(2.65)

where the Hamiltonians are defined by EQ 2.28 and EQ 2.29. It is often conve-

nient to switch to action-angle variables J,ϕ, defined so that the Hamiltonian

of the unperturbed solution depends only on action . This

gives the linearized Vlasov equation in the following form

, (2.66)

where and

.

Usually harmonically varying solutions

(2.67)

of EQ 2.66 are sought. Each term in the sum above is called the azimuthal

mode with periodicity m. In case several solutions exist for the same m they

f f 0 f 1+=
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∂ UW x J ϕ,( ),f 1( )=
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are called radial modes of a given azimuthal harmonic. Substituting EQ 2.67

into EQ 2.66 transforms it to the dispersion relation

(2.68)

which in principle makes it possible to find all collective frequencies Ω as well

as the radial structure of collective modes. We may expect that at low current

all the Ω’s will be real corresponding to a stable situation. However, at some

intensity value the first two of collective frequencies become complex

; the corresponding collective modes are said to couple. This is

the threshold of instability (neglecting radiation damping). Note that we use

the same symbol γ for the growth rate of unstable modes as we used earlier for

the relativistic factor. This should not create any confusion, since after being

absorbed into the definition of intensity EQ 2.46 the relativistic factor will no

longer appear in this thesis.

Once the exponentially growing solutions appear the linearized Vlasov

equation cannot be used since the linear approximation breaks down. What

happens beyond the threshold is still an active research topic. It will be intro-

duced in the last section of this chapter and then the essential portion of this

thesis will be devoted to experimental and theoretical aspects of this subject.

But prior to that we will briefly describe some effects that take place below the

threshold.

i Ω mω J( )–( ) f m
˜

I
Jd

dρ0

ϕ∂
∂ f m

˜ J'( )eiΩτ imϕ'–

m
∑ S x J ϕ,( ) x J' ϕ',( )–( ) J'd ϕ'd∫ 

 

=
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4.0 Subthreshold phenomena

4.1 Potential well distortion

The Haissinski solution has a Gaussian momentum dependence which can

be integrated out to obtain the particle line density ρH(x) and the potential

UH(x)

, (2.69)

. (2.70)

In principle, these equations can be solved numerically for any wake func-

tion. For illustration purposes we will use two model wake functions for a

purely inductive and a purely resistive impedances given by EQ 2.55 and

EQ 2.59. In the first case the Haissinski solution leads to an algebraic equa-

tion for ρH(x) which can be solved by iterations. For the resistive impedance

EQ 2.69 and EQ 2.70 allow analytic solution which reads [28]

, (2.71)

. (2.72)

Solutions for several intensities for both wake functions are plotted in

Figure 4. It shows that inductive impedance maintains the potential well and

the bunch shape symmetric with respect to x=0; the bunch centroid does not

move. Meanwhile, as the intensity increases the bunch (and the well) becomes

longer (wider), and deviates from the zero current Gaussian (parabolic) shape.

The situation is quite different for the case of resistive impedance. The

main intensity related effect is the bunch becoming skewed. It leans forward

to compensate for the energy loss due to the real impedance. There is still

some bunch lengthening but it is rather weak. It is easy to show that in the

ρH x( ) 1
ZH
-------- UH x( )–( )exp=

UH x( ) x2

2
----- I ρH x'( )S x x'–( ) x'd∫+=

ρHR
x( ) 2 π⁄ x2 2⁄–( )exp
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limit of low intensities the change in the bunch length scales quadratically

with current in contrast to a linear dependence for the inductive case.

Impedances of real-life vacuum chambers are different from the models

above. They may have complicated frequency dependence. However, the quali-

tative features of the potential well distortion effect remain the same. It is still

true that the real (resistive) part of impedance brings in centroid shift and

bunch shape asymmetry, while the reactive part is responsible for the change

in bunch length. The latter is usually positive, i.e. bunches become longer as

intensity grows. This is because the impedances of the common vacuum cham-

ber components are inductive when the bunches are not extremely short. It is

possible to add some capacitive elements to the vacuum chamber in order to

reduce or reverse the bunch lengthening. This has been proven

experimentally [29] but it had limited practical value, since the gains were

taken away by turbulent bunch lengthening above the instability threshold.

4.2 Shift and spread in the synchrotron frequency

As current increases the potential well changes according to the Haissinski

solution and the wake potential distorts the low current parabolic RF poten-

FIGURE 4. Haissinski solution for inductive (left) and resistive impedances.
Same legend applies to all subplots.
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tial well. This, in turn, significantly modifies the single particle motion by

making the particle oscillation frequency amplitude dependent, as it is illus-

trated in Figure 5 for inductive and resistive impedances.

Since the particles are distributed over amplitudes, with the distribution

given by the Haissinski solution, this leads to the frequency spread among dif-

ferent particles. This spread

(2.73)

as well as the average frequency

(2.74)

are intensity dependent and in the limit of low intensity .

This is illustrated in Figure 6. It shows that the inductive impedance brings in

significant frequency shift and frequency spread which are both proportional

to the intensity. In contrast, for the resistive impedance, the intensity depen-

dence is quadratic; the frequency spread and shift are small.

The wake contribution generally changes the quadratic RF term in the

total potential, so that even the low amplitude particles have frequencies dif-

FIGURE 5. Frequency dependence on amplitude for inductive (top) and
resistive impedances at unit intensityI L=IR=1.
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ferent from 1. Resistive impedance, however, is an exception. Therefore, it can

be considered as “more nonlinear” than most other impedances since it brings

higher harmonics to the particle motion without much affecting the funda-

mental.

4.3 Synchronous phase shift

As it was noted before the real part of impedance causes a bunch to shift

with respect to the RF bucket. For example, for a purely resistive impedance

this shift can be found from EQ 2.71 as . The intensity

dependence of ∆x is plotted in Figure 7. The shift is approximately linear up to

rather high intensity values. Of course, for a typical vacuum chamber we

expect this dependence to roll off much faster due to the bunch lengthening

brought by the inductive component of the impedance.

The bunch centroid shift is a measurable quantity. It is often quoted in

degrees of RF phase and is called the synchronous phase shift. For a given RF

voltage the slope of the synchronous phase shift with respect to the intensity

is the integrated measure of the real part of the impedance.

FIGURE 6. Frequency shift due to potential well distortion for inductive and
resistive impedances (L= 10 nH, R=1 kΩ). Broken lines correspond to the
average frequency (EQ 2.74) and bars represent rms frequency spread
(EQ 2.73).
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Another related quantity is the loss factor defined in EQ 2.45. The energy

balance of the stored beam can be written utilizing the loss factor k as

, (2.75)

where U0 is the synchrotron radiation energy loss per turn, ϕ0 is the zero cur-

rent synchronous phase, and ∆ϕ is the synchronous phase shift. When the lat-

ter is small we get for the loss factor

. (2.76)

It follows from EQ 2.37 and EQ 2.45 that for a given longitudinal beam

density the loss factor is related to the integrated wakefield or to the real part

of the impedance Z(ω) as

. (2.77)

For short Gaussian bunches the ω dependence of Z can be neglected above

so that we get for the real part of the impedance

. (2.78)

FIGURE 7. Beam centroid shift with intensity for resistive impedance.
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Note that eliminating the loss factor from EQ 2.76 and EQ 2.78 gives the

 zero intensity slope seen in Figure 7.

Similar to the slope of the synchronous phase the loss factor is constant at

low intensity and usually rolls down at higher currents due to the bunch

lengthening.

5.0 Microwave and saw-tooth instabilities

5.1 General remarks

As we mentioned before there is solid experimental evidence that above

some intensity threshold the Haissinski solution becomes unstable. Above this

threshold the energy spread starts to grow with intensity and also the bunch

lengthens beyond the values expected from the potential well distortion. This

effect is sometimes called the anomalous or turbulent bunch lengthening and

it often becomes a limiting factor of the machine performance. Another widely

observed effect is the appearance of the synchrotron frequency sidebands to

the high frequency revolution harmonics of the beam position monitor (BPM)

signal spectrum. This suggests that the beam particles exercise some coherent

motion. The frequency of the signal observed is usually in the microwave

region corresponding to a typical centimeter scale bunch length. This is why

the phenomenon is loosely called a microwave instability.

Although the above effects have been observed on almost every electron

(and many proton) machine the detailed features of the microwave instability

were different. This applies to the threshold relation to the ring parameters,

scaling laws above the threshold, detailed behavior of the BPM signals etc. It

is conceivable that part of the difference comes from the spread in the

machine parameters and that different physical phenomena play a role in

each case. It is especially true if we compare storage rings from different

design generations. For older machines, build without thorough understand-

1
2 π
-----------
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ing of the impedance effects on beam stability, it was common, for example, to

observe a total beam loss on the time scale of several turns due to microwave

instability. On the other hand, for modern rings, where the impedance budget

is an integral part of the design, the effects of the microwave instability can be

mild enough to allow the operation above the threshold.

As far as the theoretical explanation of the phenomena it was summarized

by B. Zotter [30]: “There is no satisfactory explanation for the existence of a

“turbulent” threshold and the region above it, where anomalous bunch length-

ening and bunch widening (increase of energy spread) occur simultaneously.

Several empirical models yield the results in good agreement with observation

over a limited range of parameters, usually for longer bunch lengths where

the impedance is mainly inductive. Computer simulation can yield satisfac-

tory results also for shorter bunches, but has rarely been applied to existing

machines. Unfortunately, it also does not give insight into the physical pro-

cesses involved.”

5.2 Some theoretical findings on the longitudinal microwave instability

As it is common for a developing field there is still no widespread terminol-

ogy to describe the effects associated with the microwave instability and the

very definition of this instability varies greatly among different authors. The

same phenomenon can be referred to as the microwave instability, slow micro-

wave instability, mode coupling, etc. Throughout the rest of this thesis we will

follow the terminology of [3] except we will use a broader definition of the

microwave instability as any single bunch instability that produces microwave

frequency signals corresponding to coherent particle motion. The relation of

this instability to other collective instabilities in storage rings is shown in

Figure 8. This figure also shows a possible classification of the regimes of

microwave instability based on the relation of the growth rate to the synchro-

tron frequency and radiation damping rate. The four bottom items in the tree

shown in Figure 8 will be explained later.
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In the rest of this section we will describe several theoretical findings

related to the microwave instability. Realizing that complete coverage is

impossible we will only touch upon some facts relevant to the rest of this the-

sis referring to the review material in [3] and [30] for further information.

5.2.1 Boussard criterion vs. mode coupling theory

The Boussard criterion is the most widely known criterion for the micro-

wave instability. It limits the maximum bunch intensity λmax by

(2.79)

This criterion is applicable when the instability growth rate is much

higher than the synchrotron frequency γ>>1 and the characteristic scale of the

FIGURE 8. Collective instabilities in electron storage rings. Alternative definitions
used in literature are shown in italics. Ellipsis denotes omitted hierarchy andσinst
stands for the characteristic perturbation size due to the instability.
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perturbation due to the instability is shorter than the bunch length. It was

conjectured by D. Boussard [34] from the analytically obtained Keil-Schnell

criterion for unbunched beams [35]. Boussard’s argument was that a pertur-

bation with a wavelength much shorter than the bunch length sees the bunch

as a coasting beam. Later several authors derived the Boussard criterion ana-

lytically (e.g. [36], [37]) using different approaches.

Although the Vlasov equation can be a basis for the derivation of the

Boussard criterion [36] one cannot talk about individual modes when γ>>1.

Therefore, the physics of the Boussard’s threshold is completely different from

the mode coupling threshold that follows from the dispersion relation of the

linearized Vlasov equation. Since γ<<1 regime applies to the phenomena in

the SLC damping rings as well as to many other modern electron storage

rings we will concentrate on this regime and will not use the Boussard crite-

rion.

5.2.2 Finding the threshold

For realistic impedances little can be done analytically to find the instabil-

ity threshold. Many people have worked on this problem which basically

amounts to solving EQ 2.68 using different simplifying assumptions. The com-

mon one was using some model distribution for ρ0(J) instead of a self-consis-

tent Haissinski solution. This may be valid for proton machines, however, in

electron storage rings it can lead to incorrect results as it was first shown by

K. Oide and K. Yokoya [38].

These authors have developed a method to numerically solve the disper-

sion equation EQ 2.68 by transforming it to a matrix eigenvalue problem for a

real matrix M. They found that the potential well distortion greatly affects the

threshold value and therefore it has to be properly accounted for. Also, they

showed that M can be made symmetric when both conditions hold i) ρ0(J) is

monotonic and ii) the potential well is symmetric U(x)=U(-x). Since every sym-

metric matrix has real eigenvalues the latter case is stable. This is consistent
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with the bunch being stable at low intensities when it has a Maxwell-

Boltzmann distribution.

Although solving the linearized Vlasov equation numerically is a reliable

method to predict the instability threshold it almost seems like unnecessary

work. Indeed, this method is complicated and provides much more informa-

tion than just the threshold value. When this extra information is not needed

it would be convenient to have some analytical expression for the threshold. It

is conceivable that such an expression could be derived from the Haissinski

solution which is much easier to obtain than to solve the linearized Vlasov

equation. Unfortunately, so far nobody was able to derive such a criterion ana-

lytically. However, several empirical criteria have been proposed. They state

that the instability appears as soon as somewhere within a bunch...

• second minimum appears in the potential U(x) (G. Besnier [39]),

• ω(J)=0 (P. Wilson [40]),

• ω(J)≤1/2 (azimuthal mode coupling, R.Baartman and M. D’yachkov [41]),

• dω(J)/dJ=0 (radial mode coupling, K. Oide [42]).

The discussion of these criteria will be postponed until Chapter 5.

5.2.3 Meller-Schonfeld theory

The obvious limitation of the linearized Vlasov equation is that it is not

applicable to the non-linear regime of instability. In plasma physics this is

dealt with by the so-called quasi-linear theory where the feedback of an unsta-

ble mode onto ρ0(J) is taken into account. Mathematically it is done by adding

a term proportional to to the Vlasov equation for ρ0(J). It is well

known (e.g. [43]) that quasi-linear interaction leads to the creation of a pla-

teau on the ρ0(J) located around the resonant region where and

particles resonantly interact with the unstable mode. Note, that in classical

quasi-linear plasma theory it is assumed that an unstable mode is actually a

continuum of waves with random phases.

f m
˜ J( )

2

ω J( ) Ω m⁄≈
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A conceptually similar approach to the longitudinal microwave instability

was proposed by R. Meller [44] who used the technique developed by

J. Schonfeld [45] for the case of transverse beam dynamics. R. Meller showed

that there is another solution to the Fokker-Planck equation EQ 2.63 which is

different from the Haissinski solution. This solution is periodic in time, and it

is stationary in some rotating coordinate frame. The physics of this solution is

that a finite amplitude azimuthal mode causes a peri-

odic perturbation to the potential well which in turn creates m times n reso-

nant islands in the bunch phase space. Here n is the number of roots of the

equation which gives the radial location of the islands

that are equally spaced in azimuth. In order to obtain the reso-

nant solution one requires these islands to be just the size enough to support

themselves through the modulation of the total potential. If a thermal equilib-

rium is also assumed one obtains the resonant solution which can be written

for a single resonance in the form [44]

, (2.80)

where r is the action coordinate inside a resonant island and σ(r) is a (compli-

cated) function that is zero outside the island and corrects the Haissinski solu-

tion inside the island to make it essentially flat. This solution no longer can be

factorized in x-p variables, that makes the energy spread grow with intensity.

Another idea of R. Meller was to analyze beam stability from a thermody-

namic point of view. He constructed the free energy for the bunch treating the

synchrotron radiation as a heat bath. He showed that at some intensity the

resonant solution may become energetically favorable over the Haissinski

solution causing the bunch distribution to switch. In reference [44] such a

switch is also called a thermal instability. According to [44] this instability

can be viewed as a phase transition during which the time displacement sym-

metry breaks for the system of beam particles. Indeed, the single particle

f m
˜ J( ) iΩτ imϕ–( )exp

ω J( ) Ω m⁄=

Jres
1( )

... Jres
n( ), ,

ρM r( ) 1
ZM
-------- HH J r( )( )– σ r( )+( )exp=
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Hamiltonian EQ 2.28 does not have any explicit time dependence. On the

other hand, at along with the steady state Haissinski solution the

Fokker-Planck equation EQ 2.63 allows time dependent (limit cycle) resonant

solution. Hence switching to the latter the system looses time displacement

symmetry.

5.2.4 Beam dynamics above the threshold

Meller’s approach describes a possible final state of a bunch above the

threshold but it does not tell how the bunch gets there. Amazingly, very little

is known about the dynamics above the threshold. We will mention several

papers here.

Y. Chin and K. Yokoya considered a quasi-stationary approach [46] where

a beam distribution was assumed Gaussian with a time-dependent rms value.

They showed that an overshoot phenomena is possible when the bunch length

grows due to the instability but then it comes down somewhat and levels off.

S. Heifets considered the relaxation oscillations between the Haissinski

and the resonant solutions [47] and speculated that this could be a mecha-

nism for the saw-tooth instability discussed below.

G. Stupakov with co-authors applied some analytical techniques from

plasma physics to describe the nonlinear stage of beam evolution by approxi-

mately solving the Fokker-Planck equation [48]. The authors showed that the

bunch behavior can be qualitatively different depending on the beam parame-

ters and the impedance. For example, the bunch may simply reach a steady

state, or it may overshoot, or it may slowly oscillate around some level. The

authors also claim that it is essential to consider the Fokker-Planck rather

than the Vlasov equation otherwise the dynamics becomes trivial. Unfortu-

nately, the method of [48] only works in the vicinity of the threshold.

Finally, there are several papers that use particle tracking to study the

dynamics above the threshold. Generally, there is a major computational diffi-

culty when the time scale of the phenomena is much longer than the synchro-

τ ∞→



CHAPTER2. SINGLE BUNCH LONGITUDINAL DYNAMICS IN STORAGE RINGS 50

tron period. However, as computers become more powerful it is possible to

track a high number of particles long enough to obtain solid result. For exam-

ple, R. Baartman and M. D’yachkov [49] considered the behavior of electron

bunches in the case of a resonator wake creating a double well potential U(x).

They observed the “saw-tooth” like oscillations of the bunch size.

K. Bane and K. Oide used particle tracking to study beam dynamics for the

SLC damping rings [50]. They used a realistic wakefield calculated numeri-

cally for a 1 mm rms Gaussian bunch [51]. They observed the growth and sat-

uration of a quadrupole mode above some threshold. At even higher values

there was some slow erratic modulation of the energy spread.

5.3 SLC damping ring saw-tooth instability

5.3.1 Old saw-tooth instability

A dramatic encounter with the microwave instability occurred at the SLC

damping rings several years ago. As the intensity in the rings was raised as a

part of 1992/1993 luminosity upgrade people observed a threshold of about

3×1010 particles per bunch above which beams exhibited characteristic saw-

tooth behavior.

FIGURE 9. Typical data from the “old saw-tooth” instability (from [31]). One
SLC injection cycle is displayed. Signals proportional to the beam phase and
inverse bunch length are shown on the upper and lower traces respectively.
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A few ms after the injection the bunch length (as seen by a BPM peak-

detector circuit) was sharply rising on a µs scale and then it was relaxing back

with a time constant of about 1 ms (Figure 9). This process would repeat peri-

odically until extraction. Similar saw-tooth behavior was reported for the syn-

chronous phase of a stored bunch. SLC operation above this threshold was not

successful due to extreme beam jitter in the linac significantly degrading the

luminosity. The source of the jitter was obvious - since the phase of instability

was random with respect to extraction every bunch was launched differently

into the linac; another contribution could have been coming from unequal

transport properties for bunches of different shapes.

To further study the phenomenon some frequency domain measurements

were performed. It was found that when the instability was present a BPM

signal spectrum showed strong sextupole sidebands to the revolution har-

monic. Other harmonics (dipole, quadrupole, etc.) were also observed. An

attempt to raise the current even further has revealed a second threshold of

about 4×1010 ppb above where the instability would go into a “continuous

mode” where instead of saw-tooth oscillations bunches would blow up and

then saturate at some level. The instability was found to get weaker and even

go away with the decrease of accelerating voltage. The latter, however, had to

be held at around 1 MV throughout most of the store to provide good beam

capture and adequate bunch length. Some attempts have been made to fix the

damaging influence of the instability by modulating the voltage within a store.

The success of this, however, was limited.

Simulations were performed and they explained the instability as azi-

muthal mode coupling (although to our opinion the experimental evidence to

support that was inconclusive) due to very strong inductive wakefields in the

vacuum chamber [32]. A decision was made to overcome the instability by

refurbishing the chamber and replacing or eliminating many inductive ele-

ments. A two million dollar upgrade project went ahead and new identical vac-

uum chambers were installed in both damping rings for the 1994 run [33].
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Compared to the old chambers the new ones had smoother transitions, syn-

chrotron radiation masks combined with bellows, the flex joints and kicker

magnet bellows eliminated etc. Also new high frequency lower impedance

BPMs were installed. The total inductance was calculated to be reduced from

33 nH to 6 nH, which however only approximately accounts for some of the

hard to characterize elements of the vacuum chamber. Simulations have been

performed for a new vacuum chamber and the instability threshold was pre-

dicted to move up to 5-6×1010 ppb. However, in reality it went down to

1.5-2×1010 and people have observed “new saw-tooth” instability.

5.3.2 New saw-tooth instability and motivation for the thesis

Fortunately, the instability was not as strong and it was possible to run the

SLC with the instability present. Towards the end of 1994/1995 run damping

rings were running with bunches of 4.5×1010 ppb. The behavior of the instabil-

ity has changed somewhat from the old one. Instead of being mainly a sextu-

pole mode the instability switched to a quadrupole mode. It still had a

transient nature but the saw-tooth behavior changed to sine-like modulation

on the ms time scale. This could no longer be seen on the peak detector circuit

but was rather observed with the spectrum analyzer used as a receiver set to a

quadrupole sideband frequency [33]. Instability was still very sensitive to the

accelerating voltage, and it was possible to see the “continuous” mode at some

combination of values for the accelerating voltage and the charge stored. Wire

scanner measurements have shown an increase of the energy spread above

the instability threshold. Bunch length measurements have been made with a

streak camera, but they did not reveal any evidence of the instability other

than a bunch lengthening. Thus, it was unclear what the quadrupole side-

bands to the revolution harmonics really meant. In addition, it was no longer

possible to identify the instability as the source of jitter for the SLC, and yet

some jitter was still seen downstream of the damping rings. Therefore, the

questions still remained open about the instability
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• Why was it still there and what was the physics of it?

• What was it really doing to the beam?

• What was the effect (if any) of the instability on the SLC performance?

The research work that lead to this thesis was largely aimed to answer

these questions. The last two of them are experimental and the hope was that

answering them would help with the first question as well. It was obvious that

to proceed further experimentally one had to use new hardware or find a bet-

ter way of utilizing existing ones. This is the subject of the next chapter.
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Chapter 3

Experimental apparatus and techniquesChapter 3

1.0 Accelerator physics aspects of the SLC damping rings

1.1 Damping ring parameters and basics of operation

1.1.1 Purpose and parameters

As it was briefly discussed in the introduction the SLC has two damping

rings used to increase the brightness of electron (NDR) and positron (SDR)

beams. Both rings operate at a beam energy of 1.19 GeV and are almost iden-

tical in the design of their vacuum chambers and most other components.

Main parameters for both rings are shown in Table 1.

Parameter Symbol Value

Energy E0 1.19 GeV

Typical Population per Bunch N 4.5×1010

Orbit Circumference C 35.27 m

Revolution Frequency f0, ω0/2π 8.5 MHz

Bending Radius R 2.037 m

Bending Field B0 1.948 T

Approximate Horizontal, Vertical Tunes νx,y 8.23, 3.43

Approximate Quadrupole Gradients (F, D) 6.2, 7.3 kG/cm

Momentum Compaction α 0.015

RF Frequency fRF 714.000 MHz

Harmonic Number h 84

Typical RF Voltage VRF  800 kV

Zero Current Synchrotron Frequency fs0, ωs0/2π 102 kHz

TABLE 1. SLC damping ring parameters.
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One can see that the SLC damping rings provide roughly a factor of 4

reduction in the transverse emittance for the electrons and factor of 70 reduc-

tion for positrons. During high current operation beam energy spread and

bunch length at extraction are roughly 30% higher [6] than the zero current

quantities given in Table 1. Therefore during the store longitudinal emittance

shrinks roughly a factor of 1.5 and the bunch length coming out is much larger

than it was at injection. This is not surprising because the preaccelerator as

well as the rest of the linac consists of S-band accelerating sections that

require rather short bunches. In fact, short incoming bunches σinj<<αδinjc/ωs0

are grossly mismatched to the RF bucket. This causes them to filament and

blow up their longitudinal emittance roughly factor of 40 during the first few

RF Cavity Properties

Loaded Shunt Impedance Rs 2.5 MΩ

Loaded Quality Factor Q 6860

Coupling β 2.5

Approximate Injected Transverse Emittances (e+, e-) εinj 2×10-3 m, 10-4 m

Fractional Injected Energy Spread δinj ~10-2

Injected Bunch Length σinj ~3 ps

Radiation Integrals (Soft Edge Model [9]) I2 2.805 m-1

I3 1.3595 m-2

I4 -0.027 m-1, -0.421 m-1

Energy Loss/turn from Synchrotron Radiation U0 79.2 KeV

Horizontal Partition Number (SDR, NDR) Jx 1.01, 1.15

Energy Damping Time (Jx = 1.01, 1.15) τd, γd
-1 1.78 ms, 1.91 ms

Horizontal Damping Time (Jx = 1.01, 1.15) τx 3.50 ms, 3.07 ms

Vertical Damping Time τy 3.53 ms

Fractional Equilibrium Energy Spread (Jx = 1.01, 1.15) δ0 7.12×10-4, 7.39×10-4

Zero Current Bunch Length (fs0 = 102 kHz;Jx = 1.01, 1.15) σ0 16.7, 17.3 ps

Horizontal Emittance (Zero Coupling,Jx = 1.01, 1.15) γεx 2.99×10-5 m, 2.63×10-5 m

Approximate Vertical Emittance (10% coupling) γεy 3×10-6 m

Parameter Symbol Value

TABLE 1. SLC damping ring parameters.
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synchrotron periods. Later, the emittance gradually shrinks due to the radia-

tion damping, and the bunch length becomes on the order of σ0. To match

extracted beams back to the S-band linac the SLC employs a bunch compres-

sor after each damping ring that trades-off an increase in the beam energy

spread for shorter bunch length. In the compressors beams effectively go

through a 90° phase space rotation that results in the final bunch length of

about 2 ps.

Note, that according to Table 1 the rings differ only in their damping parti-

tion numbers and related quantities. Originally, both rings had the same hori-

zontal partition number Jx=1.01. During one of the performance upgrades the

electron damping ring magnetic circumference was stretched to raise the

value of Jx to 1.15. It allowed a decrease of the horizontal damping time and

equilibrium emittance at the expense of the corresponding longitudinal quan-

tities. This illustrates an important point that the SLC damping rings are

mainly needed for transverse damping. In the longitudinal direction the

damping is not crucial, especially since the compressors provide additional

flexibility. The only important requirement for the longitudinal parameters of

extracted beams is stability. Unfortunately, this is exactly where rings fail to a

certain extent, since, as mentioned in Chapter 2, stored beams become longi-

tudinally unstable at less than half the nominal current.

Much more could be said about damping ring design, operations and beam

dynamics. Due to the constraints of this thesis the transverse and spin

dynamics description as well as various engineering issues will be omitted.

Below we will only discuss the ring components that directly relate to the lon-

gitudinal dynamics and/or diagnostics. Descriptions of other important and

often technically challenging components like kickers, septum, spin rotators

etc. can be found in [7], [8]. These references also describe various beam

physics issues not limited to longitudinal dynamics.
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1.1.2 Timing system features

Electron and positron rings mainly differ in the timing of operation. The

store time in the SDR is 16.6 ms compared to 8.3 ms in the NDR. A longer

store in the SDR is needed because positron bunches transported from the tar-

get have poorer transverse emittance then the electron bunches produced by

the gun. The exact factor of two difference in store times is due to the fact that

both rings nominally run with two bunches. However, out of those four

bunches, each positron bunch but only every other electron bunch end up at

the interaction region.

Another timing difference between the two rings is that two electron

bunches are injected in NDR on the same turn, while in SDR each subsequent

positron bunch is injected in the middle of the store of the previous one. Fur-

thermore, in the NDR the production bunch goes first in and out of the ring. It

is followed by a scavenger bunch separated by 39 empty RF buckets. Since the

ring harmonic number equals 84 this means that electron bunches are not

exactly opposite to each other but rather displaced by two buckets. SDR, on

the other hand, has two bunches separated by 41 empty RF buckets and circu-

lating exactly opposite to each other. This makes SDR BPM signals somewhat

easier to interpret than those at NDR.

The description above is simplistic. It only briefly talks about the most

common “colliding” mode out of many other possible configurations of the SLC

timing system. Many experiments that will be described later in this thesis

were done while in those less standard configurations. Some of them are

1) stored beam (or two beams) - injection/extraction kickers off and beam is

stored for a requested period of time, usually 1 to 20 minutes; 2) long stores -

similar to the nominal operation, except the injection rate is 60 Hz, hence the

store time in SDR is 33.2 ms; 3) various other combinations of reduced duty

factor but nominal store time in either ring, i.e. 1, 10, 30, or 60 Hz running, so

that for substantial amount of time a ring stays without beams.
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1.1.3 RF system

With the exception of the numerous feedback loops, the damping ring RF

systems are rather simple. Each ring is powered by a 50 kW klystron operat-

ing CW at the frequency of fRF=714 MHz. The klystron power is split in half to

go into two 2-cell RF cavities installed roughly opposite to each other. The cav-

ities were designed to handle total accelerating voltage up to 1 MV. The lower

limit is, of course, zero, but in practice it is impossible to have a good capture

of incoming beam when the gap voltage is below 600 kV. Nominal operating

voltage is around 800 kV, and it is usually adjusted to optimize the transmis-

sion through the ring and RTL (ring-to-linac) section or even further down-

stream.

Several damping ring feedbacks will be referred to in later discussion.

These are 1) amplitude loop, which adjusts the total accelerating voltage

amplitude in both cavities, 2) two tuner feedback loops (one at each cavity)

that control the cavity match to the incoming RF power, 3) S-band feedback

loop to synchronize the ring RF phase to the injected and extracted beam

phases (defined by the corresponding linac sections), 4) direct feedback loop

that effectively adjusts the cavity shunt impedance and is used to minimize

transient beam loading effects at injection and extraction. Detailed descrip-

tion of these and other feedback loops as well as other aspects of the SLC

damping ring RF system can be found in [7] and [8].

1.2 Damping ring wake function and related quantities

The wake function for the new SLC damping ring vacuum chamber was

calculated [50] using the time-domain parts of the MAFIA family of computer

programs. A short Gaussian bunch with rms length σd=1 mm was taken as a

driving bunch. In the simulations it was run through all the structures that

make up the vacuum chamber. Electromagnetic fields left by the driving

bunch in those structures were calculated and then properly averaged to

obtain a wake function. Such a calculation gives, of course, a total wake for the



CHAPTER3. EXPERIMENTAL APPARATUS AND TECHNIQUES 59

driving beam rather than the causal wake function Wδ(x). To approxi-

mately find the latter the authors of [50] proposed flipping the front part of

and adding it to the back. The causal wake function obtained

in this manner as well as  are shown in Figure 10.

It is clear that both wake functions should only be considered approximate.

Some uncertainty comes from a finite σd, while other uncertainties are due to

approximations made from modelling difficult vacuum chamber objects (see

[50], [51]). In addition, there is no solid basis for the flipping procedure. In

particular, the authors of [50] mention that this calculated wake is likely to

have uncertainty in corresponding inductance value on the order of

several nH. Another problem with this wake function is evident from

Figure 10. The area under is positive and according to EQ 2.35 this

implies non-zero Re(Z(0)) or losses at DC.

In spite of all these problems we side with the authors of [50] that using

this wake function is useful to model the damping ring current dependent

behavior.

FIGURE 10. Calculated damping ring wake functions (from [50]).
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1.2.1 Equivalent resistance

As mentioned in Section 5.3.1 of Chapter 2 the new damping ring vacuum

chamber has a largely resistive impedance since it was purposely designed by

eliminating grossly inductive objects from the old chamber. The resistive char-

acter of the impedance can be seen by comparing the Haissinski distribution

for with the analytic solution corresponding to a pure resistance Re.

Fitting the resistance value we obtained the best agreement between the

beam densities (in the least squared sense) for Re=926 Ω at N=1010 ppb. As

seen from Figure 11 the distributions are quite similar. Varying the value of N

within the range of 5×109-2×1010 ppb changes the value of Re by less than 1%.

1.2.2 Loss factor calculation

References [50] and [51] do not quote the value for the loss factor k.

Although it can be estimated from the equivalent resistance, a more reliable

estimate is obtained directly from by a Fourier transform. From the

definition of total wake EQ 2.26 the Fourier transform of a total wake pro-

FIGURE 11. Haissinski solutions for damping ring wake function (solid) and for
a pure resistive wake function (dash).

WDR
δ x( )

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

ρ

W
ρd x( )



CHAPTER3. EXPERIMENTAL APPARATUS AND TECHNIQUES 61

duced by a bunch with a density ρ0(x) is related to the same quantity for the

driving bunch as

. (3.1)

For Gaussian bunches the last ratio is also a Gaussian, and when substi-

tuted in the definition of the loss factor EQ 2.45 it gives

. (3.2)

Given all the integrations and Fourier transforms in EQ 3.2 can be

performed numerically. At nominal RF voltage VRF=800 kV this yields the

value for the loss factor of 15.3 V/pC.

1.2.3 Frequency shift/spread for the damping ring wake

Given the wake function subthreshold beam dynamics quantities can be

calculated. For further reference we present in Figure 12 the intensity depen-

dence of the incoherent frequency shift and spread. These calculations were

performed similar to those in Section 4.2 of Chapter 2 except we used

 as a wake function.

Non-zero frequency shift slope at zero current indicates that there is some

inductive component in the impedance corresponding to the damping ring

wake. According to Figure 12 the synchrotron frequency fs changes by about

3.6 kHz in the range of currents 1×1010-2×1010 ppb which assumes the value

of fs0 from Table 1. However, due to the approximate character of this

number for the frequency shift is approximate since even a few nH of induc-

tance may appreciably affect it.
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1.3 Damping ring beam diagnostics

1.3.1 Beam position monitors

BPMs are the most numerous diagnostic devices in the damping rings.

Each ring has 49 BPMs that are mainly used to measure transverse beam tra-

jectories. Several BPMs are dedicated for other purposes including beam

dynamics studies. The drawing of the standard damping ring BPM is shown

in Figure 13.

The basic principle of BPM operation is the following. The beam induces

image charges on the inner surface of the vacuum chamber. According to

Maxwell’s equations the axial distribution of the image charges mimics the

radial displacement of the beam. These image charges follow the beam as

closely as possible until they hit a BPM gap shown in Figure 13. After hitting

this gap the DC component of the image current as well as some AC compo-

nent go all the way around the inner BPM cavity while the rest of the AC com-

ponent jumps across the gap. Consequently, a beam passing through a BPM

excites currents on the walls of the inner BPM cavities that can be considered

as transmission lines. The sum of the transmission line voltages measured by

FIGURE 12. Frequency shift due to potential wake distortion calculated for the
damping ring wake function. Bars represent rms frequency spread.
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any two opposite BPM probes is proportional to the total beam current, while

the voltage difference relates to the transverse displacement in the corre-

sponding direction. It is clear that the voltage variation with time V(t) is

related to the beam line density ρ(z/c) which makes it possible to use BPMs

for longitudinal beam profile measurements. However, since a BPM presents

different impedance Z(ω) to different frequency components of the image cur-

rent the dependence between V(t) and ρ(z/c) is more complex then just a

direct proportionality. For example, there exists some higher frequency cutoff

beyond which BPMs become largely insensitive. Detailed calculation of Z(ω)

for real BPMs such as the one shown in Figure 13 is only possible numerically.

However, there are some analytical approaches based on transmission line

theory that can be used for approximate calculations in simplified geometry.

Further discussion of this topic falls beyond the scope of the thesis and can be

found elsewhere (e.g. [11], [12]).

Due to radiation hazards no measurements are possible in the direct vicin-

ity of a BPM when the ring is in operation. In the SLC damping rings BPM

signals are brought upstairs to the so-called kicker support building or to

other places where all the diagnostics and control system interfaces are

FIGURE 13. Damping ring 1” BPM drawing. Dimensions are in inches. Adapted from SLAC
drawing SA-237-112-24.
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located. A minimum cable length required to patch signal from a damping

ring BPM to the kicker building (where we had most of our setups for longitu-

dinal diagnostics) is about 50 feet which presents significant attenuation at

higher frequencies. Since the high frequency contents of the signal is valuable

for longitudinal diagnostics the standard RG223 cable overwhelmingly used

at SLC was not the best one for this purpose. This is why the cable runs from

several BPM electrodes designated for longitudinal beam dynamics studies

were equipped with a 1/2” or 1/4” HELIAX cables. A typical frequency spec-

trum at the kicker building end of this cable is shown in Figure 14.

It is clear that there is a significant (20 dB above the noise level) signal

component at frequencies as high as 20 GHz. Detailed discussion of this spec-

trum as well as further processing of BPM signals will take place in

Section 5.0.

FIGURE 14. BPM signal spectrum taken with an HP 50000 swept spectrum
analyzer. A 10 GHz high pass filter is connected to the input.
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1.3.2 Synchrotron light ports and optical transport system

The frequency limitation of BPM-based beam diagnostics can, in principle,

be bypassed by switching to the optical part of the electromagnetic spectrum.

Synchrotron radiation emitted by a beam contains the information on both

transverse and longitudinal distributions. To provide a path for this radiation

a synchrotron light port was installed in each ring’s vacuum chamber. This

port consists of a water cooled molybdenum mirror inside the vacuum cham-

ber together with a fused silica window in its wall. The mirror is oriented 45°

with respect to the beam trajectory and is displaced radially a few cm back

from it. This mirror accepts the synchrotron radiation from a bending magnet

a few feet upstream and reflects it through the window.

As it was discussed in Chapter 2 the synchrotron radiation is dominated by

frequencies on the order of ωc which is equivalent to the wavelength of

0.67 nm for the SLC damping rings. Since this is well into the soft X-ray

regime only a very small part of the incoming radiation power reflects off the

FIGURE 15. The damping ring optical transport line (from [6]).
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first mirror. The frequency content of this reflected portion is in the optical

regime, so a conventional transport optics is used to bring this light further

upstairs. A cartoon view of this transport line used before 1997 run is shown

in Figure 15 and it is further discussed in [6].

Note, that Lens 1 in this setup withstands a significant radiation flux that

causes gradual transparency degradation. This is why this setup was slightly

modified in the summer of 1997 when Lens 1 was replaced by a 2.5 m focal

length parabolic mirror and two more flat mirrors were added prior to

Mirror 1. This has solved the problem of optical degradation but resulted in a

more complicated alignment procedure.

Once the synchrotron light is brought upstairs it is usually split between

several diagnostic lines. Transverse beam distribution is often monitored by a

gated camera [13], while the longitudinal beam profile is measured with a

streak camera which will be described later.

1.3.3 Toroids

Although total beam charge can be deduced from BPM signal it can be

measured more precisely by a toroid. This device basically acts as a secondary

winding in a transformer in which beam trajectory makes up a primary wind-

ing. Each SLC damping ring has two toroids located at injection and extrac-

tion lines (LTR and RTL). The ratio of the currents in these two toroids is

usually quoted as ring transmission. Since most current losses occur during

the first few turns after the injection the readings of the toroid at extraction

section relate more closely to the actual charge stored. This is why we nor-

mally used extraction section toroids (TORO 40 for electrons and TORO 71 for

positrons) to quote beam charge. Similar to other toroids in the SLC the RTL

toroids can be calibrated down to one percent absolute accuracy. In contrast to

the toroids at many other locations these particular toroids tend to be quite

stable. Even when uncalibrated they typically show current readings with

only a few percent error.
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1.3.4 Wire scanners

Other important diagnostics are two wire scanners located in the RTL sec-

tions for both electrons and positrons. Wire scanners intercept beams with

three wires (in x, y, and 45 degrees between x and y) that emit low energy elec-

tron flux proportional to the amount of charge hitting them. Some fraction of

this spray in the direction transverse to the beam motion is allowed to exit the

vacuum chamber thorough a thin stainless steel window. This radiation sub-

sequently gets detected by a photo multiplier tube (PMT). When the wire

scanner moves transversely to the beam direction the pickup signal from the

PMT samples the transverse charge distribution. Of course, this scan cannot

be done on a single ultrarelativistic bunch. Instead, wire scanners move

slowly (few seconds to get across the beam cross-section) and measure trans-

verse beam sizes averaged over many extracted bunches. This may result in

substantial errors if extracted beam trajectory differs from one store to the

next.

Since the energy deviation of a beam particle is related to the amplitude of

its transverse oscillation it is possible to infer beam energy spread from the

transverse beam size. Assuming that the dispersion ηx and beta functions are

known the energy spread can be found as [14]

. (3.3)

Extensive measurements of the beam energy spread vs. current and damp-

ing ring RF voltage using this technique were reported in [6].

1.3.5 RF system diagnostics

Most RF system parameters like accelerating voltage, cavity tuning angles,

feedback loop setting etc. are routinely available from the SCP. Some of the

corresponding analog signals for advanced diagnostics are also available.

However, monitor and drive ports together with the rest of the low-level RF

electronics are located in the building which is separate from the two that

δ 1
ηx
------ σx

2 βxεx–=
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house the rings. This location (so-called damping ring alcove in sector 2 of the

linac) is inconvenient for the experiments when electrical length changes due

to the outside temperature are important. This had to be taken into account in

some of our measurements.

One of the operating parameters of the RF system that crucially affects

longitudinal beam dynamics is the total accelerating voltage. The readouts are

nominally available in the SCP for the total voltages in each cavity and the

individual voltages in each of the cells. Also available are the loading angles

for each cavity that relate the phases of the induced cavity voltage and the

generator current. Unfortunately, it has been our experience that the SCP

readings for these values are inconsistent because they do not reproduce the

value of the synchrotron frequency at extraction as seen in the BPM spec-

trum. This could be related to the way the accelerating voltage is regulated in

the damping rings. The amplitude loop regulates on the sum of the magni-

tudes of all the cell voltages rather that on a vector sum. However, since the

inconsistency can not be completely removed by taking into the account the

difference in the loading angles there must be other factors present as well.

These could result from incorrect calibration of the amplitude readouts, unac-

counted path length differences etc. This is why the quoted SCP values of the

RF voltage should be taken cautiously. When we had the synchronous fre-

quency readings available we used them rather than the SCP readings to

deduce the correct value for the accelerating voltage.

2.0 Control system and data acquisition

2.1 SLC triggers

Thorough description of the SLC timing system lies outside the scope of

this thesis and can be found elsewhere ( [7], [54]). What follows is a simplistic

description of several kinds of triggers available in the SLC damping rings

that were extensively used in our experiments. The most common are ordi-
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nary triggers (TRIG in SCP) that can be set by a SCP user to be issued at a

specified time within the injection cycle. The repetition rate for these triggers

matches the current machine rate. Also there are the so-called TRBRs that for

our purposes work the same as regular triggers except they always operate at

a fixed repetition rate. Finally, there are also the TRYY triggers that are

issued by the control system when it runs the correlation plot utility that is

discussed below. TRYY triggers are special in two ways 1) since they are

issued in conjunction to the correlation plot data acquisition they are not peri-

odic and have a maximum rate of a fraction of a Hz, 2) their timing cannot be

adjusted from the SCP.

2.2 Buffered data acquisition and correlation plot utility

SCP provides two utilities that can be used for tracking short term depen-

dencies between various beam and machine parameters. Buffered data acqui-

sition program runs at rates up to 120 Hz and records up to 1024 machine

cycles. This utility is convenient for recording data from BPMs, TOROIDs and

GADC (gated ADCs). The gate timing for the latter can be adjusted from the

SCP and the gate is issued automatically when the buffered data acquisition

is running.

The correlation plot utility also allows recording various machine variables

including the readings of the GADCs. The highest data acquisition rate is a

fraction of a Hz and the maximum data buffer length is 512 points. Compared

to the buffered data acquisition this utility has many more features. For

example, it allows setting step variables other than time to scan various

machine parameters during the measurement. Other useful features of this

utility are described in [53].

When there is a need to measure a physical value that is not already avail-

able in the SCP the first step to try is to use a GADC in conjunction with

either buffered data acquisition or correlation plot utilities. In order to do this,

a measured quantity must be represented as a voltage level, which can be sub-
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sequently sampled by a GADC at any time during the store. Then the data

acquisition utilities allow correlating recorded GADC readings with other

beam or machine parameter measurements available through the SCP.

In a more complex case when the amount of data grows beyond several

voltage levels to be sampled during the SLC cycle the use of GADCs becomes

largely ineffective. This includes, for example, the case when we want to mea-

sure the evolution of some beam derived signal throughout a significant part

of the damping ring store. In this case the amount of data is large, and it is

acquired and processed by some dedicated measurement instrument, for

instance, a digitizing oscilloscope. In these circumstances a more complex pro-

cedure of interfacing the hardware to the SLC control system has to be imple-

mented. This procedure is outlined below.

2.3 Interfacing GPIB hardware to the SLC control system [55]

The easiest way to take data in the damping rings is to run a measurement

device in a standalone mode. Later the average characteristics of the beam as

well as the machine parameters during the measurement can be pulled out

from the SCP history buffers. This, however, may not be enough for the mea-

surements that are sensitive to the pulse to pulse variations in the beam and

machine parameters. Characterizing the instability properties can be one of

such measurements. Similarly, if the data is taken with a stored bunch then

pulling the beam and/or machine parameters from the history buffer offline

may lead to large systematic errors.

This is why there is often a need to interface the data taking with a partic-

ular instrument (or multiple instruments) to the SLC control system. In prac-

tice, implementing this interface requires, first of all, that the data acquisition

on the instrument itself is controlled and synchronized with the SLC cycle.

Second, the data recorded cannot be transferred directly to the main control

system computer (MCC) but has to be stored someplace else, usually the com-

puter that controls the measurement instrument. Finally, this data storage
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has to be organized in such a way that during an off-line analysis the data

could be put into correspondence with the machine variables recorded by the

MCC for the same SLC cycle.

In practice, the data acquisition and storage is done on one of several unix

hosts distributed throughout the SLC that run the HP-VEE program. This

software allows controlling the data acquisition for GPIB and VXI based

instruments. The core of a typical data acquisition program is a loop that

waits for the trigger, makes the measurement, and dumps the data onto a

disk.

The actual interface to the MCC can be done by using the correlation plot

utility. The handshake is implemented in two steps. First of all, this utility

issues a TRYY trigger during every machine cycle for which it takes the data.

Second, this program communicates with the remote unix hosts running

HP-VEE and receives the values for the so-called physical variables. The cor-

relation plot data acquisition does not proceed to the next machine cycle until

the values of all the physical variables are received. Therefore, if the HP-VEE

loop includes a routine that sends a physical variable at the completion of the

data recording, then the correlation plot utility and the remote data acquisi-

tion are guaranteed to go in sync.

In principle, one dummy physical variable is enough to achieve synchro-

nous running. In practice, it is convenient to increment the value of that vari-

able making it a counter. Then, along with sending the counter value to the

MCC its value can be appended to the name of the data file. This allows for

easier identification of the data taken during a particular SLC cycle. In some

cases additional physical variables are used. Usually these are the results of

online data processing or the actual measurement results, when they can be

represented as a few real numbers.

A typical setup with an oscilloscope interfaced to the SLC control system is

shown in Figure 16. In this case the oscilloscope is recording the traces of the

instability signal that for the purposes of this discussion can be thought of as
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varying amplitude sinusoidal signals. The HP-VEE program saves these

traces to a disk and also extracts the values for the amplitude and phase of

each trace and sends them together with a counter number to the correlation

plot utility. The correlation plot in turn records those values plus all the rele-

vant damping ring parameters like the beam current, RF voltage etc. Note

that such a setup is quite flexible. It can be easily extended to multiple GPIB

controlled instruments including the streak camera.

3.0 Synchronous phase measurement apparatus [56]

3.1 Traditional way to measure the synchronous phase and its limitations

Although other signals carrying beam phase information exist the simplest

one to use is a BPM pickup signal. It includes the fundamental harmonic of

the RF frequency the phase of which relative to the RF in the accelerating cav-

ity defines the synchronous phase up to some constant offset. For large phase

shifts the synchronous phase can be simply measured with an oscilloscope or a

mixer-based phase detector. Smaller phase shifts require more accurate tools.

FIGURE 16. Interfacing an oscilloscope to the SLC control system.
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The most precise general purpose instrument to measure the phase of RF sig-

nals is the vector voltmeter. It is traditionally the instrument of choice for syn-

chronous phase shift measurements ( [57]- [59]).

However, as we found out in our experiments we could not measure the

synchronous phase shift reliably with a Hewlett-Packard 8508A vector volt-

meter. This is not surprising because the accuracy standard vector voltmeters

provide is not sufficient for the SLC damping rings. For example, the specifica-

tions for the HP 8508A state an 0.8° phase accuracy within 1 mV to 100 mV

input signal range and several times lower accuracy outside of it [60].

Another disadvantage of this device is the lack of convenient control over the

averaging constant which is important for synchronous phase measurement.

Indeed, in a noisy environment a significant increase in sensitivity can be

achieved from averaging the phase over the interval comparable to the sam-

pling time.

To overcome these limitations of the vector voltmeter we came up with the

following solution.

3.2 New apparatus

In our apparatus we modify the approach described above in two ways.

First, we do not perform the phase comparison at the fundamental RF fre-

quency but rather downmix both beam and RF cavity signals to roughly

25 kHz where audio measurement techniques are available. Second, for the

actual phase measurement we use the SR830 DSP Lock-in Amplifier manu-

factured by Stanford Research Systems. This device has a relative phase error

of 0.01°, adequate input sensitivity and temperature stability, and it provides

complete control over the time averaging constant. Other features we found

useful for this measurement include power line notch filters in the signal arm,

auxiliary ADC channels and complete GPIB capability.

The basic idea of our apparatus is shown in Figure 17. To provide an LO

arm for the downmixing, we use an RF synthesizer. The low pass filters cut
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the higher frequency mixing products out. Since a bridge is implemented syn-

thesizer frequency drift should not in the first order result in a phase error.

Note that the total cost of this setup is a fraction of that for the vector voltme-

ter. Also, the system is rather flexible. Indeed, to switch to another RF fre-

quency one needs to either reprogram the synthesizer or replace it when the

frequency is substantially different. Also this setup can be used in other

experiments which require phase measurement of RF signals of practically

any frequency. For example, a similar approach was used in a home-made

W-band vector network analyzer [61] where phase and amplitude of a 92 GHz

signal were measured. Finally, filtering a beam signal at the fundamental har-

monic can be hard for larger rings where a very high-Q RF filter may be

needed. However, with this setup we can easily insert one more stage down-

mixing to some common frequency where appropriate off-the-shelf crystal fil-

ters are available.

3.3 Experimental details

In order to accurately measure the phase it is not enough to have a precise

lock-in amplifier. Care has to be taken about other elements of the system as

well as the machine conditions. Here we summarize our experience coming

from the SLC measurements.

FIGURE 17. The principle of a synchronous phase measurement apparatus.

SR830 DSP Lock-in

signal

reference
RF cavity vector

RF synthesizer
f=f0+25 kHz

Fundamental RF harmonic
of BPM signal, f=f0

sum signal, f=f0

f=25 kHz

f=25 kHz



CHAPTER3. EXPERIMENTAL APPARATUS AND TECHNIQUES 75

3.3.1 Input Cables

Typical electrical length change in cables runs from 150 PPM/°C (RG223)

to ~6 PPM/°C (HELIAX). Therefore, a temperature drift during a measure-

ment can significantly alter the result if the cable runs are long enough. In the

SLC (~100 ft. of RG223) we found out that using a temperature stabilized

cable significantly improves measurement reproducibility. Unfortunately, this

cable was only available for part of the distance needed and also the tempera-

ture in the room with our setup was not fully controlled. This may explain our

experience of better reproducibility when the measurements were taken at

night so that the outside temperature did not change much.

3.3.2 BPM signal filter

To measure the phase correctly the input signal to the lock-in amplifier

should not have significant amplitude modulation. Approximating a filter as

an oscillator of a quality factor Q gives a requirement , where h is the

harmonic number. For the SLC damping rings (fRF=714 MHz, h=84) we made

a simple coaxial cavity filter with .

3.3.3 Vector sum

EQ 2.75 includes the total accelerating voltage. To measure it the pickup

voltages from the individual cells must be summed vectorially. This signal is

available for the SLC since it is used in the so-called direct feedback loop [10].

3.3.4 Signal levels

The SR830 specifications require at least 200 mVpeak-peak (into 1 MΩ) ref-

erence arm input signal. We had to use an audio amplifier to bring the refer-

ence signal above this level. To make sure that the amplitude stayed constant

we monitored it by a home-made RMS detector with the output connected to

one of the auxiliary inputs of SR830. Related issue here is the isolation of the

power splitter that divides the LO signal. We had to make sure that it is high

Q h⁄ 1≥

Q 300≈
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enough so that the cavity signal does not leak through the coupler and does

not significantly distort the beam signal or vice versa.

3.3.5 Beam lifetime and the lock-in averaging constant

To get a significant current decay the store should be comparable to the

beam lifetime. There are simple ways of shortening the lifetime (with scrap-

ers, transverse detuning etc.) to accelerate the measurement and reduce the

temperature drift effect. However, the decay has to be rather smooth because

rapid drops in the input signal to the lock-in amplifier may result in phase

measurement error. In the SLC (lifetime on the order of ten minutes with no

scraper) we tried the transverse detuning but could not make it smooth

enough. We proceeded with our measurements using nominal lifetime stores.

The data was sampled about every three seconds and the lock-in time averag-

ing constant was set to one second. Shorter settings resulted in noisier data

but did not lead to a different phase slope with the current.

3.3.6 Feedbacks

If the vector sum signal is properly derived then most feedback loops

should not affect the measurement. For the SLC this is not true only for the

S-band feedback that adjusts the beam phase for subsequent injection to the

linac as well as for the direct feedback loop that effectively changes the cavity

shunt impedance. These two feedbacks had to be turned off for our measure-

ments.

4.0 Streak Camera

4.1 General Description

The most advanced and expensive instrument used for longitudinal beam

dynamics studies in the SLC damping rings is the Hamamatsu model C3735

streak camera. SLAC owns a unique 500 ps resolution version of this camera

called FESCA-500 which was custom-made for the short SLC linac beam. This
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streak camera allows single shot measurements of the longitudinal beam pro-

file in the damping rings as well as at much more demanding conditions at the

end of the SLC linac. Some of the parameters of this streak camera are listed

in Table 2.

Streak camera principle of operation is illustrated in Figure 18. The light

pulse is collected at the horizontal input slit which is imaged onto the photo-

cathode by the input optics. The photocathode converts the incident light

pulse into a flux of electrons that mimics the light intensity distribution vs.

time. This electron flux is accelerated by the accelerating mesh and then it

passes through the deflection plates. When the electrons pass the plates they

receive a high speed voltage ramp that results in a differential kick. Those in

the center of the beam do not get any deflection while electrons in the head

(tail) get deflected upwards (downwards). (Note, that these directions refer to

Streak tube model N3373-02

Photocathode diameter 3 mm

Photocathode spectral response 200-900 nm

Phosphor screen diameter 15 mm

Micro-channel plate gain >3000

Time resolution <700 fs

Sweep rate 60, 200, 500 and 1200 ps/10 mm

Trigger jitter < 30 ps

Streak trigger input signal

Amplitude +5-40 V in 50Ω
Pulse width 2-100 ns

Maximum repetition rate 1 kHz

CCD head

Number of pixels 1000 (hor.) by 1018 (vert.)

Pixel size 12µm × 12µm

Exposure time 10 ms - 1 hour

Spectral response 400-1000 nm

Cooling method Thermoelectric air cooling

Frame readout time 4 s

TABLE 2. Some parameters of the streak camera and CCD.
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Figure 18 and not to the actual streak camera where multiple plates are

present and geometry is involved.) Subsequently, this deflected electron cloud

hits the micro-channel plate (MCP) where the electron flux gets significantly

amplified. MCP gain can be adjusted during the operation and it ranges from

3.3 to 6000 for our particular camera. Upon exiting the MCP electrons hit the

phosphor screen causing it to emit light proportional to the electron flux inten-

sity. Note, that the horizontal intensity distribution for this light is propor-

tional to the intensity dependence vs. time for the initial light pulse that

entered the streak camera. Similarly, the vertical distribution of the phosphor

screen intensity mimics the initial pulse intensity variation along the input

slit. The light emitted by the phosphor screen is imaged by the output optics

onto the CCD camera attached directly behind the streak camera. The CCD

camera digitizes the image so that it can be grabbed by a data acquisition

module. Since, in many cases, the incoming light intensity variation along the

slit has no value, the CCD may also be used to integrate the image along the

vertical direction. The resulting horizontal image profile represents the longi-

tudinal beam density and it may be recorded for further analysis.

FIGURE 18. Streak camera component layout (from [6]).

Input Optics

Variable Input Slit

Photocathode

Accelerating Mesh

Deflection Plate Voltage

Micro-channel plate
Phosphor Screen

Output Optics

CCD Camera

A/D 
Converter



CHAPTER3. EXPERIMENTAL APPARATUS AND TECHNIQUES 79

The above description gives only a simplified picture. In fact, a great deal

of effort comes into convincing oneself that the profile read off the CCD is a

meaningful representation of the beam longitudinal charge distribution. As

obvious from Figure 18, potential complications may include 1) input slit

width contribution to the resolution, 2) dispersion in the input optics, 3) space

charge effects distorting the shape of photoelectron bunches, 4) nonlinearities

of the streak camera sweep, 5) possible saturation and/or nonuniform sensitiv-

ity of the photocathode, MCP, phosphor screen, or CCD, 6) noise generation by

these elements, 7) need for extremely precise trigger. Some of these issues are

addressed in the streak camera manual [15] while extensive studies and

analysis of some others can be found in [6]. We should say that items 1) 2) 4)

and 7) listed above are quite serious for the measurements at the end of the

SLC linac where light intensity is low and bunches are as short as 0.6 mm. For

the damping rings these problems are either non-existent or their solution is

simple. On the other hand, in order to study longitudinally unstable beams

additional aspects become relevant. They include acquisition of large amounts

of high quality beam profiles, synchronizing this acquisition with the SLC con-

trol system, and, finally, processing the data to extract the varying features in

the longitudinal density of unstable beams. In order to address these ques-

tions several modifications of the procedure of running the streak camera in

the damping rings (as described in [6]) had to be implemented. This is the

subject of the next section.

4.2 Techniques for running the streak camera

4.2.1 Cylindrical lens and other optics

Many streak camera and CCD components add some noise to the output

image. One of the greatest contributors is the streak tube itself, which, simi-

larly to other electron tube devices, possesses inherent shot noise problem.

The relative intensity of this noise is proportional to , where Nph is1 N ph⁄
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the number of the photoelectrons emitted by the photocathode. Unfortunately,

even if the input light intensity is not an issue, Nph cannot be made very high.

Apart from obvious considerations of photocathode saturation and general

camera protection there is usually a lower intensity limitation associated with

the space charge effects in the streak tube. Basically, the denser the cloud of

photoelectrons is the stronger it blows up due to the Coulomb forces leading to

effective lengthening of the output image. To alleviate this problem one should

use a cylindrical rather than a spherical lens to focus light on the input slit.

This spreads up the input light spot along a much wider area of the photocath-

ode thereby reducing the space charge forces as well as the possibility of satu-

ration or burn. For the damping ring experiments we used cylindrical lenses

with the focal length of 50 mm.

Other input optics we used in the damping rings included 80 nm FWHM

interference filter to reduce chromatic effects [6] as well as neutral density fil-

ters to adjust the intensity below the streak camera saturation levels. Input

slit was usually set to 200 µm which, according to [6] and [15], should not

give any appreciable distortion of the damping ring beam profile.

4.2.2 Camera gate settings

Depending on the speed set the streak camera system is supposed to record

the variation in the incoming light that takes place in the time window 60 to

1200 ps wide. On the other hand, as it was mentioned earlier, many of the

streak tube elements generate noise and some of this noise is generated con-

tinuously. This noise mainly comes from stray light hitting the input slit as

well as from the dark currents of the photocathode and the MCP. The noise

creates a problem, because the luminescence decay time of the phosphor

screen (and integration time of the CCD) is in the sub-ms time scale. There-

fore, the CCD can accept noise from a much wider time window than is cov-

ered by the incoming signal. In order to address this problem a special gating

procedure is implemented in most streak cameras including FESCA-500. It
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involves special deflecting plates that are gated so that the photoelectrons can

go through only within a short time interval close to the streak sweep. This

procedure also implements some gating on the MCP that is kept at a reduced

gain most of the time. Both the deflecting plate gate and the MCP gate occur

very close to each other and will be further referred to as cutoff gate.

Specifically, FESCA-500 streak camera has three gate modes that differ in

the timing and logical relationship between the incoming triggers, streak

sweep, and the cutoff gate [15]. Although “Normal” mode is the simplest one

to use since it does not require a pretrigger this mode results in a much nois-

ier image than the other two modes. This is because in the “Normal” mode the

cutoff gate is open most of the time. Therefore, any incoming light can gener-

ate photoelectrons that reach the microchannel plate and eventually end up

recorded by the CCD. Since the damping ring revolution frequency is four

orders of magnitude higher than the maximum trigger rate for the streak

camera, any stored beam creates at least 104 parasitic synchrotron light

pulses per each one recorded. Furthermore, even if external noise is signifi-

cantly reduced (for example by using a light chopper as described in [6]), dark

currents coming from the photocathode and the MCP still remain a problem.

The other two modes, “Gate A” and “Gate B”, are significantly less noisy.

This is because the gate stays open during a very short (but controllable)

period of time. Both of these modes use an extra trigger to open a cutoff gate

and they differ in the logic of the gate closure. Mode B allows maximum flexi-

bility since the gate timing and the streak sweep are independently con-

trolled. This is the mode we used in most of our experiments. Detailed trigger

timing for this mode is described in the next section.

4.2.3 Streak camera trigger setup

Independently of the gate mode used the streak camera requires the “main

trigger” synchronized to the damping ring beam. It has to be a positive pulse 5

to 40 V high and 2 to 100 ns in duration. In addition, for the sweep rate of
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200 ps/10 mm that we normally used in the damping rings, this trigger has to

be rather stable on a 100 ps time scale. Since the typical streak camera exper-

iment in the damping ring lasted several hours, both shot to shot trigger jitter

and long term thermal drift were important. To derive the main trigger we

used the one out of four (in each ring) dedicated streak camera TRBRs that

cover the entire store. Timing adjustment of these triggers both in coarse

8.3 ns steps and also, for limited range, in 0.1 ns steps is possible through the

SCP. Physically, these triggers come out of a VDU (variable delay unit) located

in the corresponding kicker building. Interestingly, we observed that bypass-

ing the VDU significantly reduces the trigger jitter. The drawback is that the

fine timing adjustment through the SCP becomes unavailable. This, however,

can be effectively dealt with by using a variable delay coaxial line (trombone).

Finally, since all the control voltages in the SLC are in NIM standard, right

before the streak camera trigger socket we had to reshape this trigger signal

with a special NIM converter module.

Streak camera operation in “Gate B” requires a pretrigger that starts the

tube gate. It has to arrive about 300 ns prior to the main trigger and last long

enough to completely overlap with the main trigger. Since the pretrigger

affects only the cutoff gate it does not require ps timing precision. For our

damping ring experiments we usually derived the pretrigger from one of the

standard triggers of the SLC timing system (i.e. gated camera trigger).

Finally, in our experiments we used C5050 module which is Hamamatsu

manufactured GPIB interface for the CCD camera. Using this module makes

the streak camera a regular GPIB device that can be interfaced to the SCP via

correlation plot routine and TRYY trigger handshake as described in

Section 2.3. In the damping rings we had to stretch the TRYY trigger to about

2 ms and then logically add it to the main trigger. Typical timing relationship

between various triggers is shown in Figure 19.

Finding the beam without any prior knowledge always presents a chal-

lenge. To automate this procedure we used a 2 ns rise time photodiode (model
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FND-100 manufactured by EG&G). This photodiode was placed in the syn-

chrotron light path before the streak camera and the light was focused on the

active area of the diode. For a given distance between the photodiode and the

streak camera the delay of the photodiode signal with respect to the main trig-

ger defines the timing on a sub-ns scale. This allows quickly finding the beam

on the slowest streak speed. Going to a faster speed should be done according

FIGURE 19. Streak camera timing.

FIGURE 20. Finding the beam with a photodiode. Streak camera should be in Gate B mode and
at the slowest streak speed.
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to the Table 3.3.1 of reference [6]. Parameters for the setup we used are shown

in Figure 20.

5.0 Detecting instability signals

5.1 Motivation

The easiest way to see the presence of the instability in the damping ring is

by looking at the BPM signal spectrum near a high frequency revolution har-

monic. One of such spectra is shown in Figure 21 (left). This spectrum was

taken with an HP 50000 swept spectrum analyzer system and is averaged

over many injection cycles. The frequency offset is given with respect to

9.77 GHz rotation harmonic seen in the center. Other features present in this

plot are, first of all, broad lines displaced by about fs0 from the revolution har-

monic. In the beginning of each store these lines are dominated by injection

transients but after a ms or so into the store their residual amplitude presum-

ably comes from the noise in the RF system. Also in the plot are narrower

lines with much higher amplitude that are displaced slightly less than 2fs0

from the rotation line. These are the instability sidebands and they only

appear above the threshold value of current. These instability sidebands

FIGURE 21. Typical spectrum analyzer traces.
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sometimes have rather peculiar time dependence. They may blow up and

damp down on a ms scale which is seen in the right of Figure 21. What is

shown there is the spectrum analyzer trace vs. time when the spectrum ana-

lyzer was set as a receiver at the upper instability sideband frequency. One

can clearly see roughly 20 dB oscillations in the instability sideband ampli-

tude.

Although the spectrum analyzer gives a clear indication of the instability

presence it does not allow drawing any quantitative conclusions regarding the

instability. In addition, it does not provide any signal that can be easily corre-

lated with other measurements performed throughout the SLC. This is

because both the video output signal and the signal coming from the IF port

have a significant (fraction of a ms) delay compared to the input.

Another problem studying the instability in the damping rings is unrelated

to the spectrum analyzer. It has to do with a simple fact that during normal

SLC operation there are two bunches circulating in either damping ring.

Therefore, if a spectrum analyzer or other diagnostics is connected directly to

a BPM they would sample the signals from both bunches. This is clearly a dis-

advantage when studying a single bunch phenomenon.

Before describing the ways of getting around these problems we will com-

ment on the relation of instability sidebands to the coherent motion of the

beam particles.

5.2 Longitudinal signals from a BPM

The qualitative features of the spectra seen in Figure 21 can be understood

using a simple model that ignores the finite bandwidth of the BPM and the

measurement apparatus. This section reproduces some results from [11].

5.2.1 Single particle motion

Consider a single unit charge particle that circulates around the ring with

a revolution frequency ω0. A BPM sitting at a fixed location in the ring would
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see this particle to arrive at multiples of a revolution period T0. Ignoring the

transverse oscillations (or alternatively assuming that we are sampling the

sum signal from the two opposite BPM electrodes) we conclude that the BPM

samples the beam current

(3.4)

that has a spectrum given by

. (3.5)

This is an infinite comb of rotation harmonics.

Now assume that the charge executes synchrotron oscillations with ampli-

tude a and phase ϕ. This leads to the modulation of its arrival time to the

BPM which now samples the current

. (3.6)

The spectral density of such current is given by

, (3.7)

where Jm is a Bessel function of order m. Note, that each line in the spectrum

above has a phase factor e-imϕ and thus contains information on the phase of

the synchrotron oscillation.

In reality spectrum analyzers measure neither negative frequencies nor

the phase. Therefore the physical spectrum one would see on a spectrum ana-

lyzer is obtained from EQ 3.7 by taking the absolute value and folding with

respect to ω=0. During such a procedure the phase information is lost.

The physical spectrum corresponding to EQ 3.7 is sketched in Figure 22.

There are several new features in this spectrum compared to the one we
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would obtain from EQ 3.5. First of all, the rotation harmonics are no longer of

the same height. Instead they are modulated with an envelope function

J0(ωa). Second, the rotation harmonics acquire sidebands displaced from them

by multiples of ωs. Each set of sidebands is also modulated by an envelope

function Jm(ωa) where the index m corresponds to the sideband order (m=1

for dipole, m=2 for quadrupole etc.).

Bessel functions achieve their first maximum when the argument roughly

equals to the index. Therefore, a significant amplitude signal at the m-th side-

band occurs at a frequency ω∼m/a. This tends to be rather high for short elec-

tron bunches as the sideband order goes up.

5.2.2 Incoherent oscillations

A beam in a storage ring is not a single particle but rather a collection of

particles that are generally distributed in phases, amplitudes and frequencies

of their synchrotron oscillations. If there is no coherent motion within a beam

the phases of individual particles are independent. Therefore, averaging

EQ 3.7 over ϕ we conclude that the resulting spectrum has only rotation har-

monics (Figure 23). The envelope function in this case is given by a Bessel

function J0(ωa) folded with the particle distribution over the amplitudes of

synchrotron oscillations ρ0(a).

FIGURE 22. Idealized BPM signal spectrum for a single particle executing synchrotron
oscillations. Only the first two sidebands are shown.
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For example, when the latter is Gaussian the envelope

function is also Gaussian with characteristic folding (angu-

lar) frequency equal to inverse bunch length (in units of time).

5.2.3 Coherent motion

Now assume that a coherent azimuthal mode of periodicity m is excited

within a beam. Similar to EQ 2.67 the beam density in phase space can be

represented as

, (3.8)

where we assumed  and neglected higher order terms.

The resulting spectrum is obtained by averaging EQ 3.7 with this distribu-

tion. It is clear that in this case the averaging over phases eliminates all the

sidebands except for the m-th for which the oscillatory term in EQ 3.7 van-

ishes. Therefore, rotation harmonics in the resulting spectrum have m-th

order sidebands. It is also clear that in the likely case of an amplitude distri-

bution ρm(a) having a maximum somewhere within several σ, the envelope

function would peak up in amplitude at angular frequencies around m/σ.

For illustration we draw a cartoon picture of a quadrupole mode excited in

the beam phase space and the corresponding spectrum we would see on the

spectrum analyzer (Figure 24). Note, that similar to the single particle case, if

FIGURE 23. BPM spectrum when there is no coherent motion within a bunch.
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it was not for the phase averaging, the phase of each sideband would repre-

sent the instantaneous phase space orientation of the quadrupole structure.

5.2.4 Conclusions

The consideration above leads us to the following conclusions

• The bulk of the BPM signal power comes in rotation harmonics with fre-

quencies less that 1/σ.

• m-th sideband in the spectrum suggests a collective mode with m-fold azi-

muthal symmetry.

• To observe m-th sideband one has to go to rather high frequency ω~m/σ.

• Before the phase averaging the spectrum completely describes the beam

phase space. Radial structure is in the envelope function while the azi-

muthal orientation is in the phase of any of the sidebands.

The last conclusion assumes that the spectrum is available over very large

bandwidth. In reality, as we discussed in Section 1.3.1 the bandwidth avail-

able is quite limited and for the damping rings is comparable to the inverse

bunch length. Furthermore, even within that bandwidth extracting the enve-

lope information is difficult because the response is dominated by the BPM

response and the cable transmission (see Figure 14). On the other hand,

extracting the instability phase or relative amplitude does not require very

FIGURE 24. Quadrupole mode in phase space and resulting BPM spectrum.
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large bandwidth and is not compromised by unknown response functions. The

implementation of this is discussed in the following section.

5.3 Detector circuit

5.3.1 General idea and the layout

The conclusions above tell us that the instability phase information is con-

tained in the corresponding sidebands to the high frequency revolution har-

monics. It could be demodulated from these sidebands by downmixing the

corresponding rotation harmonic to DC and subsequently filtering out the DC

component. Another approach is to use a square law detector which is sche-

matically illustrated in Figure 25. The advantage of this approach is that the

signal at the instability frequency finst results from all the instability side-

bands to all the rotation harmonics within the bandwidth of the detector.

Adding some extra elements to separate the signals between the two

bunches we have implemented the following circuit.

FIGURE 25. Detecting the instability with a square law detector.

FIGURE 26. The setup to detect instability signals.
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The front end high pass filter eliminates the bulk of the RF power that

does not contain the instability information. Now the signal level is acceptable

for the fast RF switch immediately after the filter. This switch is gated at

f0=8.5 MHz, and the gate delay is adjusted so that the output has only a signal

from one of the two bunches in the ring. The detector demodulates the insta-

bility signal from the sidebands to the rotation harmonics as described above.

Finally, the output of the detector is connected to the amplifier (no gain at DC)

through a low pass filter that removes higher frequency mixing products.

The oscilloscope trace of the resulting signal is shown in Figure 27.

Note, that in addition to the slowly varying envelope (similar to the one we

would see with a spectrum analyzer set to a zero span) the resulting signal

includes the instability phase information (Figure 27, right).

5.3.2 Microwave components

Parameters for the two most important circuit elements are shown in

Table 3. We have used both double throw reflective and single throw absorp-

tive RF switches. Both of these present a matched impedance to the input

FIGURE 27. Detected instability signal (left) and a zoomed out portion. Two largest spikes
indicate injection and extraction.
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independently of the gate applied. The advantage of the double throw switch

is that the signals on two different ports come from different bunches stored in

the ring (this assumes 50% duty cycle gate and also that two bunches are

opposite to each other). This allows duplication of the circuit shown to the

right of the RF switch in Figure 26 on the second port (shown terminated) and

then simultaneously observing the instability signals from both bunches. This

would show any cross-talk between the bunches. On the other hand, for con-

tinuous monitoring of the level of instability signals the cheaper SPST switch

works fine as well.

Assuming σ=22 ps high current bunch length gives the optimum frequen-

cies for detecting the dipole, quadrupole and sextupole instability modes at 7,

14 and 21 GHz respectively. The frequencies are quite high and as evident

from earlier discussion and Figure 14 the sextupole mode is probably the

highest that can be detected with the available BPMs and cabling. This is why

there was no need to push the upper frequency limit of the RF part of the cir-

cuit much higher that 20 GHz. We ended up with off-the-shelf components

with standard upper frequency value at 18 GHz. The rest of this section

describes the key requirements for the individual components.

As mentioned earlier the purpose of the high pass filter is rather simple,

namely to bring down the total RF power delivered to the switch without sig-

nificant attenuation in the high frequency signal component. Ideally, the filter

should do so while preserving the time structure of the incoming signal. Of

WJ-MSE203 MITEQ-S138B ACTP-1506N

Type SPDT PIN Diode

Reflective

SPST PIN Diode

Absorptive

Square Law

Detector

Bandwidth 2-18 GHz 2-18 GHz 8-18 GHz

Switching time 25 ns 20 ns N/A

Isolation ~60 dB 80 dB N/A

Video bandwidth N/A N/A 2 MHz

TABLE 3. RF switch and crystal detector specifications.
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course, real world filters have some amount of dispersion or frequency depen-

dent delay and complete preservation is impossible. The highest group delay

usually occurs in the transition area from the stopband to the passband; the

sharper the transition the larger the delay. This is why for our application

where unwanted signal component is significantly separated in frequency it

was possible to pick a filter (model 4HS-5.5G-S11 manufactured by

REACTEL, INC) so that the transition from the stopband to passband was

relatively smooth resulting in lower dispersion. This brought down signifi-

cantly the time overlap between the signals from the two bunches at the out-

put of the filter. Furthermore, for our filter the transition region was located

low enough in frequency where the instability sidebands were small. In addi-

tion, the filter transmission in the passband was essentially constant result-

ing in a flat group delay there. As evident from Figure 25 in this case the time

overlap between the bunches introduced by the filter affected only the DC

component of the detected signal and not the component at the instability fre-

quency finst we were after.

For the RF switch used in this application the switching time is of crucial

importance. The bunches in the electron ring are separated by only 56 ns (59

in SDR) and this should accommodate the switching time including the contri-

bution from the finite rise times of the gate plus the window where the actual

beam signal is present. The length of the latter is typically a few ns and it is

defined by the amount of dispersion in the front end. As evident from Table 3

there is not much time left. Fortunately, as we have seen in our laboratory

tests, the switching time specifications given by the manufacturers are very

conservative. Nevertheless the timing of the switch gate is not trivial and has

to be done with care. The details of the gating are described in Section 5.3.3.

Isolation specification defines the maximum leakage from the input to the

output when the gate is closed. For our application poor isolation would mean

getting a significant signal component from the other bunch. According to

Table 3 the isolation for both switches we used is more than adequate. We
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expect that if there was a small signal leakage from the other bunch it was

due to the dispersion in the high pass filter rather than imperfect isolation in

the switch.

Finally, the two major requirements for the square law detector are for it to

be sufficiently wideband (both RF and video bandwidth) and sensitive. The

detector we used from the Advanced Control Components had an adequate RF

and video bandwidths. The latter was in fact as high as 2 MHz and subse-

quent amplifiers usually had at least 500 kHz bandwidth. Therefore, our abil-

ity to detect higher order instability sidebands was limited solely by the

bandwidth of the incoming signal and to lower extent by the RF bandwidths of

the components shown in Figure 26.

5.3.3 Deriving the gate for the RF switch.

Surprisingly there is no 8.5 MHz timing system signal in the vicinity of the

damping rings that could be used to gate the RF switch. The closest place

where 8.5 MHz signal is generated is the injector [71]. Unfortunately,

although damping ring bunches are locked to this signal during any injection

cycle, due to some intricate details of the SLC timing system there is a 180°

switch in the lock from one store to the next. Therefore, if we derive a gate off

of this signal in the electron damping ring then we would get a production or

scavenger beam signal on alternating stores.

This is why for our studies we have exclusively used beam derived gate

generated as illustrated in Figure 28 for the positron ring. First, the two

bunch clock is derived using a discriminator on the low frequency BPM signal.

Subsequently, a veto is applied to this clock so that it becomes effectively

locked to the bunch to be extracted. Such a gate proved to be robust and conve-

nient. The only problem with this way of gating the RF switch is that the gate

can slip somewhat in time when there are significant variations of the beam

intensity.
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The optimal delay and width of such a gate at the control port of the switch

had to be determined experimentally. The easiest way to do this is by running

a single bunch in the ring. In this case we start with 50% duty cycle gate

(59 ns pulse width) and find the delay setting that maximizes the amplitude of

any rotation line within the switch bandwidth. Subsequently, we shorten the

gate width until the amplitude of the rotation line starts decreasing. For best

results 2-3 iterations of this procedure should be repeated. We have found that

the optimum gate width is around 40 ns which is the value we have usually

used in our measurements. The only exception is the measurement of the

cross-talk between the two bunches in the positron ring where we had to settle

for a 50% duty cycle.

FIGURE 28. Deriving beam-based gate in SDR.
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Unfortunately single bunch conditions are rarely available. This is why to

find the best delay setting we often used a different method that does not

require single bunch running. In the positron ring this procedure is especially

simple due to the symmetry of the fill. The latter leads to an alternating pat-

tern in the rotation lines of the BPM spectrum with even harmonics signifi-

cantly suppressed as shown in the top plot of Figure 29. Therefore, for getting

a single bunch signal from the switch the gate delay has to be adjusted to min-

imize the signal at any even rotation harmonic. If the delay is chosen properly

the amplitudes of the adjacent rotation harmonics equalize as shown in the

bottom plot of Figure 29. Note, that at frequencies this high the interference

from the switch gate feedthrough is negligible.

Similarly, this procedure can be done in the electron damping ring except

the rotation line has to be chosen accordingly. For the NDR fill pattern the

beating of the envelopes of the rotation harmonics from different bunches can-

cels out at frequencies that are multiples of 21 times the rotation frequency.

Therefore, at the optimal gate delay setting the amplitude at any of these

rotation lines should be at a maximum. We have usually used the 1113th rev-

olution harmonic to adjust the gate delay in the NDR.

FIGURE 29. SDR BPM signals near 9.76 GHz rotation harmonic.
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Finally, we should comment that BPM spectra taken before and after put-

ting the gate on the RF switch allow to estimate how well the signals from the

two bunches are isolated. For example, from the amplitudes of rotation lines

in Figure 29 we can estimate that the isolation exceeds 25 dB.
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Chapter 4

Experimental results Chapter 4

1.0 Synchronous phase measurement [56]

The measurements we describe here were done in the positron damping

ring. Similar results were later obtained in the electron damping ring as well.

The setup we used is shown schematically in Figure 30. Single beam stores

were done at different values of accelerating voltage clustered near 600 kV,

800 kV and 900 kV. The total beam charge was 1 to 1.5×1010 ppb at the begin-

ning of each store, which is below the instability threshold. The stores lasted

ten to fifteen minutes, so that the current could decay roughly a factor of two

(Figure 31 a). For such a measurement many systematic errors could show up

as a linear change of phase with time. Since this could hide real effects, we did

several measurements at every value of accelerating voltage. The total num-

ber of stores we did was seventeen.

For each store we were recording some of the RF system parameters as

well as the beam current. Simultaneously we sampled five values with the

lock-in amplifier namely the lock status bit, reference arm amplitude, refer-

FIGURE 30. Synchronous phase measurement setup.
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ence arm frequency, signal arm amplitude and signal arm phase. All but the

last were recorded for diagnostic purposes to ensure solid lock to the external

reference with stable frequency and amplitude. The signal arm amplitude was

proportional to the beam current (Figure 31 b) which argues that the signal

was largely beam induced. The phase shift measured by the lock-in was the

actual synchronous phase shift and as expected it turned out to be linear with

the beam current (Figure 31 c). The phase shift slope with current substituted

in EQ 2.76 allowed us to extract the value for the loss factor. The results for

seventeen stores at different gap voltages are shown in Figure 32 which plots

the scaled loss factor vs. accelerating voltage. The results from each store are

plotted with the statistical error of the fit (diamonds). Also plotted are the

mean values within each group (squares) with their errors derived from the

rms spread of the individual stores.

There appears to be an insignificant slope with respect to the voltage

which may indicate some deviation from the short bunch approximation made

in EQ 2.78 or from the low current assumption σ2∝VRF; alternatively it may

be caused by some systematic error. Ignoring this slope and using σ2∝VRF

dependence we found the average nominal value for the loss factor

k0=17 V/pC±15% which corresponds to about 1 kΩ resistive component in the

longitudinal impedance. This measured value is in good agreement with cal-

culations [51] discussed in Section 1.2 of Chapter 3. The error quoted is an

estimate. It is dominated by the uncertainty in absolute values of accelerating

FIGURE 31. Synchronous phase measurement data.
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voltage; the error in the mean from the data points in Figure 32 is less than

3%. It is also possible to estimate the loss factor for a given accelerating volt-

age without making any assumptions on bunch length scaling. For example,

for VRF=790 kV the loss factor k790kV=17 V/pC±17% which is also consistent

with calculations [51].

2.0 Low current bunch shape measurements

The synchronous phase measurement gives an estimate of the resistive

component of the impedance because the latter causes the bunch centroid to

shift with respect to the RF wave. Similarly, since the impedance causes the

potential well distortion that makes the bunch shape deviate from a Gaussian

we expect that bunch shape measurements should give some insight on the

magnitude of the impedance.

Utilizing the streak camera we have performed a series of a low current

bunch shape measurements in the positron damping ring. The ring operated

at the nominal 120 Hz SLC injection cycle with two bunches stored. Streak

camera profiles were taken roughly a half ms before the extraction. We have

recorded 9 batches of data files with each batch (9 to 13 files long) correspond-

ing to a different value of the RF voltage ranging from 510 to 940 kV. The data

FIGURE 32. Synchronous phase measurement results.
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were taken at two settings for the beam current, namely 8×109 and

1.5×1010 ppb and we have specifically checked the instability was not present

at any value of the RF voltage.

During the processing phase we generated the average bunch shape for

each batch. This shape was subsequently fitted with the Haissinski distribu-

tion for 5 different impedance models a) zero impedance, b) ,

c) where L0=6 nH was taken from reference [51],

d) and e) calculated wake function from reference [50]. We

used simple least square method that minimized the squared deviation

between the average shape and a numerically generated Haissinski solution.

For each type of fit we fitted the centroid position and the amplitude scale fac-

tor. Fits b) and c) had the value of R as a fit parameter and fit d) had both R

and L values fitted. The results of the fits b) c) and d) are shown in Table 4.

The first row shows the average value of the impedance parameter fitted

and the second row shows the error in the mean (standard deviation divided

by ).

The resistance values obtained are consistent between the various models

used. However, as indicated by the second column, the spread in the imped-

ance values between the batches is quite high. This is further illustrated in

Figure 33 where the results for fit d) are shown for each of the 9 batches.

R L

Average
value

1072 1038 1067 -1

Error in the
mean

138 131 139 2

TABLE 4. Fit results (in Ω and nH) for different impedance models.

Z ω( ) R=

Z ω( ) R iωL0–=

Z ω( ) R iωL–=

Z ω( ) R= Z ω( ) R iωL0–= Z ω( ) R iωL–=

8
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The variation in R and even larger spread in L is not surprising. It is a con-

sequence that this method of impedance measurement has a low sensitivity to

the impedance parameters. Indeed, the impedance information is contained

not in the beam profile as a whole but rather in the deviation of the profile

from the low current Gaussian shape. In the case we are dealing with these

FIGURE 33. Fitted values ofR and L for fit d).

FIGURE 34. Average beam profile (symbols) and fitted shapes a) (dash) and b)
through e) (solid);N=1.5×1010, VRF=790 kV.
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deviations are rather small as seen from Figure 34 where the average shape

for one of the batches is shown together with all the fits a) through e).

When the deviation is comparable to the measurement errors there tends

to be a large spread in the values obtained. This is somewhat inferior to the

synchronous phase shift measurement where the measured value is directly

proportional to the resistive component of the impedance. Therefore, at least

for the measurement of the resistive component, we conclude that the bunch

shape measurement should be considered supplementary to other techniques.

Nevertheless, our data allows us to draw the following conclusions.

• The resistive component of the vacuum chamber at the characteristic bunch

frequency is R=1 kΩ ± 130 Ω. The error quoted only includes the error in the

mean.

• The inductive component is likely to be less that 10 nH.

• Our data is consistent with the wake function model from reference [50].

However, the measurement accuracy is inadequate to distinguish between

this and other models we used.

3.0 Network analyzer measurements

As it was mentioned in Chapter 2 the impedance of the vacuum chamber

causes the synchrotron frequency to shift with intensity. The measurement of

this effect in principle allows estimation of the magnitude of the characteristic

inductive component of the ring impedance. Below the instability threshold

bunches do not broadcast any signal. Because of that, in order to observe the

synchrotron motion beams have to be excited externally. In the longitudinal

case this can be done by small modulation of the RF voltage. Phase modulat-

ing the RF makes the beam oscillate as a whole (rigid dipole mode). In that

case it moves with its own potential well and the frequency of this motion does

not shift with intensity and equals fs0. On the other hand, amplitude modula-
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tion of the RF excites the bunch length oscillations with characteristic fre-

quency 2fs(N).

The excitation is usually done with either broad-band noise sources or

swept narrow-band sources. We have opted of the latter and used a network

analyzer to measure both the amplitude and phase responses of the beam as a

function of frequency. Such a measurement is commonly referred in literature

as a beam transfer function measurement (e.g. [3]).

The setup that we used in the positron damping ring for the amplitude

modulation case is sketched in Figure 35. For the case of phase modulation

the variable attenuator in this schematic should be replaced by a fast phase

shifter.

The setup is similar to the one described in the reference [62] except at the

receiver end we used the detecting circuit described earlier which allowed us

to greatly increase the sensitivity. We used the HP 3589A network analyzer

which was interfaced to the SCP through the GPIB port.

This measurement was done running single bunch stores in the positron

damping ring. The SCP readout for the RF voltage was 860 kV and the insta-

bility threshold was about 1.5×1010 ppb. The current was allowed to decay

FIGURE 35. Beam transfer function measurement setup (amplitude modulation
case).
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from ~2×1010 down to ~3×109 ppb which typically took about 20 minutes. The

network analyzer sweep time was roughly 2 sec.

The measurement results for both phase and amplitude modulation are

shown below.

FIGURE 36. Beam transfer function measurement for phase modulation. To
avoid overlap an arbitrary phase shift is introduced between the phase curves.

FIGURE 37. Beam transfer function measurement for amplitude modulation.
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As expected, for phase modulation there is almost no change in the center

frequency of the beam response as current decays. This gives the value for

fs0=87 kHz. In addition, there are several qualitative features seen in both

amplitude and phase response curves. First of all, there is a characteristic

split in the center of the amplitude response function. It comes from the can-

cellation of the dipole moments of particles in the core of the bunch and those

trapped in the separatrix of the nonlinear resonance. This effect was first

reported in [62] and later investigated in more detail in [63]. Other features

include a slight depression in both amplitude and phase responses above the

instability threshold.

For the amplitude modulation case the difference between the traces taken

above and below the instability threshold is more dramatic. The amplitude

response peaks out much sharper for currents above the threshold while the

phase response has a characteristic bump at frequencies just below the reso-

nance. Note, that for clarity only one curve taken above the instability thresh-

old is shown in Figure 37. In reality, for this particular store roughly 25 more

traces were taken above the threshold and they all have the bump present (It

gets smaller as current decays). In addition, this feature was reproducible

from store to store. While we do not have a quantitative explanation that

describes this bump we note that a similar feature may appear in a driven

response of a nonlinear oscillator.

Another feature seen in Figure 37 is a shoulder above the resonance fre-

quency that becomes narrower as the current decays. This shoulder presum-

ably comes from the frequency spread of individual particles within a bunch.

The amount of this spread is comparable to that shown in Figure 12 at corre-

sponding intensity.

Finally, in Figure 38 we plot the center frequency of the beam response

(defined by the maximum phase slope) from the amplitude modulation mea-

surement.
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The dependence is almost linear and at zero current it extrapolates to two

times fs0.

The results from the driven excitation measurements can be summarized

as follows

• The synchrotron frequency shift below the threshold was measured to be

7 kHz/1010 ppb at the zero current synchrotron frequency fs0=87 kHz. This

is roughly consistent with the wake function from reference [50] discussed

in more detail in Section 1.2 of  Chapter 3.

• There is no significant change in the dependence fs(N) above the instability

threshold. In other words the instability frequency extrapolates to 2fs0

when N goes to zero.

• There is a characteristic bump upwards in the phase of the beam response

above the instability threshold.

FIGURE 38. Center frequency of the beam response from the amplitude
modulation measurement.
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4.0 High current stored beam experiments

The purpose of the experiments to be described in this section was to study

the instability behavior under the broad range of stored beam parameters

namely the current and accelerating voltage. In this section we report the

results of a series of such experiments performed in the positron damping

ring. Qualitatively similar results were obtained at a different time in the

electron ring. However, since the positron ring studies were much more

detailed we chose to present the positron ring results alone.

4.1 Setup

As described in Section 5.0 of Chapter 3 the simplest diagnostic for the

instability is a spectrum analyzer connected to a BPM electrode. It allows, for

instance, accurate measurements of the instability sideband frequency or

amplitude as a function of stored beam current. Alternatively, when set as a

receiver to the sideband frequency the spectrum analyzer shows a characteris-

tic ms time scale bursting behavior that may occur at certain values of cur-

rent. However, studying such behavior with a spectrum analyzer is not

convenient for longer stores when the instability sideband frequency changes

as the stored charge decreases. A more convenient way to do that is to utilize

the instability signal detector described earlier. To obtain the maximum

amount of information we decided to perform both measurements simulta-

neously utilizing the setup shown below.

FIGURE 39. Stored beam experiment setup in SDR.
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As shown in Figure 39 BPM signals were simultaneously measured with a

spectrum analyzer and a digitizing oscilloscope that was connected after the

detecting circuit described in Section 5.3 of Chapter 3. Since this experiment

was done with a single bunch the RF switch was not used. During our experi-

ments the major settings were as follows. The central frequency of the spec-

trum analyzer was set to the 1149th revolution harmonic which is roughly

9.77 GHz. The span was 500 kHz, and the resolution and video bandwidths

were 1 kHz. This results in a sweep time of 2 s and, moreover, two subsequent

sweeps were video averaged. The oscilloscope was AC coupled. It was set to

1 ms/div and the trace length was 2000 points.

The oscilloscope and the spectrum analyzer were interfaced to the SLC

control system via the correlation plot routine as described in Section 2.3 of

Chapter 3. The oscilloscope was triggered by a TRYY trigger while the spec-

trum analyzer was free running but the HP-VEE program guaranteed that

the data was acquired synchronously with the oscilloscope trace. The data tak-

ing rate was a fraction of a Hz which was adequate for a beam lifetime of sev-

eral minutes.

In the course of our measurements several dozen beam stores at various

accelerating voltages were recorded. Each store lasted about seven minutes;

this allowed the initial beam current of ~3.4×1010 ppb to decay roughly a fac-

tor of two to a value below the instability threshold.

4.2 Measurement results: instability properties vs. current [64]

In this section we will illustrate some of the most interesting aspects of our

measurements using the data for the RF voltage of VRF=690 kV as determined

from the measured synchrotron frequency (see Section 4.3.1).

The typical spectrum analyzer sweep when the quadrupole mode of the

instability is present is shown in Figure 40. One can clearly see the instability

sidebands to the revolution harmonic displaced by about 160 kHz. This is
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roughly 10% lower than twice the zero current synchrotron frequency at this

RF voltage. To represent the change of the instability spectrum with current

we use a contour plot of all the spectrum analyzer sweeps for each store as

shown in Figure 41.

One can see the quadrupole mode threshold at about 1.7×1010 ppb. It is

also clear how the instability jumps from sextupole to a quadrupole mode in

the region of 3.2-3.4×1010 ppb. It is interesting that there is no exact harmonic

relation between the frequencies of the quadrupole and sextupole modes when

FIGURE 40. Typical BPM spectrum atN=3×1010 ppb.

FIGURE 41. Spectrum analyzer data vs. stored charge.
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they both coexist. Rather than being exactly 3/2 the ratio of the sextupole to

the quadrupole mode frequency is only 1.45±0.01. Note that other than this

mode switching the instability behavior with current seems to be mundane.

The frequency of the quadrupole mode is linearly decreasing at a rate of

~5 kHz/1010 ppb. Such a behavior is usually attributed to the inductive por-

tion of the ring impedance.

The picture, however, becomes more interesting if along with the spectrum

analyzer data we consider oscilloscope traces taken concurrently. Several such

traces taken for the same store as Figure 41 are shown in Figure 42. The top

trace that corresponds to the highest current shows a constant amplitude sex-

tupole mode. The second trace from the top relates to the case when both sex-

tupole and quadrupole modes coexist. At even smaller values of current (two

traces in the middle) the instability becomes pure quadrupole but it acquires

the characteristic bursting behavior. As seen from Figure 42 the bursts repeat

in time with a period of about 1 ms. Finally, below 2.5×1010 ppb bursts disap-

pear and the quadrupole mode oscillates with constant amplitude.

It is interesting to compare the amplitude dependence of the signals mea-

sured by the spectrum analyzer and the oscilloscope. The results for all the

traces for this particular store are shown in Figure 43. From the spectrum

FIGURE 42. Oscilloscope traces of the instability signal for different values
of stored charge. Traces and labels go in order.
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analyzer data we again clearly see the transition between the quadrupole and

sextupole mode. It appears that the sextupole mode has a clear threshold of

3.2×1010 ppb while the quadrupole mode makes a slower transition in that

region.

In order to summarize the oscilloscope data we derived the amplitude

information from the traces by simply taking the standard deviation of the

whole trace (trace amplitude) and its envelope (burst amplitude). Although

the oscilloscope data does not directly distinguish the two modes, the transi-

tion between them is clearly seen as the amplitude jump on the upper trace.

The lower trace shows the region where instability is bursting. Note, that the

thresholds seen from oscilloscope data slightly exceed the ones observed with

the spectrum analyzer which can be attributed to better sensitivity of the lat-

ter. Still the agreement between the two plots in Figure 43 is quite good.

FIGURE 43. Instability amplitude behavior.
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Finally, as discussed in Section 5.2 of Chapter 3 the relative amplitudes of

the quadrupole and sextupole modes seen from the spectrum analyzer or the

oscilloscope data do not reflect the ratio of the quadrupole and sextupole com-

ponents in the beam phase space. One way to quantify what a particular sig-

nal means in terms of the changes to the beam phase space is to

simultaneously employ a streak camera to show a variation of the beam pro-

file with the instability signal as will be described in Section 5.0.

4.3 Measurement results: instability properties vs. RF voltage

4.3.1 Quotation of the RF voltage

As we mentioned in Section 1.3.5 of Chapter 3 SCP readings of the RF

voltage are unreliable. Calculated values of the RF voltage based on the mea-

sured synchrotron frequency should be used instead when possible. This is

what we did for this experiment. For each store recorded the frequency of

upper and lower synchrotron sidebands were extrapolated to zero current and

the average of these two values was taken as fs0. Then the value of VRF was

FIGURE 44. Relation between the SCP readout for the RF voltage and the value
calculated from the synchrotron frequency.
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calculated from fs0 utilizing the definition of the synchrotron frequency

EQ 2.5. For reference purposes the relation between the calculated and SCP

voltages is presented in Figure 44.

4.3.2 Amplitudes

Figure 45 shows the amplitudes of the instability sidebands as a function

of RF voltage. These data points were obtained from the spectrum analyzer

data by simply finding maximum values on the curves such as plotted in

Figure 43. The dependence is essentially flat (less than 5 dB spread) from the

highest value of VRF~700 kV down to about 500 kV after which there is a

sharp drop in the amplitudes. In addition to the data shown on the plot there

were two more stores recorded at VRF=418 kV and 445 kV that did not show

any signs of the instability. We should note that even for the higher voltage

values, specifically 450 kV<VRF<480 kV, it is unclear whether the low ampli-

tude data points in Figure 45 actually mean some residual instability signal

or they correspond to some RF system noise.

FIGURE 45. Maximum saturation amplitudes of the quadrupole and sextupole
modes. Maximum amplitude for the quadrupole mode is usually achieved around
N~3×1010 while for the sextupole mode it is limited by the initial current.
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The oscilloscope data generated simultaneously are consistent with

Figure 45 and show no instability below 480 kV. In addition, they show that

the instability bursts only at higher values of the RF voltage VRF≥630 kV. The

maximum bursting amplitude (as defined in Section 4.2) was measured to be a

factor of 5 lower at VRF~630 kV than at VRF~700 kV.

4.3.3 Thresholds

Figure 46 plots several thresholds we obtained from the spectrum analyzer

data as a function of RF voltage. In particular, it shows the lower and upper

thresholds for the quadrupole mode and the threshold for the sextupole mode.

The lower threshold for the quadrupole mode (the instability threshold) is

essentially constant N~1.7×1010 as function of VRF from the highest RF volt-

age values down to about 550 kV. After that the threshold rises to about

N~2×1010 at VRF~490 kV. The same comments as in Section 4.3.2 apply to the

three lowest voltage points in Figure 46.

The other two thresholds plotted in Figure 46 behave quite differently

than the instability threshold. They remain essentially constant N~2.7×1010

FIGURE 46. Instability thresholds as a function ofVRF.
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at lower values of the RF voltage 500 kV<VRF<590 kV and rise with VRF to

approximately 3.2×1010 (sextupole) and 3.4×1010 (quadrupole). Since the

upper threshold for the quadrupole mode grows faster with VRF the overlap

between the modes widens at higher values of RF voltage.

This data is quite consistent with the one we obtained from the oscilloscope

traces. In addition, the oscilloscope data show that the quadrupole mode

bursting threshold for the stores at VRF~700 kV is about 2.6×1010 and is

roughly 3×1010 for VRF~630 kV stores.

4.3.4 Frequencies

Figure 47 shows the threshold frequencies for the quadrupole and sextu-

pole modes. Both curves can be fitted reasonably well with a square root func-

tion, however due to a limited range of VRF other dependencies cannot be

ruled out.

FIGURE 47. Quadrupole and sextupole mode frequencies at the thresholds for
these modes.
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4.4 Discussion and summary of the results

4.4.1 Properties vs. current

It appears that some features of the data obtained, e.g. frequency depen-

dence on current or the quadrupole mode threshold, can be explained in terms

of conventional theory that is usually based on the linearized Vlasov equation.

For example, in reference [50] simulations with a numerically obtained wake

function yielded values similar to those measured. However, some aspects of

the measurement results clearly go beyond the linear theory. Those are 1) the

fact that instability saturates, 2) occasional bursting behavior and 3) switch-

ing between the modes. As it was discussed in Section 5.2.4 of Chapter 2 there

have been some theoretical models published ( [46]- [50]) that could at least in

principle lead to 1) and 2). It appears that item 3) is the most unusual. Indeed,

it is common to see more than one azimuthal mode go unstable as intensity

increases. What is surprising is that the mode that first goes unstable

becomes stable again. Furthermore, this stability switch happens near the

intensity value at which the other mode becomes unstable. This suggests some

mechanism of coupling between these azimuthal modes. On the other hand, it

is commonly thought that as long as frequency shifts are small compared to fs

then different azimuthal modes are independent and instability can only arise

as a result of other mechanisms e.g. radial mode coupling.

4.4.2 Properties vs. RF voltage

Briefly the instability behavior with the RF voltage can be summarized as

follows

• The instability is not present or insignificant below 480 kV.

• The saturation amplitudes for both the quadrupole and the sextupole

modes are essentially independent of the RF voltage when it exceeds

500 kV.
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• The threshold of the instability is independent of the RF voltage when the

latter exceeds 550 kV. The threshold becomes higher at lower values of VRF.

• The threshold for the sextupole mode and the upper threshold for the qua-

drupole mode are approximately constant below 580 kV and increase signif-

icantly when RF voltage exceeds that value.

• The quadrupole mode is bursting only at higher values of VRF. The ampli-

tude of the bursts increases significantly with VRF.

We note that the very fact that some of the instability properties have sig-

nificant RF voltage dependence is not trivial. Indeed, from theoretical point of

view the instability depends on two parameters only. The first is the intensity

I which is by definition (EQ 2.46) voltage independent. The second is the size

of a characteristic feature of the wake function in units of zero current bunch

length σ0. This parameter has only a week square root dependence on acceler-

ating voltage and does not change appreciably within the range of voltages we

had in the experiment. Furthermore, it is interesting that while some features

of instability are very sensitive to the RF voltage the other similar features

are not. For example, we observed significant growth of the sextupole mode

threshold with RF voltage in contrast to the essentially flat instability thresh-

old curve in the same voltage range.

5.0 Instability phase space structure experiments

5.1 Results from the 96/97 SLC run [65]

5.1.1 Setup and hardware

As it was mentioned above the instability properties in both electron and

positron damping rings were similar. Due to some technical reasons the latter

was chosen for the present experiment.
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The setup is shown in Figure 48. There were two major beam diagnostic

channels. Synchrotron light was analyzed by the streak camera, while the

high frequency BPM signal was processed and digitized by an oscilloscope.

The key part of the experiment was simultaneous data acquisition; hence the

timing was important. Both the camera and the oscilloscope were triggered on

the same trigger pulse (locked to the injection cycle) provided by the SLC tim-

ing system. The streak camera profiles were recorded by its own computer

while the oscilloscope traces were saved on a PC connected via GPIB bus.

5.1.2 Data taking and processing

The experiment consisted of repeatedly taking the streak camera profile

and simultaneously recording the detector signal. The oscilloscope time range

was 100 µs/screen - enough to cover about 20 instability periods. Both the

camera and the oscilloscope were triggered on the same timing pulse always

coming ~0.5 ms before extraction and before any external modulation. The

oscilloscope trigger position was adjusted so that the streak camera picture

was taken exactly in the middle of the trace as illustrated in Figure 49. A total

of 589 profiles were acquired in the time-frame of several days under roughly

FIGURE 48. Setup for the phase space structure experiment.

PC/LabView

hp54610B

Hamamatsu N3373-02

Injection

Extraction

Detector

BPM

DC-20 GHz

GPIB

sy
nc

hr
ot

ro
n 

lig
ht

Timing System

triggers

Streak Camera

SLC South Damping Ring
with two positron bunches

e+

e+



CHAPTER4. EXPERIMENTAL RESULTS 120

the same running conditions parasitically to the normal SLC operations. The

average charge per bunch was 3.8×1010 ppb and RF voltage was around

800 kV. The latter was fairly consistent with the value of the synchrotron fre-

quency observed on the spectrum analyzer.

The individual streak camera profiles did not require processing other

than a calibration [6]. Bringing all the profiles to the common time reference

was less obvious since the centroid position information was lost due to sub-

stantial (>30 ps) trigger jitter. Since the instability never causes measurable

sidebands near fs, we assumed that all the movements of the profiles on the

streak camera screen were caused by this trigger jitter. This allowed us to find

the zero dipole moment time point for each profile and assign t=0 to it.

The instability amplitude and phase at the moment of the streak camera

shot were obtained from the oscilloscope traces (Figure 49). To eliminate

extraction related effects the last 20% of each trace was discarded and the rest

was digitally filtered to reduce the noise (filtering details are not important).

We defined the phase of instability based on zero crossings of the filtered sig-

nal. For the amplitude we picked the maximum deviation of that signal in the

20 µs region centered at the shot moment. Of course, the phase makes sense

only when the amplitude is large, i.e. a burst and the shot coincide.

FIGURE 49. Extracting the instability phase and amplitude from the detector signal.
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5.1.3 Results

We ended up with a few hundred streak camera profiles each tagged with

the instability amplitude and phase obtained from the oscilloscope traces. To

study large amplitudes we selected the profiles with the instability ampli-

tudes higher than one half of the maximum bursting amplitude. The average

instability frequency corresponding to those 295 profiles was 178 kHz±1 kHz.

These profiles had a 7% variation in bunch length that strongly correlated

(72% correlation coefficient) with the instability signal.

Subsequently, the large instability amplitude profiles were binned accord-

ing to their phases. The average shapes for the +π/2±π/4 and -π/2±π/4 phase

bins, and the overall average profile are shown in Figure 50. The main

changes as the phase varies happen near the top as well as about 30 ps into

the head and into the tail. We found that the profile height at those regions

varied in a sine-like fashion versus instability phase. Since this is a manifes-

tation of the phase space rotation we defined the instability structure as

, where are all the profiles with correspond-

ing phases , k=1,2,...295, is the phase-averaged profile (Figure 50, solid)

and angle brackets denote the median value.

The structure obtained is plotted in Figure 51. It is very much like a pro-

jection of a quadruple mode (sketched in the corner). The ratio of the positive

FIGURE 50. High instability amplitude case: average profiles for different
instability phases.
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peak area to the one under is about 3% which measures the amount of

redistributed particles creating the quadrupole structure.

For the low amplitude case we found the average profile, and it is similar

to for high amplitudes. That means that the difference between the beam

distributions when the instability is high or low is less than our sensitivity

and the characteristic feature size in Figure 51.

Finally, we should note that the average profile shape is quite different

from the Haissinski distribution at corresponding current. This is illustrated

in Figure 52 where is shown together with a fitted Haissinski distribution

corresponding to the damping ring wake from [50]. The fit was done

as described in Section 2.0 (fit e). In contrast to Figure 34 plotted for low cur-

rent data Figure 52 shows a substantial difference in the measured and simu-

lated beam profiles. Particularly, the measured profile is about 15% longer

than the simulated one. We note that such a large disagreement could not be

caused by the errors in the profile alignment algorithm. Indeed, the bunch

length of the average profile (defined as ) falls within 2%

FIGURE 51. High amplitude instability structure.
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of the average bunch length of the individual profiles. Similar disagreement in

bunch shapes was observed when we tried to compare these data with other

impedance models described in Section 2.0.

5.2 Results from the 97/98 SLC run

5.2.1 Setup changes

During 97/98 SLC run the phase space structure experiment was repeated

with improved hardware and at different operating parameters. This section

summarizes the changes we made to our setup compared to the one described

in Section 5.1.

The main change in the hardware was the addition of the GPIB interface

to the streak camera. This allowed us to automate and significantly speed up

the data taking process which in turn provided larger amounts of data. In

addition, we were able to interface the streak camera and the oscilloscope to

the SLC control system as described in Section 2.3 of Chapter 3. This, of

course, eliminated the need for PC/Lab-View controller for the oscilloscope

FIGURE 52. Instability phase-averaged beam profileρ0 (symbols) and a fitted

Haissinski solution for atN=3.8×1010, VRF=800 kV.
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(shown in Figure 48) as well as Hamamatsu PCTA-software controller (not

shown but used in 96/97 run experiment).

Additional changes in our hardware included switching from 1/2’’ to a 1/4’’

HELIAX cable for the BPM pick-up signal and using a better amplifier in the

detector circuit. The new amplifier was based on a faster, low noise opera-

tional amplifier chip and it had 1 kΩ input impedance to increase the effective

sensitivity of the detector. In addition, the HP 54610B oscilloscope was

replaced by a more convenient Tektronix TDS 460A that allowed direct video

output onto a PC monitor. During our experiment we were recording oscillo-

scope traces 40 µs in duration.

Finally, the VDU in the streak camera trigger circuit was bypassed and a

trombone was added for fine timing adjustment (as described in Section 4.2.3

of Chapter 3). This significantly reduced beam centroid jitter in the recorded

profiles and lead to unexpected consequences to be described in Section 5.2.3.

5.2.2 Data taking

Unfortunately, our data taking happened right after an accidental vent in

the NDR vacuum chamber. This somewhat compromised our ability to chose

operating parameters, since we had to do our experiment (in SDR) in parallel

to the RF processing in NDR. We ended up with 60 Hz single bunch operation

with the stores of 32 ms long. Roughly 3000 data file pairs were taken in the

time period of about 24 hours. The SCP readings of VRF and N, as well as

instability frequency extracted from oscilloscope traces are plotted in

Figure 53.

During the first half of the experiment the instability was in sextupole

mode and then it switched to mostly quadrupole mode after N/VRF were

slightly lowered/raised. Throughout the duration of the experiment the insta-

bility was in a continuous mode which is consistent with the results described

previously in Section 4.0. We should point out that the experiment described

in that section was done right after the present one.
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5.2.3 Data processing

The core of the data processing algorithm remained the same as described

in Section 5.1.2. A few important details have changed and are described

below.

First of all, due to automated data acquisition roughly 2% of data files were

recorded during “bad stores” which we define as those when no streak camera

profile (or a profile that is impossible to fit) was recorded. Most of these stores

corresponded to the cases when the timing system sent all the triggers needed

but there was no beam. Others include beam stores with very low current,

drops in the RF voltage, different injection pattern due to rate limiting etc.

Such stores were discarded from further processing.

Second, since the instability was in a continuous mode we implemented a

better fitting routine for the oscilloscope traces. Instead of relying on just two

zero-crossings during one instability period we used a nonlinear least squares

algorithm to fit the whole 40 µs trace with a sine-like curve with the ampli-

tude, the frequency and the phase being the fit parameters.

With the two changes above included we processed a major portion of the

data when the instability was in a quadrupole mode. Unexpectedly, we

FIGURE 53. Operating parameters and instability frequency.
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observed a strong correlation between the centroid positions of fitted profiles

and their bunch lengths. The bunch length for the files in the center of the

CCD was about 20% longer than for those closer to either edge of the CCD (see

Figure 54 top). This systematic effect of course hid the instability induced fea-

tures in the beam distribution. We have traced this effect to a local sensitivity

drop in the streak camera system (most likely the photocathode). To correct

for this we had to boost the values for the CCD pixels from 191 to 256 by vari-

ous amounts up to 14%. To find the correction coefficients for each pixel we

used a procedure described in detail in reference [66] (however, we came up

with slightly different correction coefficients). In summary, this procedure

amounts to i) constructing an average beam profile from the data without any

centroid alignment, ii) identifying the pixel range on this profile that is signif-

icantly depressed compared to the neighboring areas, iii) using a fourth order

polynomial to extrapolate the average profile into that region, and iv) defining

the correction coefficient for each pixel as a ratio of the polynomial to the

actual profile values in the depressed region.

FIGURE 54. Bunch length dependence on the centroid position before and after
the sensitivity calibration.
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As a source profile we used a sum of all the profiles from 96/97 run. In con-

trast to the data from the present experiment those profiles were much more

uniformly distributed in their centroid positions due to larger trigger jitter.

Adding such a correction has essentially eliminated the bunch length depen-

dence on the centroid position as illustrated in Figure 54. We have used this

correction to get the results to be described next.

5.2.4 Results

Using the data processing with the changes described above we have sepa-

rately processed the files that correspond to the sextupole mode at

VRF=730 kV and to the quadrupole mode at VRF= 800 kV (SCP readings). This

choice is obvious from Figure 53. For the purposes of this section we will refer

to these data as a sextupole and quadrupole batches. After making cuts in the

profile area, beam current, and instability frequency and amplitude the total

number of files remained in the sextupole and the quadrupole batches were

1164 and 1590 respectively. The average instability frequency was calculated

to be 161.5 kHz±0.8 kHz for the quadrupole batch and 216.3 kHz±2.3kHz for

the sextuple batch.

The average bunch shapes for these two batches are plotted in Figure 55.

Other than a small difference in the bunch length which is 25.3 ps for the sex-

tupole batch vs. 23.7 ps for the quadrupole batch, the bunch shapes are quite

similar. At the same time, similarly to the data from the previous run, these

average shapes are substantially different from the corresponding Haissinski

solutions, particularly they are significantly longer. This statement holds for

every wake function model described in Section 2.0.

The spread in bunch lengths of individual files turned out to be 3% for the

sextupole batch and 4% for the quadrupole batch. It is conceivable that a sub-

stantial portion of this spread is due to the instability, especially for the qua-

drupole batch. Indeed, the correlation coefficient between the bunch length
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and the instability signal is 54% for the quadrupole batch and 24% for the sex-

tupole batch.

The instability induced structure is plotted in Figure 56. The quadrupole

mode structure is clear although it is not as symmetric as the one obtained

FIGURE 55. Average beam profiles for quadrupole and sextupole batches.

FIGURE 56. Measured instability mode structure for quadrupole (top) and
sextupole batches.
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from the 96/97 run data. The number of particles displaced by the quadrupole

mode is about 1%.

For the sextupole batch the mode structure is nosier. Nevertheless the two

positive peaks and two negative peaks (the characteristic feature of the sextu-

pole mode) are fairly pronounced. The total area under the two positive peaks

is about half a percent of that under the average bunch shape.

It is worth mentioning that while in both cases the instability amplitudes

obtained are fairly small the results shown in Figure 56 are statistically sig-

nificant. To illustrate this we repeated the same data processing except we

replaced the instability phases extracted from the oscilloscope traces by an

array of random numbers uniformly distributed from -π to π. The resulting

mode structures are plotted below.

The characteristic feature size in Figure 57 is much smaller than that in

Figure 56 which outlines the statistical significance of the results shown in

the latter.

FIGURE 57. Simulated instability mode structures for quadrupole (top) and
sextupole batches.
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5.3 Summary

Combining the instability signal detector with the streak camera proved

to be valuable technique for studying longitudinal microwave instability. This

combination allowed us to simultaneously take advantage of beneficial proper-

ties of the detector (continuous data taking) and the streak camera (practi-

cally infinite bandwidth). In addition, interfacing this setup to the SLC control

system we were able to acquire large number of data files allowing quantita-

tive studies of a fairly small effect.

Utilizing this setup we have measured the phase space features for the

strongly developed saw-tooth instability. The instability can be in either qua-

drupole or sextupole mode and contains anywhere from a few percent down to

a fraction of a percent of the beam particles. In addition, the average profile at

large instability amplitudes for the case of bursting instability was measured

to be the same as the distribution at small amplitude. These facts make it

likely that the instability can be interpreted with perturbation techniques.

Finally, there appears to be some difference in the instability frequency,

strength and modal structure for the data from two different SLC runs.

Although the two experiments were done with different number of bunches

stored in the ring we do not think that this was significant (see Appendix A for

more details). Rather we believe that this difference is due to the changes

done to the SDR vacuum chamber and RF system between the two runs.

These included replacing the RF cavity and the klystron, installation of RF

shielding on the ion pump slots in the RF cavities, significantly changing the

design of a kicker magnet as well as some smaller jobs. While we cannot defi-

nitely attribute observed difference to any one of these factors we can specu-

late that some of them may have affected the ring impedance and the

instability properties.
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6.0 Instability signal correlation with the bunch behavior
downstream of the damping rings

6.1 General comments

So far we have only presented the instability measurements in the damp-

ing rings. Since the rings serve as injectors to the SLC linac we expect that the

instability in the damping rings may affect the performance of the SLC as a

whole.

To quantitatively characterize this we have performed a series of measure-

ments correlating the instability signal at extraction to the beam trajectories

in the linac downstream of the damping rings. These experiments were per-

formed on both electron and positron bunches during 96/97 and 97/98 SLC

runs.

6.2 Setups

We have mostly used the setup with the GADC running the buffer acquisi-

tion utility. The instability signal was usually sampled a fraction of a µs before

extraction. Another (much slower) version of the experiment included running

the correlation plot software while recording the instability signal traces with

an oscilloscope interfaced to the SCP as shown in Figure 16. With this method

the instability signal amplitude and phase at extraction were fitted online and

sent to the correlation plot utility. Other machine variables recorded by the

buffer acquisition or correlation plot utilities included BPM readings for vari-

ous sectors in the linac as well as in the RTL. We have also recorded the “36

GHz bunch length” which is a GADC readout of the high frequency detector in

the microwave cavity coupled to the beam pipe in sector 25 [67]. It was shown

in the streak camera measurements described in [6] that this signal is propor-

tional to the bunch length divided by the beam current.
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6.3 Examples of measurement results

6.3.1 NDR instability results from 97/98 SLC run

An example of one 1024 point buffered data acquisition file is shown in

Figure 58. This data was taken on December 8, 1997 with the instability sig-

nal derived from the production bunch in the electron damping ring. The

beam conditions were Ntwo bunches=8.3×1010, VRF=700 kV, and the current jit-

ter was on a 1% level. The values shown on both axis are direct readings from

the corresponding GADCs and BPMs as recorded by the buffer data acquisi-

tion program.

The top plot shows that the damping ring instability signal correlates with

the bunch length in sector 25. The correlation is not 100% which may be

caused by measurement errors or be due to other factors affecting the bunch

length in the linac. Nevertheless, since the linear correlation coefficient

exceeds 80% we conclude that the damping ring instability is the dominant

factor in the bunch length jitter.

On the bottom plot the readings of the BPM 201 x in sector 20 are plotted

against the instability signal. First of all, we note that there is a significant

FIGURE 58. Correlation between the NDR instability and linac signals.
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spread in the BPM readings. In fact, for the data set shown the standard devi-

ation in pulse-to-pulse horizontal BPM readings exceeds 20 µm. This is to be

compared with the typical horizontal beam size in the linac on the order of

50 µm. Second, we note that the significant part of this jitter comes from the

instability in the damping rings. The linear correlation coefficient between the

values plotted is 54%.

During this measurement we were recording the BPM 201 readings for

even sectors 2 through 24 and for all the remaining sectors. The correlation

coefficient vs. the linac sector number is shown in Figure 59. This figure leads

us to the following conclusions i) correlation coefficient in both x and y rapidly

changes from sector to sector and grows along the linac, ii) this correlation

coefficient can be as high as 50%, iii) correlation of instability signal with cur-

rent in the linac is insignificant.

When running above the instability threshold it was always possible to

find a sector with significant correlation between the damping ring instability

signal and either x or y BPM reading. However, the exact dependence vs. sec-

tor number would change considerably depending on the linac tuning and pos-

FIGURE 59. Instability signal correlation with BPM readings along the linac I.
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sibly other factors. For example, similar data taken three months earlier on

September 14 (Ntwo bunches~8.3×1010, VRF=890 kV) is plotted below.

These data were taken through the correlation plot utility. For each SLC

cycle a 100 µs long instability signal trace before the extraction was recorded.

Subsequently, the correlation coefficient was calculated between each point of

this trace and the corresponding linac data. The maximum value of the corre-

lation coefficient is plotted in Figure 60.

6.3.2 SDR instability results from 96/97 SLC run

An even higher correlation between the beam jitter in the linac and the

instability signal in the SDR was observed during the 96/97 SLC run. We have

routinely observed instability signals correlation with the transverse BPM

readings exceeding 60%. For one particular case (when the correlation coeffi-

cient was about 64%) it was estimated that the total jitter power coming from

the instability exceeded 40% making the instability one of the major contribu-

tors to the beam transverse jitter. A typical development of the correlation

along the linac is shown in Figure 61.

FIGURE 60. Instability signal correlation with BPM readings along the linac II.
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6.4 Discussion

The correlation between the instability signal and the bunch length in the

linac is not surprising. Indeed, there are no other elements downstream of the

RTL compressors that should affect the bunch length and/or the energy

spread. If the compressor voltage is stable, the correlated energy spread and

bunch length jitter (coming from the damping rings due to the instability) is

preserved down to the end of the linac.

In addition to preserving the bunch length jitter, the compressor may

introduce the correlation between the transverse and longitudinal displace-

ment of the beam particles. This occurs due to non-zero dispersion (introduc-

ing δx=ηδ) or higher order dispersive terms in the compressor optics

(δx=η(n)δn) that lead to different offset of particles with different energies.

This correlation further develops along the linac due to the transverse wake-

fields [69].

Another cause of the bunch length correlation to the transverse displace-

ment comes directly from the incoming bunch length jitter amplified by the

transverse wakefields. They introduce the dependence of the phase advance

on the bunch length and therefore convert the bunch length jitter into the

FIGURE 61. Instability to jitter correlation (from [69]).
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transverse orbit jitter. This qualitatively explains the dependence along the

linac shown in Figure 59 where drastic changes in the correlation coefficient

from one BPM to another simply reflect different betatron oscillation phase

spreads.

There are, of course, other sources of transverse jitter in the beam trajecto-

ries in the SLC linac. Some of them include quadrupole vibrations induced by

the water pumps, slow vibration of the accelerator supporting structure,

ground motion, and the quadrupole field ripple. All of these factors were ana-

lyzed in reference [68] by running computer simulations with the realistic

beam lattice, wakefields, klystron phasing and orbit bumps. It was found that

if the bunch length jitters on the order of 10% (based on our measurements

described in Section 5.1) this may lead to the transverse beam trajectory jitter

of 35% of σy.

Note that the transverse jitter this large may significantly compromise the

SLC luminosity, because it decreases the effective overlap area between the

colliding beams in the final focus. Future linear colliders have even lower tol-

erance to the transverse jitter because the beam size is expected to be reduced

an order of magnitude or more [70].

Finally, we should note that having continuous GADC based diagnostics of

the level of the instability signal proved to be useful for the regular SLC run-

ning. In case of unexpected increase in the linac jitter it allowed to easily

check whether it was due to the increase in the instability level in the damp-

ing ring or alternatively eliminate is as a suspect.
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Chapter 5

Analytical results and comparison with
experiments Chapter 5

1.0 Asymmetry in the instability sidebands

Among the peculiar features of the BPM signal spectra from unstable

bunches are unequal heights of the left and right instability sidebands. This is

clearly seen for example in Figure 21 or Figure 40. In both cases the upper

instability sideband exceeds the lower one by about 4 dB. In the course of our

studies we have routinely observed an asymmetry between the instability

sidebands with magnitudes as high as 5 dB with either the upper or the lower

sideband being the highest. This ratio changes (both in magnitude and sign)

as a function of current, suggesting that this asymmetry is a property of the

instability rather than being due to variation in the BPM sensitivity. In addi-

tion, the fact that asymmetry can be present several minutes into the store

(Figure 40) argues that it is coming from the particles in the final, saturated

state of unstable beam rather than being caused by the injection transients or

initial growth due to the instability.

Such a significant difference in the amplitudes of the instability sidebands

cannot be explained by a simple derivation given in Section 5.2 of Chapter 3.

Some asymmetry indeed appears in that derivation and it is due to the enve-

lope functions. We expect, however, these envelope functions to change appre-

ciably only in the frequency range of ∆ω~c/σinst where σinst is the

characteristic size of the instability induced structure within a beam. For any

storage ring this number is orders of magnitude higher than the synchrotron



CHAPTER5. ANALYTICAL RESULTS AND COMPARISON WITH EXPERIMENTS138

frequency ωs meaning that envelope functions are essentially flat between the

lower and higher instability sidebands for any rotation harmonic.

Therefore the asymmetry observed is due to something else that was unac-

counted for in the derivation of Section 5.2 of Chapter 3. One possible general-

ization is to account for a deviation of beam particle trajectories from a pure

harmonic motion. As discussed earlier such a deviation does occur even below

the instability threshold and we naturally expect it to continue above the

threshold as well. As it will be shown below such an approach not only may

explain our observations but also gives additional insight on the physics of the

instability.

Before we proceed with the derivation we should mention that other expla-

nations of the sideband asymmetry have been proposed in references [47] and

[50]. However, we believe that neither of these fully explains the effect at

least for the case of the SLC damping rings. The explanation in [47] requires

two azimuthal modes to be excited simultaneously and the frequencies of

these modes to be exact multiples of each other. This disagrees with our exper-

imental observations described in the previous chapter. The second reference

( [50]) states that the sideband asymmetry is caused by the asymmetry in the

potential well, which we find to be incorrect as will be described in Section 1.2.

1.1 Simple case - second harmonic term

For brevity we assume in this section that only the second harmonic term

is present in the particle trajectory. The generalization to include more terms

is straightforward.

Similar to EQ 3.6 we assume now that the beam current is given by

, (5.1)

where α is a small parameter. Compared to EQ 3.6 we have neglected the

phase shift ϕ in the fundamental harmonic that was shown not to affect the

I t( ) δ t nT0– a ωsnT0( ) αa– 2ωsnT0 φ+( )coscos–( )
n ∞–=

∞

∑=
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magnitude of the single particle spectrum. In addition, we have introduced the

phase shift φ between the second and the first harmonics of single particle

motion.

 The spectral density of such current is given by

, (5.2)

where .

Let us look at a pair of sidebands of order q near some rotation harmonic

n=n0. The sideband frequencies are given by ω±=n0ω0±qωs. From the discus-

sion of Section 5.2 of Chapter 3 we can limit our consideration to positive fre-

quencies only and then account for the negative ones by simply doubling the

resulting amplitude. Therefore, the amplitudes of the upper and lower side-

bands are given by

, (5.3)

(5.4)

As we have already mentioned due to small a there is basically no differ-

ence in the values of Bessel functions at lower and upper sideband frequen-

cies. Therefore, if it was not for the extra (-1)le2ilψ factor in EQ 5.4 the

amplitudes of the sidebands would be approximately equal. We first note that

this factor has absolute value of 1 for a special case ψ=±π/2 or equivalently

φ=0, π. We will comment on the significance of this case in the next section.

For now we rewrite the two formulas above in a slightly different way that

explicitly shows the asymmetry in a general case. Using the known Bessel

function properties we have for the amplitudes

Ĩ ω( ) ω0 i–( )kJk ωa( )Jl αωa( )e ilψ– δ ω k 2l+( )ωs nω0–+( )
k l n, , ∞–=

∞

∑=

ψ φ π 2⁄+≡

A+ 2ω0 i–( )q Jq 2l– ω+a( )Jl αω+a( )e ilψ–

l ∞–=

∞

∑=

A- 2ω0 i–( ) q– J q– 2l– ω-a( )Jl αω-a( )e ilψ–

l ∞–=

∞

∑=

=2ω0 i–( )q 1–( )lJq 2l– ω-a( )Jl αω-a( )eilψ

l ∞–=

∞

∑ .
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(5.5)

(5.6)

where δl0 is a Kronecker’s symbol.

It is clear that the envelope functions for the upper and lower sidebands

are essentially different due to opposite signs of odd terms in l (and l=0 term

being the dominant one).

We can simplify the formulas above for small α. For example, the ratio of

two quadrupole sidebands (q=2) comes out to be

, (5.7)

where , index denotes the sideband order, and we only kept terms

up to the first order in α. Therefore, for a given observation frequency and

amplitude of the synchrotron motion, the asymmetry in instability sidebands

is directly proportional to the relative strength of the second harmonic times

the sine of its phase with respect to the fundamental. From the derivation

above it is easy to see that we would arrive to the same conclusion had we con-

sidered 4th, 6th or any other even harmonic in the single particle motion. Odd

harmonics, on the other hand, would not produce any asymmetry.

It should be noted that the derivation above considers only the single parti-

cle motion. Without a detailed model of the instability and understanding of

the coherent beam motion we cannot predict which particular set of sidebands

dominates the spectrum. Furthermore, even if we pick a set of quadrupole

A+ 4ω0 Jq 2l– ω+a( )e ilψ– Jq 2l+ ω+a( )eilψ
+[ ]Jl αω+a( ) 1

1 δl0+
-----------------

l 0 2 ..., ,=

∞

∑=

+ Jq 2l– ω+a( )e ilψ– Jq 2l+– ω+a( )eilψ[ ]Jl αω+a( )
l 1 3 ..., ,=

∞

∑ ,

A- 4ω0 Jq 2l– ω-a( )eilψ Jq 2l+ ω-a( )e i– lψ
+[ ]Jl αω-a( ) 1

1 δl0+
-----------------

l 0 2 ..., ,=

∞

∑=

Jq 2l– ω-a( )eilψ Jq 2l+– ω-a( )e i– lψ[ ]Jl αω-a( )
l 1 3 ..., ,=

∞

∑– ,

A2
+

A2
-

------- 1 α– ω
J0 ω( ) J4 ω( )–

J2 ω( )
-------------------------------------- φsin≈

ω n0ω0a≡
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sidebands we cannot fully utilize EQ 5.7 since do not have any handle on the

value of φ which is a free parameter in the present model. Nevertheless,

assuming that a typical value of φ becomes significant (φ∼1) during the insta-

bility we can attempt some comparison with the observations.

As an example we consider n0=1149, a=30 ps, and α=0.1 which according to

EQ 5.7 gives the ratios of 3 dB and -4 dB for φ=π/2 and φ=−π/2 respectively.

Provided that φ is not too small, we see that even a minor second harmonic

term in particle motion leads to the magnitude of the asymmetry comparable

to the one observed in experiment (see for example Figure 40 for the spectrum

and Figure 56 for the value of a).

1.2 General case and time inverse asymmetry

Now consider a general case of periodic single particle motion

, (5.8)

where we again assume that φ1=0.

A BPM samples the beam current

(5.9)

which in this case has the spectrum

, (5.10)

where . From this spectrum it follows that the envelope func-

tions for the upper and lower sidebands of the same order are generally differ-

ent. Similar to the result of the previous section it turns out that the envelope

functions are the same in either of two special cases i) when x(t) includes odd

harmonics only or ii) x(t) has arbitrary harmonics but there is a special phase

x t( ) ak kωst φk+( )cos
k 1=

∞

∑=

I t( ) δ t nT0– x nT0( )–( )
n ∞–=

∞

∑=

Ĩ ω( ) Jkp
apω( )e

ikpψ p–

p 1=

∞

∏
 
 
 

δ ω ωs pkp
p 1=

∞

∑ nω0–+
 
 
 

n ∞–=

∞

∑
k1 k2 ..., , ∞–=

∞

∑=

ψ p φp π 2⁄+≡
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relationship between them, namely they all are in phase with the fundamen-

tal φp=0, p=2,3,... Let us look at the second case in more detail.

Inspecting the trajectory EQ 5.8 it is easy to see that the constraint of all

phases being zero is nothing else than a requirement for this trajectory to be

time inverse symmetric. This means that there exists such a fixed time shift ∆

that for any time t

. (5.11)

In other words, this condition means that when the time is reversed the

trajectory repeats itself with the exception of a possible shift of the initial

point to a different point in phase space that lies on the same trajectory.

The fact that any time inverse symmetric trajectory leads to symmetric

sidebands can be seen directly from EQ 5.10. Indeed, for such a trajectory and

its time inverse compliment x(-t) the BPM spectra are the same. Formally,

however, the x(-t) trajectory has the corresponding spectrum given by EQ 5.10

with the sign of ωs flipped in the argument of the δ-function. This sign flip can

be viewed as an interchange between the envelopes of the upper and lower

sidebands. Therefore, the spectrum of any time inverse symmetric trajectory

has the same envelope functions for the lower and upper synchrotron side-

bands of any given order. This means that the sidebands to any rotation har-

monic are essentially equal.

This last observation connecting the time inverse symmetry of the single

particle motion and the sideband symmetry in the corresponding spectrum

allows drawing important conclusions. Since the sideband asymmetry is

observed in experiments we conclude that at least some beam particles have

time inverse asymmetric motion. Since the laws of mechanics are time revers-

ible it requires the single particle Hamiltonian of unstable beam to be time

dependent (due to the timescale of the problem we can neglect the effects of

the synchrotron radiation). However, as we mentioned at the end of

Section 5.2.3 of Chapter 2 this Hamiltonian is explicitly time independent.

The dependence on time can appear in the system (and the Hamiltonian) if

x t–( ) x t ∆+( )=
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the particle density becomes time dependent as a result of spontaneous sym-

metry breaking process [44]. Therefore, the presence of unequal sidebands in

the spectrum is an indication that such a process indeed takes place during

the saw-tooth instability.

2.0 Instability threshold and the physics of the instability

As discussed in Section 5.2.2 of Chapter 2 there are several empirical cri-

teria for the onset of microwave instability. Apart from exotic case of multiple

minima in the unperturbed collective potential all the other criteria are based

on the dependence of incoherent particle frequency on action ω(J). Utilizing

the linearized Vlasov equation technique, we will show shortly that such crite-

ria are flawed and they may not work for all impedances. It will be shown that

the instability appears due to the real part of impedance which affects the sin-

gle particle motion by creating an asymmetry of the collective potential. This

asymmetry can also be expressed through the relative strength of even har-

monics of particle trajectories. We will show that the above statements regard-

ing the stability apply both to the case of radial and azimuthal mode coupling.

Finally, making certain simplifying assumptions that hold at low intensity we

will show how to find analytically the upper bound estimate on the value of

the growth rate for any azimuthal mode. Provided that the radiation damping

rate is known such a calculation gives an estimate of the instability threshold.

2.1 Analysis of the dispersion relation

We start with the linearized Vlasov equation dispersion relation EQ B.11

derived in Appendix B which reads

, (5.12)
Ω
m
----- f̃ m J( ) ω J( ) f̃ m J( ) I

Jd

dρH Rm n, J J',( ) f̃ n J'( ) J'd∫
n 1=

∞

∑+=
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where Ω is the coherent frequency, fm is the m-th azimuthal mode (m>0), I is

the intensity and ρH(J) is the Haissinski solution for the density. The kernel of

EQ 5.12 is given by

, (5.13)

where is the dimensionless frequency, is the

normalized impedance,

, (5.14)

and x(J, ϕ) is a trajectory of a particle defined by the Haissinski Hamiltonian.

We will choose the initial phase of this trajectory so that the latter has

cosine-like terms only

. (5.15)

Here n=0,1,2,... and Φ is some function, that, in principle, can be found by per-

turbation theory (see EQ B.18). Such a choice of the initial phase that cancels

all the sine-like terms is always possible due to the mentioned earlier time

reversibility of Hamiltonian systems.

For such a trajectory  and

. (5.16)

To proceed with our derivation we first neglect the possibility of the second

minimum in the potential well which gives for any J. Therefore, the

dispersion relation EQ 5.12 can be transformed (as was pointed out in [42]) to

a more symmetric form

, (5.17)

where

Rm n, J J',( ) i–
Z ξ( )

ξ
------------Cm ξ J,( )Cn

* ξ J',( ) ξd∫≡

ξ ωσ0 c⁄≡ Z ξ( ) cZ ω ξ( )( ) A⁄≡

Cm ξ J,( ) 1
2π
------ eimϕ iξx J ϕ,( )+ ϕd∫≡

x J ϕ,( ) 2J ω0⁄ ϕcos Φ J nϕcos,( )+=

x J ϕ,( ) x J ϕ–,( )=

Cm ξ– J,( ) Cm
* ξ J,( )=

Jd

dρH 0<

Ω
m
----- gm J( ) ω J( ) gm J( ) I

Jd

dρH

J'd

dρ'H Rm n, J J',( ) gn J'( ) J'd∫
n 1=

∞

∑–=
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 and .

EQ 5.17 is equivalent to the eigenvalue problem

, (5.18)

where

, and Rm,n are

given by EQ 5.13.

The kernel of EQ 5.18 is symmetric with respect to interchange

when

. (5.19)

It is well known that an integral equation with a real and symmetric ker-

nel allows only real eigenvalues. Therefore, when the condition EQ 5.19 holds

true then all collective frequencies Ω in EQ 5.18 are real and there is no insta-

bility. Let us further investigate the meaning of this condition.

Recalling that (EQ 2.38) and making use of EQ 5.16 we

rewrite the definition of Rm,n EQ 5.13 as

(5.20)

This shows that Rm,n is always real and that it can be represented as a

sum of two distinct parts that are proportional to the imaginary and the real

part of the impedance respectively.

ρ'H ρH J'( )≡ gm J( ) f̃ m J( )
Jd

dρH⁄≡

Ω
m
-----h J( ) ω J( )δ J J'–( ) I

Jd

dρH

J'd

dρ'H R̃ J J',( )–
 
 
 

h J'( ) J'd∫=

h J( )
g1 J( )

g2 J( )

...

,≡ R̃ J J',( )
R1 1, J J',( ) R1 2, J J',( ) ...

R2 1, J J',( ) R2 2, J J',( ) ...

... ... ...

≡

J J'↔

Rm n, J J',( ) Rn m, J' J,( )=

Z ξ–( ) Z* ξ( )=

Rm n, J J',( ) 2 1
ξ
---Im Z ξ( )( )Re Cm ξ J,( )Cn

* ξ J',( )( ) ξd
0
∫=

+2 1
ξ
---Re Z ξ( )( )Im Cm ξ J,( )Cn

* ξ J',( )( ) ξ.d
0
∫
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To establish whether either of these two parts obeys the condition EQ 5.19

we note that by definition of Cm EQ 5.14

(5.21)

which gives

(5.22)

Using these two equations and substituting EQ 5.20 into the stability con-

dition EQ 5.19 we conclude that the latter generally does not hold because the

second integral in EQ 5.20 (proportional to the real part of impedance)

acquires an extra minus sign. However, when Z(ξ) is imaginary EQ 5.19 does

hold true which means that the kernel of EQ 5.18 is symmetric and instability

cannot occur. In the opposite case of a real impedance the kernel is anti-sym-

metric. In this case there may or may not be an instability depending on the

exact form of the kernel of EQ 5.18. Specifically, we may expect that the insta-

bility will occur when the frequency spread due to the variation of ω(J) (which

makes up the diagonal of the kernel) is relatively small.

It is also useful to relate the above conclusions formulated in terms of

impedance to the characteristics of single particle motion. From the consider-

ation of the potential well distortion given in Section 4.1 of Chapter 2 we

recall that imaginary part of impedance keeps the potential well symmetric

with respect to the origin while the real part distorts the well asymmetrically.

Therefore the conclusion above says that the instability is due to the asymme-

try in the collective potential. Furthermore, when the potential well becomes

asymmetric the particle trajectories expressed in term of J and ϕ (EQ 5.15)

acquire even harmonics of phase. Therefore we expect that the onset of insta-

bility may be related to the relative strength of these even harmonics. This

will be shown in detail in Section 2.3.

4π2Cm ξ J,( )Cn
* ξ J',( ) mϕ nϕ'– x J ϕ,( ) x J' ϕ',( )–( )ξ+[ ]cos ϕd ϕ'd∫∫=

+i mϕ nϕ'– x J ϕ,( ) x J' ϕ',( )–( )ξ+[ ]sin ϕd ϕ',d∫∫

Re Cm ξ J,( )Cn
* ξ J',( )( ) Re Cn ξ J',( )Cm

* ξ J,( )( ),=

Im Cm ξ J,( )Cn
* ξ J',( )( ) I– m Cn ξ J',( )Cm

* ξ J,( )( ).=
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Finally, we note that the analysis above trivially applies to the case of a

single azimuthal mode where the instability may only occur as a result of

radial mode coupling. Therefore, our consideration shows that independent of

whether instability shows up as radial or azimuthal mode coupling it always

appears due to the asymmetry of the collective potential brought by the real

part of the impedance. This justifies our instability classification suggested in

Figure 8 of Chapter 2.

2.2 Discussion of the threshold criteria

As was shown above in the framework of the linearized Vlasov equation

the longitudinal microwave instability is due to the asymmetry of the collec-

tive potential. On the other hand, many of the suggested criteria for the onset

of instability are based on the dependence of incoherent particle frequency on

action ω(J). It is easy to see now that such criteria are flawed and they may

not work for all impedances.

Indeed, generally ω(J) does not define the potential well. It only constrains

the difference between xright(U) and xleft(U) as [72]

FIGURE 62. Illustration to EQ 5.23.
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, (5.23)

where is a period of oscillations, J(U) is given by

and xleft,right(U) are the inverse functions of the potential U(x) defined for the

left and right halves of U(x) respectively as illustrated in Figure 62.

Therefore, for any ω(J) there exists a corresponding symmetric potential,

which according to Section 2.1 must be stable. For example, it is known that

neglecting the radiation damping resistive impedance Z(ω)=R is unstable at

any intensity [42]. We can easily find (numerically at least) a purely imagi-

nary impedance that has exactly the same ω(J). As said above such an imped-

ance leads to a symmetric potential well (see Figure 63) and hence causes no

instability. Note, that the same argument can be applied against other insta-

bility onset criteria that are based on the behavior of ω(J).

FIGURE 63. Collective potentials and incoherent frequencies for resistive
impedance at intensityIR=1 and for some imaginary impedanceZ(ω)=iIm(Z(ω)).
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Strictly speaking, the concept of a purely real or a purely imaginary imped-

ance is not entirely accurate. If causality is assumed and Z(ω) is analytic in

the upper half plane then the real and imaginary parts of impedance are

related via the Hilbert transforms EQ 2.39 and EQ 2.40. Therefore, any imag-

inary part of Z(ω) causes some real part and vice versa. Nevertheless, our

arguments regarding the stability remain valid because the Hilbert trans-

forms relate only some integral measures of Z(ω) and allow flexibility choosing

the impedance for a given ω(J). This impedance may be chosen so that U(x) is

almost symmetric and the beam is stable while a different choice could corre-

spond to an instability. As shown earlier, what ultimately defines the stability

is the degree of asymmetry of the kernel of EQ 5.18 which, of course, is not

fixed by ω(J) dependence.

2.3 Analytical estimate of the threshold

The previous section is not too constructive since it does not tell us what

the correct instability onset criterion should be. In our view a simple universal

criterion for the onset of microwave instability does not exist. The steady-state

solution is not enough to conclude about the stability. Instead, one has to deal

with the linearized Vlasov equation dispersion relation. Fortunately, the latter

allows some analytical treatment when the beam intensity is low. In this case

it is possible to find the elements of Rm,n and then estimate the upper limit of

the instability growth rate. Given the radiation damping time this provides

the lower bound of the instability threshold. The derivation is outlined below.

2.3.1 General idea

We will only consider the case of radial mode coupling i.e. only one azi-

muthal mode becoming unstable. This applies to the SLC damping rings close

to the threshold. We should also note that while this case may not be entirely

general there are computer simulations that show that the radial mode cou-

pling tends to occur at lower intensity than the azimuthal mode coupling [42].
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Intuitively this is rather clear because the azimuthal mode coupling should

not occur when the incoherent frequency shifts are small which is usually the

case at low intensities.

According to EQ 5.18 for a single azimuthal mode gm(J) the dispersion

relation is given by

, (5.24)

where Rm,m is defined by EQ 5.20 and has both symmetric and anti-symmetric

parts given respectively by the first and second integrals in EQ 5.20.

On the other hand, according to Schur inequality (e.g. [74]) for any n-by-n

matrix M with eigenvalues λi (i=1,2,...,n)

(5.25)

which relates imaginary parts of eigenvalues with anti-symmetric part of M.

Therefore, treating EQ 5.24 as an eigenvalue equation for an infinite

matrix we get

, (5.26)

where

. (5.27)

In the simplest case when there is only one unstable radial mode with the

growth rate γ the left hand side of EQ 5.25 equals 2γ2. In a general case of sev-

eral unstable modes we can approximately write the left hand side as

where  is a growth rate of the most unstable mode.

Therefore, EQ 5.26 gives an estimate of the instability growth rate in

terms of the Haissinski density ρH and some characteristics of single particle
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motion defined by the Haissinski Hamiltonian. In the next two sections we

will show how one can approximately calculate the integrals in the right hand

side of EQ 5.26 and estimate the instability growth rate and threshold.

2.3.2 Essential assumptions

First, we explicitly rewrite EQ 5.27 in terms of single particle trajectories.

Separating odd and even harmonics of phase in these trajectories

, (5.28)

and making use of EQ 5.14 we get by direct substitution that

(5.29)

In the last equation the first and the second lines in the right hand side

apply to the cases of even and odd m respectively. The last line makes Am anti-

symmetric with respect to  interchange.

For the subsequent calculations it is convenient to rewrite the trajectory in

terms of amplitude and phase similar to EQ B.17. Am expressed through these

variables will be denoted as Am

. (5.30)

We will assume in the further derivation that the higher harmonics of sin-

gle particle motion are weak and can be considered as a perturbation of the

fundamental. As evident from the trajectory written in terms of the amplitude

EQ B.17 this assumption is valid when the amplitudes are small and the

potential well is not too distorted from a parabolic shape (note that this does

not have to be the low current parabolic shape). While there are always some

beam particles with large amplitudes of synchrotron motion their number is

x J ϕ,( ) xo J ϕ,( ) xe J ϕ,( )+=

Am J J' ξ, ,( ) =

ϕd
2π
------- mϕ( ) ξxo( ) ξxe( ) ϕ'd

2π
-------- mϕ'( ) ξxo'( ) ξxe'( )coscoscos∫sincoscos∫

ϕd
2π
------- mϕ( ) ξxo( ) ξxe( ) ϕ'd

2π
-------- mϕ'( ) ξxo'( )sin ξxe'( )coscos∫sinsincos∫






ϕ xo xe, ,( ) ϕ' xo' xe',,( )↔( ) .–

J J'↔

Am a a' ξ, ,( ) Am J a( ) J a'( ) ξ, ,( )≡



CHAPTER5. ANALYTICAL RESULTS AND COMPARISON WITH EXPERIMENTS152

generally small and should not affect the stability. This is evident directly

from the dispersion relation EQ 5.24 that includes the derivatives of the

Haissinski density that exponentially fall down at higher amplitudes. There-

fore we can assume that the maximum amplitudes are not too large amax~1.

Whether the potential well distortion is small enough to consider the higher

harmonics of single particle motion as a perturbation, depends, of course, on

the intensity. Fortunately, for practically interesting intensities this is often

valid. For example, if we calculate the Haissinski solution using the model

SLC damping ring wake function (described in Section 1.2 of Chap-

ter 3) and assume the beam population of N=1010 ppb, then the cubic term

coefficient in the potential well (defined in EQ B.16) comes out to be

. Same calculation results in the value for the zero amplitude inco-

herent frequency very close to 1, specifically , which is

expected for a fairly resistive vacuum chamber. Taking a=1 and substituting

these values into EQ B.17 we get that the maximum amplitude of the second

harmonic is less then 6% of the fundamental.

For the reasons above we will assume now that the intensity is low enough

that we can use the following approximations.

1.   Only the first two harmonic terms in particle trajectory matter for sta-

bility, which gives

(5.31)

We will also assume that typical xe is small, so that and

. This is equivalent to saying that the impedance at fre-

quencies much higher than the inverse beam size does not affect the

stability.

WDR
δ x( )

q3 0.326≈

ω0 ω 0( )≡ ω0 0.986≈

xo a ϕ( ) ,cos=

xe
q3a2

6ω0
2

------------ 3– 2ϕcos+( ) .=

ξxe( )sin ξxe=

ξxe( )cos 1=



CHAPTER5. ANALYTICAL RESULTS AND COMPARISON WITH EXPERIMENTS153

2. To calculate the derivative of the Haissinski density in EQ 5.26 we can

neglect higher order terms in the Hamiltonian assuming that

. This is expected to hold well for low amplitude parti-

cles. Therefore, writing the density similar to EQ 2.64

 we get approximately for the derivative

. (5.32)

The value of the normalizing coefficient ZH can be found from EQ B.6.

3.   The relationship between the action and the amplitude is simply

, (5.33)

which neglects the terms of the order of ,  and higher.

The approximations above allow calculation of integrals in EQ 5.26 when

is ξ-independent (resistive impedance). For general impedance we

can still proceed replacing Re(Z(ξ)) with its upper bound

, (5.34)

where, as usual, the scale factor is absorbed in our definition of intensity I (see

EQ 2.46 and EQ B.13). Such a replacement is expected to make the threshold

and growth rate estimates more conservative.

2.3.3 Growth rate and threshold calculations

We will illustrate the calculations for the quadrupole mode m=2 which is of

interest for the SLC damping rings. Any other azimuthal mode may be treated

similarly. Substituting beam trajectories EQ 5.31 into EQ 5.29 gives
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. (5.35)

We now see that due to EQ 5.34 the integral over ξ in EQ 5.26 is of the type

which can be expressed through a Hypergeometric function

(e.g. [74])

. (5.36)

This requires that a>0, b>0, Re(µ+ν)>-1, and b<a.

Assuming that the first term in the square brackets of EQ 5.35 dominates

at small amplitudes we get that

. (5.37)

Now we change variables back from amplitudes to actions as given by

EQ 5.33 and substitute the result into EQ 5.26. In addition, we substitute the

derivatives of the Haissinski density given by EQ 5.32. To proceed further

with EQ 5.26 we have to deal with the double integral over and . One way

to handle this integral is to switch to cylindrical coordinates r and θ so that

and . In these coordinates the arguments of Hypergeo-

metric functions depend only on θ and the integral over r can be easily calcu-

lated. The final result is then expressed in the form

, (5.38)
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, (5.39)

where γ is the growth rate of the quadrupole mode, and the value in

the right hand side of EQ 5.39 was calculated by numerical integration.

All the quantities in the left hand side of EQ 5.38 generally depend on I. At

a given intensity the Haissinski solution defines q3, ω0, and ZH, thus EQ 5.38

gives an estimate of the maximum growth rate γ. In addition, since in the lin-

ear approximation the instability develops when the growth rate exceeds the

radiation damping rate γd then EQ 5.38 implicitly gives a lower bound on the

instability threshold intensity Ithrsh

. (5.40)

For example, for resistive impedance with the Haissinski potential given

by EQ 2.72 the frequency and (as can be checked by a direct Taylor

expansion) . When substituted in EQ 5.38 this gives

. (5.41)

In this equation we neglected higher order terms of I and used .

Similarly, for the threshold intensity for the resistive impedance we get

. (5.42)

To estimate the threshold beam current for the SLC damping rings we use

EQ 2.46 and take all the parameters needed including the value of γd (for

positron ring, normalized to ωs0 at nominal RF voltage) from Table 1. Using

the experimental value for the effective vacuum chamber resistance Reff=1 kΩ

(see Section 1.0 of Chapter 4) we get for the threshold Nthrsh>4×109 ppb

which is a factor of four lower than the observation. Nevertheless we regard
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such agreement being quite reasonable considered the approximations we

made above.

If a more accurate impedance model is available a better approach would

be to numerically find the Haissinski solution and from it calculate q3, ω0, and

ZH. Repeating this at different intensity values gives the instability threshold

according to EQ 5.40. We have done this calculation for the model wake func-

tion which, however, has resulted in the same threshold value of

Nthrsh>4×109 ppb indicating once again that the model is fairly resistive.

The fact that the threshold estimates obtained are rather conservative is

not surprising. Indeed, the equal sign in the Schur inequality EQ 5.25 holds

only for anti-symmetric matrices with the diagonal elements all being zero

while in our case (EQ 5.24) these are dominated by ω(J). In this sense our esti-

mate does not include the stabilizing effect of the frequency spread as well a

possible stabilizing contribution to Rm,m due to the imaginary part of imped-

ance. Another significant approximation is that in EQ 5.34 we replace the

impedance with a constant upper bound. This may possibly be improved by

using some frequency dependent limiting function that allows analytical inte-

gration of Am similar to EQ 5.37. In spite of these limitations we believe that

being able to bound the instability threshold based on the Haissinski solution

as described above is quite useful and more accurate than relying on empirical

criteria.

3.0 Summary of analytical results

In this chapter we have studied several aspects of beam dynamics related

to the saw-tooth instability. In Section 1.0 we have looked at previously unex-

plained observations of asymmetry in the BPM signal spectra from unstable

bunches. We have offered a possible explanation of this phenomenon that pro-

vided some fairly general insight into the physics of the nonlinear regime of

the saw-tooth instability.

WDR
δ x( )
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In Section 2.0 we have concentrated on the linear theory of microwave

instability in the slow blowup regime. This regime, defined in Figure 8,

applies to the initial growth period of the saw-tooth instability in the SLC

damping rings. As a result, we have arrived at some general conclusions about

the onset of the instability. First of all, we have shown that the incoherent fre-

quency dependence on action alone does not define the stability of the system.

This conclusion invalidates several empirical criteria for the onset of instabil-

ity that are often cited in the literature. Second, we have shown that the insta-

bility appears due to the real part of the impedance which affects the single

particle motion by inducing an asymmetry in the unperturbed potential well.

It is interesting that this conclusion is rather general and it applies both to

the cases of radial and azimuthal mode coupling.

Finally, towards the end of this chapter we have analytically estimated the

lower bound for the threshold of microwave instability. Once again we consid-

ered a slow blowup regime and, in addition, we have concentrated on the qua-

drupole mode. In contrast to the previous results of this chapter this last one

is not as general and is expected to provide a relatively tight lower bound only

when a few radial modes become unstable, the impedance is relatively resis-

tive and the incoherent frequency shifts are small. Fortunately, all of these is

not uncommon in many newer storage rings.
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Chapter 6

Summary and outlook Chapter 6

1.0 Experiment

In present thesis we have described our research of the saw-tooth instabil-

ity in the Stanford Linear Collider damping rings. Our studies have been

mostly experimental and continued through several SLC runs. To some extent

we were fortunate that the instability was present during routine SLC opera-

tions that allowed for systematic studies of its properties either parasitically

to the collisions or during the breakdowns in the SLC systems downstream of

the damping rings. On the other hand, the ability of the SLC to run with the

instability present has clearly indicated that the instability effect on the beam

was rather small and its measurements would require sophisticated diagnos-

tics.

Some of these diagnostics have been developed in the course of our studies.

It included detectors for special processing of high frequency broad-band BPM

signals coming from single bunches. These detectors proved to be useful by

themselves, for example for driven response measurements, as well as in a

combination with other beam diagnostics. Another example of original hard-

ware developed for this thesis is the apparatus for precise synchronous phase

measurement.

Of course, we have also used some commercially available hardware and

the most sophisticated of that was the Hamamatsu FESCA-500 streak camera

that is capable of resolving the longitudinal beam distribution with sub-pico-

second accuracy. A great deal of effort went to adapt this device for our partic-

ular needs namely to study the longitudinal phase space of unstable beams.
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One of the significant ideas there was to utilize a combined running of the

streak camera and the instability signal detector that have conveniently com-

plimented for the disadvantages each had for single beam longitudinal diag-

nostics. Another major step was to properly interface all the hardware

including the streak camera to the SLC control system which provided the

possibility of getting large amounts of data and allowed looking at rather

small effects covered by a substantial noise component.

Having built the appropriate hardware we were able to carry out many

experiments that gave us more understanding of the saw-tooth instability, the

initial appearance of which in the new SLC vacuum chambers was a complete

mystery. In particular, we were able to answer two important questions

i) what exactly was the instability doing to the beam and ii) what was the

effect of the instability on the SLC performance. Specifically, on the first ques-

tion we have established that the instability was creating a quadrupole or a

sextupole-like structure in the beam phase space. Moreover, we were able to

quantitatively describe this structure in spite of the fact that it usually

included only a few percent of beam particles. On the second question, by cor-

relating the instability signal at extraction to the BPM readings downstream

of the damping rings we have shown that the instability results in a signifi-

cant pulse-to-pulse jitter in transverse beam trajectories. This effect is impor-

tant for the SLC and even more so for the future linear colliders since the

transverse jitter effectively decreases the luminosity.

We have also performed some experiments measuring either driven or self

excited response of unstable beams. Some of the instability features we uncov-

ered were quite surprising including bursting behavior, mode switching, pecu-

liar shapes in the phase of the driven response to name a few. While some of

these features are still not fully understood we have documented them with a

hope of a better theoretical explanation yet to come.

Finally, we have also made an effort to characterize the impedance of the

vacuum chamber which is crucial for a quantitative explanation of the insta-



CHAPTER6. SUMMARY AND OUTLOOK 160

bility phenomenon. We have performed a synchronous phase measurement

that provided a loss factor estimate in agreement with the damping ring wake

function model [50]. Using an alternative method, we have estimated some

impedance parameters by fitting the low current streak camera beam profiles

with a Haissinski solution. This again have agreed quite well with the wake

function model.

There are, however, some experiments that we were unable to perform due

to lack of hardware, machine time or other resources. Some of these include

taking a movie of the instability development with fast dual sweep streak

camera. Another one would be performing more detailed measurements of the

driven beam response above the instability threshold that would include a

bidirectional frequency sweep and possibly parallel streak camera data tak-

ing. A more practically oriented experiment would be an attempt to either

damp or compensate the instability through some kind of a feedback system.

An active element for such a system could be either a damping ring RF

cavity [75] or a bunch compressor in the extraction line.

It is our hope that some of these experiments will be performed in future.

And we also hope that the original hardware and techniques described in this

thesis will be beneficial for some other experiments beyond the SLC.

2.0 Theory and simulations

Several analytical results regarding the instability have been also pre-

sented in this thesis. We have offered a possible explanation of the sideband

asymmetry seen in the BPM signal spectra from unstable bunches. The idea of

the asymmetry being due to the higher Fourier harmonics in particle trajecto-

ries is quite simple. However, it has remarkably provided us with a deeper

insight on the physics of instability and its possible connection to the broken

symmetry problem.

In a separate derivation we have looked at the instability threshold. Based

on the linearized Vlasov equation analysis we have shown that many of the
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frequently mentioned criteria for the onset of instability are in fact flawed and

they do not work for every impedance. We have offered an alternative method

that (within limits of some approximations) gives a conservative lower bound

for the threshold of the microwave instability.

Of course, our analytical results on the instability threshold have only

briefly touched the linear theory of the phenomenon. And although there is

still some confusion even within the linear theory it is our opinion that the

real challenge is to understand the nonlinear aspects of the instability. For

example, the questions like why the instability saturates, what defines the

saturation level, what is the physics behind the bursting behavior or the mode

switching still do not have definitive answers.

On the other hand, the problem is quite interesting and the research on

this topic is continuing. There are better techniques today to simulate the

instability by direct solving of the Fokker-Planck equation with a self-consis-

tent potential. These techniques are starting to give a quantitative agreement

with experiments [76], [77]. In addition, we now understand better how to

properly simulate the instability using particle tracking [78], the method

which when used during the vacuum chamber design stage has grossly overes-

timated the instability threshold. Finally, there are new ideas on how to qual-

itatively explain the physics of the nonlinear stages of the instability

phenomenon based on simple models that involve only a few radial modes

with tractable dynamics [79]. It is especially important that such methods

calculate the instability saturation level and describe the final stage of the

beam, the quantities that are the most relevant for practical design of a stor-

age ring. In our opinion another beneficial work in the area of theory and sim-

ulations would be a detailed comparison of the results of the different

algorithms that are now used to study single beam dynamics, namely numeri-

cal solutions of the Fokker-Planck equation, Vlasov equation based tech-

niques, and direct particle tracking.
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There is no doubt that such an understanding will come and further theo-

retical work will continue. Indeed, the problem of single bunch stability in

electron rings is quite general and it easily connects to other important prob-

lems of beam physics and beyond. It is our hope that this thesis will serve as a

useful reference point for future activities in this area.
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Appendix A

Single and coupled bunch properties of
instability Appendix A

1.0 Single bunch properties

As it was mentioned many times throughout this thesis we have concluded

that the instability is predominantly single bunch. This conclusion is based on

the following experimental observations.

1. The instability occurs with either one or two bunches stored in the ring. The

instability thresholds and mode frequencies in both cases are close.

2. Instability sidebands as seen by a spectrum analyzer do not alternate in

magnitude from even to odd rotation harmonics.

3. Contrary to the single bunch instability signal, the signal derived from two

bunches does not correlate with the bunch length or trajectory in the linac

downstream.

In addition, there are no obvious mechanisms that would lead to non-triv-

ial coupling between the bunches that significantly affects their internal

structure. Damping rings have, of course, some long range wakefields that are

mainly due to the RF and Π-mode cavities. However, the frequency contents of

these wakes is much lower than the inverse bunch length ωhigh-Q<<c/σ. There

is another possible mechanism, specifically bunches interacting through the

RF system. Yet, we have looked extensively and found no evidence of instabil-

ity signals in many parts of the damping ring RF system.
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Based on the arguments above we would not expect to see any coupling

between the two unstable bunches stored simultaneously in the ring. How-

ever, having built diagnostics that separates the instability signals coming

from the two bunches, we were tempted to check this experimentally. The

results of these experiments were quite surprising, and they will be described

in the next section.

2.0 Coupled bunch experiment

For this experiment we used the detector shown in Figure 26 except that

we utilized both ports of the RF switch terminating them with identical detec-

tor-filter-amplifier circuits. For the most recent version of this experiment

(February, 1998) the outputs of the amplifiers (rather two channels of one

amplifier) were subsequently connected to the two channels of the Tektronix

TDS 460A oscilloscope. The RF switch was gated with a 50% duty cycle gate

with its timing adjusted as described in Section 5.3.3 of Chapter 3. In addi-

tion to checking with the spectrum analyzer that both ports produce single

bunch signal we have also checked that the cross-talk in the amplifier was

negligible. Due to the high memory depth of the TDS 460A oscilloscope we

were able to record 120,000 point 12 ms long traces of the instability signals

for both bunches. This, in turn, allowed comparison of both the envelopes and

the relative phases of the instability signals from two bunches stored.

The experiment was performed in the positron ring at VRF=790 kV (SCP

readout). The total of 137 traces were recorded with the average current of

N~2.5×1010 ppb and significant (13%) current jitter. The instability frequency

was about 160 kHz.

Samples of the data obtained in this experiment are illustrated in

Figure 64. Left and right halves of the figure represent two different injection

cycles. The following explanation refers to either injection cycle. The top trace

shows the instability signal for the bunch that gets extracted at t~11 ms (the

second transient). The middle trace shows the instability signal for the other
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bunch stored in the ring. That bunch was injected at t~2.2 ms (the first tran-

sient). In addition, the data shown on all the plots that occur before the first

transient or after the second transient belong to previous and subsequent

injection cycles respectively.

Several conclusions can be made from the data presented. First of all, the

top traces for the two injection cycles seem to indicate that the occurrence of

the bursts is not locked to the injection/extraction. Second, the comparison of

the top and bottom traces for each store shows some correlation between the

instability signal envelopes for the two bunches; they seem to burst at roughly

the same time. Finally, to check how the instability signals of the two bunches

relate to each other on a finer timescale, we have calculated the linear correla-

tion coefficient between the two signals in a 100 µs sliding window. These cor-

relation coefficients are shown on the bottom plots for both stores. There is a

significant difference between the two injection cycles. For the left one the cor-

relation coefficient is large and negative towards the end of the store indicat-

ing that the bunches are locked in phase and oscillate π out of phase. For the

FIGURE 64. Data samples for the coupled bunch experiment.
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other store (shown to the right) the correlation coefficient is less significant

and it varies between negative and positive values. In this case there is no

fixed phase relationship between the bunches. The same is true for the portion

of the previous injection cycle (data prior to the first transient on the middle

trace in the right part of Figure 64). Note that in that case the envelope

shapes are quite different. This is amazing since (due to the way the gate for

the RF switch was derived) the signal in the beginning of the middle trace and

the one in the center of the top trace correspond to the same bunch.

Of course, two stores do not permit making general conclusions. Looking at

all of the stores recorded we have established that roughly one half of them

had the envelopes of the two bunches correlated. The other half consisted of

either uncorrelated but bursting envelopes or alternatively roughly constant

amplitude ones. Within the first half about 60% of the stores had fixed phase

relationship between the bunches on a finer timescale and the bunches were

oscillating π out of phase. It is interesting that in many cases with no phase

relationship between the bunches there was a fraction of a kHz to a few kHz

instability frequency difference between the two bunches, presumably due to

different charges. However, there were also stores with seemingly the same

instability frequency for both bunches and yet they did not have any fine scale

correlation.

We should note that the numbers above are approximate and they depend

on the definition of correlation used. Furthermore, we have observed some-

what different behavior in the previous and less sophisticated version of this

experiment (several hundred stores taken on July 96). For that batch of data

there was no significant correlation between the envelopes. However, when

the bursts happened to coincide the bunches oscillated mostly in phase,

although there were a few cases with π phase shift too.
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3.0 Summary

Available evidence about the cross-talk between the bunches is inconclu-

sive. The reasons why the correlation is present in some cases and not in the

others are unknown. Nevertheless we can definitely state the following. For

significant portion of injection cycles we observed some coupling between the

two unstable beams. It showed up in either or both correlated envelopes or the

fixed phase relation between the instability signals.

Note, that this statement does not necessarily contradict the single bunch

evidence from Section 1.0. Indeed, for example the spectrum analyzer side-

bands are averaged over many injection cycles. Since only some of these cycles

have the bunches at fixed phase relationship with respect to each other (dur-

ing some fraction of the store) the alternating sideband pattern washes out.

Even simpler consideration applies to the linac correlation experiment. The

strongest argument in favor of a single bunch phenomenon is the one about

the thresholds being close. But examining our coupled bunch evidence closely

we find that all the conclusions about the cross-talk apply when the instability

is fully developed. There seems to be little or no cross-talk for the lower cur-

rent stores when the instability is not bursting. In addition, due to the noise

floor of our diagnostics we cannot say whether bunches are related in phase

when one of them is just becoming unstable. If they are unrelated than it is

not surprising that the threshold depends on the single bunch rather than the

total current stored.

To conclude, we believe that the instability is fairly complex especially in

its nonlinear stages. Our experimental evidence indicates that the instability

is predominantly single bunch, but there is some weak coupling between the

bunches that often shows up when the instability is fully developed. At this

point the cause of this coupling is unclear but we believe that it is most likely

due to some subtle feedback mechanism through the RF system.
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Appendix B

Linearized Vlasov equation dispersion
relation Appendix B

In this Appendix we derive the linearized Vlasov equation dispersion rela-

tion. In our derivation we mainly follow [47]. For clarity we will consider the

stability of the Haissinski solution with the density which

we assume to be normalized to 1. Other distribution functions can be treated

similarly. We start with the Vlasov equation in the form

, (B.1)

where the Hamiltonian is defined by

(B.2)

and the variables are normalized as given by EQ 2.15.

Wake-related contribution to the potential well is

, (B.3)

where I is the intensity and S(x) is the integrated wake defined by EQ 2.30,

EQ 2.46 and EQ 2.47.

A distribution function is represented in the form , where the

perturbation is considered small . Substituting this into EQ B.1 gives

the linearized Vlasov equation

ρH f H x' p',( ) p'd∫≡

τ∂
∂f H x p f, ,( ) f{ , }+ 0=

H x p f, ,( ) p2

2
------ x2

2
------ UW x f,( )+ +=

UW x f,( ) I x'S x x'–( ) p' f x' p' τ, ,( )d∫d
x
∫=

f f H f 1+=

f 1<<f H
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(B.4)

where the Hamiltonians are defined by EQ B.2 and EQ B.3.

Switching to action-angle variables J and ϕ defined so that the Hamilto-

nian of the Haissinski solution depends only on action

gives the linearized Vlasov equation in the following form

. (B.5)

In this equation and, as always, . Note, that in new

canonical variables the density ρH is still normalized to 1

. (B.6)

Looking for harmonically varying solutions of EQ B.5

(B.7)

and introducing Fourier transform of UW

(B.8)

 we obtain the following relation

. (B.9)

Due to EQ B.7 and EQ B.8 the right hand side of EQ B.9 couples all the

azimuthal modes together. An infinite system of equations EQ B.9 written for

every azimuthal mode constitutes the dispersion relation of the linearized

Vlasov equation. As mentioned in Section 5.2.2 of Chapter 2 there are

detailed algorithms for truncation and approximate numerical solution of this

system (see [38], [41]).

τ∂
∂f 1 H x p f H, ,( ) f 1{ , } H x p f 1, ,( ) f H{ , }+ + 0=

HH x p f H, ,( ) HH J( )≡

τ∂
∂f 1 ω J( ) ϕ∂

∂f 1+
Jd

dρH

ϕ∂
∂ UW x J ϕ,( ) f, 1( )=

ω J( )
Jd

dHH≡ ϕ̇ ω J( )≡

ρH J( ) ϕd Jd∫ 2π ρH J( ) Jd∫ 1= =

f 1 J ϕ τ, ,( ) f m
˜ J( )eiΩτ imϕ–

m
∑=

Ũm J( ) 1
2π
------ eimϕ iΩ– τUW x J ϕ,( ) f, 1 J ϕ τ, ,( )( ) ϕd∫≡

ω J( ) Ω m⁄–( ) f m
˜ J( )

Jd

dρHŨm J( )=
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We should note that deriving EQ B.9 we neglected the m=0 monopole

mode which is usually done in standard Vlasov equation analysis. The physics

and potential single bunch instability associated with the monopole mode is

covered in [73].

One of the difficulties of dealing with the dispersion relation above is that

finding requires calculating double integrals of the type

(see EQ B.3). Such integration is difficult

to perform numerically let alone to evaluate analytically. To get around this

we integrate EQ 2.36 to get the following relation between the integrated

wake and impedance (that we have also seen used in [52])

, (B.10)

where the factor A in the denominator comes from our normalization of inte-

grated wake EQ 2.47. This assumes that the integrand does not have a pole at

zero which is consistent with EQ 2.41 and EQ 2.42. Due to the exponential

dependence on x EQ B.10 allows factorization of those double integrals in .

After some manipulations we can write the dispersion relation of the lin-

earized Vlasov equation in the form

. (B.11)

The kernel Rm,n is given by

, (B.12)

where the normalized impedance

(B.13)

is defined in terms of dimensionless frequency

, (B.14)

Ũm

eim ϕ ϕ'–( )S x J ϕ,( ) x J ϕ',( )–( ) ϕd ϕ'd∫

S x( ) c
2πiA
------------- Z ω( )

ω
-------------e

iωxσ0 c⁄
ωd∫–=

Ũm

Ω
m
----- f m

˜ J( ) ω J( ) f m
˜ J( ) I

Jd

dρH Rm n, J J',( ) f n
˜ J'( ) J',d∫

n 1=

∞

∑+= m 1 2 …, ,=

Rm n, J J',( ) i–
Z ξ( )

ξ
------------Cm ξ J,( )Cn

* ξ J',( ) ξd∫≡

Z ξ( ) cZ ω ξ( )( ) A⁄≡

ξ ωσ0 c⁄≡
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and the factors Cm are defined by

. (B.15)

Finally, as noted in [47], once the Haissinski solution is found the trajec-

tory x(J,ϕ) (which can be also thought of as a canonical transformation) can be

calculated by perturbation theory. Subsequently the coefficients Cm are found

analytically provided that the higher harmonics of trajectories are small. Spe-

cifically, representing the collective potential as a series

, (B.16)

where the trajectory can be written in terms of amplitude a and

phase (e.g. [72])

, (B.17)

or, equivalently, in terms of J and ϕ

. (B.18)

Note, that x is now defined with respect to the intensity dependent minimum

of the potential well rather than the center of the RF bucket.

It is clear that substituting this trajectory EQ B.18 into EQ B.15 and Tay-

lor expanding with respect to the terms containing q3 allows writing Cm as a

sum of Bessel functions with the argument .

Cm ξ J,( ) 1
2π
------ eimϕ iξx J ϕ,( )+ ϕd∫≡

UH x( )
ω0

2x2

2
-------------

qnxn

n
------------

n 3=

∞

∑+=

ω0 ω 0( )≡

x a ϕ,( ) a ϕcos
q3a2

6ω0
2

------------ 3– 2ϕcos+( ) O a3( )+ +=

x J ϕ,( ) 2J
ω0
------- ϕcos

q3

ω0
3

------ 1–
1
3
--- 2ϕcos+ 

  J O J3 2⁄( )+ +=

ξ 2J ω0⁄
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