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PREFACE 

T%e beam-beam interaction has been and continues to be a performance 
limiting effect in colliding beam systems. Electron-positron collisions 
are typically more than a factor of five lower in luminosity than ex- 
pectations from beam design and with present understanding, extrapolations 
to future systems are not satisfactory. Prediction and optimized design 
are even more uncertain for proton-proton and proton-antiproton future 
systems with the ISR at CERN being the sole precedent. The very health of 
the high energy physics program in the next decades depends to a significant 
extent on our ability to unravel the mechanisms of this phenomenon and to 
control them. 

To this end, a symposium was held in March 1979.on nonlinear dynamics, 
concentrating on the beam-beam interaction. The symposium took place at 
Brookhaven National Laboratory and the proceedings were issued as part of 
the conference proceedings of the American Institute of Physics (Number 57). 
It was felt at that time that the 1979 symposium would be the first of a set 
of meetings which would be needed. This view has not changed and a second 
symposium is being considered for sometime late in 1980 or in 1981. 

However, since last year, there have been a variety of studies, in- 
cluding a plasma model of e+e- collisions, models emphasizing the effects 
of "noise" and a model involving a diffusion-damping equilibrium. Various 
nonlinear analyses of the beam-beam systems have,also been performed. And 
finally an entirely new form of beam-beam configuration has been proposed 
and studied -the very strong single pass collider. 

In view of this extensive and broad effort, there was organized an 
informal seminar to bring many of these ideas into an open forum. This 
seminar was held at SLAC on May 22 and 23, 1980. Contributors, totaling 
seventeen, came from universities and national laboratories across the 
United States. These proceedings represent a record of the seminar. The 
written versions of the papers presented were submitted by the authors and 
are included here without editing. It is hoped that this compilation will 
be of value to both beginning and established physicists in this very in- 
teresting field of accelerator research. 

M. Month 
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A SIMULATION STUDYOFTHE 

BEAM-BEAM I NTERACT I ON AT 

SPEAR 

Jeffrey Tennyson 

Dept. of Electrical Engineering 
and Computer Sciences 

University of California 
Berkeley CA 94720 

ABSTRACT 

A two dimensional simulation study of the beam-beam interaction at 

SPEAR indicates that quantum fluctuations affecting the horizontal 

betatron oscillation play a critical role in the vertical beam blowup. 

I . INTRODUCTiON 

The luminosity at SPEAR and other electron-pos 

beam machines is limited by an instability in the betatron 

itron collid 

osci 1 lation 

ing 

which causes beam expansion and particle loss when the beam densities 

exceed a certain critical level. This instability is excited via some 

presently unexplained mechanism by the beam-beam interaction, i.e., the 

electromagnetic force felt by a particle as it passes through a bunch of 

the opposing beam. The interaction results in an almost instantaneous 



2 

change in the transverse velocity of the particle (see Fig. l), and a 

corresponding displacement in the transverse phase space (see Fig. 2). 
4\ 

This displacement is quite large in comparison to that produced by the 

accumulated quantum fluctuations over the period between intersections. 

A single beam-beam kick at typical operating densities (tune shift 

5 =.02) produces a displacement that is approximately twenty times as 

large as the corresponding fluctuation displacement at 2 GeV. If these 

kicks were uncorrelated, they would result in a diffusion that would 

produce beam blowup at tune shifts as low as C=.OOl. The fact that 

blowup does not occur at such low densities is explained by nonlinear 

stability theory which predicts a very high degree of correlation at tune 

shifts up to about 5=. 16 (for a one dimensional model see ref. [l]). 

In fact, it is far more difficult in this case to explain the small 

amount of correlation breakdown at the beam-beam limi’t than it is to 

explain the correlations themselves. 

In seeking to identify the source of the correlation break- 

down, it is helpful to note that the potential mechanisms can be divided 

into two general categories. 

In the first category are those mechanisms which involve 

“intrinsic” stochasticity. (See ref. [2] for details.) The beam-beam 

interaction provides a nonlinear coupling between the otherwise fairly 

independent betatron oscillations and the longitudinal motion. If it is 

strong enough, this coupling can destroy the individual energy invariants 

of the non-radiating oscillators. Energy is then exchanged between them 

in a deterministic, but statistically “random” way. The leakage of long- 

itudinal energy into the transverse motion may then result in beam blowup 
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or particle loss. A specific example of this type of breakdown, the over- 

lap of synchro-betatron resonances, has been studies in detail by lzrailev 
- 

(ref. [l]) who has shown that under the proper conditions, synchrotron 

modulation of the beam-beam force can cause significant decorrelation at 

tune shifts as low as 5=.04. 

The second general source of correlation breakdown is exter- 

nal ly generated noi se. A truly random noise, due for example to quantum 

fluctuations, can conceivably decorrelate the beam-beam force via phase 

mixing and amp1 i tude diffusion. Although these processes are not completely 

understood at the present time, preliminary results from the simulation 

study described below indicate that quantum fluctuations can also produce 

beam blowup at ~=.04. 

Although this study in no way invalidates the conclusions of 

lzrailev concerning the role of resonance overlap in the beam-beam limit, 

it does present an alternative explanation based on noise generated decor- 

relations. If it does, in fact, turn out that quantum fluctuations play 

a major role in the beam-beam 1 imit at SPEAR, past attempts to extra- 

polate beam-beam effects from electron colliders to proton colliders 

will have to be seriously reconsidered. Section II of this report des- 

cribesthesimulation model in detail. Section Ill summarizes thepreiimin- 

ary results and Section IV offers some tentative conclusions. 

II . THE SIMULATION 

The computer simulation uses a simple two dimensional weak- 

strong beam model . A set of difference equations transports the particles 

of the weak beam through and between encounters with bunches of the strong 
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beam. The effects represented in both the vertical and horizontal motions 

are, (1) linear rotation between intersections (2) radiation damping 

(3) quantum fluctuations and (4) the beam-beam interaction. The indi- 

vidual difference equations are shown in detail below and the Fortran 

coded main loop is reproduced in Fig. 3. 

tinm Ro;tation. 

x1 
= ~~~0s (wx) + ios in(wx) 

5 
= -xos in (ox) + ;Cocos (w,) 

Yl 
= yocos (~0~) + ;,s i n (w,) 

;1 
= -yosin(wy) + iocos (wy) 

RadiaAion %mping. 

(1) 

(2) 

(3) 

(4) 

. . 
ii2 = x1 - xlCDx (5) 

. 
Y2 = ‘il - ;py 

(&.umtum FLuc;tudtiam. 

(6) 

x3 = x1 + Kcxcos (2aRx) 

i3 = 
;2 

+ Kcxsin(2rRx) 

Y3 = Yl + KKycos (27rRy) 

(7) 

(8) 

G3 = ;2 + KKysin(2rRy) 

(9) 

(10) 
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where 

. 
;4 = Y> - Sy4ay3 [exp (-x:/2) 1 

1 

(1 +y;/2+ 

w 
X 

, fJl 
Y 

C 

K 

Rx , R 
Y 

Dx , D 
Y 

(11) 

(12) 

horizontal and vertical betatron frequencies. 

twice the inverse of the damping time. 

the average integrated phase displacement due to 
quantum fluctuations between intersections. 

two random numbers between 0 and 1; reset with 
each iteration of the mapping. 

artificial diffusion attenuation: al lows for a 
variation of the damping time and fluctuation 
level of each oscillator in such a way that the 
nonintersecting beam size remains constant. 

the linear tune shifts. 

The variables x,>;,y,; are dimensionless; x and y are normal- 
. 

ized to the RMS widths of the strong beam CI and u 
X Y’ 

while x and ; are nor- 

malized to ox/B: and u /R* (Bz and 13; are the beta functions at the inter- 
Y y 

action points). The factors C and K are related by the requirement that 

the nonintersecting weak beam size be y,,,=~~~~~1. Thus, 

K = VSF. 03) 
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The above mapping is extremely general. It is applicable to any electron- -1 

posist-on storage ring with flat beams. The only constant specific to a parti- 

cular machine is the proportionality constant between C and E3 

C 
= 8.85 x lo-’ E3 

RN 

where R is the effective radiation radius of the machine in meters, N is 

the number of bunches and E is the energy in GeV. 

In Eq. (12) the vertical beam-beam interaction is modulated 

by the horizontal motion, but the corresponding dependence in the hori- 

zontal interaction has been omitted. The basis for this approximation is 

intuitively apparent from Fig. 1. The large aspect ratio of the beam, 

30/l, accentuates the x dependence in the vertical kick and suppresses the 

y dependence in the horizontal kick. Since the horizontal energy and 

energy fluctuations are both about 100 times as large as their vertical 

counterparts, a small exchange of energy between the vertical and hori- 

zontal motion will effect the former far more than the latter. Al though 

the coupling between the x and y motion does not conserve energy, the non- 

radiative mapping is measure preserving. This is very important because 

the kicks from the beam-beam interaction would otherwise result in a false 

dissipation or accretion of energy. From this point of view, the coupling 

of vertical motion to the horizontal appears as a simple time dependence. 

Strictly speaking, therefore, the above equations represent two one dimen- 

sional systems with time dependence, the time dependence of vertical motion 

being derived in part from the horizontal motion. 



The two denominators in Eqs. (11) and (12) provide the non- -1 

limarity and depend on the shape of the strong beam. They were chosen 

to approximate the on-axis electric fields of a simple model beam. For the 

hor izontal force, the model beam was defi-ned by the charge distribution 

P(X,Y> = Poe 
-x2/2 

IYI < -03 

The 

= 0 (YI>.O3 - 

potential along the x-axis was calculated numerically and fitted with 

a Lorentzian. The resul t i ng forces are compared in Fig. 4a. The Lorent- 

zian gives a force that is approximately 50% less than the “true” force 

at x= 50 
X’ 

But since the horizontal beam rarely shows a blowup greater 

than 2ax, this inaccuracy is thought to be acceptable. 

For the vertical force, the charge distribution was given by 

a slab model, 

P(Y) = Poe 
-y2/2 (for all x) . 

The potential was numerically calculated for this distribution and fitted 

with a hyperbola. The corresponding forces are compared in Fig. 4b. Since 

the ratio of horizontal width to vertical width is large, ~30 in SPEAR and 

PETRA, this approximation is thought to be good for y <lOa . The use of 
Y 

a simple Gaussian in Eq. (12) t o represent the x dependence is thought to 

be the least satisfactory element in this approximation. Generally speak- 

ing, the model underestimates the beam-beam force at large x and overesti- 

mates at large y. 
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Whether a highly accurate expression for the beam-beam force 
~- 

iszeally necessary in this simulation will not be known until the beam- 

beam effect itself is understood. The approximations made above have 

been designed to streamline the mapping as much as possible, and at 

the same time to include all of the major ingredients usually associ- 

ated with correlation breakdown. 

III. SIMULATION RESULTS 

The weak beam is composed of 64 particles whose initial condi- 

tions represent a normalized height and width equal to one. Each particle 

is run through the mapping n times, where n is equivalent to three damping 

times. After each of ten equally spaced intervals, the rms dimensions of 

the beam are calculated and recorded. The last three values are expected 

to represent the steady state beam size and are averaged to give the final 

dimensions for that run. The results of a preliminary study of this map- 

ping are described here in five parts. 

A. Non1 ineari ty 

The effective tunes vx and v 
Y 

are plotted against amplitude 

Fig. 5. In Fig. Sa, the horizontal tune vx decreases as the horizontal 

amplitude Ax increases (vx is independent of the vertical amplitude Ay). 

in 

The vertical tune v 
Y’ 

which is dependent on both Ax and A , is shown in 
Y 

Fig. 5b as a function of Ay when Ax=O. Each curve represents a different 

linear tune shift 5 . In Fig. SC v is again plotted against A 
Y’ 

but this 
Y Y 

time 5 
Y 

is fixed at 5 = 
Y 

.06 and the different curves represent different 

values of Ax. These plots were made empirically by analyzing surface of 

section plots of the conservative x and y motions. 



B. Tune Diagram 

A Using Fig. 5, it is possible to estimate the distribution of 

weak beam particles in frequency space. This distribution is shown in 

Fig. 6 for 5 = 
Y 

.= .O4,, 5,= .O2 
% 

=5.18 and-Q 
X 

5.24 '4, and Q, are the num- 

ber of betatron oscillations in one revolution for the non-intersecting 

beams). Because of the large aspect ratio, most of the particles in the 

beam are confined to a fairly’ narrow band in v 
X’ 

The background 1 i nes 

indicate the locations of the most important parametric and coupling re- 

sonances in this frequency locale. 

C. Beam Size Dependence on Energy and the Tune Shift 

In Fig. 7, the beam height is plotted against tune shift 

(C = 5,= Sy) for six different energies. (Energy enters the mapping via 

Eqs. (13) and (14).) At large energies, E%4 GeV, blowup begins at about 

5 =.06 and increases graudally with 5. As the energy drops, blowup occurs 

earlier, and rises more rapidly with 5. Because the damping time is pro- 

portional to E -3 , energies below 1 GeV have not been run due to the large 

amount 

3.20 x 

of computer time required. The 1.1 GeV 

108 iterations of the mapping described 

Since these beam heights are norma 

these by a the actual beam heights differ from 

energy curve. lt’should also be po 

take into account all particles inc 

factor speci f ic to each 

inted out that the rms values shown 

luding a few which are at very large 

amp1 i tudes. These particular particles seem to form a non-Gaussian “tail” 

which extends far beyond the main body of the beam. Their inclusion into 

the rms value tends to inflate the beam and lower the reproducibility of 

curve shown here requi red 

n Sec. Ii. 

ized to the strong beam, 
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each run. In most of the plots shown here, each run was computed at least 
-. 

twice and the resul ts were averaged. 
4 

The beam widths have not been plotted because none of these 

runs have demonstrated significant horizontal blowup. 

D. Beam Size Dependence on Radiation Effects 

When the vertical fluctuations (Eqs. (9) and (10)) are removed 

from the mapping, the behavior exhibited in Fig. 7 remains essentially un- 

changed. 

On the other hand, when the horizontal fluctuations are removed 

instead (Dx=O), the blowup completely disappears. This surprising result 

is shown in Fig. 8. The vertical tune shift Sy is held fixed at Cy=.06 

with the energy at 2.2 GeV. The four curves represent four different hori- 

zontal tune shifts 5,-O, .04, .06, .08. The factor D 
X’ 

which is an atten- 

uation factor for the horizontal diffusion due to quantum fluctuations, is 

varied from zero to one. D x = 1 corresponds to the diffusion rate in the 

actual machine, while Dx =0 eliminates all radiation effects in x (both 

fluctuations and damping). The variation of Dx does not effect the non- 

intersecting (C,=O) beam size, only the rate of which a particle 

diffuses from one amplitude to another. 

All blowup effects disappear if either Dx or 5, are equal to 

zero. For a fixed non-zero value of C,, take for example c,= .O6, there 

is almost no blowup below Dx=.2. Between Dx= .2 and Dx=.4, u increases 
Y 

steadily and at values of Dx higher than .4, ay remains approximately 

constant. It appears as if the mechanism for beam blowup has a threshold 

at Dx=. 2 and saturates at Dx=.4. Moreover, this seems to be true for 

each of the different 5, values. 
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How these results depend on vx, v , E, and 5 is not known 
Y Y 

at‘cthis time. 

The dependence of u on 5, 
Y 

for Dx>.4 cannot be described as 

easily as the dependence on Dx. There are fewer data points and the 

E,=. 06 curve seems out of place with unusually large fluctuations. These 

fluctuations indicate that the u values associated with this curve are 
Y 

probably inflated by a few particles at very large amplitudes. It is 

possible that the same type of threshold and saturation phenomena seen for 

the Dx dependence exist as well in the 5, dependence. A detailed study of 

the 5, dependence is hindered somewhat by the fact that changes in 5, 

effect the frequency space distribution of the beam (Fig. 6). Al though 

partial compensation can be achieved by varying Qx to keep the zero ampli- 

tude tune fixed (as was done in Fig. 8)) it may be impossible with this 

model to separate effects associated with the horizontal nonlinearity from 

those associated with horizontal nonlinear resonances. 

The results shown in Fig. 8 are not understood at present. 

That small fluctuations in the horizontal motion can have a substantially 

greater effect on the vertical stability than much larger fluctuations in. 

the vertical motion itself, is difficult to understand. Simple phase mix- 

ing arguments have so far proved inadequate. 

E. Stochastici ty Border 

in the absence of radiation effects (E=O) the beam blowup 

is determined by the resonance overlap condition (ref. [2]). S ince this 

model does not include synchrotron effects, resonance overlap occurs at 

fairly high tune shifts. The rms beam size for the non-radiative mapping 

is shown in Fig. 9 as a function of tune shift. The horizontal motion goes 
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unstable at Sx > .2. The vertical motion, with a stable but substantial 
-. 

hoazontal tune shift 5,=.2, does not become unstable until 5 
Y 

=.3. 

Both values are almost an order of magnitude above those exhibiting beam 

blowup in the- radiative case. it is therefore quite unlikely that reson- 

ance overlap plays a significant role in the blowup phenomena seen in this 

simulation. 

IV. CONCLUSION 

A two dimensional simulation that includes both the horizontal 

oscillationand radiation effects (but not synchrotron modulation), is cap- 

able of reproducing many of the experimentally observed characteristics of 

the beam-beam interaction. The simulation shows a vertical blowup which 

occurs somewhere between 5=.02 and 5=.06, where E,=E,=c . 
Y 

The blowup 

depends on energy, appearing sooner and growing faster with 5 when the 

energy is low. The expanded beam usually shows a substantial tail consist- 

ing of only a few particles extending well beyond the main body of the beam. 

The effect does not depend on fluctuations in the vertical os- 

cillation but disappears if either the horizontal fluctuations or the hori- 

zontal tune shift go to zero. Apparently the horizontal fluctuations and 

tune shift can “turn on” the blowup if they both exceed certain threshold 

values, but the mechanism seems to saturate immediately and above-threshold 

fluctuation levels have little influence on beam size. Finally, resonance 

overlap occurs for this model at 5=.2 to .3. It is thought to play a 

negligible role in the blowup phenomena observed here. 



13 

ACKNOWLEDGMENTS 
-~ 

I would like to thank F. izrailev, B. Chirikov, H. Weidemann 

and A. J. Lichtenberg for their many helpful suggestions. This work was 

supported by.ONR Contract NO00 14-79-C-0674 and NSF. Grant ECS 7826 376 AOl. 

REFERENCES 

PI F. M. Izrailev, "Nearly Linear Mappings and Their Applications", sub- 

mitted to Physica D for publication in 1980. 

PI B. V. Chirikov, "A Universal Instability of Many Dimensional Oscil- 

lator Systems", Physics Reports 52, 5 (1979). 



14 

BEAM-BEAM FORCE STRONG BEAM 

WEAK BEAM 

FIG. 1 BEAM-BEAM INTERACTION 

In the weak-strong beam approximation, the strong beam is treated 

as a continuous charge-current distribution, while the weak beam 

is represented by descrete non-interacting particles. For flat e+-e- 

beams, the vertical beam-beam force depends on the horizontal position 

of the individual particles and tends to compress the weak beam. 

I . 

FIG. 2 PHASE SPACE ORBITS 

KICKS FROM THE 

BEAM-BEAM INTERACTION 

The circular phase space orbits characterizing linear motion are 

distorted by the beam-beam interaction. The kicks, which always 

advance the phase, turn the circular sections of the invariant 

tori into ellipses which rotate at the betatron frequency. 
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FIG. 3 PARTIAL PROGRAM LISTING 

FRl and FRZ are the unperturbed‘tunes (usuaily 5.18 and 5.24), 0 main loop starts 

TSl and TSZ are the linear tune shifts (ususaily between .Ol and .l), nn-n/l0 

here 

EO is the energy In GeV, nb the number of bunches, and ranf() a 
do 400 ic-1.10 
do 355 ic=l,nn 

c set random number seed 

q-ransetfseod) 

random number between zero and one. 

C radial frequencies of botatron and synchrotron oscillation 

wr=twopi*fr2/nb 
wv*twpi*frl/nb 

C this loop is wctortzed 

c radial mapping 

0 linear rotation elements 

csr-cos(wr) 
snr-sin(wr) 
csv-cos(w) 
snv-tilt-i(w) 

C damplnq ttme (twice the lnwrsa of) 

c2-6.94e-06WeoW3ud2/nb 
cl~c2Wl~d2 

0 quantum fluctuation jUllIp 

aK2-sqrt (2.uC2) 
aKl=sqrt (2.rwCl) 

C beam-beam interaction strength 

bsl-tsl*twopi*2. 
bs2=ts2*twopi*2. 

C sot Initial conditions 

do 110 111.8 
do 110 j-l.0 
l-fl-l)*a+j 
pf1,1)-r*.125 
p(l,2)mj*.125 
u(1.1)-0 

118 v(l,2)=0 350 continue 
355 cant lnue 

i-(ic-lj*nn+jc 
do 350 j-1.64 

hld( j)=p( j.2) 
pfj,2)-p(j.2)*csr+vfj,2)*snr 
ufj,2)--hld(j)*snr+u(j,2)%sr 

hld( j)-ranf O*twopl 
p(j,2)=p(j,2)+ak2*cos(hld(j)). 
vfj,2)-ufj,2)+aK2*sin(hldo) 

*-UC j.21mc2 

radial beam-beam Intersection 

wrt ical mapping 

hid(j)-p(j.1) 
p(j.l)~p(j.l)~SU+V(j.l)*SnV 
V(j, 1) I-hldt j)*snv+v( j, I)*CSV 

hld( j)-ranf O*twopl 
p(j.l)~p(j,l)+oKl*cos(hld(j)) 
v(j. l)=v(j. l)+aKl*sIn(hldfj)) 

*-u( j, l)Ucl 

wrtlcal beam-beam interaction 

u(j.1)‘u(j.l)-bsl*p(j,l)* 
*oxp(-fpf j,21**2j/2.1/ 
*sqrt(l.+.S*pfj,l)**2) 
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FIG. 4a HORIZONTAL BEAM-BEAM FORCE 

a) numerical result 
b) model result 

F 

0 

FIG. 4b VERTICAL BEAM-BEAM FORCE 

a) numerical result 

b) model result 
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1 
I 

F =.06 , 5.36 

\ 
-.- - I 

- 

5.27-- .015 I 
I 
I 

5.24 I 1 0 .5 I 1.5 2.0 
A V 

n 

FIG. 5a HORIZONTAL TUNE VS. HORIZONTAL AMPLITUDE 

5 24i------ 

5.2 I ,015 I 
I 
I 

5.18 1 I I ? 

0 .5 I 1.5 2.0 
A Y 

FIG. 5b VERTICAL TUNE VS. VERTICAL AMPLITUDE 

5.24~-, 

5.2 I 4. I 
I 

5.18-t------7- 
0 .5 

FIG. SC VERT I CAL TUNE VS. VERTICAL AMPLITUD-E 
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5.28 

5.26 

5.24 

5.22 

5.20 

5.18 

I 

5.24 

/ 
\ 8u,= 5 / / 

I 

IA 
I y 

5.26 5.28 5.32 5.34 5.36 
3 

FIG. 6 TUNE DIAGRAM 

The amp1 itude contours (dashed 1 ines) for the weak beam are shown in fre- 

quency space. The non-intersecting tunes are Qx=5.24 and 
Q/ 

=5.18, and 

the tune shifts are c,= 5, = .06. This plot represents the simulation 

model and not necessarily the real beam. 



5, = cy 
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= D Dx=l. 

- QY, = 5.24 

-= 5.18 
, Q/ 

a) E = 1.1 

b) E = 1.65 

c) E = 2.2 

d) E = 2.75 

e) E = 3.3 

f) E = 3.85 

0 .02 . b4 .d6 ' .08 .I'0 

FIG. 7 BEAM HEIGHT DEPENDENCE ON ENERGY AND TUNE SHIFT FIG. 7 BEAM HEIGHT DEPENDENCE ON ENERGY AND TUNE SHIFT 

1. 

a> 5, =0 Qx=5.36 , 

b) < = .04 
X 

Q = 5.28 

ci 5,= .06 Q; = 5.24 

d) 5 = .08 / 
X 

Q, = 5.20 

/ / 
/ 

V a 

/-----9. 

a 
--.A-------- - --. 

I J 
0 .2 .4 .6 *’ D 

I. 
X 

FIG. 8 BEAM HEIGHT DEPENDENCE ON HORIZONTAL FLUCTUATIONS 

AND TUNE SHIFT. 
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L 

QX 
= 5.24 
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= .2) 
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FIG. 9 THE STABILITY LIMIT FOR THE NON-RADIATIVE ’ 

MODEL. 
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The beam-beam luminosity limitation in electron-positron colliding rings 

Stephen Peggs and Richard Talman 

Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, 

New York 14853 

To account for observed luminosity limitations in electron- 

positron colliding rings we identify the leading effects, solve 

the non-linear single particle equation exactly, obtain the strong 

beam-strong beam equilibrium by numerical simulation, calculate 

the luminosity, and identify regions of bad beam lifetime. 

PACS numbers: 29.20.Dh, 02.6O.+y 

The luminosity L of e+ -e- colliding rings has been disappointingly 

low. For sufficiently large beam current I, the luminosity fails to 

increase proportional to 12, as it would if the beam shapes remained 

constant. Also, beyond a current Imax, the beam lifetimes become 

unacceptably short. These effects are due to the "beam-beam" interaction; 

that is, the electrostatic and magnetostatic forces on the particles in one 
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beam as they pass through the other. In this paper we identify the features -~ 

of the motion leading to the observed behavior and we describe the solution CI 

of the equations governing the situation. The results conform with observa- 

tions. We also give machine parameters expected to yield good and bad 

luminosity. 

This beam-beam interaction has attracted rather broad interest.' A 

reason for this is that it suggests the possibility of experimental investiga- 

tion of the onset of stochastic behavior in classical mechanics. Questions 

first raised in celestial mechanics2 can, it is hoped, be studied in 

accelerators. But the presence of strong fluctuations and damping in electron 

rings (the only case considered here) reduces the characteristic number of 

revolutions to, say, lo4 instead of, say, 10 10 relevant for protons. As a 

result, recent rigorous mathematical studies of stability3 do not enter our 

discussion. 

Our theoretical investigations have proceeded at three levels: 

a) Analytic solution of the single particle equation of motion. 

b) Tracking single particles in phase space. 

c) Numerical simulation of the entire strong beam-strong beam situation, 

including self-consistent relaxation to equilibrium in both transverse 

directions. 

At level (a) it is possible to identi‘fy the important resonances controlling 

the situation and to, estimate beam currents at which they become important. 

For more quantitative comparison with observation it is necessary to proceed 

to level (c). Simulations are capable of producing a wealth of detailed 

prediction, but to provide confidence in these results it is almost obligatory 

to develop parallel intuitive understanding at levels (a) and (b). 
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The single particle equation of motion of a particle in the presence 

of the other beam is a non-linear equation potentially exhibiting arbitrarily _ 

many Rsonances. We give an exact analytical solution of this equation 

accounting for all resonances. (It is hoped that this method can usefully 

be applied to other non-linear oscillatory systems.) y;, the vertical "betatron" 

coordinate on the ti'th passage satisfies4 

ym+l - 2ym cos uyo + y, 1 = f(Xm,Ym) - (‘1 

At level (a) we assume the horizontal coordinate xm is given inexorably by 

X m =a x cos(m~xO + (9) . (2) 

wyo/27r is called the vertical tune vyo and similarly for x. f(xm,ym) gives 

the vertical angular deflection on the m'th crossing. Equation (1) is 

equivalent to a more familiar first order difference equation, or mapping, 

relating 2 phase space coordinates on successive turns. For Gaussian beam 

profiles,x and y are measured in units of ox and o , the respective standard 
Y 

deviations. Throughout we 

shaped in actual machines. 

assume o 
Y 

-CC ox as the beams are usually ribbon- 

f is given approximately by 5 

xii 
V -7 

f(xm,ym) = -4-rrZ&sin w 'm 

y" 1 + 1.6~; 
e'. (3) 

Here SV is the customary vertical "linear tune shift" parameter specifying 

the strength of the beam-beam interaction. For small values of ym, a 

leading term in (3) proportional to ym can be grouped with the second term 

in (1) leading to a tune shift $. For sufficiently large values of $ no 

real tune exists, corresponding to exponential growth that would occur except 

for non-linearity of f (such as a term proportional to y," which causes the 

tune to depend on amplitude). But controlled vertical beam growth normally 
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occurs at much lower values of &,, 

Parametric amplification of vertical oscillations can occur through terms ~- 

in (3)^such as ymaz cos2(mwx0), due to horizontal betatron (or synchrotron) 

oscillations. That is, the vertical oscillations are parametrically pumped 

by horizontal oscillations in much the way a garden swing can be pumped by 

the systematic shortening and lengthening of the pendulum length, and hence 

the natural frequency.6 We claim that this term and other similar terms are 

responsible for the increase in vertical beam size seen at e+e- storage rings 

in operation. 

We now describe an iterative procedure for solving (1). Assume a double 

Fourier series expansion 

ym = aycos(mtiy) + y a Sin(rmtiy)~~:(smwxo) + . . . 
r,s=l rs cos (4) 

where the sum is extended over all combinations of sin and cos. The analysis 

truncates this series to a finite number of terms. It is not obvious that such 

an expansion should exist. Damping would usually, but not always, rule it out 

as it remains finite at large m. Empirically, for relevant values of QY we 

have always succeeded in finding such an expansion. The difference of w 
Y 

from wyo is due to the perturbation. 

When (4) is substituted into (3) a similar expansion can be made since f 

is periodic in mw and mw 
Y x0' The coefficients can be found by finite (fast) 

Fourier transform (FFT). The eigenfunctions of the linear difference operator 

on the left side of (1) are linear sinusoids. Expanding the Fourier transforms 

of Y, and f into sums of linear sinusoids (all possible sum and difference 

frequencies appear) enables the iterative production of new arS's from old. A 
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stability threshold hax is reasonably well defined as that value at which 

the number of harmonics necessary for convergence proliferates. Allowing ~- 

more h:rmonics, say 32 instead of 16, or more iterations usually makes little 

difference to the threshold. Normally one or two harmonics are especially 

large owing to the "resonance denominators"-appearing in the iterative 

scheme. 

For values of 5, roughly equal to hax and higher,phase space plots of 

the motion become very contorted and orbits of sufficient amplitude no longer 

spiral into the origin when damping is turned on. They damp instead to 

stable limit cycles reminiscent of those of Ref. 6. 

Quantitative comparison with observations at the Cornell facility CESR 

and other storage rings is possible when other features are incorporated into 

the model. We have developed a strong-strong numerical simulation in which 

many particles (~100) in each of the two beams are tracked for many turns 

(T3000) in 6-dimensional phase space around a storage ring with two crossing 

points. The forms of the horizontal and vertical force fields are obtained 

in the flat beam profile limit, consistent with parametric driving of 

vertical oscillations by horizontal displacementiand not vice versa. Energy 

oscillations are included since in CESR there is energy dispersion (n* # 0) 

at present. The effects which determine the single beam size, namely 

horizontal quantum excitation, vertical coupling and radiation damping, are 

included with a betatron damping lifetime T of, typically,1000 turns. 

Self-consistent equilibrium distributions of each bunch and its 

associated force fields are allowed to develop for T 3T. For a period of 0.3T 

one bunch is held rigid while the other relaxes. The development is recorded 

in,typically,300 (turns) x 100 (particles) x 2 (crossing points) instances. 

From this history smooth distributions of the horizontal and vertical fields 
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of the relaxed bunch are calculated. Then the roles of rigid and relaxing 

bunches are reversed. It is possible for a particle to be "lost" if it strikes 

a masi;‘ (typically set at rtl0 ox and +lO oy), and the lifetime is declared bad 

if it is less than (typically) 10 seconds. Otherwise the luminosity is calcu- 

lated from the equilibrium bunch distributions which are usually identical,within 

statistics, at small 5, values but which may be quite different at high values, 

consistent with observations in existing storage rings. 7 

With the calculations which have been described we have surveyed the tune 

plane and typical results are shown in Fig. 1. For 5, = 0.08, contours of 

constant relative luminosity are shown. As used here, $, is the "unrenormalized" 

tune shift parameter which would be observed if the beams maintained their 

single beam profiles. The measured or "renormalized" tune shift parameter would 

be less by perhaps a factor of two owing'to the increase in beam height. In Fig. 

1 some special assumptions have been made for easy comparison with the parametric 

oscillator model: n* = 0,and 5, is temporarily neglected.8 The straight lines 

define the resonances associated with instability thresholds of Eq. (1). It 

can be seen that the valleys of bad lifetime indicated by shading are 

strikingly parallel with these lines. They are centered at slightly lower vy 

as would be expected since the linear tune shift 

moves the tune up. Also the regions of high and low Smax correspond 

to the regions of high and low luminosity respectively. A few of the lines in 

Fig. 1 are reasonably strong resonances for Eq. (1) which do not conform well 

with the luminosity contours shown. Valleys of bad lifetime tend to show up 

along them at higher values of $, . 

In Fig. 2 a comparison between theory and experiment is shown. There is 

good agreement on the dependence of L on I and approximate agreement on the 
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value I max beyond which the lifetime is bad. In this plot the parameters have 

been adjusted to fit the data in the low I region where L 0~ I'. This is 

largely a matterofconvenience as the expected simple relation between 

-- 

measured beam profiles and I and L is approximately satisfied at small I. 

The only other arbitrariness in Fig. 2 relates to the location of Imax for 

which the lifetime is 10 seconds (much less than is acceptable in practice) 

with masks at +lOa (much smaller than is achievable in practice). Actual 

apertures, especially vertical, are not well known. When the vertical mask 

was raised to ?12a and the lifetime to 100 seconds, I max was found to be 

almost unchanged. 

Another corroboration of the theory can be obtained, semi-quantitatively, 

by comparison with experience of the Stanford facility SPEAR at the four 

lattice points labelled A, B, C and D in Fig. 1. They found' that the maximum 

luminosity increased steadily by a factor of about 5 in proceeding from A to 

D, but they could not cross the line 

1’ = 2v 
X Y 

with two beams in spite of the fact that the presence of this line was 

undetectable with single beams. These observations are quite consistent 

with Fig. 1. 

Finally, it is of interest and, one hopes, of practical importance to 

find optimal running parameters according to the theory. It is plausible, 

and tends to be borne out by the simulation, that n* = 0 is optimal. Also 

from Fig. 1 the region around vxo = 0.4, v 
YO 

2 0.1 appears to be the most 

promising, but we have not expended enough computer time to prove this. On 

the other hand, many unambiguously bad regions have been identified and should 

be avoided in practice. 
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Figure Captions ~- 

- 

Fig. 1. Contours of constant relative luminosity for 5, = 0.08, 5, = 0.0, 

rl* = 0. Bad 1i:fetime regions are indicated.by crosses. They 

Fig. 2. 

also indicate the grid on which calculations were done. Contours 

are at 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2. Lines identify insta- 

bility thresholds of Eq. (1). Points labelled A, B, C and D 

identify lattice points for an investigation described in the 

text. 

Dependence of luminosity on current. Comparison between experiment 

and theory at CESR. Limits imposed by bad beam lifetime are 

shown. 
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BEAM-BEAM EFFECT AND LUMINOSITY IN *> SPEAR 

H. W&edemann 
Stanford Linear Accelerator Center, Stanford University, P. 0. BOX 4349 
Stanford, California 94305 USA. 

1. INTRODUCTION 

Many measurements on the beam-beam limit in SPEAR have been performed 
over the past eight years since colliding beam operation began. The goal 
for these measurements was to find the proper parameterization of the beam- 
beam effect. Earlier measurements 1,2) in SPEAR, however, were limited in 
their validity by two circumstances. First, until 1978 we had no control 
over the so-called flip-flop phenomenon; 3) We did not even know about this 
effect because it seemed natural that due to the beam-beam interaction one 
of the beams-the "weaker" one-got vertically blown up when high current 
beams were brought into collision. In 1978 we found, however, that we could 
choose which beam gets blown up or, what is more important, we could manage 
to make the particle distribution in both beams the same. This can be done 
by adjusting the relative phase of the two rf systems located symmetrically 
on either side of the interaction points. As yet we do not understand this 
effect, but control of the flip-flop effect resulted in an increase in lum- 
inosity by a factor 1.5 to 2 (Fig. 1). All measurements in this report were 
done with both beams equally blown up. The second shortcoming of the earlier 
measurements was the limited energy variation possible in SPEAR. This led to 
erroneous energy scalings of the beam-beam incoherent tune shift parameter 2) 

5. In 1979 the magnet power supplies were modified such that operation at 
energies as low as 400 MeV was possible. We have made colliding beam measure- 
ments at energies as low as 600 MeV and together with earlier measurements 
we can now present the scaling of some relevant storage ring parameters from 
600 MeV up to almost 4 GeV. All measurements have been done with a natural 
beam emittanceofez(rad m) =5.0x10e8 E2 (GeV2), the wiggler magnets off, 
and with the following beam dynamic parameters at the interaction point 

B,* = 120 cm = 10 cm 

* 
11, = 0 

The damping time for transverse betatron OS- 
cillations is given by T ,,y(sec)=0.226/E3 

'j:A: 

46 
6- 

(GeV3). In all measurements the beam cur- 
rents were equal to better than 10% and 

4 
*-,o Arf-PHASE 11.1.1 

there is only one bunch per beam in SPEAR. 
Fig. 1. Effect of the 
beam beam flip-flop on 
the specific luminosity. 

* Work supported by the Department of Energy under contract DE-AC03-76SF00515. 

.- 
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Fig. 2. Typical variation of Fig. 3. Beam height as a function 
luminosity with beam current, of colliding beam current. 

2. OBSERVATIONS ON THE BEAM-BEAM EFFECT 

14 

0 

I 11 I I, I ( I, I , I 

. 

E=2 GeV 

0 2 4 6 8 IO 12 14 
I (mAI 

When two beams at not too low an intensity are brought into collision 
usually one beam is blown up much more than the other one. By adjusting the 
flip-flop effect we can make both beams equal and achieve maximum luminosity. 
A typical luminosity curve versus beam current I is shown in Fig. 2. At very 
low currents there is no beam blowup and the luminosity scales as expected, 
like 12. As the current is increased we reach a threshold above which the 
vertical beam size increases due to the beam-beam effect. The horizontal 
beam size is not affected within the errors of observation. In Fig. 3, the 
increase of the vertical beam emittance is shown as a function of the collid- 
ing current. One curve represents the vertical emittance of the core of the 
beam as calculated from the luminosity. The other curve shows the vertical 
emittance of the total beam (tails) as determined by lifetime measurements 
with scrapers. The core emittance increases linear with beam current while 
the emittance of the tail increases somewhat differently. The limit is 
reached as soon as the tail emittance reaches the acceptance of the storage 

0.06 

0.04 

5 

0.02 

0 

E=lB9GeV 
,C4’ 

Z 
/ 

/ 
, 

/’ 
” 

A’ 
/ 

I/ 

i I I I 1 

ring. We have reduced the acceptance of the 
storage ring by scrapers and measured the 
maximum beam-beam tune shift as a function of 
the aperture in SPEAR (Fig. 4). It is clear 
from these measurements that the beam-beam 
effect generates a vertical blow up which is 
stopped by some effect-probably damping. 
The absolute limit on the beam-beam effect, 
and, therefore, the maximum luminosity, then 

0 I 2 3 is reached when the vertical beam size reaches 
Fm) If2 (mm mroO)“2 

the aperture limit. Later in this note we 
Fig. 4. Maximum tune.shift will have to come back to this point. In 
parameter as a function of 
the ring acceptance. Fig. 5, data at or near maximum luminosity as 
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achieved in normal runs for 
high energy physics, as well 
as in accelerator studies 
runs, are collected. The 
maximum luminosity scales 
like E6e7 up to an energy 
of about 2 GeV. This is in 
agreement with the p-E7 
scaling reported from 
Adone. 4) Note that for lack 
of time the measurements at 

.- 

,o-4 1 , , , , , 0.8 and 1.0 GeV do not yet , , 1 

0.5 I 2 3 4 represent the maximum 
ENERGY (GeV) achievable luminosities. The 

Fig. 5. Maximum luminosity in SPEAR. associated beam currents 
are shown in Fig. 6 and the 

linear tune shift parameter 5, in Fig. 7. 
calculated from the luminosity by 

This tune shift parameter cy was 

(1) 5, = (2remc2e) B* B/I 
Y E(l+$ 0;) ' 

This equation is derived by combining the definition of the luminosity 
P= (4Te2f)-l . 12/(cccG) and the linear tune shift parameter 

5, = (remc2/2Tef) 1!3~/E/o~o~/(l+c~/o~) . . (2) 
. - 

Here re =2.84x10-15rn, mc2 =0,511 MeV, 
* * 

e the electron charge, f the revolu- 
tion frequency and cx,o 
The effective beam height 

the beam width and height at the interaction point. 
Gi is calculated from the luminosity assuming the 

theoretical beam width CJ; which is precise enough for the correction factor 
(l+c~/o~). We find in 

I02 t , , , , , I I 4 Fig. 7 the vertical linear 
beam-beam tune shift param- 
eter to scale like 

5Y 
..a E2-4 

up to about 2 GeV. Above 
that energy the tune shift 
parameter is constant 

The limitation seems to 
be distinctively different 
for energies below and above 

10-Z 
I I III 2 GeV. 1 I Below 2 GeV, the 

0.5 I 2 3 4 limit is consistent with the 
ENERGY (GeV) aperture of SPEAR. Above 

Fig. 6 Maximum colliding beam currents in SPEAR. 2 GeV we cannot make a 
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similar statement since not 
0.05 - 

I k II, 
enough detailed measurements 
have been performed. The 

+; /////' 

different behavior is fur- 
: ther illustrated in two 

k-5 
L 0.01 y other measurements. In 
z 
2 Fig. 8 the linear tune shift 

- :/ 
$ 0.005 - -parameter cy is shown as a 
w" function of energy for a 

constant beam current 
1+ + I- = const and a verti- 
cal betatron function at the 

0.00 I I I ,II t I 
0.5 I 2 3 4 

ENERGY (GeV) 

interaction point of $= 20 
cm. Above 3 GeV the tune 

Fig. 7. Maximum tune shift parameter in SPEAR. shift parameter drops as 
expected cymEm3. At 3 GeV 

and lower energies the tune shift stays constant and only the vertical beam 
size increases till the limit is reached. In another experiment (Fig. 9) 
the current and the energy was kept constant but the value of Bt was varied. 
Here again we experience a saturation of values of E,% .06. 

For the design of new storage rings it would be extremely interesting 
to know what separates the two regimes in order to determine where the new 
storage ring will operate. Since a similar limit at about the same value 
for 5, has been observed also in Adone 4) it may very well be's fundamental 
limitation due to the mere magnitude of the nonlinear perturbation. In this 
case a proper theory is needed to be able to scale the transition point from 
one storage ring to another. 

So far we have not addressed the horizontal linear tune shift parameter 

5,. 
Since we do not observe any significant horizontal beam blow up we con- 

clude that the horizontal tune shift parameter does not take part in the 
beam-beam limit. In particular, we observed that 5, can be much larger than 

sY' 
At the beam-beam .limit for the 

0.07 I I I 
. 

0.07 0.06 - 
/ I I I 

. 
0.06 7 ’ 2 . 

l e 
0.05 - 

0.05 - 

EY 
0.04 - . 

c 0.04 - 
Y _ /y 0.03 - 

0.03 - 1+ = I- = Cons1. 

0.02 - P; = 20 cm 
0.02 

0.01 - 
1+ = I- = Const. 0.01 - 

01 I I I I 0 I I I 

2.0 2.5 3.0 3.5 4.0 0 IO 20 30 
ENERGY CGeV) a; (cm) 

Fig. 8. Tune shift parameter vs. Fig. 9. Tune shift parameter 
energy for constant beam currents. vs. $ for constant beam currents. 
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following two energies we have: 

Energy 600 MeV 2.0 GeV 

5, 
.016 .040 

- ~' 
5Y .0034 .045 

This may or may not be a peculiarity of SPEAR since in all cases the beam 
at the interaction point is rather flat. 

3. SCALING OF BEAM-BEAM RELATED PARAMETERS 

In the rest of this note we will discuss only the measurements up to 
2 GeV, that is in the regime where the maximum linear tune shift parameter 
changes with energy. From the measurements we obtain the following scaling 
laws: 

27 max 
_ E6.7+0.1 

I max 
_ E3.6+ 0.1 

5 y max 
_ E2.4+ 0.1 

We also observe a threshold current above which the'vertical beam size be- 
comes blown up. If we plot 9/E6.7 versus I/E3.6 in the regime between 
threshold and beam-beam limit for different energies we find a common behav- 
ior (Fig. 10): 

dZ- = const- I 

( ) 

1.5fO.l 
E6.7 F 

. - (5) 

From this we can derive a 
scaling law for the vertical 
beam size. Using the defini- 
tion equation of the lumino- 
sity, we get 

(6) 

Since 0; N E we get 

* 1% 
aY N E2.3+0.4 (7) 

Eq. (7) is in agreemenF with 
the observation at PETRA 5) 

* 
where a m I'/E2was measured. 
If we nzw use the measured 
scaling for the maximum 
current from Eq. (4), 

-11.5 

/ 

0 j 

II, 

/ 
o A 

A 
A 

X 600MeV 
0 I.5 GeV 

A 2.0 GeV 

0 1.0 GeV 

+ 1.25 GeV 

Fig. 10. Normalized luminosity 
vs. normalized current SPEAR. 
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we get 
1% max 

'y max W E2.3+ 0.4 
_ E-o.5 r 0.45 - const. 

This again is a confirmation that the maximum beam-beam limit in SPEAR is 
reached at all energies below 2 GeV as soon as the vertical beam size 
approaches a cer-tain value which is consistent with the SPEAR aperture limit. 
The total vertical beam size at the beam-beam limit has been measured for a 
few different energies and configurations and agrees within the errors of the 
measurement with the acceptance of the SPEAR storage ring. 

The scaling of luminosity curves at different energies in SPEAR (Fig. 10) 
encouraged the author to try for a common scaling for all storage rings. In 
Fig. 11 the results of such a tryout is plotted. Over many orders of magni- 
tudes the luminosities scale the same way in all storage rings if we normal- 
ize the luminosity on the damping and use the number of particles per bunch 
rather than the beam current. There are certainly more subtle differences 
between different storage rings as beta functions, tunes, etc. These differ- 
ences, however, account only for factors two to maybe five in the luminosity. 
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Fig. 11. Luminosity scaling in different 
storage rings. 

On the scale of Fig. 11, 
these small factors, however, 
do not show up. 

Three storage rings 
(ACO, ADONE and DCI) seem to 

behave differently. This 
might be due to the fact that 
these storage rings have no 
beta section and run at the 
coupling resonance, whereas 
all the other storage rings 
have small vertical betatron 
functions at the interaction 
point and run at minimum 
coupling. 

The common scaling 
suggests the same process to 
be responsible for the beam- 
beam effect in all storage 
rings. From Fig. 11 we get 

(9) 

where T is the transverse 
damping time and NB the 
number of particles per bunch. 
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CONCLUSION 

Measurements performed at SPEAR have been discussed and scaling laws 
for the maximum luminosity and the maximum linear tune shift parameter with 
energy are shown. We made the following observation: there are two distinct 

c regimes, one below 2 GeV where the linear tune shift parameter scales like 

Ey"E 
2.4 and the other regime where this parameter is constant E,% 0.05 to 

0.06. In the lower energy regime the limit is reached when the vertical 
beam size is blown up to the acceptance of the storage ring. We do not 
observe a significant '(< 10%) horizontal beam blow up and'the value of the 
horizontal linear tune shift parameter 5, does not seem to be related to 
the beam-beam limit. 
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The latest available experimental results on the luminosity, the 

space charge parameters, and the beam blowup as functions of particle 
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Introduction -- 

-Although there are a number of excellent papers 
l-3,14 on the beam- 

beam phenomena, the importance of the problem which implies the most 

severe limitation on,the beam currents of the storage. ring as well as 

recent availability of new experimental results 4-6 and theoretical 

approach7 make it quite feasible to add to the list. 

The problem has also an important practical impact on many stor- 

age rings of the immediate future. For an electron-positron storage 

ring it can give, by applying the appropriate scaling laws, some 

insight on the acceptable magnitude of the space charge parameter. 

The same is also true for pp machine which can be considered, with 

-+ respect to the beam-beam effect, as e e ring with extremely small 

particle energy. 

Although the beam-beam effect itself is rather crude and well pro- 

nounced, a theoretical description of it is very difficult to give 

both analytically and numerically. The main difficulty lies in the 

nonlinear character of the forces involved and to some extent in the 

complicated dependence on many beam and machine parameters interlac- 

ingly influencing each other. 

In this situation a phenomenological approach seems to be ade- 

quate. A proper parameterization of the problem and description of 

many functional dependencies by a few fitting parameters can supply us 

with needed scaling laws. The behavior of such a fitting parameter 

with energy for example cannot be explained by a theory. This depend- 

ence will be found from an experiment. But after it is established it 
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can have certain predictive power and will give some insight for the 

future accelerators. 

There is also some hope to find suitable theoretical ground for 

the accepted dependencies in the numerical-analysis of the problem. 

Much work is needed in this respect. 

In this work I suggest some scaling laws for the luminosity, 

space charge parameters, and beam size as functions of particle energy, 

maximum beam current, and the number of bunches. These scaling laws 

are derived from the latest experimental data available now. 

The biggest drawback of the description suggested here, as I see 

it, lies, contrarary to the observations, in the complete absence of 

the fitting parameter dependence on the machine tune. This drawback 

can be attributed to an averaging procedure needed for a diffusion- 

like description of the process. By this averaging all resonance 

structure of the particle motion is completely lost. It is probable 

that the resonance and diffusion approaches could be complementary to 

each other. Again much work is needed here. 

Section 1 of this work is devoted to the recent experimental 

results from SPEAR, 498 ADONE, 5 and PETRA. 6 In Section 2 the diffusion 

theory is used to derive main relationships and, together with the 

experimental results, to get main scaling laws. In Section 3 we sum- 

marize these scaling laws, and in Section 4 some predictions for 

future storage rings are done based upon the scaling laws. 
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1. Experiment 
~- 

-Before discussing recent experimental results observed on differ- 

ent electron storage rings it is useful to look first at the conditions 

in which they are obtained and the assumptions under which they are 

interpreted. 

1.1 Main relationships and assumptions 

First of all let us discuss relevant storage ring parameters as 

well as experimental conditions under which they are usually measured. 

I will list the main parameters and relationships between them although 

the latter are all well known. 

1.1.1 Luminosity of the storage ring for the head-on collision of 

two identical beams is usually assumed to be 

.L 

.g = 
1 

4ve2 fBo u 
XY 

(1) 

where i is the current in either of two beams, B is the number of 

bunches in each of the beams, f is the revolution frequency of the 

particle with the charge e, ux and o are horizontal and vertical 
Y 

dimensions of the bunch (rms widths if the distribution is Gaussian) 

at the interaction point. 

1.1.2 Space charge parameters under the same conditions are given by 

the following formulae 

aI for the vertical motion 

eiS 
5, = Y 

2~ ~BECI~(~~+~~) 
(2) 



b) for the horizontal motion 
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(3) 

In these formulae B and f3 are values of horizontal and vertical 
X Y 

@-functions at the interaction point, E is particle energy, Both the 

luminosity 9 and the space charge parameters 5 
Y 

and Sx depend on the 

bunch size which is very difficult to measure directly. But it is 

clear that both values are sensitive to the charge distribution in the 

core of the beam rather than to the tails of it. At the same time it 

is known 
2 

that tails are affected by the beam-beam interaction much 

more strongly than the core. 

1.1.3 The beam lifetime T for a single Gaussian bunch. is given by9 

T = Te 5'2/r; , 

where 'c is the vertical damping time 

1 -_ = 
T Cy f E3/b 

(41 

(5) 

C = 8.85 x 10 -5 
Y 

m/GeV' , p = bending radius in m, E the energy in GeV. 

5 = c2/u2 (6) 

C is an effective apperture of the machine. The beam lifetime is sen- 

sitive to the distribution of the particles in the tails where the 

beam-beam interaction changes distributions significantly. That makes 
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the maximum luminosity strongly dependent upon the value of the maxi- 

mum&earn current which in turn happens to be a fast function of the 

particle energy. 

1.1.4 Parameters of interest. Among the-machine parameters entering 

into expressions (l-6), the energy E, the number of bunches B, and the 

revolution frequency f are known with great accuracy. The luminosity 

9 and the beam current i can be measured directly. 

On the other hand, several other parameters such as S B 
x' Y 

are 

very difficult to measure. Although one can expect that Bx, By should 

be modified by the beam-beam force, these functions are changed only 

in the second order of the perturbation theory and therefore usually 

are assumed to be equal to their theoretical value at the zero cur- 

rent. The same holds for the horizontal beam emittance E and conse- . x 

quently for the horizontal beam size u = &$-x . 
X 

1.1.5 Experimental conditions and assumptions. Experimental data on 

the beam-beam effect are obtained on different machines virtually in 

quite different conditions. 

a> The investigation of the beam-beam limitations. Measure- 

ments of this kind are done during special machine physics 

runs. The main goal of these measurements is to achieve the 

maximum possible luminosity for given parameters- by increas- 

ing the currents to the point where the lifetime of the beam 

starts to decrease sharply. To maximize the luminosity of 

the ring both currents are usually maintained pretty much 

the same. For the SPEAR measurements4 
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2(i+-i-)/(i++i-) 5 (2- 3)% 

One tries to do the same with the vertical size of the beam. 

At least at SPEAR this condition was met by means of adjust- 

ment of the phase between the rf cavities positioned symmet- 

trically around the interaction point. 10 

Experimental data obtained in this situation should be more 

sensitive to the particle distribution at large amplitudes 

(to the tails of distribution) rather than to the distribu- 

tion in the core of the beam. 

b) The investigation of the storage ring performance. Measure- 

ments of this kind are usually done during high energy phys- 

ics runs in a parasitic mode. Maximum luminosity is achieved 

in this case under a restrained condition of the beam life- 

time being unaffected or almost unaffected by beam-beam phe- 

nomena. These measurements should be more sensitive to the 

distribution in the core of the beam. 

In all of the storage rings the longitudinal size of the 

bunch oR is much less than S . If this condition were not 
Y 

fulfilled, different particles along the bunch would experi- 

ence different focusing and the results could be -distorted 

by this effect. As we shall see later, it is assumed usually 

that the distribution of the particles is Gaussian, at least 

in the core. This assumption one needs to be able to calcu- 

late the space charge parameters from the measured luminosity 

and current. 
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In some aspects there is also a difference between the 

strong beam-strong beam and the strong beam-weak beam 

interactions. 

1.2 Recent experimental results 

An experimental fact observed on all the machines is that the hor- 

izontal size of the bunch is not influenced by the beam-beam interac- 

tion2y6 with the accuracy 5 10%. 

1.2.1 Procedure of calculating values of interest 

It is instructive first to see how one can derive the relevant 

parameters from the measured ones. 

a> First of all assuming ux to be equal to a, one can find 

beam aspect ratio o /o 
Y x 

from the measured luminosity (1): 

0 la 
Y x 

i2/4ne2fBaxP 

b) Formula (3) then allows us to find the horizontal space 

charge parameter 

sx = eiBx/2rfBEoZ(l+oy/ox) . 

c> After eliminating oy from (1) and (2) one gets: 

<Y 
= 2e3zBy/Ei(l+ oy/ox) 

(7) 

(8) 

Let us review the recent experimental results obtained on 

different storage rings. 
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1.2.2 SPEAR. Dependence on energy (H. Wiedemann') 
~- 

-Recently a set of new measurements of the maximum luminosity and 

the beam current versus machine energy was undertaken by H. Wiedemann. 

The range of energy variation was from 0.6 to 3.7 GeV and is much wider 

than in all previous experiments. The data were taken during the spe- 

cial runs of the SPEAR dedicated to machine physics. Much work was 

done to adjust all the machine parameters to achieve maximum luminos- 

ity. Special attention was paid to balance the vertical sizes of 

electron and positron bunches to avoid the loss of the luminosity due 

to the flip-flop effect. 

The fit by a power law to recent data seems to give quite differ- 

ent slopes, especially for the vertical space charge parameter, than 

ones in the previous measurements. 2 The difference may be attributed 

to the fact that the energy range in the work2 was much narrower (from 

approximately 1.2 to 2.5 GeV). Although the measurements are still in 

progress, the data are quite reliable in the opinion of the experi- 

menter. 4 Table 1 summarizes the results of fitting to these measured 

and calculated data. 

1.2.3 SPEAR. Dependence on the beam current 

Table 2 summarizes the data picked up from SPEAR logbooks by M. 

Co.rnacchia. 8 The data were mostly taken during regular physics runs 

of the machine. The fits to the data taken at high energy physics run 

are recalculated. Instead of fitting data by the least square method 

the maximum luminosity was fitted. 
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1.2.4 ADONE (S. Tazzari5) 

'&able 3 summarizes the dependencies of the maximum luminosity and 

the beam current versus energy which were taken from the report by S. 

Tazzari. 5 The s-pace charge parameters of this machine,were kept 

approximately equal to each other. The fit for the space charge 

parameters is derived from the calculated values plotted in the work. 
5 

The number of bunches in ADONE can be and was changed. The data taken 

with 1 and 3 bunches do not contradict the assumption 

1.2.5 PETRA (G. Voss') 

The data from the measured specific luminosity g/i2 during high 

energy physics experiments were fitted with the help of the blowup 

function o 
Y 

assumed to behave according to the following: 

u2 = u; + ai 2 
Y ( 1 u 

Y 
(10) 

Here o 0 is the value of o at zero current i and a is a parameter. 
Y 

From the data taken at different energies, a is found to be: 

a = constIE (11) 

The values of aspect ratio of the beam emittances are estimated to be 

of the order of several percent at all energies. 
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2. Theory 

Xhe word "theory" is probably an exaggeration in application to 

the beam-beam phenomena, at least in its present state. What I really 

mean is a kind of phenomenological theory which helps to make paramet- 

rization of the experimental data in a suitable way and to derive some 

scaling laws by means of a few fitting parameters. The behavior of 

these fitting parameters is not described by a theory and should be 

taken from the comparison with an experiment. 

It is useful first to go through main assumptions under which the 

theory is developed as well as those which will be used in the follow- 

ing considerations. 

2.1 Assumptions 

2.1.1 First of all we shall consider one dimensional model of the 

beam-beam interaction. Although the phenomenon is essentially multi- 

dimensional, the justification of this model at least in the first 

approximation comes from the experimental observations that the verti- 

cal size of the bunch is most strongly affected by the interaction 

while the horizontal size of the bunch seems to be affected very little 

if any. 

One may argue about the loss of some particular multidimensional 

features like the Arnold diffusion, sideband resonances, and the like. 

All of these effects seem to be small compared to the main rough 

effect. 

2.1.2 Secondly, we assume that at least some number of particles 

behave stochastically. The reason for such a behavior can be nonlin- 

earities in the machine lattice, nonlinearity of the electromagnetic 
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beam-beam force, combined action of many close-lying resonances, pres- 

.enceaf a stochastic layer in the phase space of particle motion, etc. 

Note that I do not include in this list the change of particle ampli- 

tude due to rad-iation quantum fluctuations-making thus the consideration 

equally applicable to proton storage rings. 

2.1.3 We shall use in forthcoming considerations an assumption that 

both beams are identical. This assumption is not mandatory for the 

derivations but is justified by experimental conditions and makes all 

formulae more straightforward. 

2.1.4 Also everywhere where it is appropriate I will simplify the 

calculations using Gaussian distribution, linear force, etc. Although 

more exact calculations can be fulfilled sometimes they do not seem to 

be necessary due to oversimplifying assumptions made above already. 

2.2 Beam blowup according to diffusion theory 

At each interaction the vertical coordinate y and the angle in 

vertical plane y' are changed as follows: 

Ay = 0 

AY’ = 27rs "0 
- Kb$bh) 

y @Y 

(12) 

(13) 

where b = by/ux>/ 1 - by/ox)2 , u = y/a 0 

and Kb@b is a function describing the electromagnetic force of the 

opposite bunch. For Gaussian distribution7 
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1 

4,(u) = u 

(14) 

(15) 

According to the main assumption a certain part of the motion due 

to the interaction (13) can be described as stochastic and hence can 

be considered as an additional source of diffusion (in addition to all 

other sources which do not depend on the beam-beam force). 

We know that at least the linear part of the force cannot cause 

the stochasticity. It can be considered as an additional focusing 

force and hence should be included in the regular part of particle 

motion. Probably the same is true also for some nonlinear parts of 

the force. 

That is why for the purpose of calculating beam blowup as a con- 

sequence of a diffusion-like process we should consider not all the 

force o,(u), but only some nonlinear part of it T,(u). The way to get 

'b out of 4 
b is not clear and should be considered here only as a way 

to introduce in the theory a phenomenological fitting parameter. It 

can be done in different manners: 

;b(u) = 

i 

9,(u) - (I- hNb(&l , (S. Kheifets7) 

W;(u) , (A. Ruggiero 11 ) 

(16) 
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One can find still other possibilities. For a small value of h both 

- ~' .proc&dures give essentially the same result, 

It is reasonable to assume that for particles which behave errat- 

complete mixing of phases within the bunch and in 

particle can be expected to acquire any value of 

ically there is a 

the long run each 

coordinate y. In 
3 

the value (AY')~ over the distribution function 

this case the beam blowup can be found by averaging 

(17) 

where the brackets < > mean averaging over the distribution function. 

In expression (17) 

rl = 2Bf ~(2nS~)~ , . 

where 't is the vertical damping time (5). 

For Gaussian distribution 

2%2 ' jmz2() 
'Kb"b' = J;; oy,oo --03 b u e 

(la 

(19) 

Instead of doing actual calculations we substitute in the following 

b) = W (0) = 2h(&?-b) (20) 

Then we get: 
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a2 = u; + 2n2e2rB2h20ii2 
Y 

Y f BE20;+l+oy/ox) 
2 (21) --- 

First of all we see here exactly the same-formula (10) that was postu- 

lated in the work. 
6 Comparing (21) with (lo), we find 

ne8 ha 
a = y 0 

Eoxil+oy/ox) 

An expression similar to (21) can also be found 

Eq. (39) of this work) which gives to parameter 

of the probability of finding the particle in a 

(22) 

in the paper 11 (see 

h the physical meaning 

stochastic layer. 
17 

Expression (21) was also derived by J. ReeslL from the assumption 

a2 = u; + f BrB2e2 . 
Y Y rms 

where 8 is the effective r.m.s. rms scattering angle of a particle in 

the vertical plane. 

2.3 Scaling laws 

Expressions (21,22) contain only one unknown parameter h. Let us 

consider it as a phenomenological parameter which should be determined 

from experimental data. One way to do this is to use PETRA results6 

(11) * It is easy to see that to satisfy E -4 decrease for-the value a 

we need the following dependence of h on energy: 

h ‘L f312 (23) 
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Since we are interested now in maximum values of the luminosity and 

-the c.rrent,we derive from (10) that asymptotically at large current i 

(for the case o 
Y 

<< cl , one can get results for the opposite limit in 

a similar way) o4 ~2 al;i2 or 
Y 

(24) 

The maximum possible value of o 
Y 

limited by particle losses and beam 

lifetime should be some constant which can be written as 
IL-- AYBY where 

Ay is an effective vertical acceptance of the storage ring. From for- 

mula (4) for Gaussian distribution we would find that o is constant 
Y 

with the logarithmic accuracy. Let us see now what consequences fol- 

low from these assumptions. 

2.3.1 Dependence on energy 

Consider first the situation where the limitation arises from the 

beam lifetime. Assuming o = const 
Y 

in expression (24) we immediately 

get 

i Q E4 max 

With the help of this expression we also get the following scaling 

laws (note that for the electron storage ring o s E): 
X 

L? QE' 
max 

5 Q, E2 ymax 

(25) 

(26) 

(27) 

(28) 

(29) 

5 'L E xmax 

0 ‘5 
Y x 

'L l/E 
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2.3.2 Dependence on current 
~- 

Jet us now turn to experiments in which beam lifetime limit has 

not been reached yet. At a given energy one gets from the same 

expressions 

55 %i 1’2 
XY 

5 Qi 1’2 
ymax 

.3'2 
623 fbL max 

(30) 

(31) 

(32) 

2.3.3 Dependence on the number of bunches B 

We should distinguish between the strong beam-weak beam and the 

strong beam-strong beam cases. 

a> For the strong beam-strong beam case an attempt to measure 

the dependence on B has been made on PETBA. 13. From expres- 

sion (21) we have a4 
Y 

= i2/BE8 or 

. 1’2,E2B1’4 
OY% IL 

Defining in accord with the work 13 the specific luminosity 

g = 2 LZB = ___ 
sP B(i/B)2 i2 

we have 

!z 
sP 

% EB114'fi 

(34) 

(35) 

The dependence on B seems to be too weak to be in agreement 

with PETRA observations. The space charge parameters in 

this case should scale like: 
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(36) .- 

(37) 

Data on these dependencies are still not available. 

b) For the strong beam-weak beam case we have observations made 

on ADONE. 5 Expression (21) in this case should be rewritten 

for the blowup of the weak beam by an unperturbed strong 

beam: 

1 

oL = 2 Y 
Y ao + f BE20~(l+oy'ox)2 

(38) 

Assuming the same dependence of h on E we have in this case 

2 
OY 

z A&; const (39) 

The last equality corresponds to conditions of the ADONE 

5 experiment . Hence 

i Q E5& 
max 

;z?,ax 'L EgB 

5 
Y-x 

QJ E3'v4i 

5 xmax Q E2'& 

(40) 

(41) 

(42) 

The scaling (40) seems to be in quite good agreement with 

the experimental data5 on the strong beam-weak beam 
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interaction at ADONE both on E and on B. On the other hand, 

5Y 
and 5 

X 
were maintained equal. That makes the comparison 

of the energy dependence meaningless. The dependence on B 

is not contradictory to the experiment. 

3. Summary of the experiment and theory comparison 

Tables 4-6 present the summary of the theoretical and experimental 

values for different parameters relevant for the beam-beam interaction. 

Keeping in mind the number of assumptions and the approximations made 

the agreement seem to be astonishingly good. 

4. Some speculations on a pi storage ring 

There are two main dissimilarities between electron and proton 

storage rings relevant to our consideration. The first one is the 

absence of radiation damping of particle oscillations in the latter 

ring. Consequently the damping time constant T should be substituted 

by real time t in the expression for the beam blowup. 

The second one is the energy dependence of the beam emittance. 

In a proton machine both ox and o are proportional to l/fi. 
Y 

Hence for a pi storage ring we should expect the following 

relations 

i2fi 
LzQ--y- 

Y 

EY 2, 
i/Go 

Y 

(46) 

a2 Q h2t'E2 (47) 

(44) 

(45) 
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For the case when the blowup is strong enough to influence the 

lifaime 

const (48) 

If the dependence of h on E is the same as for an electron storage 

ring 

i ~ E5'2Bl'2,tl'2 
WX 

Ji? 
max Q E1112B/t 

E; Q E 5'2Jii'J; 
xmax 

(49) 

(50) 

(51) 

(52) 

The quadratic dependence of 5 on energy differs from the 3'2 law 

which is obtained by L. Teng 1; from fitting the electron ring data. 
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Table 1 

Dependence of SPEAR parameters on the particle energy E (in GeV). The 

fit is done4 by a function f = kEq. 

f k 9 Comment 

6% max 

i max 

0.033 

1.2 

6.6 

3.6 

-IL in 103'cmB2 set 

in ma 

0 la 0.5 -1.0 
Y x 

SX 0.022 0.87 

I 0.011 
I 

2.3 I 
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Table 2 

I 

Dependence of SPEAR parameters on the beam. current i (in ma). The fit 

is done by a function f = ki". 

- - 

f E GeV k 9 Comment 
~- 

gmax 1.5 0.030 1.95 high 

(1030cmw2sec-1) 
2.5 0.046 1.55 

1 

energy physics 

3.7 0.054 1.45 runs 

1.95 0.052 1.41 machine 

1.95 1.45 physics runs 

0 0.59 
Y 

CT 0 
X 

sY 2.4 0.33 
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Table 3 

Dependence of ADONE parameters on the particle energy E (in GeV). 

fit is done5 by a function f = kEq. 

f k 4 

ii!? max 

5x=sy 

i max 
(in ma) 

0.64 

0.068 

105 

42.4 4.12 

7 

1.57 

4.34 

- 

Comment 
-- 

in 103'cmB2 -IL set 

3 bunches 3 bunches strong strong 

beam- beam- 

1 bunch . 1 bunch . weak weak 

beam beam 

The 
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Table 4 

The power q in the ppwer law 

f(E) Q E 9 

Experiment Experiment 

Parameter f SPEAR Parameter f SPEAR ADONE ADONE PETRA Theory PETRA Theory Comment Comment 
-~- -~- 

h h -312 -312 (23) (23) 

2 2 6.6 6.6 7 7 7 7 max max (26) (26) 

i i 3.6 3.6 4.5 4.5 4 4 
ltX3X ltX3X 

strong strong - strong (25) - strong (25) 

i i 4.12;4.34 4.12;4.34 5 5 weak weak - - max max strong strong (40) (40) 

sY sY 2.3 2.3 1.5 1.5 2 2 (27) (27) 

5 5 0.9 0.9 1 1 
X X (28) (28) 

0 lo 0 lo -1 -1 -1 -1 
Y x Y x (29) (29) 

a a -4 -4 -4 -4 (11) (11) 
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Parameter f 

9 max 

Lx? spmax 

G cs 
XY 

sY 
L 

Table 5 

The power q in the power law f(i) ?I iq 

1.4 

0.6 

0.4 

Experiment 

SPEAR ADONE PETRA 

-0.5 

I Theory 

1.5 

-0.5 

0.5 

0.5 

Comment 

(32) 

(35) 

(30) 

(31) 
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Table 6 

The power q in the power law f(B) % Bq. 

Experiment 

Parameter f SPEAR ADONE PETFLA Theory Comment 

9 -0.25 max 

9 spmax 0.25 (35) ( 

strong beam- 

strong beam 

i max 

5 
ymax 

0.8 

- 0.8 

0.5 (40) strong beam- 

- 0.5 (42) weak beam 
- 
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An Empirical Model for Controlling Beam-Beam Effects in ISABELLE' 

G. Parzen 

Brookhaven National Laboratory 
Upton, N.Y. 11973 

I. Introduction 

The beam-beam interaction may limit the beam intensity in ISABELLE. 

Although considerable progress has been made in understanding the beam-beam 

interaction, there appears to be no reliable method at present for computing 

the effects of the beam-beam interaction. The steps taken at ISABELLE to 

limit beam-beam effects are based largely on the experience accumulated at 

the ISR. At the ISR, the beam-beam effects do not appear to be large, and 

the beam intensity at the ISR does not appear to be limited by beam-beam 

effects. The beam-beam effects may be much stronger in ISABELLE because of 

factors like higher intensity and stronger non-linearities. 

An empirical model for controlling beam-beam effects in ISABELLE can be 

arrived at based partly on the experiences at the ISR and based partly on 

conjecture. Establishing an empirical model may be thought of as consisting 

of the following steps: 

1. Assume a model for the mechanism for beam growth. 

2. Establish the critical parameters that lead to beam growth. 

3. Establish working tolerances for the critical parameters. 

The working tolerances are somewhat different from what one usually 

means by tolerances. They are based partly on experience, partly on theory, 

partly on conjecture, and partly on what is doable. They represent a compro- 

mise, and provide a useful guide for designing the different components of 

the accelerator. The working tolerances may change as more information is 

acquired. 

Work performed under the auspices of the U.S. Department of Energy. 
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II. Model of Beam Growth 

The model for beam growth assumed is 

- Non-Linearities + "Something" + beam growth 

where the "Something" may be 

"Something" -f noise 

ripple 

tune modulation 

randomizing perturbation 

The phrase "randomizing perturbation" indicates some perturbation which 

in some sense makes the particle forget its history so that it is crossing 

the non-linear resonances in an almost random way. It is known that multiple 

crossing of a non-linear resonance will often cause only a limited growth, 

while random crossing of a non-linear resonance will cause a steady, and 

often much larger, growth. In the ISR, there is some evidence 1 ~6 that the 

randomizing perturbation may be intra-beam scattering. 

In the light of the above model, the steps required to limit beam growth 

due to the beam-beam interactions are 

1. Limit the strength of the non-linearities. 

2. Limit the "Something"--noise, ripple, tune modulation or 

randomizing perturbation. 

III. Magnet Non-Linearities 

Superconducting magnets are likely to have stronger2 non-linear error 

fields than conventional warm magnets. Recent measurements of the error 

fields in ISABELLE magnets indicate that the non-linear field errors in 

ISABELLE magnets may be a factor 10 larger than those found in the ISR 

magnets. 3 At the ISR, magnet non-linearities do not appear to play an 
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important role in causing beam growth. Because of the larger non-linear 

fields in ISABELLE, it may not be wise to assume that this will also be the 

case for ISABELLE. Certainly, one should strive to keep the non-linear 

fields in ISABELLE magnets as low as possible. 

The working tolerances for the non-linear error fields are given in terms 

of themultipole coefficients Ab,, and Aa, which are defined by expand- 

ing the error field in the median plane as 

AB 
Y 

= Bo(Abo+Ablx+Ab2x2+. . . .) 

ABX 
= Bo(Aao+AalxfAa2x2+. . . .> 

The working tolerance for ISABELLE can be roughly and simply stated as 

RnAbn $ (n + 1) 2 x 10 -4 

. - RnAan < -4 (n + 1) 2 x 10 

where R is the radius of the main coil in the magnets; R = 6.5 cm for 

ISABELLE. This working tolerance is the expected2 rms error multipoles 

caused by a random rms .005 cm (2 mil.) error in the location of the current 

blocks of the main coil. In this sense, these tolerances appear to be simply 

what seems to be achievable. However, it will be seen below that for several 

known effects they are indeed the tolerances. In this connection, it may be 

worthwhile recalling what was said about working tolerances in Section I, 

that they are a useful guide based partly on experience, partly on theory, 

partly on conjecture, and partly on what is doable. 

There are about four known effects which indicate that the above working 

tolerances are indeed tolerances. These are: 
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1. Uncorrectable closed orbit error error. The random dipole error field 

will vary across the aperture4 because of the presence of the higher order 

error multipole fields. Thus, when the closed orbit is corrected at the 

center using the system of dipole correctors, it will not be corrected at the 

edges of the aperture. For ISABELLE, this leads to a possible 5 mm orbit 

error at both edges of the aperture. 

2. Vertical dispersion error. The field errors, particularly Aa 1' 

generate a vertical dispersion which can change the beam size at the crossing 

points by about 25% at 30 GeV and about 12% at 400 GeV. This may cause a 

possible 25% variation in Av,the beam-beam v-shift, increasing the strength 

of the beam-beam resonances. Also, the luminosity may be reduced by 25%. 

3. Random error in B, or the crossing points. The field errors cause 

Sy to vary around the ring by about A$ /B = 10%. This will cause 
Y y 

a beam-beam Av variation of 5%, and a 5% reduction in luminosity. The random 

ABy/Py also helps to excite the l/3 resonances by interacting with the 

large sextupole required for chromaticity correction. 

4. Width of the l/3 resonance. The field errors excite non-linear 

resonances. In particular, the l/3 resonance may have a width of 

Av = 1 x 10 -3 . 

The above four effects show that if the error fields exceed the working 

tolerances by very much, some large damaging effects may result. 

It is interesting to compare the stop bands of the non-linear resonances 

generated by the magnet error fields withthosegenerated by the beam-beam 

interaction. This is done in Table I. The beam-beam resonances listed in Table I 

are the imperfection resonances generated by orbit errors and random errors in 

By at the crossing points.5 One sees that for ISABELLE, the magnet resonances 

and the beam-beam resonances are comparable for the lower order resonances. 
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Table I 

N Resonance Magnetic Field Error 
Order Resonances 

Beam-Beam 
Resonances 

2 

3 

4 

5 

6 

7 

8 

9 

10 

6.5 E-3 

4.3 E-4 

3.4 E-5 

3.8 E-6 

4.5 E-7 

5.4 E-8 

6.5 E-9 

--- 

1.6 E-4 

7.6 E-4 

9.1 E-5 

1.2 E-4 

1.3 E-5 

2.0 E-5 

1.3 E-6 

2.5 E-6 

.1.5 E-7 

IV. Beam-Beam Non-Linearities 

In this section, we specify the working tolerances which are intended to 

limit the strength of the beam-beam non-linearities. These are 

1. Beam-beam Av < .005. - 

2. Vertical orbit error at crossing points 6 .05 mm (about 10% of beam 

size). 

3. Vertical dispersion at crossing points 

Yap 
PP 

2 1% of beam size 

4. Random ABy/By at crossing points ,$ 1%. 

5. Periodicity of six is maintained. 

6. Control of the working line so as to be able to avoid resonances. 
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For day one operation of ISABELLE, the periodicity of six is to be 

maintained. Operation with a lower periodicity may be considered afterward. 

There is Spme experience at the ISR that operation with lower periodicities, 

even a periodicity of 1, is possible. However, it appears to this writer, 

that it is quite a different matter to suggest operation with a lower 

periodicity for a machine that is already working, than to suggest it for 

ISABELLE which will have much stronger non-linearities and whose operation 

has not been studied. 

Present plans for first day operation of ISABELLE will probably not 

allow the correction of the errors in the vertical dispersion and of By at 

the crossing points to the above tolerance. However, the capability to do so 

at a later date has been provided. 

V. Tune Modulations 

According to our model for beam growth, any modulation of the v-value, 

V xTVy with time is of concern. Sources of this modulation include 

intra-beam scattering, ' drift in the power supplies, and ripple in the 

power supplies.7 

Drift in the power supplies of the various correction coils and in the 

main power supply can cause the v-value to drift. The working tolerance in 

the amount the v-value can drift is assumed to be 

This appears to be the tolerance assumed at the ISR.8 The working 

line in v-space isoonstrainedto be between the resonances 22.60 and 22.67 

and about .Ol from the coupling resonance. Part of the beam is usually about 

.Ol from some resonance. Thus, a drift of about .OOl can move the beam 

appreciably closer to some resonance. 
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There are about 103 correction coil power supplies in each ring of 

ISABELLE. Power supply errors for each correction coil can cause the v-value -_- 

to drift;" and one has to chose the power suply accuracies of all these 103 

power supplies so that the total v-drifts due to all of them, plus that due 

to the main power supply,.does not .exceed the working tolerance Av < .OOl. - 

Table II lists all the correction coil power supplies, the full scale 

accuracy of each power suply, and the peak v-drift caused by each power sup- 

ply, and the total v-drift due to all the power supplies. 

Ripple in the main power supply can cause a V modulation with time. 

Experiments done at the ISR indicategthat a ripple In v-value of AV 11 x 10 -6 

can cause appreciable increases in the background rate. The working . 

tolerance assumed for the v-ripple is 

Av 1. 1 x 10-6 

This leads to a required ripple for the main power supply of.1 x 10 -7 . 

The requirements on the ripple of the correction coil power supplies is 

almost as severe as it is for the main power supply, primarily because there 

are many correction coil power supplies. The required ripple for each cor- 

rection coil power supply is also listed in Table II. 
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Table II. Accuracy requirements for the correction coil power supplies in 
order to limit v-drift and ripple. 

Power 
Capacity Current SUPPlY Ripple 
Required Required Accuracy 

Correction At 400 GeV At 400 GeV At FullAv,/lO 
-3 Avy/10 

-3 Factor 
Required 

Coil (cmsn > (A) Scale (peak) (peak) (peak) 
Quadrupole 

Quadrupole 

Sextupole 

Sextupole 

Octupole 

Octupole 

Decapole 

Decapole 

Duodecapole 

Duodecapole 

Quadrupole 

Quadrupole 

Insertion Quad. 

Insertion Quad. 

Insertion Quad. 

Insertion Quad. 

Insertion Quad. 

Insertion Quad. 

Insertion Quad. 

Insertion Quad. 

Skew Quad. 

Dipole 

Dipole 

bl,H 3.0 E-3 

bl,V 3.0 E-3 

b 2,H 6.0 E-4 

b2,V 6.0 E-4 

b 3,H 8.0 E-5 

b 3,V 8.0 E-5 

b 4,H 5.0 E-6 

b4,V 5.0 E-6 

b 5,H 1.5 E-6 

b 5,V 1.5 E-6 

b l(bypass I) 9.0 E-3 

b 
l(bypass II ? 

.O E-3 

bl (Qg> 4.8 E-3 

bl (Q8> 4.8 E-3 

bl(Q7) 4.8 E-3 

bl(Q6) 4.8 E-3 

bl(Q5) 4.8 E-3 

bl (44) 4.8 E-3 

bl (42) 4.8 E-3 

bl (Ql> 4.8 E-3 

a,(Ql> 2.4 E-3 

ao,b 0 800 G 

ao'bo 400 G 

129 50 E-6 

129 50 E-6 

170 10 E-6 

170 10 E-6 

154 25 E-6 

154 25 E-6 

81 50 E-6 

81 50 E-6 

99 125 E-6 

99 125 E-6 

300 15 E-6 

300 50 E-6 

206 200 E-6 

206 200 E-6 

206 200 E-6 

206 200 E-6 

206 200 E-6 

206 200 E-6 

206 200 E-6 

206 200 E-6 

103(?) 200 E-6 

100 200 E-6 

50 200 E-6 

Total Avx(peak) = 

Total Avy(peak) = 

0.265 

0.047 

0.262 

0.176 

0.294 

0.147 

0.110 

0.041 

0.092 

0.001 

0.326 

0.320 

0.140 

0.024 

0.137 

0.026 

0.155 

0.011 

0.446 

0.184 
-- 

-- 

-- 

0.88 E-3 

0.95 E-3 

0.041 .6 E-6 

0.262 .6 E-6 

0.086 .l E-6 

0.286 .l E-6 

0.097 .3 E-6 

0.225 .3 E-6 

0.036 .6 E-6 

0.059 .6 E-6 

0.016 1.0 E-6 

0.005 1.0 E-6 

0.353 .l E-6 

0.236 .6 E-6 

0.024 2.0 E-6 

0.139 2.0 E-6 

0.025 2.0 E-6 

0.149 2.0 E-6 

0.017 2.0 E-6 

0.107 2.0 E-6 

0.321 2.0 E-6 

0.618 2.0 E-6 
-- --- 

-- --- 

-- --- 
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VI. Experimental Devices for First Day Operation 

An hnportant question is what should be the requirments for experimental 

devices, such as a spectrometer magnet at a crossing point, that is expected 

to be in place when the accelerator is first turned on. This problem is 

still being worked on at present. 10 The following requirements are tenta- 

tively suggested. 

1. Preserve periodicity. The beam-beam AV at the crossing point, where 

the experimental device is located, should be relatively unchanged. The 

periodicity is actually destroyed by random orbit errors and random 

B-variations which change the beam-beam Av. The experimental device should 

change Avby an amount which is less than that due to the random errors which 

are not correctable; in ISABELLE, this is about 2% of the unperturbed Av. 

2. Beam-beam non-linear stop bands introduced by the experimental 

device should be less than those due to random errors, such as orbit errors, 

after the random errors have been corrected as well as possible. 

3. Magnetic field non-linear stop bands introduced by the experimental 

device should be less than those due to random magnetic field errors in the 

accelerator magnets. 

After the accelerator has been operating and studied, a more severe 

perturbation by the experimental device may be considered. 
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BEAM-BEAM STUDIES WITH DC1 

J. LeDuff 

Lab. de 1'Accelerateur Lineaire 
Orsay, France 

I. INTRODUCTION 

An attempt to compensate for the beam-beam effect was done on DC1 but 

did not succeed in yielding higher performances. 

The compensation scheme' uses four beams stored in two rings having 

two common straight sections. A residual space charge force appears as a 

consequence of a non-perfect compensation if the companion beams are not 

well superposed. 

The original aim was to keep the residual linear space charge force 

one order of magnitude below the corresponding usual beam-beam force in 

order to get ten times more current per beam for collision. This has been 

set up experimentally by proper adjustment of the two rings and by cor- 

recting the relative orbit displacement between the two rings within a 

fraction of cr in both common straight sections. 

As a reference for the four beam studies, preliminary experiments 

were performed with one ring or another. Strong increase of the trans- 

verse cross section is observed which becomes gradually less as theenergy 

is increased. With four beams, up to the limit, there is no appreciable 

blow up, but the limit in terms of maximum current per beam is much smal- 

ler than in the e+e- case. 

Each type of interaction shows discrete stable areas in the operating 

diagram (v,, v,) which seem to indicate a strong effect of non-linear 

resonances of relatively high order. 

A few experiments were also performed with three beams in a strong- 

weak configuration but it merely proved that the incoherent beam-beam 

limit was partially compensated and more work is required before any 

conclusion can be drawn. 

The data which are presented here were obtained by the DC1 study 

group with the constant help of the DC1 operation group, and were re- 

cently compiled by M.P. Level and J. LeDuff.L 

II. MAIN CHARACTERISTICS OF DC1 

The space charge compensation scheme is shown in Fig. 1. It in- 

volves one bunch per beam according to the superperiodicity of 2. The 
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main parameters are: 

Ring Energy : .6 to 1.85 GeV 

Revolution Frequency : 3.169 MHz 

Envelope Function at Crossing : &j = 6: = 2 m 

Operating Point (linear coupling) : V, = 2.8, Vz = 1.8 

Transverse emittances (full coupling) E mrad = 2.5 x 1O-7 E2(GeV). 

The residual space charge strength and compensation factor were origin- 

ally defined as follows: 

5 res 
=+ 

' -1 
K = ,- 

-1 

where AI and 6, respectively, are the current imbalance and the orbit 

deviation between companion beams. 

Conventional monitoring devices make K = 10 possible. 

Fig. 1. Space Charge Compensation Scheme 
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III. SUMMARY OF e+e- BEHAVIOR 

Most of the experiments have been done with round beams (fully cou- 

pled): It is worth mentioning that this is a natural way of increasing 

the beam cross section and hence the maximum current and luminosity (on 

the basis of a constant emax). Such configurations were used successfully 

at AC0 and ADONE where enough vertical aperture was available. Apart from 

slight differences the two DC1 rings behave similarly. 

As a matter of fact, the luminosity does not vary like I2 at least 

above a certain threshold. This is shown in Fig. 2 where the dotted line 

represents the computed correction according to thelinear thinlens an- 

proximation. Fig. 3 shows the corresponding relative increase of the 

effective beam cross section and it becomes more obvious that the linear 

thin lens correction cannot explain .he e+e- behavior. 

I - 
PA, 

I * . . . . . . . . . ..J 
s’ d 3 

r*r@IA) 

Fig. 2. Luminosity vs. current. 
--- linear thin lens approx. 
. . . experimental points 

1 
1 m lo an 19 

r.rGaA) 

Fig. 3. Beam cross section vs. 
current. 
---- linear thin lens approx. 
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The increase of the transverse cross section may be described in terms of 

space charge strength versus current. In the present case with round equal 

beams %e gets: 
r 

5 = 
e e 'Z 2 

X- 

Y .I 

where 8: is the unperturbed envelope function at the crossing. Fig. 4 

shows that for a fixed tune the 5 saturates before the limit is reached, 

the latter being defined as a bad lifetime for at least one of the two 

beams. Proper adjustment of the tune can increase this saturation level 

as can be seen on either Fig. 5 or Fig. 6, where Smax is plotted as a 

function of tune along the coupling resonance. As a secondary remark, 

let's mention that the maximum achievable 5 in DC1 was improved by ap- 

proaching the integer from below. 

0. 5 lo 15 20 25 
1.0I-(mA) 

Fig. 4. Space charge strength versus current. 
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. LOWER FtING 
I Zone IY 

0 UPPEX PING 

.MO 3000 

F unperturbed 

Fig. 5. Emax as a function of tune. 

.8 0 

n n5 n 
jj unpertuZed 

Fig. 6. Emax as a function of tune. 
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An interesting fact which emerges from these two last plots, (Figs. 

5 & 6) is that <max goes linearly with the unperturbed tune until it hits 

a'blacl?'hole. One has 3 + cmax = cte where the "cte" appears to be very 

close to a rational number p/q. In the cases of Figs. 5 and 6 it is, 

respectively, 8111, 314 and 9/11 considering only the smaller numbers 

which give the right ratios. 

The discrete behavior is also shown in Figs. 7 and 3. 

Fig. 7. Stability diagram (Upper Ring) 

at 800 MeV. 

Moreover, it is seen that at high currents close to the limit, the stable 

region can overlap the left non-linear resonance and even go to the ad- 

jacent region, while at low stored current the stable area is much larger 

and stays in between two resonances. As a matter of fact, on DC1 with a 

single stored beam the l/4 resonance is destructive while with two beams 

of high current the unperturbed tune can be brought on it without damage. 

Notice that in both cases the unperturbed tune is the one which affects 

the large amplitude oscillations, so the peculiar effect which has been 
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mentioned could be an effect of the large tune spread and of the modified 

particle distribution with two strong beams colliding. 
h 

1 
1: 

E=KUl MeV 

UPPER RING 

3 

n I2 
Fig. 8. Stability area versus current. 

Each ring has been optimized in the energy range .8 5 E 5 1.2 GeV, 

on the coupling resonance at least for two regions: 5 = .714 and 5 = ,800. 

Fig. 9 shows that the maximum luminosity varies as E2 while the corres- 

ponding bunch current varies as E. These scaling laws are compatible with 

a constant <max and a constant maximum cross section at the limit in rea- 

sonable agreement with the vertical aperture limit. 

The energy range explored is relatively small. However, above 1.2 
GeV the vertical aperture does not permit any more work on the coupling 

resonance, which is why the high energy range was studied with flat beams. 

Here again, as shown in Fig. 10, the discrete stability region ap- 

pears but in a more complicated form where the non-linear coupling reson- 

ances seem to play a role. Region M, just below the coupling resonance 

gives the best results. 
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h 

Fig. 9. Maximum luminosity and 
current versus--enen~ 

3 3 

\ \ . 
n II 4 I 

Fig. 10. Stability diagram at: E = 
1 GeV; 62 = 1 m. 
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E s 1.56 GeV 

0 p; .2m 

0 p; .lm 

20 40 611 8D lciu 

1’4 (mA) 

Fig. 11. Beam cross section versus current for two different 
configurations. 

Fig. 11 shows a blow up of the effective cross section at high cur- 

rents which appears to be smaller as f3* is smaller. However, up to now 

the beam-beam limit with flat beams, at E = 1.56 GeV has not been reached 

due to high current injection problems and the present 5 is only .015 

corresponding to a luminosity of 6.5 x 1029 per ring. 

IV. STUDIES WITH FOUR BEAMS (COMPENSATED MODE) 

VI. 1. Experimental Conditions and Optimization Procedure 

In order to minimize the residual macroscopic space charge forces, 

the following conditions were achieved for both rings: 

- Orbit adjustment of both rings within 01 mm for the C.M. and, 

correspondingly, .05 mrd for l/2 crossing angle. (AtE= .8 

GeV, o = .6 mm). 

- Relative rf phase adjustment between rings within 100 ps. (At 

.8 GeV, V,f = 80 kV; oe/c = 400 ps.). 

Notice that the current fluctuations in the bending magnets as 

well as low frequency phase fluctuations lead to a vertical beam 
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separation of 5 50paccording to the finite dispersion function at 

c.ossings (t Q$). 

The following procedure has been used to optimize the four-beam 

interaction: 

- Identity of the tunes for both rings. This. is done with the 

help of auxilliary quadrupole coils. 

- Orbit superposition at both crossings. 

- Fine adjustment of tunes with beam colliding; search for 

stable area. 

- Fine adjustment of the closed orbit of one ring with respect 

to the other one, in both common straights, with colliding 
I 

beams; search for stable area. 

Here again the luminosity and the specific luminosity measure- 

ments are of considerable interest. All adjustments together lead 

to a theoretical compensation factor of the order of 10. 

IV. 2. Four-Beam Interaction as a Function of Current 

The experiment was performed at the energy E = .8 GeV with fully- 

coupled round beams. With a fixed tune 3 = .725 halfway between two 

non-linear resonances which happen to be destructive in the e+e- case, 

it was soon observed that the four-beam interaction had a current 

limit smaller than the two-beam case. However, no increase of the 

transverse cross section is observed up to this limit, while for the 

same current per bunch, the e+e- case shows an enlargement by a fac- 

tor of 1.6. This behavior is shown in Fig. 12 where 5 always re- 

presents the space charge strength of each equal bunch colliding. 

The maximum 5 in the four-beam case is .024 while it saturates at .018 

in the two-beam case. As seen earlier, the two-beam case can be im- 

proved with a better choice for the tune. It will be shown next that 

this is not true with four beams. 

It is worth noticing that even if the space charge compensation 

is effective over a small fraction of current it does not help in 

obtaining more luminosity. 

Emphasis can be put also on the fact that the four-beam limit 

occurs where the two-beam case starts saturating. 
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0 Upper Ring I 
2 Equal beams 

lntensiti (mA) 

Fig. 12. Comparison between four beams and two beams: 5 versus 

current at E = 800 MeV and 3 = .725 

IV. 3. Stable Regions with Four Beams 

With four beams interacting the operating diagram has been 

systematically investigated on and out of the coupling resonance. 

In all cases discrete stability areas are found which again seems to 

result from non-linear resonances with, however, the inconvenience 

of being smaller than with only two beams. (See Fig. 13). 

The stable areas which are seen along the coupling resonance now 

seem to be located more or less halfway from non-linear resonances 

which previously appeared to be destructive with two e+e- beams also. 

Quantitatively considering both extremities of each stable area along 

the coupling resonance, one can roughly say that: 

which shows again that the 5 value does matter, but not its multiples 

nor the residual Sres. It's difficult to perceive any difference 

in current limit for all the discrete stable zones along the 
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h 

Fig. 13. Stability diagram with four beams 

and two crossing points at 800 MeV. 

coupling resonance. 

Again, the flat beam case seems to involve non-linear resonances 

and leads to a more complicated qualititative analysis. 

Non-linear resonance effects could be expected from the following 

mechanisms: a) Non-Perfect Compensation. The residual linear space 

charge force decreases as the compensation factor goes up. This 

is true also for the residual non-linear forces. However, the multi- 

pole content of this non-linear part is different from the one which 

occurs in the two-beam case, unless these two beams are slightly 

separated which experimentally appears to be more dangerous. Even SO 

it is hardly believable that the current limit with four beams should 

be lower than with two beams. 2) Perfect Compensation. Collective 

coherent oscillations can be driven by non-linear resonances if 

Landau damping (tune spread) is not effective. If so, one would 

expect the dipole mode to be the most dangerous one as the 
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corresponding reactive component is higher. That should satisfy the 

following relation: 

where k is the number of crossing points. Experimental results are 

more in favor of 6 and not a multiple of 5. 

Higher-order-density oscillations are expected also with four 

beams which become unstable very close to a rational number p/q3. 

In this model the proximity of the integer is very important which, 

in fact, means that the linear component gives the major contribution. 

The non-linear stop band does not vary rapidly with current. As in 

the previous model the number of crossing is a fundamental parameter. 

This model would predict as much performance as the hardware could 

handle anyway (according to the very simple approach based on the 

residual space charge strength). However, as it appeared to be the 

major candidate, some more systematic work has been performed, at 

least to see how far the qualitative agreement applied. This is the 

object of the following section. 

IV. 4. Four-Beam Stability as a Function of Tune-per-Crossing 

From the "collective instability model" the expectation is listed 

in the table below4, where the first case is the one which has been 

considered up to now. 

Table 1. 

Operating Point Number of Crossings V/Crossing (&ax> Theory 

VX vz 

3.73 1.73 2 .87 .075 

3.73 1.73 1 . 73 .15 

4.80 2.80 2 .40 .22 

The second case is easily obtained by separating the beams verti- 

cally at one interaction region. Fig. 14 does not show any appre- 

ciable difference as compared to Fig. 13. Notice that from the re- 

sonance point of view 7th order remains while 8th has now become 4th 
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order. Apparently, the beams do not perceive any differences, the 

limits being roughly the same. 

n n 1 111 

Fig. 14. Stability diagram with four beams 

and one crossing point at 800 MeV. 

The third case corresponds to the initial design operating point 

of DC1 which, however, gave less enthusiasm when it was found that it 

was impossible to inject there with sextupoles on. According to the 

small performance that can be obtained with four beams, it has been 

possible to switch off these sextupoles. A preliminary check showed 

that the sextupole does not change the stability conditions of the 

four beams. Moreover, no appreciable difference was found according 

to the previous cases. 

Figs. 15 and 16 show that with four beams the stable area is 

considerably reduced as compared to two beams only, with the same 

current per bunch. It becomes more obvious that the four-beam case 

yields the reverse of what was expected. Finally, neither a trans- 

verse feedback nor a detuning of both rings improved the four-beam 
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case. 

II 1 n m 4.4l 

Fig. 15. Stability diagram with four beams (Ibunch = 2 mA) at 

vx = 4.8, v, = 2.8 with two crossing points. E = 800 MeV. 

Fig. 16. Stability diagram with two beams (Ibunch = 2 m.A) at 

VX = 4.8, v, = 2.8 with two crossing points. E = 800 MeV. 
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V. THREE-BEAM BEHAVIOR 

Experiments with three beams have been done in the strong-weak con- - 
figuration where a small test beam collides with two strong companion 

beams. This is a simple way of checking the compensation of the incoher- 

ent beam-beam effect. 

The test beam was made small enough to not perturb each companion 

beam, but strong enough to enable luminosity measurements. 

The study has been done at E = 800 MeV and the main results are 

summarized in the table below: 

Table 2. 

Upper Ring -1 1 I2 > I1 stable 
. 

Lower Ring 1 -+-----I 2 12 _< 11 unstable 
. 

Upper Ring A -1 1 I1 > I2 stable 

Lower Ring f- I2 I1 5 12 unstable 

Whatever sign the test beam is and its location in one of the rings, the 

interaction is stable when the global sign of the unbalanced companion 

beams is opposite to the test beam's sign. Otherwise, the interaction is 

unstable. 

Stability here means that no enlargement of the test beam is obser- 

vable when increasing the strong beam currents. Fig. 17 shows that com- 

panion beam intensities up to 55 mA have been achieved with stable 

configuration while with two beams there is an enlargement factor of 2.5 

at 25 mA only. In the unstable case,companion beam intensities of the 

same order of magnitude as in the stable case have been achieved, but the 

increase of the effective cross section was considerable above 20 mA. 

Moveover, there was a visible perturbation of the strong beams. For this 

reason, it is very difficult to talk about compensation of the incoherent 

effect rather than stability of coupled bunch modes. 

The three-beam experiments were done at a fixed tune, and the stable 

areas were not investigated in that case. 
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An attempt to detune the two rings did not succeed in obtaining more 

stability. However, a proper detuning should include also electric quad- 

rupole"s in both rings. 

, 

0 V8’ lmrERR.INc 

0 a*e- UPPER RIRG 

A SaMns 

m ISEW 

A AAA'~ 

Fig. 17. Beam cross section versus current. Comparison 

between types of interaction. 

VI. COMMENTS AND CONCLUSION 

The main fact that comes out of the two-beam experiments on the 

coupling resonance is the increase of the effective cross section versus 

current and the corresponding saturation of 5. A diffusion-like process 

(Refs. 5, 6, 7, 8, 9) with a threshold would be a good candidate although 

the effect of the number of crossings could not be checked. The peculiar 

dependences of the maximum current and luminosity agree very well with a 

constant maximum beam cross section that remains Gaussian and fills the 

vertical aperture. Correspondingly, one gets a constant Smax, at least 

over the small energy range considered, which is not in contradiction with 

a diffusion model for which the 5 value at the threshold would make more 

sense. The flat beam case remains to be studied more systematically also 
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as one may expect beam shape distortion close to the limit, leading then 

to a maximum 5 value that may depend on the energy as observed with other 

machines. Here notice that the calculation of 5 from luminosity and cur- 

rent measurements is more cautious. 

The four-beam behavior definitively kills the simpleminded under- 

standing of the beam-beam effect.directly related to the incoherent macro- 

scopic space charge force, linear or even non-linear. There a good 

candidate appeared to be the collective coherent effect, although present 

theories look very optimistic and never predicted the present lack of 

success. Notice that a transverse dipole feedback as well as a detuning 

of the two rings did not help. 

It would be very interesting to know if four-beam and three-beam 

experiments could help our understanding of two-beam behavior. The tool 

exists, it would be worth using. 
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BEAM-BEAM PHENOMENOLOGY 

L.C. Teng 
June 9, 1980 

Introduction 

In colliding beam storage rings the beam collision regions 

are generally so short that the beam-beam interaction can be con- 

sidered as a series of evenly spaced non-linear kicks superimposed 

on otherwise stable linear oscillations. Most of the numerical 

studies on computers were carried out in just this manner. But for 

some reason this model has not been extensively employed in analytical 

studies. This is perhaps because all analytical work has so far been 

done by mathematicians pursuing general transcendental features of 

._ non-linear mechanics for whom this specific model'of the specific 

system of collid- ing beams is too parochial and too repugnantly 

physical. Be that as it may, this model is of direct interest to 

accelerator physicists and is amenable to (1) further simplification, 

(2) physical approximation, and (3) solution by analogy to known 

phenomena. 

We define the simplified system as follows: 

(A) head-on ccl iisions of 2 beam bunches at regular intervals, 

say, once per revolution. 

(B) the weak/strong case in which the strong beam is not affected 

by collisions with the weak beam. Thus, we have in effect, a single 

particle colliding with a beam bunch? 

(C) The strong beam bunch is short compared to the betatron 

*Transition to the strong/strong case is similar to the transition from 
single particle dynamics in an accelerator to the dynamics of a high 

,intensity beam. 
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wave length of the colliding particle so that it can be approxi- 

mated by a b-function in the longitudinal coordinate S, 

(D) Close encounters between particles are negligible, hence -_ 

- the.beam-beam force is given by a potential. Moreover, since the 

strong beam is not affected by the colliding particle, the potential 

is static. The potential depends on the transverse distribution of 

the beam bunch and can also be approximated by a &-function in s. 

Nature of the Beam-Beam Forces 

(A) Extremely non-linear 

To get a rough idea of the degree of non-linearity 

consider a simple round beam with current.1. "Outside" the beam at 

radial location r the magnetic field is 

The conventional non-linear field coefficients are 

b E 1 1 dnB .- - = 
n 5-B o dr" 

(-1)" 2;+l = 
BOr or 

(1) 

(2) 

where B is 0 the external dipole bending field. For colliding beams 

the electric and the magnetic forces add,and the non-linear force 

coefficients are, therefore, approximately 2b n' Taking normal values: 

I w amperes 

r w millimeters, 

BO - teslas 

one gets 

(3) 

This shows that when expressed in units of [r]-" the numerical values 

of bnareindependent of n, but in bigger units, say cm-", the numerical 
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values of bn increase rapidly with n. This should be compared 

to the non-linearities arising from errors in the external guide 

field. Even for the rather poor superconducting dipoles the error 

7 non-liner field coefficients fall off rather sharply with increasing 
-n n when expressed in units of cm . 

(B) Non-linear forces are localized to "surface" of beam. 

The external error non-linear fields are largest at 

the coil aperture boundary and decrease. rapidly toward the center 

where the beam resides. The non-linear beam-beam forces behave, how- 

ever, just in the opposite way. They are largest at the "surface" 

of the beam and decrease sharply toward the aperture boundary. 

Hence the beam-beam forces affect the beams much more strongly. 

(C) The 

harmonics. 

. - 
it will have 

force potential is periodic in s but very rich in 

Indeed, if the potential is truly a B-function of s 

a llwhite" harmonic spectrum, i.e. equal harmonic 

content all the way up to infinite order. 

Measure of Beam-Beam Effects 

Although many parameters are required to specify the density 

distribution of the beam bunch and the dynamics of the particle, 

for simple beam bunch distributions the effects of the beam-beam 

forces on the colliding particle can be specified by only a few 

combinations of these parameters. Let us take a bi-Gaussian beam 

distribution. 

P 
x2 y2 = 2.rroNG 6(s) exp ---- 

XY i 1 2a; 2a2 
Y 

(4) 

where s is periodic with the periodicity of the ring circumference. 

The force potential is, then' 



why) dt 

1-exp - 
[' 

X2 -y2 
2(oi+t) 2((r:+t) 3 

l#L&E$ 
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rON X2 = Y2 5 
Y Gx(Gx+Gy) ’ Gy(Gx+Gy) ox 

(5) 

where in the last expressions the parametric dependence on G /G is Y x 

explictly indicated. The Hamiltonian for the. motion of the particle 

is 

H = ~(p~+Kxx~)+~~p~+Kyy~l+V~x,Y~~~s~ l (6) 

The usual canonical transformation to action-angle variables, namely 

2JX 
p,=- r d---i G sin6 -2 

‘X 
cOS$x 

X 1 

(similar for y) 

and 3 = i with 273 = circumference,gives the transformed Hamiltonian 

K= vxJx+v rON J +- F 
YY Y 

BxJx cos2Q x ByJy cos2@y 
Gx (Gx+Gy) ' Gy (Gx+Gy) 

Defining the scaled action variables 

(7) 

@xJx BYJY 
Gx bx+Gy) ’ G (G +G ) 

Y x Y 
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we can write the canonical equations for K as 

f 
d4x aK roNBx ii!?- s(e) = vx-2”5, g a(e) 
w = aJ, = ‘x - yax(ax+oy) 3Jx X 

dJ +- B‘ 
Gx(G:+Gy) 

. aK roNB, - aF 
K = 

- s(e) 
yax (GxfGy) wx 

= 2”5, $- 6 (0) - (8) 
X 

(similar for y). 

Thus, we see that the motion is uniquely characterized by the five 

parameters 
roNBx 

V 
x ’ 

5,= 1 2n. yGx(Gx+Gy) ’ 

GY and 7 . 
X 

vY ' 
E,= 1 

r,NB Y 
%? yG y (Gx+Gy) 

I 

. - 
Furthermore, we can make the. following observations 

(a) To the lowest order in x and y or J, and Jy we have 

F = 23x cos2$,+2J Y 
cos2$ Y 

andhencethe first equation of Eqs. (8) becomes 

W 
--$ = vx -27iSx(2 cos20x) 6 (9) l 

(9) 

(10) 

(11) 

Since the average value of 2 cos20x is unity we see that to this order 

5, 
is just the tune shift. 

(b) The betatron wave numbers (tunes) ux and vy enter only to 

relate the phases of the kicks given by V(x,y)b(s) in the Hamiltonian 

(6). If the kicks are random (We shall discuss later what random 

means here.) ux and v y become irrelevant in so far as the overall 
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characteristics of the motion is concerned. 

(cl If there are more than one collision points around the ring 

and the perturbing kicks at these collision points are random the - 
- tune advances between collisions are again irrelevant and the beam- 

beam effects can be measured by <sx> and <cy> averaged over all the. 

collision points-. 

(d) The maximum tolerable beam-beam effects are generally reached 

when one of the two tune-shifts 5, and 5, reaches its limiting value. 

Hence if one is only interested in the beam-beam limits the parameter 

uy’ax is irrelevant and only one of the two values 5, and 5 is 
Y 

crucial. 

Semi-Quantitative Features of the Beam-Beam Effect 

We consider only the equation for one degree-of-freedom x, 

d2x -+K(s)x = - 
ds2 

dvak"' 6(s) (12) 

. - 
where the independent variable s is periodic with a period equal 

to the ring circumference. The following observations are important. 

(A) Unperturbed (g = 0) oscillation is linear and long-time 

stable. Hence accelerators are built to be "linear". Non-linearity 

can arise from im?erl 'ections in design and construction, and from 

beam-beam interactions. As was seen above, the latter is much larger 

and is unavoidable in principle. The beam-beam forces impart "kicks" 

on the colliding particle equal to 

Ax; = - 
dV (Xi) 

dx 
i 

(13) 

on the ith revolution. 

(B) If the kicks Axi ' are random the oscillation amplitude will 

grow. The increment of the Courant-Synder invariant2 w 3 yx2+2axx5$x *2 

caused by all the Ax; is 



AW = 2(axi+Bxi)Ax{+B(Axi) 2 J 2 
= nS(Ax'lrms= 
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(14) 

Where the terms linear in Axf sum to zero for random Axf and -. 

where n"is the total number of kicks received. The corresponding 

increment in amplitude A is given by 

A (A2) = BAW = 2 nB2 (Ax') rms . (15) 

The values assumed for Eq. (3) gives a magnetic field on the 

"surface" of the beam of -1 gauss. With a beam bunch length of, 

say, 10-l m and a particle rigidity of 10 -6 gauss-meter 

(-30 GeV proton) we.get 

(Ax’)rms _ t1 gays) (lo -‘m) = lo-7. 
10 gauss-m 

(16) 

Taking a typical value of B = 10 m = lo4 mm we get 
. - 

MA21 = 10m6n mm* . (17) 

Thus it takes only 5~10~ kicks to increase A from 2 mm to 3 mm 

which is very rapid indeed. This is why a beam transport line with a 

length equivalent to more than lo7 kicks of this magnitude (not very 

long compared to the distance travelled by a particle in a storage 

ring) can not possibly work. 

(cl If the kicks are periodic all evils are concentrated into 

resonances. On resonance,Axi add coherently and A grows propor- 

tional to n. Off resonance,Axi cancell.systematically to give zero 

amplitude growth. 

(D) For perturbations arising from external field errors only 

low order non-linearities are sizeable. Therefore only low order 

resonances are excited in appreciable strength. As long as these 
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resonances are avoided the amplitude growth should be negligible. 

The drop-off of high order non-linearity is a general characteristic 

of all fields generated by charges and currents outside the aperture - 
7 and. is 2 consequence of the vacuum Maxwell equations. This dis- 

cussion shows also that the resonance expansion is useful only 

when the resonances excited are limited to low.orders. 

(E) When the perturbations arise from the field generated by a 

beam bunch through which the colliding particle travels, the non- 

linearity and the harmonics of the forces extend to extremely high 

orders. The tune-space is covered dense (density of rational numbers) 

by resonances and the unperturbed tune v. sits in a continuumofhigh 

order resonances even when all strong low order resonances are avoided. 

This means that the part of Ax; which contributes to the continuum of 

resonances in the neighborhood (within the "line width") of v. appears 

to be random, the corresponding part of the motion is ergodic,and the 
\ - 

oscillation amplitude grows: This is similar to the statement that a 

signal which is random in the time domain has a continuous "white" 

spectrum in the frequency domain. The "natural line width" is rather 

small, but since v. is always wobbled by some random noises in the 

external. field, with this vo-wobble included the "total line width" 

could be substantial. 

*It may be objected that this is contrary to the KAM theorem which 
states that for 1 degree-of-freedom when the non-linear perturbation 
is sufficiently small1 well behaved KZGkl surfaces exist and prevent the 
growth of the oscillation amplitude, There is indication, however, 
that KAM theorem holds only for extremely small perturbations, much 
smaller than any physically realistic values. In any case we can always 
consider the motion in 1 degree-of-freedom as the projection of a motion 
in 2 degrees-of-freedom for which Arnol'd diffusion does occur and 
cause unrestricted growth in oscillation amplitude. 
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(F) Following the reasonings given above and using the 

bi-Gaussian potential, Eq. (5), we can derive a semi-quantitative 

formula for the amplitude growth. Putting (J~ = cs Z CT (round beam) - 
Y 

and y "0 in Eq. (5) we get 

rON V(x) = y dt 

roN = n+l 
=- c 

(-lJn 1 
Y n=O 2"(n+l)! 2(n+1) 

and 

(18) 

(19) 

If only resonances of order m (a large integer) ;Itnd above can fall 
. - 

inside the v. line-width, the random part of Ax' contains only terms 

with n>m. Thus, in the expression for (Ax')~~ the sumr?ation should only 

be from m to a~. The amplitude growth is, then, given by Eq. (14) to be 

dW drl = fB(Ax') 2 = 8n2fC2 a3 (-lJn+l 
c 

(20) 
rms n=m b+l) : 

where we have used the relations 

1 roN@ 
5-G 

w2 

X2 t I W 
-r 

-.- 
2 rms 

41T02 - = E = emittance of beam B 

and 
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f dn 
=dt = rate of collision between particle and beam bunch. 

Generally, the first term in the summation is the largest and we 

have approximately 

I I 
2m 

dW 2 W dt = kf5 ~ln WI 
2 

kr2 (21) 

Two comments are useful. 

(1) The line-width cannot be derived from this crude 

model. Thus, m must be considered an adjustable parameter. Further- 

more, depending on how much reliance one puts on the measured beam 

emittance E and on the validity of the approximations,it may be well 

to consider k also as an adjustable parameter. 

(2) Larger line-width corresponds to lower m, hence larger 

k and larger dW/dt. Thus, the effect of external noise in increasing 

d9/dt is magnified by the non-linear beam-beam forces through a 

widening of the line-width. 

Comoarison of Different Systems 

(A) According to the beam and collision geometry 

(1) Continuous beams 

(a) Crossing at an angle - Kicks are one dimensional 

(only in direction perpendicular to the crossing plane), hence the 

motion should be relatively stable. 

( b : Colliding head-on - Kicks are two dimensional, 

hence the motion is expected to be more unstable. 

(2) Long bunched beams - The force potential is identical 

to that of the car responding case of continuous beams except at the 

ends of the beaT bunches which constitute only a negligible part of 

the long bunches. The synchrotron motion of particles in the beam 

bunch will, however, enhance the instability. This can be understood 
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simply by noting that the number of resonances is increased by the 

synchro-betatron side-bands and the continuumofresonances is 

therefore much denser than without the synchro-betatron resonances. 
- 

-c\ (3) Short bunched beams - If the length of the beam bunches 

is comparable to their widths the kicks from the beam-beam forces 

are three dimensional whether the beams are crossing at an angle or 

colliding head-on. This plus the synchrotron oscillation will make 

this the most unstable geometry. 

(B) According to the particle type 

(1) Electrons (positrons) 

At the present storage ring energies the synchrotron 

radiation from these particles is sizeable. The synchrotron radiation 

produces two major effects on the particle oscillations:(i) damping 

and (ii) quantum fluctuation which acts as random kicks to blow up 

the oscillation. In terms of the Courant-Snyder invariant W defined 
. - 

in Eq. (14) we ca1: write 

dW w dt = Q-y (22) 

where Q(>O) is the blowup due to quantum fluctuation and 'c is the 

damping time due to synchrotron radiation. With some modification 

and reinterpretation the beam-beam effect can be obtained from 

Wr- (19) l The electron beams are not round but flat ribbons with 

ux>>u 
Y 

, hence the yertical (y) effect is larger and gives the 

limitations. We first rewrite Eq. (19) as 

1 nf- 

Ay' = rON 

vy luxfoy) (ox+cr > f 
(-l)n+l y2 

1-1 

2 

y n=O 2"(n+l)! 2 
aY 

_ 2aEy n+ln 2 i 1 n+l- a3 
c 

t-11 2 
c-!-J 

Oy x n=O (n+l)! ZiJ 2 l 

Y 

(23) 
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Eq. (20) then becomes 

dW = fg(Ay')2 = 
d?i rms 1 (24.)- 

where the subscript y is omitted. Again, taking only the largest 

termn= m in the summation we get 

g= .,,zg)[$&] ,,tt k = 2 [(m:;):] 2 - (25) 

In addition to the beam-beam effect we can also add an external noise 

term P. Altogether Eq. (22) is modified to 

2m+l 
dFJ dt = P+Q -W-+kfc . T (26) 

- The maximum tune shift cm,, that can be obtained-is given by the 

dW condition d" = 0 at a value of W of the order L 
to E/71, since the two beams are approximately 

gives 

of and proportional 

equal in height. This 

kfc2 max 

2m+l 
w 

I E/1T, 

This leads immediately to the energy (E) dependence of Emax 

because we have 

w a E/IT a E2, hence 5 a E?; 

1 --acE 3 
T I 

W hence 7 a E5, 

(27) 

Q a E5, coupled over from horizontal; 

CT is likely aperture limited, and 
X 

a E", because ~~ 

P a Eo. 
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The energy dependence of Emax can, thus, be 

1 
z 

5 max = (aE5-b) . (28) 
- 

In actuzity the measured data from SPEAX3 can be fitted quite 

well with b=O, i.e. no external noise. Fig. 1 shows the fit with 

'5 
5 = 0.01 E z 
max (E in GeV) . (29) 

The energy dependence of the maximum luminosity Lmax is related to 

that of 5:,, by4 

L a E2 c2 a E7 . max max 

Figure 2 shows the fit to SPEAR data with 

L 
nax 

= 0.03 E' (E in GeV). 

(30) 

(31) 

(2) Protons (antiprotons) 

For present storage rings at energies less than tens 

of ?.'eV the synchrotron radiation for these particles is negligible 

and the amplitude (or W) growth equation is given by Eq. (21) for 

round beams to be 

. (32) 

Several conclusions can be drawn from this equation. 

(a) With all terms positive on the right-hand-side 

there cannot be any threshold behavior as in the case of electrons. 

The beam growth rate will simply increase with increasing c- 

(b) If the beam gror.&h rate is measured by the beam 

loss on a collimator aperture, the collimator has to be fitted 
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rather tightly around the beams. As was stated at the beginning, 

the non-linear beam-beam forces are localized to the "surface" of 

the beam and fall off rapidly going away from the beam. - 
- - 

(cl Unlike electron beams, proton (antiproton) 

beams generally do not have Gaussian transverse density distributions. 

The distribution tends to be'more squarish and more truncated. 

Nevertheless, the qualitative or perhaps even the semi-quantitative 

features of the development given above should still be valid. 

(d) Eq. (32) indicates a beam growth rate propor- 

tional to c2. The same quadratic dependence in Eq. (27) led to the 

fit shown in Eq. (29). Experiments by Kei15 and Zotter6 on the CERN-ISR 

seem, however, to indicate an exponential dependence. This discrepancy 

must be resolved. 
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ABSTRACT 

The filamentation instability of the electron and positron 

colliding beams in a storage ring are investigated within the 

framework of the rigid beam model and the Vlasov-Maxwell equa- 

tions, and closed algebraic dispersion relations for the complex 

eigenfrequency w are obtained. It is shown that the typical 

growth rate of instability is a substantial fraction of the 

electron plasma frequency ti pe' thereby severely limiting the 

electron density in a storage ring. Moreover, the influence of 

collective self-field effects on the electron and positron col- 

liding beams in the storage ring is investigated. The analysis 

is carried out, distinguishing the cases, where (a) the particle 

motions are in a very coherent orbit, and (b) the randomness 

dominates the operational condition of a storage ring (e.g., the 

incoherent collision location by small fluctuation, etc.) In 



116 

either case, it is shown that the self-fields effects play a 

dominant role in the stability behavior of transverse orbit or 
4\ 

the expansion of the beam cross section. 
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INTRODUCTION 

There is a growing interest in the equilibrium and stability properties 

of the electron-positron colliding beams in a storage-ring facility. l-3 * 

recent experiment 4 with colliding electron-positron beams at DESY has shown 

the broadening of the beam cross section, thereby leading to reduction of 

luminosity. To address this serious problem, we examine the filamentation 

instability' of electron-positron beams and the influence of the collective 

self-field5 on the electron-positron colliding beams in the storage ring. 

For the analytic simplicity, we assume that beams have cylindrical shape 

and are azimuthally symmetric in the equilibrium state. Equilibrium and 

stability properties of planar geometric beaus are to be presentd in a 

subsequent publication. 

In Sec. II, we treat the filamentation instability' of colliding 

electron-positron beams with finite-geometry effects included. Stability 

analysis of dipole oscillation is carried out in Sec. II.A, within the 

framework of a rigid beam model, which provides a simple instructive 

description. In Sec. II.B, the analysis for the high harmonic perturba- 

tions with R&2 (where R is azimuthal harmonic number) is carried out within 

the framework of the Vlasov-Maxwell equations. An important conclusion of 

the present analysis is that the typical growth rate of the filamentation 

instability is of the order of the electron plasma frequency 0 pe' 
thereby 

severely limmiting the electron density in a storage ring. However, the 

analysis of broadening of beam cross section by repeating interaction bet- 

ween electron and positron beams is not completed yet. 

The influence of the collective self-fields5 on the electron and posi- 

tron colliding beams in the storage ring is investigated in Sec. III. The 
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theoretical analysis is carried out, distinguishing the two cases, where 

(a) the particle motions are in a very coherent orbit and (b) the random- 

ness dominates the operational condition of storage ring (e.g., incoherent 

collision location by fluctuation, etc.). In either case, it has been 

found that the self-fields effects play a dominant role in the stability 

behavior of transverse orbit and the expansion of beam cross section. 
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II. FILAMENTATION INSTABILITY 

Electron and positron colliding beams in storage ring are likely sub- 

ject to various macro- and micro-instabilities. 336 Perhaps one of the most 

important instabilities of the electron and positron colliding beam in a 

storage ring is the filamentation instability. The unstable modes 

propagates nearly perpendicular to the beam with mixed electrostatic and 

electromagnetic components, the latter destabilizing and the former 

stabilizing. The perturbed magnetic field is mostly in the plane perpen- 

dicular to the beam and the Lorentz force causes the beam to filamentate, 

similar to the Weibel instability. Unlike the Weibel modes, which are 

purely electromagnetic for counter-streaming electron beams, the linear 

perturbations of colliding electron-positron beams cause both charge and 

current perturbations giving rise to mixed polarizations. Furthermore, for 

the case of colliding-beams with radial dimension smaller than the colli- 

sionless skin depth c/w P' 
the finite geometry becomes important and the 

usual assumption of infinite, homogeneous medium is no longer valid. In 

this paper, we treat the filamentation instability of colliding 

electron-positron beams with finite geometry effects included. For sim- 

plicity, we assume in this section that this colliding beam is straight and 

infinite along the axial direction. 

The analysis is carried out within the framework of both the rigid 

beam model and the Vlasov-Maxwell equations. As illustrated in Fig! 1, the 

equilibrium configuration consists of intense relativistic electron and 

positron beams propagating opposite to each other with axial velocity 
6 A 

BP c sz for the positron beam and Be c gz for the electron beam, where 

2, is a unit vector along the z-direction and c is the speed of light in 
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vacua and BP=-6,. Moreover, both beams have the same radius Rb and the 

same characteristic energy Yb mc2. It is also assumed that the ratio of - 

the beam radius to the collisionless skin depth c/w 
P 

is small, i.e., 

=N.-- (1) 

where j=e,p denote electrons and positrons, respectively, v j is Budker's 

parameter, N. = 2~ ,/i dr r ni 
J 

(r) is the number of particles per unit 

axial length, n:(r) is the equilibrium particle density of beam component 

, 
J9 -e and m are the charge and rest-mass, respectively, of electron. As 

shown in Fig. 1, we introduce a cylindrical polar coordinate system 

(r,e,z) l All equilibrium properties are assumed to be azimuthally sym- 

metric (a/30=0) and independent of axial coordinate (a/az=O). 

A. Rigid Beam Model 

In order to illustrate the physical mechanism of this filamentation 

instability, we carry out the stability analysis in this section within the 

framework of a "rigid beam" model. For the purpose of analytic simplica- 

tion, we also specialize to the case of sharp-boundary profiles in which 

the equilibrium density profiles are rectangular, i.e., 

= const, 

n(j!(r) = 
3 

O<r<Rb, 

0, otherwise, 
(2) 

where j=e and p. Making use of Eq. (2), it is straightforward to show 

that the equilibrium radial electron field produced by particles of species 

j is given by 
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. - 

h 
Ejr(r) = 

2nejnjr , O<r<Rb , 

2xejnjRE/r , r>R b' 

(3) - 

where e j is the charge of particles of beam component j (i.e., ej=-e for 

j=e and ej=e for j=p). Similarly, the equilibrium azimuthal magnetic field 

produced by particles of species j can be expressed as ,. 
2nejnjBjr , O<rtRb , 

Bje(r) = h 
2ne n B R2/r , 

jjjb 
r>R b' 

where Vj=bjc is the axial drift velocity and c is the speed of light in 

vacua. 

In the subsequent analysis, we introduce the center of mass 

(4) 

coordinates (Xj,Yj) for the beam component of specis j. In the equilibrium 

state, we assume that 

(Xj’Yj) = (0, 0) , 

for j=e, and p. It is also assumed that 

x; + Y2 << 
j 6 

(5) 

(6) 

The restriction to small perturbation amplitudes makes the subsequent sta- 

bility analysis tractable. The transverse motion of a single particle of 

species j is determined approximately from 

Id --r c dt -j x ,BJ 9 (7) 
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where 
Zj 

= (xj,yj) is the position coordinate for a particle of species j 

and j$ and B, are the total electric and magnetic fields, and mJ=ybm is the 

relativistic mass. Assuming g and E can be approximated by their equili- 

brium values, we substitute Eqs. (3) and (4) into Eq. (7). The equation of 

motion for the x direction can be expressed as 

d2 
"j - x dt2 j 

(8) 

Neglecting momentum spread, Eq. (8) can be averaged over the beam cross 

section. After some straightforward algebra, we obtain the approximate 

equation for average motion on the x direction, 

d2 L) 

“1 dt2 'j 
=2nej 1 nkek(l - bjBkjjXj- J$I l 

k 
(9) 

Similarly, the equation for average motion in the y direction is given 

6 
2aej i; tek ( 1 - BjBk)(Yj - Yk) l 

Defining 

2 j = ‘j + iy’ J 

and making use of Eqs. (9) and (lo), we obtain 

d2 
zzj = q k “kek (1 - ‘jBk)(‘j - ‘k) l 

(10) 

(11) 

(12) 
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We seek oscillatory wave solutions to Eq. (12) of the form 

Z 
j 

= ij exp {ilkz[z + Bjc t) - Wt]j (13) 

where ti is the complex eigenfrequency, Z. 
J 

= const is the perturbed ampli- 

tude, and the axial wavenumber kz is limited to the range 

k2R2 < 1 zb- l 

(14) 

Equation (14) assures the approximate validity of Eq. (12) for wave pertur- 

bations with a/&+0. Substituting Eq. (13) into Eq. (12), we obtain 

[(~-kz6~c)~ +Zsei z "kek(l-8jBk)] Zj = T k nkek(l~-SjBk) Zk . (15) 
"j k 

h 

Equation (15) gives two homogeneous equations relating the amplitudes Ze 
A A 

and Z . 
P 

Setting the determinant of the coefficients of Z 
j 

equal to zero 

gives 2x2 matrix dispersion equation that determines the complex eigenfre- 

quency w. After some straightforward algebra, we obtain the dispersion 

relation 

h A 
[(u + kZc)2 - vie (np/ne)l lb - kZc )2- Jel = wp4, (kpie) , (16) 

2 . 
where w 

pe 
= 4xe2ne/Ybm is the electron plasma frequency-squared and use 

has been made of Be=-ge=l, which is consistent with present experimental 

parameters. 

Assuming that both electron and positron beams have the same density, 
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and defining 

a = kZc + u 
pe ' 

b = kZc - w 
pe ' 

we simplify the dispersion relation in Eq. (16) as 

(u2-a2)(02-b2) = mze , 

which provides a necessary and sufficient condition 

w 4 > a2b2 I k2c2,w2 
pe ( z pe)2 

for instability. For the unstable branch, the perturbation is purely 

growing with the growth rate 

= 1ml.l = {i(Y) + 2J2 -F} 
2 b2 2 a2+b2 l/2 

0.l . 
i 

(17) 

(18) 

(19) 

(20) 

The maximum growth rate of instability can occur at a=0 or b=O, thereby 

giving 

(ui), = (51'2-2)1'2upe " 0.5 ape . 

For colliding beams interacting over a finite distance L, the axial 

wavenumber k, is k,=2nn/L where n=1,2,.... In this case, the condition for 

a=0 becomes LWpe /c=2xn. The finite interaction length also imposes a 

severe condition for the instability to grow significantly before the beam 

exit. Although a small growth of perturbations during one individual 
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interaction of electron and positron beams, we expect that due to this 

filamentation instability, the repating interactions between both beams -. 

eventually convert the longitudinal energy of the beams into the transverse 

energy of beams and the field energy of perturbations, thereby broadening 

the beam cross section and leading to reduction of luminosity. However, 

the analysis of broadening of beam cross section is particularly difficult 

and is currently under investigation by the authors. 

B. Vlasov Description 

In the previous section, we have investigated the stability properties 

of dipole oscillation in the transverse instability for the electron and 

positron colliding beams, within the context of rigid beam model. Although 

a dipole oscillation in a rigid beam model provides a simple instructive 

description, it is necessary to investigate stability properties for 

perturbations with high azimuthal harmonic number 222 within the framework 

of the Vlasov-Maxwell equations. 

For beams of well-defined energy and momentum, an equilibrium 

associated with the steady-state (a/at=O) beam distribution function, 

h 

f"(H,Pe,P 
j Z ) = & G(H-wjPy-Yjm=2)6(Pz-~b~j=~ , 

b 

is particularly suited for stability analysis, where the total energy, 

H = (m2c4 + ~~2~)~‘~’ ejGo(r), (23) 

(22) 

the canonical angular momentum, 
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Pe = we , (24) 

and the axial canonical momentum 

pz = P, + (ej/c)Az(r) , (25) 

are the three single-particle constants of the motion in the equilibrium 
A 

fields, and aj is the beam rotational frequency of species j and Y. is a 
J 

constant. In Eqs. (23)-(25), O,(r) is the equilibrium self-electric 

potential, AZ(r) is the axial component of vector potential for the 

azimuthal self-magnetic field, and p = (pr,pO,pz) denotes mechanical 

momentum and is related to the particle velocity ,v 

2 2 2 -l/2 by v_=(p/m)(l+p /m c ) . 

Since the r-6 kinetic energy of particles is small-in comparison with 

the characteristic energy Ybmc2, it is straightforward to show that the 

term H-wjP8 in Eq. (22) can be approximated by7 

2 
PI 

H - ujPe = ybmc2 + 2Ybm + L y u&l2 r2 , 
2b j 

where 

and 

n: = 
J ( 

l-BjBk) . 

(26) 

(27) 
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h 

In Eq. (27), the laminar rotation frequency wj is defined by 

Substituting Eq. (26) into Eq. (22), we find the equilibrium particle 

density profile 

n;(r) = ld3p f;(W'6,Rz) 

A 

nj , 

0 , 

O(rtRb , 

otherwise, 

where the beam radius Rb is defined by 

g = 2c2[;j-Yb)/Yb"; 

(28) 

(29) 

(30) 

for j=e,p. Equation(30) ensures that the electron and positron beams have 

the common beam radius Rb. It is important to note from Eqs. (27) and (30) 

that the radially confined equilibrium exists only for the rotational 

frequency wj satisfying 

A A 
--w <w <w . 

j j j 

Additional equilibriium properties associated with the distribution 

function in Eq. (22) are discussed in Ref. 7. 

In order to obtain the dispersion relation for filamentation 

instability of the electron and positron beams, we make use of the 

(31) 

linearized Vlasov-Maxwell equations. For perturbations with azimuthal 
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harmonic number II and axial wavenumber kZ, a perturbed quantity &Q&t) 

can be expressed as G$(_x,t)=i(r)exp{i(Pe+k,z-ot)} , where w is the complex - 

- 
eigenfrequency. The present stability analysis is carried out in long 

parallel wavelength and low frequency perturbation satisfying kZ b<&2+l, 2R2 

I--& I 2,,Q2+1 . With this assmption, the axial components of perturbed 

field E,(r) and B,(r) are negligible and the Maxwell equations of perturbed 

potentials can be expressed as 

(-)&r$ - $) i(r) = n - 4xP(r) 

and 

i$ & r ;, - $j i(r) = - fi j (r) 
c z 

(32) 

(33) 

A A 

where 4(r) is the perturbed electrostatic potential, o(r) is the perturbed 
A n 

charge density, A(r) and JZ(r) are the axial components of the perturbed 

vector potential and current density, respectively. Components of 
A A 

perturbed fields can be expressed in terms of 4(r) and A(r) as 
h 
Ee = -iG h-1 / r, i,(r) = - WWk), ir(r) = igi(r)/r, and 
,. A 
Bg(r) = -(a/ar)A(r). 

In order to calculate perturbed charge and current densities, we solve 

the linearized Vlasov equation to obtain the perturbed distribution 

function-/ 
0 

; 
j 

(r,2) = ejYbm afi 
Pl apl 

aj(r) + (u-""j-kzfljc) 

I 
0 A , 

X 

(34) 
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where the perturbed electrostatic potential qj(r) in the frame of 
A A e 

reference moving with velocity Bjc is defined by qj(r)=Q1(r)qjA(r) and use 

has bren made of pz/YbmzB 
j 

consistent with Eq. (1). It is useful to 

introduce the polar momentum variables (p,,$) in the rotating frame 

defined by p, + YbWjy = pI co&, p sin+. Note also that 
Y 

- YbrnjX = PI 

the Cartesian coordinates (x,y) are related to the polar coordinates (r,4) 

by x=r co.s.0 and y=r sine. In this context, the transverse equation of 

motion of particles can be expressed as 7 

A sin0sinw.r + 
J 

Y’ (‘I) = (l/wj)[(pi/Ybm)sin*usinljr + mjcOsYsin~jr 
A 

+ rG; sin8coswjTl- j 

(35) 

A 

where r=t'-t, and the harmonic frequency w. is defined in Eq. (28). 
J 

Upon integration of Eq. (34), the perturbed charge density can be 

found to be 

A 

p(r) = 2.rre2 L Y m j b 1, dpl pl jy:pzhc lij (r) + (w-gwj-kzSjc)ljl l 

(36) 

where the orbit integral I. 
J 

is defined by 

dr jj(r')exp ii[e(e'-e)-(~-k,B,c)T]} l (37) 

Similarly the perturbed axial current density can be obtained. For 

analytic traceability, we will consider here a class of special solutions 
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for which the perturbed charge and current density are localized on the 

beam surface, i.e., equal to zero except at r=Rb. More general 

pertu$ations, particularly the body wave perturbations, are to be 

presented in a subsequent publication. In this case, it follows from Eqs. 
A 

(32) and (33) that the. function.qj(r) has the simple form $j(r) = 
A 

i(r)-BjA(r) = Cjre for O<d$,. Substituting Eq. (35) into Eq. (37) it is 

readily shown that h 
h ,. 

I = 
j 

dr exp[-i(w-kZ6jc)rl[(wj+wj)exp(i~j~) 

(38) 

- (wj-"j)exp(-ijjr)lQ . 

After some straightforward algebra that utilizes Eqs. (22), (36) and (38), 

Eq. (32) can be expressed as 

where u2 A 
pj 

= 4xe2 nj/Ybm is the plasma frequency 

component j, R: = (Wj~j)(~fCj) is defined in 

defined by 

- squared of beam 

Eq. (27) and rj(w) is 

h Q Q 
w-&.-k B.c 

rj(") =-1+ As--J-x- w-kzgjc+Lwj-2nw. 
J 

,. n 

(40) 

Similarly, Eq. (33) can be expressed as 

3 

ia a Q2 A --r--- 
r ar ar r2 I A(r) = - 1 Bjjj(r) 

WL. 
rj(@)6(r-Rb) . (41) 

j 

where use has been again made of the approximation pz/ybm % Bjc consistent 

with Eq. (1). 
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As the right-hand sides of the coupled differential equations (39) and 

- ; (4l),are equal to zero except at the surface of the beam r=Rb, they can be 

solved in a straightforward manner to give 

Ck = 2‘(1-ekBj) L - 
j 2-e": 

rjm. - 
J 

(42) 

In the case when the beams are located inside the cylindrical conducting 

wall with radius R,, the term Ck in the left-hand side of Eq. (42) is 

replaced by [1-(Rb/Rc)2]-'Ck. Note that the absolute value of 

w 2r @)/a2 
pj j j 

in Eq. (42) is of the order of unity or less. It follows from 

Eq. (42) that the condition for a nontrivial solution (Cj not all zero) is 

given by 

(43) 

where use has been made of B p=-8e=1 and yb '2<<1, which is consistent with 

present experimental parameters. Equation (42), when combined with Eq. 

(40), constitutes one of the main results of this paper and can be used to 

investigate filamentation stability properties for a broad range of system 

parameters. 

As an example, we restrict the investigation of dispersion relation 

(43) to the case, 'where both beams are in a cold fluid rotational 
,. 

equilibrium characterized by wj+fw.. 
J 

A careful examination of expression 

for rj(u) show that7 

Qinl 2 
L 

0 2 
. 

W.-al. 
3 J c 1 fEi- r (w) = 

2U12 j j - 2(w-kzejci~wj)[w-kzBjcr(e-2)'jI 

(44) 
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Therefore, in a cold fluid limit, the dispersion relation in Eq. (43) can 

be wnsiderably simplified. After some algebraic manipulation we can show 

that for the fundamental mode perturbation (i.e., a=l>, the dispersion 

relation in Eq. (43) is identical to Eq. (16) obtained within the framework 

of rigid beam model. The stability analysis of Eq. (43) for a broad range 

of harmonic number R and rotational frequency o j is currently under 

investigation by the authors. Nonlinearly the beams become filamentated 

first, then the current filaments of the same sign attract each other to 

form a broader beam. Finally, we conclude this section by pointing out 

that the understanding in broadening in beam cross section by repeating 

interactions of beams is not completed yet. And this area is currently 

under investigation by the authors. 
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III. COLLECTIVE SELF-FIELD EFFECTS 

In this section, we examine the influence of the collective self- 

-5 fields on the electron and positron colliding beams in the storage ring. 

While the forces of the self-generated electric and magnetic field of a 

highly relativistic electron (positron) beam on an electron (positron) 

cancel out to order a(~-*), i.e., Er + BcB,zO(~-2) the forces of the 

electric and magnetic fields of the electron beam on the colliding 

positrons are additive leading to radial acceleration. This effect of the 

collective self-fields of one species on the other species of the colliding 

beams imparts considerable transverse energy, thereby substantially 

increasing the beam transverse dimensions upon collision. In order to make 

the problem simple, we assume that the colliding section of the storage 

ring is straight. The theoretical analysis is carried out, distinguishing 

the two cases, where (a) the particle motions are in a-very coherent orbit 

and (b) the randomness dominates the operational condition of storage ring 

(e-g*, incoherent collision location by fluctuation, etc.). In either 

case, it is found that the self-fields effects play a dominant role in the 

stability behavior of transverse orbit or the expansion of beam cross 

section. For present experimental parameters4 at DESY, the cross section 

of the beam can be expanded to ten times of its original area within 5 

milliseconds operational time. Without loss of generality, we assume in 

Fig. 1 that the front edges of both beams arrive in z=O at time t-0. 

The axial orbit of particles of beam component j is given by 

’ = ‘j+Y (45) 

where the initial position z. is restricted to satisfy 
J 

zj(zj+EjL) < 0 . (46) 
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Here E 
j 

= sgn e. and e. 
J J 

is the charge of the particles of beam component j. 

The particle density profile of beam component j is expressed as 
- 

ny(r,z.t) = nj(r,z)U[(Bjct-z)(z+cjL-BjCt)] , (47) 

where the Heaviside step function U(x) is defined by 

r 

0. xc0 ( 
U(x) = (48) 

1, x>o. 

For a specific choice of the beam density nj(r.z) in Eq. (47), the 

potentials for the self-fields are to be calculated from the Maxwell 

equations. The Poisson equation can be approximated by 

i a -- 
r ar r,z,t) = - 4nle.no(r,z,t) , 

j J J 
(49) 

where $(r,z,t) is the self-electric potential. In obtaining Eq. (49), we 

neglect the term proportional to a2$/a2z, under the assumption that the 

axial length L of the beam is much larger than the beam radius and the 

effects of the leading edge of the beams are thus neglected. Furthermore. 

the z-component of the VxBS(x) Maxwell equation is expressed as 

1 a rar r & AE(r,z,t) = - 4nle.B.no(r,z,t) , (50) 
j J J J 

where Ai(r,z,t) isthe z-component of the self-vector potential. Other com- 

ponents of the vector potential are negligible because of Eq. (1). Defining 

the effective self-potential $y(r,z,zj) =O-B.AS, and making use of Eqs. (45) 
Jz 

(47), (491, and (50), we have 

r 

r,z,zj) = - 87rek $ dr'r'nk(r',z) 
0 

(51) 

x u[(zj-2Z)(2Z-Zj+EkL) 1 , 
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where k#j. In obtaining Eq. (Sl),use has been made of yb -2= (l-+1. 

fn order to make the problem simple, we carry out the analysis in the 

average applied field provided externally by the periodic quadrupole mag- 

netic field, similar to that used in the previous study'. In this regard, 

the applied focussing force can be obtained from the axial component of 

the effective vector potential 

22 AzXt (r) = -(ybm/2eBp) wf r (52) 

where w f is the focussing oscillation frequency determined by the 

quadrupole field gradient. 

The total energy of particles of the beam component j is given by 

l/2 
H= (m2c4+c2p2) + ej$(r,Z,t) 9 (53) 

p\r 
where the lower case p denotes mechanical momentum and is related to the 

2 2 2 l/2 
particle velocity v by v= p/m(l+p /m c ) . Since the r-8 kinetic 

% % Q/ QJ 
energy of particles is small in comparison with the characteristic energy 

ybmc 2 and vj/yb<<l in Eq. (l), it is straightforward to show that Eq. (53) 

can be approximated by 

P2+P2 
H = ybmc2 + x 

1 2 2 
*ybm 

+ ej$g(r,z,zj) + 7 ybm wf r , (54) 

2 2 -l 
where yb = (l-Bj) . From Eq. (54), we obtain the equation of motion for 

z(t) = x(t)+iy(t) (55) 

where i= (-1)1'2. Making use of Eqs. (45) and (55), and 8:=1, the 

equation of motion for particles of the beam component j is given by 

2 
: 8ne2 . Z rr d2Z *i 

(56) 
dz* - 71, Ybmc2 

dr'r'nk(r',z)U[(z j-2z) (2z-zj+EkL> 1 +2 z = 0 
C 
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where kfj and z. is defined in Eq. (45). Equation (56) determines the transverse 
J 

position of particles of beam component j, thereby providing the information 
* 

of the particle density nj(r,z), which in turn governs the equations of 

motion for particles of the beam component k. In this regard, the coupled 

differential equation (56) for j=e and p can be used to investigate the 

temporal profile evolutions of various beam properties for a broad range of 

initial parameters. 

As an example, we consider a tenuous positron beam satisfying 

z2 pp << (c/L)2 , (57) 

-2 where w = 
PP 

4nnpe2/ybm is the average positron plasma frequency-squared 

in the laboratory frame. Equation (57) assures that all the electrons 

move on the straight paths with constant radius r during the collision. 

Assuming the electron density profile as 
n 

ne(T,d = 
ney r<% , 

(58) 
0 , otherwise, 

the transverse equation of motion for positron can be expressed as 

2 2 
d2Z w 
- + -z z 
dz2 c2 

lJ[(zp-22)(22-z 
P 

-L)] 
Wf 

+- z = 0 , 
C2 

(59) 

where w 2 
w 

= 4nnee2!ybm is the electron plasma frequency-squared. 

Without loss of generality, we assume that there is one pair of electron 

and positron beams in the entire system, thereby indicating that the whole 

storage ring can be represented by two focusing sectors. Each sector consists 

of a self-beam focusing set (the region in which beams collide) and an 

applied focusing set. The subsequent analysis is carried out distinguishing 

the two cases: (a) the positrons move on a very coherent orbit, and (b) the 
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axial location of collision as well as the beam length fluctuates incoherently, 

thereby the ensemble average can be feasible. 

- 

A. Stability Analysis of Coherent Positron Orbit 

The stability properties of individual particle orbit can be determined 

from the transformation matrix of one sector8 for a very coherent positron 

orbit. Assuming that a positron has an initial condition Z=Zl and 

2' = (dZ/dz) =Z; at 2= zp/2, it can be shown from Eq. (59) that the transverse 

orbit of this positron is given by 

Z=Zl~~s[(~T/c)(z-zp/2)l+ (Z;clwT)sin[(wT/c)(z-zp/2)1 , (60) 

for zp/2<z<zn/2+L. Here the frequency uT= (w2 +02y2 pe f ' From Eq. (60) 

it is also straightforward to show that the transverse position Z 
2 

and orbit 

slope Z,J of positron, when it emerges from the right-hand side of the 

electron beam, is given by 

COS(OTL/2C) (c/w T )sin(w L/2c) T 
(61) 

-(wT/c)sin(wT /2c) COS(WTL/2C) 

Similarly, when the applied focusing section has been traversed, the 

position and orbit slope are given by 

( z3 
cos@ (c/wf)sinO Z2 

= 
1 1 

z3 1 I( -(w /c)sinO f coso I I- z2 

(62) 

where the phase shift @= f o (S-L)/2c and S is the length of the whole circum- 

ference of storage ring. 

Therefore, from Eqs. (61) and (62),we obtain the trace of the trans- 

formation matrix M for a sector 
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UTL UT *f @TL 
TrM = 2 cosa cos( 2c -) - (-+-)sin@ sin(x) , (63) 

@f WT - 

which is the sum of the elements of the principal diagonal of the transforma- 

tion matrix M. The necessary and sufficient condition for stable transverse 

orbit is 
8 

I$TrM]zl . (64) 

As a typical example in the present experiment,4 we consider the system 

parameters w pe=lOg rad/sec, L=2cm, 

these parameters into Eq. (63) gives 

which violates the inequality in Eq. 

where n is an integer. We therefore 

and w = f 2~10~ rad/sec. Substituting 

approximately TrM/2 = cos@ -sinQ, 

(64) for the range (n-0.5)n < 0 <nT, 

conclude that the collective self-fields 

effects (ape) of the electron and positron colliding beams play a signifi- 

cant role in the stability behavior of transverse particle orbit. 

B. Expansion of Beam Cross Section with Ensemble Average 

In order to investigate the expansion of beam cross section for uncon- 

trollable collision (incoherent collision location, etc.), we define 

2 * 2 1 1* 
rl = ZIZl + (c/w,) zlzl , (651 

which represents the maximum radial deviation from the axis of symmetry 

before collision. In Eq. (65) , the asterisk (*) denotes the complex 

conjugate. During the collision (zp/2 <z <zp/2+L), the transverse orbit 

of a positron in Eq. (60) can also be expressed as 

Z = A cos[(~,/~)(~-~~/2)+u] , (66) 

where A is the maximum amplitude and c1 is the initial phase angle which is 
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defined by a=tan-l[-(c/tiT)Z;/Zl]. The maximum radial deviation for ranee z 

satisfying zp/2 < z < zp/2+L is determined from 
- 

AA* = r2,/Il+ (Wpe/wf)2sin2al , (67) 

where use has been made of Eqs.'(65) and (66), and w = 
T ( 

w + 02) 1’2 
pe f * From 

Eq. (66), the positron position Z2 and orbit slope Z; can be expressed as 

z2 = A cos[ (wTL/2d +a] 3 

1 
z2 = -A(wT/c)sin[(wTL/2c) +a] 9 

thereby giving the relation 

r2 
( 1 

2 l+(w e/wf)2sin2[ (wTL/2c)+al 
- = 

l+(~~~/w~)~sin~a 
1 (68) 

'1 

from which the maximum radial deviation r2 after collision is determined. 

Depending on the phase angle a, positrons gain (or lose) the 

transverse energy by the collision according to r2/rl>l (or r2/rlil). The 

net gain of the transverse energy (or temperature) by the collision is 

determined from the phase angle average of Eq. (68). We therefore define 

I 
2lT 

<ri/r;>= -& da 
l+(w eiwf)2sin2[(wTL/2c)+cr] 

(69) 
0 1+(w pe/wf)2sin2a 

f (CC) 

for future notational convenience. In Eq. (691, the phase angle distribution 

f(a) is a positive'definite function normalized by 
2n 

da f(a) = 2~. For 
0 

uniform distribution (f=l), we obtain 

<ri/r>= cos(F) + 
l+u2e/24 wTL 

(MU2 /w2Y2 
[l-cos(- c >I- (70) 

pe f 

Evidently, we note from Eq. (70) that the value <ri/r:> approaches unity 
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when the beam length (L) or density (W pe) decreases to zero. Moreover, the 
2 2 

Value <r /r > - 21 is always greater than unity. 

AS a typical example in the present experiment, we evaluate Eq.(70) 

for w 
pe 

=lOg radlsec, L =2cm and wf =2x107 rad/sec. Substituting these 

('701, we find <r:/r:> ~1.025. parameters into Eq. Therefore, in these 

particular parameters, the cross section of the beam is increased by 2.5 

percent of its original area after each collision. However, we assume 

that the positrons are uniformly distributed in the phase angle c1 whenever 

beams start collision, which is consistent with the ensemble average 

scheme. The cross section of the positron beam can be expanded to ten 

times of its original area for <ri/rt> =1.025 after 100 times collisions, 

which corresponds to the operational time (S/2c)log1.025= 5 milliseconds 

for the circumferential legnth S=3x106cm of storage ring. 
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IV. CONCLUSIONS 

In this paper, we have examined the filamentation instability and the 
4 

influence of the collective self-fields on the electron-positron colliding 

beams in the storage ring. In Sec. II, we have investigated the stability 

properties of filamentation instability of electron-positron colliding 

beam. An important conclusion of this stability analysis is that the 

typical growth rate of the filamentation instability is order of the 

electron plasma frequency, thereby severely limiting the electron density 

in a storage ring. Influence of collective self-field effects on the 

electron and positron colliding beams has been investigated in Sec. III. 

The theoretical analysis has been carried out, distinguishing the two 

cases, where (a) the particle motions are in a very coherent orbit and (b) 

the randomness dominates the operational condition of storage ring (e.g., 

incoherent collision location by fluctuation, etc.). In either case, it 

has been found that the self-fields effects play a dominant role in the 

stability behavior of transverse orbit and the expansion of beam cross 

section. 
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FIGURE CAPTION 

Fig. 1 System configuration and coordinate system. 
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A BEAM-BEAM S I MULAT I ON 
FOR THE SINGLE-PASS LINEAR COLLIDER 

R. SAH 
Lawrence Berkeley Laboratory 

Berkeley, California 

The beam-beam interaction for the single-pass linear collider has been 
simulated by means of a computer calculation. This work is similar to that 
done by Robert Hollebeek at SLAC, but the two simulations were done 
independently. 

The Comouter Proaram - SMASH 

A computer program named SMASH has been written to perform the beam-beam 
simulation. A "macroparticle" approach was selected in that the calculation 
tracks the trajectories of a number of macroparticles, each of which 
represents a large number of electrons or positrons. This approach was 
favored because it permits the greatest flexibility in simulating cases of 
different density distributions, cases without azimuthal symmetry, etc. 
Also, the coarseness inherent in the use of a relatively small number of 
macroparticles is not a serious drawback for simulations of the single-pass 
linear collider, since the particles do not return again and again. In 
contrast, beam-beam simulations for PEP must contend with the problem 
associated with the repeated collisions of the bunches. That is, small 
simulation errors for PEP can cause severe artificial effects when these 
errors are compounded during the repeated collisions. In order to provide a 
useful simulation of the single-pass linear collider, however, SMASH only has 
to reveal the overall characteristics of the beam-beam interaction. 

When highly-relativistic particles or macroparticles pass near one 
another, their electromagnetic interaction is very simple. See Figure 1. As 
particle 1 (with charge qI and velocity v) passes particle 2 at a distance 
of b meters, the transverse momentum imparted to particle 1 is given by the 
following formula: 

2qlq2 
APl = (2) 7 , where 

0 

(&) = 8.99 x log nt - m2 (MKS units) 
0 coulomb2 

41, q2 in coulombs 

b in meters 

v in meters/set 

"2" comes from the evaluation of a definite integral 
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All the dynamics in SMASH is contained in the above equation, except for a 
form factor which is used to avoid the infinity when the impact parameter 
approaches zero. The forces are attractive for electrons passing positrons. 

Since the above transverse kick occurs only at the point of closest 
approach, >t is convenient to arrange the macroparticles in each bunch in a 
series of "slices", as shown in Figure 2. Then the particles in a given slice 
of bunch 1 interact with the particles in a slice in bunch 2 when and only 
when it passes through that slice. 

In program SMASH the interactions between pairs of macroparticles (one 
from each bunch) are calculated directly. For large numbers of 
macroparticles, this approach is slower than the usual technique of 
calculating fields from particle distributions and then using the fields to 
integrate particle trajectories. However, the direct calculation is simpler 
and avoids possible problems in calculating the intermediate fields. 

As it turns out, SMASH can simulate a collision of a 600-macroparticle 
bunch with another 600-macroparticle bunch in 40 computing units on the CDC 
7600, at a cost of $6.00. A 1200-macroparticle calculation is adequate to 
reveal many aspects of the beam-beam interaction, but it is not suited to the 
investigation of very detailed questions, such as those concerning the extreme 
tails of angular distributions. 

Disruotion Parameter and Luminositv 

The disruption parameter D has been defined as follows for a round 
bunchI: 

aZ re"zN DzT= *2 
YU Y 

If we interpret aZ and CI* 
$! 

as the half-length (AZ) and the edge radius 
(Ar) of a cylindrical bunch o uniform density, we can write the following in 
MKS units: 

where e = electron charge 

E = electron energy in joules 

N = number of electrons (or positrons) in one bunch 
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The significance of the parameter D can be easily understood by 
considering Figure 3. Here, two cylindrical bunches of particles co1 
one another. Bunch 2 is artifically kept unperturbed, but bunch 1 is 
by the electromagnetic forces caused by bunch 2. Figure 3 shows 

- cross-sectional views of the collision, the average edge-radius BT be 
as the harf-width of each slice. The time evolution of the collision 

lide with 
pinched 

ing used 
is 

revealed by the three views plotted from top to bottom. As is shown in the 
figure, a disruption parameter of 1 corresponds to the case when bunch 1 gets 
focussed to a pointjust as it passes through bunch 2. Actually, the focus of 
bunch 1 occurs slightly outside of bunch 2, because the definition of D does 
not take into account the reduction of focussing forces as bunch 1 particles 
approach the central axis of the cylindrical bunch 2. 

To calculate luminosities, it is necessary to perform a distribution 
smoothing in order to calculate the area of a slice or, equivalently, the 
particle density. This is because truly pointlike macroparticles never hit 
one another and the luminosity is zero. For slices with uniform density, the 
area can easily be calculated by first finding the RMS half-widths ax and 

uY* Then we have 

Yir = 2 
---1 

-,/ axay , and 

Area = m(E)2. 

Figure 4 shows what happens when two cylindrical uniform bunches collide, 
and both bunches are pinched. The parameters of this case correspond to the 
single-pass linear collider. 

E = 50 GeV 

N = 5 x lOlo 

ax = ay = (Ar)/2 = 0.6 pm 
r .I 

uz = (AZ)/‘~~ 3 = 0.58 mm 

OX 1 = u Y 1 = 0.12 mrd 

595 macroparticles, 17 slices 

D=l 

For this case (Figure 4) we find a luminosity of 1.11 x 1029/cm2 per 
collision, and for the particle angular distribution after the collision we 
find ~~1 = 1.17 mrd. 
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Figure 5 shows a very similar case where the bunches have gaussian 
distributions in x, y, z, x', and y'. The parameters are as follows: 

E = 5O+GeV 

N = 5 x lOlo 

ax = uy = 0.6 pm 

uz = 0.58 mm 

UX I =(I Y' = 0.12 mrd 

19 slices 590 macroparticles, 

D=l 

I have chosen to genera lize the d isruption parameter D to gaussian 
distributions by noting that, for uniform distributions, we have 

AZ = -‘u’ 3 uz 

Ar = 2u, = 2uy 

Therefore I define 

e2 I--- ("; 3 u )N 
D Z 

gaussian = t-1 4nE 
o E(20y)2 

by analogy with the uniform-distribution case. 

In Figure 5 the bunch radius which is plotted is calculated by the 
follow ing: 

r ,- = 2 -y axuy 

Therefore the cross-sections of the bunches exhibit azimuthal symmetry. The 
luminosity calculation proceeds somewhat differently than for the 
uniform-density case. For cases using gaussian distributions, the particle 
density is approximated by a gaussian distribution with the RMS widths ax 
and ay which are actual1 found. For the case in Figure 5 we find a 
luminosity of 1.13 x 10 24; 2 /cm per collision, and for the particle angular 
distribution after the collision we find ax1 = 1.26 mrd. Clearly, there are 
no profound differences between gaussian and uniform-density bunches. 
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Number of Slices 

The number of slices which should be used in a simulation was investigated 
- in a series of simulations summarized in Figure 6. For D = 1 it was found 

that'abourl0 slices was adequate for an accurate calculation of luminosity, 
but D = 5 required 17 slices or more. This can be understood easily because 
the cases with higher disruption parameter D exhibit stronger pinch effects so 
that the bunches are focussed in shorter longitudinal distances. Therefore, 
more slices are required to reveal the details of an interaction which has 
more longitudinal structure. 

For the rest of the cases in this report, D 2 6 ; and 19 slices are always 
used. 

It should be noted that if the total number of macroparticles were held 
constant, and if the number of slices N, were varied,,tJhen the statistical 
error associated with each slice is proportional toxNs and the error . 
reduction due to many slices is proportional to ~/TN, . Therefore, at 
least to first order the statistical errors of these simulations depend on the 
total number of macroparticles and not on the number of slices. 

Varying D 

In order to investigate the effects of different values of the disruption 
parameter D, a series of simulations were run in which D was varied by varying 
N. In interpreting the results, luminosities were compared after scaling by 
l/N2 to remove the effect of varying N. Figure 7 and 8 show two 
representative cases. It can be seen that increasing D from 1 to 6 does not 
cause the character of the beam-beam interaction to change dramatically. The 
stronger pinch effect is visible even in the top plot of Figure 8. Then the 
bunches are focussed to a quasi-stable pinched configuration (central plot). 
Finally the bunches leave one another with large angular divergences. 

Comparing the behavior of the two bunches in Figure 8 is quite revealing. 
The fact that the two bunches behave generally similarly indicates that the 
simulation is not dominated by the statistical fluctuations inherent in using 
a random number generator to place a finite number of macroparticles in each 
slice. On the other hand, the differences between the bunches are clearly 
growing with time, which I believe indicates an inherent instability in the 
interaction. Of course, by using a small number of macroparticles, SMASH 
simulations exhibit far greater statistical fluctuations than an actual 
beam-beam collision involving 1011 particles would exhibit. 

Figure 9 shows that as D is increased from 0 to 6, the luminosity rises to 
a peak at D = 2 and then drops off slowly. Notice the luminosity enhancement 
of about 2.3 times over the D = 0 value. 

Figure 10 shows that for the D = 1 case, the width of the angular 
distribution is increased from to.12 mrd to 21.3 mrd by the collision of the 
bunches. However, the final angular distribution is considerably wider (3.0 
mrd) for the D = 6 case. The cross-hatched bins are overflow bins. Note that 
the presence of significant numbers of particles between 3 and 5 milliradians 
means that shielding the experimental detector is considerably more difficult 
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for D = 6. The wider angular distributions at D = 6 can be explained easily. 
As the two bunches pass through one another, the pinch effect causes 
individual particles to oscillate about the symmetry axis. For cases with 
stronger focussing (i.e., larger D), the particles cross the axis at steeper 

- angles. yhen the particles emerge from the opposing bunch, those particles 
which happen to be crossing the axis are also the ones with the largest 
angular divergences. 

Offset Bunches. 

A series of simulations were performed to investigate the effect of 
bunches colliding at small offsets instead of directly head-on. Figures 11 
and 12 show the beam profiles of two representative collisions. Here, because 
of the lack of azimuthal symmetry, the beam radius which is plotted is 

Ar = 2ax 

The parameters of these simulations are the same as previous calculations 
except X = 3.0 ax for bunch 1. The vertical scale has been compressed 4 
times more than in previous plots. Note that in the D = 1 case, an offset of 
3.0 ax causes the bunches to miss one another for the most part. However, 
the stronger attraction between the bunches in the D = 6 case causes the 
bunches to collide with a considerable luminosity. This effect is clearly 
seen in Figure 13, where the luminosity loss is seen to be much more 
pronounced (at offsets around 4.0 ax) for the D = 1 case as compared with 
the D = 6 case. 

Figure 14 reveals a somewhat insidious problem with larger values of D. 
What is plotted is the average final angle x', with the error bars 
representing * ax. The lack of azimuthal symmetry leads to non-zero values 
of x', since the entire bunches are deflected as they pass one another. If 
the bunch-positioning system does not operate properly for the D = 1 case, 
most of the particles would remain within a cone of l 2.5 mrd as the bunches 
collide not quite head-on. In contrast, off-center collisions would be mostly 
contained in a cone of about f 10.0 mrd in the D = 6 case. The probable 
presence of significant numbers of particles at angles as great as l 13 mrd 
might be very inconvenient for the design of detectors and masks. 

Incoming Angles 

One can conceive of cases where the external focussing of beam-line 
magnets produces a pronounced waist during the collision of the two bunches. 
When aZ > Bag, we have collisions which would appear much like the one 
shown in Figure 15. Here, the pinch effect is intense only near the z = 0 
plane, so the so the effects of the beam-beam interactions upon luminosities 
or angular distributions are less pronounced than in the earlier cases where 
uz cc B*y. 
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Conclusions 

The choice of parameters corresponding to D greater than 1 or 2 leads to a 
luminosity enhancement of about 2. However, the choice of larger values of D 

- (-say 5 or>) leads t o much larger final particle angles, especially if the 
bunches do not collide exactly head-on. 

1. J.-E. Augustin, et al., "Limitation on Performance of e+ e- Storage 
Rings and Linear Colliding Beam Systems at High Energy", Proceedings of 
the Workshop on Possibilities and Limitations of Accelerators and 
Detectors held at Fermi National Accelerator Laboratory, 
October 15-21, 1978, p. 87. 
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DISRUPTION LIMITS FOR LINEAR COLLIDERS* 

Robert Hollebeek 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California 94305 

ABSTRACT 

Beam behavior in a single-pass collision device has been investi- 

gated using a cloud-in-cells plasma simulation code. The intense 

electromagnetic fields of the beams produce mutual focusing effects 

whose strength is determined by the disruption parameter D. The 

consequent decrease in the beam radii causes an increase in the lumino- 

sity of a single collision. The dependences of the beam behavior on 

beam profiles and current density are described. The beam behavior 

is stable for several plasma oscillations and indicates that high 

luminosity can be achieved in single-pass collision devices by using 

intense beams. 

. - 

Submitted to Nuclear Instruments and Methods 

* Work supported by the Department of Energy, contract DE-AC03-76SF00515. 
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I. Introduction 
- 

The idea of using two linear accelerators firing beams of particles 
- 

at each other for the study of high energy interactions has been suggested 

by several authors. 1) This type of device is called a linear collider and 

is of particular importance in the area of high energy electron-positron 

physics where the energy loss in a circular machine has become a dominant 

consideration in the design of new storage rings. For circular machines, 

modest increases in beam energy are accompanied by large increases in 

either the power required to run the machine, the size of the machine, or 

both. Linear colliders can reduce these problems if the beams can be made 

sufficiently dense at the collision point. 

The small emittance of linear accelerator beams allows the beam to 

be focused to a very small spot (several square microns). For a linear 

collider, one would like to decrease the spot size as much as possible 

to increase the luminosity or rate at which interesting interactions 

occur. However, when two such beams collide, the intense electromagnetic 

fields of the two beams will cause the beams to be disrupted. If this 

disruption destroys the beam focus, the luminosity will be decreased. 

If the beams consist of short pulses, and each pulse is discarded 

after a collision (single-pass collision device), then the growth of 

instabilities due to this beam-beam interaction will be limited by the 

short duration of the interaction. The limitations on beam intensity in 

a single-pass collision device will be determined by the plasma effects 

which occur during the short collision time. 

This paper presents the results of investigations into the behavior 

of the two beams in a single-pass collision device. There are two issues 
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which must be addressed in considering the beam-beam interaction in such 

a device. The first is, how large can the transverse density of the beams 

'be b.&ore plasma instabilities increase the size of the beams during the 

collision and thereby reduce the luminosity? The second question is, 

what is the effect of.the beam&beam dynamics without instabilities on the 

average luminosity of a collision? 

The beam-beam dynamics have been investigated using a modified three- 

dimensional cloud-in-cells (CIC) plasma simulation program. These studies 

indicate that the number of plasma oscillations during beam passage is of 

order 

(1) 

where D is the dimensionless disruption factor (discussed later) which is 

related to the initial beam density. Typical instability growth rates are 

such that n values of one or two can be achieved allowing quite large 

values of D. 

The second result of these studies is that the pinch effect due to the 

attraction of the oppositely charged beams enhances the luminosity. 

Figure 1 shows the changes which occur in two such beams as they collide. 

The luminosity is related to an overlap integral of the density distribution 

of the two beams. The behavior of the luminosity as a function of initial 

beam density and beam profile can be studied with plasma simulation tech- 

niques and can be reliably calculated for small numbers of-plasma oscil- 

lations. 

The definition of the disruption factor is discussed in Section II 

and its relation to the plasma frequency and bunch instabilities in 

Section III. Section IV discusses the computer simulation of the beam- 
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beam interaction. Section V gives the results of the simulations for the 

enhancement of the luminosity due to beam pinch. Section VI discusses 
4 

the case where the beams are offset or have uniform transverse profiles. 

The conclusions are summarized in Section VII. 

II. Beam-Beam Disruption Factor 

To investigate the interaction of the two beams as they collide, one 

must start by looking at the electrodynamics of two relativistic particles 

traveling in opposite directions. In the rest frame of particle 1, particle 

2 approaches with 

y'= 2y2 . (2) 

The fields at the position of particle 1 can be calculated by transforming 

the Coulomb field of particle 2 in its rest frame to the frame moving with 

B’= 1 ( 
l/2 

-$, l . 

(3) 

If particle 2 

particle 1 of 

fields are2) 

travels along the z axis and has a minimum displacement from 

b in the x direction (see fig. 2), the electric and magnetic 

Ex = Y'qb 

( b2 + y r2v2t2)3/2 

Es = -qY ‘vt 
(2 b +Y 

~2~2~2)3/2 (4) 

B = B'E 
Y X 

The time dependence of the fields is shown in fig. 3. Note that, as y 

increases, Ex increases and At decreases in such a way that the total 

impulse given to particle 1 is proportional to l/v. For electrons with 

E= 50 GeV, y = lo5 so that at high energies an impulse approximation for 

the effect of the transverse fields is justified. The impulse is just 
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e2 FAt - bc (5) 

'The &al impulse in the longitudinal direction (due to Ea) is zero. 

Consider now a test particle with displacement b from the collision 

axis incident on a charge distribution as shown in fig. 4. For simplicity, 

let the distribution be a uniform density cylinder with 

N = number of particles of charge e 

R= radius of the bunch 

L= length of the bunch 

Then the incident particle sees a magnetic field H 
+ 

due to the current 

caused by the passage of the other beam. The current enclosed by a 

circular contour of radius b is 

2!% rb 
2 

I L*c.- 2 
ITR 

(6) 

and amperes law gives 

For oppositely charged 

and is experienced for atimeAt=e. 

The effect of the electric field of the 

2rb H 
2Neb 

9 ' H$ = 2 (7) 

beams the force is radial and directed inwards 

2Ne2b 
Fr=-- LR2 

T 

is equal to that of the magnetic field (E, = 

flection is given by 

(8) 

passing relativistic bunch 

i By) hence the total de- 

Apl Ar' =-I 
2Fr At 2Nreb 

=- 
P YmC vR2 

(9) 

._ 
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A similar analysis applied to a bi-Gaussian distribution gives 3) 

- 

for displacements 

Ax' = - 
2Nrex 

y"xPx + ay> 
(10) 

Ay’ =‘- 
2N re Y. 

y”yPx + ay> 

x <c u X and y CC u . 
Y 

The focal length of a thin lens is given by 

and comparing this to eqs. (9), (lo), one can define a dimensionless param- 

eter, called the disruption factor, which is the ratio of the length of the 

bunch to the focal length near the center. For a Gaussian distribution, 

U 
D fz. =- (12) 

If the charge distribution is uniform, then it is easy to see that test 

particles incident on the bunch with b < R will be focused to the axis 

after traveling a distance ax/D. As will be discussed in Section III, the 

behavior of the test particles is actually periodic with a wavelength 

X 'Y 4f which is related to the bunch plasma frequency. For small values 

of D, however, viewing the collision in terms of a thin lense with a 

fixed focal length gives a good physical picture of the test particle 

dynamics. 

A test particle traveling through a non-uniform charge distribution 

sees a focal length which may change as a function of time due to the 

variation of the charge density along the collision axis. The effective 

focal length can also depend on the initial position and angle of the 

test particle trajectory. If the charge distribution does not differ too 
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much from a uniform one, this represents a lens with small aberrations, 
- 

.and the point focus of the uniform lens becomes a line focus or a diffuse 
4 

focus. The disruption factor can still be defined in terms of the focal 

length for small displacements from the collision axis or equivalently 

the focal length determined by the central density. For a Gaussian 

distribution in x, y, and z one has 

Dx = 
2NreaZ 

(13) 

D = 
2Nreuz 

Y yuyPx + ay> 

Note that if the aspect ratio of the beam is not one, the focal lengths 

in the x and y directions are not equal and one must define two disruption 

parameters. For the Gaussian case with aspect ratio ux/u 
Y 

= 1, the dis- 

. ruption parameter is simply 

D= Nreuz 

YU,2 
(14) 

The problem becomes much more complex when one considers the collision 

of two charge distributions. The complication arises because each distri- 

bution will be modified during the collision by its interaction with the 

other one. The disruption factors of the two beams can still be defined 

in terms of their initial density distributions and the results discussed 

previously for test particles are obtained when one of the beams is weak 

and its disruption of the strong beam can be neglected. For the general 

case however, the focal strength experienced by particles varies with 

time both because of the variation of charge density along the collision 

axis and because of the variation in density due to the time dependence of 

the charge distribution. 
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The object of colliding intense relativistic beams of positrons and 

electrons is, of course, to study the fundamental interactions of these 
- 

particles. When an individual positron and electron annihilate or have 

a close collision, new particles are produced with a rate that is given 

by the interaction cross section times the incoming flux. The rate of 

particle production per unit interaction cross section is called the 

luminosity and is the quantity which together with the energy determines 

the usefulness of the machine for the experimenters. The total luminosity 

is the luminosity per collision multiplied by the number of collisions per 

second. Hence 

2% f/PlkY ,z,t) p2(x,y,z',t) dxdydzdt (15) 

- 

where z' = z - ct. and f = collision frequency. Neglecting the dynamic 

changes in the beam density distributions, one can define a luminosity for 
_ - 

the limit in which the disruption parameters are zero which is 

gO = f / Pp’Y,z,t =0) p2(x,y,z',t=0) dxdydzdt (16) 

For two Gaussian distributions with ox1 = ux2, uYl = ay2, azl = az2 we get 

the well known result 

PO = 
N2f 

4Tr u (5 (17) 
XY 

The factor 1141~ u u 
x Y 

comes only from the x and y integration. 

In order to calculate the effects of beam dynamics for arbitrary 

initial density distributions and investigate any shape dependence, one 

needs to define the collision strength in a shape independent way. If the 

charge distribution is characterized by the scale parameters Ax, )c , and 
Y 

xZ’ 
the variables in the problem can be scaled since we are dealing 

essentially with a collisionless plasma (point-like scattering). If the 

variables are now scaled such that 
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5, 
= x/x 

X 

- 5Y 
= Y/Xy 

5, 
= Z/AZ 

and a shape distribution p 
5 

is defined using 

/ 
ps dSxdSy dS, = 1 , 

the luminosity becomes 

(18) - 

(19) 

CJJ= fNlN2 
x x IO (20) 

x Y 

where IO is the overlap integral in x and y and the convolution in z of 

ps with itself. For a Gaussian distribution 

Ps = 
(2n:3/2 

e- ($2 + 532 + Sfl2) 
(21) 

and X = u 
X’ 

and I 
X 0 = 1/4Tr. 

We now must consider the way in which the dynamics scales. For a 

unit charge, the scattering angle per unit length is given by 

dx' -re 
s 

b-2 -=- 
dz Y Pb,Y,d L dxdy 

b2 
(22) 

where b is the impact parameter of the test charge relative to the element 

dxdy. This equation can be rewritten in terms of the scale independent 

variables and the shape distribution as 

2 -r 
d =I- 

l ;r e N cb 

dz2 y Xhh 
xx PC--- 

J 2 
XY z Ab 'b 

dS, dSy 

and 

d2E 
X 

-re N X 
Z 

s,b l 2 

- = y Ax hb 
dS 2 

ps 2 dE, dS 
Y 

Z 'b 

(23) 

(24) 
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where 

s_b= cx 
( 

- bx)/Ax , 
4 

which is in the form of a dimensionless 

(Y - by)/hy ) 

constant times a shape dependent 

function. For a-Gaussian distribution this has the simple form 

d2E X - = -DC, e 
-532 

dS,2 

for 5, << 1 and 5 
Y 

<< 1, or 

d2E X - = -DC, 
dSZ2 

near the bunch center. D is now defined to be 

r NA 

. - The unperturbed luminosity is related to D by 

gJ = 
0 

Dy (&$A) 
8rrmc2reuZ 

(25) 

(26) 

(27) 

where P is the power required to accelerate the beam 

P= fNymc2 

and R is the aspect ratio 

U 
R ox . =- 

Y 

Expressing the luminosity as a function of D in this way is. only approxi- 

mate because the effect of the beam dynamics on the overlap integral 

(i.e., the difference between go and 9) has been neglected in calculating 

the luminosity, but it does point out that if the amount of beam power 

available is fixed, one must increase the severity of the collision in 

order to achieve higher luminosities. Note that increasing D by increasing 
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uz without affecting the transverse dimensions has no effect on .9 except 

through beam dynamics. - 

F& the Gaussian shape, the numerical value of the disruption parameter 

is 

where 

14.4 Nu 
D" z - 

Eu u 
x Y 

N= number of particles in units of 10 10 

(28) 

(5 
Z 

= bunch length in mm 

E = beam energy in GeV 

uu = transverse dimensions in microns. 
XY 

For oppositely charged beams, the first order effect of the beam 

dynamics is to decrease the transverse dimensions of the beam. Since Sr/r 

is proportional to D and the luminosity is proportional to l/(r)2 we expect 

_ - the luminosity to be modified by a factor 

2 
9 rO 

Pg - (r)2 

After a distance R, &r/r = - Dll/oz for DR/u < 
Z 

1. The dimensions of 

opposite beam are also changing so that D(t) s 2 Do(rO/r) . We have 

r2,ri(l -E), 

and if L is the total length, 

$< 1 
Z 

(r) = + /ol r. (1 - F)"'dz 

(29) 

the 

(30) 

(31) 

Hence for D - l/2, L/uz - 2, and DL/uZ - 1, the luminosity is enhanced by 

s? -- 2.5. Lf? 0 
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From eq. (lo), the scattering angle distribution for ux = oy and 

impact parameter b is 
h 

Nreb N(b) N(8) 'v ~ - N 
Z 

(32) 

which has a maximum near b a Ax 'since for larger impact parameters N(b)/N 

is decreasing and the scattering angle is less than D/AZ due to the non- 

uniformity of the current density. The scattered beam will have a maximum 

opening angle near Ax/AZ D. This opening angle is not a scaling parameter, 

and its value will depend on the way in which D is increased. If D is 

increased by increasing AZ, then emax will remain roughly constant. If D 

is increased by increasing the current or decreasing the transverse scale, 

then Bmx will increase proportional to N or 1/Xx, respectively. Further- 

more, if the value of D is larger than one, the particle trajectories are 

. - 
oscillatory and the distribution of scattering angles must be found by 

simulation. 

III. Relation of D to the Plasma Frequency and Instabilities 

It is interesting to compare D to the relativistic transverse plasma 

frequency of the bunch w which is defined as 
P 

2 HIT p rec2 

wP = Y 

For a three-dimensional Gaussian distribution with charge Ne, p varies 

with position and so,does w . 
P 

Using P,,, and comparing to D defined in 

terms of the central density (for simplicity ux = uy). 

(34) 

P = 
max (2n>3'2 u u 0 

XYZ 

2 4s P,, re c2 

%max= Y 
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- 

(35) 

The number of plasma oscillations which occur while traveling a distance 

Lisn= L/xp and using L - 4%~~ and eq. (35) yields' 

D N 8n2 . (36) 

Thus, fi is a measure of the number of plasma oscillations which occur 

during the collision. This conclusion could also have been reached from 

the form of the scaled equation of motion, eq. (25). 

The results of a full simulation (see Section V) indicate that the 

effective phase shift for particles near the axis of a Gaussian beam is 

actually related to D by 

D= 10.4 n2 . (37) 

_ - If the beam behavior was stable for two full plasma oscillations, then D 

could be as large as 32 for Gaussian beams. Beam growth due to plasma 

instabilities typically requires several plasma oscillations so that values 

of D less than 10 are certainly stable. The value of numerical coefficient 

is somewhat shape dependent. 

The collision strength parameter used for storage ring machines is 

the linear tune shift 3) 

* 

re Av =- N 'y 
Y 2lT y uy (ox + uy) (38) 

where S* is the betatron function at the collision point. Using eq. (4) 

one finds 

(39) 3 f3* Av = 4x a 
Y Z 

Maximum luminosity is achieved when S* - uz and the observed limitation 

for the tune shift of Av - 0.06 corresponds roughly to a disruption 
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parameter of one. This low value is probably a consequence of the fact 

that there are many collisions in a storage ring per damping time. For 
4 

this case, Uhm and Liu 4) have derived a dispersion relation for the 

linearized Vlasov-Maxwell equations which predicts a maximum growth rate 

of 0.6 w As pointed‘out by Bi Zotter, 5) - 
P' 

this value agrees well with 

the observed limitation of Av using an effective bunch length L = 26 uz 

but does not explain the fact that the limit is independent of B*. 

The growth of the kink (or hose) instability for the linear collider 

case has been analyzed by Fawley and Lee 6) who find that the growth 

factor is limited by the finite length of the interaction to 

1 R % 
g < l+ al2 2c (40) 

where a = 0.18 is a term used to model phase mix damping, L is the 

effective length and w 8 is the effective betatron frequency of the collision. 
_ - 

Since wgR/2c = 2rn, we can use n = ~6'3.22 to get (for the Gaussian) 

g < 1.86 (41) 

For a given fractional transverse offset 6, the condition gb < 1 places 

a limit on D which is 

(42) 

For a 10% offset this requires that D be less than 31, and for a 25% offset, 

D must be less than 5. 

The effect of the beam emittance on the collision depends on the 

ratio of the beam envelope size to the Debye length. The Debye length hD 

is the average distance which a particle travels in the transverse dimension 

during a time l/w . 
P 2 1'2 

AD = ( ) vl (43) 

wP 
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Hence, if the transverse size of the beam is comparable to xD and the 

collision time is of order l/o , particles will traverse the beam due to 
- P 

emittance effects during the collision, and this will damp any change in 

the beam envelope due to the coherent focusing effect of the beams. The 

- 

emittance is the area of the phase space ellipse x(x)(x') and hence 

2 
E2 = $ A2 pl ( ) lT2 Xf (v;) -= 

X 
P2 2c2 

(44) 

The velocity distribution also defines an effective temperature for the 

beam which is 

2 22 
kT 

pl = - = E Ymc 
eff 2ym 2Tr2x 2 

X 

(45) 

The temperature and the rms velocity actually vary with position within the 

beam since they depend on the phase space distribution function. Usually 

the temperature falls to zero on the edges of the beam envelope (where 

(VJ a 0) and reaches a maximum on the beam axis. For a uniform radial 

dependence of the temperature 

( 2)1'2 = Z-A- 
vl IT Ax, 

(46) 

The relationship between the beam size and the Debye length for a fixed 

disruption parameter is found using D = 1'41~ w E X:/c2 and eq-. (43) 

When AD is much smaller than Ax the emittance of the beam can be ignored. 
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IV. Computer Simulation 

The computer simulation of the beam-beam effect in a single pass 
- 

collider is considerably simplified by the fact that the beams are highly 

relativistic and that the collision occurs only once. For the relativistic 

. - 

beam, the effect of the longitudinal excitation is unimportant, and the 

transverse motion is given by integrating the effect of the kicks defined 

by eq. (24). In contrast, the computer investigation of beam-beam effects 

in a storage ring requires that one follow the evolution of the bunches for 

a time comparable to the damping time. This time is typically much longer 

than the time between collisions, and in this case, small perturbations 

in the initial configuration of the bunches can grow with time and eventu- 

ally become important. This is difficult to study with a computer because 

numerical approximations and truncation errors lead to a cumulative loss 

of information about the beam behavior. The long-time scale also means 

that longitudinal modes in the beam can be important. The single pass 

beam-beam effect at high energy can be reliably calculated because of the 

validity of the impulse approximation and the small number of plasma 

oscillations for reasonable collision strengths. 

The computer simulation used here starts by distributing the charge 

on a three-dimensional lattice which defines typically 8000 cells for each 

beam. The central position and trajectory of each cell is advanced using 

time symmetric difference equations derived from eq. (24). -The advantages 

of time symmetric equations have been discussed by Buneman. 7) In this 

application, they allow one to verify that the code is reversible and 

increase the accuracy of the simulation. Any irreversibility is due to 

round-off errors and coarse binning of the density or time step. 
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The cells are advanced longitudinally at a uniform velocity equal 

to the speed of light. For each time step, the transverse kick given to 
4 

each cell of one beam is calculated from the charge in the cells of the 

other beam which are at the same longitudinal position. The charge 

distribution of each beam is modified due to the cumulative effect of 

all the transverse kicks which have been applied previously. 

To further increase the accuracy of the simulation, the charge in 

each cell is treated as a cloud of charge rather than as a point charge. 

Simulations in plasma physics often use the particle-in-cell method a) 

which simulates the motion of the plasma by having many particles within 

the cell which share the charge. The number of such particles must be 

large enough to reduce the particle or shot noise introduced by statistical 

fluctuations. Real plasmas contain large numbers of particles, and such 

fluctuations are unphysical. The major advantage of such an approach is 

that the simulation of temperature effects is simplified since the parti- 

cles can be given an initial velocity distribution within the cell. The 

cell is used in these calculations to bin continuous quantities like 

pressure, density and electromagnetic fields. The density distribution, 

for example, is calculated by simply counting the number of particles which 

are found in a given cell at each time step. 

The shot noise contributions of the particle-in-cell model can be 

eliminated by treating each particle as a cloud of charge. -As pointed out 

by Birdsall and Fuss, 9) this cloud-in-cells method also reduces many 

fictitious effects which come about because of the finite cell size. 

Errors in time due to the early or late arrival of a particle in a cell 

and errors in the forces due to the uncertainty of the particle's position 
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within the cell are smoothed. The finite size cloud also smooths the 

-interactions between particles and eliminates the necessity of cutting 

off the singularity in the interaction which occurs when point particles 

approach zero separations. 

The cloud size does not have to be equal to the cell size. If it 

is larger than a cell size or if the cloud is not centered on a cell, 

the charge is spread out over several cells in proportion to the fraction 

of the total cloud's area which falls in that cell. If the cloud is 

smaller than a cell, the model is very similar to the particle-in-cell 

model with a particular choice for the cutoff distance for the interaction 

of the charges. 

In this simulation, the cloud size is changed as the interaction 

progresses. The size of a cloud at any given time is determined by the 

distance to adjacent clouds on a lattice. Using the nearest neighbors to 

determine the cloud size is equivalent to a first order Taylor series 

expansion of the motion about the center of the cloud. A fixed cell size 

is used to calculate the density distribution and the luminosity overlap 

integral. The cloud's charge is apportioned to the cells using an area 

weighting scheme. 

By dividing each cell into four subcells, the gradient of the density 

distribution within a cell can be adjusted to match the local gradient 

measured by the positions of the nearest neighbor clouds. This increases 

the number of effective cells in the calculations for the purpose of 

calculating density distributions and overlap integrals of the type given 

by eq. (15) without increasing the number of clouds which must be followed 

in the simulation of the dynamics. At the expense of increased computing 
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time, several clouds can be superimposed at the same positions but with 

differing velocities to simulate temperature effects, but we concentrate - 

here on the cold beam limit. The cell size is usually equal to the original 

cloud size since the behavior of the beam is not followed on a scale smaller 

than a subcell. A cell size larger than the original cloud size would 

decrease the accuracy of the luminosity calculation. 

v. Results of the Simulations 

Consider the collision of two beams with Gaussian profiles and scale 

factors ux, o , and us. 
Y 

One can begin studying the effect of the collision 

by looking at the motion of a test charge in one beam whose position (x,y,z) 

relative to the center of the beam is (ux, 0, 0). The trajectories in the 

x,z projection for increasing values of the collision strength are shown 

in fig. 5. As can be seen in fig. 5 for the case D = 1, .the effect of 
I - 

beam 2 on this test charge is well represented by a focal length which is 

equal to the bunch length us. For large values of D, it is best to think 

in terms of the number of betatron oscillations which a particle executes 

as it passes through the other beam. 

The case D = 1 corresponds roughly to a quarter betatron oscillation 

and D = 10 is slightly more than one full oscillation. Because of the 

form of eq. (24), the equation of motion for small offsets from the beam 

center is given by 

*S:, 'y -DC, (48) 

so that the betatron wave length will be proportional to the square root 

of D. The observed values for the phase shift of the test particle at 

x=u x are shown in fig. 6 and the phase shift is found to be A$ s 0.62afi. 
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This relationship for the focal strength of the beam works well up to 

quite large values of the collision strength and agrees reasonably with 
- 

the rough calculation of Section III, eq. (36). The corrections due to 

the changes which occur in the other beam are small. The exit angle versus 

position of the test charge for D between 0 and 32 is shown in fig. 7. The 

position is that which occurs when the longitudinal separation between the 

two beams is 2.5 us. This corresponds to a position for beam 1 of z/u = z 

1.25 in fig. 5. As D increases from 0 to 1, the exit angle increases. The 

maximum exit angle occurs when D is between 1 and 2. The values of test charge 

exit angle and position for increasing values of D form an approximate ellipse 

similar to a phase ellipse. The rotation of the ellipse is related to the 

effective thickness of the lens. The positions of the points for D = 16 and 

D= 32 are close to those for D - 3 and D = 8 respectively and indicate 

that the nonlinearities of the interaction are not very important. 

Due to the fact that the charge distributions of the beams change 

during the collision, the dynamics of the leading and trailing parts of 

the beam are not quite the same as those of the central part. Figure 8 

shows a superposition of the trajectories in the xz plane of all the 

lattice points with y = 0 for the case where D = 2.4. The lattice is 

10 x 20 in this projection and the distance between lattice points is 

0.5 u 2' The trajectories should be compared to fig. 5 for the case D = 2. 

Particles within 1 rs iof the beam center are scattered through the maximum 

angle. The particles scattered through small angles come predominantly 

from the trailing part of the beam which scatters off a partially disrupted 

charge distribution and therefore sees a smaller charge density. 
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Figures 9a-c show the density in the y = 0 plane of one of the beams 

for the case D = 1, 3, and 5. The times shown are in arbitrary units 

corres;onding to a beam center-to-center separation of 10 us at T = 0 and 

T = 40. The longitudinal positions of the beam centers coincide when 

T = 20 and the luminosity overlap integral (eq. (15)) receives most of 

its contributions from 15 < T < 25. 

By comparing fig. 9a, 9b, and 9c, one can see that as D is increased 

from 1 to 5, the focal point of the beam moves toward smaller times. For 

D = 1, 3 and 5, the focus occurs near T = 26, T = 18, and T = 16 re- 

spectively. In all cases the focus is diffuse because of the non-uniform 

charge distribution. As expected, the transverse tails have longer focal 

lengths. 

The luminosity will reach a maximum when the focal spots of the two 

beams overlap most completely, i.e., when the central focus occurs near . - 

T = 20. This happens near D = 2.4. The harmonic motion of particles 

near the center for D > 2 (see fig. 5) can yield several diffuse foci 

during beam collisions (see fig. 9c, T = 25). 

As discussed in Section II, the luminosity overlap integral will be 

a function of D because of the time dependence of the density distribution 

caused by the beam disruption. For oppositely charged beams which are not 

too severely disrupted, the dynamics lead to an enhancement of the lumi- 

nosity. Using the t+ne dependent density distributions found by the 

simulation, this enchancement can be studied as a function of the collis$on 

strength. The enhancement is defined as the ratio between the actual 

luminosity (eq. (15)) and the unperturbed luminosity (eq. (16)) and is 
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shown in fig. 10. In order to accurately calculate the overlap integral, 

_ the number of lattice points used in the simulation must be large enough 
4 

to follow the density variations during the collision. The integral is 

calculated directly from the density distribution of the two beams at 

each step. The dependence of the enhancement factor on the cell size 

was investigated and the number of cells was increased until no further 

effect of the cell size could be seen. 

VI. Offset Beams and Uniform Transverse Profiles 

For the case where the density distributions do not change (the 

limit as D goes to zero), one can calculate the effect of an initial 

offset of nu in the transverse plane on the luminosity. The overlap 

integral (eq. (16)) gives a luminosity 

. - 
-n2/4 2 

.Y=" 
4a 

= go ewn I4 (49) 

for Gaussian beams. The luminosity as a function of D for n = 2 is shown 

in fig. 11. From eq. (49) one can see that for a two sigma offset the 

D = 0 luminosity is reduced by a factor of 0.37. However, the enhancement 

still occurs and the ratio of maximum luminosity to D = 0 luminosity is 

almost the same as in the zero offset case. The enhancement drops off 

more rapidly with D however. 

Similar results have been obtained for the case where the beam has 

a uniform density profile in the transverse direction and a Gaussian 

profile in the longitudinal direction. The collision strength is from 

eq. (26) 

D= 
reNu z 

YA2 
(50) 
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and the unperturbed luminosity is go = 1. The trajectories for test 

particles are shown in fig. 12 and the enhancement is shown in fig. 13. 

For the uniform profile, the enhancement falls off rapidly as the col- 

lision strength is increased leading to a net loss of luminosity for D 

greater than 16. The local peaks in the enhancement correspond to values 

of the collision strength yielding trajectories which tend to focus the two 

beams when the maximum charges overlap. (This is the point Z = 0 in fig. 12.) 

The more rapid fall-off of luminosity with collision strength for the 

. - 

uniform case can be understood in terms of the plasma properties of the 

charge distributions. In the leading and trailing parts of a Gaussian beam 

and in the transverse tails, the charge density is less than the density in 

the central part of the beam. Since the plasma frequency squared is pro- 

portional to the density, this means that the corresponding plasma wave- 

length Xp is longer in the tails and that the tails are more stable than the 

beam core. When beam dynamics are neglected, the tails of the beam con- 

tribute little to the luminosity of the collision. The luminosity is pro- 

portional to the integral of the density squared and in the Gaussian case, 

for example, it receives very little contribution from those parts of the 

beam which are more than one sigma from the center or times when the beams 

are separated longitudinally by more than one sigma. 

When beam dynamics are included, one expects that the cumulative 

focusing effect of the head of the beam on the central core will be im- 

portant in determining the approximate transverse dimensions of the beam 

core and its profile when it overlaps with the core of the other beam. 

Thus, the charge distribution in the head of the beam is an important 

factor in determining the enhancement factor or ratio of the actual lumi- 

nosity to the luminosity expected for undisturbed beam profiles. The 
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Gaussian transverse profile has a larger enhancement for D > 10 than the 

uniform profile because the non-uniform density distribution leads to a 
4 

spread in the plasma frequencies and this together with the longer plasma 

wavelength in the tails helps stabilize the enhancement factor. 

VII. Conclusions 

The energy lost per turn by a particle stored in a magnetic ring grows 

as the fourth power of the particle's energy and this power loss has become 

a significant constraint in the design of machines to produce high energy 

electron-positron collisions. This problem has led to the consideration 

of the properties of alternative systems which collide linearly accelerated 

beams of electrons with similar beams of positrons. The required luminosity 

is achieved in a linear system by having very tight focusing at the beam 

collision point. Spot sizes of several square microns can be achieved. 

The beam-beam effect which limits the current which can be stored in 

a circular machine is still expected to be the limiting factor in linear 

systems. However, the limitation comes not from the cumulative effect of 

many small perturbations but from the disruptive nature of a single collision. 

Particle densities several orders of magnitude higher can be achieved in 

the single collision case. In addition, the strong disruption of the beams 

leads to an enhancement of the luminosity due to the net focusing effect 

which the two oppositely charged beams have on each other (see fig. 1). 

The strength ofithe interaction between the beams fi, is related to 

the number of plasma oscillations which occur during the collision. The 

plasma frequency however grows only as the square root of the incoming 

current, and this means that very high beam densities can be tolerated. 
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Typical instability growth rates would allow several plasma oscillations. 

For Gaussian beam profiles, two full plasma oscillations occur for D * 32. 
- - 

TKe interaction of two such beams for small numbers of plasma oscil- 

lations can be reliably calculated using plasma simulation techniques. 

The magnitude of -the luminosity enhancement and the relation between beam 

density and effective plasma wavelength have been investigated using a 

computer simulation. The luminosity enhancement grows proportional to D2 

and reaches a maximum value when the focal spots of the two beams overlap 

most completely. This occurs after one-quarter plasma oscillation. For 

Gaussian bunches, the enhancement reaches a maximum for D 2 2.4 and remains 

constant to large values of D (D a 20). The value of the enhancement is 

approximately 6 for a Gaussian beam which is mismatched at insertion, and 

2.5 for a matched beam (i.e., emittance dominated minimum waist). The non- 

uniformity of the Gaussian charge density helps stabilize the beam dynamics. 

For more uniform shapes, the enhancement drops off more rapidly with D. 

Suggestions for linear colliding beam machines have been limited to 

small values of the disruption parameter. 10,ll) In future designs it 

should be possible to greatly increase the design luminosity by increasing 

the collision strength and taking advantage of the luminosity enhancement. 

A disruption limit D = 32 with a luminosity enhancement LZ'/LZ'~ = 6 yields 

an increase in luminosity of 

D2 % = 
gO 

6 x lo3 

if the current is increased or 

2 x lo2 

if the beam spot is decreased compared to a design with D = 1 and LZ?/LYo = 1. 
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Figure Captions 

1. 

-2. 

3. 

4. 

5. 

6. 

7. 

a. 

9. 

10. 

11. 

12. 

Computer simulated collision of intense relativistic beams illustrating 

the pinch effect. ~- 

IA the rest frame of particle 1, particle 2 travels along the z axis 

and has a minimum displacement from particle 1 of b in the x direction. 

Time dependence of the electric and magnetic fields due to the passage 

of particle 2 as seen at the position of 

Test particle incident with displacement 

distribution. 

particle 1. 

b from the axis of a charge 

Trajectory of a test charge incident on a Gaussian bunch with dis- 

placement ux from the axis for the case D=.5, 1, 2, 5, 10, 32. 

The test charge is within a Gaussian charge distribution. 

Phase shift of the test particle versus disruption parameter. 

Exit angle versus position of the test charge incident at (ux,O,O) 

for values of D between 0 and 32. 

Trajectories of the lattice points in the yz plane for the case 

D=2.4. 

(a),(b),(c) Simulation of the density distributions during the 

collision of two Gaussian beams for D=l, 3, and 5. 

Luminosity enhancement versus disruption factor. 

Luminosity versus disruption factor for two Gaussian beams colliding 

with an initial offset of 2u,. 

Trajectory of a test charge incident on a uniform transverse profile, 

Gaussian longitudinal profile beam. The test charge is initially at 

the boundary of the transverse distributions and is within a uniform 

transverse profile beam. 

13. Luminosity enhancement versus disruption factor for uniform trans- 

verse profile beam collisions. 
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- ABSTRACT 

The method of transfer maps is used to develop -generalized Courant-Snyder 

invariants in the presence of the beam-beam interaction for both nonresonant 

and resonant tunes. Numerical evidence is presented to illustrate that the 

generalized invariants are indeed constant through terms of first order in 

the beam-beam interaction strength. The invariants are next used as a 

"magnifying glass" to search for irregularities and evidence of stochastic 

behavior. It is found that within the model employed, the beam-beam inter- 

action at its contemplated strengths shows no evidence of producing particle 

loss in ISABELLE. 
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1. Introduction 

The beam-beam interaction for ISABELLE, in the weak beam-strong beam model 

of Berra, Month, and Peierls (1) , can be studied by the method of Transfer 
~~~~(2~3) . ?n this approach, the transfer map M for passage of a particle in 

the weak beam through its storage ring followed by passage through the strong 

beam is given by the product (4) 

M = exp(F2)exp(Fb). (1.1) 

Here F2 is the Lie operator associated with the quadratic polynomial 

f2 
2 =-Trw(z +z 1 22), (1.2) 

where 

=1 = q ' =2 = p. (1.3) 

The Lie transformation exp(F2) describes passage through the weak-beam storage 

ring with tune w. The quantity Fb is the Lie operator associated with the 

function 

fb(Z) = 
z1 

u(q)dq, (1.4) 
0 

where u is proportional to the electrostaticXforce exerted by the strong beam, 

q/3 2 
u(q) = 4~D/fi dt est . 

0 
(1.5) 

The Lie transformation exp(Fb) describes passage of a particle in the weak beam 

through the strong beam. The effect of the strong beam is normalized in such 

a way that the beam-beam interaction depresses the tune of the weak beam, for 

infinitesimal betatron oscillations, by an amount D when D is small. 

Introduce polar coordinates in phase space by using action-angle variables 

a, $I defined by the relations 

q=z 1 = (2a)1'2sin $I (1.6a) 

p=z 2 = (2a)1'2cos I$. (1.6b) 

In these variables fb has the Fourier expansion 

fb = -E c,(a) exp(i2n$). (1.7) 

The coefficients cn will be computed explicitly in the next section. 
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Suppose the tune w of the weak-beam storage ring is not near a resonant 

value. Then, using the Campbell-Baker-Hausdorff formula (2,3,4) , it can be shown 

that the quantity h given by the expression -. 

h = -TVwa + c,(a) + 2 F c,(a) [2nlrw/sin(2nmw)] cos[2n($ + 7rw)J (1.8) 

generalizes the Courant-Snyder invariant through first order in the beam-beam 

interaction strength D. 

In the case of resonant or near-resonant tunes, it is necessary to work with 

powers of M. Consider an m'th order resonance. Then tunes near an m'th order 

resonance value can be written in the form 

w = k/m + 6 (1.9) 

where 6 measures departure from exact resonance. Now consider the iterated 

transfer map 8. Again, using the Campbell-Baker-Hausdorff formula, it can be 

shown that the quantity hr given by the expression 

hr = -2mda + co(a) + 2 7 c,(a) [2n7-r6/sin(2n7Tw)] cos[2n($ + ~TW)] (1.10) 

generalizes the Courant-Snyder invariant through first order in D for the map 

MY 

The purpose of this paper is to use the non-resonant and resonant invariants, 

h and hr, as a kind of "magnifying glass" to study numerical results in fine 

detail. Section 2 derives expansions for the coefficients c,(a) suitable for 

numerical use. Section 3 shows that h and hr do indeed generalize the Courant- 

Snyder invariant through order D in the beam-beam interaction strength. Section 

4 illustrates how magnifying glass methods have been applied to problems in other 

areas of physics to detect the presence of small-scale homoclinic oscillations 

and associated stochastic behavior, A final section applies these methods to 

the beam-beam interaction, and demonstrates that within the model employed, the 

beam-beam interaction at its contemplated strengths shows no evidence of pro- 

ducing particle loss in ISAE%ELLE. 
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2. Evaluation of Expansion Coefficients 

The purpose of this section is to compute the expansion coefficients C,(a). 

We begin by observing that the function e:rp(-t2) appearing in the integrand of 

hquation (12) can be expanded in a Taylor series having an infinite radius of 

convergence. Therefore, this expansion can be integrated term by term to pro- 

vide an expansion for u(q). Similarly, the expansion for u(q) can be inserted 

into equation (1.4) and integrated term by term to-provide an'expansion for f b' 
Carrying out these substitutions and integrations, we find the result 

fb(z) = ~ITD Lzo(-3) ~z12"f2/[(~!)(2k+2)(2~+l)]. (2.1) 

Next, substitute into the expansion (2.1) the expression (1.6a) for the 

quantity zl. Making this substitution gives the result 

fb = 4rD $, (-3)'(2a)"+'(sin $)2'+2/[(L!)(2&+2)(2&+l)]. (2.2) 

Our task, now, is to rearrange the series (2.2) into a Fourier series of the form 

(1.7). 

By employing the binomial formula, we find the result 

(sin $) 2R+2 = 
(e i+ -e-i$j2R+2/(2ij2k+2 = 

(2.3) 

Introduce a new summation variable n defined by the relation 

n = R+l-r. (2.4) 

With this substitution, the expansion (2.3) takes the more convenient form 

(sin $1 2R+2 = [l/(2i)]2~+2 ‘Al C-1) 
R-n+1 2R+2 

n=-(L+l> c ) 

.2in$ . (2.5) 
R-n+1 

To proceed further, we insert the expression (2.5) into the expansion (2.2) 

to find the result 

fb = ~ITD Qzo (-3/2)R(a)a+1/[L!(211+2)(2L+l)] '11 Gun 
n=-(L+l> 

2!?,+2 
X c ) .2in$ 

R-n+1 
(2.6) 
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The expansion coefficients c,(a) can now be read off from equation (2.6) 

simply by exchanging orders of summation. We find the results 

and 

co(a) = 2nDa Qzo (-3a/2)' (2Q!)/ 
- 

‘1 (2.7) 
-. 

c,(a) = -(4~/3)D. (3a/2)n mgo (-3a/2)m(2n+2m,2) !/[m!(n+m-1) !(m+2n) !] 

when n > 0. (2.8) 

Here use has been made of the relation 

S 0 = s!/[(s-r)!r!] , 
r 

(2.9) 

and some rearrangement of the summation index has been made in writing (2.8). 

In order to do numerical work, it is necessary to truncate the series (1.8), 

(i.w, (2.7), and (2.8) at some point. Explicit evaluation shows that the 

coefficients in these series (the terms not involving D or powers of a) are less 

than 10mg provided that Q > 25 in (2.7), and n > 15 or m+n > 25 in equation (2.8). 

Also, the normalization employed for q, p, and a in setting up the beam-beam _ 

problem is such that the value a = l/2 corresponds to the outside of the beam. 

Tberefore, even in the extreme case a = 1, which is well outside the beam, at 

least eight significant figure accuracy is obtained by restricting sums in Q, m 

and n to the range Q I 25, n I 15, m+n S 25. This level of accuracy is certainly 

sufficient, for the quantities h and hr as given by equations (1.8) and (1.10) 

omit all terms of order D2, and D2 Q 10 -4 for cases of practical interest. 
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3. Numerical Behavior of h and hr 

The purpose of this section is to illustrate numerically the claim that the 

-quantities h and 11~ act as generalized Courant-Snyder invariants. Our procedure - 
is to iterate numerically the transfer map (1.1) a large number of times for a 

variety of initial conditions, and to then verify that h and hr remain approximately 

constant as the iterations proceed. 

At this point, it is necessary to remark on the numerical method used to 

evaluate the integral (1.5) since the beam-beam portion of the transfer map 

involves the transformation 

q I1 = q’ 

P vt = p' + u(q'> (3.1) 

at each iteration of the map. (3) The integral (1.5) can be evaluated in terms 

of the error function with the result 

u(q) = (4-irD/G)(n/fi) erf(qfil. (3.2) 

The problem is to find a good approximation to the error function which can be 

readily evaluated over and over again by a computer. We have found it convienent 

-to use the approximation(5) 

erf(x) = 0, for x = 0 (3.3a) 
5 

erf(x) = 1 - exp(-x2) C bntn, for x > 0 (3.3b) 
1 

erf(x) = -erf(-x), for x < 0 (3.3c) 

where 

t = l/(1 + b6x) 

and the constants b 1 through b6 have the values 

bl =, .254829592, b2 = (-.284496736) 

b3 = (1.421413741), b4 = -1.453152027 

b5 = 1.061405429, b6 = .3275911 

(3.3d) 

(3.3e) 
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The above approximation is accurate to within an error less than or equal to 

1.5 x 10 -7 . This error is certainly far smaller than the expected accuracy of 

the model, because there is no reason to believe that the charge distribution 

:in the.strong beam is exactly Gaussian as (1.5) and (3.2) would imply. 

With this explanation, we turn first to a study of the behavior of h in the 

nonresonant case. Figure 1 shows typical phase-space plots obtained by iterating 

the transfer map numerically‘for the case of a nonresonant tune. Correspondingly, 

figure 2 shows plots of the two quantities (-2rwa) and h as a function of 

($/2~) for each of the three curves in figure 1. It is evident that the quantity 

(-27rwa), which is proportional to the ordinary Courant-Snyder invariant, can, in 

some cases, show substantial variations. By contrast, the quantity h is more 

nearly constant in all cases. 

To exhibit the behavior of h in more detail, figure 3 shows in expanded scale 

the variations of h corresponding to the case of curve C in figure 1. Observe 

that h has an average value of s-5.665 and variations of about k.053 above and 

below the average. 

Presumably these variations come from the order D2 terms which have been 

omitted in the expression for h. Now suppose that the value of D were halved 

. -from the value D = .Ol which was used to generate figures 1 through 3. Then the 

variations in h, if they are proportional to D2, should be reduced by a factor 

of four. Figure 4 illustrates that this is indeed the case. It shows the 

variations in h for a phase space plot having a beam-beam interaction strength 

of D = .005, but otherwise having the same initial conditions and tune as curve 

C of figure 1. Now h has an average value of ~-5.5405 with variations of about 

2.0125 from the average. Note that there is indeed a reduction in the variation 

by about a factor of four. 

We turn next to a briefer study of a resonant case. Figure 5 shows a sample 

of phase space-plots for the resonant case of a nearly half-integer tune. Note 

that the plots now are far, from the near-circular shapes pertaining to the non- 

resonant case of figure 1. Correspondingly, figure 6 shows values of hr plotted 

as functions of q for each of the curves in figure 5. Observe that the quantity 

hr remains remarkably constant. Thus, the curves of figure 5 are very nearly 

l&e1 lines of hr, and the major features of figure 5 can be predicted by studying 
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the level lines of hr and the points at which the gradient of hr is zero. 

These latter points correspond to fixed points of M, and give the initial con- 

ditions for periodic orbits. 
- 
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4. Magnifying Glass Methods 

A standard procedure for studying the long-time behavior of a dynamical system 

is to make phase-space plots of the motion, and to then examine these plots for 
4 

evidence of stochastic or unstable behavior. This procedure has the virtue of 

giving a good qualitative picture of the motion. However, it has the disadvantage 

that much of the resolu-tion of the graph is devoted to displaying regular features 

of the motion. Consequently, small-scale irregularities in the motion may not be 

readily apparent if their scale is much smaller than the scale required to display 

the regular features of the motion. 

This difficulty can be overcome by making additional plots of some quantity 

which takes into account the regular features of the motion. This quantity should 

have the property that it is expected to be nearly constant if the motion is regular. 

Departure from constancy could then reflect irregularities in the motion, and the 

full scale of the plot could then be devoted to displaying departures from 

constancy, 

Such quantities in the case of the beam-beam interaction could be the generalized 

Courant-Snyder invariants h and hr. The purpose of this section is to illustrate 

briefly how these methods, which will be called "magnifying glass" methods, have 

been applied to two other problems: the study of a simple mapping and the study 

of the Van Allen radiation. The section after this will apply the same methods 

to the beam-beam interaction. 

We begin with a study of the simplest nontrivial canonical mapping, called a 

quadratic Cremona map, given by the relations (6) 

X ’ = XIX + (x-Y12] 

(4.1) 

Y ’ = (l/A) b + (x-y) 2] . 

Here X is some fixed parameter, and the properties of the map are to be studied 

for various values of A. , 

It is readily verified that this mapping has two fixed points. One of these 

fixed points is the origin. This fixed point is evidently hyperbolically unstable 

for real positive A, and hence we write its coordinates in the form 
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xh = 0 

(4.2) 

yh = 0. -. 
--h 

The other fixed point is also readily found. Its location is given by the 

equation 

e -x(x-1)/(X+1) 2. .x = 

(4.3) 
ye = (h-l)/(h+l)2 

This fixed point is elliptically stable, for certain ranges of the parameter A, 

as the notation is meant to suggest. Indeed, if the mapping (4.1) is expanded 

about the fixed point (4.3), it can be shown to be equivalent to the mapping 

associated with a storage ring having a short sextupole insertion. (2) The 

tune of this ring is given by the relation 

2cos(2nw) = -(X2-4h+l)/X , (4.4) 

It is easily verified that the fixed point (4.3) is elliptically stable provided 

A lies in the range 

1 < x < <3+&). (4.5) 

Associated with every hyperbolic fixed point is a stable and unstable 

manifold. If these manifolds, when followed away from the fixed point, intersect 

each other with a nonzero angle at some other point, this point is called a 

homoclinic point, If one such homoclinic intersection occurs, then it can be shown 

that the two manifolds must go into wild oscillation about each other. These 

oscillations result in the irregular behavior of trajectories over at least a 

portion of phase spate(7). Figures 7, 8 and 9 illustrate a homoclinic inter- 

section and the ensuing oscillations when X = 3 for the case of the quadratic 

Cremona map. 

The size of the angle of intersection of the stable and unstable manifolds 

at the homoclinic point,and correspondingly the amplitude of the ensuing oscil- 

lation, depends very sensitively on the size of the parameter X. Figure 10 shows 

that the homoclinic angle becomes very small as A approaches the value 1. In the 

range of very small angle, its size was inferred by studying the behavior of an 

invariant of the map. This invariant was found by employing the Campbell- 

Baker-Hausdorff formula in a manner similar to that used to find the generalized 

Courant-Snyder invariants. (8) 
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Figure 7, Behavior of the stable and unstable manifords, Ws and 

wUv 
for the hyperbolic fixed point of the quadratic 

Cremona map in the case A = 3, Note the homoclinic 
intersection at the point K. 
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Figure 8, Continued homoclinic oscillations of the stable and 
unstable manifolds about each other. Note that the 
amplitude of oscillation grows in the vicinity of the 
hyperbolic fixed point. 
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Figure 9. A Continuation of figure 10 near the origin showing the 

formation of a grid of intersecting lines. The spacing 

of the grid becomes finer and finer as it approaches 

the hyperbolic fixed point. Each grid intersection 

is a homoclinic point. The result of all these inter- 

sections is an ever denser cloud of homoclinic points 

which has the hyperbolic fixed point as a limit point. 
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Because the homoclinic angle varies so rapidly with A, the nature of 

phase-space plots appears to change abruptly as X is varied. Thus, many authors 

speak of a threshold for stochastic behavior. In reality, at least for the map 

-~(4.-l),-therbis no threshold. Homoclinic oscillations are always present. How- 

ever, unless A is large, the amplitude of these oscillations is too small to be 

seen in ordinary phase-space plots. 

A second problem for which magnifying glass methods have proved useful is 

that of analyzing the motion of particles in the Van Allen radiation (6) . In 

simplest approximation, this problem is idealized to that of studying the so- 

called Stormer problem, the problem of determing the motion of a charged 

particle in a dipole magnetic field. By the use of a Poincare surface of section, 

the Stormer problem can also be reduced to the study of a certain map M of a 

two-dimensional phase space onto itself. And, as in the case of storage rings, 

the real problem is to determine the behavior of M" for large n, 

Figure 11 displays schematically a hyperbolic fixed point for the Stormer 

map and a conceivably possible behavior for the stable and unstable manifolds 

in which there are two postulated homoclinic intersections. Figure 12 shows 

actual results obtained by numerical integration. Evidently, within the re- 

. -solution provided by ordinary plotting, there appears to be no sign of homo- 

clinic oscillation, and the postulated homoclinic angles are very small, and 

could well be nonexistent. 

In the case of the Stormer problem, by using Lie transformation and normal 

form procedures, it is possible to find a formal power series for an integral 

of motion('). This series, when truncated, can be used to account for most of 

the regular features of the motion as exhibited by figure 12. Thus, this 

truncated series can be used to look for irregularities in the motion that are 

not apparent on the scale required to represent the regular motion. Figure 13 

shows how this works out in practice. It displays the behavior of the truncated 

series near the hyperbolic point. It is now apparent that there are indeed homo- 

clinic oscillations, and there must be a nonzero homoclinic angle. These 

oscillations and the homoclinic angle are just too small to be seen on an ordinary 

phase-space plot. 
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5. Application to the Beam-Beam Interaction 

The purpose of this section is to apply magnifying glass methods to the 

beam-beam interaction in order to search for evidence of small-scale 

irregularitcs in the motion. 

We begin with the nonresonant case. Figure 14 shows a plot of h for conditions 

identical to those for- figure 3 except that the mapping has been carried out for 

100,000 iterations with every two hundredth point plotted, All calculations were 

carried out in double precision with an accuracy of approximately 16 significant 

figures. Evidently, even with the magnification provided by plotting h rather than 

the customary q,p variables of figure 1, there is no evidence of irregular behavior. 

We conclude that within the model employed, the beam-beam interaction at its con- 

templated strengths shows no evidence, even under magnification, of producing 

particle loss in ISABELLE. This conclusion is consistent with earlier conclusions 

based on less stringent tests(4). 

We turn next to a brief examination of the resonant case. Figure 15 illustrates 

that stochastic behavior can indeed occur, due to homoclinic oscillations, for 

large values of the beam-beam interaction. In the case shown, the origin is 

hyperbolically unstable, corresponding to a half-integer resonance, and the stable 

. -and unstable manifolds associated with this fixed point intersect in homoclinic 

points as illustrated schematically in figure 16. This behavior can be followed 

to smaller values of the beam-beam interaction providing the tune w is also 

suitably adjusted. It is readily apparent, with and without magnification, for 

the parameter pairs (w = .80, D = .30), (w = .70, D = .20), and (w = .60, D = 

.lO>. However, when D is decreased to the value D = .05, and below, (for 

example the case w = .55, D = .05), homoclinic behavior is no longer visible 

even in plots of hr. Thus, for example, the case of figure 5 shows no evidence 

of homoclinic behavior despite the hyperbolic instability of the origin. It 

is presumably still there, but has a scale too small to be presently seen. 

Perhaps if the expressions for h and hr were calculated in more detail to pro- 

vide the corrections of order D 
2 

, and perhaps even beyond, which is is principle 

possible using the Campbell-Baker-Hausdorff formula (3) , sufficient magnification 

might become available to again detect homoclinic oscillations. Such an effort 

is beyond the scope of this paper. Suffice it to say that the apparent lack of 

visible homoclinic oscillations, even in the hyperbolically unstable case, is 

further evidence for the benign nature of the beam-beam interaction at its 

presently contemplated strength. 
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Figure 15. A phase-space plot showing stochastic behavior for a 
large value of the beam-beam interaction strength. 
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Figure 16. Schematic presentation 
of the intersection of the stable 
and unstable manifolds in the case 
of Figure 15 leading to stochastic 
behavior. 
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Conclusion 

It has been shown in section 3 that the generalized Courant-Snyder invariants -. 

-h and hr repPoduce well, for sufficiently small values of the beam-beam inter- 

action strength D, the regular features of phase-space plots. In section 5 these 

invariants were used to search for evidence of small-scale irregularities in 

the motion. No evidence was‘found for beam-beam interaction strengths of physical 

significance. Consequently, within the model employed, the beam-beam interaction 

at its contemplated strengths shows no evidence, even under magnification, of 

producing particle loss in ISABELLE. 
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Measures of Nonintegrability in Two-Dimensional Mappings 

- John M. Greene 

Princeton University, Plasma Physics Laboratory 

Princeton, N.J. 08544 

Over the past few years I have been studying Hamiltonian systems, and 

particularly the simplest nontrivial example which is the area preserving 

mapping of a plane onto itself. Such deterministic Hamiltonian systems 

provide a useful model for a wide variety of phenomena. That is such common 

knowledge that it sounds trivial. Thus, it is good to remember that these 

models completely ignore both dissipation and random perturbations, and that 

Hamiltonian systems are so delicately balanced that the smallest non- 

Hamiltonian effects completely dominate the behavior after a long time. One 

advantage of the widespread use of Hamiltonian models is the variety of 

. - experience and points of view of the mrkers in this field. It has been 

pleasurable and profitable to learn about the beam-beam interaction in the 

last few months. In return, T am happy to share what T know about two- 

dimensional mappings. 

It is outside my expertise to review the physics of the beam-beam 

interaction, but it is in order to provide a few paragraphs setting the 

context for some two-dimensional mappings. 'ihe phase space in which the beam- 

beam interaction takes place is multi-dimensional. Nevertheless, there may be 

an effective decoupling of the various degrees of freedom of a particle 

traversing an accelerator and interacting with another beam. The two- 

dimensional mappings considered here are an abstraction of the behavior of a 

single degree of freedom with a periodic external forcing term. 

Many of the two-dimensional mappings that are useful for understanding 

the beam-beam interaction can be written' 



236 

‘n+l = xn sin2xV + p n cos2nv - 8xk F(x n+l ) 

Here x, and p, are the orbit displacement and momentum in the degree of 

freedom that is being studied, evaluated at a point in the orbit just after 

the particle has experienced a beam interaction, and (x~+~, P,+~) are the 

phase space coordinates after the next interaction. The force function, F(x), 

is taken to be odd, so that it vanishes at zero. Then the origin, (O,O), maps 

into itself. This represents the central periodic orbit that closes after one 

trip around the accelerator. Neighboring orbits exhibit betatron 

oscillations, which are represented by a rotation in‘ this phase space 

mapping. Thus V is the tune of the degree of freedom that is being 

studied. When the interaction parameter, k, vanishes, the betatron 

oscillations of different orbits all have the same frequency, independent of 

the amplitude of the oscillation, in this approximation. Thus, they 

contribute a rigid rotation to the mapping. 

The beam-beam interaction is represented here as an impulsive force, 

F(x), that instantaneously displaces the particle momentum without affecting 

its position. This paper concentrates on two of the important effects of this 

force. In the first place, it changes the betatron frequency of small 

amplitude orbits. Then the mapping is not approximately a rigid rotation, but 

exhibits shear, with inner orbits revolving around the central periodic orbit 

more slowly that the outer orbits. Secondly, this force provides a 

perturbation that resonates, to some degree, with every rational tune. Thus ) 
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the beam-beam force impresses a range of rational tunes on the system, and 
- 

resonates with all of them. - 

In the linear, rigid rotation approximation, orbits lie on concentric 

circles in the (x,p> plane. Under the influence of the beam-beam force, F(x), 

several new types of orbits appear. Corresponding to each rational tune, a 

resonance, or island structure is born. This consists of a central periodic 

orbit surrounded by an orbit system that rotates around it. This system thus 

reproduces, on a smaller scale, the orbit system around the primary central 

periodic orbit at (0,O). One characteristic of these secondary islands is 

that their central orbits close only after many trips around the accelerator 

so a number cross sections of each resonance system are displayed in pictures 

of the mapping of Eq. (1). 

Surrounding each such system, there is generally a region where a single 

. orbit appears to fill a portion of the (x,p> plane randomly. This will be 

called a stochastic sea. 

In and around these orbits, some distorted circular orbits continue to 

exist, according to a theorem of Kolmogorov, Arnol'd and Moser. Such closed 

curves in the (x,p> plane that are filled by a single orbit are called KAM 

surfaces. 

With orbits no longer lying on circles, and particularly as some orbits 

can wander over regions of phase space, the problem of stability arises. Ry 

this will be meant here, the problem of whether orbits can wander indefinitely 

far from the origin, (O,O). At least two stability questions can be 

distinguished. Does the model exhibit stability or instability? Is the real 

system stable? 

The existence or absence of KAM surfaces is strongly relevant to the 

first question. These surfaces divide the (x,p> plane. By continuity and 
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uniqueness orbits in one region can never cross over into another. Thus, if 
-_ 

.KAPl surface can be proven to exist the orbits inside can be said to be 
-c. 

stable. A large part of my efforts for the past few years have been devoted 

to investigating criteria for the existence of KAM surfaces in mappings such 

as those studied here. 

A study of this mapping may also be of assistance toward the question of 

whether a real system is stable. A real system contains the features of Eq. 

(1)) and additional terms spanning the entire frequency range from sixty- 

cycle hum to the time of interaction of a high energy particle with a neutral 

gas atom. Nevertheless, Fq..(l) would be important toward the understanding 

of the full system when the true orbit follows a model orbit for a significant 

distance. For example, the effect of small random perturbations can be much 

enhanced if much of an increase in amplitude is due to rotation around the 

secondary central periodic orbit in a resonance zone. Equivalently, consider 

the evolution of an ensemble of particles that satisfy Eq. (1) plus additional 

small perturbation terms. Equation (1) will force the distribution function 

to be relatively flat in resonance and stochastic zones, and thus steep in the 

inbetween regions. This steepness can much enhance the effect of small 

perturbations. Thus even when Eq. (1) predicts stability, the widths of 

resonances and stochastic regions may be important in determining the 

containment properties of real systems. 

Several different,measures have been used to estimate the degree to which 

resonances and stochastic seas are important in a given mapping. Since 

integrable systems lack these characteristics, they will be called measures of 

nonintegrability. 

A first such measure is the size of the resonance structures. However, 

experience has shown that systems for which the tune is a slowly varying 
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function of the amplitude of the betatron oscillations, resonances are far 

-apart, interact only to a small degree, and have small associated stochastic 
--h 

seas. Thus, a second measure of nonintegrability is the resonance overlap 

parameter, the ratio of island width to island separation. The overlap 

criterion implies that large stochastic regions exist when the overlap 

parameter is of order unity, and resonances are over eroded. 2 

These measures of nonintegrability can be evaluated in perturbatiion 

theory, but have major deficiencies when utilized with numerical work at 

finite values of the perturbations. Since the islands float in stochastic 

seas, their width is poorly defined, particularly for the interesting cases 

where the stochastic seas are a significant component of the mapping. A third 

measure of nonintegrability that avoids this problem is related to the 

periodic orbits at the center of the resonances, and particularly to the tune 

of the oscillations in the vicinity of these orbits. Specifically, the 

mapping can be linearized and represented by a 2 x 2 matrix in the vicinity of 

each of these orbits, exactly as around the primary periodic orbit. The local 

tune is related to the trace of the corresponding matrix. I find it 

convenient to introduce a quantity called the residue that is a linear 

transformation of the trace, 3 

R=i(2 - Trace) = sin2 ITV~ (21 

where vR is the local tune around the secondary periodic orbit. 
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It has been shown that the residue is directly related to the overlap 
-. 

- parameter in perturbation theory. 495 It has the advantage that it is well 4 

defined and can be evaluated numerically with arbitrary accuracy for systems 

with finite or large perturbations. When the residue is larger than one, the 

corresponding periodic orbit is unstable. Thus, the picture associated with 

the residue criterion is that stochastic seas appear where residues are larger 
n 

than unity and nearly all periodic orbits are unstable.' There are 

indications of coming developments that will reinforce this concept. 6 

To illustrate the utility of the residues in understanding given 

mappings, I undertook to estimate the amplitude dependence of the degree of 

nonintegrability introduced by different beam-beam force functions, F(x). As 

a random example, I chose to study the 215 resonance. 

This resonance has some peculiarities, and is seen in different ways by 

different people, so some explanation is in order to illuminate my attitude. 

Because of symmetry, odd resonances do not appear in lowest order of 

perturbation theory. Closely coupled to this is the fact that there are two 

symmetrically placed stable periodic orbits with the appropriate tune. Thus, 

the two 215 orbits yield a picture with a chain of ten resonances. 

Nevertheless, I call this resonance 215, since I use the denominator of the 

resonance label to indicate the length of its central periodic orbit. None of 

this leads to any difficulty in calculating either the orbit or its residue. 

The perturbation parameter was fixed at k = 0.05, and the position of the 

resonance in the phase plane was changed by varying V. Thus, the resonance 
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is forced to sample different ranges of the force F(x). 

3 - As discussed previously, a dominant feature of the magnitude of the 
4 

residues is their exponential dependence on orbit length. To compare orbits 

of different length, it is useful to introduce a mean residue for the 

resonance P/Q by 

f z (4d'Q 

Thus in Fig. 1, f, the mean residue, is the measure of nonintegrability, and 

X my the maximum value of x around the orbit, is a measure of the orbit 

amplitude. 

Three different functions have been evaluated for Fig. 1, 

FG = [l - exp(-x2/2)1/x 

12 14 =+x(l-qx +Yj-qx +...> 

FH = x tanh 6 x/2 

12 34 =+x(1 -3x +-@x +...I 

1 FA = 6 tanh -l 43 x/2 

12 94 =+,(1 -z s +80x + . ..I (4) 
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-In- each case they are normalized to have a slope of l/2 at zero. Then k is 4 

the tune shift for small amplitude orbits, when k is small, with some 

nonlinear correctiqns for larger values of k. 

The scale of the x variation was adjusted so that the first nonlinear 

term in the Taylor series agreed for each of the force functions. When 

different scalings were used, so that 

2 2 F(x) =+x(1 -+ + . ..) 

then, for small values of xm, the mean residue depended only on the 

combination axm. Thus the mean residue depended only on the nonlinearity. 

Further, the mean residue had a relatively weak dependence on the beam force 

parameter, k, f =Jk . A perturbation calculation, taking the limit of 

small k and varying the tune v simultaneously to fix the position of the 

resonance, would be useful to confirm this result. Finally, other resonances 

gave rather similar curves. The mean residue was somewhat larger for even 

resonances, consistent with the fact that they exist in lower orders of 

perturbation theory, but the difference was not large. 

A number of concl,usions can be drawn from this calculation, at various 

levels of abstraction. 

The values of the residues and mean residues illustrated in Fig. 1 are 

quite small. According to previous results, 3 KAM surfaces disappear in 

regions where the mean residues are greater than unity. Thus, while this 

calculation was designed to test methods rather than to design experiments, it 



243 

seems clear that significant EXAM surfaces should exist, within this model, for 

-values oJ the tune shift, k, up to 0.1 or greater. Thus, the loss of the KAM 

surfaces of this model is unlikely to be a physically important effect. 

A second conclusion that can be drawn frpm this figure is that the beam- 

beam interaction forces significant nonintegrability at very large 

amplitudes. Its effect on the tune shift is small at these amplitudes, but 

its effect on the resonances is large. This is rather independent of the 

shape of the force function. 

At another level, the primary purpose of this calculation was to 

demonstrate the utility of the mean residues as a measure of 

nonintegrability. This measure is consistent since Fig. 1 can be essentially 

reproduced using a variety of different resonances. That it yields a good 

criterion for the existence of KAM surfaces has been shown previously. 3 It is 

a good way to organize computational data, since it concentrates on short 

orbits that can be evaluated accurately. 

One of the delicate problems that this method might be useful for arises 

when perturbations added to Eq. (1) have periods from several to a few hundred 

times that of the basic interaction period embedded in Eq. (1). Multiple 

interaction regions or periodic variations of beam intensity are two 

possibilities of this type. A more complicated two-dimensional mapping, taken 

over the full period of the perturbation, might still be an appropriate 

model. The existence,of KAM surfaces would determine the stability of this 

super-period model. 

There may be some relations between the size of stochastic seas and the 

residues of nearby orbits, but this has not been explored yet in any detail. 

Finally, this work is another effort to achieve a balance between 

computational and analytic, perturbation methods. These tm approaches are 
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sometimes seen to be competitive. In fact, they tend to be complementary. 

-Perturbation calculations tend to wrk best when the various parameters of a 
4 

problem have significantly different values, so that something can be taken to 

be small. Numerical calculations are most difficult in such regimes. On the 

other hand, the care required for accuracy and convergence is about the same 

in either case, though over the years there has been considerably more 

experience with perturbation theory. It seems appropriate for our generation 

to concentrate on sorting out the concepts and methods that yield the best 

computational results. Since the tradition of excellence is younger in this 

field, opportunities are greater. 
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ABSTRACT 

We r"eview here some recent results on the long time behavior 
of the orbits of two- and four-dimensional mappings which display, 
in a qualitative way, most of the complicated features of the Beam- 
Beam Interaction. We conclude'that this behavior depends crucially 
on the location of the initial conditions of the orbits with respect 
to the "largestll (i.e. lowest order in perturbation theory) resonances 
of the system. In the "stochastic" regions, where these resonances 
overlap, the properties of the motion are well described by classical 
diffusion processes. In 4-dimensional mappings, where Arnol'd dif- 
fusion occurs, various theoretical and empirical methods proposed by 
Chirikov yield estimates of the rates of particle diffusion which 
are in good agreement with experimental evidence. 
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1. Introduction 

This paper is a brief review of a number of recent results illus- - 
trating &me basic concepts of Nonlinear Hamiltonian Dynamics: Reson- 
ances, "stochasticity" and Arnol'd Diffusion. These concepts are of 
direct relevance to the long term stability of colliding beams in the 
intersecting storage rings of high energy accelerators. 1 

The models and the results reviewed here are, admittedly, far 
from a realistic description of actual, true to life machines. They 
do offer, however, a lucid picture and considerably enhance our under- 
standing of the nonlinear phenomena associated with the so-called Beam- 
Beam Interaction. 1 

Our aim in reviewing these results here is to emphasize and dis- 
cuss their main features in a unified way so as tohelpresearchers in 
this field better analyze and assimilate a rapidly growing collection 
of experimental evidence. 

In section 2 we briefly introduce the fundamental ideas of Nonlin- 
ear Hamiltonian Dynamics referring the reader to the literature for 
more details. A general Hamiltonian is written down in Action-Angle 
variables and the motion near a (nonlinear) resonance is discussed. 
The appearance of large scale (resp. small scale) "stochastic" regions 
is pictorially explained as a result of the overlapping of low order 

2 (resp. high order) resonances, an idea originally due to B.V. Chirikov. 

In section 3, Chirikov's Resonance Overlap Criterion is 
illustrated on a widely studied two dimensional model, the so-called 
Standard Mapping. 2,13,-15 Two dimensional mappings can accurately re- 
present periodically "kicked" one degree of freedom systems which 
describe Beam-Beam effects in the direction vertical to the plane of 
revolution ignoring all coupling with the horizontal motion. In the 
"stochastic" regions a theoretical description of the motion in terms 
Of a classical diffusion process agrees well with the experimental 
results. 
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Section 4 is devoted to four dimensional mappings which & take 
into account the coupling between vertical and horizontal motion. 
Such mappings represent periodically "kicked" two degree of freedom 

-. 
-systems, in which phase space orbits can wander (for sufficiently 

long 'time;) over most of the energy "surface" for arbitrarily small 
coupling parameter E! This universal (i.e. for all E#O) instability, 
often referred to -as Arnol'd Diffusion 2,3 -, is discussed here with the 
aid of two models,one due to Tennyson et al! and one due to Chirikov 

5 et al . 

Finally, we conclude with some remarks on work currently in pro- 
gress 6,22 on a four dimensional mapping involving a realistic Beam- 
Beam force. Our eventual goal is to implement as well as develop 
further the results reviewed here on more realistic models of the 
Beam-Beam Interaction. 

* * * * * 

2. Hamiltonian Dynamics and Nonlinear Resonances 

In the last two decades, the field of Nonlinear Hamiltonian Dyn- 
amics has experienced considerable growth. There has been a number of 
rigorous results primarily in the area of integrable (i.e. "separable" 
or "solvable") systems 713 , with the notable exception of the celebrated 
theorem of Kolmogorov, Arnol'd and Moser 2f7-g (KAM). The KAM theorem, 
however, even though it has stimulated many theoreticians and provided 
new insight, is essentially an existence result, whose applicability 
has so far been very limited. 

Faced with serious analytical difficulties many physicists and 
mathematicians - starting with E. Fermi and S. Ulam in the early fift- 
iesl'! - turned to numerical computation in order to study the properties 
of non-integrable 7-9 systems. In particular, they asked the question: 
How can a deterministic system described by Newton's equations of motion 
exhibit "statistical" behavior? (By "statistical" behavior we mean, 
here a set of properties which can be well described by the laws of 
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statistics, random processes etc.). 

It is well known that all the orbits of an integrable system lie 
-on invariant "surfaces" or 'Itori" 7-9 and hence are not allowed to 
wander freely over all the available phase space. Integrable systems, 
however, are in some sense highly exceptional 11 and thus, in practice, 
we deal more often with‘non-integrable systems. KAM theory, on the 
other hand, together with a great number of numerical experiments 

12 

indicate that the behavior of a non-integrable system closely resembles 
the behavior of an integrable system "nearby"! To be precise let us 

write the Hamiltonian of a non-inteqrable system of N degrees of free- 
dom in the form 

H(I,8) = HO(I) + ECVne i(n,e) 
n 

(2.1) 

where I E (11, I2 ,*-*I IN) and 6~ (9,, 02, . . ..e.) are the usual Action- 

Angle coordinates and the summation proceeds, in general, over all N 
dim. integers n E (n 1 ,. ..,n,) [we omit here, for simplicity, a possible 
explicit time dependence of H, which often takes the form of an extra 

. eeih,d in t2 1~ . , where T E Rt + ~~1. 

For E=O, the Ik reduce to the Action variables of the integrable 
system HO(I (0)) I which satisfy L 

l (0) = aHo 

'k se(o) = O 
k 

whence 

(0) 
'k = const.; k=1,2,...,N . 

(2.2) 

(2.3) 

These N constants determine the location and shape of the N-dim. in- 
variant tori associated with Ho. The motion on these tori is quasi- 

periodic with frequencies 

k=1,2,...,N- (2.4) 

For E#O, KAM theory tells us that "most" of these tori will survive 
though somewhat distorted 



I = I(O) + d(l) +c2G2) +... 

254 

(2.5) 

Using first order perturbation theory we find that this distortion is 
-more-pronounced in the neighborhood of a resonance 7,12: 

--h 

(n,w) E n w 1 1 + n2W2 +...+nNWN = 0. (2.6) 

It is very important that HO(I) be nonlinear i.e. that the frequencies 
depend on the amplitude, (aw,/aI, # 0 for some k,a> so that the motion 
near a resonance will be bounded as in the case of the familiar phase 
space plots of a simple pendulum, cf. fig. lb below. We then call 
(2.6) a nonlinear resonance. 

For definiteness, consider a free particle moving in two dimensions 

x1' x2 under the influence of a single spatial periodic perturbation4: 

H= &(p: + pz) + EV,e W-m) + c c . . (2.7) 

where x 3 (x 1 ,x2) and C.C. refers to the complex conjugate of the per- 
.-turbation term. For E=O, the Action-Angle variables (omitting super- 

scripts) are 

Ik •z p,/&ii ; ek E Xk, k=1,2. (2.7a) 

The (constant) energy "surface" is a circle in Action space 

Ho = 2 J- (I: + 1:) = const. (2.8) 

In this example the frequencies are equal to the Action variables: 

k=1,2, 

c.f. (2.41, and thus the resonance 

(n,w) f n w 1 1 + n2W2 = 0 (2.9) 

is represented by a straight line through the origin in the Il,12(w1,w2) 
plane, c-f. also fig. 2. 
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For e#O the circle (2.8) becomes an annulus of thickness 2&V n' 
c.f. (2.7) and fig. 1 below. In that annulus the motion is vertical 
to the resonance line as 1k changes only in the direction of the - 

-vector n: -h 

\ \ \ 
- 

t- . 

. 3H 
'k=ae,_= in&V ei(n'e) + c.c. 

.n 
(2.10) 

Fig. 1 Motion near resonance (2.9) (a) in Action space 
(b) In Action-Angle space, see also reference 4. 

In the presence of a second resonance 

(R,w) z RIWl + R2W2 = 0 

the Hamiltonian (2.7) takes the form 

Hz+ (1: + 1:) + tVnei(nte) .+ EVQeicRre) + c-c., (2.12) 

(2.11) 

c.f. (2.7a). The two resonance lines (2.9), (2.11) are plotted in fig-2 

below. The angle between the vectors n and R and the magnitude of 
the perturbation parameter E determine the proximity of the two reson- 
antes in Action space and the amount of overlapping which may occur. 
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Fig. 2 Overlapping of resonances (2.9 and (2.11) 
in Action Space. 

This simple picture clearly shows, therefore, that s must increase 
. -beyond some threshold valuesT for the separatrices of the two resonances 

to cross. It is precisely in that region of overlap that the motion is, 
so to speak, influenced by both resonances simultaneously and large 

scale "stochastic" regions appear. In the next section we derive, 
following Chirikov, a lowest order (over-) estimate for the threshold 
cT, based on the overlapping of the two main resonances. 

An important point to keep in mind here is that the two resonances 
in (2.12) are nonlinearly coupled and give rise to higher order re- 
sonances: 

(m n 1 1 + m2R1)W1 + (m1n2 + rn2R2)W2 = 0. 

These resonances appear in the Hamiltonian when we transform (1,0) to 
new canonical variables (I',O'), (1",0") etc., using perturbation theory*. 

2 3 They are multiplied by factors of E ,E , etc. and thus give rise to 
smaller scale "stochastic" regions. Higher order resonances, however, 

do overlap for CC.5 T and their combined effect often leads to large 

scale "stochasticity" at about a half or a third of the value cT at which 
the lowest order resonances begin to overlap (see next section). 
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* * * * * 

3. Motion in "Stochastic" Regions 

A. The Resonance Overlap Criterion 

In order to derive the Resonance Overlap cond.ition we need first 
an expression for the half width of.a single resonance in the I, 8 
plane, c.f. fig. lb. Following Chirikov*, we introduce a new variable 

p f I-I ; r IPI <Cl (3.1) 

where I r is the value of I at resonance and expand the terms of the 
Hamiltonian 

H = HO(I) + sV(I)cos0 (3.2) 

in powers of p. Keeping up to quadratic terms we find that(3.2) re- 
duces to * 

. 

H = +(I,)p* + &V(Ir)cose (3.3) 

which, in this approximation, is 
c.f. fig. 3, with 

the Hamiltonian of a simple pendulum, 

a *Ho 
&(I,) 5 - - 

aI* 
(3.4) 

1'1, 

On the separatrix of fig. 3 

H = EV; p, : Is - Ir 

Fig. 3 Phase plane curves 
for the Hamiltonian 
(3.3). 
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whence (3.3) yields 

$Jp; E EV (l-cos e) =2EVsin2(Q) 2 
-h 

Solving for p, and using (3.1) we find 

Is = If 2 (nI),sin+ 

where 

(aUr f 2[ 
EV(Ir) ] 1/* 

w' (I,) 
(3.5) 

is the half width (in Action space) of the resonance of fig. 3. If 
there is a second resonance 1: the Chirikov Overlap Criterion predicts 
large scale "stochasticity" when 

2mr L 11; - IJ (3.6) 

--[In general, w(I)+1 and using the approximation I'=,/, 
(3.6) may be written in frequency space in terms of (Au)~, see ref. 
2, section 43. 

To apply the above criterion to the case of the Standard 
Mapping 2,13-15 written in reduced form: 

pt+1 = pt + & sin2nxt 

t=0,1,2,..., (3.7) 

Xt+l = Xt + *pt+1 

Chirikov first writes down a periodically "kicked" Hamiltonian cor- 
responding to (3.7): 

53 

H=P*+~ c 

8~r* 
cos*-rr(x-nt). (3.8) 

n=-03 

Note that.the sum in (3.8) is the expansion of the b-function repre- 
senting the periodic "kicks", that H here is explicitly time dependent 

and that we have used K instead of 6 to denote the perturbation 
parameter. 
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Since the mapping (3.7) remains invariant when xt, pt are trans- 
lated by an integer the motion may be studied on the unit torus [0,13x 
[O,l] in the x, p plane. There are two main resonances there centered _ 

-at (5, O)-and (5,:) and pictured schematically in fig. 4a below [the 
resonance at (3, 1) is the same with the one at (5, 0) I - We consider 
the motion "stable" if there exist some invariant (KAM) curves, ex- 
tending from x=0 to x=1, which.prevent the orbits.about, say, the (s,CJ) 
resonance from entering 
tually reaching p=l. 

the domain of the other resonances and even: 

Fig. 4 Numerically observed transition to large scale "stochastic" 
or unstable behavior for the mapping (3.7), (see ref. 2 
section 5):(a) Kc-Cl; (b) K=0.96; (c) K=1.13. 

It is numerically observed that the motion is indeed "stable" 
for O<K$. Note in fig. 4b that orbits started near the (i,O) resonance 
even though they "stochastically" fill a thin layer about the separa- 
trix are not allowed to "diffuse" into the central region. Apparently 
large scale "stochasticity" has not settled in at K=0.96. Fig. 4b, 
however, suggests that there must exist some threshold value XT:1 at 
which the main resonances overlap and maximal excursions of orbits from 
p=o to p= 1 become possible. 
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The Chirikov Overlap Criterion (3.6) [with (3.5)] yields 

(3.9) 

which considerably overestimates the experimental result KT'l. One 
of the reasons for this discrepancy is the fact that in deriving 
(3.6) [with (3.5)] we have entirely neglected the effect of higher 
order resonances which overlap and make the motion "unstable' at K 
values lower that (3.9). [Chirikov has extended his criterion to 

2 include next higher order resonances ; in the case of the Standard 
(1) Mapping this leads to the improved estimate KT z1.351. 

There have been several other attempts at evaluating XT experi- 
mentally and theoretically 2,13-15 . The best result so far seems to 
have been obtained by J.M. Greene14 who finds KT=0.971635... His 
method is essentially a numerical prescription for finding the K(ZKT) 
value at which, the 'last' KAM invariant curve - extending from x=0 
to x=1 in fig. 4, is destroyed! 

In recent years a number of criteria determining the onset of 
large scale "stochastic" behavior has appeared in the literature, see 
e.g. ref. 16-20. To describe them and discuss their individual merits 
here would take us too far afield. We refer the interested reader to 
ref. 2, section 5, where the results of some of these criteria on the 
Standard Mapping are compared, and to M. Tabor's recent review paper. 20 

B. Diffusion in Large Scale 'Stochastic' Regions 

We have seen how the overlapping of resonances can lead to large 
scale "stochastic" behavior in two degree of freedom (or periodically 
"kicked" one degree of freedom) Hamiltonian systems. What is of great 

interest now (especially for the stability studies of particle beams 
in accelerators!) is to compute the rate at which the orbits of such 
systems diffuse in the "stochastic" regions. 

Consider (again!) the Standard Mapping (3.7) for K>>l, where 

the motion on the unit torus is predominantly "stochastic". In this 
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case, following Chirikov*, we assume that xt is a random variable 
taking equally weighted values over all of [O,l]. Thus, changing 
coordinates to I t Z 4'rrpt and Bt Z 2nxt in (3.7) we find that the 

- total cha2ge 
t max 

AI=K c sin6 
t=1 t 

-. 

averaged over tmax :lo ' for a single trajectory (time average R) or 
over all possible initial 0 values (ensemble average <AI>) gives 

= = <AI> = 0, (AI)* = <(AI)*> = 5 t,,,K*w (3.10) 

Thus, the motion resembles a classical diffusion process whose rate is 

DT Z <(AI)*>/tmax f K*/2. (3.11) 

Chirikov2 has calculated experimentally the diffusion rate DE 
by averaging (AI)* over 100 orbits for various values of K. After a 
least squares fit of the data he obtains the approximate relation 

K z 10, 

which is in good agreement with the theoretical estimate (3.11)! And 
there is still further evidence that certain properties of "stochastic" 
orbits can be well described by the laws of random process: Chirikov 
studied the distribution of IAIl changes over time intervals tmax 
experimentally: 
a) by computing lo5 orbits with evenly distributed initial conditions 

for tmax = 100, and 
b) by computing one orbit over lo7 iterations and averaging 1~11 over 

t 2 3 = 10 , 10 , 10 4 intervals. max 

Plotting the natural log of the (normalized) distribution fn of the 
above orbits as a function of the quantity 

E f (AI)*/t max K*, (3.12) 

Chirikov obtains results which are very well approximated by the 
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(normalized) Gaussian: 

fn = eWE, - 

c-f. (3.;) and fig. 5.7 in ref. 2. 

Cur discussion has so far been limited to Hamiltonian systems 
of at most 2 degrees of freedom in which truly unstable motion (i.e. 
extensive particle loss in a machine) requires the presence of large 
scale "stochastic" regions. We now turn to more appropriate models 
for colliding beams. They involve more than two degrees of freedom 
and may be represented by four dimensional mappings, in which prac- 
tically anything is possible! 

* * * * * 

4. Arnol'd Diffusion in 4-Dimensional Manninss 

The phenomenon of Arnol'd Diffusion has been recently studied 
numerically as well as theoretically by Tennyson et al4 (TLL model) 
and by Chirikov et al 5 (CFV model). These two models are four dimen- 
sional mappings which have been judiciously chosen so that different 
types of motion can be isolated and 
section we summarize the results of 
their common points and suggest how 
system which accurately describes a 
next section). 

systematically analyzed. In this 
TLL and CFV, draw attention to 
they may be used to study a similar 
Beam-Beam Interaction (see also 

A. The Tenny,son Lieberman Lichtenberg Model (TLL) 

The TLL model may be viewed as describing a free particle in 3 
dimensions bouncing between a flat wall at z=h and a "rippled" wall 
given by 

z = -axcoskxx 
- aYCoSkYY 

- scos(kxx + kyy). (4.1) 

There are four variables here: the angles of incidence at, B, (in the 
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x, z and y, z planes respectively) and the coordinates x t, yt which. 

are "updated" after every collision with the '*rippled" wall according 
to the 4-dimensional mapping 

"t+1 = Ot + 2[axkxsinkxx + Ekxsin(kxx + kyy) 1 

Xt+l -= Xt. + 2htana t+1 
(4.2) 

B t+1 = it + 2[aykysinkyy + Ekysin(kxx + kyY)l 

q+l = yt + *htanBt+l 

t = 0,1,2,.., see fig. 6 below. 

6 ---3X 

Fig. 6 (a) The (x,z) projection of the motion described by (4.2). 
(b) The mapping (4.2) for E=O in the x,aplane, see ref. 4. 

The situation is quite similar to a three degree of freedom Hamil- 
tonian system in the,presence of three spatial resonances: 

H = HO(~) + Ed ei(nte) + EVRei(‘re) +EVkeitkre’ + C.C. 
n 

(4.6) 

where 

HO(I) = 5 (I; + I; + I;), (4.Ga) 

c-f. (2.7), (2.12) and the discussion in section 2. The presence of 
the third resonance in (4.6)- and for that matter in (4.1) as well!- is 
very crucial: Note that the equation 
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; = z = ic[nV eitnte) + gVQei(“‘) + iTjkei(k’e)] + C.C. (4.8) n 

implies that the Action can change in all possible directions in the 
-energy "surface" (4.6) and motion along resonance lines is now allowed 
for arbitr^arily small values of E! Thus orbits may wander over most 
of the available phase space for all values of E and this is what one 
refers to as Arnol'd Diffusion.. 

In order to study the diffusive behavior of the orbits of (4.2) 
Tennyson et al4 concentrated on the motion near the center of the x,a 
plane, see fig. 6b, and considered two types of processes: 

1) "Thick layer" diffusion, in which the intial yo,f3, values lie in 
the large scale "stochastic" regions of the y,B plane [similar to the 
ones at the upper and lower part of fig. 6b1, 

2) "Thin layer" diffusion, in which y,,@, are chosen in the "stochastic" 
layer about the central resonance in the y,fi plane [similar to the one 
shown in fig. 6b]. 

. - 

To estimate theoretically the diffusion rates for the above two 
processes Tennyson et al. first approximate the Hamiltonian of their 
mapping near the center of the x,a plane 4r by 

HX 
= ha* - 2axcos0 - 2&COS[8 + $at)l 

where 

8 f kxx, cb(t) = kyy. (4.9) 

Neglecting small oscillatory terms which produce no net effect after 
long times, we find that the variation of Hx in t is given by 

dHX 
- = 2~s sin [e + $(t)l. dt 

For small oscillations near the center of the x,a plane one takes 

where 

0 teOCOSWOt (4.11) 
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1/ 2 
wO s akx(axh) . 

Substituting (4.11) in (4.10) and integrating over one iteration of 
- 

-the mapping gives 
-c. 

AHX 
G 2Eeo~osin~otsin[e + @(t)l. (4.12) 

At this stage the assumption is made that $(t) behaves like a random 
variable all of whose values are equally weighted. This assumption 
rests on the fact that Q f kyy lies in the large scale "stochastic" re- 
gions of the y,B plane and was seen to yield good results in the case 
of the Standard Mapping (section 3B). 

Squaring (4.12) and averaging over t and 4 gives 

<AH*> = E2e2w2 
X 0 0 

from which the rate for "thick layer" diffusion is directly 
obtained 

D ' <AH*> = 1222 =- 2E 8 0 0) 12 X 0 (4.13) 

This expression was found to agree well with the results of computer 
4 experiments , see fig. 7 below. 

A 
4. 

/i 3 
1 

/ 

Thus the theoretical considerations 
which led us to equation (4.13) 
apparently are justified and our 
understanding of the statistics 

-5 
!r 

of large scale "stochastic" re- 
gions seems adequate. 

Fig. 7 Dispersion in the X,Q, 
plane vs. E for thick layer dif- 
fusion. Comparison between 
theory and experiment, c.f. ref. 4. 
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In deriving an expression for the rate D2 of "thin layer" dif- 
fusion the calculations become considerably more involved . Again, 
we start with (4.10) but now we must keep in mind that o(t) is not -_ 

-randomized; rather, it is the phase on the separatrix of a simple 
pendulum: since the y,$ motion does take place near such a separatrix 
[similar to the one stown in fig. 6b]. In this case also, Tennyson 
et al obtain a diffusion rate D2 which is in accordance with all their 
numerical evidence 4 . 

This study of diffusion in the TLL model suggests that first one 
ought to identify the main resonances in the two planes (here x,a and 

Yd) I as well as a third coupling resonance through which they in- 
fluence each other. Thus, starting for example, with xO,ao values 
near the center of a main X,CX resonance we could compute how fast 
points in the x,c( plane disperse outward depending on where the point 
yorBo lies. 

It was found4 that the dispersion of points in the x,cl plane due 

I to (Y,t 0 fi ) being in a "thick layer" is much faster than the one due 
.-to (y,,B,) being in a "thin layer". Following, thus, a systematic ap- 

proach similar to the one of Tennyson eta1 one must look for initial 
conditions away from "thick layer" (i.e. large scale) "stochastic" re- 
gion as a first step in minimizing the dispersive effects of the 
nonlinear coupling on the particle beam of an Accelerator. Some form 
of "thin layer" diffusion, however (essentially due to the overlap of 
higher order resonances), will be unavoidable. The best we can do 
there is try to calculate diffusion rates as Tennyson4 and Chirikov' do 
in their work on the two models discussed in this section. 

B.- The Chirikov Ford VivaldiModel (CFV) 

4 
The 4-dimensional mapping considered by these authors is 

X X 3 
Pt+l = pt - xt + UYt + Ef(lz) 

Py Py 3 
t+1= t-yt+vxt 

Xt+l = Xt + p:+1 
Y 

yt+, = yt + Pt+l 

t=0,1,2,... (4.14) 

(lJe>O and small) 
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which, for ~p:+~ - PZ]<<~, Ix~+~ - xtj<<i, etc., may be represented by -' 
~the H-ami1Eonian 

H = $(P; + P;) + $x4 + y4) - PXY - EXf(.t). (4.15) 

A mapping of the type (4.14) may describe colliding beams in the so- 
called weak-strong approximation in which the influence of the weaker 
beam on the strong one is ignored. In this context the variables xt, 

yt in (4.14) represent respectively the horizontal and vertical de- 
viations of a single particle (of the weak beam) from its ideal 
(unperturbed) path, and f(t) is an external driving force acting in 
the x direction. 

Choosing an f(t) of the form 

f(t) = cosRt 'L C fncos(nQt) l-AcosS2t n 

leads to an infinity of resonance lines in the wxI w plane (see fig.8 Y 
below) where wx and w\, are the frequencies of the two anharmonic 

pig. 8 Lines of' lowest order 

oscillators at E= 1-I = 0. 
In the uncoupled case they 
are proportional to the oscil- 
lation amplitudes Ax, A , i.e. 

Y 

wx : BAxr wY 2 BA Y ; 

where 
/ 

.t 

resonances for CFV Model. P - 
marks the choice of initial 

@=0.8472 

conditions. c-f. section 2.3 of ref. 2. 

The main coupling resonance (or guiding resonance as Chirikov 

calls it) "connecting" the vertical driving resonances in fig. 8 and 
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leading to Arnol'd diffusion is 

w -u =o. 
X Y 

(4.16) 

The diffuiion studied here occurs in the "stochastic" layer about the 
separatrix of (4.16) which is analogous to "thin layerW diffusion in 
the TLL model (see- section 4.A): To attain the slowest diffusion rate 
possible, initial conditions were chosen at the midpoint between two 
driving resonances (see fig. 8). 

Chirikov's method for calculating diffusion rates for the CFV 
model consists of computing a group of orbits over tmaxz10 7 iterations 
and performing a series of averaging procedures: First tmax was div- 
ided in, say, N=lO intervals At(= tmax/lO). The value of H, in (4.15). 
was averaged over each At and a diffusion rate was computed for each 
pair of At's a distance Atlm-nj apart 

(rim-FIJ 2 
Atlm-nl , 

-which was averaged over all possible pairs in N intervals to yield 
the rate5 

2 (Km-i-in' 2 
D = N(N-I) m?n At(m-n) l 

(4.17) 

In (4.17) the averaging over At decreases the effect of bounded oscill- 
ations while the averaging over all pairs of At's decreases the time 
scale over which diffusion is noticeable. 

Performing the above calculation twice, i.e. dividing tmax into 

N1 = 100 and N2 =lOintervals of length (At), = tmax/lOO and (At), = 
t max/lO, Chirikov et al 5 obtain two diffusion rates (4.17) Dl and D2. 
In regions of bounded oscillations one expects that 

D 
2% 

(At); 

D1 (At) ; 
= 10-3 

c.f. (4.17), while in Arnol'd diffusion regions 

(4.18) 

D1 ,-iJ Q, D2. (4.19) 
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Indeed, starting with initial conditions near the center of the res- 
onance (4.161, it was found that (4.18) was well approximated, while 
for initial conditions in the thin "stochastic" layer of (4.16) -_ 

-D2/D1 %' 0,8, i.e. (4.19) seemed to hold. 

Arnol'd diffusion in the CFV model was observed for coupling 
strenghts in the- range 10 -4 to 6x10 -6 and should be distinguished from 
the motion in large scale "stochastic" regions which appear when low 
order resonances overlap at Y L 2.0 x 10 

-4 
. This number differs by 

only one order of magnitude from the corresponding one for the TLL 
model4 , where "thin layer" diffusion was observed for coupling strengths 
ranging from 10 -5 -3 

to10 . 

* * * * 

5. Future Plans, Work in Progress 

We propose to investigate numerically andtheoretically 4-dimensional 

‘-mappings, describing as faithfullyaspossibletheBeam-BeamInteraction, As a 
first step, we plan to study in detail the case of a "bunched", cylind- 
rically symmetric beam for which the beam-beam force components in the 
x,y directions are given by6'21'22 

'r2 Fx(x,y) = 2X(1-e? j/r2 
I r2 E X2 + y2. (5.1) 

-Lr2 
Fy(x,y) = 2y(l-e 2 

lb2 l 

This system can be represented by a mapping in (xt,yt,~p~,p~) space as 
in the case of the CFV model, c.f. (4.14). It is more convenient, how- 
ever, to 'combine the corresponding 4 first order difference equations 
into two second order ones 6,21,22,, 

Xt+l = -xtvl + 2Cxt + (BS/Q)F,FX,,Y~) 

t=O,l, 2,... (5.2) 

Yt+l = - Ytml + 2CYt + (BS/Q)Fy(xt,yt) 
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where Q is the "tune" of the machine, B is the Beam-Beam strength, 
S 5 sin2nQ, C g COS~~Q. Wethenfollowtheorbitsin(xtrxt+lrYtrY t+l) 
space. - 

One zonclusion we may draw from our discussion of the TLL and 
CFV models in section 4, is that main (lowest order) resonances can 
play a central role in the stud,y of diffusion properties of 4-dimen- 
sional mappings. In particular, we saw that it is possible to analyze 
various types of (Arnol'd) diffusion processes and calculate diffusion 
rates by making appropriate choices of initial conditions near the 
center of the lowest order resonances, in the "stochastic" layer of 
their separatrices, etc. 

Such resonances (best pictured in two dimensional projections of 
the 4-dimensional space) are also present in the mapping (5.2),, see 
fig. 9 below. For values of Q = 3.76667 and B = 3.34666 at which 
ISABELLE is expected to operate 1,21,6 the motion in the xt, xt+l 

and ytr yt+l planes is clearly dominated by a 4th order resonance.6' 21r22 

Fig. 9 Projection of the orbits of (5.2), (5.1) on the yt, ~t+~ 
plane, see references 6,21. 

In a preliminary numerical study of (5.2), it was observed that 
motion along the separatrix of the 4-resonance in the ytr yt+l plane 
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induces a rapid (after tzs,ooo iterations!) dispersion of points 
started near the center of the x~,x~+~ plane. This may be due to the 

large amplitudes that the orbits attain in going around the four is- -. 
-lands of fig. 9. 4 

22 Work is currently in progress , in which the ideas discussed 
in this paper shall be used to,calculate-numerically and theoretically 
diffusion rates for mappings of the type (5.2). Eventually, however, 

one is interested in studying mappings which model eliptically shaped 
beams. As we heard from several speakers at this Conference, the re- 
sults of many experiments indicate that the Beam-Beam Interaction 
often has a significantly stronger effect in the vertical (y-1 rather 
than the horizontal (x-) direction of the particle motion. 

This asymmetry between the x- and y- motion cannot be observed by 

our cylindrically symmetric model (5.2), (5.1). We can, however, in- 

corporate in our model the so-called "synchrotron oscillations", along 
the beam, by multiplying the Beam-Beam force by a periodic modulation 

6,21 factor . We plan to discuss the effects of these oscillations on 
.-the resonance structure of the mapping (5.2) in a later report. 
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ABSTRACT 

A preliminary numerical study of the beam-beam interaction in two 
--h 

dimensions was undertaken to determine the feasibility of an extensive numer- 

ical and analytic effort to locate regions of "stable" motion if they exist. 

In particular, to find the parameter ranges (Av, Q, etc.) and the size of the 

regions in phase space over which the "weak" beam will be stable. Because 

of the difficult problem of displaying phase space trajections in a space of 

more than two dimensions, it is helpful to select a two-dimensional beam 

shape and charge distribution which reduces these difficulties. The present 

study deals only with a two-dimensional "bunched" beam with symmetrical charge 

distribution. It is shown that a three-dimensional phase space is adequate 

for the display of its motion (which significantly reduces display problems 

and the number of parameter values to be tested). Preliminary numerical 

results indicate that a region of "stable" motion may exist and that a 

systematic effort to 1 ocate the "boundaries" and the "degree" of stability 

would be useful. It i s shown that there are trajectories of the motion of 

the two-dimensional beam which remain bounded for 100,000 iterations of the 

mapping, tmax = 100,000. 
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1. INTRODUCTION 

- 
The current numerical study is the continuation, into two dimensions, 

- 
of the beam-beam interaction study presented in the article by 

Dr. R.H.G. Helleman, "Exact Results for Some Linear and Nonlinear Beam-Beam 

Effects".2 It was shown that the beam-beam force is virtually linear over 

a considerable region about the origin and some analytical results for the 

linear case were drived. In addition, it was proven that there exists a 

region of nonlinear stability for all time (which is 50% wider than the width 

of the beam) for the beam-beam force of a "rectangular" beam [a (3-) piece- 

wise-linear force]. This region was obtained only for one value of the b-b 

strength Av at each value of the tune Q. He intends to extend these results 

to other beam shapes as well, i.e., the "error function" (1.4) and the 

"bunched" b-b force in one and two dimensions. 

Before attempting analytic calculations in two dimensions, preliminary 

numerical calculations are being made; the purpose of this study. For the 

one-dimensional beam model discussed in Reference 2, the phase space is two 

dimensional and the K.A.M. Invariant Curves divide the phase space into regions. 

However, for the two-dimensional beam, the phase space is four dimensional, 

in general, (equivalent with xt, x~+~, yt , yt+l space). The only known 

nonlinear stability argument2 no longer applies. The "K.A.M. Invariant Tori" 

(the analog of the "K.A.M. Invariant Curves") no longer contain all the orbits 

for all time! An orbit starting "inside" such a torus can, and likely will, 

escape from it. In a 2N-dimensional phase space the invariant tori are N- 

dimensional surfaces. Therefore, for a 4-dimensional phase space the invari- 

ant tori are 2-dimensional surfaces. It is shown that for a beam with a 
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cylindrically symmetric gaussianchargedistribution, the four dimensional 

phase space can be reduced to three. (this reduction does not exist for the 

&l.lipt& shaped beam). We take advantage of this simplification by trans- 

forming from xt, yt to rt, Act. 
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2. MODELS OF THE BEAM-BEAM EFFECT 

I In the usual accelerators and storage rings, without colliding beams, 

the deviation y(0) of the particles motion from the ideal orbit is successfully 

described by a simple harmonic oscillator, - 

&Y dp2 + Q2r = 0 

where 6 is the azimuth angle (O: t), about the center of the ring. The 'tune' 

Q is one of the important parameters in its design. When a second beam, crosses 

the first, its effect may be modelled by an additional periodic, non-linear, 

"kick" on a test particle whose motion is described by a modified version of (1.1) 

2.f 
do2 

+ Q2r = P(e) Fy(Y) 3 (1 .a 

where F(y) is proportional to y for y -+ 0, i.e., we have absorbed the "beam- 

beam" strength in the periodic function P(0). Since the beams collided over 

a very short 3 interval only, we model P(8) by a periodic 6-function, 

d2y + Q2y = B C,(6 - t HIT) Fy(y) , 
d42 

(1.3) 

where t is an integer counting the passages through a collision region. Equa- 

tion (1.3) describes the deviation y, perpendicular to the plane of revolution. 

If we also consider the deviation in this plane, i.e., in the x-direction 

(along a radius of the ring), there is a second equation with some force 

Fx(x,y), while the Fy depends on x as well in this case. 
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was modeled by the error function 

" F(J = Iy emt 
2 

dt 
0 

(1.4) 

of Ref. 2. In the- case of a 'bunched' (cylindrical) beam in two dimensions, 

we use the as x- and y- forces, F F 

-r2 
Y' x 

Fy(x,y) = 2y (1 - e 2 )/r2 

-r2 

Fx(x,y) = 2x (1 - e 2 )/r2 

we have set the rms half width of the beam at 1, with 

r2 Z x2 + Y2 

(1.5a) 

(1.5b) 

(1.k) 

of Ref. 3. This selection has two advantages over the more realistic elliptic 

shaped beam. First there is a simple closed form for the deflection where . 

as the deflection for the Gaussian distribution with arbitrary aspect ratio 

involves theevaluationof an integral. Secondly, it will be shown that due 

to the cylindrical symmetry, the phase space can be reduced by one to three. 

Instead of the B of (1.3) one often uses the so-called "tune-shift" Av, 

Av E B/~T~Q (1.6) 

as an indicator of the Beam-Beam (force) strength. Since (1.3) is linear 

between the pulses, it, can be solved analytically over (nearly) 2~. "During" 

the pulse the momentum is changed suddenly by the force F. Hence (1.3) is 

equivalent to a pair of first-order difference equations3 expressing the Yt+l 

and (momentum) Pttl [just after the (t + l)st pulse] in terms of the Yt and Pt. 

Combining these two first-order equations into one second-order equation we find 

in Ref. 2, 
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Yt+l + Yt-l = 2 cos(2~rQ) Yt + 4~rAv sin(27rQ) Fy(Yt) (1.7) 

with t = 0, 1, 2,.... . -. 

I In-the two-dimensional case (1.5), the equations anologous to (1.7) are 

Yt+l + Ytel =. 2CYt + (WQ) Fy(XtJt) (1.8a) 

Xt+l + Xt-l = 2cxt + (ES/Q) Fx(xt,yt) (1.8b) 

where C z cos(21~Q), S E sin(i'rQ), and Fy and Fx are the non-linear force in 

the y and x directions respectively. 

To take advantage of the cylindrical symmetry for the case where Fy and 

Fx are described by (1.5), we transform (1.8a-b) 

rttl cos Pttl = -rt 1 cos 6t 1 + f(rt) cos 8 
t (1.9a) 

rt+l sin Ott1 = -rtBl sin Btml + f(rt) sin Bt (1.9b) 

-r 2 
t 

where f(r+) f 2 r+[C + (BS/Q) (1 - e 2 h$, rt: (Xt + Yt)1'2, and 8 t=tan-l(Xt/Yt). 
L L 

After squaring (1.9) we have 

2 2 
rt+l = rt-1 - 2rt- 1 f(rt) cos Act + f2 (Tt) (l.lOa) 

and multiplying (1.9a) and (1.9b) by cos et and sin Bt respectively and adding 

we have 

kttl = cos 
cos(A@)t + f(rt)l 

- 2rtf(rt) c0s(A6)~ + f(rt)2]1'2 
(l.lOb) 

(l.lOc) with Act E et - et 1 . 
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The initial conditions ro, rl, ACI and a phase 6 can be expressed in terms of the 

initial values of X0, X1, Y. and Y1 as follows: -. 

-h 

ri = (xf + Yi ) 2 ‘j2 , i = 0 1 
, (l.lla) 

b-+ = cos -I (X()X.1 + YoYl Urorl (l.llb) 

and 

6=eo. (l.llc) 

We can express X0, X1, Y. and Y1 as a function of ro, rl, Ae, and 6 as follows 

Y. = r. cos 6 (1.12a) 

Y1 = rl cos (Ael + 6) (1.12b) 

X0 = r. sin 6 

x1 = rl sin (Ael t 6) (1.12d) 

Since (1.10) does not explicitly depend on 6, with 6 being an arbitrary phase, 

it is most convenient to specify ro, rl, AB, and solve in terms of r,and Ae. In 

thiswaywe have reduced the problemfromfourto athreedimensional phase space. 

Obviously for the beam with aspect ratio other than 1, the elliptic beam, this 

simplification does not exist and one is forced to deal with the much more 

difficult four-dimensional phase space. 

In addition to the above x, y motion there can be, so-called 'synchrotron' 

oscillatrons along the (z-) direction of the beam. In the case of bunched 

beams (only) this would lead to an apparent periodic modulation of the b-b 

strength, modelled by inserting a term, 
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iI1 - BP(wst)l 3 

behind IJhe Av in (1.7 

(1.13) 

- 

), where p is a "period ic" function with (synchrotron) 

frequency ws (in units where the ring-revolu tions have unit frequency) and 

B its strength, both depending on the shape of, and part.icle distribution 

inside, the bunches. This, in effect, changes the problem to one in three 

dimensions [since the p(w,t) itself may be though of as the solution of some 

third equation, in p(w,t) only]. We shall refer to it as a 2 + 1 dimensional 

system [ and a 1 + 1 dimensional system if we have Xt E 0 in (1.3) and (1.13)]. 
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3. NUMERICAL STUDY OF BEAM-BEAM EFFECTS IN TWO DIMENSIONS 

Before discussing the motion of particles in the two-dimensional 

case, vve first look at the one-dimensional case in the region of interest. 

We have selected the proposed Isabelle tune Q = 3.76667, as the most 

frequently used value;.however some additional Q values between Q = 3.70 

to Q = 3.75 have been studied. As we see from the one-dimensional case, 

the phase space has a prominent period four resonance, c.f., Reference 2, 

for more detail. The hyperbolic fixed point of Figure la and lb, when magnified, 

Figure lc, clearly shows the chaotic region. In the two-dimensional case, 

Figure 2a, when the trajectories are projected on the yt, yttl and xt, and 

x~+~ planes, (for small initial xt values) Figure 2b,c, the points begin to 

fill the space shown. In Figure 3, this same region is plotted in the 

phase-space rt, rttl and Act, as described in Section 2. Here we see the 

projected motion in xt, xt+l is a result of a slow rotati.on in xt,yt and 
I - 

growth of xt with time. In Figure 4, we show that the motion is independent 

of 6, the initial phase between x0 and y 0 , the same rt, rttl motion occurs 

but depending on the initial x0, x1, y,, yl. The projections are different. 

We are interested in understanding the variations in the motion of the 

particles as a function of ro, rl and Ael. A sequence of runs were made, 

holding r. fixed and varjing rl and he1 the resulting rmax and rmin after 

1000 iterations are displayed for a typical case for Q = 3.76667, B = 1.67333 

in Figures 5 a and b. Additional graphs for other Q values-can be found 

in Appendix A. Note that as the value of 34, approaches ~i/2, the rmax 

occurs at a larger value of rl, the value of rl decreasing for CC > 7/2. 

Note also that the minimum value of rt increases to a maximum at x 
1 = 7r/2. 

A sequence of rt, rttl plots, Figure 6, clearly displays this behavior. 

For the case shown of A@1 near 0 and -, the motion is "above" the resonance, 
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and for At3 near IT/~ the motion is "below" the resonance. 
1 Using this 

- procedure it is possible to systematically probe the three-dimensional phase 
- 

space and map the resonance regions. 

Most of the preceding graphs were made for short time intervals 

t < 5000. The rmax values for longer times (100,000 iterations), for a 

sequence of CO1 values (0.0, r/100, ~/lo, 71/2, T) are shown, c.f., Figures 

7 and 8. For a region below the hyperbolic fixed point, c.f., Figure 1, 

lzhe rmax remains constant. Note however the jump after 30,000 iterations 

for the case Ael = 1~/100. The reason for this is not yet understood, and 

further study is planned. 

Least we leave the reader with the impression that irregular motion 

in two-dimensions occurs only in the stochastic region, see Figure 9. For 

this set of initial conditions, the motion projected in all planes is quite 

complicated, and it seems quite unlikely that a simple transform or pro- 

jection will make it otherwise. 
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I I I I I I I I I I I i I 1 I 

I 

-10 -5 0 5 10 

Figure la. Phase-plane plot as B = 3.34666 in (1.3), (1.5.-a), (1.6) at 
Q = 22.616 % 3.7666. See text. 
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Figure lb. A magnification of the regSon about one of the 4th order 
'hyperbolic' points of Fig. la. Note the chaotic region 
created by just one orbit {whole chaotic region here iron 

YO = 0.0001, y, = 3.5). 



287 

3.8 

3.6 

I  -  

3.2 

3.0 
-0.6 -0.4 -0.2 E-06 0.2 0.6 

“1 
, 

Figure lc. A further magnification of the chaotic region visible in 
Fig. lb. The chaotic collection of dots is again created 
by one orbit. There are 15 other, more regt;lar, orbits 
plotted as well. See text. 
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Fig.4. Sequence A-D shows motion starting with X0 = 0.00001, X, = 3.5, Y. = 0.0 

and Y, = 2.4749, and I-L with X0 = 0.0, X, = 0.0, Y. = 0.00001, and 

Y, = 3.5, with Q = 3.76667, and B = 3.34666. 
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4. FUTURE STUDIES 

Continuing effort is planned in the study of the beam-beam effects (and -- 

limits)-for p-p and p-i; colliding beams in storage rings in two dimensions. 

We plan to find the the parameter ranges (a~, Q, etc.) and the size of the 

regions in phase space over which the ("weak") beam will be stable. If no 

regions of "stability" exist, which is Moser's belief..., expressed in 

Reference 1, we hope to obtain estimates of the time intervals needed for the 

amplitude of the motion to reach some specific value. As is apparent from 

the preceding discussion, a combination of numerical and analytic methods 

will be necessary as a result of the complexities arising from the higher 

dimensional phase space of two-dimensional beams. 

A study of the stability regions for a one-dimensional beam-beam force 

in the presence of nonlinear synchrotron oscillations is also planned. The 

two-dimensional x-y beam problem and the one-dimensional beam with synchrotron . 

oscillations may require similar numerical and analytical methods and the 

two efforts will complement each other. 

After sufficient understanding is acquired for these two cases, we will 

attempt a study of the full two-dimensional beam with synchrotron oscillations. 
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5. CONCLUSION 

This numerical study was undertaken as a first step into the area of 

interacTing two dimensional beams. It was shown that although the motion 

of particles in a two-dimensional beam can be and usually are quite compli- 

cated, a systematic numerical study is possible. However, much additional 

numerical work is required before a clearer understanding of the complicated 

motion in two-dimensional beams can be attained. 



305 

6. ACKNOWLEDGMENT 
- 

Tbe numerical calculations presented in this report were made in con- - 

junction with the investigations of the beam-beam limit (numerically and 

analytically) of .Dr. Robert H.G. Helleman. The author expresses his appre- 

ciation to Dr. Helleman for his assistance in this effort. The author 

acknowledges that some sections of this report were based closely on the 

articles of Dr. Helleman, References 2 and 9. This work was supported by 

D.O.E. under Contract EG-77-C-03-1538. 



I 
306 

6. REFERENCES 

li Nonlinear Dynamics and Beam-Beam Interaction, Eds. M. Month and 
J.-C. Herrera, Am. Inst. Phys. Conf. Proc., Vol. 57, (A.I.P., New York 
1979). 

2. R.H.G. Helleman, Ref. l., pp. 236-256, cf., Appendix A, attached to this 
report. 

3. 

4. 

5. 

J. C. Herrera, Ref. 1, pp. 29-41. 

J. C. Herrera, M. Month, and R. F. Peierls, Ref. 1, pp. 202-209. 

Topics in Nonlinear Dynamics, Ed. S. Jorna, Am. Inst. Phys. Conf. Proc., 
Vol. 46 (A.I.P., New York, 1978). - 

6. 

7. 

M. V. Berry, Ref. 5, pp. 16-120. 

J. Tennyson, “The Instability Threshold for Bunched Beams in Isabelle," 
Ref. 1, pp. 158-193. 

8. J. L. Tennyson, 
Integrable Hami 
pp. 272-301. 

9. R.H.G. Helleman 
a Proposal subm 

M. A. Lieberman, A. J. Lichtenberg, "Diffusion in Near 
ltonian Systems with Three Degrees of Freedon," Ref. 1, 

"Nonlinear Beam Dynamics of Storage.Rings and Accelerators," 
itted to U.S. Department of Energy, May 1980. 



. 
G

, 
x 

2 
D

 
-0

 3 VI
 

w
 0 v 



1.5 

F 

” 
..: ‘. ; 

1.e I- 
..: . 

t 1 

. ‘. 
: .., : ., 

8.5 ‘. .: .’ 

l*= j- ~ 308 
i . . 

I Yt 

i Xt 

0.5 

;‘- 

‘. 

: . 

‘,’ .’ . . 

:” :: 

E-86 
P 
4.. 

I- 

j.. 
. 

8 

‘. 

7 
I , ,,I/ ,,,, I I 

e 
I,, I,,, , I 

189 288 308 488 see 

-rtmC: - 

-8.5 

-1.e 

-1.5 

-8.5 

.’ 
,’ : 

:.’ ‘. 
: 

-1.5 ~1,,,‘,,,,‘,,,,‘,, I ,I ) ,,I 1 (I I ,I 
-1.5 -1.e -8.5 E-86 8.5 1.8 1.5 

Yt - 

1.e 

8.5 

E-86 

-8.5 

-1.e 

-1.5 

-2.8 

-8.5 

t 

I --1.e 

-1.5 i 

3 
-2.0 lj 

-2.0 -1.5 -1.e -8.5 E-86 8.5 1.8 1.5 

i,,, I I I, I 111, I 
,,,, , I 1 

lee 288 388 400 508 8 

1.5 

1.e c 

2.8 r 

\. 
lL ‘.. ‘,, 

\ ‘, ‘... .. . ‘... ‘.., ‘. 
.+ 

.... 
‘.,, . . 

,..J.. 
. . ..x. ‘. ‘.. ‘.. . . \, ‘.. \ ‘.\ 

\ 

8.5 

E-86 

-8.5 

-1.8 

-1.5 l,, I I I I I,,, /,I, I I I/(, ,,,, ,,, 
-2.e -1.5 -1.8 -0.5 E-86 8.5 1.e 1.5 

Xt - 

Yt 

8.5 

8.0 
e.e 8.5 2.0 

Fi9.Al , !:otion below hyperbolic fixed point with Q = 

Y, = 1.29, X- = 0.6 and X, = -n.600. 

3.76667, B = 3.34666, Y. = O.uooo1, 



-I 
r max r min 

6.4 

9.5 1.0 1.5 1.b 2.5 3.6 0.5 1.0 1.5 2.6 2.5 3.6 

A. RI - B. R1 7 

r max 
3 

2 

1 

8.0 0.1 e.4 8.6 9.8 1.0 

C. 001 - 

T 6.4 

0.3 

r min 
6.2 

0.1 

0.6 I 1 
I , , ! 

8.0 0.2 8.4 6.6 e.8 1.8 

n 
. 4 'T 

Figure AZ. Same as Figure 4a, except c = 3.76667, B = 3.34666, and rl = 0.50. 



310 

I 
r max 

2 

~,~,,ll,,l,,,, l,,,gl,,,lJ 

8.5 1.8 1.5 2.e 2.5 3.8 

A. Rl - 

6 

3 

2 

.L.........-.-.-.-L..---. 
-----x- . . . . x..-s.xe.. 

1 ----o----o . . . . Q-.. 
.x . . . . . )(. . . . . * . . . . x-..--x 

e 

8.8 e.2 8.4 8.6 8.8 1.8 

C. 08, - 

e.5 

1 

6.4 

e.3 

r min 

e.2 

e.1 

e.e 

B. 

I’ .-- :: .P 

i 
1 1 

. 
I II,, IFI/ ,,,I I,,, I,,, 

e.5 1.0 1.5 2.8 2.5 3.e 

Rl ____Ic 

1.e 

I 

e.a 

e.6 

r min 
e.4 

b.2 

e.0 

e.e e.2 e.4 e.5 e.8 1.8 

D. A6 - 1 

Figure A3. Same as Figure 4a,except Q = 3.76667, B = 1.67333 and r. = 1.;33. 



311 

r max 

om 

0.5 1.a 1.5 2.0 2.5 3.0 

A. R1 - 

A0 L 1 

e.5 

T 
0.4 

0.3 
r min 

2.2 

e.1 

0.e ,,,,L,,, ,!I,,,+,,;,+,,,,~ ____ _-e..-.-.- 

0.5 1.0 1.6 2.6 2.s 3.0 

B. R' - 

e.5 

T 0.4 

0.3 

r min 
0.2 

0.1 

e.a 8.2 8.4 0.6 6.8 1.0 

Figure A4. Same as Figure 4a,except Q = 3.7000, B = 1.07528 and R. = 0.50. 



312 

NONLINEAR HILL'S EQUATIONS AND THE 

BEAM-BEAM INTERACTION' 

PIERRE A. VUILLERMOT* 

School of Mathematics 

Georgia Institute of Technology 

Atlanta, Georgia 30332 

t Lecture delivered at the "Seminar on the Beam-Beam Interaction" 
on May 22nd and 23rd, 1980, at the Stanford Linear Accelerator 
Center, Stanford, CA 94305. 

* 
Work supported in part by the U.S. Department of Energy under 
contract EG-77-C-03-1538. 



313 

I. INTRODUCTION. 

Nonl&ear Hill's equations of the form 

z."(e) + n(0)z(e) =-F(B;z) (I*11 

frequently occur in the description of betatron oscillations 

in cyclic accelerators and in intersecting storage rings ([l] - 

[31) l In equation (I.l), 0 stands for the azimuth around the 

machine (of radius l), n denotes a periodic function with 

(minimal) period T I 27~, while F generally depends nonlinearly 

on z and also periodically on 8 with, however, a minimal period 

T' in general different from T. In this paper, we present 

without (detailed) proofs new results regarding the stability . - 
properties of a class of equations of the form (I-l), relevant 

to the problem of the beam-beam interaction in the "weak-strong" 

approximation. Specifically, we discuss new inequalities for 

the corresponding action functional, valid in particular whenever 

the strong beam has an anisotropic (ribbon-like) Gaussian current 

density. We then solve the variational problem by direct methods, 

establish its connection with the existence problem of periodic 

orbits, and finally briefly indicate how to construct the mini- 

mizing sequences involved. A general theory, along with complete 

proofs, will appear in [4]. 
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2. A CLASS OF NONLINEAR HILL'S EQUATIONS AND THE "WEAK-STRONG" 

BEAM-BEAM INTERACTION: A VARIATIONAL FORMULATION. 
-h 

Consider a continuous periodic function A with minimal period 
1. 27~ and let W2 2T be the space of all- real square integrable 

8 
functions z on [O,~IT] that have a square integrable (generalized) 

1 derivative z'; equip W2 2T with the norm 8 

I I I4 IIf 2 = I I4 1; + I I4 1; I (2.1) 

where 

IIzjl; = j2rz2(e)de and IIzlII~ = j2'(zV2(e)de (2-2) 
0 0 

. - 
Now consider a function G from Wt 2n into itself which satisfies 

I 
the following properties: 

(1) 0 5 G(z) I $ for all zcw 1 
2,2lT' 

(2) G is concave in z2; in other words, there exists a function 

H such that 

H(x) = G(z) (2.3) 

where x = z 2 , which satisfies the inequality 

H(Xx+ (14)~) 2 AH(x) + (l-X)H(y) (2.4) 

for all nonnegative x and y in Wi 2T and for each X E (0;l). ? 
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(3) G is (Fr&het)-differentiable on Wi 2K with bounded derivative I 

G’ (z) = F(z) (2.5) - 

In other words one has the relation 

G(z+v) - G(z) = F(z)v + R(z;v) (2.6) 

for all v~W!j 21T, where R(z;v) is the remainder satisfying 
I 

the relation 

(2.7) 

For z twice continuously differentiable on [O,~IT] we then consider 

the differential equation 

z ” + nz = eAF(z) (2.8) 

where n is a positive real number and @ a real parameter. We 

are concerned with the stability properties of equation (2.8) 

in terms of n and B; in other words we would like to know for 

what values of n and 6 all the solutions of (2.8) are bounded 

(stability), and for which ones at least one of the solutions 

is unbounded (instability). Likewise, we would like to know 

how the solutions of (2.8) bifurcate away from those of the 

linear equation corresponding to F(z) = z in (2.8). In this 

paper, we shall restrict our attention to the existence problem 
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of periodic orbits and address ourselves to these more general 

questions in [4]. 
4 

- 

There are two elementary examples that have motivated this study 

in the first place, for which G satisfies the properties (l)-(3) 

above. 

EXAMPLE 1: The linear case. We have F(z) = z in (2.8); we may 
2 

then choose G(z) = 5 and thereby H(x) = 5; properties (l)-(3) 

are here obvious. 

EXAMPLE 2: The anisotropic (ribbonAlike) Gaussian beam. In 

this case we have F(z) = erf(z) (error function), namely 

F(z)(8) = 2n-1'2[ 
z(8) 

exp[-t2]dt 
0 

(2.9) 

for z 2 0, and F(-z) = -erf(z) otherwise (see [ll-[3]). We then 

may choose 

G(z) = z erf(z) + TT -l/2 (exp[-z2] -1) (2.10) 

and consequently 

H(x) =' J;; erf(J;;) + n-1'2(exp[-x] -1) (2.11) 

An elementary calculation shows that H is concave in x if, and 

only if, 

T 

- 
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Jj;- 
f exp[-t21dt 2 & exp[-x] 
0 

(2.12) 

for a"ll nonnegative x's in Wt 2n. Relation (2.12) can then 
I 

be proved using the power series expansions for exp[-x] and 

erf[&], namely 

erf[fi] = 2~ -l/2 (-l)n(&)2n+1 
n! (2n+l) (2.13) 

n=O 

This shows that property (2) above is satisfied; property (1) 

can be proved by similar arguments. Property (3) is the result 

of a direct computation; in particular (2.7) follows from 

elementary estimates for I lR(z;v) I11,J’ We refer the reader to 

[4] for details. Observe that, in this specific example, G 
. - 

itself is convex in z; this is, however, irrelevant. The crucial 

property is the concavity in z2, as we shall see below. 

Now consider the action functional 

S[z] = ; /2'(z'12(0)d'3 - ; 1 
2lT 2lT 

z2(e)d6 + f3j A(e)G(z) (0)de 
0 0 0 

5 sq[z] + Bj A(e)G(z) (c)de 
0 

(2.14) 

where S stands for the quadratic, harmonic oscillator functional 
9: 

Z2(e)de (2.15) 
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In terms of (2.21, one can then rewrite (2.14) as 

-h 2 27T 
2sfzl = 11"'112 - nlj~l If + 2B\ AWG(z) Wde (2.16) 

0 

In the next section, we shall present a set of inequalities 

for S and indicate how to determine its critical points using 

direct variational methods. This, in turn, will allow us to 

discuss the existence problem of periodic orbits of equation 

(2.8). Observe that S is not convex in z in general, so that 

the traditional convex minimization techniques (see for instance 

151) may not be applied. 

3. INEQUALITIES FOR THE FUNCTIONAL S AND SOLUTION OF THE VARIA- 

TIONAL PROBLEM FOR PERIODIC ORBITS. 

We shall denote by W?j [27Fl the subspace of Wi 2n containing 
I I 

all the real periodic functions of the form 

+a 
2-w = 1 

k=--a, 
akexp[ik8 1 

which satisfy the conditions 

z (0) = z(27r) 

and 

a0 E /271z(e)d0 = 0 
0 

(3.1) 

(3.2) 
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In order to detect the critical points of S on Wi [2Tl, we shall 
I 

needdn upper bound as well as a lower bound for S[y], where 

both z and v belong to Wi [2-rrl; we shall equip W1 
I 2,[2lT] with 

the kinetic energy norm 

IMlf 2 = j2*(s,J2(e)de (3.3) 
I 0 

which, under the conditions (3.21, is equivalent to (2.1) since 

we have 

II42 zG IIz’ll2 (3.4) 

A typical situation is described in the following 

PROPOSITION 3.1. Consider the functional (2.14) where G satis- 

fies the properties (l)-(3) above. Assume moreover that 0 <n<l, 

BA I 0, jA(@,j I K f or some positive K independent of 8 and that 

Then one has 

OS ; (1 -n-1f31K) I Iz-v]~:,~ I S[yl s i (S[z]+S[vI) - SLyI (3.6) 

1 for all z,vEW~,[~~]. 
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SKETCH OF THE PROOF (see [4] for details). From (2.15) one has 

-h 

sq[yl + sq ry = ; (Sq[zl +sqw (3.7) 

Moreover for G concave in 'z2 and such that G(O) 2 0, one has 

the estimate 

G(---- ‘7) + G(y) 2 $ (G(z) + G(v)) (3.8) 

Combination of (3.8), (3.7) and (2.14) with the fact that BAS 0 

then leads to the upper bound in (3.6). On the other hand one has 

2B12nA(f3)G(z) (c)de 2 -ml lIzI 1; (3.9) 
0 

. - which follows from property (1) above and our assumptions on 

B and A; relation (3.9), along with (2.16), (3.4), (3.5) then 

implies the lower bounds in (3.6). This completes the proof. 

REMARK. The concavity of G in z2 is crucial to establish (3.8); 

concavity in z, along with the parity of G, would only lead to 

G( F, +G( y) 2 G(z) + G(v) 

which is not sufficient to establish (3.6). 

(3.10) 

Proposition (3.1) now allows us to construct a critical point 

of S on W1 2,[27Tl 
; indeed, since S[z] 2 0 for all z in W1 2JW' 
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there exist a greatest lower bound 

4 
056= inf S[z] 

1 
ZEW2,[27T] 

- 

(3.10) 

and a minimizing sequence z (NJ such that 

lim S[z(N)] = d (3.11) 
N+= 

The fact that S actually takes on its minimal value a in Wl 2, [27rl 
is described in the following 

PROPOSITION 3.2. Under the same conditions as in proposition 

(3-l), with the exception of (3.5) which is replaced by 

OS Ifi] <q (3.12) 

there exists a function z in Wi 12rl such that 
f 

S[z] = 45 

Moreover one has lim z (NJ = z in the norm (3.3). 

(3.13) 

PROOF. Apply (3.6) to the minimizing sequence z (N) ; we get 

0 si (l-n-IB]K) 1 Izl”) - zIN) 1 Izf2 5 $ (s[z(~)] +s[z(~)]) - b (3.14) 
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since S 
z (Ml + z(N) 

2 I 
2 A; from (3.11) and (3.14) we then get 

lim jIz(") -z(N)ij1,2 = 0 
M,N+=' 

(3.15) 

which proves that lim z (NJ = z since W 1 : 
2,1-r] 

1s complete. 
N-tw 

Relation (3.13) then follows from (3.11) and the continuity 

of s. This completes the proof. 

EXAMPLE: Solution to the variational problem for the Gaussian, 

ribbon-like beam-beam interaction. We shall simply rephrase 

our results in physical terms, in the context of example 2. 

Consider the equation 

z ” + nz = BA erf(z) (3.16) 

which describes .the vertical betatron oscillations of one 

particle in the weak beam, going through the strong Gaussian, 

ribbon-like, counterrotating beam at one of the interaction 

regions of an intersecting storage ring; one then has the following 

THEOREM 3.3. Under the same conditions as in proposition 3.2, 

in particular with a magnetic field index n satisfying 0 <n<l 

(weak focusing regime), there exists a periodic orbit z in 
1 

w2f [27Tl 
with period 27~ which minimizes the action functional 
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S[z] = +/2n(z')2(e)de - 
2TT 

:J z2(e)de 
0 0 

27T 
+ BS A(0) (z erf(z) +r -1'2(exp[-z2] -1)) (c)de 

0 

Moreover, the minimizing orbit z vanishes atleast once in 

[0,27r] (relation 3.2). 

Similar results can be obtained for the strong focusing regime 

and for minimizing orbits which may vanish more than once in 

[0,2Trl (see [4]). 

One.important question now remains: is the minimizing orbit 

z in prqposition (3.2) (respectively in theorem (3.3)) neces- 

sarily a (classical) solution of equation (2.8) (respectively 

of equation (3.16)) and is it possible to devise algorithms 

or iterative procedures to actually construct minimizing sequences 
z(N) converging to z? 

We shall address ourselves to this question in the next section. 

4. CONNECTION BETWEEN THE VARIATIONAL PROBLEM AND THE EXISTENCE 

OF NON TRIVIAL PERIODIC ORBITS. 

We first have to, mention that the solution to the variational 

problem of the preceding section may be chosen twice continuously 

differentiable if G(z) is regular enough in z; this follows 

from very general circumstances (see for instance [6]). In this 

case, we have the following 
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THEOREM 4.1. Let z be a twice continuously differentiable 

-function in Wi [2Vl which minimizes S; then z satisfies equation - 
I 

i2.8 j, namely 

z ” +‘nz = @AF(z) 

In this case one has the representation 

6 = B/2nA(B){G(z) -$ ZF(Z)](e)de 
0 

(4.1) 

(4.2) 

for.the minimal value of S. 

PROOF. Since z minimizes S on WYj 12nl one has I 
. - 

S[z+ Xv] 2 S[z] (4.3) 

for all v in Wi I [2rl and for each real X; thus the function 

X --3 S[z+ Xv] has a minimum at h = 0, which implies 

-& S[z + hvl (X=0) = I 
27r 

0 

1 for all v in W2,C[2nl. An 

shows that (4.4) actually 

in turn, implies 

(-z” - nz + BAF(z) )v(e)de = 0 (4.4) 

elementary density argument then 

holds for each v in LTznl which, 
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z ” + nz - BAF(z) = 0 (4.5) 
- 

'which is (4.1). Now from (4.5) (Or (4.1)) one gets 

2"~ + nz 2 = BA;F(z) (4.6) 

and consequently the relation 

-12n(zy2(e)de + nl 
2lT 21T 

z2(e)de = Bj A(e)zF(z) (c)de (4.7) 
0 0 0 

after an integration by parts of z"z. One can then express 

(4.7) in terms of S[z] using (2.14), which leads to 

6 = S[z] = Bj2ca(e)iG(z) -3 zF(z)](B')dB (4.8) 
0 

This completes the proof. 

A few remarks are necessary at this point; we first observe 

that the relation 

S[z] = f312*A(e)IG(z) -3 zF(z))(e)de 
0 

(4.9) 

is a necessary condition for any twice continuously differen- 

tiable function in W1 2,[2ml 
to be a periodic solution of equation 

(4.1) with period 27~. This fact, combined with the lower bound 
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in (3.6), then leads to statements regarding the existence of 

periodic orbits which allow us to distinguish between the trivial - 

solucon z - 0 and the non trivial ones z 3 0. A typical 

example is the following 

THEOREM 4.2 (The linear case). Consider equation (2.8) with 

F(z) = z, namely 

z ” + (n-BA)z = 0 (4.10) 

Then, under the same conditions as in proposition (3.2), 

equation (4.10) has no non trivial periodic solution with 

period 27~. 

PROOF. Choose anynonzero z in W1 2fE2Rl' Since 1 - n - IfilK > 0 

from (3.12), the lower bound in (3.6) implies 

S[z] > 0 (4.11) 

On the other hand one has 

$j"A(O) {G(z) -; zF(z)} = 0 
0 

2 
since F(z) = z and G(z) = F ; the necessary condition (4.9) 

can therefore not be satisfied. This proves the theorem. 
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REMARK. The preceding result has nothing surprising. Indeed, 

condition (3.12) can be rewritten as 
- 

- 

O&!<Q--n n (4.12) 

and consequently represents the two-dimensional region in the 
B - - n plane bounded by the positive coordinate axes and the n 
hyperbola 

l-n 
C(n) = Kn (4.13) 

From. Floquet's theory and the Liapounov-Haupt oscillation theorem 

however, it is known that the periodic orbits of equation (4.10) 

are not likely to exist in such two-dimensional domains, but only 
B on well defined curves in the - - n n plane (see for instance 

171 and 181). In particular for B = 0, one has non trivial 

periodic orbits with period HIT only if n = 1, namely where the 

curve (4.13) intersects the horizontal axis; this is hardly a 

surprise since the fundamental period associated with the equation 

z ” +nz=O (4.14) 

isT=g. , 

We now show that the above structure may persist in the nonlinear 

case: a typical example is the following 
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THEOREM 4.3 (The anisotropic (ribbon-like) Gaussian beam). 

. -Consider the equation 
- 

- 

z $’ + nz = i3A erf(z) (4.15) 

in the weak focusing regime 0 < n < 1, and under the same 

conditions as in proposition (3.2). Then equation (4.15) has 

no non trivial periodic orbit with period 21r. 

PROOF. The same argument as in theorem (4.2) is applicable if 

one observes that one has 

G(z) - ; zF(z) = $zerf(z) + IT -l/2 kxp I-z21 -1)lO (4.16) 

along with @A I 0. Inequality (4.16) follows from the convexity 

of G(z) - $ zF(z) and G(0) = 0. One then has 

2R 
"'0 A (0) (G(z) -$ zF(z))(e)de 5 0 (4.17) 

so that the necessary condition (4.9) cannot be satisfied since 

S[z] > 0 for any non zero z. This completes the proof. 

Similar results hold for the general case as long as G(z) - ;zF(z) 2 0. 
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The actual construction of approximation sequences z (N) converging 

to non trivial periodic orbits is a much less simple matter; we - 

shall?only give the main ideas here, and refer the reader to [4] 

for details. We first observe that the method of the variation 

of parameters applied to equation (4.1) leads' to the solution 

z(e) = z,(e) + sin(&(8-T))A(T)F(z(T))d-r (4.18) 

where z o satisfies (4.14). Define then the Volterra operator V by 

v(f) w = j& 1 
8 

sin(&(e-T)A(T)f(r)dT 
0 

(4.18) 

1 
On w2,2TT and the function A from Wa 2r into itself by 

I 

A(z) = z - z. - V(F(z)) (4.19) 

Provided a sufficiently smooth F in (4.1) (typically once 

continuously differentiable), one can then apply the contrac- 

tion mapping argument to show that there exists a z cW~ 2r I 
satisfying (4.18) along with z(O) = z(~IT), in other words 

such that 

A(z) = 0 (4.20) 

One can then numerically implement the computation of the root 

in (4.20)using Newton's method. Indeed the derivative of A(z) is 
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A’ (z) = 1 + V(F'(z)) (4.21) 
- 

- 
where 1 denotes the identity function on W1 2,2* ; one can then show 

that A'(z) is invertible, so that the sequence of approximations 

to the periodic orbit is recursively given by 

z(N+l) = ,(N) _ (l+v(F'(~(~)))-~A(z(~)) (4.22) 

Quadratic convergence can be obtained. We hope to present our 

complete results at the next follow-up sessions. 
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ENHANCEMENT OF DIFFUSION BY A NON-LINEAR FORCE 
David Neuffer and Alessandro Ruggiero 

April 1980 

Several observers I,2 have recently speculated that the 

simultaneous presence of diffusion processes and the beam-beam 

interaction may lead to enhanced diffusion or beam loss greater 

than that present with either diffusion or the beam-beam inter- 

action alone. To test these ideas we have written a computer code 

to simulate the effects of random diffusion and the beam-beam inter- 

action. In this paper some first results of these simulations are 

presented. It is found that when the strength parameter of the 

beam-beam force AL includes a resonance within its tune width (see 

below) enhanced diffusion occurs. 

In section 1 we outline the simulation of the beam-beam interaction 

and diffusion. In section 2 we describe some first simulation results, 

obtained with a l-dimensional "weak-strong" non-linear(beam-beam) 

force. In section 3 we discuss features of these results and plans 

for future simulations. 

1. Simulation procedure 

In all of the simulations reported in this note, particle 

transport is calculated in three steps: a linear transport, a non- 

linear beam-beam kick, and a random diffusion kick. Particle motion 

through these steps is calculated for thousands of cycles to simulate 

beam storage for finite times. 

Particle motion through the machine from interaction region 

to interaction region is simulated by a linear matrix calculation: 

. . _ _ _. _. . -. 
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with the submatrices M x and My given by: 

cow, + clxsinux 8, siwx 

Mx = 
++a;) 

8, 

sinux cowx -uxsinpx 

(1) 

(2) 

where ax, 8, and u, are the usual Courant-Snyder functions. In this 

transport matrix x and y motion are completely decoupled, and the 

effects of any nonlinearities or dispersion in the lattice are not 

included. 

The beam-beam interaction is simulated by adding a non-linear 

kick to the velocity: 

x = 

X’ 

0 

x1 

Xi + Fx(xltyl) 
(31 

Y y1 

y' 2 Yi + Fy(xltyl) - 

For the case of a beam-beam interaction caused by a cylindrically 

symmetric Gaussian beam we use 
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(4) 

be chosen to simulate other geometries. In the form of the beam- 

beam interaction chosen so far we have assumed that the longitudinal 

length of the interaction is zero, and that the collisions of the 

bunches are centered and "head-on". We have also chosen the 

"weak-strong" approximation, that is, the beam-beam force function is 

the same on every turn, and is not affected by changes in the cal- 

culated beam. 

Diffusion is simulated by adding a random kick to the 

velocities.on each turn: 

x’ -f x’ -I- Bx l Rx 

y' -+ y’ + Oy l RY 

where 0 
X’ 

Oy are maximum kick amplitudes and Rx, Ry are independent 

random numbers between -1 and +l, which are changed at each 

crossing. 

The simulation procedure outlined above will be changed in the 

future in order to obtain more realistic simulations as results and 

discussions develop. 

2. First Results of the Beam-Beam Simulations 

In the cases studied in this note the particle motions are 

reduced to one-dimensional (1-D) motions by setting x E x' E 0 in 

equations l-5. The interactions are studied by generating a set of 

particles in an initial gaussian distribution and following their 

motion through a large number of turns. For most cases discussed 
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in this note the number of particles N is 100 and the number of 
P 

turns NT is 200,000. We calculate the emittance as a function of 

time, where the emittance is defined as 

& = 6 J < (y-Yo) 2> * < (f-y;) 2, r 

and the averages are over the tota% number of particles N P' 
Phase 

space plots are also generated, and the distributions of the particles 

can be studied. 

We present the results in 4 categories, depending on whether 

or not the beam-beam kick and/or the diffusion kick is non-zero. 

(A) No beam-beam and no diffusion ("linear" and "quiet"): 

In this case the beam behavior is trivial with particle positions 

exactly repeating themselves whenever n,Tpi = p 27r where nT is the 

number of turns and p is any integer. It has been checked that 

the program does produce this result. There is no change in emittance 

and no change in the particle distribution. 

(B) Beam-beam kick and no diffusion ("non-linear" and 

"quiet"): Particle motion is affected by the beam-beam interaction, 

but there is no significant increase in beam size. The major change 

in particle motion is in the phase of motion as the tune is shifted 

from 1-1 to u + 271 Av = 27~ v. as y -+ 0 where the beam-beam tune shift 

'is largest (u + 1-1 as y -b -). In figure 1 we show beam emittance as 

a function of time (number of turns) for v. = 0.4 and Av = 0, 

o.oos, 0.02, 0.5 and 0.10. From these cases and others we find that 

there is no increase in time ("diffusion") for any values of v'~ and 

Av. 

The phase space distributions are distorted by the 

nonlinear force and this provides the increase in the scatter of 

- -  - -  -_... ._. -_ 
- -  ._.----_ -  1----. - - - - - .  

- - . - . -  . - -  . . - .  - . . - -  _.-_-.- ---_- 
.  “_. .  .  I  - .  -  * .  _ _ .  .  .  _ ..~_ _ 
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measured emittance with large tune shifts shown in figure 1. 

(C) No beam-beam and a "diffusion" kick: 

In this case the measured emittance increases linearly 

with time. The increase can be calculated, obtaining 

&(nT) = rzo + 6nTB <(AY')~> 
* 2 

(7) 
o + nTB 8 

2 = E 
Y 

where n T is the number of turns and so the initial emittance and 

where E is calculated using equation 6. Typical cases of such 

emittance increase are shown in figures 2 and 3 in the cases 

with Av = 0. The increase in this and similar cases agrees with 

equation 7. 

We can define a diffusion coefficient through equation 

a& Do=== 

where T is the time associated with one turn. 

(D) Beam-beam interaction and diffusion kick ("non-linear" 

and I)noisy"): 

Our first simulations have showed some interesting 

effects connecting diffusion and the non-linear interaction. 

Figure 3 shows a typical set of results in which the tune at van- 

ishing amplitude v o is kept constant a-t a value of 0.2 and 

the beam-beam parameter Av is varied. For Av = 0, 0.005, 0.02, 

0.03 and 0.033 the diffusion is constant and agrees with equation (8) 

within expected statistical accuracy. For Av = 0.04, 0.06 and 0.10 
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the diffusion has doubled, approximately. 

This increase is shown in figures 2 and 3 and also in 

Table lA, where we have tabulated the diffusion coefficient D and 

the enhancement factor xE (D = xEDO) as a function of Aw and Do. 

D is calculated using a least squares fit,solving the equation: 

s(n) = so n 
+ DIQO,OOO 

where we have set 100,000 turns equal to one unit of time. Table 1A 

includes cases with Av ranging from 0.0 to 0.10, for two different 

values of Do, all with v. = 0.2. 

We note the following features of the simulations: 

1. There is no measurable diffusion enhancement 

(xE. ~1) for Av ? -033. For Av r . 04 the diffusion is roughly doubled 

(XE z2). The diffusion enhancement is roughly constant for all 

Av 3 0.4. This seems to imply that measurable diffusion enhancement 

lx ET 1.2) occurs when the resonant tune l/6 = .1666 is within the 

beam-beam tune spread, and implies that the enhancement does not change 

greatly with tune spread providing only that the major resonance is 

within the tune spread. 

2. We have calculated diffusion enhancement for two 

very different values of Do (.008 and .032). The diffusion enhance- 

ment factor xE appears to be independent of Do. 

3. In the cases tested to date the change in emittance 

seems to remain linearly increasing with time whether or not the 

diffusion is "resonance-enhanced". These cases have so far been 

limited to a few hundred thousand turns and to an increase in 

emittance by a factor of -4. 
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4. Although diffusion enhancement is relatively 

constant for Av < . 04, the particle phase-space distributions 

change significantly. For Av = .04, much of the enhancement is 

due to a few particles kicked to very large amplitudes, whereas for 

Av = 0.10 the enhancement seems to be distributed throughout the 

particle distribution. 

Av. 

In Figure 4 we show the variation of XE with Do and 

In table IB we show results of other simulations for 

various values of D 
0’ 

vo, Au. Diffusion enhancement occurs when 

the major resonances l/4 (.25) and l/8 (.125) are within the tune 

spreads. Enhancement by the v = 0.25 resonance is much larger 

(x E P 6), and enhancement by the v = .125 resonance is somewhat less 

(x E < 1.5) In the cases considered to date only -100 particle tra- 

jectories have been followed; statistical inaccuracy makes it difficult 

to notice enhancement with XE L 1.2. We have not yet identified 

enhancement due to resonances of order higher than eight. We have 

not yet determined whether diffusion enhancement caused by a par- 

ticular resonance is strongly dependent on vo. The cases with 

vO 
= 0.175 imply some dependence. 

3. Discussion and Summary 

In these first simulations we have limited ourselves to a 

one-dimensional, "weak-strong" simulation with only 100 particles 

tracked for a few hundred thousand turns. In two (or three) dimen- 

sions the situation becomes much more complex, and the simple iden- 

tification of diffusion enhancement with resonant tunes in 1-D may 

be more difficult in higher dimensions. We plan to explore 2-D 

effects soon. 

We do not yet completely understand the nature of the 

’ --“-.--r-. --- . -’ . t .---. ,~,, ^. _, ,~~.__ -.,-. i . , ., _ ., _,,‘. . _ , . . . -., x-..“,III1. .i . 



339 

diffusion enhancement in one dimension. We have not fully explored 

or explained the dependence of diffusion enhancement on vo, Au, D 
0’ 

the beam-beam force shape, and time. Future numerical and analytic 

studies will explore the details of this effect and may provide ana- 

lytic methods of calculating the enhancement. 

In the work to date, we have begun exploration of the relationship 

between a non-linear periodic force (."beam-beam") and the increase 

in the mean-square emittance with time ("diffusion") due to the 

beam-beam force and/or random processes. We have found that when 

the beam-beam tune shift includes a major low-order resonance 

significant enhancement of diffusion due to random processes can 

OCC'U1'. 
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Diffusion as a function of tune shift with v. = 0.20. In each 

simulation we have chosen fzo = 0.02, a total number of particles of 

100, and 200,000 turns of calculation. 

DO 

(calculated 
diffusion) 

. 008 

A ir 
(tune shift) 

0. 

D 
(measured 
diffusion) 

.00765 

. 008 0.005 .00886 

.008 0.02 .00902 

. 008 0.03 .00675 

* 008 0.033 .Olll 

. 008 0.04 .0174 

. 008 0.05 .0199 

-008 0.06 .0141 

. 008 0.10 .0178 

. 032 0.0 -0302 0.94 

. 032 0.03 .0383 1.20 

. 032 0.04 .0820 2.56 

I 032 0.05 -0612 1.91 

. 032 0.06 .0654 2.04 

. 032 0.10 . 0770 2.41 

XE 
(enhancement factor) 

0.96 

1.11 

1.1 

0.85 

1.39 

2.18 

2.49 

1.76 

2.23 
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Table 1B 

Other cases of diffusion simulation with various values of 

Do, vat Au- A typical case has so = 0.02, 6, = 2, Np = 100 and 

is tracked for 200,000 turns. 

V 
0 

Au 
DO 

D XE 

0.30 0.0 . 008 .00691 0.86 

0.30 0.04 . 008 .OlOl 1.26 

0.30 0.06 ,008 . 0595 7.44 

0.30 0.08 .008 . 0322 4.03 

0.30 0.10 . 008 .0254 3.18 

0.15 0.02 .032 . 0297 0.93 

0.15 0.04 .032 .0394 1.23 

0.175 0.005 .032 .0296 0.93 

0.175 0.02 .032 .0394 1.23 

0.175 0.04 ,032 .0346 1.08 

0.175 0.06 . 032 .0670 2.09 
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E 

Figure I: Beam ethittance E as a function of time for beam-beam interaction 
strengths Au - 0, 0.02, 0.05, 0.10. There is no diffusion in 
these cases. In all these cases we have used v. = 0.2, 6, - 2. m. 
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AN INVESTIGATION OF THE 'FLIP-FLOP' BEAM-BEAM EFFECT IN SPEAR* 

M. H. R. Donald+ and J. M. Paterson* 

Abstract 

_ L -When colliding electron and positron bunches in 
SPEAR at-high vZT?ues of the beam-beam tune shift para- 
meter Av, it had been observed that sometimes one of 
the equal intensity beams would blow up in the vertical 
plane more than the other beam. It was subsequently 
found that a small adjustment to the phase difference 
between the RF accelerating cavities would make the 
beam 'flip' the other way. The results of the investi- 
gation of this phenomenon are presented in this paper. 

Introduction 

The flip-flop has been known at SPEAR for some 
time but it is only recently that it has had an impact 
on routine operation. The operating luminosity of 
SPEAR has been gradually improved by control of the 
orbits, dispersion functions, betatron coupling and 
synchro-betatron resonances. This routine operation at 
high values of the beam-beam tune shift has led to the 
flip-flop effect becoming more noticeable and more 
troublesome. One can balance the beam sizes and there- 
by optimize the luminosity using RF phasing. However 
this phenomenon exhibits considerable hysteresis and 
close to the beam-beam limit it can limit the peak 
luminosity attainable. A further undesirable effect, 
which prompted this investigation, is that when the 
Bunch Lengthening Cavity (BLC) is powered the flip-flop 
condition is usually very much worse. 

It is important to get some understanding of the 
phenomenon in order to: (a) use the proven good 
effects of the BLC, (b) be able to predict the effects 

. -in PEP and larger e'-e- storage rings, and (c) per- 
haps gain some more understanding of the beam-beam 
effect in general. So far we have made some interest- 
ing measurements but have no theory to explain them. 
We hope that further measurements will give us some 
more clues to the nature of the effect. 

We shall group the evidence under three headings: 
(1) 'hard' effects, which are very noticeable and re- 
producible, (2) 'soft' effects, which are less sharp 
or less reproducible, and (3) 'null' effects, in which 
parameter changes have no discernable effect on the 
flip-flop. 

We mention first some of the easily calculated 
effects of changing the intercavity phase. The biggest 
of these effects is the separation of the electron and 
positron orbits which cause the bunches to collide not 
quite head-on. Orbit measurements are in fairly good 
agreement with calculations and for 30' of intercavity 
phase shift we find an orbit separation at one of the 
interaction points of Ax * 2 ~lO-~,rn N 0.40,. Another 
easily calculated effect is the difference in synchro- 
nous energy of the beams at the interaction points. 
At the East interaction point the energy difference is 
AE " 0.3x 10-3 Z 0.6oE/E for the same phase difference. 

* Work supported by the Department of Energy under 
contract number N-76-C-03-0515. 

t Lawrence Berkeley Laboratory, University of Cali- 
fornia, Berkeley, California 94720. 

4 Stanford Linear Accelerator Center, Stanford 
University, Stanford, California 94305. 

The Measurements 

The position of the RF cavities in SPEAR are shown 
in Fig. 1. 

NOMENCLATURE: 
793 mdmtes the strmqhl sec,,on 
between girders 7 and 8 

LINE 

Fig. 1. Layout of RF cavities in SPEAR. 

The experiments were usually done with cavities 
7S8 and llS12 powered but the cavity pair 6S7 and 
12S13 has also been used. When the phase control to 
cavity 7S8 is varied we observe changes to the heights 
of the e+ and e- bunches. We observe the height of the 
bunches by means of a vertical profile scan of the 
synchrotron light emitted by the partic1es.l The 
light is scanned across a narrow slit in front of a 
phototube detector by means of a mirror vibrating about 
its suspension at 100 Hz. To produce profile scans the 
X plates of an oscilloscope are driven from a signal 
proportional to the mirror deflection. 

To obtain plots of relative beam height as a func- 
tion of intercavity phase the signal from the phototube 
is passed through a peak detector and fed to the Y 
terminals of a chart recorder, the X terminals being 
driven by a signal proportional to the intercavity 
phase. 

Hard Effects 

Dependence on Av 

The effect is strongly dependent on the beam-beam 
tune shift parameter appearing when Av > .025 per in- 
teraction region. 

Horizontal Dispersion Function 

SPEAR usually operates with the*nominal value of 
the horizontal dispersion function nx set equal to zero 
at the interaction points. With this condition the 
flip-flop is relatively easy to control and its polari- 

Presented at the 1979 Particle Accelerator Conference, San Francisco, CA, March 12-14, 1979. 



ty (direction of phase change needed to blow up a 
particular beam) depends on the configuration used and 
the closed orbit errors. If however the nominal value 
of ng is set outside the range -2cm < n*, < 2cm, then a 
very strong hysteresis effect is evident and the flip- 
flop becomes uncontrollable. Typical hysteresis loops 
for a range of n: are shown in Fig. 2. 

2 -. f - l:::Zcm ~ l::Ocm 1;=0.5cm 

B 
-23 0 I8 -50 0 22 -20 0 23 

+ek-+-+------ -40 0 20 
INTERCAVITY PHASE (+,,S,2-+,, degree) 

= -3-2-l 0 I 2 3---3-2-l 0 I 2 3 .--3-2-I 0 I 2 3 

z-n NOMINAL VALUE OF DISPERSION FUNCTION (‘I; Cm) Ullcl 

Fig. 2. Hysteresis Loops. Beam height vs intercavity 
phase and dispersion function. 

It is unfortunately not possible to measure I$ to 
. a precision better than lcm but averaged data indicate 

that differences from the nominal value are approxi- 
mately 0.5-lcm and that the dispersion function is 
different at the two interaction points. 

Keeping the intercavity phase at a constant value 
we have scanned the value of n; from -3cm to +3cm 
obtaining the flip-flop condition. The hysteresis 
loops obtained by this method are much more smooth than 
those obtained by varying the intercavity phase at con- 
stant nz. We also observed a reversal of the polarity 
close to the condition of zero misphasing. 

Beam Separation 

Recently we have used the stripline monitor plates 
to make a small horizontal separation of the two beams 
at the interaction points. We have found that when 
separating voltages are applied the hysteresis loops 
shift along the phase axis with very little change 
otherwise. The orbit separation due to such a shift 
in intercavity phase corresponds toi the orbit separa- 
tion due to the separation voltage. Measurements will 
be continued using combinations of separating voltage 
and cavity phasing to separate the beams at the two 
interaction points independently. 

The experiments described here have been done at 
energies of 1.88 GeV and at 2.4 GeV, most of the quan- 
titative work being done at the former energy. In the 
absence of detailed quantitative data for comparison 
we can only report our findings at these two energies 
and quote operational experience at other energies. 
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The flip-flop is only apparent close to the beam- 

beam limit at any energy. At low energies (1.5-1.9 
GeV) the onset is sudden and the flip-flop is very hard 
to control and appears to be sensitive to very small 
changes in conditions. In the medium energy range 
(2.0-2.5 GeV) the onset is more gradual and the pheno- 
menon is much more reproducible. At energies higher 
than 3 GeV the flip-flop disappears. 

A bunch lengthening cavity (BLC) was installed in 
SPEAR in order to improve performance.2 The BLC is a 
powered cavity operating at 860 MHz at the 672th har- 
monic of the revolution frequency. This cavity modi- 
fies the-potential well of the synchrotron phase 
oscillations (this potential well is provided by the 
main RF cavities operating at the 280th harmonic). 
The flattened potential well thus produced can lengthen 
the bunches so as to avoid single bunch instabilities 
that cause energy broadening. The lengthened bunches 
also produce less higher mode RF heating and cure the 
problem of synchro-betatron resonances. 

On one occasion only, powering the BLC made the 
flip-flop better, but on every other occasion it made 
the flip-flop uncontrollable. 

Risetime Measurements 

We have measured the risetime of the flip-flop 
beam growth by applying a square wave modulation to the 
intercavity phase. To obtain a measure of the height 
of the beams we took an output from the profile monitor 
scan and displayed this on an oscilloscope, the oscil- 
loscope being triggered from the pulse generator used 
in the phase switch. The height of the pulses from the 
profile monitor system is inversely proportional to the 
beam height. Measurements suggest that the risetime is 
independent of energy and is about 80-100 msec which is 

long compared to the transverse damping time. 

Soft Effects 

Rotated Quadrupole 

A detailed study of these effects has not yet been 
done but measurements and operational experience indi- 
cate that increasing the linear coupling by means of 
the rotated quadrupoles makes the flip-flop less sensi- 
tive. This is probably due to an increase in the non 
beam-beam contribution to the height of both beams 
resulting in a decrease in beam-beam tune shift. The 
increased strength of the rotated quadrupoles might 
also be expected to change the flip-flop by coupling 
residual horizontal dispersion to the vertical plane. 

Chromaticity and Sextupoles 

SPEAR normally operates with horizontal and verti- 
cal chromaticities 5, = 5, = +3.2. The natural chro- 
maticities for normal operation with 8 = 1Ocm are 
cx = -10 and 5, = -20, the correction ;5 eing accom- 
plished by two families of sextupoles. 

Increasing the chromaticity substantially (25% 
increase in sextupole strength) made the flip-flop 
worse but not disasterously so. Decreasing the hori- 
zontal chromaticity towards zero had an effect on the 
hysteresis print of the flip-flop. This effect was not 
however reproducible between experiments and no drama- 
tic effect was observed close to the value 5, = 0. 
Decreasing the vertical chromaticity alone had no 
effect. The most probable explanation for this be- 
haviour is the effect that the sextupoles have on 
orbits and dispersion functions at the interaction 
points. 



Horizontal Beam Size 

Measurements indicate that, when the beam heights 
are flipped and flopped, the widths also change. We 
might expect that if the effect were due to coupling, 
then an increase in beam height should be accompanied 
by a reduction in beam width. We in fact noticed an 
increase in width of the beam that was blown up verti- 
cally. For moderate values of beam-beam tune shift the 

-change in beam width was about 5% but at the higher 
currents the change was about 10%. The effect is most 
easily seen by applying a square wave phase modulation 
at a frequency of about 1 Hz. 

Null Effects 

Vertical Orbit and Dispersion Function 

No correlation could be found between the flip- 
flop and measured vertical orbits and dispersion func- 
tions. 

Coherent Motion 

We have not detected any coherent motion associ- 
ated with the flip-flop. Since the beam cross section 
is small compared to the distance between the beam and 
the monitors, it is only possible to detect the bary- 
centric (dipole) mode of oscillation by using these 
monitors. We have however also viewed samples of the 
beam profile by using the synchrotron light monitoring 
system. This technique should be sensitive to higher 
modes of oscillation. 

Longitudinal Motion 

We have looked for changes in bunch shape or bunch 
length associated with the flip-flop. Both by direct 
observation of the synchrotron light using a fast 
photodiode and by observing the spectrum of signals 
from the beam monitors, we have been unable to detect 
any such changes when the beams undergo a change in 
state. 

Conclusions 

For a small intercavity misphasing all calculated 
effects are extremely small except for the beam sepa- 
ration, beam crossing angle and energy separation. By 
keeping the cavities phased and varying the dispersion 
function n$ we can also make the beams flip and flop. 
This observation combined with the evidence from the 
horizontal separation experiment leads us to believe 
that the energy separation is not necessary to the 
phenomenon. We believe that a beam separation (or 
possibly crossing angle) at a finite value of 11: is the 
combination necessary to drive the flip-flop. We think 
that coherent motion is unlikely because (a) the rise- 
time is long compared to the transverse damping time, 
(b) we have not observed any coherent motion, and (c) 
the dependence on chromaticity is not very strong. 
Single resonance effects are also unlikely since the 
effect is independent of machine tune and because the 
bunch lengthening cavity cures theiindividual synchro- 
betatron resonances by creating a continuum of synchro- 
tron tunes. 

The calculated changes in amplitude function 6 and 
dispersion function n as a function of orbit difference 
and energy difference are very small and are unlikely 
to play a part in deciding which beam should blow up. 

Because of the sensitivity to horizontal disper- 
sion function it is possible that synchro-betatron 
resonances are excited by the beam-beam force as in 
Ref. 3 but that these resonances are of high order and 
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are associated with the nonlinearity of the beam-beam 
force. 
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