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PREFACE

The beam-beam interaction has been and continues to be a performance
limiting effect in colliding beam systems. Electron-positron collisions
are typically more than a factor of five lower in luminosity than ex-
pectations from beam design and with present understanding, extrapolations
to future systems are not satisfactory. Prediction and optimized design
are even more uncertain for proton-proton and proton-antiproton future
systems with the ISR at CERN being the sole precedent. The very health of
the high energy physics program in the next decades depends to a significant
extent on our ability to unravel the mechanisms of this phenomenon and to
control them.

To this end, a symposium was held in March 1979 on nonlinear dynamics,
concentrating on the beam-beam interaction. The symposium took place at
Brookhaven National Laboratory and the proceedings were issued as part of
the conference proceedings of the American Institute of Physics (Number 57).
It was felt at that time that the 1979 symposium would be the first of a set
of meetings which would be needed. This view has not changed and a second
symposium is being considered for sometime late in 1980 or in 1981.

However, since last year, there have been a variety of studies, in-
cluding a plasma model of e*te- collisions, models emphasizing the effects
of "noise" and a model involving a diffusion-damping equilibrium. Various
nonlinear analyses of the beam-beam systems have also been performed. And
finally an entirely new form of beam-beam configuration has been proposed
and studied - the very strong single pass collider.

In view of this extensive and broad effort, there was organized an
informal seminar to bring many of these ideas into an open forum. This
seminar was held at SLAC on May 22 and 23, 1980. Contributors, totaling
seventeen, came from universities and national laboratories across the
United States. These proceedings represent a record of the seminar. The
written versions of the papers presented were submitted by the authors and
are included here without editing. It is hoped that this compilation will
be of value to both beginning and established physicists in this very in-
teresting field of accelerator research.

M. Month
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A SIMULATION STUDY OF THE
BEAM-BEAM INTERACTION AT

SPEAR

Jeffrey Tennyson
Dept. of Electrical Engineering
and Computer Sciences

University of California
Berkeley CA 94720

ABSTRACT

A two dimensional simulation study of the beam-beam interaction at
SPEAR indicates that quantum fluctuations affecting the horizontal

betatron oscillation play a critical role in the vertical beam blowup.

INTRODUCTION

The luminosity at SPEAR and other electron-positron colliding
beam machines is limited by an instability in the betatron oscillation
which causes beaﬁ expansion and particle loss when the beam densities
exceed a certain critical level. This instability is excited via some
presently unexplained mechanism by the beam-beam interaction, i.e., the
electromagnetic force felt by a particle as it passes through a bunch of

the opposing beam. The interaction results in an almost instantaneous



change in the transverse velocity of the'particle (see Fig. 1), and a
corresponding displacement in the transverse phase space (see Fig. 2).
This displacement is quite large in comparison to that produced by the
accumulated quantum fluctuations over thg period between intersections.

A single beam-beamikick at t?pica] operating densities (tune shift

g =.02) produces a displacement that is approximately twenty times as
large as the corresponding fluctuation displacement at 2 GeV. 1f these
kicks were uncorrelated, they would result in a diffusion that would
produce beam blowup at tune shifts as low as £=.001. The fact that
blowup does not occur at such low densities is explained by nonlinear
stability theory which predicts a very high degree of correlation at tune
shifts up to about £=.16 (for a one dimensional model see ref. [1]).

In fact, it is far more difficult in this case to explain the small
amount of correlation breakdown at the beam-beam limit than it is to
explain the correlations themselves.

In seeking to identify the source of the correlation break-
down, it is helpful to note that the potential mechanisms can be divided
into two general categories.

In the first category are those mechanisms which involve
“intrinsic'" stochasticity. (See ref. [2] for details.) The beam-beam
interaction provides a nonlinear coupling between the otherwise fairly
independent betatron oscillations and the longitudinal motion. If it is
strong enough, this coupling can destroy the individual energy invariants
of the non-radiating oscillators. Energy is then exchanged between them
in a deterministic, but statistically ''random' way. The leakage of long-

itudinal energy into the transverse motion may then result in beam blowup



or particle loss. A specific example of this type of breakdown, the over-
la&\of synchro-betatron resonances, has been studies in detail by lzrailev
(ref. [1]) who has shown that under the proper conditions, synchrotron
modulation of the beam-beam force can cause significant decorrelation at
tune shifts as low és £==.Oh;

The second general source of correlation breakdown is exter-
nally generated noise. A truly random noise, due for example to quantum
fluctuations, can conceivably decorrelate the beam-beam force via phase
mixing and amplitude diffusion. Although these processes are not completely
understood at the present time, preliminary results from the simulation
study described below indicate that quantum fluctuations can also produce
beam blowup at &= .04.

Although this study in no way invalidates the conclusions of
Izrailev concerning the role of resonance overlap in the beam-beam limit,
it does present an alternative explanation based on noise generated decor-
relations. If it does, in fact, turn out that quantum fluctuations play
a major role in the beam-beam limit at SPEAR, past attempts to extra-
polate beam-beam effects from electron colliders to proton colliders
will have to be serfously reconsidered. Section |l of this report des-
cribes the simulation model in detail. Section lll summarizes the preiimin-

ary results and Section 1V offers some tentative conclusions.
THE SIMULATION

The computer simulation uses a simple two dimensional weak-
strong beam model. A set of difference equations transports the particles

of the weak beam through and between encounters with bunches of the strong



beam. The effects represented in both the vertical and horizontal motions
are,. (1) linear rotation between intersections (2) radiation damping
(3) quantum fluctuations and (4) the beam-beam interaction. The indi-
vidual difference equations are shown in detail below and the Fortran

coded main loop is reproduced in Fig. 3.

Linean Rotation.

X, = xocos(mx) + iosin(mx) (1)

i1 = -xosin(mx) + iocos(wx) (2)

v, = Yocos(wy) + QOsin(wy) (3)

91 = ‘YOSin(wy) + QOcos(wy) . (4)
Radiation Damping.

X, = x; = x,CD_ (5)

Yo = ¥y T V4CD (6)

X = xp* KD cos (2R_) (7)
>’<3 = x, + KD sin(2mR ) (8)
Y3 = vyt K/B;COS(ZﬂRy) (9)
;3 = 92 + K/B;sin(ZvRy) (10)



Beam-Beam Interaction.

L ] - ]
X, = x, - & hwx (11)
4 3. 7x 73 (1+x§/5.11)2
Yy = Vs - tgyslen(-xi/2)] —5— (12)
(1 +y3/2)
where

W o wy horizontal and vertical betatron frequencies.
c twice the inverse of the damping time.
K the average integrated phase displacement due to

quantum fluctuations between intersections.

R , R two random numbers between 0 and 1; reset with
each iteration of the mapping.

DX , D artificial diffusion attenuation: allows for a
4 variation of the damping time and fluctuation
level of each oscillator in such a way that the
nonintersecting beam size remains constant.

E , & the linear tune shifts.

The variables x,i,y,& are dimensionless; x and y are normal-
ized to the RMS widths of the strong beam o and Gy’ while x and 9 are nor-
malized to o /B and o /8 (B and B are the beta functions at the inter-

x' Tx y oy “x Y
action points). The factors C and K are related by the requirement that

the nonintersecting weak beam size be y =X =1. Thus,
rms rms

K = v2C . (13)



The above mapping is extremely general. It is applicable to any electron-
posktron storage ringwith flat beams. The only constant specific to a parti-

cular machine is the proportionality constant between C and E3

8.'85 x107°

3
RN E (14)

where R is the effective radiation radius of the machine in meters, N is
the number of bunches and E is the energy in GeV.

In Eq. (12) the vertical beam-beam interaction is modulated
by the horizontal motion, but the corresponding dependence in the hori-
zontal interaction has been omitted. The basis for this approximation is
intuitively apparent from Fig. 1. The large aspect ratio of the beam,
30/1, accentuates the x dependence in the vertical kick and suppresses the
y dependence in the horizontal kick. Since the horizontal energy and
energy fluctuations are both about 100 times as large as their vertical
counterparts, a small exchange of energy between the vertical and hori-
zontal motion will effect the former far more than the latter. Although
the coupling between the x and y motion does not conserve energy, the non-
radiative mapping is measure preserving. This is very important because
the kicks from the beam-beam interaction would otherwise result in a false
dissipation or accretion of energy. From this point of view, the coupling
of vertical motion to the horizontal appears as a simple time dependence.
Strictly speaking, therefore, the above equations represent two ane dimen-
sional systems with time dependence, the time.dependence of vertical motion

being derived in part from the horizontal motion.



The two denominators in Eqs. (11) and (12) provide the non-
linearity and depend on the shape of the strong beam. They were chosen
to approximate the on-axis electric fields of a simple model beam. For the

horizontal force, the model beam was defined by the charge distribution

2
o® /2 ly| <.03

p(x,y)

= 0 ly| > .03

The potential along the x-axis was calculated numerically and fitted with
a Lorentzian. The resulting forces are compared in Fig. 4a. The Lorent-
zian gives a force that is approximately 50% less than the ''true'' force
at x==50x. But since the horizontal beam rarely shows a blowup greater
than 20x, this inaccuracy is thought to be acceptab]ei

For the vertical force, the charge distribution was given by
a slab model,
e-y2/2

ply) = °s (for all x)

The potential was numerically calculated for this distribution and fitted
with a hyperbola. The corresponding forces are compared in Fig. bb. Since
the ratio of horizontal width to vertical width is large, ~30 in SPEAR and
PETRA, this approximation is thought to be good for y <100y. The use of

a simple Gaussian in Eq. (12) to represent the x dependence is thought to
be the least satisfactory element in this approximation. Geheral]y speak-
ing, the model underestimates the beam-beam force at large x and overesti-

mates at large vy.
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Whether a highly accurate expression for the beam-beam force
is_really necessary in this simulation will not be known until the beam-
beam effect itself is understood. The approximations made above have
been designed to streamline the mapping as much as possible, and at
the same time to i&clude all of the major ingredients usually associ-

ated with correlation breakdown.
SIMULATION RESULTS

The weak beam is composed of 64 particles whose initial condi-
tions represent a normalized height and width equal to one. Each particle
is run through the mapping n times, where n is equivalent to three damping
times. After each of ten equally spaced intervals, the rms dimensions of
the beam are calculated and recorded. The last three values are expected
to represent the steady state beam size and are.averaéed to give the final
dimensions for that run. The results of a preliminary study of this map-

ping are described here in five parts.
A. Nonlinearity

The effective tunes M and Vy are plotted against amplitude in
Fig. 5. In Fig. 5a, the horizontal tune v decreases as the horizontal
amplitude A increases (vx is independent of the vertical amplitude Ay).
The vertical tune vy, which is dependent on both Ax and>Ay, is shown in
Fig. 5b as a function of Ay when Ax==0. Each curve represents a different
linear tune shift gy. In Fig. 5c¢c Vy is again plotted against Ay’ but this
time Ey is fixed at gy==.06 and the different curves represent different
values of Ax' These plots were made empirically by analyzing surface of

section plots of the conservative x and y motions.



B. Tune Diagram

- Using Fig. 5, it is possible to estimate the distribution of
weak beam particles in frequency space. This distribution is shown in
Fig. 6 for 5y'=.01-t,.£x=.02 0\/=5.18 and -Qx=5.2h (Qy and Qx are the num- .
ber of betatron oscillations in one revolution for the non-intersecting
beams). Because of the large aspect ratio, most of the particles in the
beam are confined to a fairlf narrow band in v The background lines
indicate the locations of the most important parametric and coupling re-

sonances in this frequency locale.
C. Beam Size Dependence on Energy and the Tune Shift

In Fig. 7, the beam height is plotted against tune shift
(£==£x==£y) for six different energies. (Energy enters the mapping via
Eqs. (13) and (14).) At large energies, Enk4 GeV, blowup begins at about
£=.06 and increases graudally with £. As the energy drops, blowup occurs
earlier, and rises more rapidly with £. Because the damping time is pro-
portional to E_3, energies below 1 GeV have not been run due to the large
amount of computer time required. The 1.1 GeV curve shown here required
3.20 X108 iterations of the mapping described in Sec. .

Since these beam heights are normalized to the strong beam,
the actual beam heights differ from these by a factor specific to each
energy curve. It should also be pointed out that the rmé values shown
take into account all particles including a few which are at very large
amplitudes. These particular particles seem to form a non-Gaussian ''tail'
which extends far beyond the main body of the beam. Their inclusion into

the rms value tends to inflate the beam and lower the reproducibility of
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each run. In most of the plots shown here, each run was computed at least
twice and the results were averaged.

The beam widths have not been plotted because none of these

runs have demonstrated significant horizontal blowup.
D. Beam Size Dependence on Radiation Effects

When the vertical fluctuations (Eqs. (9) and (10)) are removed
from the mapping, the behavior exhibited in Fig. 7 remains essentially un-
changed.

On the other hand, when the horizontal fluctuations are removed
instead (Dx==0), the blowup completely disappears. This surprising result
is shown in Fig. 8. The vertical tune shift Ey is held fixed at £y==.06
with the energy at 2.2 GeV. The four curves represent four different hori-
zontal tune shifts £x==0, .04, .06, .08. The factor D%, which is an atten-
uation factor for the horizontal diffusion due to quantum fluctuations, is
varied from zero to one. Dx =1 corresponds to the diffusion rate in the
actual machine, while DX==0 eliminates all radiation effects in x (both
fluctuations and damping). The variation of Dx does not effect the non-
intersecting (gx==o) beam size, only the rate of which a particle
diffuses from one amplitude to another.

A1l blowup effects disappear if either Dx or éx are equal to
zero. For a fixed non-zero value of Ex, take for example £X==.06, there
is almost no blowup below Dx==.2. Between Dx==.2 and DX==.4, Uy increases
steadily and at values of Dx higher than .4, Uy remains approximately
constant. It appears as if the mechanism for beam blowup has a threshold
at DX==.2 and saturates at Dx= 4. Moreover, this seems to be true for

each of the different gx values.
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How these results depend on Voo Vy’ E, and Ey is not known
atdzhis time.

The dependence of Oy on Ex for Dx:>.h cannot be described as
easily as the-dependence on Dx’ There are fewer data points and the
EX==.06 curve seems out of place with unusually large fluctuations. These
fluctuations indicate that the oy values associated with this curve are
probably inflated by a few particles at very large amplitudes. It is
possible that the same type of threshold and saturation phenomena seen for
the Dx dependence exist as well in the £x dependence. A detailed study of
the Ex dependence is hindered somewhat by the fact that changes in £
effect the frequency space distribution of the beam (Fig. 6). Although
partial compensation can be achieved by varying Q_X to keep the zero ampli-
tude tune fixed (as was done in Fig. 8), it may be impossible with this
model to separate effects associated with the horizontal nonlinearity from
those associated with horizontal nonlinear resonances.

The results shown in Fig. 8 are not understood at present.
That small fluctuations in the horizontal motion can have a substantially
greater effect on the vertical stability than much larger fluctuations in .
the vertical motion itself, is difficult to understand. Simple phase mix-

ing arguments have so far proved inadequate.
E. Stochasticity Border

In the absence of radiation effects (E=0) the beam blowup

is determined by the resonance overlap condition (ref. [2]). Since this

model does not include synchrotron effects, resonance overlap occurs at
fairly high tune shifts. The rms beam size for the non-radiative mapping

is shown in Fig. 9 as a function of tune shift. The horizontal motion goes
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unstable at €X2>.2. The vertical motion, with a stable but substantial
horjizontal tune shift £x==.2, does not become unstable until Ey==.3.

Both values are almost an order of magnitude above those exhibiting beam
blowup in the radiative case. |t is therefore quite unlikely that reson-
ance overlap plays a significant role in the blowup phenomena seen in this

simulation.
CONCLUSION

A two dimensional simulation that includes both the horizontal
oscillation and radiation effects (but not synchrotron modulation), is cap-
able of reproducing many of the experimentally observed characteristics of
the beam-beam interaction. The simulation shows a vertical blowup which
occurs somewhere between £=.02 and £= .06, where £=£x=£y. The blowup
depends on energy, appearing sooner and growing fasteé with £ when the
energy is low. The expanded beam usually shows a substantial tail consist-
ing of only a few particles extending well beyond the main body of the beam.

The effect does not depend on fluctuations in the vertical os-
cillation but disappears if either the horizontal fluctuations or the hori-
zontal tune shift go to zero. Apparently the horizontal fluctuations and
tune shift can '"'turn on' the blowup if they both exceed certain threshold
values, but the mechanism seems to saturate immediately and above-threshold
fluctuation levels have little influence on beam size. ?inally, resonance
overlap occurs for this model at £=.2 to .3. It is thought to play a

negligible role in the blowup phenomena observed here.
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- BEAM-BEAM FORCE ) STRONG BEAM
A VT T 17

WEAK BEAM

FI1G. 1 BEAM-BEAM INTERACTION

In the weak-stfong beam approximation, the strong beam is treated

as a continuous charge-current distribution, while the weak beam

is represented by descrete non-interacting particles. For flat e -e
beams, the vertical beam-beam force depends on the horizontal position

of the individual particles and tends to compress the weak beam.

X
NONL INEAR—,
SECTION KICKS FROM THE
BEAM-BEAM INTERACT ION
X
ROTAT ION
LINEAR ,///
SECTION

FIG. 2 PHASE SPACE ORBITS

The circular phase space orbits characterizing linear motion are
distorted by the beam-beam interaction. The kicks, which always
advance the phase, turn the circular sections of the invariant

tori into ellipses which rotate at the betatron frequency.



FIG. 3 PARTIAL PROGRAM LISTING

FR1 and FR2 are the unperturbed tunes (usually 5.18 and 5.24),
TS1 and TS2 are the linear tune shifts (ususally between .01 and .1),

EO is the energy in GeV, nb the number of bunches, and ranf() a

[~

set random number seed

q=ranset (seed)

random number between zero and one.

radial frequencies of betatron and synchrotron oscillation

wr=tuwopiXfr2/nb
wy=twopixfri/nb

linear rotation elements

csrecos (wr)
snresin(wr)
csv=cos (uv)
snves in(wy)

damping time (twice the inverse of)

c2=6.940-86%e0%¥3%d2/nb

cl=c2¥dl/d2

quantum fluctuation jump

ak2=sqri (2.%c2)
akl=sqrt(2.%cl)

beam-beam interaction strength

bsle=tsixtwopin2.
bs2=ts2%twop i¥2.

set initial conditions

do 118 i=1,8
do 118 j=1,8
1=(i~1)%8+;
pll, 1) =i%, 125
p(1,2)=;%,125
v(l,1)=0

118 v(1,2)~0

15

c main loop starts here

nn*n/10

do 460 ic=1,10
do 355 jc=1,nn
i=(ic=1)*nn+jc
do 350 j=],64

=} this loop is vectorized
¢ radial mapping

hld(j)=p(j,2)
p(j.2)=p(j.2) *csr+ul j, 2) Xsnr
v(j.2)==nld(j)*snr+u(]},2)*csr

hlid(j)=ranf ()%twopi
P(j.2)=p(j,2)+ak2*cos(hld(;)})
v(j,2)=v(;,2)+ak2%sin(hld(}))
*=v( j.2)%c2

c rodial beam-beam intersection

Lo v(j.2)=u(j,2)~bs2Xp(j,2)/
KL +(p(j.2)/2,26)%%2) %x2

c vertical mapping

hld()=p(j, 1)
pCi, 1) =p(j, 1)kcsu+u( j, 1) xsnv
v(j, D ==hid(j)¥snvtu(j, 1)kesy

hld(j)=ranf () %twopi

pCi, 1) =p(j, 1) +ak Ixcos(hld(;))
V0. Deuj, D +akixsinthid()))
*=0(j, 1)%cl

c vertical beam—beam interaction
vij, D=u(j, 1)-bsixp(j, 1)%
woxp(-(p(j,2)%%2)/2,)/
¥sqri (1.+.5%p (, 1)%K2)

358 continue
355 continue
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FIG. 4a HORIZONTAL BEAM-BEAM FORCE
a) numerical result
b) model result
S ——
a
b
X

FIG. 4b VERTICAL BEAM-BEAM FORCE

a) numerical result

b) model result
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FI1G. 5a HORIZONTAL TUNE VS. HORIZONTAL AMPLITUDE
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FlG. 5b VERTICAL TUNE VS. VERTICAL AMPLITUDE
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FI1G. 5¢c VERTICAL TUNE VS. VERTICAL AMPLITUDE
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FIG. 6 TUNE DIAGRAM

The amplitude contours (dashed lines) for the weak beam are shown in fre-

quency space. The non-intersecting tunes are QX==5.2b and Qy==5.18, and
the tune shifts are gx:=gy =.06. This plot represents the simulation

model and not necessarily the real beam.
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The beam-beam luminosity limitation in electron-positron colliding rings

low.

Stephen Peggs and Richard Talman

Newman Laboratory of Nuclear Studies, Cornell University, Ithaca,

New York 14853

To account for observed luminosity 1imitations.in electron-
positron colliding rings we identify the leading effects, solve
the non-linear single particle equation exactly, obtain the strong
beam-strong beam equilibrium by numerical simulation, calculate

the luminosity, and identify regions of bad beam lifetime.
PACS numbers: 29.20.Dh, 02.60.+y

The Tuminosity L of e+—e_ colliding rings has been disappointingly

For sufficiently large beam current I, the luminosity fails to

increase proportional to 12, as it would if the beam shapes remained

constant. Also, beyond a current Imax’ the beam lifetimes become

unacceptably short. These effects are due to the "beam-beam" interaction;

that is, the electrostatic and magnetostatic forces on the particles in one
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beam as they pass through the other. 1In this paper we identify the features

of ths motion leading to the observed behavior and we describe the solution

of the equations governing the situation. The results conform with observa-

tions. We also give machine pqrameters expected to yield good and bad
luminosity. |

This beam-beam interaction has attracted rather broad interest.] A
reason for this is that it suggests the possibility of experimental investiga-
tion of the onset of stochastic behavior in classical mechanics. Questions
first raised in celestial mechanics2 can, it is hoped, be studied in
accelerators. But the presence of strong fluctuations and damping in electron
rings (the only case considered here) reduces the characteristic number of

revolutions to, say, 104 instead of, say, 10]0 relevant for protons. As a

result, recent rigorous mathematical studies of stabi]ity3 do not enter our

discussion. |
Our theoretical investigations have proceeded at three levels:

a) Analytic solution of the single particle equation of motion.

b) Tracking single particles in phase space.

c) Numerical simulation of the entire strong beam-strong beam situation,
including self-consistent relaxation to equilibrium in both transverse
directions.

At Tevel (a) it is possible to identify the important resonances controlling

the situation and to estimate beam currents at which they 5ecome important.

For more quantitative comparison with observation it is necessary to proceed

to level (c). Simulations are capable of producing a wealth of detailed

prediction, but to provide confidence in these results it is almost obligatory

to develop parallel intuitive understanding at levels (a) and (b).
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The single particle equation of motion of a particle in the presence
of the other beam is a non-linear equation potentially exhibiting arbitrarily
rmany resonances. We give an exact analytical solution of this equation
accounting for all resonances. (It is hoped that this method can usefully
be applied to other non-linear oscillatory systems.) Yo the vertical "betatron"
coordinate on the m'th passage satisﬁ'es4

Ym+1

- Zym cos wyo R/ f(xm,ym) . (1)
At level (a) we assume the horizontal coordinate X is given inexorably by

X, = a cos(mwXO +¢) . (2)

wyo/Zﬂ is called the vertical tune Vy0 and similarly for x. f(xm,ym) gives
the vertical angular deflection on the m'th crossing. Equation (1) is
equivalent to a more familiar first order difference equation, or mapping,
relating 2 phase space coordinates on successive turns. For Gaussian beam
profiles, x and y are measured in units of oy and oy, the respective standard

deviations. Throughout we assume oy << o, as the beams are usually ribbon-

shaped in actual machines. f is given approximately by5
2
X
m
f(x_,y ) = -4ngysin w ___}_I_m____ e-—z_ (3)
mem M L 1-6)’,,2;

Here &, is the customary vertical "linear tune shift" parameter specifying
the strength of the beam-beam interaction. For small values of Yoo @

leading term in (3) proportional to Yy, can be grouped with the second term

in (1) leading to aitune shift Ey. For sufficiently large values of £y no
real tune exists, corresponding to exponential growth that would occur except
for non-linearity of f (such as a term proportional to ys which causes the

tune to depend on amplitude). But controlled vertical beam growth normally



24

occurs at much lTower values of gv.

Parametric amplification of vertical oscillations can occur through terms
in (3)‘;uch as ymai cosz(mwxo), due to horizontal betatron (or synchrotron)
oscillations. That is, the vertical oscillations are parametrically pumped
by horizontal oscillations in much the way a-garden swfng can be pumped by
the systematic shortening and lengthening of the pendulum length, and hence
the natural frequency.6 We claim that this term and other similar terms are
responsible for the increase in vertical beam size seen at e+e- storage rings
in operation.

We now describe an iterative procedure for solving (1). Assume a double

Fourier series expansion

Yy = aycos(mwy) + ] §=1 a. E;Z(rmwy)zgg(smwxo) + ... (4)
where the sum is extended over all combinations of sin anﬁ cos. The analysis
truncates this series to a finite number of terms. It is not obvious that such
an expansion should exist. Damping would usually, but not always, rule it out
as it remains finite at large m. Empirically, for relevant values of Ey» We
have always succeeded in finding such an expansion. The difference of wy

from w0 is due to the perturbation.

When (4) is substituted into (3) a similar expansion can be made since f
is periodic in mu& and maw, q- The coefficients can be found by finite (fast)
Fourier transform (FFT). The eigenfunctions of the linear dffference operator
on the left side of (1) are linear sinusoids. Expanding the Fourier transforms

of Yo and f into sums of linear sinusoids (all possible sum and difference

frequencies appear) enables the iterative production of new ars‘s from old. A
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stability threshold gmax is reasonably well defined as that value at which
the number of harmonics necessary for convergence proliferates. Allowing
more ﬁarmonics, say 32 instead of 16, or more iterations usually makes little
difference to the threshold. Normally one or two harmonics are especially
large owing to the "resonance denominators"-appearing in the iterative
scheme.

For values of Ev roughly equal to Emax and higher, phase space plots of
the motion become very contorted and orbits of sufficient amplitude no longer
spiral into the origin when damping is turned on. They damp instead to
stable 1imit cycles reminiscent of those of Ref. 6.

Quantitative comparison with observations at the Cornell facility CESR
and other storage rings is possible when other features are incorporated into
the model. We have developed a strong-strong numerical simulation in which
many particles (3100) in each of the two beams are tracked for many turns
(33000) in 6-dimensional phase space around a storage ring with two crossing
points. The forms of the horizontal and vertical force fields are obtained
in the flat beam profile 1imit, consistent with parametric driving of
vertical oscillations by horizontal displacements and not vice versa. Energy
oscillations are included since in CESR there is energy dispersion (n* # 0)
at present. The effects which determine the single beam size, namely
horizontal quantum excitation, vertical coupling and radiation damping, are
included with a beta?ron damping lifetime T of, typically, 1000 turns.

Self-consistent equilibrium distributions of each bunch and its
associated force fields are allowed to develop for ¥ 3T. For a period of 0.3T
one bunch is held rigid while the other relaxes. The development is recorded
in, typically, 300 (turns) x 100 (particles) x 2 (crossing points) instances.

From this history smooth distributions of the horizontal and vertical fields
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of the relaxed bunch are calculated. Then the roles of rigid and relaxing
bunches are reversed. It is possible for a particle to be "lost" if it strikes
a masI\(typica11y set at *10 Oy and #10 oy), and the Tifetime is declared bad

if it is less than (typically) 10 seconds. Otherwise the luminosity is calcu-
lated from the équi]ibrium bunch distributiﬁns which Are usually identical, within
statistics, at small gv values but which may be quite different at high values,
consistent with observations in existing storage rings.

With the calculations which have been described we have surveyed the tune
plane and typical results are shown in Fig. 1. For EV = 0.08, contours of
constant relative luminosity are shown. As used here, EV is the "unrenormalized"
tune shift parameter which would be observed if the beams maintained their
single beam profiles. The measured or "renormalized" tune shift parameter would
be Tess by perhaps a factor of two owing to the increase in beam height. In Fig.
1 some special assumptions have been made for easy comparison with the parametric
oscillator model: n* = 0,and gH is temporarily neg]ected.8 The straight lines
define the resonances associated with instability thresholds of Eq. (1). It
can be seen that the valleys of bad lifetime indicated by shading are
strikingly parallel with these lines. They are centered at slightly Tower vy
as would be expected since the linear tune shift
moves the tune up. . Also the regions of high and low gmax correspond
to the regions of high and lTow lTuminosity respectively. A few of the lines in
Fig. 1 are reasonably strong resonances for Eq. (1) which do not conform well
with the luminosity contours shown. Valleys of bad 1ifetime tend to show up
along them at higher values of EV.

In Fig. 2 a comparison between theory and experiment is shown. There is

good agreement on the dependence of L on I and approximate agreement on the
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value Imax beyond which the Tifetime is bad. In this plot the parameters have
been adjusted to fit the data in the low I region where L « IZ. This 1is
TargeTy a matter of convenience as the expected simple relation between
measured beam profiles and I and L is approximately satisfied at small I.

The only other arbitrariness in Fig. 2 relates to the location of Imax for
which the 1ifetime is 10 seconds (much less than is acceptable in practice)
with masks at *100 (much smaller than is achievable in practice). Actual
apertures, especially vertical, are not well known. When the vertical mask
was raised to #120 and the lifetime to 100 seconds, Imax was found to be
almost unchanged.

Another corroboration of the theory can be obtained, semi-quantitatively,
by comparison with experience of the Stanford facility SPEAR at the four
lattice points labelled A, B, C and D in Fig. 1. They found7 that the maximum
Tuminosity increased steadily by a factor of about 5 in proceeding from A to

D, but they could not cross the line

with two beams in spite of the fact that the presence of this line was
undetectable with single beams. These observations are quite consistent
with Fig. 1.

Finally, it is of interest and, one hopes, of practical importance td
find optimal running parameters according to the theory. It is plausible,
and tends to be borne out by the simulation, that n* = 0 is optimal. Also
from Fig. 1 the region around Voo = 0.4, vyo 2 0.1 appears to be the most
promising, but we have not expended enough computer time to prove this. On
the other hand, many unambiguously bad regions have been identified and should

be avoided in practice.
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Figure Captions

Fig. 1. Contours of constant relative luminosity for SV = 0.08, SH = 0.0,
n* = 0. Bad lifetime regions are indicated by crosses. They
also indicate the grid on which calculations were done. Contours
are at 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2. Lines identify insta-
bitity thresholds of Eq. (1). Points labelled A, B, C and D
identify lattice points for an investigation described in the
text.

Fig. 2. Dependence of luminosity on current. Comparison between experiment
and theory at CESR. Limits imposed by bad beam lifetime are

shown.
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. *
BEAM-~BEAM EFFECT AND LUMINOSITY IN SPEAR )

- H. Wiedemann

Stanford Linear Accelerator Center, Stanford University, P. 0. BOX 4349
Stanford, California 94305 USA.

1. INTRODUCTION

Many measurements on the beam-beam limit in SPEAR have been performed
over the past eight years since colliding beam operation began. The goal
for these measurements was to find the proper parameterization of the beam-
beam effect. Earlier measurements!’? in SPEAR, however, were limited in
their validity by two circumstances. First, until 1978 we had no control
over the so-called flip-flop phenomenon;3) We did not even know about this
effect because it seemed natural that due to the beam-beam interaction one
of the beams — the ''weaker' one — got vertically blown up when high current
beams were brought into collision. In 1978 we found, however, that we could
choose which beam gets blown up or, what is more important, we could manage
to make the particle distribution in both beams the same. This can be done
by adjusting the relative phase of the two rf systems located symmetrically
on either side of the interaction points. As yet we do not understand this
effect, but control of the flip-flop effect resulted in an increase in lum-
inosity by a factor 1.5 to 2 (Fig. 1). All measurements in this report were
done with both beams equally blown up. The second shortcoming of the earlier
measurements was the limited energy variation possible in SPEAR. This led to
erroneous energy scalings of the beam-beam incoherent tune shift parameterZ)
£. In 1979 the magnet power supplies were modified such that operation at
energies as low as 400 MeV was possible. We have made colliding beam measure-
ments at energies as low as 600 MeV and together with earlier measurements
we can now present the scaling of some relevant storage ring parameters from
600 MeV up to almost 4 GeV. All measurements have been done with a natural
beam emittance of ex(rad m) = 5.0><10"8 E2 (GeVz), the wiggler magnets off,
and with the following beam dynamic parameters at the interaction point

Vg = 5.28 vy = 5.17
* * 12
By = 120 em By = 10 cm :
* 10 - —
ne =0 .
( L8 > .
The damping time for transverse betatron os- ot
cillations is given by Tx y(sec)=0.226/E3 6 -
(GeVB). In all measurements the beam cur-
4
rents were equal to better than 107% and v Arf-PHASE e

there is only one bunch per beam in SPEAR.
Fig. 1. Effect of the
beam beam flip-flop on
the specific luminosity.

* Work supported by the Department of Energy under contract DE-AC03-76SF00515.
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Fig. 2. Typical variation of Fig. 3. Beam height as a function
luminosity with beam current, of colliding beam current.

2. OBSERVATIONS ON THE BEAM-BEAM EFFECT

When two beams at not too low an intensity are brought into collision
usually one beam is blown up much more than the other one. By adjusting the
flip-flop effect we can make both beams equal and achieve maximum luminosity.
A typical luminosity curve versus beam current I is shown in Fig. 2. At very
low currents there is no beam blowup and the luminosity scales as expected,
like I2. As the current is increased we reach a threshold above which the
vertical beam size increases due to the beam-beam effect. The horizontal
beam size is not affected within the errors of observation. In Fig. 3, the
increase of the vertical beam emittance is shown as a function of the collid-
ing current. One curve represents the vertical emittance of the core of the
beam as calculated from the luminosity. The other curve shows the vertical
emittance of the total beam (tails) as determined by lifetime measurements
with scrapers. The core emittance increases linear with beam current while
the emittance of the tail increases somewhat differently. The limit is
reached as soon as the tail emittance reaches the acceptance of the storage

ring. We have reduced the acceptance of the
storage ring by scrapers and measured the

008 l ' maximum beam-beam tune shift as a function of
[ E=1.B9GeV ‘4/ 1 the aperture in SPEAR (Fig. 4). It is clear
0.04 1 //’/ 7 from these measurements that the beam-beam
3 5 ,/’ 7 effect generates a vertical blow up which is
0.02 - /4}/ - stopped by some effect —- probably damping.
L /’ ) The absolute limit on the beam-beam effect,
° ! . | and, therefore, the maximum luminosity, then
0 ' 2 3  is reached when the vertical beam size reaches

(e,,o,)'/z (mm mrod)¥2

the aperture limit. Later in this note we
Fig. 4. Maximum tune shift will have to come back to this point. 1In
parameter as a function of

the ring acceptance. Fig. 5, data at or near maximum luminosity as



achieved in normal runs for

high energy physics, as well
nt.-."" " as in accelerator studies

“ runs, are collected. The
/! maximum luminosity scales

like E6.7 up to an energy

o
T 1T
.
4
.
.
-—
%
-
-
=
&,

of about 2 GeV. This is in
agreement with the @ ~E’

scaling reported from
Adone.*) Note that for lack
of time the measurements at
0.8 and 1.0 GeV do not yet
represent the maximum

1 1
2 3

o

ENERGY  (GeV) achievable luminosities. The

Fig. 5. Maximum luminosity in SPEAR. associated beam currents
are shown in Fig. 6 and the
linear tune shift parameter Ey in Fig. 7. This tune shift parameter Ey was

calculated from the luminosity by

2 * Z/I
8y = (2reme’e) 8 WITc/F*_c*F) : @
y X

This equation is derived by combining the definition of the luminosity
* %
Z = (4we2f)'1 . Iz/(oxoy) and the linear tune shift parameter

_ 2 * * * * % )
Ey = (remc /Znef) IBy/E/oxoy/(l+cy/ox) . (2)

Here re==2.84x 10_15m, mc2==0.51l MeV, e the electron charge, f the revolu-

tion frequency and.ci,oi thi beam width and height at the interaction point.
The effective beam height éy is calculated from the luminosity assuming the
theoretical beam width o; which is precise enough for*thi correction factor
(l%—cylcx). We find in
Fig. 7 the vertical linear

2
° E T ‘ ‘ g beam-beam tune shift param-
B 7 eter to scale like
]
10 ? —__E: Ey ~ E2.4
3 E E up to about 2 GeV. Above
£ oL _ that energy the tune shift
= F 3 parameter is constant
i : The limitation seems to
'O_IE E be distinctively different
- ] for energies below and above
_2" Ly 1 . T 2 GeV. Below 2 GeV, the
0 0.5 i 2 3 a limit is consistent with the

ENERGY  (Gev) aperture of SPEAR. Above

Fig. 6 Maximum colliding beam currents in SPEAR. 2 GeV we cammot make a



similar statement since not

0.05 - enough detailed measurements

" have been performed. The

different behavior is fur-
ther illustrated in two
other measurements. In

Fig. 8 the linear tune shift

Ll

‘parameter Ey is shown as a

y
1

¢ - PARAMETER

function of energy for a
constant beam current

It + 1 = const and a verti-
cal betatron function at the

oot b1 1| ! 1 . . . *
00005 ( 2 3 4 interaction point of By==20

ENERGY (GeV)

cm. Above 3 GeV the tune
Fig. 7. Maximum tune shift parameter in SPEAR. shift parametef3drops as

expected Ey-vE . At 3 GeV
and lower energies the tune shift stays constant and only the vertical beam
size increases till the limit is reached. In another experiment (Fig. 9)
the current and the energy was kept constant but the value of 8, was varied.
Here again we experience a saturation of values of Eys .06.

For the design of new storage rings it would be extremely interesting
to know what separates the two regimes in order to determine where the new
storage ring will operate. Since a similar limit at about the same value
for £_ has been observed also in Adone“) it may very well be ‘a fundamental
limitation due to the mere magnitude of the nonlinear perturbation. In this
case a proper theory is needed to be able to scale the transition point from
one storage ring to another.

So far we have not addressed the horizontal linear tune shift parameter
£4- Since we do not observe any significant horizontal beam blow up we con-
clude that the horizontal tune shift parameter does not take part in the
beam-beam limit. In particular, we observed that £, can be much larger than

Ey' At the beam-beam -limit for the
0.07 T T T
0.07 ; . . | 0.0 - n
[ ] - —
0.06 -—— - 0.05
0.05 - . 7 ¢ 0.04 -
0.04 b _ y
& Y 0.03 - -
0.03 |- -
002 F  Ay-20cm . 00z ‘
+t.17 =
0.0l b I7=1"=Const. B 0.01 — -
0 | i 1 ] 0 ] 1 [
2.0 2.5 3.0 35 4.0 0 10 20 30
ENERGY  (GeV) By (cm)
Fig. 8. Tune shift parameter vs. Fig. 9. Tune shift parameter

energy for constant beam currents. vs. B; for constant beam currents.
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following two energies we have:

Energy 600 MeV 2.0 Gev
£ .016 .040
x
- Ey .0034 .045

This may or may not be a peculiarity of SPEAR since in all cases the beam
at the interaction point is rather flat.

3. SCALING OF BEAM-BEAM RELATED PARAMETERS

In the rest of this note we will discuss only the measurements up to
2 GeV, that is in the regime where the maximum linear tune shift parameter
changes with energy. From the measurements we obtain the following scaling

laws:
6.7+0.1
Zhax ~ E
3.620.1
Thax ~ E
2.4+0.1
Ey max ~ E

We also observe a threshold current above which the vertical beam size be-
comes blown up. If we plot Z/E®-7 versus I/E3'6 in the regime between
threshold and beam-beam limit for different energies we find a common behav-
ior (Fig. 10):

_Z_ _ .
267 const * | ——¢

1 1510.1 IO29 T T T T T T T
E

T TT

(5)

From this we can derive a
scaling law for the vertical
beam size. Using the defini-
tion equation of the lumino-
sity, we get

@ % (I )1.5¢o.1.

EE- ; ~ EI.3 306
oxcy E
(6)

1028

Ll

*
Since Uy ~ E we get

1

L/€87 (cm2 sec™! Gev=67)

600 MeV
1.5 Gev 1
2.0 Gev
1.0 Gev
1.25 Gev

* 1% ;
oy ~ 23504 &0

+ O b O X

Eq. (7) is in agreement with
the observation at PETRAS)

* kS
where 0y~o12/E2was measured.

D N S I S 1 I

If we now use the measured 1027

scaling for the maximum 0.l

36 36
current from Eq. (4), Ve (ma/Gev3e)

Fig. 10. Normalized luminosity
vs. normalized current SPEAR.
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we get
I% -
9 max ~ E2.31?g.z ~ E-O'Si 043 ., const. (8)

This again is a confirmation that the maximum beam-beam limit in SPEAR is
reached at all energies below 2 GeV as soon as the vertical beam size
approaches a certain value which is consistent with the SPEAR aperture limit.
The total vertical beam size at the beam-beam limit has been measured for a
few different energies and configurations and agrees within the errors of the
measurement with the acceptance of the SPEAR storage ring.

The scaling of luminosity curves at different energies in SPEAR (Fig. 10)
encouraged the author to try for a common scaling for all storage rings. In
Fig. 11 the results of such a tryout is plotted. Over many orders of magni-
tudes the luminosities scale the same way in all storage rings if we normal-
ize the luminosity on the damping and use the number of particles per bunch
rather than the beam current. There are certainly more subtle differences
between different storage rings as beta functions, tunes, etc. These differ-
ences, however, account only for factors two to maybe five in the luminosity.

On the scale of Fig. 11,

0% ] 1 1 | | these small factors, however,
E 3 do not show up.
i ] Three storage rings
10% & E (ACO, ADONE and DCI) seem to
E = behave differently. This
o2 ; % ° ; might be due to the fact that
F 3 these storage rings have no
E E beta section and run at the
Slo3l - o coupling resonance, whereas
é E § all the other storage rings
?Elom : 7 have small vertical betatron
- 3 functions at the interaction
5 - point and run at minimum
L L STORAGE RING coupling.
S E e PETRA
o a PEP The common scaling
e ;_ : \S/Ziﬁzm suggests the same process to
= ® DCI be responsible for the beam-
E ‘ o ACO beam effect in all storage
10?7 = g égggE rings. From Fig. 11 we get
i £ NB /2
1028 | ! ! l ! 53_7 - (Eg—g 2
10% 108 1010 102
Ng/E>®  (Gev™3€) where 1 is the transverse

Fig. 11. Luminosity scaling in different damping time and Np the

storage rings. number of particles per bunch.
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CONCLUSION

Measurements performed at SPEAR have been discussed and scaling laws
for the maximum luminosity and the maximum linear tune shift parameter with
energy are shown. We made the following observation: there are two distinct
regimes, one below 2 GeV where the linear tune shift parameter scales like
£y~E2'4 and the other regime where this parameter is constant £y=~0.05 to
0.06. In the lower energy regime the limit is reached when the vertical
beam size is blown up to the acceptance of the storage ring. We do not
observe a significant ( < 10%) horizontal beam blow up and the value of the
horizontal linear tune shift parameter g, does not seem to be related to

the beam-beam limit.
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RECENT EXPERIMENTAL RESULTS ON THE BEAM-BEAM EFFECTS
*
IN STORAGE RINGS AND AN ATTEMPT OF THEIR INTERPRETATION

‘S. Kheifets
Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305

SUMMARY

The latest available experimental results on the luminosity, the
space charge parameters, and the beam blowup as functiops of particle
energy and beam current are reviewed. The comparison with the phenom-
enological diffusion theory are done and useful scaling laws are

derived. Some implications for pp storage rings are discussed.
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Introduction

3,14 on the beam-

~Although there are a number of excellent papers1
beam phenomena, the importance of the problem which implies the most
severe limitation on the beam currents of the storage ring as well as
recent availability of new experimental results4_6 and theoretical
approach7 make it quite feasible to add to the list.

The problem has also an important practical impact on many stor-—
age rings of the immediate future. For an electron-positron storage
ring it can give, by applying the appropriate scaling laws, some
insight on the acceptable magnitude of the space charge parameter.

The same is also true for pE machine which can be considered, with
respect to the beam-beam effect, as e_e+ ring with extremely small
particle energy.

Although the beam~beam effect itself is rather crude and well pro-
nounced, a theoretical description of it is very difficult to give
both analytically and numerically. The main difficulty lies in the
nonlinear character of the forces involved and to some extent in the
complicated dependence on many beam and machine parameters interlac-
ingly influencing each other.

In this situation a phenomenological approach seems to be ade-
quate. A proper parameterization of the problem and descpiption of
many functional dependencies by a few fitting parameters can supply us
with needed scaling laws. The behavior of such a fitting parameter
with energy for example cannot be explained by a theory. This depend-

ence will be found from an experiment. But after it is established it
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can have certain predictive power and will give some insight for the
. futuxe accelerators.

There is also some hope to find suitable theoretical ground for
the accepted dependencies in the numerical-analysis of the problem.
Much work is needed in this respect.

In this work I suggest some scaling laws for the luminosity,
space charge parameters, and beam size as functions of particle energy,
maximum beam current, and the number of bunches. These scaling laws
are derived from the latest experimental data available now.

The biggest drawback of the description suggested here, as I see
it, lies, contrarary to the observations, in the complete absence of
the fitting parameter dependence on the machine tune. This drawback
can be attributed to an averaging procedure needed for a diffusion-
like description of the process. By this averaging all resonance
structure of the particle motion is completely lost. It is probable
that the resonance and diffusion approaches could be complementary to
each other. Again much work is needed here.

Section 1 of this work is devoted to the recent experimental

4,8 ADONE,5 and PETRA.6 In Section 2 the diffusion

results from SPEAR,
theory is used to derive main relationships and, together with the
experimental results, to get main scaling laws. In Section 3 we sum—

marize these scaling laws, and in Section 4 some predictions for

future storage rings are done based upon the scaling laws.
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1. Experiment

. Before discussing recent experimental results observed on differ-
ent electron storage rings it is useful to look first at the conditions
in which they are obtained and the assumptions under which they are

interpreted.

1.1 Main relationships and assumptions

First of all let us discuss relevant storage ring parameters as
well as experimental conditions under which they are usually measured.
I will list the main parameters and relationships between them although

the latter are all well known.

1.1.1 Luminosity of the storage ring for the head-on collision of
two identical beams is usually assumed to be
i2
L= L
4re ch o

Xy
where i is the current in either of two beams, B is the number of
bunches in each of the beams, f is the revolution frequency of the
particle with the charge e, OX and Oy are horizontal and vertical

dimensions of the bunch (rms widths if the distribution is Gaussian)

at the interaction point.

1.1.2 Space charge parameters under the same conditions are given by

the following formulae

a) for the vertical motion

eip
£ = Y (2)

27 + BEo (0 +o0
f BEo (0, +0.)
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b) for the horizontal motion

eif
21 4 BEo_(o_+0)
X Xy

In these formulae BX and By are values of horizontal and vertical
g-functions at the interaction point, E is particle energy. Both the
luminosity @ and the space charge parameters Ey and EX depend on the
bunch size which is very difficult to measure directly. But it is
clear that both values are sensitive to the charge distribution in the
core of the beam rather than to the tails of it. At the same time it
is known2 that tails are affected by the beam-beam interaction much

more strongly than the core.

1.1.3 The beam lifetime T for a single Gaussian bunch is given by9

2
T = TeC/ /c , 4
where T is the vertical damping time

1 _ 3

o= cYJCE /20 (5)

CY = 8.85 % lO_Sm/GeV3, p = bending radius in m, E the energy in GeV.

i t = I/o (6)

I is an effective apperture of the machine. The beam lifetime is sen-
sitive to the distribution of the particles in the tails where the

beam~beam interaction changes distributions significantly. That makes
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the maximum luminosity strongly dependent upon the value of the maxi-
_ mum beam current which in turn happens to be a fast function of the

particle energy.

1.1.4 Parameters of interest. Among the machine parameters entering
into expressions (1-6), the energy E, the number of bunches B, and the
revolution frequency f are known with great accuracy. The luminosity
% and the beam current i can be measured directly.

On the other hand, several other parameters such as Bx’ By are
very difficult to measure. Although one can expect that BX, B should
be modified by the beam-beam force, these functions are changed only
in the second order of the perturbation theory and therefore usually
are assumed to be equal to their theoretical value at the zero cur-
rent. The same holds for the horizontal beam emittanceleX and conse-

quently for the horizontal beam size O, = VEXBX .

1.1.5 Experimental conditions and assumptions. Experimental data on
the beam-beam effect are obtained on different machines virtually in
quite different conditions.

a) The investigation of the beam-beam limitations. Measure-
ments of this kind are done during special machine physics
runs. The main goal of these measurements is to achieve the
maximum possible luminosity for given parameters by increas-
ing the éurrents to the point where the lifetime of the beam
starts to decrease sharply. To maximize the luminosity of
the ring both currents are usually maintained pretty much

the same. For the SPEAR measurements
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201, -1)/(1,+1) s (2- D%

One tries to do the same with the vertical size of the beam.
At least at SPEAR this condition was met by means of adjust-
ment of the phase between the rf cavities positioned symmet-

trically around the interaction point.

Experimental data obtained in this situation should be more
sensitive to the particle distribution at large amplitudes
(to the tails of distribution) rather than to the distribu-

tion in the core of the beam.

The investigation of the storage ring performance., Measure-
ments of this kind are usually done during high energy phys-
ics runs in a parasitic mode. Maximum luminosity is achieved
in this case under a restrained condition of the beam life-
time being unaffected or almost unaffected by beam—beam phe-
nomena. These measurements should be more sensitive to the

distribution in the core of the beam.

In all of the storage rings the longitudinal size of the
bunch 02 is much less than By. If this condition were not
fulfilled, different particles along the bunch would experi-
ence different focusing and the results could be distorted

by this e%fect. As we shall see later, it is assumed usually
that the distribution of the particles is Gaussian, at least
in the core. This assumption one needs to be able to calcu-
late the space charge parameters from the measured luminosity

and current.



48

In some aspects there is also a difference between the
strong beam-strong beam and the strong beam—weak beam

interactions.

1.2 Recent experimental results

An experimental fact observed on all the machines is that the hor-
izontal size of the bunch is not influenced by the beam-beam interac-
»

tion with the accuracy < 10%.

1.2.1 Procedure of calculating values of interest

It is instructive first to see how one can derive the relevant
parameters from the measured ones.

a) First of all assuming Oy to be equal to /E;§;, one can find

beam aspect ratio Gy/cx from the measured luminosity (1):
2 2
o loc = 1i"/4me ch & (N
v X X

b) Formula (3) then allows us to find the horizontal space

charge parameter
- ad 2
£ = elsx/zmﬁBEoX(1+ cy/ox) . (8)
c) After eliminating Oy from (1) and (2) one gets:
£ = 2e3$6 /Ei(1+o_ /o) (9)
y y y X

Let us review the recent experimental results obtained on

different storage rings.
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1.2.2 SPEAR. Dependence on energy (H. Wiedemanna)

. Recently a set of new measurements of the maximum luminosity and
the beam current versus machine energy was undertaken by H. Wiedemann.
The range of energy variation was from 0.6 to 3.7 Gev and is much wider
than in all previous<experiments. The data were taken during the spe-
cial runs of the SPEAR dedicated to machine physics. Much work was
done to adjust all the machine parameters to achieve maximum luminos-—
ity. Special attention was paid to balance the vertical sizes of
electron and positron bunches to avoid the loss of the luminosity due
to the flip-flop effect.

The fit by a power law to recent data seems to give quite differ-
ent slopes, especially for the vertical space charge parameter, than
ones in the previous measurements.2 The difference may be attributed
to the fact that the energy range in the work2 was much narrower (from
approximately 1.2 to 2.5 GeV). Although the measurements are still in
progress, the data are quite reliable in the opinion of the experi-
menter.4 Table 1 summarizes the results of fitting to these measured

and calculated data.

1.2.3 SPEAR. Dependence on the beam current

Table 2 summarizes the data picked up from SPEAR logbooks by M.
Cornacchia.8 The data were mostly taken during regular physics runs
of the machine. The fits to the data taken at high energy physics run
are recalculated. 1Instead of fitting data by the least square method

the maximum luminosity was fitted.



50

1.2.4 ADONE (S. Tazzaris)

Table 3 summarizes the dependencies of the maximum luminosity and
the beam current versus energy which were taken from the report by S.
Tazzari.5 The space charge parameters of this machine were kept
approximately equal to each other. The fit for the space charge
parameters is derived from the calculated values plotted in the work.5
The number of bunches in ADONE can be and was changed. The data taken

with 1 and 3 bunches do not contradict the assumption

£~ 1//B
y

1.2.5 PETRA (G. Voss6)
The data from the measured specific luminosity S?/iz during high
energy physics experiments were fitted with the help of the blowup

function Oy assumed to behave according to the following:
A\2
05 = 02 + (éi) (10)

Here 00 is the value of ¢ at zero current i and a is a parameter.
y

From the data taken at different energies, a is found to be:

a = const/E4 (11)

The values of aspect ratio of the beam emittances are estimated to be

of the order of several percent at all energies.
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2. Theory

The word "theory" is probably an exaggeration in application to
the beam~beam phenomena, at least in its present state. What I really
mean is a kind of phenomenological theory which helps to make paramet-
rization of the experimental data in a suitable way and to derive some
scaling laws by means of a few fitting parameters. The behavior of
these fitting parameters is not described by a theory and should be
taken from the comparison with an experiment.

It is useful first to go through main assumptions under which the
theory is developed as well as those which will be used in the follow-

ing considerations.

2.1 Assumptions
2.1.1 First of all we shall consider one dimensional model of the
beam~-beam interaction. Although the phenomenon is essentially multi-
dimensional, the justification of this model at least in the first
approximation comes from the experimental observations that the verti-
cal size of the bunch is most strongly affected by the interaction
while the horizontal size of the bunch seems to be affected very little
if any.

One may argue about the loss of some particular multidimensional
features like the Arnold diffusion, sideband resonances, and the like.

All of these effects seem to be small compared to the main rough

effect.

2.1.2 Secondly, we assume that at least some number of particles
behave stochastically. The reason for such a behavior can be nonlin-

earities in the machine lattice, nonlinearity of the electromagnetic
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beam-beam force, combined action of many close-lying resonances, pres—

. ence.pf a stochastic layer in the phase space of particle motion, etc.
Note that I do not include in this list the change of particle ampli-
tude due to radiatiog quantum fluctuations -making thus the consideration

equally applicable to proton storage rings.

2.1.3 We shall use in forthcoming considerations an assumption that
both beams are identical. This assumption is not mandatory for the
derivations but is justified by experimental conditions and makes all

formulae more straightforward.

2.1.4 Also everywhere where it is appropriate I will simplify the
calculations using Gaussian distribution, linear force, etc. Although
more exact calculations can be fulfilled sometimes they do not seem to

be necessary due to oversimplifying assumptions made above already.

2.2 Beam blowup according to diffusion theory
At each interaction the vertical coordinate y and the angle in

vertical plane y' are changed as follows:
Ay = 0 (12)

%
by' = 2me B—yKbcbb(u) (13)

— 2 —
where b = (cry/crx)/\/l- (oy/ox) , u= y/o0

and Kb¢b is a function describing the electromagnetic force of the

, . . . . 7
opposite bunch. For Gaussian distribution
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,’ 2
1+b +b

Ep—— (14)

Vl+b2-b

1
_ dw -wu
¢, (w) uf ——\/—-—22
° u+b

According to the main assumption a certain part of the motion due

2
(15)

to the interaction (13) can be described as stochastic and hence can
be considered as an additional source of diffusion (in addition to all
other sources which do not depend on the beam—beam force).

We know that at least the linear part of the force cannot cause
the stochasticity. It can be considered as an additional focusing
force and hence should be included in the regular paft of particle
motion. Probably the same is true also for some nonlinear parts of
the force.

That is why for the purpose of calculating beam blowup as a con-
sequence of a diffusion-like process we should consider not all the
force ¢b(u), but only some nonlinear part of it $b(u). The way to get
$b out of ¢b is not clear and should be considered here only as a way
to introduce in the theory a phenomenological fitting parameter. It

can be done in different manners:

b, (u) - (1-h)¢b(—l—_“3) , (s. Kheifets7)

@

¢b(U) = (16)

h¢é(u) s (A. Ruggieroll)
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One can find still other possibilities. For a small value of h both
_ procgdures give essentially the same result.

It is reasonable to assume that for particles which behave errat-
ically there is a complete mixing of phases within the bunch and in
the long run each particle can be expected to acquire any value of
coordinate y. In this case the beam blowup can be found by averaging

the value (Ay')2 over the distribution function
2 2 20,2 ) :
cy = o (l+n<Kb¢b> an

where the brackets < > mean averaging over the distribution function.

In expression (17)
2
n = 2Bfr(2nay) , _ (18)

where T is the vertical damping time (5).

For Gaussian distribution

2.2
2 w 2
o
<K§'q¥§> . N f e 7 du (19)
V1 o o, “w

Instead of doing actual calculations we substitute in the following

$(u) = he'(0) = 2h\11+b2-b) (20)

Then we get:
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22 2.2 2.2
2 2 217 e TByh 95t

o = g, +
f BE20202(14-0 /o )2
y X y X

First of all we see here exactly the same-formula (10) that was postu-

lated in the work.6 Comparing (21) with (10), we find

a = ﬂ,esihco 2 (22)
on(lﬁ-oy/cx) }B

1 .
An expression similar to (21) can also be found in the paper 1 (see

Eq. (39) of this work) which gives to parameter h the physical meaning
of the probability of finding the particle in a stochastic layer.

Expression (21) was also derived by J. Rees12 from the assumption

2 _ 2 2.2
cy = 9, + f BTByerms

where erms is the effective r.m.s. scattering angle of a particle in

the vertical plane.

2.3 Scaling laws

Expressions (21,22) contain only one unknown parameter h. Let us
consider it as a phenomenological parameter which should be determined
from experimental data. One way to do this is to use PETRA results6
(11). It is easy to see that to satisfy E—4 decrease for the value a

we need the following dependence of h on energy:

h ~ E'3/2 (23)
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Since we are interested now in maximum values of the luminosity and
the cyrrent,we derive from (10) that asymptotically at large current i
(for the case Oy << o,» one can get results for the opposite limit in

. 4 2.2
a similar way) ay = a i” or

6~ Yi/E (24)

The maximum possible value of Uy limited by particle losses and beam
lifetime should be some constant which can be written as ’AyBy where
Ay is an effective vertical acceptance of the storage ring. From for-
mula (4) for Gaussian distribution we would find that Oy is constant
with the logarithmic accuracy. Let us see now what consequences fol-

low from these assumptions.

2.3.1 Dependence on energy
Consider first the situation where the limitation arises from the
beam lifetime. Assuming Oy = const in expression (24) we immediately

get
i AV (25)

With the help of this expression we also get the following scaling

laws (note that for the electron storage ring Ox v E)e

7
Qmax av E (26)
2
ymax ~ B (27)
Exmax ~ E (28)

o /o ~ 1/E (29)
y
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Let us now turn to experiments in which beam lifetime limit has

not been reached yet. At a given energy one gets from the same

expressions

.1/2
go_  ~ 1
Xy

£ i1/2

ymax

3/2

Voo
£ nax

2.3.3 Dependence on the number of bunches B

(30)

(31)

(32)

We should distinguish between the strong beam-weak beam and the

strong beam-strong beam cases.

a) For the strong beam-strong beam case an attempt to measure

the dependence on B has been made on PETRA.l3

sion (21) we have 0; = i2/BE8 or

o "N
y

Defining in accord with the workl3

< B

i1/2/E2B1/4

g = =
SP 13(1/13)2 i

we have

Z EBl/Z‘//I
sp

From expres~

(33)

the specific luminosity

(34)

(35)

The dependence on B seems to be too weak to be in agreement

with PETRA observations. The space charge parameters in

this case should scale like:
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LY e (36)

£, " i/E°B (37)

Data on these dependencies are still not available.

For the strong beam-weak beam case we have observations made
on ADONE.5 Expression (21) in this case should be rewritten
for the blowup of the weak beam by an unperturbed strong

beam:

9 2 2w2e2TB§h212
o~ = o, + (38)
y 0 f BE202(14-0 /o )2

X vy X

Assuming the same dependence of h on E we have in this case

o Y = const (39)

The last equality corresponds to conditions of the ADONE

. 5
experiment” . Hence

i v BB (40)
max
g ~ E'B (41)
jmax
3
gymax ~ E°/V/B (42)
2
Enax "~ E /VB (43)

The scaling (40) seems to be in quite good agreement with

. 5
the experimental data” on the strong beam-weak beam



59

interaction at ADONE both on E and on B. On the other hand,
Ey and Ex were maintained equal. That makes the comparison
of the energy dependence meaningless. The dependence on B

is not contradictory to the experiment.

3. Summary of the experiment and theory comparison

Tables 4~6 present the summary of the theoretical and experimental
values for different parameters relevant for the beam-beam interaction.
Keeping in mind the number of assumptions and the approximations made

the agreement seem to be astonishingly good.

4. Some speculations on a pE storage ring

There are two main dissimilarities between electron and proton
storage rings relevant to our consideration. The first one is the
absence of radiation damping of particle oscillations in the latter
ring. Consequently the damping time constant t should be substituted
by real time t in the expression for the beam blowup.

The second one is the energy dependence of the beam emittance.
In a proton machine both Cx and Gy are proportional to 1/VE.

Hence for a pE storage ring we should expect the following

relations

.2
@ ~ 1(7@ (44)
y
gy N i//fby (45)
g, v 1 S

a“ ~ h2t/E (47)
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For the case when the blowup is strong enough to influence the

~lifefime

4 hzizt
2

EB

v const (48)

If the dependence of h on E is the same as for an electron storage

ring

E5/2B1/2/t1/2

. (49)
AR e T (50)
Eomax " w2 /B/ Ve (51)
e~ BB (52)

The quadratic dependence of gy on energy differs from the 3/2 law

which is obtained by L. Teng15 from fitting the electron ring data.
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Table 1

64

Dependence of SPEAR parameters on the particle energy E (in GeV). The
fit is done4 by a function f = ked.
f k q Comment

L max 0.033 6.6 in 1030cm--zsec—l

i 1.2 3.6 in ma

max

o /o 0.5 -1.0 -

x

g 0.022 0.87 -

x

£ 0.011 2.3 -

y




Table 2
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Dependence of SPEAR parameters on the beam current i (in ma). The fit

is done by a function f = ki,
GeV k q Comment
N \ B
gemax .5 0.030 | 1.95 high
(lOBOcm-zsec—l)
.5 0.046 1.55 energy physics
.7 0.054 | 1.45 ) runs
.95 0.052 1.41 By=10 cm ) machine
.95 1.45 By=20 cm ) physics runs
g 0.59
y
o} 0
X
£ 4 0.33
y




Table 3

Dependence of ADONE parameters on the particle energy E (in GeV).

fit is dome’ by a function f = kEL.

f k q Comment
. 0 - -1
S?max 0.64 7 in 107 "cm “sec
gngy 0.068 1.57 -
i 105 4.34 3 bunches W strong
max
(in ma) beam-
,
42.4 4,12 1 bunch . weak
beam
)

66

The



Table 4

The power q in the power law

£(E) ~ EBY
Experiment
Parameter f | SPEAR | ADONE PETRA | Theory Comment

h -3/2 (23)
L 6.6 7 7 (26)
imax 3.6 4.5 4 strong - strong (25)
i 4.12:;4.34 5 weak - strong (40)
max .

ey 2.3 1.5 2 (27)
EX 0.9 1 (28)
o /o -1 -1 29
g (29)
a -4 -4 (1)




The power q in the power law f(i) ~ i

Table 5

q

Experiment
Parameter f SPEAR ADONE PETRA | Theory Comment

1.4 1.5 (32)

max
-0.5 -0.5 (35)

spmax

0.0 0.6 0.5 (30)

Xy
g 0.4 0.5 (31)




Table 6
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The power q in the power law f(B) ~ B4,

Experiment
Parameter § | SPEAR | ADONE | PETRA Theory Comment
P ax -0.25 I strong beam-
o
‘égpmax 0.25 (35) strong beam
i 0.8 0.5 (40) strong beam-
max
P
g -0.8 - 0.5 42) weak beam
ymax
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An Empirical Model for Controlling Beam—-Beam Effects in ISABELLE®

G. Parzen

- Brookhaven National Laboratory
Upton, N.Y. 11973

I. Introduction

The beam—beam interaction may limit the beam intensity in ISABELLE.
Although considerable progress has been made in understanding the beam-beam
interaction, there appears to be no reliable method at present for computing
the effects of the beam-beam interaction. The steps taken at ISABELLE to
limit beam—beam effects are based largely on the experience accumulated at
the ISR. At the ISR, the beam-beam effects do not appear to be large, and
the beam intensity at the ISR does not appear to be limited by beam~bean
effectss The beam—beam effects may be much stronger in ISABELLE because of
factors like higher intensity and stronger non-linearities.

An empirical model for controlling beam-beam effects iﬁ ISABELLE can be
arrived at based partly on the experiences at the ISR and based partly on
conjecture. Establishing an empirical model may be thought of as consisting
of the following steps:

1. Assume a model for the mechanism for beam growth.
2. Establish the critical parameters that lead to beam growth.
3. Establish working tolerances for the critical parameters.

The working tolerances are somewhat different from what one usually
means by tolerances. They are based partly on experience, parﬁly on theory,
partly on conjecture, and partly on what is doable. They represent a compro-—
mise, and provide a useful guide for designing the different components of
the accelerator. The working tolerances may change as more information is

acquired.

X
’Work performed under the auspices of the U.S. Department of Energy.
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ITI. Model of Beam Growth

The model for beam growth assumed is
.. Non-Linearities + "Something” - beam growth
where the "Something'" may be
"Something” > noise
ripple
tune modulation
randomizing perturbation
The phrase "randomizing perturbation"” indicates some perturbation which
in some sense makes the particle forget its history so that it is crossing
the non-linear resonances in an almost random way. It is known that multiple
crossing of a non-linear resonance will often cause only a limited growth,
while random crossing of a non-linear resonance will cause a steady, and
often much larger, growth. In the ISR, there is some evidence!l »0 that the
randomizing perturbation may be intra-beam scattering.
In the light of the above model, the steps required to limit beam growth
due to the beam-beam interactions are
1+ Limit the strength of the non-linearities.
2. Limit the "Something"--noise, ripple, tune modulation or

randomizing perturbation.

IIT. Magnet Non-Linearities

2 non-linear error

Superconducting magnets are likely to have stronger
fields than conventional warm magnets. Recent measurements of the error
fields in ISABELLE magnets indicate that the non-linear field errors in

ISABELLE magnets may be a factor 10 larger than those found in the ISR

magnets.3 At the ISR, magnet non-linearities do not appear to play an
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important role in causing beam growth. Because of the larger non-linear
fields in ISABELLE, it may not be wise to assume that this will also be the
case for ISABELLE. VCertainly, one should strive to keep the non-linear
fields in ISABELLE magneté as low és possible. |

The working tolerances for the non-linear error fields are given in terms

of themultipole coefficients Ab,, and Aa, which are defined by expand-

ing the error field in the median plane as

AB
y

AB
X

2
BO(AbO + Ablx + Ab2X R |

2
BO(AaO + Aalx + Aazx + ... )

The working tolerance for ISABELLE can be roughly and simply stated as

RnAbn < (m+1) 2x10°

4

RnAan S (n+1)2x 10

where R is the radius of the main coil in the magnets; R = 6.5 cm for
ISABELLE. This working tolerance is the expected2 rms error multipoles
caused by a random rms .005 cm (2 mil.) error in the location of the current
blocks of the main coil. In this sense, these tolerances appear to be simply
what seems to be achievable. However, it will be seen below that for several
known effects they are indeed the tolerances. In this connection, it may be
worthwhile recalling what was said about working tolerances in Section I,
that they are a useful guide based partly on experience, partly on theory,
partly on conjecture, and partly on what is doable.

There are about four known effects which indicate that the above working

tolerances are indeed tolerances. These are:
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1. Uncorrectable closed orbit error error. The random dipole error field

4

will vary across the aperture

-

because of the presence of the higher order
error multipole fields. Thus, when the closed orbit is corrected at the
center using the system of dipole correctors, it will not be corrected at the
edges ot the aperture. For ISABELLE, this leads to a poséible 5 mm orbit
error at both edges of the aperture.

2. Vertical dispersion error. The field errors, particularly Aa

l!

generate a vertical dispersion which can change the beam size at the crossing
points by about 25% at 30 GeV and about 127 at 400 GeV. This may cause a
possible 25% variation in Av, the beam—beam V-shift, increasing the strength
of the beam—beam resonances. Also, the luminosity may be reduced by 25%.

3. Random error in B, or the crossing points. The field errors cause

By to vary around the ring by about ABy/By = 10%. This will cause
a beam—beam Av variation of 5%, and a 5% reduction in lumindsity. The random

ABy/By also helps to excite the 1/3 resonances by interacting with the
large sextupole required for chromaticity correction.

4. Width of the 1/3 resonance. The field errors excite non-linear

resonances. In particular, the 1/3 resonance may have a width of

Av = 1 x 1072,

The above four effects show that if the error fields exceed the working
tolerances by very much, some large damaging effects may result.

It is interesting to compare the stop bands of the non-linear resonances
generated by the magnet error fields with those generated by the beam—beam
interaction. This is done in Table I. The beam-beam resonances listed in Table I
are the imperfection resonances generated by orbit errors and random errors in
By at the crossing points.5 One sees that for ISABELLE, the magnet resonances

and the beam-beam resonances are comparable for the lower order resonances.
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Table I

N Resonance Magnetic Field Error Beamn—Beam

Order Resonances Resonances
2 6.5 E-3 1.6 E-4
3 4.3 E-4 7.6 E-4
4 3.4 E-5 9.1 E-5
5 3.8 E-6 1.2 E-4
6 4.5 E-7 1.3 E-5
7 5«4 E-8 2.0 E-5
8 6.5 E-9 1.3 E-6
9 - 2.5 E-6
10 - 1.5 E-7

IV. Beam—Beam Non-Linearities

In this section, we specify the working tolerances which are intended to
limit the strength of the beam-beam non-linearities. These are

1. Beam-beam Av < .005.

2. Vertical orbit error at crossing points ¥ .05 mm (about 10% of beam

size).

3. Vertical dispersion at crossing points
Yp—%?- X 1% of beam size
4. Random ABy/By at crossing points £ 1Z.

5. Periodicity of six is maintained.

6. Control of the working line so as to be able to avoid resonances.
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For day one operation of ISABELLE, the periodicity of six is to be
maintained. Operation with a lower periodicity may be considered afterward.
There is gome experience at the ISR that operation with lower periodicities,
even a periodicity of 1, is possible. However, it appears to this writer,
that it is quite a different matter to suggest operation with a lower
periodicity for a machine that is already working, than to suggest it for
ISABELLE which will have much stronger non-linearities and whose operation
has not been studied.

Present plans for first day operation of ISABELLE will probably not
allow the correction of the errors in the vertical dispersion and of By at
the crossing points to the above tolerance. However, the capability to do so

at a later date has been provided.

V. Tune Modulations

According to our model for beam growth, any modulation of the v-value,
VX,Vy with time is of concern. Sources of this modulation include
intra—-beam scattering,6 drift in the power supplies, and ripple in the

power supplies.7

Drift in the power supplies of the various correction coils and in the
main power supply can cause the v-value to drift. The working tolerance in
the amount the v-value can drift is assumed to be

Av < ,001

This appears to be the tolerance assumed at the ISR.8 The working
line in V-space is constrained to be between the resonances 22.60 and 22.67
and about .0l from the coupling resonance. Part of the beam is usually about
«01 from some resonance. Thus, a drift of about .00l can move the beam

appreciably closer to some resonance.
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There are about 103 correction coil power supplies in each ring of
ISABELLE. Power supply errors for each correction coil can cause the v-value
fo drift,"and one has to chose the power suply accuracies of all these 103
power supplies so that the total v-drifts due to all of them, plus that due
to the main power sﬁpply,-does not exceed the working toletrance Av < .001.
Table II lists all the correction coil power supplies, the full scale
accuracy of each power suply, and the peak v-drift caused by each power sup-
ply, and the total v-drift due to all the power supplies.

Ripple in the main power supply can cause a vV modulation with time.
Experiments done at the ISR indicatedthat a ripple in v-value of Av > 1 x 10
can cause appreciable increases in the background rate. The working
tolerance assumed for the v-ripple is

Av <1 x 1076

This leads to a required ripple for the main power supply of. 1 x 10_7.

The requirements on the ripple of the correction coil power supplies is
almost as severe as it is for the main power supply, primarily because there
are many correction coil power supplies. The required ripple for each cor-

rection coil power supply is also listed in Table II.

6
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Table IT. Accuracy requirements for the correction coil power supplies in
order to limit v-drift and ripple.

. Power
Capacity Current . Supply Ripple
Required Required Accuracy -3 _- Factor
Correction At 400 GeV At 400 GeV At FullAv,/10 ~ Avy/10 ~ Required

Coil (cm 2t ) (A) Scale (peak) (peak) (peak)
Quadrupole bl,H 3.0 E-3 129 50 E-6 0.265 0.041 .6 E-6
Quadrupole bl,V 3.0 E-3 129 50 E-6  0.047 0.262 .6 E-6
Sextupole bZ,H 6.0 E-4 170 10 E-6 0.262 0.08 .1 E-6
Sextupole b2,V 6.0 E-4 170 10 E-6 0.176 0.286 .1 E-6
Octupole b3,H 8.0 E-5 154 25 E-6 0.294 0.097 .3 E-6
Octupole b3,V 8.0 E-5 154 25 E-6 0.147 0.225 .3 E-6
Decapole b4,H 5.0 E-6 81 50 E-6 0.110 0.036 .6 E-6
Decapole b4,V 5.0 E-6 81 50 E-6 0.041 0.059 .6 E-6
Duodecapole bS,H 1.5 E-6 99 125 E-6 0.092 0.016 1.0 E-6
. Duodecapole bS,V 1.5 E-6 99 125 E-6 0.001 0.005 1.0 E-6
Quadrupole bl(bypass 1)9'0 E-3 300 15 E-6 0.326 0.353 .1 E-6
Quadrupole bl(bypass II)9.0 E-3 300 50 E-6 0.320 0.236 .6 E-6
Insertion Quad. bl(Q9) 4.8 E-3 206 200 E-6 0.140 0.024 2.0 E-6
Insertion Quad. bl(QS) 4.8 E-3 206 200 E-6 0.024 0.139 2.0 E-6
Insertion Quad. bl(Q7) 4.8 E-3 206 200 E-6 0.137 0.025 2.0 E-6
Insertion Quad. bl(Q6) 4.8 E-3 206 200 E-6 0.026 0.149 2.0 E-6
Insertion Quad. bl(Q5) 4,8 E-3 206 200 E-6 0.155 0.017 2.0 E-6
Insertion Quad. bl(Q4) 4.8 E-3 206 200 E-6 0.011 0.107 2.0 E-6
Insertion Quad. bl(QZ) 4.8 E-3 206 200 E-6 0.446 0.321 2.0 E-6
Insertion Quad. bl(Ql) 4.8 E-3 206 200 E-6 0.184 0.618 2.0 E~6

Skew Quad. al(Ql) 2.4 E-3 103(?) 200 E-6 - - -

Dipole ao,bo 800 G 100 200 E~6  —- - ——

Dipole a_ b, 400 G 50 200 E-6  -- - _—

Total Avx(peak) = (0.88 E-3
= 0.95 E-3

Total Avy(peak)
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VI. Experimental Devices for First Day Operation

An tmportant question is what should be the requirments for experimental
devices, such as a spectrometer magnet at a crossing point, that is expected
to be in place when the accelerator is first turned on. This problem is
still being worked on at present.lO The following requirements are tenta-
tively suggested.

1. Preserve periodicity. The beam-beam AV at the crossing point, where
the experimental device is located, should be relatively unchanged. The
periodicity is actually destroyed by random orbit errors and random
B-variations which change the beam-beam Av. The experimental device should
change Avby an amount which is less than that due to the random errors which
are not correctable; in ISABELLE, this is about 2% of the unperturbed Av.

2. Beam—beam non-linear stop bands introduced by the gxperimental
device should be less than those due to random errors, such as orbit errors,
after the random errors have been corrected as well as possible.

3. Magnetic field non-linear stop bands introduced by the experimental
device should be less than those due to random magnetic field errors in the
accelerator magnets.

After the accelerator has been operating and studied, a more severe

perturbation by the experimental device may be considered.



Se

6.

8.

10.

79

References

K. Hubner, Proc. of 1975 ISABELLE Summer Study, p. 562 (1975).

G.Parzen, Particle Accelerators, 6, 239 (1975).

Je Gareyte and J.P. Gourber, Proc. 1975 ISABELLE Summer Study, p. 395
(1975).

M. Month and G. Parzen, Nucl. Instrum. Methods 137, 319 (1976).

G. Parzen, Brookhaven National Laboratory Report BNL 51154 (1979).

M. Month, Proc. 9th International Conference on High Energy

Accelerators, Stanford, p. 402 (1974).

G. Parzen, ISABELLE Tech Note 189 and Tech Note 190 (1980).

P.J. Bryant, Proc. IX International Conference on High Energy

Accelerators, Stanford, p. 80 (1974).

J.P. Gourber, E. Keil and P. Proudlock, CERN ISR Performance Report,

ISR-TH/EK/amb (1973); K. Hubner, CERN ISR Performance Report, ISR-TH/

KH/amb (1973); C. Wyss, CERN ISR Performance Report, ISR-MA/CW/cn (1975);

S. Oliver and C. Wyss, CERN ISR Performance Report, ISR-MA~-CW/SO/rh (1976).

M. Cornacchia and G. Parzen, Brookhaven National Laboratory Report

BNL 51103.



80

BEAM-BEAM STUDIES WITH DCI

J. LeDuff

Lab. de 1'Accelerateur Lineaire
Orsay, France

I. INTRODUCTION
An attempt to compensate for the beam~beam effect was done on DCI but
did not succeed in yielding higher performances.

The compensation sbhemel

uses four beams stored in two rings having

two common straight sections. A residual space charge force appears as a
consequence of a non-perfect compensation if the companion beams are not

well superposed.

The original aim was to keep the residual linear space charge force
one order of magnitude below the corresponding usual beam~beam force in
order to get ten times more current per beam for collision. This has been
set up experimentally by proper adjustment of the two rings and by cor-
recting the relative orbit displacement between the two rings within a
fraction of 0 in both common straight sections.

As a reference for the four beam studies, preliminary experiments
were performed with one ring or another. Strong increase of the trans-
verse cross section is observed which becomes gradually léss as the energy
is increased. With four beams, up to the limit, there is no appreciable
blow up, but the limit in terms of maximum current per beam is much smal-
ler than in the ete~ case.

Each type of interaction shows discrete stable areas in the operating
diagram (Vx, Vz) which seem to indicate a strong effect of non-linear
resonances of relatively high order.

A few experiments were also performed with three beams in a strong-
weak configuration but it merely proved that the incoherent beam~beam
limit was partially compensated and more work is required before any
conclusion can be drawn.

The data which are presented here were obtained by the DCI study
group with the constant help of the DCI operation group, and were re-

cently compiled by M.P. Level and J. LeDuff.2

II. MAIN CHARACTERISTICS OF DCIL

The space charge compensation scheme is shown in Fig. 1. It in-

volves one bunch per beam according to the superperiodicity of 2. The



main parameters are:

-

Ring Energy

Revolution Frequency

Envelope Function at Crossing

Operating Point (linear coupling)

Transverse emittances (full coupling)

.6 to 1.85 GeV

3.169 MHz
B =Br=2m
Vy = 2.8, v, = 1.8

_ -7 w2
€raq = 2-5 x 10 7 E
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(GeV).

The residual space charge strength and compensation factor were origin-

ally defined as follows:

res

£
K

;
2 -1
[—M S .

I g

-l

where AL and §, respectively, are the current imbalance and the orbit

deviation between companion beams.

Conventional monitoring devices make K = 10 possible.

Fig. 1.

Space Charge Compensation Scheme
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TIT. SUMMARY OF ete™ BEHAVIOR

Most of the experiments have been done with round beams (fully cou-
Apledji It is worth mentioning that this is a natural way of increasing
the beam cross section and hence the maximum current and luminosity (on
the basis of a constant £p,4). Such configurations were used successfully
at ACO and ADONE where enough vertical aperture was available. Apart from
slight differences the two DCI rings behave similarly.

As a matter of fact, the luminosity does not vary like 12 at least
above a certain threshold. This is shown in Fig. 2 where the dotted line
represents the computed correction according to thelinear thin lens ap-
proximation. Fig. 3 shows the corresponding relative increase of the
effective beam cross section and it becomes more obvious that the linear

thin lens correction cannot explain the ete” behavior.
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T
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£l (mA) "o 1" (mA)
Fig. 2. Luminosity vs. current. Fig. 3. Beam cross section vs.
——- linear thin lens approx. current.

... experimental points ——=— 1linear thin lens approx.
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The increase of the transverse cross section may be described in terms of
space charge strength versus current. In the present case with round equal

-
beams one gets:

where Bg is the unperturbed envelope function at the crossing. Fig. 4
shows that for a fixed tune the § saturates before the limit is reached,
the latter being defined as a bad lifetime for at least one of the two
beams. Proper adjustment of the tune can increase this saturation level
as can be seen on either Fig. 5 or Fig. 6, where &pax is plotted as a
function of tune along the coupling resonance. As a secondary remark,
let's mention that the maximum achievable & in DCI was improved by ap-

proaching the integer from below.

m > A ¥ v L

E:BW MQV [+ .. o hd -9
V.15 . ‘

§

SPACE CHARGE STRENGTH
g2
.
R

© UPPER RING

® LOWER RING

A o . It

0 5 ] 15 20 Y
‘o 1"(mA)

Fig. 4. Space charge strength versus current.
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An interesting fact which emerges from these two last plots, (Figs.
5 & 6) is that &pax goes linearly with the unperturbed tune until it hits
a'blacK hole. One has v + £y, = cte where the "cte" appears to be very
close to a rational number p/q. In the cases of Figs. 5 and 6 it is,
respectively, 8/11, 3/4 and 9/11 considering only the smaller numbers
which give the right ratios. ‘ |

The discrete behavior is also shown in Figs. 7 and 3.
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Fig. 7. Stability diagram (Upper Ring)
at 800 MeV.

Moreover, it is seen that at high currents close to the limit, the stable
region can overlap the left non-linear resonance and even go to the ad-
jacent region, while at low stored current the stable area is much larger
and stays in between two resonances. As a matter of fact, on DCI with a
single stored beam the 1/4 resonance is destructive while with two beams
of high current the unperturbed tune can be brought on it without damage.
Notice that in both cases the unperturbed tune is the one which affects

the large amplitude oscillations, so the peculiar effect which has been



86

mentioned could be an effect of the large tune spread and of the modified

particle distribution with two strong beams colliding.
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Fig. 8. Stability area versus current.

Each ring has been optimized in the energy range .8 < E £ 1.2 GeV,
on the coupling resonance at least for two regions: v = .714 and v = .800.
Fig. 9 shows that the maximum luminosity varies as E2 while the corres-
ponding bunch current varies as E. These scaling laws are compatible with
a constant Epayx and a constant maximum cross section at the limit in rea-
sonable agreement with the vertical aperture limit.

The energy range explored is relatively small. However, above 1.2
GeV the vertical aperture does not permit any more work on the coupling
resonance, which is why the high energy range was studied with flat beams.

Here again, as shown in Fig. 10, the discrete stability region ap-
pears but in a more complicated form where the non-linear coupling reson-
ances seem to play a role. Region M, just below the coupling resonance

gives the best results.
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Fig. 11. Beam cross section versus current for two different
configurations.

Fig. 11 shows a blow up of the effective cross section at high cur-

rents which appears to be smaller as B* is smaller. However, up to now

the beam-beam limit with flat beams, at E = 1.56 GeV has not been reached

due to high current injection problems and the present & is only .015

corresponding to a luminosity of 6.5 x 1029 per ring.

Iv.

STUDIES WITH FOUR BEAMS (COMPENSATED MODE)

VI. 1. Experimental Conditions and Optimization Procedure
In order to minimize the residual macroscopic space charge forces,
the following conditions were achieved for both rings:
- Orbit adjustment of both rings within 1 mm for the C.M. and,
correspondingly, .05 mrd for 1/2 crossing angle. (At E = .8
GeV, 0 = .6 mm).
-~ Relative rf phase adjustment between rings within 100 ps. (At
.8 GeV, Vy¢ = 80 kV; OZ/C = 400 ps.).
Notice that the current fluctuations in the bending magnets as

well as low frequency phase fluctuations lead to a vertical beam
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separation of £ 50y according to the finite dispersion function at
crossings (% ng).
The following procedure has been used to optimize the four-beam
interaction:
~ TIdentity of the tunes for both rings. This is done with the
help of auxilliary quadrupole coils.
- Orbit superposition at both crossings.
~ Fine adjustment of tunes with beam colliding; search for
stable area.
~ Fine adjustment of the closed orbit of one ring with respect
to the other one, in both common straights, with colliding
beams; search for stable area.
Here again the luminosity and the specific luminosity measure-
ments are of considerable interest. All adjustments together lead

to a theoretical compensation factor of the order of 10.

IV. 2. Four-Beam Interaction as a Function of Current

The experiment was performed at the energy E = .8 GeV with fully-
coupled round beams. With a fixed tune V = .725 halfway between two
non-linear resonances which happen to be destructive in the ete~ case,
it was soon observed that the four-beam interaction had a current
limit smaller than the two-beam case. However, no increase of the
transverse cross section is observed up to this limit, while for the
same current per bunch, the ete™ case shows an enlargement by a fac-
tor of 1.6. This behavior is shown in Fig. 12 where & always re-
presents the space charge strength of each equal bunch colliding.

The maximum & in the four-beam case is .024 while it saturates at .018
in the two-beam case. As seen earlier, the two-beam case can be im-
proved with a better choice for the tune. It will be shown next that
this is not true with four beams.

It is worth noticing that even if the space charge compensation
is effective over a small fraction of current it does not help in
obtaining more luminosity.

Emphasis can be put also on the fact that the four-beam limit

occurs where the two~beam case starts saturating.
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Fig. 12. Comparison between four beams and two beams: £ versus

current at E = 800 MeV and v = .725

IV. 3. Stable Regions with Four Beams

With four beams interacting the operating diagram has been
systematically investigated on and out of the coupling resonance.

In all cases discrete stability areas are found which again seems to
result from non-linear resonances with, however, the inconvenience
of being smaller than with only two beams. (See Fig. 13).

The stable areas which are seen along the coupling resonance now
seem to be located more or less halfway from non-linear resonances
which previously appeared to be destructive with two ete™ beams also.
Quantitatively considering both extremities of each stable area along

the coupling resonance, one can roughly say that:

v+E = plq,

which shows again that the & value does matter, but not its multiples
nor the residual &y ag. It's difficult to perceive any difference

in current limit for all the discrete stable zones along the
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Fig. 13. Stability diagram with four beams

and two crossing points at 800 MeV.

coupling resonance.

Again, the flat beam case seems to involve non-linear resonances
and leads to a more complicated qualititative analysis.

Non—~linear resonance effects could be expected from the following
mechanisms: a) Non-Perfect Compensation. The residual linear space
charge force decreases as the compensation factor goes up. This
is true also for the residual non-linear forces. However, the multi-
pole content of this non-linear part is different from the one which
occurs in the two-beam case, unless these two beams are slightly
separated which experimentally appears to be more dangerous. Even so
it is hardly believable that the current limit with four beams should
be lower than with two beams. 2) Perfect Compensation. Collective
coherent oscillations can be driven by non-linear resonances if
Landau damping (tune spread) is not effective. If so, one would

expect the dipole mode to be the most dangerous one as the
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corresponding reactive component is higher. That should satisfy the

following relation:

)

V+2kEi = p/q ,

where k is the number of crossing pointé. Experimental results are
more in favor of & and not a multiple of &.

Higher-order—density oscillations are expected also with four
beams which become unstable very close to a rational number p/q3.
In this model the proximity of the integer is very important which,
in fact, means that the linear component gives the major contribution.
The non-linear stop band does not vary rapidly with current. As in
the previous model the number of crossing is a fundamental parameter.
This model would predict as much performance as the hardware could
handle anyway (according to the very simple approach based on the
residual space charge strength). However, as it appeared to be the
major candidate, some more systematic work has been performed, at
least to see how far the qualitative agreement applied. This is the

object of the following section.

IV. 4, Four-Beam Stability as a Function of Tune-per-Crossing
From the '"collective instability model" the expectation is listed
in the table belowé, where the first case is the one which has been

considered up to now.

Table 1.
Operating Point Number of Crossings V/Crossing (Epax) Theory
Vx Vz
3.73 1.73 2 .87 075
3.73 1.73 1 .73 .15
4.80 2.80 2 .40 .22

The second case is easily obtained by separating the beams verti-
cally at one interaction region. Fig. 14 does not show any appre-
ciable difference as compared to Fig. 13. Notice that from the re-

sonance point of view 7th order remains while 8th has now become 4th
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order. Apparently, the beams do not perceive any differences, the

limits being roughly the same.

-

R s n " v N
M T T T T
H H
1 '
) 1
L 9
n _— ——tre———, ,—ll_
1
)
n 1

Y
TRy

wjn  zcs

t.‘.lo

~—
e

Fig. 14. Stability diagram with four beams

and one crossing point at 800 MeV.

The third case corresponds to the initial design operating point
of DCI which, however, gave less enthusiasm when it was found that it
was impossible to inject there with sextupoles on. According to the
small performance that can be obtained with four beams, it has been
possible to switch off these sextupoles. A preliminary check showed
that the sextupole does not change the stability conditions of the
four beams. Moreover, no appreciable difference was found according
to the previous cases.

Figs. 15 and 16 show that with four beams the stable area is
considerably reduced as compared to two beams only, with the same
current per bunch. It becomes more obvious that the four-beam case
yields the reverse of what was expected. Finally, neither a trans-

verse feedback nor a detuning of both rings improved the four-beam
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V. THREE-BEAM BEHAVIOR

Efyeriments with three beams have been done in the strong-weak con-
figuration where a small test beam collides with two strong companion
beams. This is a simple way of checking the compensation of the incoher-
ent beam-beam effect.

The test beam was made small enough to not perturb each companion
beam, but strong enough to enable luminosity measurements.

The study has been done at E = 800 MeV and the main results are

summarized in the table below:

Table 2.
Upper Ring — 4 I > 14 stable
Lower Ring ———> I Io £ I unstable
Upper Ring S I I; > Ip stable
Lower Ring — I, I; £ Iy unstable

Whatever sign the test beam is and its location in one of the rings, the
interaction is stable when the global sign of the unbalanced companion
beams is opposite to the test beam's sign. Otherwise, the interaction is
unstable.

Stability here means that no enlargement of the test beam is obser-
vable when increasing the strong beam currents. Fig. 17 shows that com-
panion beam intensities up to 55 mA have been achieved with stable
configuration while with two beams there is an enlargement factor of 2.5
at 25 mA only. In the unstable case,companion beam intensities of the
same order of magnitude as in the stable case have been achieved, but the
increase of the effective cross section was considerable above 20 mA.
Moveover, there was a visible perturbation of the strong beams. For this
reason, it is very difficult to talk about compensation of the incoherent
effect rather than stability of coupled bunch modes.

The three-~beam experiments were done at a fixed tune, and the stable

areas were not investigated in that case.
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An attempt to detune the two rings did not succeed in obtaining more
stability. However, a proper detuning should include also electric quad—'

rupolés in both rings.

‘ M T 3

E « 800 MeV , ® §° 8- LOWER RING
Ve ms o ¢' ¢ uppER RING
3t a 3o .
m 4 peans

A i

4
1" (mA)

Fig. 17. Beam cross section versus current. Comparison

between types of interaction.

VI. COMMENTS AND CONCLUSION

The main fact that comes out of the two-beam experiments on the
coupling resonance is the increase of the effective cross section versus
current and the corresponding saturation of §. A diffusion-like process
(Refs. 5, 6, 7, 8, 9) with a threshold would be a good candidate although
the effect of the number of crossings could not be checked. The peculiar
dependences of the maximum current and luminosity agree very well with a
constant maximum beam cross section that remains Gaussian and fills the

vertical aperture. Correspondingly, one gets a constant § at least

max’
over the small energy range considered, which is not in contradiction with
a diffusion model for which the & value at the threshold would make more

sense. The flat beam case remains to be studied more systematically also
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as one may expect beam shape distortion close to the limit, leading then
to a maximum & value that may depend on the energy as observed with other
machines. Here notice that the calculation of & from luminosity and cur-
rent measurements is more cautious.

The four-beam behavior definitively kills the simpleminded under-
standing of the beam—beam effect directly related to thé incoherent macro-
scopic space charge force, linear or even non-linear. There a good
candidate appeared to be the collective coherent effect, although present
theories look very optimistic and never predicted the present lack of
success. Notice that a transverse dipole feedback as well as a detuning
of the two rings did not help.

It would be very interesting to know if four-beam and three-beam
experiments could help our understanding of two-beam behavior. The tool

exists, it would be worth using.
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Introduction

In colliding beam storage rings the beam collision regions
are generally so short that the beam-beam interaction can be con-
sidered as a series of evenly spaced non-linear kicks superimposed
on otherwise stable linear oscillations. Most of the numerical
studies on computers were carried out in just this manner. But for
some reason this model has not been extensively employed in analytical
studies. This is perhaps because all analytical work has so far been
done by mathematicians pursuing general transcendental features of
non-linear mechanics for whom this specific model of the specific
system of colliding beams is too parochial and too repugnantly
physical. Be that as it may, this model is of direct interest to
accelerator physicists and is amenable to (1) further simplification,
(2) physical approximation, and (3) solution by analogy to known
phenomena.

We define the simplified system as follows:

(A) head-on collisions of 2 beam bunches at regular intervals,
say, once per revolution.

(B) the weak/strong case in which the strong beam is not affected
by collisions with the weak beam. Thus, we have in effect, a single
particle colliding with a beam bunchf

(C) The strong beam bunch is short compared to the betatron

*Transition to the strong/strong case is similar to the transition from
single particle dynamics in an accelerator to the dynamics of a high
intensity beam.
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wave length of the colliding particle so that it can be approxi-

mated by a §-function in the longitudinal coordinate s.

(D) Close encounters between particles are negligible, hence
the. beam-beam force is given by a potential. Moreover, since the
strong beam is not affected by the colliding particle, the potential
is static. The potential depends on the transverse distribution of

the beam bunch and can also be approximated by a é-function in s.

Nature of the Beam-Beam Forces

(A) Extremely non-linear
To get a rough idea of the degree of non-linearity
consider a simple round beam with current I. "Outside" the beam at

radial location r the magnetic field is

21

Bz—r—-. (l)

The conventional non-linear field coefficients are
-1 1 a8 n_ 21 _ ,..n B 1
b F RT3 . n e UL AL -l (2)

o dr B r or
o)

where B, is the external dipole bending field. For colliding beams
the electric and the magnetic forces add, and the non-linear force

coefficients are, therefore, approximately an. Taking normal values:

I ~ amperes
r ~ millimeters

B~ teslas

one gets

b | ~107% 7P, (3)

This shows that when expressed in units of [r]—n the numerical values

of kxlare independent of n, but in bigger units, say cm ™, the numerical
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5

ues o
to the non-linearities arising from errors in the external guide
field. Even for the rather poor superconducting dipoles the error
non-linear field coefficients fall off rather sharply with increasing
n when expressed in units of cm ™.
(B) Non-linear forces are localized to "surface" of beam.
The external error non-linear fields are largest at
the coil aperture boundary and decrease rapidly toward the center
where the beam resides. The non-linear beam-beam forces behave, how-
ever, just in the opposite way. They are largest at the "surface"
of the beam and decrease sharply toward the aperture boundary.
Hence the beam-beam forces affect the beams much more strongly.
(C) The force potential is periodic in s but very rich in
harmonics.
Indeed, if the potential is truly a §-function of s
it will have a "white" harmonic spectrum, i.e. equal harmonic

content all the way up to infinite order.

Measure of Beam-Bezam Effects

Although many parameters are required to specify the density
distribution of the beam bunch and the dynamics of the particle,
for_simple beam bunch distributions the effects of the beam-beam
forces on the colliding particle can be specified by only a few
combinations of these parameters. Let us take a bi-Gaussian beam

distribution.

§(s) exp |-Z-Xs (4)

where s is periodic with the periodicity of the ring circumference.

The force potential is, thenl
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: x2 y2
o l-exp |- 5 - 5
roN 2(0x+t) 2(co+t)
Vix,y) = -~ dt b4
1
o 2. 2
\/(0x+t)(cy+t)
_ roN g £ . x2 y2 ot z!
—— b - ’ 14
Y o' oxoy ox(ox+cy) cy(cx+cy) oxcy G
_ rON - x2 y2 (o} s)
14
Y ox(cx+oy) 0y(0x+oy) Oy

where in the last expressions the parametric dependence on oy/cX is
explictly indicated. The Hamiltonian for the motion of the particle

is

o=

2 2
H = Z(E2+K, ) 45 (PR y ) 4V (x,7) 8 () - (6)

The usual canonical transformation to action-angle variables, namely

X = VZBXJX cos¢>x
. (similar for y)
23y Bx
Py = al B |51 7 °°S¢x)
X
and 8 = % with 27R = circumference, gives the transformed Hamiltonian
r N {B J cosz¢ B.J cosz¢ o
= X X X Yy Y Y
K=v J+v J + F , L1 8(9). (7)
XX Y Y \ ox(ox+oy) oy(ox+oy) O

Defining the scaled action variables

J = ——Efiﬁ——— R _,Elil___
X ox(ox+0y) Y oy(ox+oy)
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we can write the canonical equations for K as

/dd) r NB8
X 9K o "X oF oF
X _ 99k -, - §(8) = v_ -27f_ = 6(6)
de BJX X YGX(GX+OY) BJX X X BJx B
a7 B ~ r_NB - .
X b 4 - 3K o X oF aF
= - = §(0) = 2mE_ ==— §(8). (8)

\_ do G (G, 70,) 36 Yo, (0, ¥5.) 39, x 3¢

(similar for y).

Thus, we see that the motion is uniquely characterized by the five

parameters
v e - L __Tolx
’ 14
b4 X 27 Yox(cx+0y)
o
ana L . (9)
X
\Y 2 = zi' r(ONBy r
' o +o
Yy Y Y y Oy Y)

Furthermore, we can make the following observations

{(a) To the lowest order in x and y or Jx and Jy we have

_ 2 2
F = 2Jx cos ¢x+2JY cos ¢y (10)

and hence the first equation of Egs. (8) becomes

ds,, 2
=5 = vx-zngx(z cos ¢X)6(e). (11)

Since the average value of 2 c052¢X is unity we see that to this order
gx is just the tune shift. |

(b) The betatron wave numbers (tunes) Vo and Vy enter only to
relate the phases of the kicks given by V(x,v)6(s) in the Hamiltonian
(6). If the kicks are random (We shall discuss later what random

means here.) Vo and v become irrelevant in so far as the overall
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characteristics of the motion is concerned.

(c) If there are more than one collision points around the ring
and the perturbing kicks at these collision points are random the
tune aduances betweeh collisions are again irrelevant and the beam-
beam effects can be measured by <€x> and <£y> averaged over all the.
collision points.

(d) The maximum tolerable beam-beam effects are generally reached
when one of the two tune-shifts Ex and Ey reaches its limiting value.
Hence if one is only interested in the beam-beam limits the parameter
oy/ox is irrelevant and only one of the two values &x and gy is
crucial.

Semi-Quantitative Features of the Beam—Beam Effect

We consider only the equation for one degree-of-freedom X,

2
ax _ _adv(x)
—=+K(s)x = ~ax

§(s) (12)
ds2
where the independent variable s is periodic with a period equal
to the ring circumference. The following observations are important.
(A) Unperturbed (%% = 0) oscillation is linear and long-time
stable. Hence accelerators are built to be "linear". Non-linearity
can arise from imperfections in design and construction, and from
beam~beam interactions. As was seen above, the latter is much larger

and is unavoidable in principle. The beam-beam forces impart "kicks"”

on the colliding particle egual to

. dV(xi)
Axi = -——a—r (13)
i
on the ith revolution.
(B) If the kicks Ax{ are random the oscillation amplitude will

grow. The increment of the Courant=Synder invariant2 W = Yx2+2axx16x’2

caused by all the Ax{ is
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r R R
- » » P4 . 2
AW = }E [2(axi+8xi)Axi+B(Axi) J = ng(ax")Z . (14)

Where the terms linear in Ax{ sum to zero for random Ax{ and
where n~is the total number of kicks received. The corresponding

increment in amplitude A is given by

Aa2) = gaW = nB2(Ax”) i (15)

KN

™mea
PSR

The values assumed for Eg. (3) gives a magnetic field on the
"surface" of the beam of ~1 gauss. With a beam bunch length of,
say, 10—l m and a particle rigidity ofvl()_6 gauss-meter

(~30 GeV proton) we. get

-1
(1 gauss) (10 - 10-7- (16)

106 gauss-m

m)

L

Taking a typical value of B 10 m = 104 rm we get

-6 2

A(a%) = 10" %n mm? . (17)

i

Thus it takes only 5xlO6 kicks to increase A from 2 mm to 3 mm
which is very rapid indeed. This is why a beam transport line with a
length equivalent to more than 107 kicks of this magnitude (not very
long compared to the distance travelled by a particle in a storage
ring) can not possibly work.

(c) If the kicks are periodic all evils are concentrated into
resonances. On reéonance,Ax{ add coherently and A grows propor-
tional to n. Off resonance,Axi cancell systematically to give zero
amplitude growth.

(D) For perturbations arising from external field errors only
low order non-linearities are sizeable. Therefore only low order

resonances are excited in appreciable strength. As long as these
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resonances are avoided the amplitude growth should be negligible.
The drop-off of high order non-linearity is a general characteristic
of all fields generated by charges and currents outside the apertureﬁ
and is g consequence of the vacuum Maxwell equations. This dis-
cussion shows also that the resonance expansion is useful only
when the resonances gxcited are limited to low orders.

(E) When the perturbations arise from the field generated by a
beam bunch through which the colliding particle travels, the non-
linearity and the harmonics of the forces extend to extremely high
orders. The tune-space is covered dense (density of rational numbers)
by resonances and the unperturbed tune Vo sits in a continuum of high
order resonances even when all strong low order resonances are avoided.
This means that the part of Ax{ which contributes to the continuum of
resonances in the neighborhood (within the "line width") of vV, appears
to be random, the corresponding part of the motion is ergodic, and the
oscillation amplitude growsf This is similar to the statement that a
signal which is random in the time domain has a continuous "white”
spectrum in the freguency domain. The "natural line width" is rather
small, but since Vo is always wobbled by some random noises in the
extarnal field, with this vo—wobble included the "total line width"

could be substantial.

*It may be objected that this is contrary to the KAM theorem which
states that for 1 degree-of-freedom when the non-linear perturbation

is sufficiently small well behaved KAM surfaces exist and prevent the
growth of the oscillation amplitude. There is indication, however,

that KAM theorem holds only for extremely small perturbations, much
smaller than any physically realistic values. 1In any case we can always
consider the motion in 1 degree-of-freedom as the projection of a motion
in 2 degrees-of-freedom for which Arnol'd diffusion does occur and

cause unrestricted growth in oscillation amplitude.
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(F) Following the reasonings given above and using the
bi-Gaussian potential, Eq. (5), we can derive a semi-quantitative

formula for the amplitude growth. Putting O = oy = ¢ (round beam) _

)

and y = 0 in Eq. (5) we get

- 2
l—exp[—:ﬁi———J

r N 2
Vix) = o at 2§t+0 )
Y t+o
o
o n+l
g r )
Y nZ0 2%(n+1): 2(nFL) {42
and
n
o +
Ax” = - @V _ oM _tjﬁfif; Ei % (19)
dax 2 n 2 *
YO n=0 2 (n+l)! ‘o

If only resonances of order m (a large integer) and above can fall

inside the Vo line-width, the random part of Ax” contains only ternms
with n>m. Thus, in the expression for (Ax’)rms the summation should only
be from m to . The amplitude growth is, then, given by Eq. (14) to be

a2
ﬂ} w (20)

Q:lQ-
=

ot

_ 2220 & (1t
= £8(8x )rms = 8w £§ AE; (n+1) ! €/

where we have used the relations

emittance of beam

i
™
i

and
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f = %% = rate of collision between particle and beam bunch.
Generally, the first term in the summation is the largest and we

have approximately ‘ _

-

ol

W

2

Two comments are useful.

2m 5
W ) 27 (21)
) W, K 2 2 mi

(1) The line-width cannot be derived from this crude
model. Thus, m must be considered an adjustable parameter. Further-
more, depending on how much reliance one puts on the measured beam
emittance € and on the vélidity of the approximations, it may be well
to consider k also as an adjustable parameter.

(2) Larger line-width corresponds to lower m, hence larger
k and larger dw/dt. Thus, the effect of external noise in increasing
dw/<dt is magnified by the non-linear beam-beam forces through a
widening of the line-width.

Comparison of Different Systems

(A) According o the beam and collision geometry
(1) Continuous beams
(a) Crossing at an angle - Kicks are one dimensional
(only in direction perpendicular to the crossing plane), hence the

motion should be relatively stable.

{b) Colliding head-on - Kicks are two dimensional,
hence the motion is‘expected to be more unstable.

(2) Long bunched beams -~ The force potential 1s identical
to that of the corresponding case of continuous beams except at the
ends of the beam bunches which constitute only a negligible part of
the long bunches. The synchrotron motion of particles in the beam

bunch will, however, enhance the instability. This can be understood
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simply by noting that the number of resonances is increased by the
synchro-betatron side—-bands and the continuum of resonances is
therefore much denser than without the synchro-betatron resonances.

T - (3) short bunched beams - If the length of the beam buncheé
is comparable to their widths the kicks from the beam-beam forces
are three dimensional whether the beams are crossing at an angle or
colliding head-on. This plus the synchrotron oscillation will make
this the most unstable geometry.
(B) According to the particle type
(1) Electrons (positrons)

At the present storage ring energies the synchrotron
radiation from these particles is sizeable. The synchrotron radiation
produces two major effects on the particle oscillations: (i) damping
and (ii) quantum fluctuation which acts as random kicks to blow up

the oscillation. In terms of the Courant-Snyder invariant W defined

in Eq. (14) we can write

aw _ W (22)

where 0(>0) is the blowup due to quantum fluctuation and T is the

damping time due to synchrotron radiation. With some modification
ané reinterpretation the beam-beam effect can be obtained from

Eg. (19). The electron beams are not round but flat ribbons with
0x>>oy, hence the vertical (y) effect is larger and gives the
limitations. We first rewrite Eq. (19) as

w + 2
AY" = 15 igN+o r (0,0 L §{l’n : >’ :
YO 0470 Y n=o 2™(n+1)! o,
© 2 n+s
. 2nE,, .5 1l [y 2. (23)
By ¥ n=0 (n+l) 20 2
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Eq. (20) then becomes

1
w |M2
e/

aw c 00 (_l)n+l

_ N2 2_,.2 —
- = fB(Ay )rms = 8w fg ——B—' ngxn W (24)

dt

where the subscript y is omitted. Again, taking only the largest

term n = m in the summation we get

2
o
aw _ kf52{314

ol

t B

2m+1l 2
W , 27
e ﬂ) : k=2 [‘(ﬁﬁT‘] . (23)

In addition to the beam-beam effect we can also add an external noise

term P. Altogether Eq. (22) is modified to

2
g
= p+o-¥+xse? =

W

e/m

o7

il i (26)

}2m+l

o7
o+

The maximum tune shift Emax that can be obtained-is given by the

condition dW _ o at a value of W of the order of and proportional

dt
to ¢/m, since the two beams are approximately equal in height. This

gives

kee2 | |ox - 27
max B / _Q"P . (27)

This leads immediately to the energy (E) dependence of gmax

because we have

2

) W

W« E/TT « E, hence E-/—_ﬁ- « EQ;
1 3 W 5
= E”, hence = < EY,

Q « ES, coupled over from horizontal;

g, = E7, because O, is likely aperture limited, and
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The energy dependence of gma can, thus, be

X
1

2

£ ., = (aE>-b) . (28)

3

In éctugiity the measured data from SPEAR™ can be fitted quite

well with b=0, i.e. no external noise. Fig. 1 shows the fit with
-5

- 2 .
gmax = 0.01 E (E in GeV). (29)

The energy dependence of the maximum luminosity Lmax is related to
4

that of giax by

L «© E2

g2« E
max max

E . (30)

Figure 2 shows the fit to SPEAR data with

L. =0.03 E’

nax (E in GeV). | (31)

(2) Protons (antiprotons)
For present storage rings at energies less than tens
of TeV the synchrotron radiation for these particles is negligible
and the amplitude (or W) growth equation is given by Eq. (21) for

round beams to be

— = P+kfE /7

2m
aw _2‘ W ) . (32)

Several conclusions can be drawn from this equation.

(a) With all terms positive on the right-hand-side
there cannot be any threshold behavior as in the case of electrons.
The beam growth rate will simply increase with increasing ¢£.

(b) If the beam growth rate is measured by the beam

loss on a collimator aperture, the collimator has to be fitted



112

rather tightly around the beams. As was sﬁated at the beginning,
the non-linear beam-beam forces are localized to the "surface" of
the beam and fall off rapidly going away from the beam. —
d - (c) Unlike electron beams, proton (antiproton)
beams generally do not have Gaussian transverse density distributions.
The distributioﬁ tends to be more squafish and more truncated.
Nevertheless, the qualitative or perhaps even the semi-quantitative
features of the development given above should still be valid.

(d) Eg. (32) indicates a beam growth rate propor-
tional to 52. The same quadratic dependence in Eq. (27) led to the

5 6 on the CERN-ISR

fit shown in Eqg. (29). Experiments by Keil™ and Zotter
seem, however, to indicate an exponential dependence. This discrepancy

must be resolved.
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ABSTRACT

The filamentation instability of the electron and positron
colliding beams in a storage ring are investigated within the
framework of the rigid beam model and the Vlasov-Maxwell equa-
tions, and closed algebraic dispersion relations for the complex
eigenfrequency w are obtained. It is shown that the typical
growth rate of instability i1s a substantial fraction of the
electron plasma frequency wpe’ thereby severely limiting the
electron density in a storage ring. Moreover, the ipfluence of
collective seif-field effects on the electron and positron col-
liding beams in the storage ring is investigated. The analysis
is carried out, distinguishing the cases, where (a) the particle
motions are in a very coherent orbit, and (b) the randomness
dominates the operational condition of a storage ring (e.g., the

incoherent tollision location by small fluctuation, etc.) In
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either case, it is shown that the self-fields effects play a

dominant role in the stability behavior of transverse orbit or

-

the expansion of the beam cross section.
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INTRODUCTION

-

There is a growing interest in the equilibrium and stability properties
of the electron-positron colliding beams in a storage-ring facility.1-3 A
recent experimént4 with colliding electron;positron beams at DESY has shown
the broadening of the beam cross section, thereby leading to reduction of
luminosity. To address this serious problem, we examine the filamentation
instability3 of electron-positron beams and the influence of the collective
self-field5 on the electron-positron colliding beams in the storage ring.
For the analytic simplicity, we assume that beams have cylindrical shape
and are azimuthally symmetric in the equilibrium state. Equilibrium and
stability properties of planar geometric beams are to be presentd in a
subsequent publication.

In Sec. II, we treat the filamentation instability3

of colliding
electron~-positron beams with finite-geometry effects included. Stability
analysis of dipole oscillation is carried out in Sec. II.A, within the
framework of a rigid beam model, which provides a simple instructive
description. In Sec. II.B, the analysis for the high harmonic perturba-
tions with %282 (where & is azimuthal harmonic number) is carried out within
the framework of the Vlasov-Maxwell equations. An important conclusion of
the present analysis is that the typical growth rate of the filamentation

instability is of the order of the electron plasma frequency w thereby

pe’

severely limmiting the electron density in a storage ring. However, the
analysis of broadening of beam cross section by repeating interaction bet-
ween electron and positron beams is not completed yet.

5

The influence of the collective self-fields” on the electron and posi-

tron colliding beams in the storage ring is investigated in Sec. III. The
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theoretical analysis is carried out, distinguishing the two cases, where
(a) the particle motions are in a very coherent orbit and (b) the random-
ness‘;ominates the operational condition of storage ring (e.g., incoherent
collision location by fluctuation, etc.). 1In either case, it has been

found that the self-fields effects play a dominant role in the stability

behavior of transverse orbit and the expansion of beam cross section.
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II. FILAMENTATION INSTABILITY

-

Electron and positron colliding beams in storage ring are likely sub-
ject to various macro- and micro-instabilities.3’6 Perhaps one of the most
important instabilities of the electron aﬂd positronhcolliding beam in a
storage ring is the filamentation iInstability. The unstable modes
propagates nearly perpendicular to the beam with mixed electrostatic and
electromagnetic components, the latter destabilizing and the former
stabilizing. The perturbed magnetic field is mostly in the plane perpen-
dicular to the beam and the Lorentz force causes the beam to filamentate,
similar to the Weibel instability. Unlike the Weibel modes, which are
purely electromagnetic for counter-streaming electron beams, the linear
perturbations of colliding electron-positron beams cause both charge and
current perturbations giving rise to mixed polarizations. Furthermore, for
the case of colliding-beams with radial dimension smaller than the colli-~

sionless skin depth c¢/w_, the finite geometry becomes important and the

p?
usual assumption of infinite, homogeneous medium is no longer valid. 1In
this paper, we treat the filamentation instability of colliding
electron~positron beams with finite geometry effects included. TFor sim-
plicity, we assume in this section that this colliding beam is straight and
infinite along the axial direction.

The analysis is carried out within the framework of both the rigid
beam model and the Vlasov-Maxwell equations. As illustrated in Figt 1, the
equilibrium configuration consists of intense relativistic electron and
positron beams propagating opposite to each other with axial velocity

~ ~

Bp ce, for the positron beam and Be ce, for the electron beam, where

A

g, is a unit vector along the z-direction and c¢ is the speed of light in
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vacuo and Bp=—5e. Moreover, both beams have the same radius Ry and the

" same characteristic energy Yy mcz. It is also assumed that the ratio of

-

the beam radius to the collisionless skin depth c/wp is small, i.e.,

' e2 1 ‘
=N, —; — << 1 , (1)
J mc2 Yb

cﬁLAF‘

where j=e,p denote electrons and positrons, respectively, vj is Budker’s
parameter, Nj = 27 f: dr r n? (r) is the number of particles per unit
axial length, ng(r) is the equilibrium particle density of beam component
j, -e and m are the charge and rest-mass, respectively, of electron. As
shown in Fig. 1, we introduce a cylindrical polar coordinate system
(r,6,z). All equilibrium properties are assumed to be azimuthally sym-

metric (9/36=0) and independent of axial coordinate (3/0z=0).

A. Rigid Beam Model

In order to illustrate the physical mechanism of this filamentation
instability, we carry out the stability analysis in this section within the
framework of a "rigid beam" model. For the purpose of analytic simplica-
tion, we also specialize to the case of sharp-boundary profiles in which
the equilibrium density profiles are rectangular, i.e.,

b’

nd(ry = (2)
J 0, otherwise,

nj = const, 0<r<R

where j=e and p. Making use of Eq. (2), it is straightforward to show
that the equilibrium radial electron field produced by particles of species

j is given by
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2Te n.r , O<r<R, ,
B, () = I3, b (3)
- 2ﬂejanb/r , r>Rb ,

where ey is the charge of particles of beam component j (i.e., ej=-e for
j=e and ej=e for j=p). Similarly, the equilibrium azimuthal magnetic field

produced by particles of species j can be expressed as

~

2ne, n . B.,r O<r<R, ,
i3y b

Byg(r) = (4)

” 2
2ﬂejnj8ij/r . r>Rb ,

where Vj=8jc is the axial drift velocity and c is the speed of light in
vacuo.

In the subsequent analysis, we introduce the center of mass
coordinates (Xj,Yj) for the beam component of specis j. 1In the equilibrium

state, we assume that
X.,Y,) = (0, 0) , 5
( 5° J) (0, 0) (5)
for j=e, and p. It is also assumed that
2 2 2
X, +Y, << . 6
3 Y <R (6)

The restriction to small perturbation amplitudes makes the subsequent sta-
bility analysis tractable. The transverse motion of a single particle of
species j is determined approximately from

2

4 =e, (E+

m r
34273 3

Olv—

d
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where Ej = (Xj’yj) is the position coordinate for a particle of species j
and E and B are the total electric and magnetic fields, and my=Y m is the
relativistic mass. Assuming E and B can be approximated by their equili-
brium values, we substitute Eqs. (3) and (4) into Eq. (7). The equation of
motion for the x direction can be expressed as
2 A
m, 4= x. = 21e L me {1 -8.8 J(x, - XkJ . (8)
3 qp2 3 SR 3
dt k
Neglecting momentum spread, Eq. (8) can be averaged over the beam cross
section. After some straightforward algebra, we obtain the approximate
equation for average motion on the x direction,
d2 A
\ 3
my X —Zﬂej L nkek(l - Bjek)(xj xk) . (9)
dt k
Similarly, the equation for average motion in the y direction is given

by
d2 ~
dt k
Defining
Z, =X, + iy, (11)
| 3

and making use of Egs. (9) and (10), we obtain

gy m et ) ey, (1-88,)(z, - 7,)
—_— 2, = e 1-8.8 Z, - 12 . (12)
dt2 j mj K e € jk j k
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We seek oscillatory wave solutions to Eq. (12) of the form

-y

A

Zj = Zj exp {i[kz[z + Bjc t) - wtji (13)

where w is the complex eigenfrequency, Zj = const is the perturbed ampli-

tude, and the axial wavenumber k, 1s limited to the range

R

N N
o N

<1 . (14)

Equation (14) assures the approximate validity of Eq. (12) for wave pertur-

bations with 9/9z%0. Substituting Eq. (13) into Eq. (12), we obtain

2ne A 2re A -
_ 9 . ) ~ . ‘
[(w szjc) +-—;;l % nkek(l BjBk)J Z —;;l % nkek[l-BjBk) Zk . (15)

Equation (15) gives two homogeneous equations relating the amplitudes Ze

and Zp . Setting the determinant of the coefficients of Z, equal to zero

]
gives 2x2 matrix dispersion equation that determines the complex eigenfre-

quency w. After some straightforward algebra, we obtain the dispersion

relation
o+ ie)? =2 (a )l - k)2l ] ol () . ae

where w;e = 4ﬂe2ne/me is the electron plasma frequency-squared and use
has been made of Be=—8e:1, which is consistent with present experimental
parameters.

Assuming that both electron and positron beams have the same density,
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and defining

a = kzc + wpe . b = kzc - wpe s (17)

we simplify the dispersion relation in Eq. (16) as

2 2y, 2 .2y _ 4
(') (w™b") =0 s (18)

which provides a necessary and sufficient condition

w® > a%? = (x

22
pe z

2 2
c -wpe) (19)
for instability. For the unstable branch, the perturbation is purely

growing with the growth rate

2.2 2 1/2 2.2 1/2
o, = T = {[(B5) +ud ] -2 (20)

The maximum growth rate of instability can occur at a=0 or b=0, thereby

giving

, _ 1/2 1/2 - ,
[wi]m = [5 2) wpe ~ 0.5 wpe . (21)
For colliding beams interacting over a finite distance L, the axial
wavenumber k, is kz=2ﬂn/L where n=1,2,.... In this case, the condition for
a=0 becomes pre/c=2ﬂn. The finite interaction length also imposes a

severe condition for the instability to grow significantly before the beam

exit. Although a small growth of perturbations during omne individual
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interaction of electron and positron beams, we expect that due to this
filamentation instability, the repating interactions between both beams
“even;;ally convert the longitudinal energy of the beams into the transverse
energy of beams and the field energy of perturbations, thereby broadening
the beam crossvsectidn and leading to reduétion of luﬁinosity. However,

the analysis of broadening of beam cross section 1s particularly difficult

and is currently under investigation by the authors.

B. Vlasov Description

In the previous section, we have investigated the stability properties
of dipole oscillation in the transverse instability for the electron and
positron colliding beams, within the context of rigid beam model. Although
a dipole oscillation in a rigid beam model provides a simple instructive
description, it is necessary to investigate stability properties for
perturbations with high azimuthal harmonic number £22 within the framework
of the Vlasov-Maxwell equations.

For beams of well-defined energy and momentum, an equilibrium
associated with the steady-state (9/9t=0) beam distribution function,

~

n ~
0 -1 - 2 »
fj(H,Pe,Pz) FiYom 5[H-ij9 Y me )G(Pz meﬁjcj , (22)

i

is particularly suited for stability analysis, where the total energy,
2 4 2_2,1/2
Ho= (n%™ + ep")7 T+ 250, (r), (23)

the canonical angular momentum,
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Pe = rpg ’ (24)

e

and the axial canonical momentum

P = ﬁz + (ej/c)Az(r) , (25)

are the three single-particle constants of the motion in the equilibrium
fields, and wj is the beam rotational frequency of species j and ;j is a
constant. In Eqs. (23)-(25), ¢o(r) is the equilibrium self-electric
potential, Ai(r) is the axial component of vector potential for the
azimuthal self-magnetic field, and p = (pr,pe,pz) denotes mechanical
momentum and is related to the particle velocity ¥

by g=(2/m)(1+g2/m2c2)-1/2.

Since the r-6 kinetic energy of particles is small in comparison with

the characteristic energy mecz, it is straightforward to show that the

term H-ije in Eq. (22) can be approximated by7
P 2
2 1l 1 2 2
- = D ——— -_— 2
H ije mec + Zme + 2 Ybnfj r-, (26)
where
2 2,-1 2
Yb = (1_8 J » P TP + (Pa - mew-rj s
and
2 (0 - 2 ey - ]
Q) = (W, = Jlw, 0, ) = w0 - e (1-8.B ) » 27)
3 (J J)(J J) 3 me%nkk( ik (
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~

In Eq. (27), the laminar rotation frequency wj is defined by

- ~ e, - 1/2
Wy = [- —1me IZ( n, e, (1-8j8k)] . (28)

Substituting Eq. (26j into Eq. (22), we find the equilibrium particle

density profile

o 3 o
nj(r) = [dp £ (H,Pg,P))
nj . 0<r<Rb s
= (29)
0, otherwise,
where the beam radius Ry is defined by
2 2,° 2
= - 2
R, = 27y, v ) vy ; (30)

for j=e,p. Equation(30) ensures that the electron and positron beams have
the common beam radius Rb‘ It is important to note from Eqs. (27) and (30)
that the radially confined equilibrium exists only for the rotational

frequency w; satisfying

3

W, W, <W, . (31)

Additional equilibriium properties associated with the distribution
function in Eq. (22) are discussed in Ref. 7.

In order to obtain the dispersion relation for filamentation
instability of the electron and positron beams, we make use of the

linearized Vlasov-Maxwell equations. For perturbations with azimuthal
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harmonic number £ and axial wavenumber kz, a perturbed quantity 6¢(x,t)
can be expressed as 6¢(5,t)=;(r)exp{i(26+kzz-wt)} , where w 1s the complex
“eige;%requency. The present stability analysis is carried out in long
parallel wavelength and low frequency perturbation satisfying k§R§<<£2+l,
Iwa/c|2<<£2+1 . With this aésmption, thé axial comﬁonents of perturbed

field Ez(r) and Bz(r) are negligible and the Maxwell equations of perturbed

potentials can be expressed as

2 .

13 ) 2 -
Emrn - i@ = mm (32)
and
Cl_é_ r 2 _.&i) Ar) = =5 3 0y (33)
r or or r2 T T Yz

where %(r) is the perturbed electrostatic potential, ;(r) is the perturbed
charge density, ;(r) and 3Z(r) are the axial components of the perturbed
vector potential and current density, respectively. Components of
perturbed fields can be expressed in terms of &(r) and A(r) as

By = ~126(r) /r, E_(r) = - (3/31)6(x), B_(r) = 4A(r)/r, and

gs(r) = —(B/Br)g(r).

In order to calculate perturbed charge and current densities, we solve

the linearized Vlasov equation to obtain the perturbed distribution

function7
0
~ e.me of ~ )
f.(r =12 _J y.(r) + (w-4w .-k B.c
352 P, 3p, { j ( iz]

0 (34)
x J dt 1 wj(r Yexpli £ (6 -e)-i(w-kzsjc)r]} .
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where the perturbed electrostatic potential wj(r) in the frame of

reference moving with velocity Bjc is defined by wj(r)=¢(r)—BjA(r) and use

has been made of pz/me=Bj consistent with Eq. (1). It is useful to
introduce the polar momentum variables (pl,¢) in the rotating frame
defined by Py + mewjy =P cosd, py - mewjx =P sind. Note also that
the Cartesian coordinates (x,y) are related to the polar coordinates (r,9)
by x=r cos® and y=r sinf. 1In this context, the transverse equation of

motion of particles can be expressed as’

A ~ ~ ~

x (1) = ([1/w /Y. m)cosd sin w,T - rw,sinfsinw,T + rw,cosbcosw,T
(0) = (1/w )@, /ym)cose 5 5 3 3 41
) = (1/w ) /Y.m)sindsinw ., T + rw,cos9sinw.T + rw.sinBcosw.Tl-
y (1) =« J(plb) 3 i ; ; ;
(35)
where T=t’-t, and the harmonic frequency mj is defined in Eq. (28).
Upon integration of Eq. (34), the perturbed charge density can be

found to be

o
A 2 2 00 oo L af. A 2’ J
p(r) = 2me” ) meJ dp, p; ap_p 37 H)J. (r) + (w- wj-kzsjcjlj .
j 0 —o + 7L
(36)
where the orbit integral Ij is defined by
ZTTQ O - ’
I, =41 dr v, (r*)exp {i[2(6 -6)~(wk B c)T]} . (37)
] o &, ] z J

Similarly the perturbed axial current density can be obtained. For

analytic traceability, we will consider here a class of special solutions
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for which the perturbed charge and current density are localized on the
beam surface, i.e., equal to zero except at r=R,. More general
ﬁertu;%ations, particularly the body wave perturbations, are to be
presented in a subsequent publication. In this case, it follows from Egs.
(32) and (33) thét the-function‘wj(r) has the simple form @j(r) =
%(r)—Bj;(r) = erg for O<r<Rb. Substituting Eq. (35) into Eq. (37) it is

readily shown that

iwj(r) ~ -
Ij = ZEET;E-J_m dT exp[—l(w—szjc)T][(wj+wj)exp(1wjr)
b (38)

A ~ Q/
- (w,-w,)exp(-iw,T)]
(J J) p( i
After some straightforward algebra that utilizes Eqs. (22), (36) and (38),

Eq. (32) can be expressed as

2
2 - w .
1 3 3 L\ - _PJ -
—I: —a—; r ?{ - _2 (r) - = z w(r) 2 TJ(U)) 6(r R‘b) ’ (39)
r J J Qj

~

2 2
wher we = 4me” n. /Y
°re b3 i"'®

~ ~

m is the plasma frequency - squared of beam

component j, Qz= (w,=w, ) (W +w

is defined in Eq. (27) and T.(w) is
jjJJj) q. (27) J(

defined by
0, —w R w—Lw k B +o.\n
. . - - c LW,
T (w) =_1+(_.LA__1] Z h| ]
] 20, ) 2 n'(1~n)' w-k B cHeb, —2nw [w.—w. (40)
J n= h| j J 1
Similarly, Eq. (33) can be expressed as
) 2
1 3 3 2 - EJ
T3 F3p T —2] A(r) = Z B w (r) T, (w)G(r—R_b) . (41)

r ] JRb

where use has been again made of the approximation P, /y m B ¢ consistent

with Eq. (1).
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As the right~hand sides of the coupled differential equations (39) and
. (41), are equal to zero except at the surface of the beam r=Rb, they can be

solved in a straightforward manner to give

. . 2
w .,
c, = 1(1-88.) 2L 1 (u)c (42)
k : . -
g K 2293? 3]

In the case when the beams are located inside the cylindrical conducting
wall with radius Rc’ the term Ck in the left-hand side of Eq. (42) is
replaced by [1-(Rb/Rc)2]—ICk- Note that the absolute value of

wpgrj(w)/ﬂé in Eq. (42) is of the order of unity or less. It follows from

Eq. (42) that the condition for a nontrivial solution (Cj not all zero) 1is

given by -

2 2
w__w
PP Ppe

2 .2 2
1-¢( /2 Qp Qe) Fp(w) Fe(w) =0,

(43)

where use has been made of Bp=-Be=l and Yb'2<<1, which 1s consistent with
present experimental parameters. Equation (42), when combined with Eq.
(40), constitutes one of the main results of this paper and can be used to
investigate filamentation stability properties for a broad range of system
parameters.

As an example, we restrict the investigation of dispersion relation
(43) to the case, ‘where both beams are in a cold fluid rotational

equilibrium characterized by *iwj- A careful examination of expression

b
for Pj(w) show that/

gim . | . Wl (44)
m,+1mj —Pl T.(w) = PJ -

J J _ _ -~ _ _ _ ~
229, _ 2 (w szjc+2wj)[w szjc+(£ 2)wj]




132

Therefore, in a cold fluid limit, the dispersion relation in Eq. (43) can

_ be considerably simplified. After some algebraic manipulation we can show
that for the fundamental mode perturbation (i.e., £=1), the dispersion
relation in Eq. (43) 1is identical to Eq. (16) obtained within the framework
of rigid beam model. The stability analysis of Eq. (43) for a broad range
of harmonic number £ and rotational frequency wj is currently under
investigation by the authors. Nonlinearly the beams become filamentated
first, then the current filaments of the same sign attract each other to
form a broader beam. Finally, we conclude this section by pointing out
that the understanding in broadening in beam cross section by repeating

interactions of beams is not completed yet. And this area is currently

under investigation by the authors.
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ITI. COLLECTIVE SELF~FIELD EFFECTS

In this section, we examine the influence of the collective self-
fiei;ss on the electron and positron colliding beams in the storage ring.
While the forces of the self-generated electric and magnetic field of a
highly relativistic electron (positron) béam on an eiectron (positron)
cancel out to order O(Y-z), i.e., Er + BCB6=0(Y_2) the forces of the
electric and magnetic fields of the electron beam on the colliding
positrons are additive leading to radial acceleration. This effect of the
collective self-fields of one species on the other specles of the colliding
beams imparts considerable transverse energy, thereby substantially
increasing the beam transverse dimensions upon collision. In order to make
the problem simple, we assume that the colliding section of the storage
ring is straight. The theoretical analysis is carried out, distinguishing
the two cases, where (a) the particle motions are in a-very coherent orbit
and (b) the randomness dominates the operational condition of storage ring
(e.g., incoherent collision location by fluctuation, etc.). In either
case, it is found that the self-fields effects play a dominant role in the
stability behavior of transverse orbit or the expansion of beam cross

4

section. For present experimental parameters” at DESY, the cross section

of the beam can be expanded to ten times of its original area within 5
milliseconds operational time. Without loss of generality, we assume in

Fig. 1 that the front edges of both beams arrive in 2z=0 at time t=0.
The axial orbit of particles of beam component j is given by
z = z,+8,ct (45)
] |
where the initial position zj is restricted to satisfy

z.(z,+e.L) <0 . (46)
it
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Here §j= sgn ej and ej is the charge of the particles of beam component j.

The particle density profile of beam component j is expressed as

-

n?(r,z\w = nj(r,Z)U[(Bth—Z)(z+st~Bjct)] . 47)

where the Heaviside step function U(x) is defined by

0. x<0 ,
U(x) = (48)
1, x>0 .

For a specific choice of the beam density nj(r,z) in Eq. (47), the
potentials for the self-fields are to be calculated from the Maxwell

equations. The Poisson equation can be approximated by

1 9 3
plevnl s 5;-¢(r,z,t) = - 4wzejn§(r,z,t) R (49)
J

where ¢(r,z,t) is the self-electric potential. In obtaining Eq. (49), we
neglect the term proportional to 82¢/822, under the assumption that the
axial length L of the beam is much larger than the beam radius and the
effects of the leading edge of the beams are thus neglected. Furthermore,

the z-component of the VxBS(z) Maxwell equation is expressed as
NN

—_— T — As(r,z,t) = - Z&TTZe,B.nC,)(r,Z,t) [ (SO)

s ,

where Az(r,z,t) is 'the z-component of the self-vector potential. Other com-
ponents of the vector potential are negligible because of Eq. (1). Defining
the effective self-potential wi(r,z,zj) =¢-8jA2, and making use of Egs. (45)

(47), (49), and (50), we have

r

9 .S
5;-wj(r,z,zj) = - 87ne l—f dr'r'n

- (r',z) (51)
(o]

k

x U[(zj-ZZ)(Zz-zj+€kL)] )
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where k#j. In obtaining Eq. (51), use has been made of yg_2= (1—6§)<<1.

In order to make the problem simple, we carry out the analysis in the

average applied field provided externally by the periodic quadrupole mag-
netic field, similar to that used in the previous study6. In this regard,
the applied focussing force can be obtained from the axial component of

the effective vector potential

22

Aext (r) = _(me/ZeBp) we T (52)

Z

where we is the focussing oscillation frequency determined by the

quadrupole field gradient.

The total energy of particles of the beam component j is given by

1/2
2
H= @c'+c?p?d) + e 4(r,2,0), (53)
Y]

where the lower case p denotes mechanical momentum and is related to the

2 2,1/2

particle velocity v by v==p/m(l+p2/m ¢ Since the r-6 kinetic
n VY "

energy of particles is small in comparison with the characteristic energy

ybmc2 and vj/Yb<<l in Eq. (1), it is straightforward to show that Eq. (53)
can be approximated by
p2+p2
2 X s 1 2 2
H = Y me + E;;EX'+ ejwj(r,z,zj) + 3 Y W r (54)
2 2 71
where y, = (l—Bj) . From Eq. (54), we obtain the equation of motion for
z(t) = x(t) +iy(t) (55)

2

where i= (—l)l/ . Making use of Eqs. (45) and (55), and B§=l, the

equation of motion for particles of the beam component j is given by

2

2 2 ,~r wf
9—%+ 8"62 : -% J dr'r'nk(r',Z)U[(Z.—ZZ)(Zz-zj+skL)] +—52=0 (56

dz Yy, mc r o J c
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where k#j and zj is defined in Eq. (45). Equation (56) determines the transverse
position of particles of beam component j, thereby providing the information

o% the‘éarticle density nj(r,z), which in turn governs the equations of

motion for particles of the beam component k. In this regard, the coupled
differential equation (56) for jﬁe and p caﬂ be used td investigate the

temporal profile evolutions of various beam properties for a broad range of

initial parameters.

As an example, we consider a tenuous positron beam satisfying

ol << (c/L)2 R (57)
PP

where aip = 4ﬂﬁpe2/ybm is the average positron plasma frequency-squared
in the laboratory frame. Equation (57) assures that all the electrons

move on the straight paths with constant radius r during the collision.
Assuming the electron density profile as

ne, r<Rb s (58)

n (r,z) =
e ,
0 , otherwise,

the transverse equation of motion for positron can be expressed as

dZZ w2e wﬁ
S22 4+ 227 y[(z ~22)(2z-z -L)] +—= 2 =0, (59)
d22 c2 P P c2

where wie = 4ﬂ;ee2(ybm is the electron plasma frequency-squared.

Without loss of generality, we assume that there is one pair of electron
and positron beams in the entire system, thereby indicating that the whole
storage ring can be represented by two focusing sectors. Each sector consists
of a self-beam focusing set (the region in which beams collide) and an
applied focusing set. The subsequent analysis is carried out distinguishing

the two cases: (a) the positrons move on a very coherent orbit, and (b) the
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axial location of collision as well as the beam length fluctuates incoherently,

thereby the ensemble average can be feasible.

A. Stability Analysis of Coherent Positron Orbit

The stability properties of individual particle orbit can be determined

from the transformation matrix of one sector8 for a very coherent positron

orbit. Assuming that a positron has an initial condition Z=Z1 and
Z'==(dZ/dz)==Zi at z==zp/2, it can be shown from Eq. (59) that the transverse

orbit of this positron is given by

z=2)cosl (wp/e) (z-z /2] + (Zyc/up) sinl up/e) (=2 /D] (60)
for z /2<z<z /2+L. Here the frequenc = ( 2 + 2)1/2 From E (60)
P o . q Y wp Whe we . q.

it is also straightforward to show that the transverse position 22 and orbit

1

slope 22

of positron, when it emerges from the right-hand side of the

electron beam, is given by

z, cos(wTL/Zc) (c/wT131n(wTL/2c) Z1
= (61)
! 1
Z, —(mT/c)51n(mT /2¢) cos(mTL/ZC) Zy
Similarly, when the applied focusing section has been traversed, the
position and orbit slope are given by
Z3 cosd (c/mf)sin® 22 ’
= (62)
1
Z; —(wf/c)sin® cosd 22

where the phase shift ¢==wf(S-L)/2c and S is the length of the whole circum-
ference of storage ring.
Therefore, from Eqs. (61) and (62), we obtain the trace of the trans-

formation matrix M for a sector
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_ STy fygine sin(—— 63
TrM = 2 cosd cos( C) (w +- )sing Sm(2C s ( ‘)

-

which is the sum of the elements of the principal diagonal of the transforma-

tion matrix M. . The necessary and sufficient condition for stable transverse

orbit is

T TrM[ <1 . (64)

4
As a typical example in the present experiment, we consider the system

= ZXI07 rad/sec. Substituting

parameters wpe= 109 rad/sec, L =2cm, and g

these parameters into Eq. (63) gives approximately Tr M/2 =cos¢ =-sind,

which violates the inequality in Eq. (64) for the range (n-0.5)7 <¢ <nam,
where n is an integer. We therefore conclude that the collective self-fields
effects (wpe) of the electron and positron colliding bgams play a signifi-

cant role in the stability behavior of transverse particle orbit.

B. Expansion of Beam Cross Section with Ensemble Average

In order to investigate the expansion of beam cross section for uncon-

trollable collision (incoherent collision location, etc.), we define

2 _ * 22' 1¥
r] = ZlZl + (c/wf) 121 . (65)

which represents the maximum radial deviation from the axis of symmetry
before collision. 1In Eq.(65) , the asterisk (*) denotes the complex

conjugate. During the collision (zp/2 <z <zp/2-+L), the transverse orbit

of a positron in Eq. (60) can also be expressed as
Z=A cos[(wT/c)(z—zp/2)4-a] R (66)

where A is the maximum amplitude and o is the initial phase angle which is
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. -1 '
defined by o = tan [—(c/wT)Zl/Zl]. The maximum radial deviation for rance z

satisfying zp/Z <Z‘<Zp/2'+L is determined from

-

AA* = ri/[u (wpe/wf)zsinza] , (67)

where use has been made of Egs. (65) and (66), and wT=é(w -+w§)1/2. From
pe
)

Eq. (66), the positron position 22 and orbit slope 22 can be expressed as

N
fl

A cos[(wTL/2C)'+d] s

N
1l

—A(wT/c)sin[(wTL/Zc)-+a] ,

thereby giving the relation

e ) (68)

(r2)2 l+(wpe/wf)zsin2[(wTL/ZC)+a]
1

1+(wpe/wf)zsin2a

from which the maximum radial deviation r, after collision is determined.
Depending on the phase angle a, positrons gain (or lose) the

transverse energy by the collision according to r2/r1>1 (or rz/rl<1). The

net gain of the transverse energy (or temperature) by the collision is

determined from the phase angle average of Eq. (68). We therefore define

2 2
2n 14w Jw.) sin"[(w.,L/2c)+u]
2,2 1 pe’“s T
<r2/rl>- 2—TT- o da

5 5 £(c) (69)
1+(wpe/wf) sin“o

for future notational convenience. In Eq. (69), the phase angle distribution
. . I3 ‘ I3 2 Tr ’
f(a) is a positive definite function normalized by J da f(a) = 2n. For
o .

uniform distribution (f=1), we obtain

2

2
2 WL 1+~ /2w WL
<r2/r15= cos ( z )+( 12)e 2f1/2 [1'°°S(%)]' (70)
4w, Jwy)
pe’ f

Evidently, we note from Eq. (70) that the value <r§/ri> approaches unity
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when the beam length (L) or density (wpe) decreases to zero. Moreover, the
2,2
uvalugh<r2/rl> is always greater than unity.

As a typical example in the present experiment, we evaluate Eg. (70)

for wpe==109 rad/sec, L= 2cm and wf==2><107 rad/sec. Substituting these
parameters into Eq. (70), we find <r§/ri> =1,025. Thérefore, in these

particular parameters, the cross section of the beam is increased by 2.5

percent of its original area after each collision. However, we assume

that the positrons are uniformly distributed in the phase angle o whenever
beams start collision, which is consistent with the ensemble average
scheme. The cross section of the positron beam can be expanded to ten
times of its original area for <r§/ri> =1.025 after 100 times collisionms,
which corresponds to the operational time (S/2c)logl.025=5 milliseconds

for the circumferential legnth S==BX106cm of storage ring.
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IV. CONCLUSIONS

In this paper, we have examined the filamentation instability and the
influence of the collective self-fields on the electron-positron colliding
beams in the storage ring. In Sec. II, we have investigated the stability
properties of filamentation inétability of‘electron—pésitron colliding
beam. An important conclusion of this stability analysis is that the
typical growth rate of the filamentation instability is order of the
electron plasma frequency, thereby severely limiting the electron density
in a storage ring. Influence of collective self-field effects on the
electron and positron colliding beams has been investigated in Sec. III.
The theoretical analysis has been carried out, distinguishing the two
cases, where (a) the particle motions are in a very coherent orbit and (b)
the randomness dominates the operational condition of storage ring (e.g.,
incoherent collision location by fluctuation, etc.). In either case, it
has been found that the self-fields effects play a dominant role in the

stability behavior of transverse orbit and the expansion of beam cross

section.
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FIGURE CAPTION

Fig. 1 System configuration and coordinate system.
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A BEAM-BEAM SIMULATION
FOR THE SINGLE-PASS LINEAR COLLIDER

R. SAH
Lawrence Berkeley Laboratory
Berkeley, California

The beam-beam interaction for the single-pass linear collider has been
simulated by means of a computer calculation. This work is similar to that
done by Robert Hollebeek at SLAC, but the two simulations were done
independently.

The Computer Program — SMASH

A computer program named SMASH has been written to perform the beam-beam
simulation. A "macroparticle" approach was selected in that the calculation
tracks the trajectories of a number of macroparticles, each of which
represents a large number of electrons or positrons. This approach was
favored because it permits the greatest flexibility in simulating cases of
different density distributions, cases without azimuthal symmetry, etc.
Also, the coarseness inherent in the use of a relatively small number of
macroparticles is not a serious drawback for simulations of the single-pass
linear collider, since the particles do not return again and again. In
contrast, beam-beam simulations for PEP must contend with the problem
associated with the repeated collisions of the bunches. That is, small
simulation errors for PEP can cause severe artificial effects when these
errors are compounded during the repeated collisions. In order to provide a
useful simulation of the single-pass linear collider, however, SMASH only has
to reveal the overall characteristics of the beam-beam interaction.

When highly-relativistic particles or macroparticles pass near one
another, their electromagnetic interaction is very simple. See Figure 1. As
particle 1 (with charge g7 and velocity v) passes particle 2 at a distance
of b meters, the transverse momentum imparted to particle 1 is given by the
following formula:

24,9

1 112

8y = (gge7) —py— > where
1 9 nt - m2 .

(4 ) = 8.99 x 100 ————, (MKS units)
"o cou lomb

41> 92 in coulombs
b in meters
v in meters/sec

“2" comes from the evaluation of a definite integral
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A1l the dynamics in SMASH is contained in the above eguation, except for a
form factor which is used to avoid the infinity when the impact parameter
approaches zero. The forces are attractive for electrons passing positrons.

Since_the above transverse kick occurs only at the point of closest
approach, it is convenient to arrange the macroparticles in each bunch in a
series of "slices", as shown in Figure 2. Then the particles in a given slice
of bunch 1 interact with the particles in a slice in bunch 2 when and only
when it passes through that slice.

In program SMASH the interactions between pairs of macroparticles {one
from each bunch) are calculated directly. For large numbers of
macroparticles, this approach is slower than the usual technique of
calculating fields from particle distributions and then using the fields to
integrate particle trajectories. However, the direct calculation is simpler
and avoids possible problems in calculating the intermediate fields.

As it turns out, SMASH can simulate a collision of a 600-macroparticle
bunch with another 600-macroparticle bunch in 40 computing units on the CDC
7600, at a cost of $6.00. A 1200-macroparticle calculation is adequate to
reveal many aspects of the beam-beam interaction, but it is not suited to the
investigation of very detailed questions, such as those concerning the extreme
tails of angular distributions.

Disruption Parameter and Luminosity

TTe disruption parameter D has been defined as follows for a round
bunch+:

D_G_Z_ r‘ecZN
- F - * 2
Yo

y
If we interpret o, and o*y as the half-length (az) and the edge radius

(ar) of a cylindrical bunch of uniform density, we can write the following in
MKS units:

D = ( e ) (az)N ’
4wso E(ar)
where e = electron charge
E = electron energy in joules
N = number of electrons (or positrons) in one bunch
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The significance of the parameter D can be easily understood by
considering Figure 3. Here, two cylindrical bunches of particles collide with
one another. Bunch 2 is artifically kept unperturbed, but bunch 1 is pinched
by the electromagnetic forces caused by bunch 2. Figure 3 shows
cross-sectional views of the collision, the average edge-radius ar being used
as the half-width of each slice. The time evolution of the collision is
revealed by the three views plotted from top to bottom. As is shown in the
figure, a disruption parameter of 1 corresponds to the case when bunch 1 gets
focussed to a point just as it passes through bunch 2. Actually, the focus of
bunch 1 occurs slightly outside of bunch 2, because the definition of D does
not take into account the reduction of focussing forces as bunch 1 particles
approach the central axis of the cylindrical bunch 2.

To calculate luminosities, it is necessary to perform a distribution
smoothing in order to calculate the area of a slice or, equivalently, the
particle density. This is because truly pointlike macroparticles never hit
one another and the luminosity is zero. For slices with uniform density, the
area can easily be calculated by first finding the RMS half-widths oy and
ay-. Then we have

Area = = (ar)2.

Figure 4 shows what happens when two cylindrical uniform bunches collide,
and both bunches are pinched. The parameters of this case correspond to the
single-pass linear collider.

im
1

50 GeV
N =5 x 1010
Ox = Gy = (Ar)/z = 0.6 um

(az)/~'3 = 0.58 mm

9z
Ux' = Gy' = 0.12 mrd

595 macroparticles, 17 slices

D=1

For this case (Figure 4) we find a luminosity of 1.11 x 1029/cm? per

collision, and for the particle angular distribution after the collision we
find oy = 1.17 mrd.
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Figure 5 shows a very similar case where the bunches have gaussian
distributions in x, y, z, x', and y'. The parameters are as follows:

E = 50Q GeV

N =5 x 1010

Ox = Oy = 0.6 um

oz = 0.58 mm

oyx!' = Oy' = 0.12 mrd

590 macroparticles, 19 slices

D=1
I have chosen to generalize the disruption parameter D to gaussian
distributions by noting that, for uniform distributions, we have

AZ = ‘V‘3 OZ

Ar

20X = ch

Therefore I define

D eii = ( ——)
gaussian 4"80 E(20y)2
by analogy with the uniform-distribution case.

In Figure 5 the bunch radius which is plotted is calculated by the
following:

Ar = z’wfﬁxoy

Therefore the cross—sections of the bunches exhibit azimuthal symmetry. The
luminosity calculation proceeds somewhat differently than for the
uniform-density case. For cases using gaussian distributions, the particle
density is approximated by a gaussian distribution with the RMS widths oy
and gy which are actua]]g found. For the case in Figure 5 we find a
Tuminosity of 1.13 x 1029 /cm? per collision, and for the particle angular
distribution after the collision we find ox' = 1.26 mrd. Clearly, there are
no profound differences between gaussian and uniform-density bunches.
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Number of Slices

The number of slices which should be used in a simulation was investigated
in a serigs of simulations summarized in Figure 6. For D =1 it was found
that abouf 10 slices was adequate for an accurate calculation of luminosity,
but D = 5 required 17 slices or more. This can be understood easily because
the cases with higher disruption parameter D exhibit stronger pinch effects so
that the bunches are focussed in shorter longitudinal distances. Therefore,
more slices are required to reveal the details of an interaction which has
more Tongitudinal structure.

For the rest of the cases in this report, D < 6 ; and 19 slices are always
used.

It should be noted that if the total number of macroparticles were heid
constant, and if the number of slices Ng were varied, then the statistical
error associated with each slice is proportional to\LN and the error
reduction due to many slices is proportional to 1/\1N5 . Therefore, at
least to first order the statistical errors of these simulations depend on the
total number of macroparticles and not on the number of slices.

Varying D

In order to investigate the effects of different values of the disruption
parameter D, a series of simulations were run in which D was varied by varying
N. In 1nterpret1ng the results, luminosities were compared after scaling by
1/N2 to remove the effect of varying N. F1gure 7 and 8 show two
representative cases. It can be seen that increasing D from 1 to 6 does not
cause the character of the beam-beam interaction to change dramatically. The
stronger pinch effect is visible even in the top plot of Figure 8. Then the
bunches are focussed to a quasi-stable pinched configuration (central plot).
Finally the bunches leave one another with large angular divergences.

Comparing the behavior of the two bunches in Figure 8 is quite revealing.
The fact that the two bunches behave generally similarly indicates that the
simulation is not dominated by the statistical fluctuations inherent in using
a random number generator to place a finite number of macroparticles in each
slice. On the other hand, the differences between the bunches are clearly
growing with time, which I believe indicates an inherent instability in the
interaction. Of course, by using a small number of macroparticies, SMASH
simulations exhibit far greater statistical fluctuations than an actual
beam-beam collision involving 1011 particles would exhibit.

Figure 9 shows that as D is increased from 0 to 6, the Tuminosity rises to
a peak at D = 2 and then drops off slowly. Notice the luminosity enhancement
of about 2.3 times over the D = 0 value.

Figure 10 shows that for the D = 1 case, the width of the angular
distribution is increased from +0.12 mrd to *1.3 mrd by the collision of the
bunches. However, the final angular distribution is considerably wider (#2.0
mrd) for the D = 6 case. The cross-hatched bins are overflow bins. Note that
the presence of significant numbers of particles between 3 and 5 milliradians
means that shielding the experimental detector is considerably more difficult
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for D = 6. The wider angular distributions at D = 6 can be explained easily.
As the two bunches pass through one another, the pinch effect causes
individual particles to oscillate about the symmetry axis. For cases with
stronger focussing (i.e., larger D), the particles cross the axis at steeper
angles. When the particles emerge from the opposing bunch, those particles
which happen to be crossing the axis are also the ones with the largest
angular divergences.

Offset Bunches.

A series of simulations were performed to investigate the effect of
bunches colliding at small offsets instead of directly head-on. Figures 11
and 12 show the beam profiles of two representative collisions. Here, because
of the lack of azimuthal symmetry, the beam radius which is plotted is

Ar = 20x

The parameters of these simulations are the same as previous calculations
except X = 3.0 oy for bunch 1. The vertical scale has been compressed 4
times more than in previous plots. Note that in the D = 1 case, an offset of
3.0 oy causes the bunches to miss one another for the most part. However,
the stronger attraction between the bunches in the D = 6 case causes the
bunches to collide with a considerable luminosity. This effect is clearly
seen in Figure 13, where the luminosity loss is seen to be much more
pronounced (at offsets around 4.0 oy) for the D = 1 case as compared with

the D = 6 case.

Figure 14 reveals a somewhat insidious problem with larger values of D.
What is plotted is the average final angle x', with the error bars
representing £ oy. The lack of azimuthal symmetry leads to non-zero values
of x', since the entire bunches are deflected as they pass one another. If
the bunch-positioning system does not operate properly for the D = 1 case,
most of the particles would remain within a cone of # 2.5 mrd as the bunches
collide not quite head-on. In contrast, off-center collisions would be mostly
contained in a cone of about #* 10.0 mrd in the D = 6 case. The probable
presence of significant numbers of particles at angles as great as * 13 mrd
might be very inconvenient for the design of detectors and masks.

Incoming Angles

One can conceive of cases where the external focussing of beam-Tine
magnets produces a pronounced waist during the collision of the two bunches.
When o, > B*y, we have collisions which would appear much 1ike the one
shown in Figure 15. Here, the pinch effect is intense only near the z = 0
plane, so the so the effects of the beam-beam interactions upon luminosities
or angular distributions are less pronounced than in the earlier cases where
07 << B*y.
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Conclusions

The choice of parameters corresponding to D greater than 1 or 2 leads to a
luminosity enhancement of about 2. However, the choice of larger values of D
(say 5 or_6) leads to much larger final particle angles, especially if the
bunches do not collide exactly head-on.

1. J.-E. Augustin, et al., "Limitation on Performance of et e~ Storage
Rings and Linear Colliding Beam Systems at High Energy", Proceedings of
the Workshop on Possibilities and Limitations of Accelerators and
Detectors held at Fermi National Accelerator lLaboratory,

October 15-21, 1978, p. 87.
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*
DISRUPTION LIMITS FOR LINEAR COLLIDERS

Robert Hollebeek
Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305

ABSTRACT

Beam behavior in a single-pass collision device has been investi-
gated using a cloud-in-cells plasma simulation code. The intense
electromagnetic fields of the beams produce mutual focusing effects
Qhose strength is determined by the disruption parameter D. The
consequent decrease in the beam radii causes an increase‘in the lumino-
sity of a single collision. The dependences of the beam behavior on
beam profiles and current density are described. The beam behavior
is stable for several plasma oscillations and indicates that high
luminosity can be achieved in single-pass collision devices by using

intense beams.

Submitted to Nuclear Instruments and Methods

* Work supported by the Department of Energy, contract DE-AC03-76SF00515.
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I. Introduction
The idea of using two linear accelerators firing beams of particles

-

at each other for the study of high energy interactions has been suggested

by several authqrs.l) This type of device is called a linear collider and
is of particular impoftance in.the area of high energ§ electron-positron
physics where the energy loss in a circular machine has become a dominant
consideration in the design of new storage rings. For circular machines,
modest increases in beam energy are accompanied by large increases in
either the power required to run the machine, the size of the machine, or
both. Linear colliders can reduce these problems if the beams can be made
sufficiently dense at the collision point.

The small emittance of linear accelerator beams allows the beam to
be focused to a very small spot (several square microns). For a linear
collider, one would like to decrease the spot size as much as possible
to increase the luminosity or rate at which interesting interactions
occur. However, when two such beams collide, the intense electromagnetic
fields of the two beams will cause the beams to be disrupted. If this
disruption destroys the beam focus, the luminosity will be decreased.

If the beams consist of short pulses, and each pulse is discarded
after a collision (single-pass collision device), then the growth of
instabilities due to this beam-beam interaction will be limited by the
short duration of the interaction. The limitations on beam intensity in
a single-pass collision device will be determined by the plasma effects
which occur during the short collision time.

This paper presents the results of investigations into the behavior

of the two beams in a single-pass collision device. There are two issues
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which must be addressed in considering the beam-beam interaction in such
a device. The first is, how large can the transverse density of the beams

‘be before plasma instabilities increase the size of the beams during the
collision and thereby reduce the luminosity? The second question is,

what 1s the effect of-the beam-beam dynamics without instabilities on the
average luminosity of a collision?

The beam-beam dynamics have been investigated using a modified three-
dimensional cloud-in-cells (CIC) plasma simulation program. These studies
indicate that the number of plasma oscillations during beam passage is of
order

nk%fﬁ (1)

where D is the dimensionless disruption factor (discussed later) which is
related to the initial beam density. Typical instability growth rates are
such that n values of one or two can be achieved allowing quite large
values of D.

The second result of these studies is that the pinch effect due to the
attraction of the oppositely charged beams enhances the luminosity.
Figure 1 shows the changes which occur in two such beams as they collide.
The luminosity is related to an overlap integral of the density distribution
of the two beams. The behavior of the luminosity as a function of initial
beam density and beam profile can be studied with plasma simulation tech-
niques and can be reliably calculated for small numbers of plasma oscil-
lations.

The definition of the disruption factor is discussed in Section II
and its relation to the plasma frequency and bunch instabilities in

Section III. Section IV discusses the computer simulation of the beam-
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beam interaction. Section V gives the results of the simulations for the
enhancement of the luminosity due to beam pinch. Section VI discusses

the case where the beams are offset or have uniform transverse profiles.

The conclusions are summarized in Section VII.

II. Beam-Beam Disruption Factor

To investigate the interaction of the two beams as they collide, one
must start by looking at the electrodynamics of two relativistic particles
traveling in opposite directions. In the rest frame of particle 1, particle

2 approaches with

2
y'= 2y" . (2)

The fields at the position of particle 1 can be calculated by transforming

the Coulomb field of particle 2 in its rest frame to the frame moving with

. 2
8 =(1-;%7)1/ . . (3

If particle 2 travels along the z axis and has a minimum displacement from
particle 1 of b in the x direction (see fig. 2), the electric and magnetic

fields arez)

E = Y gb
x 7 (52 4 ' 2422)302

\
_ -qY vt (4)
z (bZ + Y'2v2t2)3/2

B'E
Yy X

B

The time dependence of the fields is shown in fig. 3. Note that, as y
increases, Ex increases and At decreases in such a way that the total
impulse given to particle 1 is proportional to 1/v. For electrons with
E = 50 GeV, y = 105 so that at high energies an impulse approximation for

the effect of the transverse fields is justified. The impulse is just
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eZ
FAt ~ B-c—' (5)

‘The total impulse in the longitudinal direction (due to E) is zero.
Consider now a test particle with displacement b from the collision
axis incident on a charge distribution as shown in fig. 4. For simplicity,
let the distribution be a uniform density cylinder with
N = number of particles of charge e

R radius of the bunch

L

length of the bunch
Then the incident particle sees a magnetic field H¢ due to the current
caused by the passage of the other beam. The current enclosed by a

circular contour of radius b is

2
I= l“LE cc . "bz (6)
R
and amperes law gives
§H-dl=2T1=2bm , g - 2Ned (7)
~ ~ c ¢ ¢ LR2
For oppositely charged beams the force is radial and directed inwards
2
LR
and is experienced for a time At = e °

The effect of the electric field of the passing relativistic bunch

is equal to that of the magnetic field (Ex = %—By) hence the total de-

flection is given by

Ar' = = = - 5 (9
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A similar analysis applied to a bi-Gaussian distribution gives3)
2Nr_ x
- ax' = - =
ycx(cx + oy)
(10)
ot o 2Nrey4
y =-
g (c_+o0
Yo (7 * 9,)
for displacements x << O and y << oy.
The focal length of a thin lens is given by
ax' = - %-x (11)

and comparing this to eqs. (9), (10), one can define a dimensionless param-
eter, called the disruption factor, which is the ratio of the length of the
bunch to the focal length near the center. For a Gaussian distribution,

GZ
D = F o (12)

If the charge distribution is uniform, then it is easy to see that test
particles incident on the bunch with b < R will be focused to the axis
after traveling a distance cz/D. As will be discussed in Section III, the
behavior of the test particles is actually periodic with a wavelength

A =~ 4f which is related to the bunch plasma frequency. For small values
of D, however, viewing the collision in terms of a thin lense with a
fixed focal length gives a good physical picture of the test particle
dynamics.

A test particlé traveling through a non-uniform charge distribution
sees a focal length which may change as a function of time due to the
variation of the charge density along the collision axis. The effective
focal length can also depend on the initial position and angle of the

test particle trajectory. If the charge distribution does not differ too
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much from a uniform one, this represents a lens with small aberrationms,
.and the point focus of the uniform lens becomes a line focus or a diffuse
%ocué?w The disruption factor can still be defined in terms of the focal
length for small displacements from the collision axis or equivalently
the focal length determined by ﬁhe central Aensity. Fér a Gaussian
distribution in x, y, and z one has

2Nrecz

' ycx(cx + cy)

(13)

2Nr o
D = €.z
o (0 + 0
y Yy(x y)

Note that if the aspect ratio of the beam is not one, the focal lengths
in the x and y directions are not equal and one must define two disruption
parameters. For the Gaussian case with aspect ratio ox/cy = 1, the dis-
ruption parameter is simply
o
D= 5 (14)
YO,

The problem becomes much more complex when one considers the collision
of two charge distributions. The complication arises because each distri-
bution will be modified during the collision by its interaction with the
other one., The disruption factors of the two beams can still be defined
in terms of their initial density distributions and the results discussed
previously for test particles are obtained when one of the beams is weak
and its disruption of the strong beam can be neglected. For the general
case however, the focal strength experienced by particles varies with
time both because of the variation of charge density along the collision
axis and because of the variation in density due to the time dependence of

the charge distribution.
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The object of colliding intense relativistic beams of positrons and
elect;ons is, of course, to study the fundamental interactions of these
particles. When an individual positron and electron annihilate or have
a close collision, new particles are producgd with a rate that is given
by the interaction croés sectioﬂ times the incoming flux. The rate of
particle production per unit interaction cross section is called the
luminosity and is the quantity which together with the energy determines
the usefulness of the machine for the experimenters. The total luminosity

is the luminosity per collision multiplied by the number of collisions per

second. Hence
& = ffpl(x,y,z,t) pz(x,y,Z',t) dx dy dz dt (15)

where 2' = z - ct-and f = collision frequency. Neglecting the dynamic
changes in the beam density distributions, one can define a luminosity for

the limit in which the disruption parameters are zero which is
.Z’O = ffpl(x,y,z,t=0) pz(x,y,z',t=0) dx dy dz dt (16)

For two Gaussian distributions with Oxq1 = Ox9s Oyy = Oyy» Ozy = Oz, we get

the well known result

, N

éﬂo T 4m o0 an
Xy

The factor 1/4ﬂ(%{0y comes only from the x and y integration.

In order to calculate the effects of beam dynamics for arbitrary
initial density distributions and investigate any shape dependence, one
needs to define the collision strength in a shape independent way. If the
charge distribution is characterized by the scale parameters Ax, Ay, and
xz, the variables in the problem can be scaled since we are dealing

essentially with a collisionless plasma (point-like scattering). If the

variables are now scaled such that
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E;X = X/)‘X

= v/ '

. F,y y/ y (18)
g, = z/Az

and a shape distribution pg is defined using

fop e e e, =1, (19)
the luminosity becomes
fN.N
172
¢ = —
£ X IO (20)
Xy

where I0 is the overlap integral in x and y and the convolution in z of

pg with itself. For a Gaussian distribution
2 2 2
p, = —L e-(gxl2 + F’y/2 M EZ/Z) (21)
and lx =0, and Io = 1/4w.
We now must consider the way in which the dynamics scales. For a

unit charge, the scattering angle per unit length is given by

ix' _ Te b x

- ety 5 dxdy (22)

where b is the impact parameter of the test charge relative to the element
dxdy. This equation can be rewritten in terms of the scale independent

variables and the shape distribution as

2 -r AL A Ey, * X :
d™x . e N X Ay,y[p 2b
= £ dg_ dg (23)
d22 Y xxxyxz Ab Ei X 'y
and
2 ~
dgx -re N)\z f £y * X
= p, ——— d§_ dE (24)
dEZZ Y Xx Xb £ gi X 'y
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where

6y = (- bIAL . Gr -DIN)

~
-

which is in the form of a dimensionless constant times a shape dependent

function. For a Gaussian distribution this has the simple form

2 2
L -£./2
= —DEX e (25)
dgzz
for § << 1 and § << 1, or
X y
dzgx
= —DE
2 X
dEZ

near the bunch center. D is now defined to be

r, N Xz
D =— (26)
X Y Ax Ab
The unperturbed luminosity is related to D by
D P
@ = v 1+ R)
afo 2 R @n

8nme r o
e z

where P is the power required to accelerate the beam

P = fI‘Iymc2

and R is the aspect ratio

Expressing the luminosity as a function of D in this way is. only approxi-
mate because the eff;ct of the beam dynamics on the overlap integral

(i.e., the difference between SFO and &#) has been neglected in calculating
the luminosity, but it does point out that if the amount of beam power

available is fixed, one must increase the severity of the collision in

order to achieve higher luminosities. ©Note that increasing D by increasing
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o, without affecting the transverse dimensions has no effect on £ except
through beam dynamics.

For the Gaussian shape, the numerical value of the disruption parameter

is
14.4ch'Z ) .
D = To o (28)
Xy
where
= ; . 10
N = number of particles in units of 10
0_ = bunch length in mm
E = beam energy in GeV
cxcy = transverse dimensions in microns.

For oppositely charged beams, the first order effect of the beam
dynamics is to decrease the transverse dimensions of the beam. Since §r/r
is proportional to D and the luminosity is proportional to l/(r)2 we expect

the luminosity to be modified by a factor

r2
3?;~ 02 (29)
o (r)
After a distance &, 8r/r = - Dz/oz for DR,/cz < 1. The dimensions of the
opposite beam are also changing so that D(t) = Do(rolr)z. We have
2. .2 DL DL
r—r0(1—0>, > <1 (30)
z z
and if L is the total length,
L 1/2
Y Dz
(r) = A I, (1 o, dz
(31)

1R

c?
N

'._I

1

o|w
qlc
N

Hence for D ~ 1/2, L/oz ~ 2, and DL/oz ~ 1, the luminosity is enhanced by

@z
4

~ 2.5.
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From eq. (10), the scattering angle distribution for o = oy and

impact parameter b is

s

Nr b
YO z

which has a maxiﬁum near b = Ax since for lafger impact parameters N(b)/N
is decreasing and the scattering angle is less than D/>\Z due to the non-
uniformity of the current density. The scattered beam will have a maximum
opening angle near Ax/Az D. This opening angle is not a scaling parameter,
and its value will depend on the way in which D is increased. If D is
increased by increasing Xz, then emax will remain roughly constant. If D
is increased by increasing the current or decreasing the transverse scale,
then emax will increase proportional to N or 1/Xx, respectively. Further-
more, if the value of D is larger than one, the particle trajectories are
oscillatory and the distribution of scattering angles must be found by

simulation.

III. Relation of D to the Plasma Frequency and Instabilities
It is interesting to compare D to the relativistic transverse plasma
frequency of the bunch wp which is defined as
2
9 41 p r c

wy =Ty (33)

For a three-dimensional Gaussian distribution with charge Ne, p varies
with position and so ,does wp. Using Pnax and comparing to D defined in
terms of the central density (for simplicity o= cy).

N
max (2")3/2 o, 0.0

z
(34)

“Pmax Y
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and one finds
2 .
Nrecz wp oz}/;
- D= 7 = cz 2 (35)

The number of plasma oscillations which occur while traveling a distance

L is n = Lh‘p and using L ~ V21 o, and eq. (35) yieldsA

D~ 8% . (36)
Thus, VD is a measure of the number of plasma oscillations which occur
during the collision. This conclusion could also have been reached from
the form of the scaled equation of motion, eq. (25).

The results of a full simulation (see Section V) indicate that the
effective phase shift for particles near the axis of a Gaussian beam is
actually related to D by

D = 10.4 n’ . (37)
If the beam behavior was stable for two full plasma osciilations, then D
could be as large as 32 for Gaussian beams. Beam growth due to plasma
instabilities typically requires several plasma oscillations so that values
of D less than 10 are certainly stable. The value of numerical coefficient
is somewhat shape dependent.

The collision strength parameter used for storage ring machines is
the linear tune shift3)
r N B*

y

e

Av = =
2n yo (o + 0 )
y Y y % y

(38)

*
where B is the betatron function at the collision point. Using eq. (4)

one finds

*

Avy = (39)

2

« Tk
Q lm

Maximum luminosity is achieved when 8 ~ o, and the observed limitation

for the tune shift of Av ~ 0.06 corresponds roughly to a disruption
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parameter of one. This low value is probably a consequence of the fact

that there are many collisions in a storage ring per damping time. For

4)

]

this case, Uhm and Liu ° have derived a dispersion relation for the

linearized Vlasov-Maxwell equations which predicts a maximum growth rate

5)

of 0.6 wp. As pointed'out by B. Zotter, this value agrees well with

the observed limitation of Av using an effective bunch length L = 27 o,
*
but does not explain the fact that the limit is independent of B .
The growth of the kink (or hose) instability for the linear collider

6)

case has been analyzed by Fawley and Lee ' who find that the growth

factor is limited by the finite length of the interaction to

1 wB 2

8 1T+ a/2 Zc

(40)

where a ~ 0.18 is a term used to model phase mix damping, % is the
effective length and wg is the effective betatron frequency of the collision.
Since 1982/2c = 2mn, we can use n ~ VD /3.22 to get (for the Gaussian)

g < 1.8vD (41)
For a given fractional transverse offset §, the condition g§ < 1 places

a limit on D which is

D < <1.18<S )2 (42)

For a 10% offset this requires that D be less than 31, and for a 257 offset,
D must be less than 5.

The effect of the beam emittance on the collision depeﬁds on the
ratio of the beam envelope size to the Debye length. The Debye length AD
is the average distance which a particle travels in the transverse dimension
during a time 1l/w .

2\1/2
<Vl> (43)

Ay =

D w
P
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Hence, if the transverse size of the beam is comparable to Ap and the
collision time is of order l/wp, particles will traverse the beam due to
emittance effects during the collision, and this will damp amy change in
the beam envelope due to the coherent focusing effect of the beams. The
emittance is the area of the phase space ellipse m(x){x') and hence
2 2.2 /2
2 2 2D 7 A )
e =7 A =
x _2 2

2c

(44)

The velocity distribution also defines an effective temperature for the

beam which is

2
P 2 2
1 € Yme
kT = = (45)
eff 2ym 2."2 )\XZ

The temperature and the rms velocity actually vary with position within the
beam since they depend on the phase space distribution function. Usually
the temperature falls to zero on the edges of the beam envelope (where

(vi) ~ 0) and reaches a maximum on the beam axis. For a uniform radial

dependence of the temperature

2 2
2
(k1) > LB - 1/2ym (v )
4 Ax
(46)
201/2 = £ ==
<V.L> ‘n’ﬁ)\x

The relationship between the beam size and the Debye length for a fixed
disruption parameter is found using D = 1/4n mﬁ Ai/cz and eq. (43)

A
_E z
m™

5 = 47)
X 2vV2r Ax\/D

> >
|

When XD is much smaller than Ax the emittance of the beam can be ignored.
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IV. Computer Simulation

The computer simulation of the beam-beam effect in a single pass
;olli&;r is considerably simplified by the fact that the beams are highly
relativistic and that the collision occurs only once. For the relativistic
beam, the effect of the longitudinal excitagion is uniﬁportant, and the
transverse motion is given by integrating the effect of the kicks defined
by eq. (24). In contrast, the computer investigation of beam-beam effects
in a storage ring requires that one follow the evolution of the bunches for
a time comparable to the damping time. This time is typically much longer
than the time between collisions, and in this case, small perturbations
in the initial configuration of the bunches can grow with time and eventu-
ally become important. This is difficult to study with a computer because
numerical approximations and truncation errors lead to a cumulative loss
of information about the beam behavior. The long-time scale also means
that longitudinal modes in the beam can be important. The single pass
beam-beam effect at high energy can be reliably calculated because of the
validity of the impulse approximation and the small number of plasma
oscillations for reasonable collision strengths.

The computer simulation used here starts by distributing the charge
on a three-dimensional lattice which defines typically 8000 cells for each
beam. The central position and trajectory of each cell is advanced using
time symmetric difference equations derived from eq. (24). The advantages
of time symmetric equations have been discussed by Buneman.7) In this
application, they allow one to verify that the code is reversible and
increase the accuracy of the simulation. Any irreversibility is due to

round-off errors and coarse binning of the density or time step.
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The cells are ad&anced longitudinally at a uniform velocity equal
to the speed of light. For each time step, the transverse kick given to
éach ;;11 of one beam is calculated from the charge in the cells of the
other beam which‘are at the same longitudinal position. The charge
distribution of each beam is modified due to the cumulétive effect of
all the transverse kicks which have been applied previously.

To further increase the accuracy of the simulation, the charge in
each cell is treated as a cloud of charge rather than as a point charge.
Simulations in plasma physics often use the particle—in—celltmethods)
which simulates the motion of the plasma by having many particles within
the cell which share the charge. The number of such particles must be
large enough to reduce the particle or shot noise introduced by statistical
fluctuations. Real plasmas contain large numbers of particles, and such
fluctuations are unphysical. The major advantage of such an approach is
that the simulation of temperature effects is simplified since the parti-
cles can be given an initial velocity distribution within the cell. The
cell is used in these calculations to bin continuous quantities like
pressure, density and electromagnetic fields. The density distribution,
for example, is calculated by simply counting the number of particles which
are found in a given cell at each time step.

The shot noise contributions of the particle~in-cell model can be
eliminated by treating each particle as a cloud of charge. As pointed out
by Birdsall and Fuss,g) this cloud~in-cells method also reduces many
fictitious effects which come about because of the finite cell size.

Errors in time due to the early or late arrival of a particle in a cell

and errors in the forces due to the uncertainty of the particle's position
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within the cell are smoothed. The finite size cloud also smooths the
interactions between particles and eliminates the necessity of cutting
off the singularity in the interaction which occurs when point particles
approach zero separations.

The cloud size doés not haQe to be equal to the céll size. If it
is larger than a cell size or if the cloud is not centered on a cell,
the charge is spread out over several cells in proportion to the fraction
of the total cloud's area which falls in that cell. If the cloud is
smaller than a cell, the model is very similar to the particle-in-cell
model with a particular choice for the cutoff distance for the interaction
of the charges.

In this simulation, the cloud size is changed as the interaction
progresses. The size of a cloud at any given time is determined by the
distance to adjacent clouds on a lattice. Using the nearest neighbors to
determine the cloud size is equivalent to a first order Taylor series
expansion of the motion about the center of the cloud. A fixed cell size
is used to calculate the density distribution and the luminosity overlap
integral. The cloud's charge is apportioned to the cells using an area
weighting scheme.

By dividing each cell into four subcells, the gradient of the density
distribution within a cell can be adjusted to match the local gradient
measured by the positions of the nearest neighbor clouds. This increases
the number of effective cells in the calculations for the purpose of
calculating density distributions and overlap integrals of the type given
by eq. (15) without increasing the number of clouds which must be followed

in the simulation of the dynamics. At the expense of increased computing
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time, several clouds can be superimposed at the same positions but with
d;ffegigg velocities to simulate temperature effects, but we concentrate
here on the cold beam limit. The cell size is usually equal to the original
cloud size since the behavior of the beam is not followed on a scale smaller
than a subcell. A celi size laréer than the original cloud size would

decrease the accuracy of the luminosity calculation.

V. Results of the Simulations

Consider the collision of two beams with Gaussian profiles and scale
factors Oys oy, and o,- One can begin studying the effect of the collision
by looking at the motion of a test charge in one beam whose position (x,y,z)
relative to the center of the beam is (Ux, 0, 0). The trajectories in the
X,z projection for increasing values of the collision strength are shown
in fig. 5. As can be seen in fig. 5 for the case D = 1, the effect of
beam 2 on this test charge is well represented by a focal length which is
equal to the bunch length o, For large values of D, it is best to think
in terms of the number of betatron oscillations which a particle executes
as it passes through the other beam.

The case D = 1 corresponds roughly to a quarter betatron oscillation
and D = 10 is slightly more than one full oscillation. Because of the
form of eq. (24), the equation of motion for small offsets from the beam
center is given by

i
1)

Mg > -DE_ (48)

so that the betatron wave length will be proportional to the square root

of D. The observed values for the phase shift of the test particle at

x =0 are shown in fig. 6 and the phase shift is found to be A¢ =~ 0.62m v/D.
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This relationship for the focal strength of the beam works well up to
quite large values of the collision strength and agrees reasonably with
the rough calculation of Section III, eq. (36). The corrections due to
the changes which occur in the other beam are small. The exit angle versus
position of the test cﬁarge for b between 0 and 32 is shown in fig. 7. The
position is that which occurs when the longitudinal separation between the
two beams is 2.5 g,- This corresponds to a position for beam 1 of z/cz =
1.25 in fig. 5. As D increases from 0 to 1, the exit angle increases. The
maximum exit angle occurs when D is between 1 and 2. The values of test charge
exit angle and position for increasing values of D form an approximate ellipse
similar to a phase ellipse. The rotation of the ellipse is related to the
effective thickness of the lens. The positions of the points for D = 16 and
D = 32 are close to those for D = 3 and D = 8 respectively and indicate
that the nonlinearities of the interaction are not very iﬁportant.

Due to the fact that the charge distributions of the beams change
during the collision, the dynamics of the leading and trailing parts of
the beam are not quite the same as those of the central part. Figure 8
shows a superposition of the trajectories in the xz plane of all the
lattice points with y = 0 for the case where D = 2.4. The lattice is
10 x 20 in this projection and the distance between lattice points is
0.5 0. The trajectories should be compared to fig. 5 for the case D = 2.
Particles within 1 o :0of the beam center are scattered through the maximum
angle. The particles scattered through small angles come predominantly
from the trailing part of the beam which scatters off a partially disrupted

charge distribution and therefore sees a smaller charge density.



185

Figures 9a-c show the density in the y = 0 plane of one of the beams
for the case D = 1, 3, and 5. The times shown are in arbitrary units
éorreé;onding to a beam center-to-center separation of 10 o, at T = 0 and
T = 40. The longitudinal positions of the beam centers coincide when

T = 20 and the luminosity overlap integral (eq. (15)) receives most of

its contributions from 15 < T < 25,

By comparing fig. 9a, 9b, and 9c, one can see that as D is increased
from 1 to 5, the focal point of the beam moves toward smaller times. For
D=1, 3 and 5, the focus occurs near T = 26, T = 18, and T = 16 re-
spectively. In all cases the focus is diffuse because of the non-uniform
charge distribution. As expected, the transverse tails have longer focal
lengths.

The luminosity will reach a maximum when the focal spots of the two
beams overlap most completely, i.e., when the central focus occurs near
T = 20. This happens near D = 2.4. The harmonic motion of particles
near the center for D > 2 (see fig. 5) can yield several diffuse foci
during beam collisions (see fig. 9c¢, T = 25).

As discussed in Section II, the luminosity overlap integral will be
a function of D because of the time dependence of the density distribution
caused by the beam disruption. For oppositely charged beams which are not
too severely disrupted, the dynamics lead to an enhancement of the lumi-
nosity. Using the t;me dependent density distributions found by the
simulation, this enchancement can be studied as a function of the collisjon
strength. The enhancement is defined as the ratio between the actual

luminosity (eq. (15)) and the unperturbed luminosity (eq. (16)) and is
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shown in fig. 10. In order to accurately calculate the overlap integral,
the number of lattice points used in the simulation must be large enough
to follow the density variations during the collision. The integral is
calculated directly from the density distribution of the two beams at
each step. The dependénce of tﬁe enhancement factor on the cell size

was investigated and the number of cells was increased until no further

effect of the cell size could be seen.

VI. Offset Beams and Uniform Transverse Profiles

For the case where the density distributions do not change (the
limit as D goes to zero), one can calculate the effect of an initial
offset of no in the transverse plane on the luminosity. The overlap
integral (eq. (16)) gives a luminosity

@ - E:Eiii - @ -n2/4 :
= T4 - fo°® (49)

for Gaussian beams. The luminosity as a function of D for n = 2 is shown
in fig. 11. From eq. (49) one can see that for a two sigma offset the
D = 0 luminosity is reduced by a factor of 0.37. However, the enhancement
still occurs and the ratio of maximum luminosity to D = 0 luminosity is
almost the same as in the zero offset case. The enhancement drops off
more rapidly with D however.

Similar results have been obtained for the case where the beam has
a uniform density prbfile in the transverse direction and a Gaussian

profile in the longitudinal direction. The collision strength is from

eq. (26)
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and the unperturbed luminosity is 5?0 = 1. The trajectories for test
particles are shown in fig. 12 and the enhancement is shown in fig. 13.

Tor the uniform profile, the enhancement falls off rapidly as the col-
lision strength is increased leading to a net loss of luminosity for D
greater than 16. The -local peaks in the enhancement correspond to values
of the collision strength yielding trajectories which tend to focus the two
beams when the maximum charges overlap. (This is the point Z = 0 in fig. 12.)

The more rapid fall-off of luminosity with collision strength for the
uniform case can be understood in terms of the plasma properties of the
charge distributions. In the leading and trailing parts of a Gaussian beam
and in the transverse tails, the charge density is less than the density in
the central part of the beam. Since the plasma frequency squared is pro-
portional to the density, this means that the corresponding plasma wave-
length Xp is longer in the tails and that the tails are more stable than the
beam core. When beam dynamics are neglected, the tails of the beam con-
tribute little to the luminosity of the collision. The luminosity is pro-
portional to the integral of the density squared and in the Gaussian case,
for example, it receives very little contribution from those parts of the
beam which are more than one sigma from the center or times when the beams
are separated longitudinally by more than one sigma.

When beam dynamics are included, one expects that the cumulative
focusing effect of the head of the beam on the central core will be im-
portant in determining the approximate transverse dimensions of the beam
core and its profile when it overlaps with the core of the other beam.
Thus, the charge distribution in the head of the beam is an important
factor in determining the enhancement factor or ratio of the actual lumi-

nosity to the luminosity expected for undisturbed beam profiles. The
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Gaussian transverse profile has a larger enhancement for D > 10 than the
uniform profile because the non-uniform density distribution leads to a

spread in the plasma frequencies and this together with the longer plasma

wavelength in the tails helps stabilize the enhancement factor.

VII. Conclusions

The energy lost per turn by a particle stored in a magnetic ring grows
as the fourth power of the particle's energy and this power loss has become
a significant constraint in the design of machines to produce high energy
electron-positron collisions. This problem has led to the consideration
of the properties of alternative systems which collide linearly accelerated
beams of electrons with similar beams of positrons. The required luminosity
is achieved in a linear system by having very tight focusing at the beam
collision point. Spot sizes of several square microns can be achieved.

The beam~beam effect which limits the current which can be stored in
a circular machine is still expected to be the limiting factor in linear
systems. However, the limitation comes not from the cumulative effect of
many small perturbations but from the disruptive nature of a single collision.
Particle densities several orders of magnitude higher can be achieved in
the single collision case. In addition, the strong disruption of the beams
leads to an enhancement of the luminosity due to the net focusing effect
which the two oppositely charged beams have on each other (;ee fig. 1).

The strength of 'the interaction between the beams /75, is related to
the number of plasma oscillations which occur during the collision. The
plasma frequency however grows only as the square root of the incoﬁing

current, and this means that very high beam densities can be tolerated.
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Typical instability growth rates would allow several plasma oscillations.
For Gaussian beam profiles, two full plasma oscillations occur for D ~ 32.
| THe interaction of two such beams for small numbers of plasma oscil-
lations can be reliably calculated using plasma simulation techniques.
The magnitude of the luminosity enhancement and the relation between beam
density and effective plasma wavelength have been investigated using a
computer simulation. The luminosity enhancement grows proportional to D2
and reaches a maximum value when the focal spots of the two beams overlap
most completely. This occurs after one-quarter plasma oscillation. For
Gaussian bunches, the enhancement reaches a maximum for D =~ 2.4 and remains
constant to large values of D (D = 20). The value of the enhancement is
approximately 6 for a Gaussian beam which is mismatched at insertion, and
2.5 for a matched beam (i.e., emittance dominated minimum waist). The non-
uniformity of the Gaussian charge density helps stabilize the beam dynamics.
For more uniform shapes, the enhancement drops off more rapidly with D.
Suggestions for linear colliding beam machines have been limited to

10,11) In future designs it

small values of the disruption parameter.
should be possible to greatly increase the design luminosity by increasing
the collision strength and taking advantage of the luminosity enhancement.

A disruption limit D = 32 with a luminosity enhancement Q/Qo = 6 yields

an increase in luminosity of

=]
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6 x 10
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Figure Captions

1.

10.

11.

12.

13.

Computer simulated collision of intense relativistic beams illustrating
the pinch effect.

If the rest frame of particle 1, particle 2 travels along the z axis
and has a minimum displacement from particle 1 of b in the x direction.
Time dependence of the electric and magnetic fields due to the passage
of particle 2 as seen at the position of particle 1.

Test particle incident with displacement b from the axis of a charge
distribution.

Trajectory of a test charge incident on a Gaussian bunch with dis-
placement Oy from the axis for the case D=.5, 1, 2, 5, 10, 32.

The test charge is within a Gaussian charge distribution.

Phase shift of the test particle versus disruption parameter.

Exit angle versus position of the test charge incident at (ox,0,0)

for values of D between 0 and 32.

Trajectories of the lattice points in the yz plane for the case
D=2.4.

(a),(b),(c) Simulation of the density distributions during the
collision of two Gaussian beams for D=1, 3, and 5.

Luminosity enhancement versus disruption factor.

Luminosity versus disruption factor for two Gaussian beams colliding
with an initial offset of 20x.

Trajectory of a test charge incident on a uniform transverse profile,
Gaussian longitddinal profile beam. The test charge is initially at
the boundary of the transverse distributions and is within a uniform
transverse profile beam.

Luminosity enhancement versus disruption factor for uniform trans-

verse profile beam collisions.
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- ABSTRACT

The method of transfer maps is used to develop generalized Courant-Snyder
invariants in the presence of the beam-beam interaction for both nonresonant
and resonant tunes. Numerical evidence is presented to illustrate that the
generalized invariants are indeed constant through terms of first order in
the beam-beam interaction strength. The invariants are next used as a
"magnifying glass' to search for irregularities and evidence of stochastic
behavior., It is found that within the model employed, the beam-beam inter-

action at its contemplated strengths shows no evidence of producing particle

loss in ISABELLE.



207

1. Introduction

The beam-beam interaction for ISABELLE, in the weak beam-strong beam model

of Herra, Month, and Peierls(l)
(2;3). “In this approach, the transfer map M for passage of a particle in

, can be studied by the method of Transfer

Maps

the weak beam through its storage ring followed by passage through the strong
(4)

beam is given by the product

M= exp(Fz)exp(Fb). (1.
Here F2 is the Lie operator associated with the quadratic polynomial
_ 2 2
f2 = —ﬂw(zl + z, ), (1.2)
where
23 =G, 2, = Pp- (1.3)

The Lie transformation exp(Fz) describes passage through the weak-beam storage

ring with tune W. The quantity F, is the Lie operator associated with the

b
function

2y
fb(Z) = J u(q)dq, (1.4)
(o]

. where u is proportional to the electrostatic force exerted by the strong beam,

qv'3 2
u(q) = 4111)//5[ at et . (1.5)
(e}

The Lie transformation exp(Fb) describes passage of a particle in the weak beam
through the strong beam. The effect of the strong beam is normalized in such
a way that the beam-beam interaction depresses the tune of the weak beam, for

infinitesimal betatron oscillations, by an amount D when D is small.

Introduce polar coordinates in phase space by using action-angle variables

a, ¢ defined by the relations

Q=2 = (Za)l/zsin ¢ (1.6a)
p=2z,= (2a)l/2cos ¢. (1.6b)

In these variables fb has the Fourier expansion
fb = _Z cn(a) exp(iZné). (1.7)

The coefficients Cn will be computed explicitly in the next section.
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Suppose the tune w of the weak-beam storage ring is not near a resonant

(2,3,4)

value. Then, using the Campbell-Baker-Hausdorff formula , it can be shown

that the quantity h given by the expression

h = —Eﬁwa + co(a) + 2 ? cn(a) [2nﬂw/sin(2nnwi] cos[?n(¢ + wwi] (1.8)

generalizes the Courant-Snyder invariant through first order in the beam-beam

interaction strength D.

In the case of resonant or near-resonant tunes, it is necessary to work with

powers of M. Consider an m'th order resonance. Then tunes near an m'th order

resonance value can be written in the form
w=5k/m+ & (1.9)

where § measures departure from exact resonance. Now consider the iterated
transfer map M. Again, using the Campbell-Baker-Hausdorff formula, it can be

shown that the quantity h_ given by the expression

hr = -218a + co(a) + 2 ? cn(a) [2nﬂ6/sin(2nﬂwi] cos[?n(¢ + wwi] (1.10)

generalizes the Courant-Snyder invariant through first order in D for the map
Vi

The purpose of this paper is to use the non-resonant and resonant invariants,
h and h_, as a kind of "magnifying glass'" to study numerical results in fine
detail. Section 2 derives expansions for the coefficients Cn(a) suitable for
numerical use. Section 3 shows that h and hr do indeed generalize the Courant-
Snyder invariant through order D in the beam~beam interaction strength. Section
4 illustrates how magnifying glass methods have been applied to problems in other
areas of physics to detect the presence of small-scale homoclinic oscillations
and associated stochastic behavior, A final section applies these methods to
the beam-beam interaction, and demonstrates that within the model employed, the
beam-beam interaction at its contemplated strengths shows no evidence of pro-

ducing particle loss in ISABELLE.
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2. Evaluation of Expansion Coefficients

The purpose of this section is to compute the expansion coefficients Cn(a).
We begin by observing that the function exp(—tz) appearing in the integrand of
‘equation (1.8) can be expanded in a Taylor series having an infinite radius of
convergence. Therefore, this expansion can be integrated term by term to pro-
vide an expansion for u(q). Similarly, the expansion for u(q) can be inserted
into equation (1.4) and integrated term by term to provide an expansion for fb.
Carrying out these substitutions and integrations, we find the result

£, (2) = 4mp E (-3)*z 2/ [ (2042) (2041)]. (2.1)

Next, substitute into the expansion (2.1) the expression (1l.6a) for the

quantity zq- Making this substitution gives the result

£ =4 F (-7 2a) M (sin

b /L) (2842) (2041)] . (2.2)

Our task, now, is to rearrange the series (2.2) into a Fourier series of the form

(1.7).

By employing the binomial formula, we find the result

(sin §) 22 o (o0 _hey2042) 0 2040
28+2 2842 .
[l/(21)122+2 rEO (-1) l’.'< § ) 821(2+l—r)¢ - (2.3)

Introduce a new summation variable n defined by the relation
n = +1l-r. (2.4)

With this substitution, the expansion (2.3) takes the more convenient form

1 .
(sin ¢)22+2 _ [l/(Zi)]22+2 5 (_1)2—n+l 2942 e21nq>

n=-(2+1) L-n+l

(2.5)

To proceed further, we insert the expression (2.5) into the expansion (2.2)

to find the result

@ 2 2+1 1 n
£, =21 35 (-3/2)7(a) /21 (2042) (22+1) ] z (-1)
‘ n=-(%+1)
29+2 .
% e2ine (2.6)

L-n+l



210
The expansion coefficients cn(a) can now be read off from equation (2.6)
simply by exchanging orders of summation. We find the results

¢ (a) = 2ma ,F, (-3a/0)" a0 /{0 [+ 1]%) 2.7)

-

and

¢ (a) = ~(43/3)D (3a/D" E (-3a/2)"(2n+2m-2) 1/ [m! (ntm-1) ! (wrk2n) 1]
when n > 0. (2.8)

Here use has been made of the relation

s
( )= s!/[(s—r)!r!] R (2.9)
r

and some rearrangement of the summation index has been made in writing (2.8).

In order to do numerical work, it is necessary to truncate the series (1.8),
(1.10), (2.7), and (2.8) at some point. Explicit evaluation shows that the
coefficients in these series (the terms not involving D or powers of a) are less
than 10~2 provided that & > 25 in (2.7), and n > 15 or m+n > 25 in equation (2.8).
Also, the normalization employed for q, p, and a in setting up the beam-beam

_problem is such that the value a = 1/2 corresponds to the outside of the beam.
Therefore, even in the extreme case a = 1, which is well outside the beam, at
least eight significant figure accuracy is obtained by restricting sums in 2, m
and n to the range 2 £ 25, n £ 15, mn £ 25. This level of accuracy is certainly
sufficient, for the quantities h and hr as given by equations (1.8) and (1,10)

2 -
omit all terms of order D, and D2 v 10 4 for cases of practical interest.
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3. Numerical Behavior of h and h_

The purpose of this section is to illustrate numerically the claim that the
,guantigies Qﬁand hr act as generalized Courant-Snyder invariants. Our proceduré
is to iterate numerically the transfer map (1.1) a large number of times for a
variety of initial conditions, and to then verify that h and hr remain approximately

constant as the iterations proceed.

At this point, it is necessary to remark on the numerical method used to
evaluate the integral (1.5) since the beam-beam portion of the transfer map

involves the transformation

p'' = p' + u(q") (3.1
(3)

at each iteration of the map. The integral (1.5) can be evaluated in terms

of the error function with the result
u(q) = (47D/V3) (1/V2) erf(q’3). (3.2)

The problem is to find a good approximation to the error function which can be

readily evaluated over and over again by a computer. We have found it convienent

- to use the approximation(s)
erf(x) = 0, for x =0 (3.3a)
erf(x) =1 - exp(-xz) ; bntn, for x > 0 (3.3b)
1
erf(x) = -erf(-x), for x < 0 (3.3¢)
where
t =1/(1+ b6x) (3.3d)
and the constants bl through b6 have the values
b1 =‘.254829592, b2 = (-.284496736)
b3 = (1.421413741), b4 = -1.453152027
b5 = 1.061405429, b6 = ,3275911 (3.3e)
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The above approximation is accurate to within an error less than or equal to
-7 . . .

1.5 x 10 °. This error is certainly far smaller than the expected accuracy of

the model, because there is no reason to believe that the charge distribution

“in the stromg beam is exactly Gaussian as (1.5) and (3.2) would imply.

With this explanation, we turn first to a study of the behavior of h in the
nonresonant case. Figure 1 shows typical phase-space plots obtained by iterating
the transfer map numerically for the case of a nonresonant tﬁne. Correspondingly,
figure 2 shows plots of the two quantities (-2mwa) and h as a function of
(¢/2n) for each of the three curves in figure 1. It is evident that the quantity
(-27wa), which is proportional to the ordinary Courant-Snyder invariant, can, in
some cases, show substantial variations. By contrast, the quantity h is more

nearly constant in all cases.

To exhibit the behavior of h in more detail, figure 3 shows in expanded scale
the variations of h corresponding to the case of curve € in figure 1. Observe
that h has an average value of “-5.665 and variations of about *.053 above and

below the average.

Presumably these variations come from the order D2 terms which have been

omitted in the expression for h. Now suppose that the value of D were halved

" from the value D = .0l which was used to generate figures 1 through 3. Then the
variations in h, if they are proportional to D2, should be reduced by a factor
of four. Figure 4 illustrates that this is indeed the case. It shows the
variations in h for a phase space plot having a beam-beam interaction strength
of D = .005, but otherwise having the same initial conditions and tune as curve
C of figure 1. Now h has an average value of ~-5.5405 with variations of about
+.0125 from the average. Note that there is indeed a reduction in the variation

by about a factor of four.

We turn next to a briefer study of a resonant case. Figure 5 shows a sample
of phase space-plots for the resonant case of a nearly half-integer tune. Note
that the plots now are far, from the near-circular shapes pertaining to the non-
resonant case of figure 1. Correspondingly, figure 6 shows values of hr plotted
as functions of q for each of the curves in figure 5. Observe that the quantity
hr remains remarkably constant. Thus, the curves of figure 5 are very nearly

level lines of hr’ and the major features of figure 5 can be predicted by studying
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the level lines of hr and the points at which the gradient of hr is zero.
These latter points correspond to fixed points of M, and give the initial con-

ditions for periodic orbits.

e
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4, Magnifying Glass Methods

A standard procedure for studying the long-time behavior of a dynamical system
is to make phase-space plots of the motion, and to then examine these plots for
evidencé of ;zochastic or unstable behavior. This procedure has the virtue of
giving a good qualitative picture of the motion. However, it has the disadvantage
that much of the resolution of the graph is devoted to displaying regular features
of the motion. Consequently, small-scale irregularities in the motion may not be

‘readily apparent if their scale is much smaller than the scale required to display

the regular features of the motion.

This difficulty can be overcome by making additional plots of some quantity
which takes into account the regular features of the motion. This quantity should
have the property that it is expected to be nearly constant if the motion is regular.
Departure from constancy could then reflect irregularities in the motion, and the
full scale of the plot could then be devoted to displaying departures from

constancy.

Such quantities in the case of the beam-beam interaction could be the generalized
Courant-Snyder invariants h and hr’ The purpose of this section is to illustrate
briefly how these methods, which will be called "magnifying glass' methods, have
.Been applied to two other problems: the study of a simple mapping and the study
of the Van Allen radiation. The section after this will apply the same methods
to the beam-beam interaction.

We begin with a study of the simplest mnontrivial canonical mapping, called a

(6)

quadratic Cremona map, given by the relations

\

X )\[X + (X‘Y)Zj

(4.1)

y' = /[y + (x—y)z:] .

Here A is some fixed parameter, and the properties of the map are to be studied

for various values of X.

It is readily verified that this mapping has two fixed points. One of these
fixed points is the origin. This fixed point is evidently hyperbolically unstable

for real positive A, and hence we write its coordinates in the form
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(4.2)
yh = 0.

-

The other fixed point is also readily found. Its location is given by the

equation

Cx® = A0 /04D

it

(4.3)
v© (A-1)/ (0+1) 2

This fixed point is elliptically stable, for certain ranges of the parameter A,
as the notation is meant to suggest. Indeed, if the mapping (4.1) is expanded

about the fixed point (4.3), it can be shown to be equivalent to the mapping

2
associated with a storage ring having a short sextupole insertion.( ) The
tune of this ring is given by the relation

2cos(2mw) = —(X2—4A+1)/X ) (4.4)

It is easily verified that the fixed point (4.3) is elliptically stable provided

A lies in the range

1 < A < (3+/8). (4.5)

Associated with every hyperbolic fixed point is a stable and unstable
manifold. If these manifolds, when followed away from the fixed point, intersect
each other with a nonzero angle at some other point, this point is called a
homoclinic point. 1If one such homoclinic intersection occurs, then it can be shown
that the two manifolds must go into wild oscillation about each other. These
oscillations result in the irregular behavior of trajectories over at least a

)

portion of phase space Figures 7, 8 and 9 illustrate a homoclinic inter-
section and the ensuing oscillations when A = 3 for the case of the quadratic

Cremona map.

The size of the angle of intersection of the stable and unstable manifolds
at the homoclinic point,and correspondingly the amplitude of the ensuing oscil-
lation, depends very sensitively on the size of the parameter A. Figure 10 shows
that the homoclinic angle becomes very small as A approaches the value 1. 1In the
range of very small angle, its size was inferred by studying the behavior of an
invariant of the map. This invariant was found by employing the Campbell-
Baker-Hausdorff formula in a manner similar to that used to find the generalized

(8)

Courant-Snyder invariants.



222

O3 T T 1T T T T T T T T T T T T T[T T T T 7T T

0.2 -
0.1 W, -
- NP N =

y O: N 5
0.1 -
-0.2 | -
N ]
_‘3—lJl'llll]lllllllllllllllllll—
-0.75 -0.50 -=0.25 0] 0.25 0.50 0.75

X

Figure 7, Behavior of the stable and unstable manifords, Ws and
Wu, for the hyperbolic fixed point of the quadratic

Cremona map in the case A = 3, Note the homoclinic
intersection at the point K.
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sections is an ever denser cloud of homoclinic points

which has the hyperbolic fixed point as a limit point.



225

o1

L e e S A s el e

e R St ¢

-+

<+

'Y 3o

uor3lduny & se ) jurod orurrOOoWOYy ayj
]® sSprojTukBW 2TgEBISUN pUB JTqEIs

9Yl JO ¢ uoIT3DasIadIUT JO aT8ue ayj

‘0T @2an31g

*59918¢p ur g 103 QOIBOI



226

Because the homoclinic angle varies so rapidly with XA, the nature of
phase-space plots appears to change abruptly as A is varied. Thus, many authors
speak of a threshold for stochastic behavior. 1In reality, at least for the map
“(4.1),. there is no threshold. Homoclinic oscillations are always present. How-
ever, unless A is large, the amplitude of these oscillations is too small to be

seen in ordinary phase-space plots.

A second problem for which magnifying glass methods have proved useful is

(6)

" that of analyzing the motion of particles in the Van Allen radiation In
simplest approximation, this problem is idealized to that of studying the so-
called Stormer problem, the problem of determing the motion of a charged

particle in a dipole magnetic field. By the use of a Poincare surface of section,
the Stormer problem can also be reduced to the study of a certain map M of a

two-dimensional phase space onto itself. And, as in the case of storage rings,

the real problem is to determine the behavior of M" for large n.

Figure 11 displays schematically a hyperbolic fixed point for the Stormer
map and a conceivably possible behavior for the stable and unstable manifolds
in which there are two postulated homoclinic intersections. Figure 12 shows
actual results obtained by numerical integration. Evidently, within the re~
-solution provided by ordinary plotting, there appears to be no-sign of homo-
clinic oscillation, and the postulated homoclinic angles are very small, and

could well be nonexistent.

In the case of the Stormer problem, by using Lie transformation and normal
form procedures, it is possible to find a formal power series for an integral

(9)

of motion This series, when truncated, can be used to account for most of
the regular features of the motion as exhibited by figure 12, Thus, this
truncated series can be used to look for irregularities in the motion that are
not apparent on the scale required to represent the regular motion., Figure 13
shows how this works out in practice. It displays the behavior of the truncated
series near the hyperbolic point. It is now apparent that there are indeed homo-
clinic oscillations, and fhere must be a nonzero homoclinic angle. These

oscillations and the homoclinic angle are just too small to be seen on an ordinary

phase-space plot.
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Figure 13. The points of the outer curve of figure 12 which
are also near the hyperbolic fixed point are re-
plotted here to display the truncated invariant

. T . .
series I~ versus p, The presence of homoclinic
oscillations near the hyperbolic fixed point

(6 = 0) is now apparent.
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5. Application to the Beam~Beam Interaction

The purpose of this section is to apply magnifying glass methods to the
_beam-beam interaction in order to search for evidence of small-scale

- - s
irregularities in the motion.

We begin with the nonresonant case. Figure 14 shows a plot of h for conditions
identical to those for figure 3 except that the mapping has been carried out for
100,000 iterations with every two hundredth point plotted. All calculations were
carried out in double precision with an accuracy of approximately 16 significant
figures. Evidently, even with the magnification provided by plotting h rather than
the customary q,p variables of figure 1, there is no evidence of irregular behavior.
We conclude that within the model employed, the beam-beam interaction at its con-
templated strengths shows no evidence, even under magnification, of producing
particle loss in ISABELLE. This conclusion is consistent with earlier conclusions

(4)

based on less stringent tests ,

We turn next to a brief examination of the resonant case. Figure 15 illustrates
that stochastic behavior can indeed occur, due to homoclinic oscillations, for
large values of the beam-beam interaction. In the case shown, the origin is
hyperbolically unstable, corresponding to a half-integer resonance, and the stable

" and unstable manifolds associated with this fixed point intersect in homoclinic
points as illustrated schematically in figure 16. This behavior can be followed
to smaller values of the beam-beam interaction providing the tune w is also
suitably adjusted. It is readily apparent, with and without magnification, for
the parameter pairs (w = .80, D = .30), (w = .70, D = ,20), and (w = ,60, D =
.10). However, when D is decreased to the value D = .05, and below, (for
example the case w = .55, D = .05), homoclinic behavior is no longer visible
even in plots of hr' Thus, for example, the case of figure 5 shows no evidence
of homoclinic behavior despite the hyperbolic instability of the origin. It
is presumably still there, but has a scale too small to be presently seen.
Perhaps if the expressionsifor h and hr were calculated in more detail to pro-

vide the corrections of order D, and perhaps even beyond, which is is principle

(3)

possible using the Campbell-Baker-Hausdorff formula , sufficient magnification
might become available to again detect homoclinic oscillations. Such an effort
is beyond the scope of this paper. Suffice it to say that the apparent lack of
visible homoclinic oscillations, even in the hyperbolically unstable case, is
further evidence for the benign nature of the beam-beam interaction at its

presently contemplated strength.
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Figure 15.

A phase-space plot showing stochastic behavior for a
large value of the beam-beam interaction strength.
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Figure 16. Schematic presentation
of the intersection of the stable
and unstable manifolds in the case

of Figure 15 leading to stochastic
behavior.
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Conclusion

It has been shown in section 3 that the generalized Courant-Snyder invariants
h and hr reptoduce well, for sufficiently small values of the beam-beam inter-
action strength D, the regular features of phase-space plots. In section 5 these

invariants were used to search for evidence of small-scale irregularities in

the motion. No evidence was found for beam-beam interaction‘strengths of physical

. significance. Consequently, within the model employed, the beam-beam interaction

at its contemplated strengths shows no evidence, even under magnification, of

producing particle loss in ISABELLE.

References

1. J.C. Herrera, M. Month, and R.F, Peierls, Simple Computer Model for the

Nonlinear Beam-Beam Interaction in ISABELLE, Nonlinear Dynamics and the

Beam-Beam Interaction, AIP Conference Proceedings Number 57, M, Month and

J.C. Herrera, Edit., American Institute of Physics, p. 202 (1979).

2. A. Dragt, A Method of Transfer Maps for Linear and Nonlineaf Beam Elements,

IEEE Transactions on Nuclear Science, Vol. NS-26, No. 3, p. 3601 (June 1979).
3. A. Dragt and J. Finn, J. Math. Phys. 17, pp. 2215-2227 (1976),

4, A. Dragt, Transfer Map Approach to the Beam-Beam Interaction, Nonlinear

Dynamics and the Beam-Beam Interaction, AIP Conference Proceedings Number

57, M. Month and J.C. Herrera, Edit., American Institute of Physics, p. 143,
(1979). See this paper for derivations of the results quoted in section 1

of the present paper.

5. M. Abramowitz and I. Stegun, Eds., Handbook of Mathematical Functions,

National Bureau of Standards Applied Mathematics Series 55 (1966).
6. A. Dragt and J. Finn, J. of Geophys, Res. 81, pp. 2327-2339 (1976),

7. J. Moser, Stable and Random Motions in Dynamical Systems, Princeton

University Press, Princeton, N,J., (1973),

8. J.M. Finn, Integrals of Canonical Transformations and Normal Forms for Mirror

Machine Hamiltonians, Ph.D. thesis, Univ. of Maryland, College Park, MD (1974).

9. A. Dragt and J. Finn, J, Math. Phys, 20, pp. 2649-2660 (1979).



235

Measures of Nonintegrability in Two—-Dimensional Mappings
John M, Greene
Princeton University, Plasma Physics Laboratory
Princeton, N.J. 08544

Over the past few.years I Bave been studying Hamiltonian systems, and
particularly the simplest nontrivial example which is the area preserving
mapping of a plane onto itself, Such deterministic Hamiltonian systems
provide a useful model for a wide variety of phenomena. That is such common
knowledge that it sounds trivial, Thus, it is good to remember that these
models completely ignore both dissipation and random perturbations, and that
Hamiltonian systems are so delicately balanced that the smallest non—
Hamiltonian effects completely dominate the behavior after a long time. One
advantage of the widespread use of Hamiltonian models is the variety of
experience and points of view of the workers in this field, It has been
pleasurable and profitable to learn about the beam—beam interaction in the
last few months, In return, I am happy to share what I know about two-
dimensional mappings.

It 1is outside my expertise to review the physics of the beam—beam
interaction, but it is in order to provide a few paragraphs setting the
context for some two-dimensional mappings. The phase space in which the beam—
beam interaction takes place is multi-dimensional., Nevertheless, there may be
an effective decoupling of the various degrees of freedom of a particle
traversing an accelerator and interacting with another beam, The two-
dimensional mappings considered here are an abstraction of the behavior of a
single degree of freedom with a periodic external forcing term.

Many of the two-dimensional mappings that are useful for understanding

the beam~heam interaction c¢an be writtenl
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-

X X cOoSs2TV — sin2mv
n+l] n pn

(1)

X sin2mVv + P, cos2mV - 87k F(x

Pht1 n+1)

Here x, and p, are the orbit displacement and momentum in the degree of
freedom that is being studied, evaluated at a point in the orbit just after
the particle has experienced a beam interaction, and (Xp4+1s> Ppe1) are the
phase space coordinates after the next interaction. The force function, F(x),
is taken to be odd, so that it vanishes at zero. Then the origin, (0,0), maps
into itself, This represents the central periodic orbit that closes after one
trip around the accelerator, Neighboring orbits exhibit betatron
oscillations, which are represented by a rotation in this phase space
mapping. Thus V is the tune of the degree of freedom that is being
studied. When the interaction parameter, k, vanishes, the betatron
oscillations of different orbits all have the same frequency, independent of
the amplitude of the oscillation, in this approximation. Thus, they
contribute a rigid rotation to the mapping.

The beam-beam interaction is represented here as an impulsive force,
F(x), that instantaneously displaces the particle momentum without affecting
its position., This paper concentrates on two of the important effects of this
force. In the first place, it changes the betatron frequency of small
amplitude orbits. Then the mapping is not approximately a rigid rotation, but
exhibits shear, with inner orbits revolving around the central periodic orbit
more slowly that the outer orbits, Secondly, this force provides a

perturbation that resonates, to some degree, with every rational tune., Thus,
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the beam—beam force impresses a range of rational tunes on the system, and
nregonati§ with all of them, |

In the linear, rigid rotation approximation, orbits lie on concentric
circles in the (x,p) plane. Under the influence of the beam-beam force, F(x),
several new types of orgits appear. Corresponding to each rational tune, a
resonance, or island structure is born., This consists of a central periodic
orbit surrounded by an orbit system that rotates around it. This system thus
reproduces, on a smaller scale, the orbit system around the primary central
periodic orbit at (0,0). One characteristic of these secondary islands is
that their central orbits close only after many trips around the accelerator
so a number cross sections of each resonance system are displayed in pictures
of the mapping of FEq. (1).

Surrounding each such system, there is generally a region where a single
orbit appears to fill a portion of the (x,p) plane randdmly. This will be
called a stochastic sea.

In and around these orbits, some distorted circular orbits continue to
exist, according to a theorem of Kolmogorov, Arnol'd and Moser. Such closed
curves in the (x,p) plane that are filled by a single orbit are called KAM
surfaces.

With orbits no longer lying on circles, and particularly as some orbits
can wander over regions of phase space, the problem of stability arises. By
this will be meant here, the problem of whether orbits can wander indefinitely
far from the origin, (0,0), At least two stability questions can be
distinguished. Does the model exhibit stability or instability? 1Is the real
system stable?

The existence or absence of KAM surfaces is strongly relevant to the

first question. These surfaces divide the (x,p) plane. By continuity and
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uniqueness orbits in one region can never cross over into another. Thus, if
_KAM surface can be proven to exist the orbits inside can be said to be
st;ble. A large part of my efforts for the past few years have been devoted
to investigating criteria for the existence of KAM surfaces in mappings such
as those studied here.

A study of this mapping may also be of assistance toward the question of
whether a real system is stable. A real system contains the features of Eq.
(1), and additional terms spanning the entire frequency range from sixty-
cycle hum to the time of interaction of a high energy particle with a neutral
gas atom, Nevertheless, FEg..(1) would be important toward the understanding
of the full system when the true orbit follows a model orbit for a significant
distance. For example, the effect of small random perturbations can be much
enhanced if much of an increase in amplitﬁde is due to rotation around the
secondary central periodic orbit in a resonance zone. Fquivalently, consider
the evolution of an ensemble of particles that satisfy Eq. (1) plus additional
small perturbation terms. Equation (1) will force the distribution function
to be relatively flat in resonance and stochastic zones, and thus steep in the
inbetween regions. This steepness can much enhance the effect of small
perturbations, Thus even when Eq. (1) predicts stability, the widths of
resonances and stochastic regions may be important in determining the
containment properties of real systems,

Several different measures have been used to estimate the degree to which
resonances and stochastic seas are important in a given mapping. Since
integrable systems lack these characteristics, they will be called measures of
nonintegrability.

A first such measure is the size of the resonance structures. However,

experience has shown that systems for which the tune is a slowly varying
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function of the amplitude of the betatron oscillations, resonances are far
apart, interact only to a small degree, and have small associated stochastic
se;s. Thus, a second measure of nonintegrability is the resonance overlap
parameter, the ratio of island width to island separation, The overlap
criterion implies that. large sfochastic regions exist when the overlap
parameter is of order unity, and resonances are over crowded.2

These measures of nonintegrability can be evaluated in perturbatiion
theory, but have major deficiencies when utilized with numerical work at
finite values of the perturbations, Since the islands float in stochastic
seas, their width is poorly defined, particularly for the interesting cases
where the stochastic seas are a significant component of the mapping. A third
measure of nonintegrability that avoids this problem is related to the
periodic orbits at the center of the resonances, and particularly to the tune
of the oscillations in the vicinity of these orbits.  Specifically, the
mapping can be linearized and represented by a 2 x 2 matrix in the vicinity of
each of these orbits, exactly as around the primary periodic orbit, The local
tune 1is related to the trace of the corresponding matrix. I find it
convenient to introduce a quantity called the residue that is a linear

transformation of the trace,3

(2 - Trace) = sin2 LA (2)

&~

where VR is the local tune around the secondary periodic orbit,



240

It has been shown that the residue is directly related to the overlap

- parameter in perturbation theory.l"5

It has the advantage that it is well
defined and can be evaluated numerically with arbitrary accuracy for systems
with finite or large perturbations. When the residue ig larger than one, the
corresponding periodic érbit is unstable., Thus, the picture associated with
the residue criterion is that stochastic seas appear where residues are larger

3

than wunity and nearly all periodic orbits are unstable, There are
indications of coming developments that will reinforce this concept.6

To illustrate the utility of the residues in wunderstanding given
mappings, I undertook to estimate the amplitude dependence of the degree of
nonintegrability introduced by different beam—beam force functions, F(x). As
a random example, T chose to study the 2/5 resonance,

This resonance has some peculiarities, and is seen in different ways by
different people, so some explanation is in order to illuhinate my attitude.
Because of symmetry, odd resonances do not appear in lowest order of
perturbation theory. Closely coupled to this is the fact that there are two
symmetrically placed stable periodic orbits with the appropriate tune., Thus,
the two 2/5 orbits yield a picture with a chain of ten resonances.
Nevertheless, I call this resonance 2/5, since I use the denominator of the
resonance label to indicate the length of its central periodic orbit. None of
this leads to any difficulty in calculating either the orbit or its residue,

The perturbation parameter was fixed at k = 0.05, and the position of the

resonance in the phase plane was changed by varying V., Thus, the resonance
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is forced to sample different ranges of the force F(x).

3

As discussed previously,

-

a dominant feature of the magnitude of the
residues is their exponential dependence on orhit length. To compare orbits

of different 1length, it 1is wuseful to 1introduce a mean residue for the

resonance P/Q by

£z (ar)l/@

Thus in Fig. 1, f, the mean residue, is the measure of nonintegrability, and
Koo the maximum value of x around the orbit, is a measure of the orbit

amplitude.

Three different functions have been evaluated for Fig. 1,

FG = [1 - exp(—x2/2)]/x

.1 1.2, 1 4

=5 x (1 ;X + 5% ¥ +...)
F. = 1 tanh V3 x/2
H V3

1]

§%-x + .. (4)
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~Inleach_§ase they are normalized to have a slope of 1/2 at zero. Then k is
the tune shift for small amplitude orbits, when k is small, with some
nonlinear corrections for larger values of k.,

The scale of the x.variatioﬁ was adjusted so that the first nonlinear
term in the Taylor series agreed for each of the force functions. When

different scalings were used, so that

x(1 - = x" + ...) (5)

then, for small values of x, , the mean residue depended only on the

combination ax . Thus the mean residue depended only on the nonlinearity.
Further, the mean residue had a relatively weak dependence on the beam force
parameter, k, f = koo, A perturbation calculation, taking the 1limit of
small k and varying the tune V simultaneously to fix the position of the
resonance, would be useful to confirm this result, Finally, other resonances
gave rather similar curves. The mean residue was somewhat larger for even
resonances, consistent with the fact that they exist in lower orders of
perturbation theory, but the difference was not large.

A number of conclusions can be drawn from this calculation, at various
levels of abstraction,

The values of the residues and mean residues illustrated in Fig. 1 are
quite small. According to previous results,3 KAM surfaces disappear in

regions where the mean residues are greater than wunity. Thus, while this

calculation was designed to test methods rather than to design experiments, it
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seems clear that significant KAM surfaces should exist, within this model, for
values gf the tune shift, k, up to 0.1 or greater, Thus, the loss of the KAM
surfaces of this model is unlikely to be a physically important effect.

A second conclusion that can be drawn from this figure is that the beam-
beam interaction for;es significant nonintegrability at very large
amplitudes, Tts effect on the tune shift is small at these amplitudes, but
its effect on the resonances is large. This is rather independent of the
shape of the force function.

At another level, the primary purpose of this calculation was to
demonstrate the utility of the mean residues as a measure of
nonintegrability. This measure is consistent since Fig., 1 can be essentially
reproduced using a variety of different resonances, That it yields a good

3 It is

criterion for the existence of KAM surfaces has been shown previously.
a good way to organize computational data, since it coﬁcentrates on short
orbits that can be evaluated accurately.

One of the delicate problems that this method might be useful for arises
when perturbations added to Fq. (1) have periods from several to a few hundred
times that of the basic interaction period embedded in Eq. (1), Multiple
interaction regions or periodic variations of beam intensity are two
possibilities of this type. A more complicated two-dimensional mapping, taken
over the full period of the perturbation, might still be an appropriate
model, The existence:. of KAM surfaces would determine the sfability of this
super—-period model.

There may be some relations between the size of stochastic seas and the
residues of nearby orbits, but this has not been explored yet in any detail.

Finally, this work is another effort to achieve a balance between

computational and analytic, perturbation methods. These two approaches are
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sometimes seen to be competitive, In fact, they tend to be complementary.

- Perturbation calculations tend to work best when the various parameters of a
problem have significantly different values, so that something can be taken to
be small. MNumerical calculations are most difficult in such regimes. On the
other hand, the care reduired fof accuracy and convergence is about the same
in either case, though over the vyears there has been considerably more
experience with perturbation theory. It seems appropriate for our generation
to concentrate on sorting out the concepts and methods that yield the best

computational results. Since the tradition of excellence is younger in this

field, opportunities are greater.
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ABSTRACT

We réview here some recent results on the long time behavior
of the orbits of two- and four-dimensional mappings which display,
in a gualitative way, most of the complicated features of the Beam-
Beam Interaction. We conclude that this behavior.depends crucially
on the location of the initial conditions of the orbits with respect
to the "largest" (i.e. lowest order in perturbation theory) resonances
of the system. 1In the "stochastic" regions, where these resonances
overlap, the properties of the motion are well described by classical
diffusion processes. In 4-dimensional mappings, where Arnol'd dif-
fusion occurs, various theoretical and empirical methods proposed by
Chirikov yield estimates of the rates of particle diffusion which

are in good agreement with experimental evidence.
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1. Introduction

~ This paper is a brief review of a number of recent results illus-
trating some basic concepts of Nonlinear Hamiltonian Dynamics: Reson-—
ances, "stochasticity" and Arnol'd Diffusion. These concepts are of
direct relevance to the long term stability of colliding beams in the

intersecting storage rings of high energy accelerators.1

The models and the results reviewed here are, admittedly, far
from a realistic description of actual, true to life machines. They
do offer, however, a lucid picture and considerably enhance our under-—
standing of the nonlinear phenomena associated with the so~called Beam-

Beam Interaction.1

Our aim in reviewing these results here is to emphasize and dis-
cuss their main features in a unified way so as to help researchers in
this field better analyze and assimilate a rapidly growing collection

of experimental evidence.

In section 2 we briefly introduce the fundamental ideas of Nonlin-
ear Hamiltonian Dynamics referring the reader to the literature for
more details. A general Hamiltonian is written down in Action-Angle
variables and the motion near a (nonlinear) resonance is discussed.

The appearance of large scale (resp. small scale) "stochastic" regions
is pictorially explained as a result of the overlapping of low order

(resp. high order) resonances, an idea originally due to B.V. Chirikov.2

In section 3, Chirikov's Resonance Overlap Criterion is
illustrated on a widely studied two dimensional model, the so-called

2,18715  qyo dimensional mappings can accurately re-

Standard Mapping.
present periodically "kicked" one degree of freedom systems which
describe Beam-Beam effects in the direction vertical to the plane of
revolution ignoring all coupling with the horizontal motion. 1In the
"stochastic" regions a theoretical description of the motion in terms
of a classical diffusion process agrees well with the experimental

results.
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Section 4 is devoted to four dimensional mappings which do take
into account the coupling between vertical and horizontal motion.
Such mappings represent periodically "kicked" two degree of freedom
systems, in which phase space orbits can wander (for sufficiently
long“timég) over most of the energy "surface" for arbitrarily small
coupling parameter e! This universal (i.e. for all #0) instability,
often referred to .as Arnol'd DiffusionQ'g, is discussed here with the
aid og two models, one due to Tennyson et al* and one due to Chirikov
et al”.

Finally, we conclude with some remarks on work currently in pro-

6,22

gress on a four dimensional mapping involving a realistic Beam-
Beam force. Our eventual goal is to implement as well as develop
further the results reviewed here on more realistic models of the

Beam—-Beam Interaction.

* % % % *

2. Hamiltonian Dynamics and Nonlinear Resonances

In the last two decades, the field of Nonlinear Hamiltonian Dyn-
amics has experienced considerable growth. There has been a number of

rigorous results primarily in the area of integrable (i.e. "separable"

or "solvable") systems7’8, with the notable exception of the celebrated
theorem of Kolmogorov, Arnol'd and Moser2’7_9 (KAM). The KAM theorem,
however, even though it has stimulated many theoreticians and provided
new insight, is essentially an existence result, whose applicability

has so far been very limited.

Faced with serious analytical difficulties many physicists and

mathematicians - starting with E. Fermi and S. Ulam in the early fift-

ieslof - turned to numerical computation in order to study the properties

of non—integrable7_9 systems. In particular, they asked the question:

How can a deterministic system described by Newton's equations of motion
exhibit "statistical" behavior? (By "statistical" behavior we mean,

here a set of properties which can be well described by the laws of
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statistics, random processes etc.).

It is well known that all the orbits of an integrable system lie -
“on invariant "surfaces" or "tori"7_g and hence are not allowed to
wander freely over all the available phase space. Integrable systems,
however, are in some sense highly exceptional11 and thus, in practice,
we deal more often with non-integrable syétems. KAM theory, on the
- other hand, together with a great number of numerical experiments12
indicate that the behavior of a non-integrable system closely resembles
the behavior of an integrable system "nearby"! To be precise let us
write the Hamiltonian of a non-integrable system of N degrees of free-
dom in the form

i(n,0)

H(I,0) = HO(I) + eZVne (2.1)

n
where I = (Il’ 12,...,IN) and 6= (61, 62,...,8N) are the usual Action-
Angle coordinates and the summation proceeds, in general, over all N
dim. integers n = (nl,...,nN) [we omit here, for simplicity, a possible
explicit time dependence of H, which often takes the form of an extra

el(n’T) in (2.1), where T = Qt + TO].

For ¢=0, the Ik reduce to the Action variables of the integrable

system HO(I(O)), which satisfy

. o H
10 - 0 _ _ g (2.2)
k 500
k
whence
Iéo) = const.; k=1,2,...,N . (2.3)

These N constants determine the location and shape of the N-dim. in-
variant tori associated with HO. The motion on these tori is gquasi-

periodic with frequencies

. o H
;0 _ M

), _ o
k 0)’
BIk

wk(I k=1,2,...,N. (2.4)

For ¢#0, KAM theory tells us that "most" of these tori will survive

though somewhat distorted
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(0)

I =71 + eI(l) +621(2) +... | , (2.5)

Using first order perturbation theory we find that this distortion is

. . 2
-more’ pronounced in the neighborhood of a resonance7’1 :

(n,w) = n w, + n,w, t...tnwe = 0. (2.6)
It is very important that HO(I) be nonlinear i.e. that the frequencies
depend on the amplitude, (awk/BIR # 0 for some k,%) so that the motion
near a resonance will be bounded as in the case of the familiar phase
space plots of a simple pendulum, cf. fig. 1lb below. We then call

(2.6) a nonlinear resonance.

For definiteness, consider a free particle moving in two dimensions
L

X, 0 X, under the influence of a single spatial periodic perturbation :
_ 1,2 2 i(n,x)

H = 2m(p1 + p2) + eVne + c.c. (2.7)

where x = (Xl’XQ) and c.c. refers to the complex conjugate of the per-

*“turbation term. For ¢=0, the Action-Angle variables (omitting super-

scripts) are

= x k=1,2. (2.7a)

I, = pk/\/ﬁ H ek

k k'’
The (constant) energy "surface" is a circle in Action space

_1 2 12y
H0 =3 (I1 + 12) const. (2.8)

In this example the frequencies are equal to the Action variables:

Q

HO
wk=5-—=I k=1,2,

g

c.f. (2.4), and thus the resonance

(nlw) = n,w, + n,w, = 0 (2.9)

is represented by a straight line through the origin in the 11’12(m1’w2)
plane, c.f. also fig. 2.
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For ¢#0 the circle (2.8) becomes an annulus of thickness ZaVn,
c.f. (2.7) and fig. 1 below. In that annulus the motion is vertical

to the resonance line as Ik changes only in the direction of the

. vector n:

e

A
Sepazotiin

A /4-‘ -

/]

/ Libeation

¥

—> quicnve)

Fig. 1 Motion near resonance (2.9) (a) in Action space

(b) In Action-Angle space, see also reference 4.
In the presence of a second resonance

, = + 9 o =0 2.11
(2,w) Liw, 2,0, ( )

the Hamiltonian (2,7) takes the form

i(2,06)

1(n,6)'+ GVZe + c.c., (2.12)

_ 1 2 2
H=25 (I] + I;) + €V e
c.f. (2.7a). The two resonance lines (2.9), (2.11l) are plotted in fig.2
below. The angle between the vectors n and £ and the magnitude of
the perturbation parameter & determine the proximity of the two reson-

ances in ActionISPace and the amount of overlapping which may occur.
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i

\
/-2

eon R A

Fig. 2 Overlapping of resonances (2.9 and (2.11)

in Action Space.

This simple picture clearly shows, therefore, that € must increase

‘beyond some threshold value€ B for the separatrices of the two resonances

T
It is precisely in that region of overlap that the motion is,

to cross.
so to speak, influenced by both resonances simultaneously and large
scale "stochastic" regions appear. In the next section we derive,

following Chirikov, a lowest order (over-) estimate for the threshold

€mr based on the overlapping of the two main resonances.

An important point to keep in mind here is that the two resonances

in (2.12) are nonlinearly coupled and give rise to higher order re-
sonances:

L + L = 0.

(mn, +mEJw, + (mn, +mi)u, =0

These resonances appear in the Hamiltonian when we transform (I,8) to

new canonical variables (I',0'), (I",8") etc., using perturbation theoryz.
3

They are multiplied by factors of eQ,e , etc.

and thus give rise to

smaller scale "stochastic" regions.

Higher order resonances, however,

do overlap for

€<e

T

scale "stochasticity'

and their combined effect often leads to large

' at about a half or a third of the value € at which

the lowest order resonances begin to overlap (see next section).
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* % % %k *

3. Motion in "Stochastic" Regions

s

A. The Resonance Overlap Criterion

In order to derive the Resonance Overlap condition we need first
an expression for the half width of a single resonance in the I, ©

plane, c.f. fig. 1b. Following Chirikon, we introduce a new variable

p = I-I; Ip| <<1 (3.1)
where Ir is the value of I at resonance and expand the terms of the

Hamiltonian
H = HO(I) + eV (I)cosH (3.2)

in powers of p. Keeping up to quadratic terms we find that (3.2) re-

duces to 2

1, 2
FW (Ir)p + sV(Ir)cose (3.3)

o
i

which, in this approximation, is the Hamiltonian of a simple pendulum,
c.f. fig. 3, with
21 5°H

w'(I ) . (3.4)
T * 91

\ ’_,,vg—::‘\“' R ma I
e I=
-«;',; ,*' &
:/’/

i

wf////\\\\\ww//f 4 On the separatrix of fig. 3

T ,..,“.-.

Fig. 3 Phase plane curves
for the Hamiltonian
(3.3).
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whence (3.3) yields

S0 Py eV(1-cosh) =2eVsin (2)

Solving for Pg and using (3.1) we find

— .. B
SI, = It (AI)r51n5
where
evV(I )
(a1) _ = o[— L 31/2 (3.5)
w'(Ir)

is the half width (in Action space) of the resonance of fig. 3. If

there is a second resonance I; the Chirikov Overlap Criterion predicts

large scale "stochasticity" when
> * - .
2(s1) 2 |T% - 1| (3.6)
-[In general, w(I)#I and using the approximation w'(ir)=(Aw)r/(AI)r
(3.6) may be written in frequency space in terms of (Am)r, see ref.

2, section 4].

To apply the abhove criterion to the case of the Standard

Mr;m]:_binc_gg’i?'_15 written in reduced form:
= + X sin2mx
Preg T Pe 7 4y Xy
t=0,1,2,..., (3.7)
xt+1 = xt + 2pt+1

Chirikov first writes down a periodically "kicked" Hamiltonian cor-
responding to (3.7):
[ee]
2 K
H=p" +— I cos2Tm (x-nt) . (3.8)
87 n=-x

Note that. the sum in (3.8) is the expansion of the §-function repre-
senting the periodic "kicks", that H here is explicitly time dependent
and that we have used K instead of ¢ to denote the perturbation
parameter.
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Since the mapping (3.7) remains invariant when x p, are trans-—

’
lated by an integer the motion may be studied on the Enit torus [0,11x
[0,1] in the x, p plane. There are two main resonances there centered

'at'(%y 0)_and (%,%) and pictured schematically in fig. 4a below [the
resonance at (%,1) is the same with the one at (%,O)]. We consider
the motion "stable" if there exist some invariant (KAM) curves, ex-—
tending from x=0 to x=1, which. prevent the orbits about, say, the (%?0)
resonance from entering the domain of the other resonances and even-

tually reaching p=1.

Fig. 4 Numerically observed transition to large scale "stochastic"
or unstable behavior for the mapping (3.7), (see ref. 2
section 5): (a) K<<1; (b) K=0.96; (c) K=1.13.

It is numericaliy observed that the motion is indeed "stable"
for 0<K<l. Note in fig. 4b that orbits started near the (%,0) resonance
even though they "stochastically” fill a thin layer about the separa-
trix are not allowed to "diffuse" into the central region. Apparently
large scale "stochasticity" has not settled in at K=0.96. Fig. 4b,
however, suggests that there must exist some threshold value KT:1 at
which the main resonances overlap and maximal excursions of orbits from

p=0 to p=1 become possible.
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The Chirikov Overlap Criterion (3.6) [with (3.5)] yields

2 (AT)_ = 4] K2]1/22%
r 16
. . (0wl
..KT = 5~ 2.5 (3.9)

which considerably overestimates the expgrimental result KTzl. One
of the reasons for this discrepancy is the fact that in deriving
(3.6) [with (3.5)] we have entirely neglected the effect of higher
order resonances which overlap and make the motion "unstable" at K
values lower that (3.9). [Chirikov has extended his criterion to
include next higher order resonancesz; in the case of the Standard

(1) 357,

Mapping this leads to the improved estimate KT

There have been several other attempts at evaluating KT experi-
mentally and theoreticallyz’is—is. The best result so far seems to
have been obtained by J.M. Greene14 who finds KT=0.971635... His
method is essentially a numerical prescription for finding the K(EKT)
value at which, the "last" KAM invariant curve - extending from x=0

‘to x=1 in fig. 4, is destroyed!

In recent years a humber of criteria determining the onset of
large scale "stochastic" behavior has appeared in the literature, see
e.g. ref. 16-20. To describe them and discuss their individual merits
here would take us too far afield. We refer the interested reader to
ref. 2, section 5, where the results of some of these criteria on the

Standard Mapping are compared, and to M. Tabor's recent review paper.20
B. Diffusion in Large Scale "Stochastic" Regions

We have seen how the overlapping of resonances can lead to large
scale "stochastic" behavior in two degree of freedom (or periodically
"kicked" one degree of freedom) Hamiltonian systems. What is of great
interest now (especially for the stability studies of particle beams
in accelerators!) is to compute the rate at which the orbits of such

systems diffuse in the "stochastic" regions.

Consider (again!) the Standard Mapping (3.7) for K>>1, where

the motion on the unit torus is predominantly "stochastic". In this
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case, following Chirikon, we assume that X, is a random variable

taking equally weighted values over all of [0,1]. Thus, changing

~coordinates to I, = hwp, and et = 2mx, in (3.7) we find that the .

total change

t
max

AT = K I sinet
t=1 :

averaged over t :106 for a single trajectory (time average AI) or

max
over all possible initial 6 values (ensemble average <AI>) gives

AT = <aI> = 0, (AT)2 = <(aI)?> = % tmasz. (3.10)

Thus, the motion resembles a classical diffusion process whose rate is

— 2 _ 2
DT = <(AI) >/tmax = K°/2. (3.11)
chirikov2 has calculated experimentally the diffusion rate DE
by averaging (AI)2 over 100 orbits for various values of K. After a

least squares fit of the data he obtains the approximate relation

k1982 /1 g6, K > 10,

"

DE
which is in good agreement with the theoretical estimate (3.11)! And
there is still further evidence that certain properties of "stochastic"®
orbits can be well described by the laws of random process: Chirikov

studied the distribution of |AI| changes over time intervals t

ax

experimentally:
a) by computing 10° orbits with evenly distributed initial conditions

for t = 100, and

max 7 .

b) by computing one orbit over 10’ iterations and averaging |AI| over

t = 102, 103, 104 intervals.

max

Plotting the natural log of the (normalized) distribution fn of the

above orbits as a function of the quantity

E = (AI)Q/tmaXKQ, (3.12)

Chirikov obtains results which are very well approximated by the
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(normalized) Gaussian:

-

c.f. (3.12) and fig. 5.7 in ref. 2.

Our discussion has so far been limited to Hamiltonian systems
of at most 2 degrees of freedom in which truly unstable motion (i.e.
extensive particle loss in a machine) requires the presence of large
scale "stochastic" regions. We now turn to more appropriate models
for colliding beams. They involve more than two degrees of freedom

and may be represented by four dimensional mappingsr in which prac-

tically anything is possible!

* % % % %

4. Arnol'd Diffusion in 4-Dimensional Mappings

The phenomenon of Arnol'd Diffusion has been recently studied
numerically as well as theoretically by Tennyson et a1® (TLL model)
and by Chirikov et a1’ (CFV model). These two models are four dimen-—
sional mappings which have been judiciously chosen so that different
types of motion can be isolated and systematically analyzed. In this
section we summarize the results of TLL and CFV, draw attention to
their common points and suggest how they may be used to study a similar
system which accurately describes a Beam-Beam Interaction (see also

next section).
A. The Tennyson Lieberman Lichtenberg Model (TLL)

The TLL model may be viewed as describing a free particle in 3
dimensions bouncing between a flat wall at z=h and a "rippled" wall

given by

z = —axcoskxx - aycoskyy - ecos(kxx + kyy). (4.1)

There are four variables here: the angles of incidence Oy s B, (in the

t



263

x, z and y, 2z planes respectively) and the coordinates X r Yy which-
are "updated" after every collision with the "rippled"” wall according

to the 4-dimensional mapping

-

Giaq = Oy + 2[axkx51nkxx + ekxsin(kxx + kyy)]
xt+1 = Xt'+ 2htanott+1
(4.2)
Bt+1 = Bt + 2[aykyslnkyy + ekysln(kxx + kyy)]
Yegr = Yy T o2htanB

t=0,1,2..., see fig. 6 below.

Az

44’{g?%%@%fzk‘gggcﬁfxggguzaJ’

e

7V o> o il e N
| T X e
t (@) 141

Fig. 6 (a) The (x,z) projection of the motion described by (4.2).

o ﬂ.. Pt

(b) The mapping (4.2) for =0 in the x, o plane, see ref. 4.

The situation is quite similar to a three degree of freedom Hamil-

tonian system in the presence of three spatial resonances:

i(n,0) i(2,0) i(k,6) + - 4.6
H = HO(I) + evne + evle +ere c.cC. ( )
where
1 2 2
Hy(I) = 5 (1, + I, + Ig), (4.6a)

c.f. (2.7), (2.12) and the discussion in section 2. The presence of
the third resonance in (4.6)- and for that matter in (4.1) as welll- is

very crucial: Note that the equation
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H i(k,0)

i = — = ie[nV ei(n’e) i(2,6)
n

+ zvze + kae

(s3]

]l + c.c. (4.8)

Qo

implies that the Action can change in all possible directions in the
-energy "surface" (4.6) and motion along resonance lines is now allowed
for arbitrarily small values of ¢! Thus orbits may wander over most
of the available phase space for all values of € and this is what one

refers to as Arnol'd Diffusion..
In order to study the diffusive behavior of the orbits of (4.2)
Tennyson et alu concentrated on the motion near the center of the x,qa

plane, see fig. 6b, and considered two types of processes:

1) "Thick layer" diffusion, in which the intial YO’BO values lie in

the large scale "stochastic" regions of the y,B plane [similar to the

ones at the upper and lower part of fig. 6b},

2) "Thin layer" diffusion, in which yO’BO are chosen in the "stochastic"”
layer about the central resonance in the y,8 plane [similar to the one

shown in fig. 6b].

To . estimate theoretically the diffusion rates for the above two
processes Tennyson et al. first approximate the Hamiltonian of their

mapping near the center of the x,a planeq, by

H_ = ha? - 2a_cosf - 2ecos[8 + ¢(t)]

where

6 = kXX, op(t) = kyy. (4.9)

Neglecting small osciilatory terms which produce no net effect after

long times, we find that the variation of H in t is given by

dH

?ﬁ? = QE%% sin [8 + ¢(t)]. (4.10)

For small oscillations near the center of the x,a plane one takes
6 :eocoswot (4.11)

where
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0 = QkX(axh)
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1/ 2

Substituting (4.11) in (4.10) and integrating over one iteration of

_the

mapping gives

-

AH = 2€9
b4

Ow

0

sinwbtsin[e + ¢(t)].

(4.12)

At this stage the assumbtion is made that ¢(t) behaves like a random

vari
rest
gion
of t

from which the rate for "thick layer" diffusion

obta

This assumption

able all of whose values are equally weighted.

s on the fact that ¢ = kyy lies in the large scale "stochastic" re-
s of the y, B plane and was seen to yield good results in the case
he Standard Mapping (section 3B).

Squaring (4.12) and averaging over t and ¢ gives

626

2 2
< >
AHX 0

ined

2
X

D

1 <«\m
1 2

W,

Le
2

is directly

2

2 2
eowo (4.13)

This expression was found to agree well with the results of computer

expe

rimentsu, see fig. 7 below.

N\

-

2\
T

-5-/

vy \
1 " " f L . i . L o

7 &

T s 2 g
Fig. 7 Dispersion in the Xx,q
plane vs. ¢ for thick layer dif-
fusion. Comparison between

theory and experiment, c.f. ref.

4.

Thus the theoretical considerations

which led us to equation (4.13)
apparently are justified and our
understanding of the statistics
of large scale "stochastic" re-

gions seems adequate.
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In deriving an expression for the rate D, of "thin layer" d4dif-
fusion the calculations become considerably more involved . Again,
we start with (4.10) but now we must keep in mind that ¢ (t) is not
7randomiz%§; rather, it is the phase on the separatrix of a simplé
pendﬁlum, since the y,B motion does take place near such a separatrix
[similar to the one stown in fig. 6b}. In this case also, Tennyson
et al obtain a diffusion rate D, which is in accordance with all their

. . L
numerical evidence .

This study of diffusion in the TLL model suggests that first one
ought to identify the main resonances in the two planes (here x,a and
v,B), as well as a third coupling resonance through which they in-
fluence each other. Thus, starting £for example, with X1 values
near the center of a main x,0 resonance we could compute how fast
points in the x,o0 plane disperse outward depending on where the point

YO’BO lies.

It was found4 that the dispersion of points in the x,o plane due
to (yo,BO) being in a "thick layer" is much faster_than the one due
- to (yO,BO) being in a "thin layer". Following, thus, a systematic ap-
proach similar to the one of Tennyson et al one must look for initial
conditions away from "thick layer" (i.e. large scale) "stochastic" re-
gion as a first step in minimizing the dispersive effects of the
nonlinear coupling on the particle beam of an Accelerator. Some form
of "thin layer" diffusion, however (essentially due to the overlap of
higher order resonances), will be unavoidable. The best we can do
there is try to calculate diffusion rates as TennysonL’t and Chirikov5 do

in their work on the two models discussed in this section.

B. The Chirikov Ford VivaldiModel (CFV)

. 4
The 4-dimensional mapping considered by these authors is

X X 3

Piii = PL - x touy, 4 ef(t)
Y - pY _
Piyr = Pp — Y FoHxy
£=0,1,2,... (4.14)
_ X
Xee1 T Fe t Prag

v (He>0 and small)
Yeer = Ye F Piys
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. X X . .
’wh}ch, for lPt+1 - Pt <<1, Xivqg xt|<<1, etc., may be represented by
‘the Hamiltonian
_ 1 2 2 1,4 b, _
H = 2(PX + Py) + R(X + y )4 UXY éxf(t). (4.15)

A mapping of the type (4.14) may describe colliding beams in the so-
called weak-strong approximation in which the influence of the weaker
beam on the strong one is ignored. In this context the variables X
Ve in (4.14) represent respectively the horizontal and vertical de-
viations of a single particle (of the weak beam) from its ideal
(unperturbed) path, and £(t) is an external driving force acting in

the x direction.

Choosing an f(t) of the form

£(t) = cosQt

= T-Acosgt " I £,,cos (nat)

leads to an infinity of resonance lines in the w

<’ wy plane (see fig.8
below) where W, and wy are the frequencies of the two anharmonic
A L oscillators at e= py = 0.
Qby In the uncoupled case they
//// 0. =00 are proportional to the oscil-
.P ,// X y lation amplitudes A_, A_, i.e.
Z@}? X Yy
/"j‘ n A Y] A -
/,/ er\’BX’ wy,\,By,
/'/:
AL (A 1302 (3
< X where
Fig. 8 Lines of lowest order
resonances for CFV Model. P 8=0.81472
marks the choice of initial
conditions. c.f. section 2.3 of ref. 2.

The main coupling resonance (or guiding resonance as Chirikov

calls it) "connecting" the vertical driving resonances in fig. 8 and
g oot §
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leading to Arnol'd diffusion is

w, - w_ = 0. (4.16)
X Yy . —

-

The diffusion studied here occurs in the "stochastic” layer about the
separatrix of (4.16) which is analogous to "thin layer" diffusion in
the TLL model (see section 4.A). To attain the slowest diffusion rate
possible, initial conditions were chosen at the midpoint between two

driving resonances (see fig. 8).

Chirikov's method for calculating diffusion rates for the CFV
model consists of computing a group of orbits over tmaxjtio7 iterations
and performing a series of averaging procedures: First tmax was div-
ided in, say, N=10 intervals At (= tmax/lo), The value of H, in (4.15),
was averaged over each At and a diffusion rate was computed for each
pair of At's a distance At|m-n]| apart

(F_-f)°

At|m-n] '

- which was averaged over all possible pairs in N intervals to yield
the rate®
= = 2
(H_-H_)
= 2 y @ n_
D= N(N-1) m>n At {(m-n) - (4.17)
In (4.17) the averaging over At decreases the effect of bounded oscill-
ations while the averaging over all pairs of At's decreases the time

scale over which diffusion is noticeable.

Performing the above calculation twice, i.e. dividing tmax into
N, = 100 and N, =ji)1nt§rvals of length (At)1 = tmax/ioo and (At)2 =
tmax/lo, Chirikov et al” obtain two diffusion rates (4.17) D, and D,-

In regions of bounded oscillations one expects that

3
D (At) _
N T (4.18)

2
D 3
1 (at)]

c.f. (4.17), while in Arnol'd diffusion regions

D, ~ D (4.19)

1 2°
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Indeed, starting with initial conditions near the center of the res-

onance (4.16), it was found that (4.18) was well approximated, while

for initial conditions in the thin "stochastic" layer of (4.16)
<D2/D1“% 0.8, i.e. (4.19) seemed to hold.

Arnol'd diffusion in the CFV model was observed for coupling
strenghts in the range 107" to 6x10”% and should be distinguished from
the motion in large scale "stochastic" regions which appear when low
order resonances overlap at U 2 2,0 x 10—4. This number differs by
only one order of magnitude from the corresponding one for the TLL
modelu, where "thin layer" diffusion was observed for coupling strengths

. =5 -3
ranging from 10 to 10 |

* % % %

5. Future Plans, Work in Progress

We propose to investigate numerically and theoretically 4-dimensional

" mappings, describing as faithfully as possible the Beam-Beam Interaction. As a
first step, we plan to study in detail the case of a "bunched", cylind-

rically symmetric beam for which the beam-beam force components in the

x,y directions are given by6'21’22
1.2
F_(x,y) = 2x(1-e 2" )/r?
X , , ,
’ r-= x"+y". (5.1)
1.2

Fy(x,y) = 2y(1-e 2= )/xr° .

This system can be represented by a mapping in (xt,yt,pz,pZ) space as
in the case of the CFV model, c.f. (4.14). It is more convenient, how-
ever, to tombine the corresponding 4 first order difference equations

. 6,2 22
into two second order ones ' 1,224

Xivq = Fey + 2Cxt + (BS/Q)FXCxt,yt)
t=0,1,2,-.. (5.2)

yt+1 - yt—l + QCYt + (BS/Q)FY(Xt,yt)
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where Q is the "tune" of the machine, B is the Beam-Beam strength,
S = sin2mQ, C = cos2mQ, Weiﬂmﬂlfollowiﬂmaorbitsin(XtrXt+1rYtrY )

t+1
space.

One génclusion we may draw from our discussion of the TLL and
CFV models in section 4, is that main (lowest order) resonances can
play a central role in the study of diffusion properties of 4-dimen-—
sional mappings. In particular, we saw that it is possible to énalyze
various types of (Arnol'd) diffusion processes and calculate diffusion
rates by making appropriate choices of initial conditions near the
center of the lowest order resonances, in the “stochastic" layer of

their separatrices, etc.

Such resonances (best pictured in two dimensional projections of
the 4-dimensional space) are also present in the mapping (5.2), see

3.76667 and B = 3.34666 at which

fig. 9 below. For values of Q =
1,21,6

tr T+t

planes is clearly dominated by a 4th order resonance.

ISABELLE is expected to operate the motion in the x

and yt' Yt+1 6s 21,22

Fig. 9 Projection of the orbits of (5.2), (5.1) on the Yir Yigq

plane, see references 6,21,

In a preliminary numerical study of (5.2), it was observed that

motion along the separatrix of the 4-resonance in the Yer Yigq plane



271

induces a rapid (after t§5,000 iterations!) dispersion of points
started near the center of the R plane. This may be due to the
large amplitudes that the orbits attain in going around the four is-

lands of fig. 9.

Work is currently in progresszf in which the ideas discussed
in this paper shall be used to calculate-numerically and theoretically
diffusion rates for mappings of the type (5.2). Eventually, however,

one is interested in studying mappings which model eliptically shaped

beams. As we heard from several speakers at this Conference, the re-
sults of many experiments indicate that the Beam-Beam Interaction
often has a significantly stronger effect in the vertical (y-) rather

than the horizontal (x-) direction of the particle motion.

This asymmetry between the x- and y- motion cannot be observed by
our cylindrically symmetric model (5.2), (5.1). We can, however, in-
corporate in our model the so-called "synchrotron oscillations", along
the beam, by multiplying the Beam-Beam force by a periodic modulation

6,21

factor . We plan to discuss the effects of these oscillations on

‘the resonance structure of the mapping (5.2) in a later report.
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ABSTRACT

A preliminary numerical study of the beam-beam interaction in two
dimensions was undertaken to determine the feasibility of an extensive numer-
ical and analytic effort to locate regions of "stable" motion if they exist.
In particular, to find the paramefer ranges (Av, Q, etc;) and the size of the
regions in phase space over which the "weak" beam will be stable. Because
of the difficult problem of displaying phase space trajections in a space of
more than two dimensions, it is helpful to select a two-dimensional beam
shape and charge distribution which reduces these difficulties. The present
study deals only with a two-dimensional "bunched" beam with symmetrical charge
distribution. It is shown that a three-dimensional phase space is adequate
for the display of its motion (which significantly reduces display problems
and the number of parameter values to be tested). Preliminary numerical
results indicate that a region of "stable" motion may exist and that a
systematic effort to locate the "boundaries" and the "degree" of stability
would be useful. It is shown that there are trajectories of the motion of
the two-dimensional beam which remain bounded for 100,000 iterations of the

mapping, tmax = 100,000.



276

1. INTRODUCTION

The current numerical study is the continuation, into two dimensions,
of the beam-beam interaction study presented in the article by

Dr. R.H.G. Helleman, "Exact Results for Some Linear and Nonlinear Beam-Beam
Effects".2 It was shown that the‘beam-beam force is virfua]]y Tinear over

a considerable region about the origin and some analytical results for the
linear case were drived. In addition, it was proven that there exists a
region of nonlinear stability for all time (which is 50% wider than the width
of the beam) for the beam-beam force of a "rectangular" beam [a (3-) piece-
wise-1inear force]. This region was obtained only for one value of the b-b
strength Av at each value of the tune Q. He intends to extend these results
to other beam shapes as well, i.e., the "error function" (1.4) and the
"bunched" b-b force in one and two dimensions.

Before attempting analytic calculations in two dimensions, preliminary
numerical calculations are being made; the purpose of this study. For the
one-dimensional beam model discussed in Reference 2, the phase space is two
dimensional and the K.A.M. Invariant Curves divide the phase space into regions.
However, for the two-dimensional beam, the phase space is four dimensional,
in general, (equivalent with Xps Xeq1> Vi Y space). The only known

nonlinear stability argument2

no longer applies. The "K.A.M. Invariant Tori"
(the analog of the "K.A.M. Invariant Curves") no longer contain all the orbits
for all time! An orbit starting "inside" such a torus can, and likely will,
escape from it. In a 2N-dimensional phase space the invariant tori are N-

dimensional surfaces. Therefore, for a 4-dimensional phase space the invari-

ant tori are 2-dimensional surfaces. It is shown that for a beam with a
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cylindrically symmetric gaussian charge distribution, the four dimensional
phase space can be reduced to three (this reduction does not exist for the
~ elliptic shaped beam). We take advantage of this simplification by trans-

forming from x to ys A8

t> Yt t
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2.  MODELS OF THE BEAM-BEAM EFFECT

In-4he usual accelerators and storage rings, without coliiding beams,
the deviation y(0) of the particles motion from the ideal orbit is successfully

described by a simple harmonic oscillator,

(1.1)

where 6 is the azimuth angle (= t), about the center of the ring. The 'tune'
Q is one of the important parameters in its design. When a second beam, crosses
the first, its effect may be modelled by an additional periodic, non-linear,

"kick" on a test particle whose motion is described by a modified version of (1.1)

&Y %y =P@E)Fly) » | (1.2)

where F(y) is proportional to y for y -~ 0, i.e., we have absorbed the "beam-
beam" strength in the periodic function P(8). Since the beams collided over

a very short & interval only, we model P(8) by a periodic &-function,

—F +Qy=Br(e-tomF ) . (1.3)

where t is an integer pounting the passages through a collision fegion. Equa-
tion (1.3) describes the deviation y, perpendicular to the plane of revolution.
If we also consider the deviation in this plane, i.e., in the x-direction
(along a radius of the ring), there is a second equation with some force

Fx(x,y), while the Fy depends on x as well in this case.
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Ih Ref. 2, the beam-beam force in the one-dimensional 'un-bunched' case

was modeled by the error function
Fiy) = Y et dt (1.4)

of Ref. 2. In the case of a "bunched’ (cylindrical) beam in two dimensions,

we use the as x- and y- forces, Fy, F

X
..y-2
_ 7\, 2
Fy(x,y) =2y (1 -e " )/r (1.5a)
-r2
F ( - —2_ 2
((Xy) =2x (1 -e " )/r (1.5b)

we have set the rms half width of the beam at 1, with

22,2, 2 (1.5¢)

-
i

of Ref. 3. This selection has two advantages over the more realistic elliptic
shaped beam. First there is a simple closed form for the deflection where

as the deflection for the Gaussian distribution with arbitrary aspect ratio
involves the evaluation of an integral. Secondly, it will be shown that due

to the cylindrical symmetry, the phase space can be reduced by one to three.

Instead of the B of (1.3) one often uses the so-called "tune-shift" Av,
Av = B/4mQ (1.6)

as an indicator of the Beam-Beam (force) strength. Since (1.3) is linear
between the pulses, it can be solved analytically over (nearly) 2m. "During"
the pulse the momentum is changed suddenly by the force F. Hence (1.3) is
equivalent to a pair of first-order difference equations3 expressing the Yt+1
and (momentum) Pis1 [just after the (t + 1)st pulse] in terms of the Yy and Py
Combining these two first-order equations into one second-order equation we find

in Ref. 2,
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Y + Y = 2 cos(2mQ) Yt + 4rAv sin(2mQ) F (Y

t+1 t-1 y t)

witht =0, 1, 2,....

In=the two-dimensional case (1.5), the equations anologous to (1.7) are

Yt+] + Yt-] = 2CYt + (BS/Q) Fy(xt’Yt) 4 | (1.8a)

Xpep + Xpoq = 20X, + (BS/Q) F (X,,Y,) (1.8b)

where C = cos(2mQ), S

sin(2mQ), and Fy and Fx are the non-linear force in
the y and x directions respectively.
To take advantage of the cylindrical symmetry for the case where Fy and

FX are described by (1.5), we transform (1.8a-b)

Pigp COS Bipq = —Ty_q COS 6y 4 # f(rt) cos O (1.9a)
Pie] sin Bis1 = T sin 6y g * f(rt) sin 6y (1.9b)
e
where f(r,) = 2 r_ [C + (BS/Q) (1 - e 2 )/r2] r, = (X, +Y )]/2 and 6, = tan'](X /Y.)
t’ - t t-> Tt t t ? t t Tt

After squaring (1.9) we have

r2 = r2 - 2r f(r,) cos As, + f2(r ) (1.10a)

t+1] t-1 t-1 t t t :

and multiplying (1.9a) and (1.9b) by cos 0 and sin 04 respectively and adding

we have

[- (28)y + f(ry)]
= ege-] re_q COS t Py

3 : (1.10b)
£+ [rz_] - 2rtf(rt) cos(Ae)t + f(rt)2]1/2

with A8, =6, - 6, 4 . (1.10c)
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The initial conditions ros e A6 and a phase & can be expressed in terms of the

initial values of XO’ X], Y0 and Y] as follows:
AR S LA I (1.11a)
- -1 ]
(Ae)] = cos (XgXq + YOY])/rOr1 . (1.11b)
and
§ =6, - (1.11¢)

We can express XO’ X], YO and Y] as a function of rg> > A8, and & as follows

YO = ry cos § (1.12a)
Y] = ry cos (Ae1 + §) (1.12b)
X0 =T sin § _ (1.12¢)
X] =T sin (Ae] + §) (1.12d)

Since (1.10) does not explicitly depend on &, with & being an arbitrary phase,
it is most convenient to specify ros > 46, and solve in terms of r, and A6. In
this way we have reduced the problem from four to a three dimensional phase space.
Obviously for the beam with aspect ratio other than 1, the elliptic beam, this
simplification does not exist and one is forced to deal with the much more
difficult four-dimensional phase space.

In addition to thé above x, y motion there can be, so-called 'synchrotron’
oscillatrons along the (z-) direction of the beam. In the case of bunched
beams (only) this would lead to an apparent periodic modulation of the b-b

strength, modelled by inserting a term,
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[1 - Bp(wt)] (1.13)

~behind the Av in (1.7), where p is a "periodic" function with (synchrotron)
frequency W (in units where the ring-revolutions have unit frequency) and

B its strength, both depending on the shape of, and particle distribution
inside, the bunches. This, in effect, changes the problem to one in three
dimensions [since the p(wst) itself may be though of as the solution of some
third equation, in p(wst) only]. We shall refer to it as a 2 + 1 dimensional

system [ and a 1 + 1 dimensional system if we have Xt =0 9n (1.3) and (1.13)].
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3. NUMERICAL STUDY OF BEAM-BEAM EFFECTS IN TWO DIMENSIONS
Before discussing the motion of particles in the two-dimensional
éase,'we first look at the one-dimensional case in the region of interest.
We have selected the proposed Isabelle tune Q = 3.76667, as the most
frequently used value; .however some additional Q values between Q = 3.70
to Q = 3.75 have been studied. As we see from the one-dimensional case,
the phase space has a prominent period four resonance, c.f., Reference 2,
for more detail. The hyperbolic fixed point of Figure la and 1b, when magnified,
Figure Tc, clearly shows the chaotic region. In the two-dimensional case,
Figure 2a, when the trajectories are projected on the Yir Y41 and Xy and

X441 planes, (for small initial x, values) Figure 2b,c, the points begin to

t
i1l the space shown. In Figure 3, this same region is plotted in the
phase-space Pes Tia and Aet, as described in Section 2. Here we see the
projected motion in X, Xt+7 is a result of a slow rotation in VA and

growth of Xt with time. In Figure 4, we show that the motion is independent

of §, the initial phase between x

th j
o and Yo? € same ry, Py motion occurs

but depending on the initial Xgs X15 Yoo ¥q- The projections are different.
We are interested in understanding the variations in the motion of the
particles as a function of o M and A81. A sequence of runs were made,

holding o fixed and varying ™ and A8, the resulting L and "min after

1
1000 iterations are displayed for a typical case for Q = 3.76667, B = 1.67333

in Figures 5 a and b; Additional graphs for other Q values can be found

in Appendix A. Note that as the value of ;e] approaches m/2, the M ax

occurs at a larger value of s the value of " decreasing for A > 7/2.

Note also that the minimum value of ry increases to a maximum at 28, = 7/2.

1
A sequence of Pes Teeq plots, Figure 6, clearly displays this behavior.

For the case shown of Ae] near 0 and =, the motion is "above" the resonance,
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and for Ae] near m/2 the motion is "below" the resonance. Using this

procedure it is possible to systematically probe the three-dimensional phase

-

space and map the resonance regions.

Most of the preceding graphs were made for short time intervals
t < 5000. The r .. vé]ues for longer times (100,000 iterations), for a
sequence of Ae] values (0.0, =/100, ©/10, ©/2, =) are shown, c.f., Figures
7 and 8. For a region below the hyperbolic fixed point, c.f., Figure 1,
the L remains constant. Note however the jump after 30,000 iterations
for the case Ae1 = 77/100. The reason for this is not yet understood, and
further study is planned.

Least we Teave the reader with the impression that irregular motion
in two-dimensions occurs only in the stochastic region, see Figure 9. For
this set of initial conditions, the motion projected in all planes is quite
complicated, and it seems quite unlikely that a simple fransform or pro-

jection will make it otherwise.
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Figure 1c. A further magnification of the chaotic region visible in
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Figure 2p. A magnification of a portion of Fig. 3a followed over a much
longer time than in Fig. 3z.
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4.  FUTURE STUDIES

Continuing effort is planned in the study of the beam-beam effects (and
1ihits)‘¥or p-p and p-p colliding beams in storage rings in two dimensions.
We plan to find the the parameter ranges (Av, Q, etc.) and the size of the
regions in phase épace over which the ("weakJ) beam will be stable. If no
regions of "stability" exist, which is Moser's belief..., expressed in
Reference 1, we hope to obtain estimates of the time intervals needed for the
amplitude of the motion to reach some specific value. As is apparent from
the preceding discussion, a combination of numerical and analytic methods
will be necessary as a result of the complexities arising from the higher
dimensional phase space of two-dimensional beams.

A study of the stability regions for a one-dimensional beam-beam force
in the presence of nonlinear synchrotron oscillations is also planned. The
two-dimensional x-y beam problem and the one-dimensional beam with synchrotron
oscillations may require similar numerical and analytical methods and the
two efforts will complement each other.

After sufficient understanding is acquired for these two cases, we will

attempt a study of the full two-dimensional beam with synchrotron oscillations.
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5. CONCLUSION

This numerical study was undertaken as a first step into the area of
iﬁteraE%ing two dimensional beams. It was shown that although the motion
of particles in a two-dimensional beam can be and usually are quite compli-
cated, a systematfc numerical study is possib]e. However, much additional
numerical work is required before a clearer understanding of the complicated

motion in two-dimensional beams can be attained.



305

6.  ACKNOWLEDGMENT

ng numerical calculations presented in this report were made in con;
junction with the investigations of the beam-beam 1imit (numerically and
analytically) of Dr. Robert H.G. Helleman. The author expresses his appre-
ciation to Dr. He]]emaﬁ for his éssistance in this effort. The author
acknowledges that some sections of this report were based closely on the
articies of Dr. Helleman, References 2 and 9. This work was supported by

D.0.E. under Contract EG-77-C-03-1538.



306

REFERENCES

Nonlinear Dynamics and Beam-Beam Interaction, Eds. M. Month and
J.=C. Herrera, Am. Inst. Phys. Conf. Proc., Vol. 57, (A.I.P., New York
1979).

R.H.G. Helleman, Ref. 1., pp. 236-256, cf., Appendix A, attached to this
report. ' . : ) ‘

J. C. Herrera, Ref. 1, pp. 29-41.
J. C. Herrera, M. Month, and R. F. Peierls, Ref. 1, pp. 202-209.

Topics in Nonlinear Dynamics, Ed. S. Jorna, Am. Inst. Phys. Conf. Proc.,
Vol. 46 (A.I1.P., New York, 1978).

M. V. Berry, Ref. 5, pp. 16-120.

J. Tennyson, "The Instability Threshold for Bunched Beams in Isabelle,"
Ref. 1, pp. 158-193.

J. L. Tennyson, M. A. Lieberman, A. J. Lichtenberg, "Diffusion in Near
Integrable Hamiltonian Systems with Three Degrees of Freedon," Ref. 1,
pp. 272-301.

R.H.G. Helleman, "Nonlinear Beam Dynamics of Storage Rings and Accelerators,"
a Proposal submitted to U.S. Department of Energy, May 1980.



307

APPENDIX A

Additional Graphs
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I. INTRODUCTION.

Nonlinear Hill's equations of the form

z"(0) + n(8)z(B) = F(B;2) (1.1)

frequently occur in the description of betatron oscillations

in cyclic accelerators and in intersecting storage rings ([1] -
[31). In equation (I.l), 6 stands for the azimuth around the
machine (of radius 1), n denotes a periodic function with
(minimal) period T < 2w, while F generally depends nonlinearly

on z and also periodically on 6 with, however, a minimal period
T' in general different from T. In this paper, we present
without (detailed) proofs new results regarding the stability
properties of a class of equations of the form (I.l), relevant

to the problem of the beam-beam interaction in the "weak-strong"
approximation. Specifically, we discuss new inequalities for

the corresponding action functional, valid in particular whenever
the strong beam has an anisotropic (ribbon-like) Gaussian current
density. We then solve the variational problem by direct methods,
establish its connection with the existence problem of periodic
orbits, and finally briefly indicate how to construct the mini-
mizing sequences involved. A general theory, along with complete

proofs, will appear in [4].
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2. A CLASS OF NONLINEAR HILL'S EQUATIONS AND THE "WEAK-STRONG"

BEAM-BEAM INTERACTION: A VARIATIONAL FORMULATION.

-

Consider a continuous periodic function A with minimal period

27 and let Wl‘ be the space of all real square integrable

2,27
functions z on [0,2w] that have a square integrable (generalized)

derivative z'; equip W% o with the norm
14
112 2 2
lllzlllllz = llzllz + llz'l|2 (2.1)

where

27 27
lz]12 = [ z%(8yae  ana |lz']]2=f (z0%(@rae (2.2)
2 2
0 0

Now consider a function G from W% o into itself which satisfies
I

the following properties:

2
(1) 0 s6(z) s % for all z € WE

- (2) G is concave in zz; in other words, there exists a function

H such that
H(x) = G(2) : (2.3)
where x = 22, which satisfies the inequality
H(Ax+ (1-)\)y) = AH(x) + (1-A)H(y) (2.4)

for all nonnegative x and y in W% o and for each X e (0;1).
[
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(3) G is (Fréchet)-differentiable on W% o with bounded derivative
r
G'(z) = F(z) (2.5)

In other words one has the relation

G(z+v) - G(z) = F(z)v + R(z;V) (2.6)

for all V<EW§ on ! where R(z;v) is the remainder satisfying
4

the relation

lim =0 (2.7)
Holly 7o TVTTh,2
4

For z twice continuously differentiable on [0,2m] we then consider

the differential equation
z" + nz = BAF(z) (2.8)

where n is a positive real number and B a real parameter. We
are concerned with the stability properties of equation (2.8)
in terms of n and B; in other words we would like to know for
what values of n and B8 all the solutions of (2.8) are bounded
(stability), and for which ones at least one of the solutions
is unbounded (inétability). Likewise, we would like to know
how the solutions of (2.8) bifurcate away from those of the

linear equation corresponding to F(z) = z in (2.8). In this

paper, we shall restrict our attention to the existence problem
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of periodic orbits and address ourselves to these more general

questions in [4].

There are two elementary examples that have motivated this study
in the first place, for which G satisfies the properties (1)-(3)

above.

EXAMPLE 1: The linear case. We have F(z) = z in (2.8); we may

2
then choose G(z) = %T and thereby H(Xx) = %; properties (1)-(3)

are here obvious.

EXAMPLE 2: The anisotropic (ribbon=-like) Gaussian beam. In

this case we have F(z) = erf(z) (error function), namely
- z(9) :
F(z) () = 20 /2] expl-t’]at (2.9)
0
for z 2 0, and F(-z) = -erf(z) otherwise (see [1]-[3]). We then

may choose

G(z) = z erf(z) + n—l/z(exp[—zzl-l) (2.10)

and consequently
i ~1/2 B
H(x) = /x erf(v/x) + (exp[-x] - 1) (2.11)

An elementary calculation shows that H is concave in x if, and

only if,
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V% 2
ﬁ) exp[-t“ldt = v/x exp[-x] (2.12)

for all nonnegative x's in W% o * Relation (2.12) can then
14

be proved using the power series expansions for exp[-x] and

erf[vx], namely

-1/2 E (_l)n(/§)2n+l

erf[vx] = 2m T (s D)

(2.13)

n=0

This shows that property (2) above is satisfied; property (1)

can be proved by similar arguments. Property (3) is the result

of a direct computation; in particular (2.7) follows from
elementary estimates for IIR(Z7V)lll,2~ We refer the reader to
[4] for details. Observe that, in this specific example, G

itself is convex in z; this is, however, irrelevant. The crucialv

property is the concavity in zz, as we shall see below.

Now consider the action functional

1 27 2 n 27 2 27
slz] =5 [ (z")7(8)ds - 3 [ z"(e)de + gf A(6)G(z)(8)de
0 0 0
27
= Sq[z] + Bf A(8)G(2) (8)ds (2.14)
0

where Sq stands for the quadratic, harmonic oscillator functional

27 5 n 27 2
[ (z)7(e)as - 5 [ z7(e)as (2.15)
0 0

N+

Sq[z] =
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In terms of (2.2), one can then rewrite (2.14) as

- 2 2 2m
2s(z] = ||z"[|5 - nliz|]; + 28f A(8)G(z)(8)d8 (2.16)
0

In the next section, we shall presen£ a set of inequalities

for S and indicate how to determine its critical points using
direct variational methods. This, in turn, will allow us to
discuss the existence problem of periodic orbits of equation
(2.8). Observe that S is not convex in z in general, so that
the traditional convex minimization techniques (see for instance

[5]) may not be applied.

3. INEQUALITIES FOR THE FUNCTIONAL S AND SOLUTION OF THE VARIA-

TIONAL PROBLEM FOR PERIODIC ORBITS.

1 1 .
.F .
We shall denote by W2,[2ﬂ] the subspace of W, ,. containing

r

all the real periodic functions of the form

+co
z(8) = ] a,expliko] (3.1)
k=~x

which satisfy the conditions

z(0) = z(2m)

and

2m
o = [ z(e)ae

0 (3.2)

]
1§}
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In order to detect the critical points of S on Wé [27]" we shall
’

need_an upper bound as well as a lower bound for S[E%z], where

1 . . 1 .
both z and v belong to W2,[2ﬂ]’ we shall equip W2,[2ﬁ] with
the kinetic energy norm

27w
Hz113 , = | 29 %@ae (3.3)
1,2 0

which, under the conditions (3.2), is equivalent to (2.1) since

we have
z]1, < Iz, (3.4)
A typical situation is described in the following

PROPOSITION 3.1. Consider the functional (2.14) where G satis-

fies the properties (1)-(3) above. Assume moreover that 0<n<1,

BA < 0, |A(8)]| < K for some positive K independent of 6 and that

l1-n
K

0 < |8] < (3.5)

Then one has

A’

z+v
e R

1 s L (stzl+siv) - s(Z

0 < %(l—n—lB[K)Hz—vl]ilz < S (3.6)

1
for all z,Ve:WZ'[zﬂ].



SKETCH OF THE PROOF (see [4] for details). From (2.15) one has

- z+v z-v, _ 1
Sq[—é-'] + Sq[—i—] = -Z‘(Sq[Z] +Sq[V]) (3.7)

Moreover for G concave in‘z2 and such that G(O) 2 0, one has

the estimate

z+v

(Y + eBY = 7 (Gl2) +6(V) (3.8)

Combination of (3.8), (3.7) and (2.14) with the fact that BA< 0

320

then leads to the upper bound in (3.6). On the other hand one has

27 2
28/ A(8)G(z) (8)de = -K[8] ||z]]5 (3.9)
0

which follows from property (1) above and our assumptions on
B and A; relation (3.9), along with (2.16), (3.4), (3.5) then

implies the lower bounds in (3.6). This completes the proof.

REMARK. The concavity of G in z2 is crucial to establish (3.8);

concavity in z, along with the parity of G, would only lead to

z+v

¢(5% + 65 2 6(2) + G(v) (3.10)

which is not sufficient to establish (3.6).

Proposition (3.1) now allows us to construct a critical point

1 i ; . 1l
2,[2n1° indeed, since S[z] 2 0 for all z in W

of Son W 2, (211"



there exist a greatest lower bound

0 < 4 = inf S[z]
1l
Z€W2,[2ﬂ]

and a minimizing sequence z(N) such that

lim S[z(N)] = 3

N0
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(3.10)

(3.11)

1

The fact that S actually takes on its minimal value 4 in W2 [27]
1)

is described in the following

PROPOSITION 3.2. Under the same conditions as in proposition

(3.1), with the exception of (3.5) which is replaced by

l-n
0 =< [B] < T

there exists a function 2z in Wl such that
2,[2n]

S[z] = 4

(N)

Moreover one has lim z = z in the norm (3.3).

N>

PROOF. Apply (3.6) to the minimizing sequence z

(3.12)

(3.13)

(N); we get

0 s (1-n-|8|K) ||z ™ -z‘N’||i,25 Tisz™resz2M) - (310)
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>4; from (3.11) and (3.14) we then get

SO ()
2

since S[

lim lIZ(M)"z(N)illlz =0

M, N

(3.15)

(N)

which proves that lim z

. 1 :
= z since W2,[2n] is complete.
N>

Relation (3.13) then follows from (3.11) and the continuity

of S. This completes the proof.

EXAMPLE: Solution to the variational problem for the Gaussian,

ribbon-like beam-beam interaction. We shall simply rephrase

our results in physical terms, in the context of example 2.

Consider the equation

z" + nz = BA erf(z) (3.16)
which describes .the vertical betatron oscillations of one
particle in the weak beam, going through the strong Gaussian,
ribbon~like, counterrotating beam at one of the interaction

regions of an intersecting storage ring; one then has the following

THEOREM 3.3. Under the same conditions as in proposition 3.2,

in particular with a magnetic field index n satisfying 0<n<1

(weak focusing regime), there exists a periodic orbit z in

W% [27] with period 27 which minimizes the action functional
[4
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27T 2m
siz] = %—f (z')z(e)de - f zz(e)de
0 0

NIE=)

27
+ Bf A(8)(z erf(z) + 1 /% (expl-2?1 - 1)) (6) de
0

Moreover, the minimizing orbit z vanishes at least once in

[0,27] (relation 3.2).

Similar results can be obtained for the strong focusing regime

and for minimizing orbits which may vanish more than once in

[0,21] (see [4]).

One. important question now remains: is the minimizing orbit

z in proposition (3.2) (respectively in theorem (3.3)) neces-
sarily a (classical) solution of equation (2.8) (respectively

of equation (3.16)) and is it possible to devise algorithms

or iterative procedures to actually construct minimizing sequences

z(N) converging to z?

We shall address ourselves to this question in the next section.

4, CONNECTION BETWEEN THE VARIATIONAL PROBLEM AND THE EXISTENCE

OF NON TRIVIAL PERIODIC ORBITS.

We first have to mention that the solution to the variational
problem of the preceding section may be chosen twice‘continuously
differentiable if G(z) is regular enough in z; this follows

from very general circumstances (see for instance [6]). In this

case, we have the following
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THEOREM 4.1. Let z be a twice continuously differentiable

function in W% [27] which minimizes S; then z satisfies equation
’

k2.8f; namely
z" + nz = BAF(z) | (4.1)
In this case one has the representation
27 1
s = Bf A(0){G(z) -5 2zF(z)}(0)ds (4.2)
0

for.the minimal value of S.

PROOF. Since z minimizes § on W1 one has
2,[27]

Slz+ Av]l = s[z] (4.3)

for all v in W% [27] and for each real X; thus the function

A — S[z+ Av] has a minimum at A = 0, which implies
a 27
ar Slz+Avl(x=0) = [ {-z"-nz+BAF(z)}v(8)de = 0  (4.4)
0

for all v in W% [2n]" An elementary density argument then
14
shows that (4.4) actually holds for each v in L?zﬂ] which,

in turn, implies
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z" + nz - BAF(z) =0 (4.5)
‘which is (4.1). Now from (4.5) (or (4.1)) one gets
2 - .
z"z + nz" = BAzF(z) (4.6)

and consequently the relation

27 2 27 5 27

-f (z")°(8)dae + nf =z°(8)de = Bf A(8)zF(z)(8)d6 (4.7)
0 0 0

after an integration by parts of z"z. One can then express
(4.7) in terms of S[z] using (2.14), which leads to

27 1
s = s[z] = Bf A(e){G(z) -5 zF(z)}(8)de (4.8)
0

This completes the proof.

A few remarks are necessary at this point; we first observe
that the relation

27 1
slz] = 8] 4(8)1{G(z) -5 zF(z)}(8)ds (4.9)
0

is a necessary condition for any twice continuously differen-

tiable function in Wl to be a periodic solution of equation

2,[2n]
(4.1) with period 2m. This fact, combined with the lower bound
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in (3.6), then leads to statements regarding the existence of
periodic orbits which allow us to distinguish between the trivial
solution z = 0 and the non trivial ones z Z 0. A typical

exampl=2 is the following

THEOREM 4.2 (The linear case). Consider equation (2.8) with

F(z) = 2z, namely
z" + (n-BA)z = 0 (4.10)

Then, under the same conditions as in proposition (3.2),
equation (4.10) has no non trivial periodic solution with

period 2mw.

PROOF. Choose any non zero z in W% [ar]- Since 1 - n - |B|K > 0
_——— ’

from (3.12), the lower bound in (3.6) implies
siz] > 0 (4.11)

On the other hand one has

2% 1
Bf a(8){G(=2) -5 2zF(z)} = 0
0

; the necessary condition (4.9)

2
since F(z) = z and G(z) = -

can therefore not be satisfied. This proves the theorem.



REMARK. The preceding result has nothing surprising. Indeed,

condition (3.12) can be rewritten as

-

8] (1-n (4.12)

and consequently represents the two-dimensional region in the

% - n plane bounded by the positive coordinate axes and the

hyperbola

um=1&n (4.13)
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From Floquet's theory and the Liapounov-Haupt oscillation theorem

however, it is known that the periodic orbits of equation (4.10)

are not likely to exist in such two-dimensional domains, but only

B

on well defined curves in the " prlane (see for instance
[7] and [8]). 1In particular for B = 0, one has non trivial
periodic orbits with period 2w only if n = 1, namely where the

curve (4.13) intersects the horizontal axis; this is hardly a

surprise since the fundamental period associated with the equation

z" + nz =0 (4.14)

i

is T =

We now show that the above structure may persist in the nonlinear

case: a typical example is the following
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THEOREM 4.3 (The anisotropic (ribbon-like) Gaussian beam).

-Consider the equation

-

z" + nz = BA erf(z) (4.15)
in the weak focusing regime 0 < n < 1, and under the same
conditions as in propositioa (3.2). Then equation (4.15) has

no non trivial periodic orbit with period 2w.

PROOF. The same argument as in theorem (4.2) is applicable if

one observes that one has

G(z) - % zF(z) =

DO

zerf(z) + 1 /% (exp[-2°] -1) 20  (4.16)

along with fA < 0. Inequality (4.16) follows from the convexity

of G(z) - % zF(z) and G(0) = 0. One then has

2w 1
Bf 4(8){G(z) -5 zF(z)}(6)d8 < 0 (4.17)
0

so that the necessary condition (4.9) cannot be satisfied since

S[z] > 0 for any non zero z. This completes the proof.

Similar results hold for the general case as long as G(z) - %zF(z) 20.
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(N)

The actual construction of approximation sequences z converging
to non trivial periodic orbits is a much less simple matter; we
éhaliﬁonly give the main ideas here, and refer the reader to [4]
for details. We first observe that the method of the variation

of parameters‘applied to equation (4;1) leads to the solution

8

z(8) = z,(8) + % jo sin(vn(6-1))A(T)F(z2(1))dT (4.18)

where Z satisfies (4.14). Define then the Volterra operator V by

e .
V(£) (8) = &= [ sin(/a(8-1)A(T)£(1)dr (4.18)
/i g
o Wl and the function A from W1 into itself b
n 2,27 b 2,27 4

A{z) =z - 2, = V(F(2)) (4.19)

0
Provided a sufficiently smooth F in (4.1) (typically once
continuously differentiable), one can then apply the contrac-
tion mapping argument to show that there exists a Ze‘Wélz,rr
satisfying (4.18) along with z(0) = z(2w), in other words
such that

A(z) = 0 ' (4.20)

One can then numerically implement the computation of the root

in (4.20) using Newton's method. 1Indeed the derivative of A(z) is
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A'(z) =1 + V(F'(z)) (4.21)

-

where 1 denotes the identity function on Wé 2,n; one can then show
14

that A'(z) is invertible, so that the sequence of approximations

to the periodic orbit is recursively given by

L) _ ) gr (2 Tla ) (4.22)

Quadratic convergence can be obtained. We hope to present our

complete results at the next follow-up sessions.
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ENHANCEMENT OF DIFFUSION BY A NON-LINEAR FORCE
David Neuffer and Alessandro Ruggiero
April 1980

Several observersl'2

have recently speculated that the
simultaneous presence of diffusion processes and the beam-beam
interaction may lead to enhanced diffusion or beam loss greater

than that present with either diffusion or the beam-beam inter-
action alone. To test these ideas we have written a computer code
to simulate the effects of random diffusion and the beam-beam inter-
action. 1In this paper some first results of these simulations are
presented. It is found that when the strength parameter of the
beam-beam force Av includes a resonance within its tune width (see
below) enhanced diffusion occurs.

In section 1 we outline the simulation of the beam-beam interaction
and diffusion. In section 2 we describe some first simulation fesults,
obtained with a l-dimensional "weak-strong" non-linear (beam-beam)
force. 1In section 3 we discuss features of these results and plans
for future simulations.

1. Simulation procedure

In all of the simulations reported in this note, particle
transport is calculated in three steps: a linear transport, a non-
linear beam-beam kick, and a random diffusion kick. Particle motion
through these steps is calculated for thousands of cycles to simulate
beam storage for finite times.

Particle motion through the machine from interaction region

to interaction region is simulated by a linear matrix calculation:
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X M 0 X
X
x! %!
= (1)
Y Y
1 0 M ]
Y y Y

with the submatrices MX and My given by:

cosu,, + aX31nux Bx siny,,
M = (2)
2
—(1+ax)
B

X

sin cosi. —a_sin
Hy Uy ™% Hx

where O s BX and u, are the usual Courant-Snyder functions. 1In this
transport matrix x and y motion are completely decoupled, and the
effects of any nonlinearities or dispersion in the lattice are not
included.

The beam-beam interaction is simulated by adding a non-linear

kick to the velocity:

X = Xl
x'! x! + F_(x,,Y7)
1 x 7171 (3)
y Yy
' s
Y 2 yl + Fy(xl’yl) .

For the case of a beam-beam interaction caused by a cylindrically

symmetric Gaussian beam we use

—(x2+y )
20
at A 1 - e
Fx(x,y) =-"3 Y x (4)
o) 2 2
X +y
2
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2. .2
(x"+y7)
a1 Av 1 - e 262
F (x,y) &~ B Y (4)
Y o 2
x“+y
202
where Av is the "linear tune shift." Other forms for FX,Fy, can

be chosen to simulate other geometries. 1In the form of the beam-
beam interaction chosen so far we have assumed that the longitudinal
length of the interaction is zero, and that the collisions of the
punches are centered and "head-on". We have also chosen the
"weak—-strong" approximation, that is, the beam-beam force function is
the same on every turn, and is not affected by changes in the cal-
culated beam.

Diffusion is simulated by adding a random kick to the
velocities on each turn:

xt > x'" + 0 - R
X ble

: (5)
> y' + 6, R
y' -y y ~ Ry

where ex, 8 are maximum kick amplitudes and Rx' Ry are independent

y
random numbers between -1 and +1, which are changed at each
crossing.

The simulation procedure outlined above will be changed in the
future in order to obtain more realistic simulations as results and
discussions develop.

2. First Results of the Beam-Beam Simulations

In the cases studied in this note the particle motions are
reduced to one-dimensional (1-D) motions by setting x = x' = 0 in
cquations 1-5. The interactions are studied by generating a set of

particles in an initial gaussian distribution and following their

motion through a large number of turns. For most cases discussed
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" 9

in this no J is 100 and the number of

115 2iNAILLT

turns NT is 200,000. We calculate the emittance as a function of

time, where the emittance is defined as

e =6 <(y—yo)2> . <(y'—y5)2> ' (6)

and the averages are over the total number of particles Np‘ Phase
space plots are also generated, and the distributions of the particles
can be studied.

We present the results in 4 categories, depending on whether
or not the beam-beam kick and/or the diffusion kick 1s non-zero.

(A) No beam-beam and no diffusion ("linear" and “quiet"):
In this case the beam behavior is trivial with particle positions
exactly repeating themselves whenever NpH; = P 27 where ng, is the
number of turns and p is any integer. It has been checked that
the program does produce this result. There is no change in emittance
and no change in the particle distribution.

(B) Beam-beam kick and no diffusion (”"non-linear” and
“guiet™): Particle motion is affected by the beam-beam interaction,
but there is no significant increase in beam size. The major change

in particle motion is in the phase of motion as the tune is shifted

from B to p + 2m Av = 21 v as y > 0 where the beam-beam tune shift
is largest (p > p as y » »). In figure 1 we show beam emittance as

a function of time (number of turns) for Vg = 0.4 and Av = 0,

0.005, 0.02, 0.5 and 0.10. From these cases and others we find that
there is no increase in time ("diffusion") for any values of vo and
Av.

The phase space distributions are distorted by the

nonlinear force and this provides the increase in the scatter of
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measured emittance with large tune shifts shown in figure 1.
(C) No beam-beam and a "diffusion" kick:
In this case the measured emittance increases linearly
with time. The increase can be calculated, obtaining

2
6n g LAY >

il
m
+

e(nT)

(7)

2
€6 + nTB ey

where N, is the number of turns and €5 the initial emittance and
where ¢ is calculated using equation 6. Typical cases of such
emittance increase are shown in figures 2 and 3 in the cases

with Av = 0. The increase in this and similar cases agrees with

equation 7.

We can define a diffusion coefficient through equation

_ 9% _ B
D———T(G) (8)

where T is the time associated with one turn.
(D) Beam-beam interaction and diffusion kick (Ynon-lineaxr"”

and "noisy"):

Oour first simulations have showed some interesting
effects connecting diffusion and the non-linear interaction.
Figure 3 shows a typical set of results in which the tune at van-
ishing amplitude Vo is kept constant at a value of 0.2 and
the beam-beam parameter Av is varied. For Av = 0, 0.005, 0.02,
0.03 and 0.033 the diffusion is constant and agrees with equation (8)

within expected statistical accuracy. Tor Av = 0.04, 0.06 and 0.10
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the diffusion has doubled, approximately.

This increase is shown in figures 2 and 3 and also in
Table 1A, where we have tabulated the diffusion coefficient D and
the enhancement factor Xp (D = xED0

D is calculated using a least squares fit, solving the equation:

) as a function of Av and Do’

_ n
e(n) = €, + Dy45,0600

where we have set 100,000 turns equal to one unit of time. Table 1A
includes cases with Av ranging from 0.0 to 0.10, for two different
values of DO, all with Vo T 0.2.

We note the following features of the simulations:

1. There is no measurable diffusion enhancement
(XE.El) for Av < .033. For Av $ .04 the diffusion is roughly doubled
(xE z2). The diffusion enhancement is roughly constant for all
Av 3 0.4. This seems to imply that measurable diffusion enhancement
(xE 3 1.2) occurs when the resonant tune 1/6 = .1666 is within the
beam-beam tune spread, and implies that the enhancement does not change
greatly with tune spread providing ornly that the major resonance 1S
within the tune spread.

2. We have calculated diffusion enhancement for two
‘very different values of DO (.008 and .032). The diffusion enhance-
ment factor X, appears to be independent of Do’

3. In the cases tested to date the change in emittance
seems to remain linearly increasing with time whether or not the
diffusion is "resonance-enhanced”. These cases have so far been

limited to a few hundred thousand turns and to an increase in

emittance by a factor of ~4.
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4. Although diffusion enhancement is relatively
constant for Av 3 .04, the particle phase-space distributions
change significantly. For Av = .04, much of the enhancement is
due to a few particles kicked to very large amplitudes, whereas for
Av = 0.10 the enhancement seems to be distributed throughout the
particle distribution.

In Figure 4 we show the variation of x_ with Dy and

E
Av.

In table IB we show results of other simulations for

various values of Do’ \Y Av. Diffusion enhancement occurs when

O’

the major resonances 1/4 (.25) and 1/8 (.125) are within the tune

spreads. Enhancement by the v = 0.25 resonance is much larger
(xE = 6), and enhancement by the v = .125 resonance is somewhat less
(x., < 1.5) In the cases considered to date only ~100 particle tra-

E

jectories have been followed; statistical inaccuracy makes it difficult
to notice enhancement with Xp £ 1.2. We have not yet identified
enhancement due tc resonances of order higher than eight. We have
not yet determined whether diffusion enhancement caused by a par-
ticular resonance is strongly dependent on Vo- The cases with
Vo = 0.175 imply some dependence.
3. Discussion and Summary

In these first simulations we have limited ourselves to a
one-dimensional, "weak-strong" simulation with only 100 particles
tracked for a few hundred thousand turns. In two (or three) dimen-
sions the situation becomes much more complex, and the simple iden-
tification of diffusion enhancement with resonant tunes in 1-D may
be more difficult in higher dimensions. We plan to explore 2-D

effects soon.

We do not yet completely understand the nature of the

R S g o s e o
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diffusion enhancement in one dimension. We have not fully explored

or explained the dependence of diffusion enhancement on Vor Av, D

r

o]

the beam-beam force shape, and time. Future numerical and analytic
studies will explore the details of this effect and may provide ana-
lytic methods of calculating the enhancement.

In the work to date, we have begun exploration of the relationship
between a non-linear periodic force ("beam-beam") and the increase
in the mean-square emittance with time ("diffusion") due to the
beam-beam force and/or random processes. We have found that when
the beam-beam tune shift includes a major low-order resonance-
significant enhancement of diffusion due to random processes can

occur.

References
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Diffusion as a function of tune shift with vo

Table 1A

In each

simulation we have chosen €0 = 0.02, a total number of particles of

100, and 200,000 turns of calculation.

D
(o}

(calculated
diffusion)

.008

.008
.008
.008

.008

.032
.032
.032
.032
.032

.032

(tune shift)

Av D

0. .00765
0.005 .00886
0.02 .00902
0.03 .00675
0.033 L0111
0.04 .0174
0.05 .0199
0.06 .0141
0.10 .0178
0.0 .0302
0.03 .0383
0.04 .0820
0.05 0612
0.06 .0654

0.10 .0770

(measured
diffusion)

X

E
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(enhancenment factor)



Table 1B

Other cases of diffusion simulation with various values of

D v _, Av.

o’ "o

A typical case has €5

is tracked for 200,000 turns.

Av D
o
0.0 .008
0.04 .008
0.06 .008
0.08 .008
0.10 .008
0.02 .032
0.04 .032
0.005 .032
0.02 .032
0.04 .032
0.06 .032

0.02, g, =

.00691
.0101
.0595
.0322

.0254

.0297

.0394

.0394
.0346

.0670

100 and

341



Figure l: Beam eMittance E as a funution of time for beam-beam interaction
strengths Av = 0, 0.02, 0.05, 0.10. There is no diffusion in
these cases. In all these cases we have used vg = 0.2, By = 2. m,
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Figure 3: Deam emittance d4: a tunction oL time nqp with the
diffusion kick twice as large as in figure 2, which
means an initial diffusion four times as large.
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AN INVESTIGATION OF THE 'FLIP-FLOP' BEAM-BEAM EFFECT IN SPEAR

M. H. R. Donald+

Abstract

-Whén colliding electron and positron bunches in
SPEAR at “high vftues of the beam-beam tune shift para-
meter Av, it had been observed that sometimes one of
the equal intensity beams would blow up in the vertical
plane more than the other beam. It was subsequently
found that a small adjustment to the phase difference
between the RF accelerating cavities would make the
beam 'flip' the other way. The results of the investi-
gation of this phenomenon are presented in this paper.

Introduction

The flip-flop has been known at SPEAR for some
time but it is only recently that it has had an impact
on routine operation. The operating luminosity of
SPEAR has been gradually improved by control of the
orbits, dispersion functions, betatron coupling and
synchro-betatron resonances. This routine operation at
high values of the beam~beam tune shift has led to the
flip-flop effect becoming more noticeable and more
troublesome, One can balance the beam sizes and there-
by optimize the luminosity using RF phasing. However
this phenomenon exhibits considerable hysteresis and
close to the beam-beam limit it can limit the peak
luminosity attainable. A further undesirable effect,
which prompted this investigation, is that when the
Bunch Lengthening Cavity (BLC) is powered the flip-flop
condition is usually very much worse.

It is important to get some understanding of the
phenomenon in order to: (a) use the proven good
effects of the BLC, (b) be able to predict the effects
-in PEP and larger et-e” storage rings, and (c) per-
haps gain some more understanding of the beam-beam
effect in general. So far we have made some interest-
ing measurements but have no theory to explain them.
We hope that further measurements will give us some
more clues to the nature of the effect.

We shall group the evidence under three headings:
(1) 'hard' effects, which are very noticeable and re-
producible, (2) 'soft' effects, which are less sharp
or less reproducible, and (3) 'null' effects, in which
parameter changes have no discernable effect on the
flip-flop.

We mention first some of the easily calculated
effects of changing the intercavity phase. The biggest
of these effects is the separation of the electron and
positron orbits which cause the bunches to collide not
quite head-on. Orbit measurements are in fairly good
agreement with calculations and for 30° of intercavity
phase shift we find an orbit separation at one of the
interaction points of Ax ® 2x 1072 m ® 0.4oy. Anotheér
easily calculated effect is the difference in synchro-
nous energy of the beams at the interaction points.

At the East interaction point the energy difference is
AE = 0.3x 1073 = 0.60g/E for the same phase difference.
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The Measurements

The position of the RF cavities in SPEAR are shown
in Fig. 1.
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Fig. 1. Layout of RF cavities in SPEAR.

The experiments were usually done with cavities
788 and 11S12 powered but the cavity pair 6S7 and
12513 has also been used. When the phase control to
cavity 788 is varied we observe changes to the heights
of the et and e~ bunches. We observe the height of the
bunches by means of a vertical profile scan of the
synchrotron light emitted by the particles.1 The
light is scanned across a narrow slit in front of a
phototube detector by means of a mirror vibrating about
its suspension at 100 Hz. To produce profile scans the
X plates of an oscilloscope are driven from a signal
proportional to the mirror deflection.

To obtain plots of relative beam height as a func-
tion of intercavity phase the signal from the phototube
is passed through a peak detector and fed to the Y
terminals of a chart recorder, the X terminals being
driven by a signal proportionmal to the intercavity
phase.

Hard Effects

Dependence on Av

The effect is strongly dependent on the beam—-beam
tune shift parameter appearing when Av > ,025 per in-
teraction region.

Horizontal Dispersion Function

SPEAR usually operates with the nominal value of
the horizontal dispersion function ny set equal to zero
at the interaction points. With this condition the
flip-flop is relatively easy to control and its polari-
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ty (direction of phase change needed to blow up a
particular beam) depends on the configuration used and
the closed orbit errors. If however the nominal value
of n§ is set outside the range -2cm < n; < 2cm, - then a
very strong hysteresis effect is evident and the flip-
flop becomes uncontrollable. Typical hysteresis loops
for a range of n; are shown in Fig. 2.
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phase and dispersion function.

It is unfortunately not possible to measure n; to
a precision better than lcm but averaged data indicate
that differences from the nominal value are approxi-
mately 0.5~lcm and that the dispersion function is
different at the two interaction points.

Keeping the intercavity phase at a constant value
we have scanned the value of nj from -3cm to +3cm
obtaining the flip-flop condition. The hysteresis
loops obtained by this method are much more smooth than
those obtained by varying the intercavity phase at con-
stant n§. We also observed a reversal of the polarity
close to the condition of zero misphasing.

Beam Separation

Recently we have used the stripline monitor plates
to make a small horizontal separation of the two beams
at the interaction points. We have found that when
separating voltages are applied the hysteresis loops
shift along the phase axis with very little change
otherwise. The orbit separation due to such a shift
in intercavity phase corresponds to the orbit separa-~
tion due to the separation voltage. Measurements will
be continued using combinations of separating voltage
and cavity phasing to separate the beams at the two
interaction points independently.

Energy Dependence

The experiments described here have been done at
energies of 1.88 GeV and at 2.4 GeV, most of the quan-
titative work being done at the former energy. In the
absence of detailed quantitative data for comparison
we can only report our findings at these two energies
and quote operational experience at other energies.
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The flip-flop is only apparent close to the beam-
beam limit at any energy. At low energles (1.5-1.9
GeV) the onset is sudden and the flip-flop is very hard
to control and appears to be sensitive to very small
changes in conditions. In the medium energy range
(2.0-2.5 GeV) the onset is more gradual and the pheno-
menon is much more reproducible. At energies higher
than 3 GeV the flip-flop disappears.

Bunch Lengthening Cavity

A bunch lengthening cavity (BLC) was installed in
SPEAR in order to improve performance. The BLC is a
powered cavity operating at 860 MHz at the 672th par-
monic of the revolution frequency. Thils cavity modi-
fies the .potential well of the synchrotron phase
oscillations (this potential well is provided by the
main RF cavities operating at the 280th harmonic).

The flattened potential well thus produced can lengthen
the bunches so as to avoid single bunch instabilities
that cause energy broadening. The lengthened bunches
also produce less higher mode RF heating and cure the
problem of synchro-betatron resonances.

On one occasion only, powering the BLC made the
flip-flop better, but on every other occasion it made
the flip-flop uncontrollable,

Risetime Measurements

We have measured the risetime of the flip-flop
beam growth by applying a square wave modulation to the
intercavity phase. To obtain a measure of the height
of the beams we took an output from the profile monitor
scan and displayed this on an oscilloscope, the oscil-
loscope being triggered from the pulse generator used
in the phase switch. The height of the pulses from the
profile monitor system is inversely proportional to the
beam height. Measurements suggest that the risetime is
independent of energy and is about 80-100 msec which is
long compared to the transverse damping time.

Soft Effects

Rotated Quadrupole

A detalled study of these effects has not yet been
done but measurements and operational experience indi-
cate that increasing the linear coupling by means of
the rotated quadrupoles makes the flip-flop less sensi-
tive. This is probably due to an increase in the non
beam-beam contribution to the height of both beams
resulting in a decrease in beam-beam tune shift. The
increased strength of the rotated quadrupoles might
also be expected to change the flip-flop by coupling
residual horizontal dispersion to the vertical plane.

Chromaticity and Sextupoles

SPEAR normally operates with horizontal and verti-
cal chromaticities £, = Ey = +3.2, The natural chro-
maticities for normal operation with B, = 10cm are
Ex = ~10 and &, = -20, the correction geing accom—
plished by two families of sextupoles.

Increasing the chromaticity substantially (25%
increase in sextupole strength) made the flip-flop
worse but not disasterously so. Decreasing the hori-
zontal chromaticity towards zero had an effect on the
hysteresis print of the flip-flop. This effect was not
however reproducible between experiments and no drama-
tic effect was observed close to the value £, = 0.
Decreasing the vertical chromaticity alone had no
effect. The most probable explanation for this be-
haviour is the effect that the sextupoles have on
orbits and dispersion functions at the interaction
points.



Horizontal Beam Size

Measurements indicate that, when the beam heights
are flipped and flopped, the widths also change. We
might expect that if the effect were due to coupling,
then an increase in beam height should be accompanied
by a reduction in beam width. We in fact noticed an
increase in width of the beam that was blown up verti-
cally. For moderate values of beam-beam tune shift the

_change in beam width was about 5% but at the higher
currents the chamge was about 10%. The effect is most
easily seen by applying a square wave phase modulation
at a frequency of about 1 Hz.

Null Effects

Vertical Orbit and Dispersion Function

No correlation could be found between the flip-
flop and measured vertical orbits and dispersion func-
tions.

Coherent Motion

We have not detected any coherent motion associ-
ated with the flip-flop. Since the beam cross section
is small compared to the distance between the beam and
the monitors, it is only possible to detect the bary-
centric (dipole) mode of oscillation by using these
monitors. We have however also viewed samples of the
beam profile by using the synchrotron light monitoring
system. This technique should be sensitive to higher
modes of oscillation.

Longitudinal Motion

We have looked for changes in bunch shape or bunch
length associated with the flip-flop. Both by direct
observation of the synchrotron light using a fast
photodiode and by observing the spectrum of signals
from the beam monitors, we have been unable to detect
. any such changes when the beams undergo a change in
state.

Conclusions

For a small intercavity misphasing all calculated
effects are extremely small except for the beam sepa-
ration, beam crossing angle and energy separation. By
keeping the cavities phased and varying the dispersion
function ni we can also make the beams flip and flop.
This observation combined with the evidence from the
horizontal separation experiment leads us to believe
that the energy separation is not necessary to the
phenomenon. We believe that a beam separation (or
possibly crossing angle) at a finite value of n§ is the
combination necessary to drive the flip-flop. We think
that coherent motion is unlikely because (a) the rise-
time is long compared to the transverse damping time,
(b) we have not observed any coherent motion, and (c)
the dependence on chromaticity is not very strong.
Single resonance effects are also unlikely since the
effect is independent of machine tune and because the
bunch lengthening cavity cures the individual synchro-
betatron resonances by creating a continuum of synchro-
tron tunes.

The calculated changes in amplitude function 8 and
dispersion function n as a function of orbit difference
and energy difference are very small and are unlikely
to play a part in deciding which beam should blow up.

Because of the sensitivity to horizontal disper-
sion function it is possible that synchro-betatron
resonances are excited by the beam-beam force as in
Ref. 3 but that these resonances are of high order and
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are associated with the nonlinearity of the beam-beam
force.
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