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Abstract

This thesis describes a 29GeV electron - nucleon xattering experiment carried out at

Stanford Linear Accelerator Center (SLAC). Highly polarized el~trons are xattered off

a polarized ND3 target. Scattered electrons are det~ted by two sp=trometers located

in End Station A (ESA) at angles of 4.5° and 7° with respect to the beam axis.

We have me~ured the spin structure function gl of deuteron over the range of

0.029< z <0.8 and 1.0< Q2 < 12.0(GeV/c)2 giving the integral of g~ over the range

0< x <1 to be 0.0396+ 0.0035+ 0.0039 at average Q2 = 3.0( GeV/c)2.

This integral indicates a discrepancy of more than three standard deviations from

the prediction of the Ellis-Jaffe sum rule, J: g~dx = 0.068+ 0.005 at Q2 = 3.0(GeV/c)2

while our result of g! in good agreement with SMC results. Combined with gl of the

proton, the measurement of the integral of f: (~ – g~)dx = 0.1586+0.0103+0.0162, was

consistent with the prediction by the Bjorken sum rule, J: (H – g~)dx = 0.169 + 0.008.

We also obtained the strong coupling constant at Q2 = 3.0(GeV/c)2 to be 0.417~$~~~,

using the power correction for the sum rule up to third order of as. This result is

in agreement with the strong coupling constant as (Q2 = 3.0( GeV/c)2) obtained from

various experiments.

Using our deuteron results and the axial vector couplings of hyperon decays, the

total quark polarization along the nucleon spin is found to be 0.286 + .055, implying

that quarks carry only 3070 of the nucleon spin. The strange sea quark polarization is

also determined to be –O. 101 + .023. These measurements are in agreement with other

experiments and provide the world most precise measurement of these quark polarization.
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Chapter 1

Introduction

The el~tron-nucleon scattering ha played an important role in advancing our under-

standing of tie nucleon structure. In Quantum electrodynamics (QED), the electron is

treated exactly as a point like particle which does not have any structure, whereas the

nucleon is treated ~ a substance which have a complex structure. In electron-nucleon

scattering, virtual photons are exchanged between the electron and the substructure of

the nucleon. Therefore, this makes us to investigate the nucleon structure by using the

photon probe.

In the 1950’s, the el~tic and qu=i-elatic electron-nucleon scattering experiments[l]

indicated that the nucleon h~ a finite size of order 10–13cm. Several experiments in the

middle of 1960’s[2] established that the cross section fell with increasing momentum

transfer, suggesting a composite nucleon model. In 1969, results from deep inelastic

scattering of electrons off a hydrogen target at SLAC[3] showed that the cross section

is larger than expected by the composite model, and that the cross section h~ only a

weak dependence on momentum transfer. This behavior, refer to Bjorken scaling, is

interpreted to imply that the nucleon is composed of point-like charged particles. These

point like particles were named a partons by Feynman in 1967. The precise me~urement

of the nucleon structure[4] showed that the charged partons carry only a half of the nucleon

momentum, and that neutral partons which carry the other half of the nucleon momentum

12
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exist in the nucleon. These charged and neutral partons are later. identified as quarks

and gluons which are described by Quantum Chromodynamiw(QCD). Now, we believe

that the nucleon is composed of valence quarks, sea quarks, and gluons. There are three

valence quarks in the nucleon which determine net quantum numbers such as charge and

baryon number. Sea quarks are created in pair by gluon which have no net quantum

number. Gluons mediate the color force which composes these partons together.

As nucleon spin is 1/2, it had been resumed that only the valence quarks are

responsible for the nucleon spin analogous to the baryon number or nucleon charge, and

that sea quarks and gluons were not polarized in the nucleon. In such a naive picture,

the SU(6) model of baryons describes well the magnetic moments of the baryons [5].

Bjorken derived a sum rule for the combination of the structure functions of the

proton and neutron using current algebra and an assumption of imspin symmetry[6].

This sum rule predicts that the integral of the difference of spin structure functions of the

proton and the neutron over Bjorken x from zero to one is equal to a sixth of the axial

vector coupling strength in neutron beta decay, f; [~(z) – g? (z)]dz = ~gA/gv. Because

this sum rule can be derived also using QCD calculations, it is thought of as a fundamental

sum rule. Bjorken himself said ‘If the sum rule is violated, QCD is wrong. ‘[7]. This sum

rule is usually called the Bjorken sum rule.

Ellis and Jtie derived another sum rule predicting the spin structure functions of

the proton and neutron [8]separately, J; ~(’) (z)ds = ++ (F+ D) + ~ (3F – D) where the

sign is plus for proton, minus for neutron and F and D are the hyperon decay constants.

They ~sumed the SU(3) flavor symmetry and unpolarized sea quarks. The sum rule

obviously depends on the nucleon model, so that it is thought to be less fundamental

than the Bjorken sum rule. This sum rule is referred to the Ellis-Jtie sum rule.

Even though these sum rules were established in the early 70s, we had to wait for

the experimental proof until 1976 when deep inel~tic scattering of polarized electrons and

polarized nucleons w= possible along with the development of polarized electron beam

and polarized nucleon. The experiment was carried out by the SLAC-Yale collaboration

[9], where a large asymmetry was observed as predicted by the quark-parton model. Their
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results[lO] were consistent with the Ellis-Jaffe sum rule for the spin Structure function of

proton within their large experimental error.

0.18

0.12

0.06

0

I I I I I I

- ELLIS–JAFFE ● EMC

Sum Rule ■ SLAC

r

0.02 0.1 0.5

10-93 Xm 7M2M

Figure 1.1: The integral of the spin-dependent structure function gl (z) for the proton

with EMC and SLAC data. The horizontal axis shows Bjorken x in logarithm scale. The

vertical axis is the integral of the gl (z) down to the x value. The arrow on the vertical

axis shows the Ellis-Jaffe sum rule for the proton. The smooth extrapolation toward x=O

indicates that the extrapolated value is different from the prediction.

In 1988, EMC(European Muon Collaboration) at CERN published the results from

high precision measurements of the scattering of polarized muons off polarized protons in

butanol[ll], indicating that the spin structure function of the proton ww in disagreement

with the Elli~Jaffe sum rule as shown in Figure 1.1. They concluded that the quark

carries only a small fraction of the proton spin and the strange sea quark has a significant

fraction of opposite polarization with respect to the proton spin. This new and surprising

results were called as ‘the spin crisis’ and denied the naive idea that only valence quarks

carry the nucleon spin, and sea quarks and gluons are not polarized.

The E142 Collaboration at SLAC published the results from the first me~urement
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of the neutron spin structure function using 3He target [12]. Their results were consistent

with the Elli*Jaffe sum rule at Q2 = 2.0(GeV/c)2 within one standard deviation 1 and

with the Bjorken sum rule obtained using the QCD correction to third order in ae within

one standard deviation. However, their memurements denoted that the quark carried

only about a half of the nucleon spin.

These me~urements suggested that our understanding of the nucleon spin is far

from the whole picture. We need not only to do more theoretical work, but dso more

experiments. Where is the other part of the nucleon spin? Why do quarks carry only a

small fraction of whole nucleon spin although the SU(6) model is successful for predicting

the magnetic moment of baryons. We have to find answers for these questions.

This ‘Spin Crisis’ has led several experiments to measure the nucleon spin structure

functions to find the answer, and to reach further understanding

Spin Muon Collaboration (SMC) at CERN [15],[16], HERMES

at SLAC [18],[19].

of the nucleon spin; the

at DESY[17] and E143

The E143 is an international collaboration consisting of about 90 physicists and

graduate students from 17 institutes. The purpose of E143 w= to investigate the spin

structure functions of both the proton and the deuteron. The experiment was imple-

mented using the highly polarized electron beam accelerated by the Linac and the solid

ammonia target located in End Station A (ESA). Figure 1.2 shows the aerial view of

the SLAC. The long structure stretched from up to down is the 3 km long Linac. The

building at the end of the Linac is ESA. The experiment was carried out in ESA with

the high statistics. This high statistical measurement was able to test the Ellis-Jaffe and

Bjorken sum rules with a higher accuracy than the EMC and E142 measurements. It

gave more understanding of how the nucleon spin is carried by quarks. The variation of

the beam energy also provided the information of Q2 dependence of the spin structure

functions.

This thesis describes E143 investigating the electron scattering off deuterons in ND3

1A re~ysis by D. M. Kawdl and J. A. Dunne is giving the in~grd of the gl for neutron to be

–.036 + .~ whichis two standard deviationsawayfrom the predictionby Ellis-Jtie [13][14].
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Figure 1.2: Acrid view of the Stanford Linear Acceleration Center. The long structure

stretched from up to down is 3 km long Linear accelerator (Linac). The building at the

end of the Linac is End Station A where the experiment ww carried out.



at 29 GeV and presents the results from this experiment. This mewurement determined

the spin structure function gl of deuteron with high accuracy. The covered x range is

0.029< xBj <0.8 at an average Q2 = 3.0(GeV/c)2.

In Chapter 2, the formulae of deep inelmtic electron-nucleon scattering are derived.

The principle of spin structure function me~urement and the EllisJtie and Bjorken

sum rules are explained. The experimental setup and devices are described in Chapter

3. In Chapter4, theandysis procedures to reconstruct electron tracks andtocdculate

the cross section ~ymmetry including various corrections will be explained. In Chapter

5, the measured data and the results of the structure function and the integral are given

including the estimation of systematic errors. Finally, a conclusion and a look into the

future are given in Chapter 6.



Chapter 2

Theory of the deep inelastic scattering

Electron-nucleon scattering at large momentum transfer range occurs mainly through the

exchange of a photon in electromagnetic interactions. Figure 2.1 shows the Feynman

diagram of electron-nucleon scattering, where k and k’ are the four momenta, s and s’

are the polarization vectors of the electrons in the initial and final states, O is the angle

of the scattered electron with respect to the electron direction of the initial state, q is the

four momentum transfer defined by q = k – k’, p is the four momentum of the nucleon,

and ~ is the polarization vector of the nucleon. The gray circle at the photon nucleon

vertex involves complex interactions due to the substructure of the nucleon and hadron-

ization process. The substructure of the nucleon is parameterized later using several

assumptions. Lines from the circle indicate particles coming out from fragmentation of

the initial nucleon.

The momenta of the particles involved in this process are expressed as

kP = (E, ~), (2.1)

Pp= (~, 0), (2.2)

k; = (E’, P), (2.3)

where E and ~ are the energy and the momentum for the electron of the initial state, E’

and ~ are the energy and the momentum for the electron of the final state, and M is the

nucleon mass.

18
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{ q=k-k

Figure 2.1: Feynman diagram ofel~tron-nucleon deep inelastic scattering

We also define several kinematical variables for ourconvenience neglecting electron

mms,

Q2=–q2=2(k. k’) = 2EE’(1–cos O)

= 4EE’sin2(0/2)

= 2MxyE,

v = E–E’,
Q2 Q2

——

x = 2p”q=2Mv ’
v P“q

y = E=p.

The variable x is called ‘Bjorken x’ and sometimes denoted a xB.

In the following sections, the cross sections for the unpolarized

(2.4)

(2.5)

(2.6)

(2.7)

and polarized pro-

cesses, ie. the spin-averaged and spin-dependent cross sections for the deepinelwtic eN

scattering will be described. The spin structure function, gl is expressed using the spin-

averaged and spin-dependent cross sections. After that, the sum rules giving predictions

for the integrated value of gl will be explained.
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2.1 Spin-averaged cross section

The spin-averaged cross section is that of electron scattering off nucleons averaged over

the electron and nucleon spin of the initial and final states. Using the assumptions w

discussed in Appendix B.2, the differential cross section in laboratory system is expressed

M given in Equation (B.23) by

@u e4

dE’dQ =
2 [~z(~,Q2) + 2t~2(@/2)~~(~,Q2)] , (2.8)

16r2Q2 tan2(0/2) E’

where W1(v, Q2) and W2(v, Q2) are the nucleon structure functions of two independent

kinematical variables, v and Q2. If we impose the Bjorken scaling of the structure func-

tions in the limit of (v, Q2 + 00), the structure functions can be written w a function of

a single variable, x, by

Fl(s) = ~$,~~ MWI (v, Q2) (2.9)
~

(2.10)

The scaling means that the structure function depends only x which is proportional

to the ratio of the Q2 to the v, and is independent of Q2 or v as demonstrated by

many experiments. This scaling denotes that the deep inelastic scattering of electron

and nucleon is interpreted as the incoherent sum of the el~tic scattering of electrons

and charged partons (quark) in nucleons and x is interpreted as the momentum fraction

which the scattered quark h- in the nucleon. This experimental fact is an evidence that

the quarks compose the nucleon. Scaling is now explained by the wymptotic freedom

in QCD: the strong coupling constant depends on the momentum transfer Q2 and it

decreases with increasing momentum transfer. The quark acts like a free particle in

large Q2 region due to the small strong coupling constant.

As mentioned in Chapter 1, a nucleon is composed of three valence quarks,

the

sea

quarks, and gluons in the Parton Model picture. Because the gluon does not contribute

to the electromagnetic interaction, the structure functions, F1(x) and F2(x) are expressed

as the incoherent sum of the quark distribution functions, ga(~ (~), x) and ~a(~ (~), x) for
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where the sum is taken over all quark flavors and the arrow denotes the quark helicity

with respect to the nucleon spin. The largest contribution to these functions comes from

the light three quarks and those from the heavy flavors, c, b, and t are suppressed due

to the heavy masses of c, b, and t quarks.

The spin-averaged cross section is rewritten using these new functions

@o e4

dE’dfi =
E [: F,(x) + # tan2(0/2)F~(z)] .

16T2Q2tan2(e/2) E v

The spin-averaged cross section can be expressed using the F1(z) and

by

(2.13)

R(z) which

is the cross section ratio for the longitudinally and transversely polarized virtual photons.

Using the R(z) defined by Equation (2.47), the relation

by

where ~ is

between F1(z) and F2(z) is given

(2.14)

4M2X2 = Q2

72= Q2 ~.

Equation (2.13), the unpolarized cross sectionSubstituting the Equation (2.14) into the

is expressed using the F1 and R as,

go e4

where D’ is given by

(2.15)

E 4(E + E’) ~I(X)

dE’d~ = 16x2Q2 ~ VM D! ‘
(2.16)

D,= (1-t) (2-y)

y(l + CR) ‘
(2.17)

with
1

e = 1 + 2(1+ ~)tan2(e/2).
(2.18)
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2.2 Spin-dependent cross section -

In the polarized electrons scattering off polarized nucleons, the cross section depends on

the felicities of both particles of the initial state. We define the four cross sections of the

polarized process for the different directions of the electrons and nucleons in the initial

state as shown in Figure 2.2. The nucleon is polarized longitudinally or transversely

to the electron beam axis. The electron is polarized along the beam axis, parallel or

anti-parallel. The combinations of these two electron and nucleon spin states compose

the four cross sections. The two cross sections for the longitudinally polarized nucleon

are called = the parallel configurations and those for the transversely polarized nucleon

are called as the perpendicular configurations.

Beam axix

eo 0
++

Pardefl Perpendicular

Nucleon Spin

t+

Election Spin

Figure 2.2: Definitions of the cross sections for the four combinations of the electron and

nucleon spin. The gray and bla~ arrows indicate the direction of the spin for nucleons

and electrons respectively, where the electron beam direction is from bottom to top. The

nucleon is polarized longitudinally or transversely with respect to the beam axis. The

electron is polarized parallel or anti-parallel to the beam axis. We call these cross sections

= the longitudinal or transverse configurations according to the direction of the nucleon

spin. The cross sections are indicated by a with two arrows for superscripts. The two

arrows show the spin direction of nucleons and electrons respectively.

To extract the spin dependent part of the cross sections for the parallel and perpen-

dicular configuration, we give the following cross section differences of the two different
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orientations of the electron spin as derived in Equations (B.24) and- (B.26),

&(at$ – OR) e4 ~’
dE’dO

—4 [MG1(v, Q2)(E + E’ COS8) - Q2G2(v, Q2)] ,
= 16T2Q2 E

(2.19)

&(a+l – Ott) e4 E’
—4E’Hsin O[MGI(v, Q2) + 2EG2(V, Q2)] ,dEld~ = 16r2Q2 E (2.20)

where G1(v, Q2) and G2(v, Q2) are the spin structure functions and H is the sign of the

inner product of the nucleon spin vector and the momentum of the scattered electron in

the perpendicular configuration.

While W1(v, Q2) and W2(V,Q2) represent the spin-averaged structures of nucleons,

G1(v, Q2) and G2(v, Q2) are the spin-dependent structure functions of the nucleon. We

expect to see a scaling of the spin structure functions in analogy to the spin-averaged

structure functions:

91(Z)= . $,:m ~2vGl (v,Q2), (2.21)
$

92(Z)= “),qm MV2G2(V,Q2),7
(2.22)

where gl (z) and g2(z) are the spin structure functions in the scaling limit. The cross

section differences are expressed in terms of the scaled spin structure functions, gl (z)

and g2(z) by,

&(utJ – ~ti) e4
~4dEld~ = 16r2Q2 E

[ 1

%(E + E’ COS8) - ~g2(z) , (2.23)

&(at$ – Ott) e4 E’

[

91 (x)

dE’d~
—4E’H sin 0 ~ +

= 16x2Q2 E 1
=92(Z) , (2.24)

Similar to FI (x) or F2(x), the spin structure function gl is expressed by the quark

distributions W,

(2.25)

where z is the quark flavor and Aqi’ is defined to be the helicity distribution of a quark

flavor labeled i, A~~(Z) = [qi(~,X) + ~i(t, x)] – [qi($, X) + ~i(~, x)].
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On the other hand, the spin structure function gz has no exp~cit interpretation in

the parton model. It relates the quark momentum transverse to the nucleon momentum.

g2 is expected to be small in contrmt to the gl and sensitive to the higher twist effect in

QCD[20].

2.3 Cross section ~ymmetry

In order to investigate the spin structure of nucleons, we me~ure the symmetries of

the cross sections for the different spin orientation of electrons instead of the cross sec-

tion difference. Two cross section symmetries for two different nucleon spin direction,

parallel and perpendicular to the electron beam are defined by

~td —Ott
All = ~t$ + ~fl~ (2.26)

(2.27)

where the notation of the cross sections are the same m given in Figure 2.2. An advantage

of using the cross section mymmetry over the cross section difference is that the target

density, the spectrometer acceptance and, the detection efficiency are canceled in the

asymmetry which reduces the systematic errors due to these factors.

Substituting Equations (2.16), (2.23) and, (2.24) into Equations (2.26) and (2.27),

the cross section symmetries are expressed in terms of the structure functions to be,

(2.28)

The spin structure functions gl (z) and g2(z) can be expressed

(2.29)

in terms of the cross section

All = (~: E’) Fl(z)

[

Q2

1

~ (~+ E’ COS 6)9,(Z) - ‘92(Z) ,
v

E’H sin 0 D’

[ 1=g2(z).‘*=(E+ E’) F,(z) ‘l(Z) + v

asymmetries by

.[ 1

~1(z) All+ tan ~A1 ,g~(z) = —
D’

92(X) =
[

y~l (z) E’ COS e + E

1
Al – Hsin OAII .

2 sin eD’ E’
(2.31)

(2.30)

1
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These formulae show that the spin structure functions for nucleons; gl (z) and gz(z) are

derived

2.4

from the measurements of the cross section asymmetry.

Virtual photon cross section

For studying the nucleon structure, the virtual photon-nucleon interaction provides more

direct information for the spin dependent scatkring than the electron-nucleon scattering

process.

Forthephoton-nucleon scattering, only four cross sections are independent under

the assumptions of angular momentum conservation, parity and time reversal invariance.

These four cross sections are given with the following helicity configurations by,

u: : (1,;; 1, ;)
2

0; : (1, -;;l, -;)

OL : (o, :; o, ;)

OTL : (1,-;;0, ;)

where the first two numbers in the parenthesis denote the the felicities for the initial

photon and nucleon, and the second two numbers for the final photon and nucleon re-

spectively. These cross sections are expressed in terms of the nucleon structure functions

by [21]

4T2a

[
–— F1–gl+

2Mx

‘~ – MK 1792 1

where K is the flux of the virtual photons defined

F2 –
1

;Fl ,

+ gz] ,

by K = V – ~[5].

(2.32)

(2.33)

(2.34)

(2.35)
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Using these cross sections, we introduce the new ~ymmetries Al and Az for the

virtual photon-nucleon scattering as follows,

(2.36)

(2.37)

This Al is similar to the All in Equation (2.26), but polarized electrons are replaced by

the polarized virtual photon. Using Equations (2.32), (2.33), and (2.35), Al and A2 can

be expressed in terms of the spin structure functions by

A1(z) = +(91(Z)–~2g2($)), (2.38)

A2(z) = ;(91 (z)+ 92(X)). (2.39)

We notice that the factor Y2 is very small (typically, less than 0.05) in our kinematical

region. Therefore, gl (z) dominates the virtual photon uymmetry Al. If the term of the

~2g2($) is neglected in Equation (2.38), Al(z) can be expressed in terms of the quark

distributions by

where qi is defined in Equation (2.12). In the naive SU(6) model, the Al(z) is given to

be 5/9 for the proton and Ofor the neutron.

Via the virtual-photon cross section ~ymmetry Al (z), the cross section asymmetry

All can be expressed in terms of the parton distribution. Rom Equations (2.30), (2.31),

(2.38) and (2.39), the cross section symmetries All and Al are expressed in terms of the

virtual photon cross section asymmetries, Al and A2 by

All(z) ,= D(A1 (z) + qA2(z)) (2.41)

Al(x) = d(A2(z) – (Al(z)) (2.42)
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where D, d, q, and ~ are the kinematical quantities defined by[22]

~ _ E’e

D= x
l+eR’

(2.43)

CO
‘= E–E’e ’

(2.44)

(2.45)

~=v(l+~)
2E ‘

(2.46)

with c defined in Equation (2.18) and R(z) is the cross section ratio for longitudinal to

transverse virtual photon defined by,

(2.47)

Substituting Equations (2.32), (2.33), and (2.34) into Equation (2.47), the R is expressed

in terms of the F1 (z) and F2(z) by

(2.48)

In Equation (2.41), the contribution from the second term in the right-hand side is

small due to the small factor, q (typically O.1) and the small quantity, A2(x) in contrast

to Al(z). Therefore All is nearly proportional to Al which is expressed in terms of the

parton distributions. The D in Equation (2.41) is the proportional coefficient between

Al(z) and All(z) and is called as the depolarization factor. It is a pure QED factor

indicating the depolarization effect of the process of the emitting the virtual photon. Using

the depolarization factor, the All(z) is expressed in terms of the parton distributions by

(2.49)

where the depolarization factor decre~es with the increming x w D -0.78 at x = 0.03

and D w 0.23 at z = 0.8. Therefore, the investigation for the All is equivalent that for the

helicity distribution of the quarks in the nucleon with an analyzing power of the factor

D.
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2.5 gl of deuteron

The deuteron is a system consisting of a proton and a neutron. The spin structure

function for deuteron, then, can be expressed in terms of those functions for proton and

neutron.

The deuteron is a spin 1 and parity even particle composed of two spin 1/2 nucleons.

Thus, the deuteron is a mixture of S (L=O) and D (L=2) states. These S and D states

are expressed using the Clebsh-Gordon coefficients by

lJ=l, Jz=l>~ = lL=o, Lz=o>[s=l, s~=l>

IJ=l, JZ=l>D =
{

;IL=2, LZ=2>IS=1, SZ=–1>

(2.50)

—
/

;IL=2, LZ=l>[S=l, SZ=O>

i
~lL=2, Lz=o>ls=l, sz=l>,

+ 10
(2.51)

where J and Jz are the magnitude and the Z-component of the total angular momentum,

L(S), Lz (Sz) are the magnitude and the Z-component of the orbital angular momentum

(spin).

A probability

is calculated to be

that a nucleon spin is anti-parallel to the deuteron spin in the D-state

3
30.5 = :,

:+10
(2.52)

where 0.5 comes from that one of two nucleons has a spin anti-parallel to the deuteron

spin in the S2 = O state. If the polarized deuterons contain the D-state with a fraction

wD, the deuteron cross section, u~, is expressed in terms of nucleon cross sections, au

(2.53)

where the first arrow is the nucleon spin and the second arrow is the helicity of electron.

The nucleon cross section is the sum of those for the proton and neutron, ON = OP+ on.
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Similarly, o~$ can be written by,

‘J’= (l-:wD)u~+:wDo~*
(2.54)

TAing into account the D-state probability, the cross section asymmetry of the

deuteron is described as follows
tl M

Af=~4;;ti

where we wsume the parity invariance

and o~$ = c~+.

on the cross sections, ie.

Equation (2.55) shows that the asymmetry of the deuteron is smaller than the spin-
3

aligned proton and neutron system by a factor of (1 – ~wD). The At for deuteron is

expressed in terms of the A~’n for

‘1 byOP=fl, On=F1

Af=(l–

proton and neutron with conventions of ad = 2F~,

Similarly, the transverse asymmetry, Al, is expressed by

(
A!= (1 – ~wD) A~~

2F~
+ A;~

1 )

(2.56)

7 (2.57)

Using these equations, the spin structure function g! for deuteron is expressed in terms

of those for proton and neutron, fl and g~ by

(2.58)

Under the resumption that the D-state probability wD is independent of x, we can integ-

rate Equation (2.58) and obtain the relation between the integrals of deuteron, proton,

and neutron,

2rf=(l-;wD)(r~+r~), (2.59)

where r; is given by

ri =J1dx9i(x), (2.60)

where z stands for deuteron, proton, and neutron denoted by d, p, and n.

1The f~tor for the FINgiving the cross section is identicd for proton, neutron, and deuteron. Then,

the f~tor is canceled in the formula of the asymmetry.
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2.6 Sum rules

The Bjorken and Elli~Jaffe sum rules will be explained in this section. These sum rules

give predictions oninte~ds of thespin structure function gl(z) over xrangefrom Oto

1. The confirmation of these sum rules is the most important purpose in this experiment

because we can examine the spin structure of the nucleon and the dynamics of the quarks

with these sum rules.

2.6.1 Bjorken sum rule

The Bjorken sum rule is originally derived by Bjorken b~e on current algebra assuming

Iso spin symmetry on proton and neutron quark distribution function[6], giving that the

integral of the difference of spin structure functions gl of proton and neutron is equal

to one sixth of the neutron beta decay axial coupling. Now, this sum rule is derived by

QCD calculation [23] and is also called m the QCD sum rule.

The original derivation of the sum rule is breed on current algebra stated from the

ratio of the axial vector coupling constant to the vector coupling constant of neutron beta

decay which is expressed in terms of the quark distributions by [24]

(2.61)

where the up(n) and ~(n) are the distribution functions of u and d quark including both of

quark and anti-quark of proton (neutron) with the Z-component of the spin to the nucleon

spin indicated by the arrows. Under the is~spin symmetry, UPa @ and # s Un, and

the ratio is given by

()gA
= [up(t) - up($)] - [~(t) - @($)]

G.

= Au – Ad, (2.62)

where Aga is defined to be f(~) – f($) which is explained to the expectation value of

the helicity of the quark flavor i in the proton.
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Assuming that u,d, and squark exist inthenucleon, gl(z) iri (2.25) derived from

Parton model can be written by

where ei is the charge of the quark i in the unit of electron charge.

expressed with the is~spin symmetry by,

(2.63)

~(z) and g?(z) are

(2.64)

(2.65)

where ,the quark distribution functions correspond to that in proton. If we subtract g?

from ~, we can obtain the difference without the strange quark:

d(z) – g!(~) = ; [Au(z) – Ad(z)] . (2.66)

These Au(z) and Ad(z) are the helicity distribution of the u and d quarks with the mo-

mentum fraction Z. The integral of these helicity distribution over x gives the expectation

value of the helicity in the proton to be,

Therefore, the integral of the Equation (2.66) over x is given

rf-rT=; [Au-A~.

to be

(2.68)

Inserting Equation (2.62) into Equation (2.68), we obtain the Bjorken sum rule;

(2.67)

(2.69)

The only assumption used to derive the Bjorken sum rule is iso-spin symmetry which

is a fundamental principle in particle physics. Therefore, this sum rule ww thought to

be fundamental. However, we can not compare this prediction with the measured results
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directly because this sum rule is valid only in the scaling limit, ie. -Q2 = m. Although

the scaling of the structure function is a good approximation, the structure function has

Q2 dependence w observed w the scaling violation due to the QCD effect. To make

precise comparison of meuurements with the Bjorken sum rule, the prediction of the

Bjorken sum rule has to be corrected to the value at an actual kinematical region of the

mewurements.

The QCD correction is calculated to third order of the strong coupling constant

a~[25] to be

The predicted value at

1.2573 A 0.0028[26] is,

Q2 = 3.0(GeV/c)2 with a, = 0.360+ .050[26] 2 and g~fgv =

where the error w= estimated from

the neutron tial vector coupling.

rp _ r~ = 0.169+ .008, (2.71)

the ambiguities of the strong coupling constant and

from Equation (2.70), the ratio of the rp – r’

predication from the Bjorken sum rule in the scaling

strong coupling constant,

obtained from experiments to the

limit is expressed in terms of the

rp – rn

19A = 1
-:-358(:)2-2022(:)3——

6 gV

(2.72)

The me~urement for the rp – r“, then, determines the strong coupling constant at the

measured Q2.
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n Pm
\ s /

Figure 2.3: SU(3) baryon octet: proton, neutron and Z- are involved by an octet of

spin 1/2 baryons as shown in the figure. The each particle is plotted by the is~spin and

the hyper charge, B + S. The baryons in the octet are resumed to be symmetry under

transformations exchanging doublets of iso-spin, V-spin, and U-spin. This symmetry

suggest that the baryons are composed by three kinds of the quarks, u, d, and s which

are symmetry under the exchange of each two flavor of the three quarks.

2.6.2 Ellis-Jaffe sum rule

The Ellis-Jaffe sum rule give a prediction for the spin structure function for each nucleon

separately, while the Bjorken sum rule predicts the difference of proton and neutron. The

assumptions of SU(3) flavor symmetry and the unpolarized strange quark in the nucleon

are used to extract the Elli*Jaffe sum rule and dependon the nucleonmodel. Therefore,

this sum rule is thought as a less fundamental sum rule than the Bjorken sum rule.

Similar to the cwe for the Bjorken sum rule, we need two axial vector couplings of

~ decay which are involved in the spin 1/2 baryon octet as shown in Figure 2.3. The ratio

of the axial vector coupling constant to the vector coupling constant of 2– beta decay is

expressed in terms of the quark distributions in neutron under the V-spin symmetry by

2We used the strong coupfing constant at ~ mass for the running coupling constant, bwause &

m; = 3. 16(GeV/c)2 is very close to 3.0( GeV/c)2. Although the combined result of the strong coupling

constants horn the ~ decay rates was dcula@d to be o, (m;) = 0.360 * 0.041 by the Particle Data

Group (PDG), the theoretid uncertainty maybe underestima@d. Therefore, I assigned the uncertainty

of the strong coupting constant b be 0.05 which was larger than the cdcdated value.
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[24]

()9A—
9V ~-

= - [U”(?) - U“(J)] + [sn(~) - n($)]

= –Aun + Asn (2.73)

Using i-spin symmetry, Aun = AN and Asn = AsP, ~e axial vector coupling of the

Z- beta decay is , then, written in terms of quark distributions in proton by,

()gA— = Ad – As.
gv E-

(2.74)

This equation gives a formula on quark helicity distributions in proton other than Equation(2.62).

Using ~ and g? given in Equations (2.64) and (2.65) together with Equation(2.62)

and (2.74), the integrals of gl are given by

(2.75)

where + for proton and – for neutron. If we assumes the contribution from the strange

quark is zero, i.e. strange quark is not polarized in nucleon, the gl integrals are expressed

by these well measured wial vector couplings. These relations are known as Ellis-Jaffe

sum rule.

As mentioned in the previous section, the QCD correction is very important to

compare the predictions with a mewurement. The QCD correction for the Ellis-Jaffe

sum rule up to third order of as [27] is calculated to be

[ ()r;(n)(Q2)= 1 – a – 3.5833 ~ 2
3

( )](
– 20.2153 ~ &~a3 + ~aa

T T T )

[ ()

2

1
+ 1 – 0.333~ – 0.5495 ~ – O(a$)3 ~ao,

T T 9
(2.76)

with conventions of a3 = Au –Ad, a8=Au+Ad– 2As, andaO=Au~Adf As.

Under the assumption of SU(3) flavor symmetry, any axial vector couplings between

the spin 1/2 baryons are expressed by two constants F and D. Neutron beta decay is

equal to F + D and Z- beta decay is F – D. These constants were determined to be
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F+ D=l.2573A 0.0028 and F/D= O.58+0.02[26]. Thea3and a8.are expressed using

Fmd Dtobe

a3 = F+D (2.77)

a~ = 3F– D. (2.78)

Note that aOisqual toa8providing thestrange quark is not polarized. Then, ther~(n)

is given in terms of the F and D by,

~ldz~(”)(z,Q2) = ~-:- 35833( ~)2-20.2153(~)3] ~~(F+D)++(3F-D))

[

2

+ 1 – 0.3335
()

– 0.5495 ~ – o(a8)3
T 1

~(3F- D).
T

(2.79)

The predictions for nucleons are calculated with a. = 0.36+ 0.05 at Q2 = 3.0( GeV/c)2

to be,

rp = 0.160 + .008, (2.80)

r~ = 0.068 + .005, (2.81)

r“ = –o.oo9 + .006, (2.82)

where the D-state correction for the deuteron is included to that for deuteron with wD =

0.06 + 0.01 [28].

Without the assumption for the unpolarized strange quark in the nucleon, a. may

not be equal to a8. Generally, including QCD correction, the measured rl determines

the ao. ~om Equation(2.79), a. is expressed by

ao=Pr’(n)-(+;(F+D)+;(3F– D)) (1 – ;...)] (1 –0.333; . ..)-1. (2.83)

Once a. is calculated from the measured rl, quark polarizations are expressed in terms

of ao, F, and D by

Au = ~(ao +3F + D)

Ad = ~(ao – 2D)

,As = ~(ao-3F+D)

Au~Ad+As = ao.

(2.84)

(2.85)

(2.86)

(2.87)



Chapter 3

Experimental setup

In this chapter, the experimental setup will be explained which includes the polarized

electron source, beam acceleration and transport, the M@ller polarimeter, the polarized

target, and the spectrometer system.

3.1 Polarized electron

The polarized electrons were produced by injecting circularly polarized photons onto

the GaAs phot~cathode. Figure 3.1 shows the schematic view of the Polarized Electron

Source (PES). The circularly polarized photons with wave length of 865 nm were prm

duced by the Ti:Sapphire laser and excited the electrons into the conduction band. The

excited electrons were polarized in the direction determined by the photon helicity which

was changed randomly to reduce systematic. Subsequently, the left- and right-handed

electrons in the conduction band are extracted by high voltage applied for the cathode

and transported into the accelerator.

The phot~cathodes for the polarized electron gun b~ed on GaAs crystals has been

developed at SLAC. Recently, they established a new technology to improve the electron

polarization using strained GaAs[29]. First, we will explain the principle of obtaining

polarized electrons with

the electron polarization

the unstrained GaAs crystal, then, the mechanism to improve

with the strained GaAs crystal.

36
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Figure 3.1: Polarized electron source: Dye Liner is replaced by Fl~h-lamped

Ti:Sapphire laser system for E143 operation. Circularly polarized photons made by the

laser are introduced into GaAs electron cathode and excited electronsin the bounding

state into the conduction band. A static electric field and a bending magnet carry the

emitted electrons into the Linear Accelerator.
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3.1.1 Unstrained GaAs

.=-1/2‘1 +1/2

T
J=l/2conduction band

Eg=l.4eV

L
AE~Pi”4tit = O.W eV J=3/2 state

T J=l/2 state

Figure 3.2: Energy level of the unstrained GaAs: the unstrained GaAs has bound

states which have angular momentum J = 3/2 and 1/2. These states are degenerate by

the Z-component of the angular momentum. The transition by right-handed and left-

handed photons are shown by the solid and dashed lines. The relative probability for

these transitions determined by Clebsh-Gordon coefficients are shown in circles.

Figure 3.2 shows the band structure of the unstrained GaAs crystal. There are bound

states with the magnitude of the angular momenta, J = 3/2 and J = 1/2 in GaAs which

are degenerate with the Z-component of the angular momenta, rnj = &l/2, A3/2 as shown

in the figure. The solid or dashed lines indicate the allowed transitions by the right- or

left-handed photons respectively.

The transition probabilities into the conduction band at the energy level of 1.43 eV

above the J = 3/2 states are proportional to the corresponding Clebsh-Gordon coefficients

of 3/2@ 1 or 1/2@ 1. The numbers in the circle are the relative transition probabilities

calculated from the coefficients.

The transition probability is also influenced by the transition energy. The transition

from the J = 1/2 states is suppressed by using a laser with the wave length corresponding

to 1.43 eV.



3.1. POLA~ZED ELECTRON 39

Providing the transition from the J = 1/2 states is negligible, the transition from

the mj = +3/2 states h= a probability three times larger than that for mj = +1/2 states

as shown in Figure 3.2. If the incident photon is polarized in left- (right-) handed, the

electrons with +1 (– 1) helicity are produced three times more than those with – 1(+1)

helicity. Therefore, the helicity of the electrons in the conduction band are determined by

the photon helicity and the theoretical limit of the polarization is 50% for the unstrained

GaAs. In practice, we need to optimize the laser photon energy to obtain the high

electron current because the quantum efficiency of the transition from the J = 3/2 states

decremes w the photon energ close to 1.43 eV.

3.1.2 Strained GaAs

Adive

kyer

Strained

Gtis

(0.1 1 ~m)

Eg=l .50 eV

~:yAw 1 GX1-XPX
X=0.27

(0.25 pm) (2.5 Vm)

GaAs1-xPx
graded from
OCX <0.27

L76*2 (2.5 pm)

Figue 3.3: The strained GaAs was grown on the GaAsP substrate. The GaAsP

substrate h~ 2W0 of the phosphorus contamination. This GaAsP ww grown on the

GaAs substrate via the graded GaAsP crystal as a buffer area. The phosphorus fraction

in the buffer GaAsP substrate is increasing from O to 27% to accommodate the lattice

mismatch.
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As mentioned, the electron polarization is limited up to 50% for the unstrained GaAs

crystal = the photmcathode. To improve the electron beam polarization, a new photm

cathode for the electron gun was developed at SLAC by using a strained GaAs crystal.

The strained GaAs is obtained as a thin layer of the GaAs crystal growing on GaAsP

substrate w shown in Figure 3.3.

Figure 3.4: Schematic view of the strain for the GaAs crystal: The GaAs h= a cubic

structure with the lattice spacing of 5.65A. The strained GaAs is obtained by developing

the GaAs crystal on GaAsP crystal which h- the lattice mismatch by 170. This mismatch

on the lattice strains the GaAs crystal and the spacing of the lattice is changed w shown

in the figure. The lattice is stretched in the direction perpendicular to the strained surface

which we define to be the strained axis.

The GaAsP crystal has a smaller lattice size than the size of the GaAs and the

mismatch strains the GaAs crystal. The schematic view of the strained GaAs crystal is

shown in Figure 3.4. The unstrained GaAs crystal has a cubic structure with Ga and As

nuclei placed one by one with the lattice spacing of 5.65A. The strained GaAs hw the

rectangle structure due to the lattice’ mismatch as shown in the figure. If the l~er photon

incidents to the strained GaAs in the direction shown in the figure, along the strained
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axis, the J = 3/2 degenerate levels are split into states with a ener~ gap of 0.05 eV [30]

according to mj.

. = -1/2m, +IE

Strain Axis Parallel to
Incident Photon Axis

u

. =5/2 -‘J +1/2

T
Eg=l.*eV

L
‘Estrah =0.05 eV

(b) Strained Ga As
11-

7@m

Figure 3.5: Energy level of the strained GaAs: the degeneration in J = 3/2 states come

untied due to the strain. The states are split by the energy gap of 0.05 eV. This energy

gap suppresses the transition from mj = +112 and improves the electron polarization.

The Figure 3.5 shows the energy levels of the strained GaAs crystal. Because of the

energy gap of 0.05 eV in the strained GaAs, the transition to the conduction band from

the states of mj = +1/2 is suppressed compared with that from the states of mj = +3/2.

Thus, the polarization of the electrons in the conduction band is increwed up to 100% if

the photon energy is close to the transition energy, 1.43 eV. Figure 3.6 shows the electron

polarization m a function of the wavelength of the laser indicating that the polarization

using the strained GaAs cathode exceeded 50% and reached almost to 9070. The strained

GaAs with the thickness of 0.1 pm was used in the experiment.

The photon energy optimization decreases the quantum efficiency of the main trans-

ition, resulting the decre~e of the electron current. Fortunately, we needed only a low

intensity beam of typically 3.0 x 109 electrons/pulse in contrast to that for SLD operation

and the PES w= able to maintain a high electron polarization between 85% and 87%

during the experiment.
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Figure 3.6: Electron polarization as a function of the photon wave length. The results

by various electron cathodes are shown. The open and solid circles show the results by

the strain GaAs with the thickness of 0.3 and 0.1 ~m respectively.

The PES ww operated at 120Hz.

odd or even spill is created at the same

Because the AC line has 60 Hz frequency, every

phase of the AC line. To suppress the systematic

effect on the electron beam due to the phase of the AC line, the electron helicity was

changed spill by spill randomly by Pseudo Random Number Generator which generated

33 bits random sequence one by one and will be mentioned in Chapter 4 in detail.

The electron beam spill width wm typically 2.2 ps. The current of the electron

beam was a order of 109 electrons/spill.

3.2 Beam line

Figure 3.7 illustrates the beam acceleration and transportation into End Station A. The

polarized electrons were injected into the 2-mile Linear Accelerator (Linac) and accel-

erated up to 29 GeV. The Linac retained the electron’s longitudinal polarization during

the acceleration. No depolarization effect was observed due to the acceleration and the



3.2. BEAM LINE 43

transportation of the electron beam into ESA[31].

The electron was bent at the end of Linac by a magnet at an angle 86 of 428 mrad

into the ESA beam line. In this bending process, the electron spin was rotated due to its

anomalous magnetic moment. The angle of the direction of the electron spin from that

of the electron momentum, A@ is given by

AO = 0.136r(g – 2)E
2m@ ‘

(3.1)

where g is the gyro magnetic ratio of the electron, E is the beam energy, m is the mass of

the electron. To retain the longitudinal electron polarization after the process, this A+

has to be equal to Nn where N is an integer. This condition was satisfied by adjusting

the beam energy to be[32],

E = 3.24. N. (3.2)

The beam ener~ was decided to be 29.llGeV which ww the highest energy satisfying

the condition to keep the electron polarization.

Two M@llerpolarimeter located at the end of the Lin~ and in the ESA measured

the beam polarization. These me~urements for the beam polarization before and after

the bending allowed us to crdibrate the beam energy independently with the precision of

0.05% by using the relation of the polarization and the beam energy.

Two toroidal current monitors were placed on the beam line to measure the beam

current. These monitors produced a signal proportional to the electron current passed

through the toroidd coib. These devices were calibrated cmefully with respect to the

signal from a Digital to Analog Converter, DAC[33]. For some historical re=on, these

current monitors were called as Toroid2 and Toroid3. Toroid2 and Toroid3 were located

at 9.1 meters upstream and 5.6 meters downstream of the target respectively. The sys-

tematic error ww calculated to be less than 1.0% from the spreads of the reading of these

monitors at the same DAC voltage [33].

Figure 3.9 shows the beam position on the target which WMchanged for each spill.

This rastering reduced a depolarization effect caused by radiation damage and heat up

of the target. Two pair of Helmholtz coils located at about 70 meters upstream of the
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Figure 3.7: The polarized electrons pr~

duced by the PES were injected into the
Linac and accelerated up to 29 GeV. The

electrons were bent at the end of Linac
and introduced into ESA. The electron

spin ww rotated in the bending magnet

as shown in this figure and the beam en-
ergy was set to maximize (retain) the lon-
gitudinal polarization. The ESA M@ller
polarimeter ww located at the entrance
of ESA. Two independent spectrometers
were placed in ESA to dekct the scattered

electron from the target. A part of SLD

operation hm been removed from the ori-
ginal figure.

monitor ,,
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Figure 3.8: Schematic view of appar-

atus location in ESA: the electron beam

pwsed through ESA from up to bottom

in this figure. The M@ller foil was at the

entrance of ESA and w= placed on the

beam line only when we calibrated the

electron polarization with the M@llersyw

tern. Four chicane magnets were turned

on only when we investigated Al to cor-

rect the deviation of the electron beam due

to the transverse magnetic field of the tar-

get. The spectrometer magnets B1 and B3

mark the beginning of the spectrometer

systems.
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target were used to steer the beam position for the rastering. The-coik had a rounded

reckngular shape, about 1.5m by 0.5m. They were controlled by Linac Main Control

Center (MCC).
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Figure 3.9: Beam rastering: the center

of beam spill is plotted with respect to the

target center. The center of beam spills

are obtained by the foil arrays.

rd ~

Figure 3.10: Output of a foil array: H~

rizontd axis corresponds to the address of

the foil. Vertical axis shows the corrected

ADC output.

We monitored the actual beam position with a set of two dimensional foil arrays

which w= Iocakd at 11 meters downstream of the target. Each foil array was consisted

of 48 foil strips placed at 1 mm interval and an anode plane behind the foil array. Both of

the foil and the anode plane made from the 25pm thickness aluminum. The electron beam

hitting the foils induces electron current between the foil and the anode, of which signal

is proportional to the beam current through the foil. Figure 3.10 shows the distribution

of the ADC readout signal from the foils which gives us the beam current profile.

There were two spill monitors used to trace the beam quality; one is the bad-spill

monitor which is a scintillation counter placed about a meter off the beam line near the

entrance of ESA. The monitor measured electron beam scattered off from the center of

beam line. When the beam is stable and proses cleanly through the beam line, the bad

spill monitor gives no signal. The other is the good-spill monitor which is a scintillation
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counter located under the target and detected the scattered particles from the target.

Thus the signal from this monitor indicates that the beam is on target.

E143 Chicme System for
Trmsverse Twget Field

SideView
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Figure 3.11: This is the schematic view of the chicane system.

induced magnetic fields perpendicular to the beam axis. The system

spin to be parallel to the beam axis at the deuteron target. The

went to the beam dump unless hitting the beam pipe.

All chicane magnets

corrected the electron

unscattered electrons

In order to study Al, the target was rotated by 90° around the vertical uis mechan-

ically. This dso changes the strong target magnetic field perpendicular to the beam axis

and bends the electron beam into a wrong direction off the beam dump. The magnetic

field rotates the spin of electrons and produces a misaligned incident angle. To avoid

these problems, a chicane system consisting of four chicane magnets was installed in the

beam line m shown in Figure 3.11. All these magnetic fields were set perpendicular to

the beam axis. Though the spin is rotated by these fields, the effects are canceled at

the target and there is no depolarization effect. The beam level after the

stayed lower than the nominal level, but parallel to the the beam line.

3.3 M@ller system

chicane system

The M@llersystem is the polarimeter’to me~ure electron polarization by using the M@ller

scattering. The beam polarization in this experiment was calibrated by ESA MOller
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system.

The cross section of M@llerscattering is expressed in center of mass system by [34],

do a2 (3+ COS20)2

[

~ ~~Pt(7+cos20)sin20

E=Y sin46 – 1(3+ COS26)2 ‘
(3.3)

where O is the scattering angle from the direction of the initial electron momentum, pb

and P~ are the beam and the target foil polarization. The cross section ~ymmetry for

the different orientation of the electron helicity is expressed by

~_fl$_Nti =Pbpf(7+cos26) sin20—
NTJ + NV (3+ COS20)2 .

(3.4)

This ~ymmetry for the M@ller scattering reaches to the maximum at the scattering

angle of 90°. Using the target foil polarization, pf obtained from the measurement for

magnetization of the foil, we can determine the beam polarization, pb from the measured

wymmet ry.

The M@ller foil target ww made of a ferr~magnetic material which contains 49%

Fe, 49% Co, and 2% Va. The foil target was mounted at 20° off the beam axis and placed

inside a 100 Gauss magnetizing field. Taking the ~ro-magnetic ratio for the material to

be g.f f = 1.889+ 0.005 [35], the electron polarization of the foil wu given by

Pf = (0.94011 ~ 0.00280)~
NpB ‘

(3.5)

where M is the foil magnetization, N is the number of electrons per unit volume, and PB

is the Bohr magneton. To obtain the systematic error coming from the foil thickness, the

target polarization for the six foils ww measured and was found to be 0.0803 for the 20

pm foil and 0.0814 for the 30, 40, and 154 pm foils.

Figure 3.3 shows the schematic view of ESA M@ller polarimeter. The target foil

was located near the entrance of ESA. The scattered electron which passed through the

window of the mmk was bent by the magnet and its momentum was analyzed. The

light gray area shows the detector acceptance for the scattered electrons. The scattered

electron ww detected by the single arm and double arm detectors. The single arm detector

was consisted of eight silicon pad detectors. The double arm detector was assembled by
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Figure 3.12: M@llerpolarimeter schematic view: The upper and lower parts show the

horizontal and vertical views respectively. This figure is enhanced in the transverse

direction with respect to the beam line. Polarized electrons come from the left side of

the figure. Scattered electrons are bent by the magnet and detected by double arm and

single arm detectors to analyze the momentum.
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seven lead glass blocks of 4.4 inch mounted with a 2 inch phot~tube. The double

arm detector ww placed behind the single arm detector and two sets of these detectors

were set above and below the horizontal plane respectively as shown in Figure 3.3. The

double arm detector had a large acceptance covering the electron scattering angle between

70° and 110° in the center of mws frame. This acceptance wa large enough to count

both of the M@ller electrons in time coincidence. One of the MOller electrons will be

then detected in the upper array and the other in the lower array. Figure 3.13 shows

the time difference between signals meuured by the two detectors. This coincidence

counting suppressed the back-ground rate and reduced the systematic error of the beam

:&.- -5 0 5 10 15 a

Figure 3.13: Time difference between

signals from the two appropriate detectors

in the upper and lower arrays of the double

arm detectors. There is a sharp peak with

1.1 ns resolution on the low background.

I I I I I

‘o 20 @ 60
u
lWA1 W@c@r Chmnel (0.6 m pith)

Figure 3.14: Horizontal axis shows the

detector channel of the Silicon micr~strip

detector corresponding to the momentum

of the MOller electrons. Vertical axis is

the number of times by a channel of the

detector. The expected spectra by elec-

trons on K, L, M, and N shell in atoms of

the target foil are shown.

The recent study on the MOller scattering shows that the orbital momentum of elec-

trons on the atomic shells influences the momentum spectrum of the scattered electron
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[36]. Figure 3.14 shows the momentum distribution obtained from a-Mon%Carlo simula-

tion for the Linac MOller polarimeter. The spectra by electrons on K, L, M, and N shells

of atoms in the target foil are shown in the figure. The momentum spectrum for electrons

scattered with the electrons on K-shell is broader than others. Therefore, the fraction of

MOller electrons from those sheik in a certain momentum range is different from that in

the whole momentum range. Because only electrons on the M-shell are polarized for the

target material, the polarization of electrons in MOller target would change depending on

the momentum acceptance of the detector. However, the double arm detector h= a wide

momentum acceptance to cover almost the whole momentum dependence range and the

correction due to the K-shell effect was estimated to be less than 1%[34].

3.4 Polarized target

The polarized nucleon target is essential for the measurement of the spin structure of the

nucleon. We used the frozen ammonia as the target material, in which three hydrogens

bound to the nitrogen were replaced to deuterons for the deuteron mewurement. There

are two remns why we choose ammonia as the target; one ww that the deuterized amme

nia, ND3, contains deu terons with a large fraction of about 30Y0,and the other is that the

material hm high radiation resistivity and stands against flux 4 – 8 x 1015particles/cm2

before depolarizing to e–1 [37].

The target was frozen by a 4He evaporation type refrigerator at 1 K. Super conduct-

ing Helmholtz coils surrounding the target provided 5.1 Tesla magnetic field. The target

was polarized by using the Dynamic Nuclear Polarization (DNP) method which uses

microwaves to improve the nucleon polarization. In the following, this will be explained

for the case of proton polarization.

We assume a simple system of electron and proton in a magnetic field neglecting

the spin-spin interaction of these two particles. These particles have spin 1/2 and their

spin states are degenerate without magnetic field. When magnetic field is applied, the
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energy split of these states, AE and given by

AE = $,

where p is the

magnetic field.

magnetic moment of the proton or the

Using Boltzmann distribution of a form

number of the state, polarization of proton or electron in

N t –N i eAE12kBT– e-AE~2kBT

(3.6)

electron and H is strength of

of eAElkBT for the occupation

a magnetic field is given by

AE

()y = N + +N i = eAE12kBT+ e-AE12kBT= ‘anh 2k~T ‘
(3.7)

where kB and T are the Boltzmann constant and the temperature, N ~ and N J are

the number of protons or electrons with +1/2 and –1/2 spin along the magnetic field

respectively. If we use 1 Ko for temperature and 5 Tesla for magnetic field into Equation

(3.7), we obtain the polarization of about 0.5% for proton and 100% for electron. We

call this polarization due to the energy split w polarization at thermal equilibrium.

This proton polarization at the thermal equilibrium is not sufficient for the polarized

proton target and we need introduce the DNP method. The basic idea of the DNP method

is to utilize the high electron polarization to improve the proton polarization by using

microwave.

Figure 3.15 shows the four energy states of four combinations of proton and electron

spin in a magnetic field. The occupations for these four states at thermal equilibrium are

shown in the column labeled ~ TE. W1, w2, w3, and W4 indicate the transition between

the two states as shown in the figure.

If the target was exposed to the microwave with the energy corresponding to the

transition w3, the electrons and protons in the ]e : –1/2, p : –1/2 > state are carried

into the Ie : 1/2, p : 1/2 > state. The electrons and protons in Ie : 1/2, p : 1/2 > state

falls into Ie : –1/2, p : –1/2 > or Ie : –1/2, p : 1/2 > states thermally. Because the

transition W4 is even slower than the transition W3or W1 [20], the occupation fraction of

the electrons and protons in the [e : –1/2, p : 1/2 > states increases and the occupation

fractions of the electrons and protons in these states are settled as shown in the column

of w3. As the result, the proton polarization is improved to be tanh(A/2) corresponding

to the electron polarization in thermal equilibrium, instead of tanh(d/2).
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Figure 3.15: The energy stites of electron-proton system in a magnetic field are shown.

The indices of ket vector indicate electron and proton spin. The energy split due to the

proton spin is expanded in the figure. The quantities in the right side indicate the relative

occupation of the states in three cases. T.E. stands for thermal equilibrium according

to the Boltzmann distribution. Saturation W2and W3indicate the occupations when we

drive these transition with microwave cause relaxation between these two states. The

lowest number gives proton polarization under these conditions.
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If the target w= irradiated by the microwave with the energy corresponding to the

transition of w2, the occupation fraction of the particles in the Ie : – 1/2, p : –1/2 > state

increases and the occupation fractions of the particles in these four states are settied w

shown in the column of w2. The magnitude of the proton polarization is to be same a

that for the case of w3, but the direction of the proton spin is opposite to that for the

c~e of w3. The wave length inducing the transitions W2and W3are 140.127+0.213 GHz

where plus for W2 and minus for W3 [20].

The deuteron is a spin 1 particle and makes three energy splits in a magnetic field

according to the spin states. The polarization of the deuteron, Pd is defined by,

Pd=
N+l _ N-1

N+l + NO + N-1 ‘ (3.8)

where N*lJo is the number of deuteron in the spin states indicated by the superscripts.

If the magnitudes of the energy splits between S2 = +1 and S2 = O are identical, a

microwave with a certain frequency enhances the deuteron polarization m well w that

for the proton.

Although the polarized deuteron is obtained with one frequency microwave, the

improvement of the deuteron polarization using the 44 MHz frequency modulation of the

microwave w- discovered by SMC [38]. It is understood as that the two energy splits

due to the deuteron spin are not identical. Letting the frequency of the microwave be VI

for the transition between the deuteron spin S2 = 1 and S2 = Oand V2for the transition

between S2 = Oand S2 = –1, the polarized deuteron is obtained with microwaves of the

frequencies of v. – V1and v. – V2where v~ is the frequency of the microwave required for

the spin flip of electrons. The polarized deuteron in the opposite direction is obtained with

microwaves of the frequencies of v~+ V1and v~+ V2. In short, the deuteron polarization

requires the microwaves with two different frequencies and the frequency modulation for

a certain microwave provides these two frequencies.

We used the microwave frequencies of 136.48 GHz and 136.78 GHz frequency mod-

ulated by 44 MHz to implement the polarized deuteron in the positive and negative

directions respectively. We found some improvement for the deuteron polarization by
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3-5% with this frequency modulation.[20]

Figure 3.16 shows the E143 polarized target system. Liquid helium kept the am-

monia target and the super conducting magnet at 1 Ko. The magnet produced 5.1 Tesla

magnetic field around the target cell to align the nucleon spin. The target insert had four

cells which were filled by ND3, NH3, empty (nothing in it), and carbon or aluminum.

We can select one of cells on the beam line by using a mechanical control. Each target

cell had a dimension of 425. 30mm. The microwave was fed to the target cell through

a pipe and horn from the top of the system. The power of the microwave wu about 1

Watt at the target cell.

The target polarization ww me~ured with Nuclear Magnetic Resonance (NMR).

The NMR is induced by a oscillating magnetic field perpendicular to the static magnetic

field, the super-conducting magnet in E143 target system. A small fraction of the nucleon

in the material oscillates between the spin up and down states with a frequency of the

oscillating magnetic field. This signal resonates at the frequency determined by the static

magnetic field and the magnetic moment of the nucleus. This phenomenon is called w

Nuclear Magnetic Resonance (NMR).

The NMR signal ww measured by using the technique of the Q-meter. A coil

made from Copper and Nickel w= placed in each target cell perpendicular to the static

magnetic field. When we induce the oscillating magnetic field by using this NMR coil,

the inductance of the NMR coil is modified by the target material existing in the coil to

be [39]

L(u) = L~[l + 4Tq[/(u) – ix’’(u)]], (3.9)

where w is the frequency of the oscillation magnetic field, L(w) is the inductance of the

NMR coil at the given frequency, LOis the inductance of the coil in the vacuum, q is the

filling factor of the material in the coil, ~(w) and #(w) is the real and imaginary parts of

the complex susceptibility of the material. The #(w) is related to the target polarization

, pt, by the relation of [39]

p~ = K J@ X“(w)dw, (3.10)
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Figure 3.16: The electron beam comes from the left side of the figure.

induce the 5.1 Tesla magnetic field along the beam mis. We rotated the

by 90° along the vertical atis in the investigation for the Al.
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target system
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Figure 3.17: The NMR signal of the thermal equilibrium for ND3 under 5.1 Tesla and

1 K measured by Q-meter circuit. It corresponds to about 0.068% polarization.

where K is a constant involving the nucleus property. The imaginary part of the induct-

ance is the real part of the impedance of the coil. In the Q-meter, the circuit is driven by a

constant current source and the variable capacitance is set to absorb the phase part of the

impedance of the coil. Therefore, the voltage of the circuit of the Q-meter is proportional

to the real part of the impedance of the coil and the variation of the # with the frequency

can be observed M the variation of the voltage of the coil. Figure 3.17 shows the NMR

signal w a function of the frequency w for thermal equilibrium of ND3 target. This # is

zero for all frequencies except for a smtil band close to the resonant frequency a shown

in Figure 3.17, thus the area of the NMR signal above the base line is proportional to the

target polarization from the Relation (3.10). The target polarization in the experiment

w= calibrated by using this NMR signal of thermal equilibrium corresponding to 0.068Y0.

We used the enriched 15N nucleus instead of the usual l*N. While the l*N nucleus

has the magnetic moment equal to that for deuteron, the 15N h~ the magnetic moment

equal to that for proton and the NMR signal does not overlap to that for the deuteron. We

were then able to me~ure both polarizations for the deuteron and the nitrogen nucleus in
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the target and the effect of the nitrogen polarization wu corrected properly w discussed

in Section 4.2.5 and in Appendix D.

3.5 Spectrometers

Figure 3.18 shows aschernatic view of the spectrometers. There were two independent

spectrometers to detect electrons scattered offthe ND3 target. These spectrometers were

located along anangleof4.5° and 7° from the beam axis. Wecdl these spectrometers

the4.5° and 7° spectrometers respectively. Both spectrometers had two bending dipole

ND3
Target ,.,>::.::.:.:::.:.:..:~::.:>

%-m 2.1 m
Floor

o 5 10 15 20 25 30
meter

w7-&

Figure 3.18: This figure shows horizontal andvertical views of thespectrometer layout.

The scale shows the distance from the target in meter. The vertical view is the layout

for the 7° spectrometer.

magnets. B1 and B3 have the length of 118 inch and B2 and B4 have the length of 136

inch. The central momenta for the spectrometers were set to 11.5 GeV/c and 12.5 GeV/c
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forthe4.5° and70 spectrometers. Thetwomagnets ineachspectrometer bent electronsin

directions opposite to each other. This configuration has a larger momentum acceptance

compared to the configuration bending in same direction [40]. Figures 3.19 and 3.20 show

the momentum wceptance. The momentum acceptance of 4.5° and 7° spectrometers was

from 6 and 7 GeV/c to beyond 20 GeV/c. respectively. The quadrapole magnet in

the 4.5° spectrometer enhances the position dependence of electron momentum on the

vertical mis and spreads electrons onto a larger detector area along the horizontal axis.
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Figure 3.19: Momentum acceptance of

the 4.5° spectrometer: the horizontal axis

shows the momentum, the vertical axis

shows the solid angle of the spectrometer

acceptance. The solid line shows the solid

angle of the acceptance of the E143 4.5°

spectrometer. We indicate the acceptance

of SLAC 20 GeV/c spectrometer by the

half-dashed rectangle in contrut to the

E143 spectrometer.
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Figure 3.20: Momentum acceptance of

the 7° spectrometer: the horizontal and

vertical axes indicate the momentum and

the solid angle of the spectrometer accept-

ance respectively. The solid line shows

the solid angle of the acceptance of the

E143 7° spectrometer. We indicate the

acceptance of the E130 spectrometer and

the SLAC 8 GeV/c spectrometer by the

dashed line and the half-dashed rectangle

respectively in contr~t to the E143 spec-

trometer.

A large photon background from the bremsstrahlung, pion decays etc. were expec-

ted at the small scattering angles. The spectrometer suppressed the photon background
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Figure 3.21: Electron trace on the 4.5°

spectrometer: (a) is on the bending plane,

and (b) is on the horizontal plane. The

traces are drawn for various momenta

from 7.5 GeV/c to 19 GeV/c. Note that

the figure’s geometry is distorted so that

the trace of a 10 GeV/c electron at the

center of the acceptance appears as a

straight line.
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Figure 3.22: Electron trace in the 7°

spectrometer: (a) is on the bending plane,

and (b) is on the horizontal plane. The

traces are drawn for various momenta

from 7 GeV/c to 19 GeV/c. Note that the

figure’s geometry is distorted so that the

trace of a 10 GeV/c electron at the cen-

ter of the acceptance appears m a straight

line.
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with the two bounce system [40]. In this system, the magnets and the collimators were

locatid such that the photon must hit those at le~t twice to reach the spectrometer

acceptance.
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Figure 3.23: The dotted and d~hed lines show the fractional momentum resolution for

the 4.5° and 7° spectrometers respectively. The solid line shows the momentum resolution

by the energy measurement with the lead gl~s shower counter. The small d~hed line

indicates the resolution corresponding to 10% error of Bjorken x.

Figures 3.21 and 3.22 show the ray-traces for the 4.5° and 7° spectrometers. Note

that the figure’s geometry is distorted so that the trace of a 10 GeV/c electron at the

center of the acceptance appears as a straight line. In this configuration, we set the magnet

layout to me~ure particle momenta from the trajectory gradients with largest possible

acceptance. The momentum resolution of this configuration is worse than that for the

same bending configuration, but it is acceptable for the experiment. Figure 3.23 shows

the expected momentum resolution for each spectrometer and the momentum resolution

coming from the requirement of Ax/x. The small dashed line in Figure 3.23 shows the

momentum resolution to this requirement. The momentum resolutions of the 4.5° and 7°
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spectrometers by the tracking shown by the dotted and d~hes lines in this figure satisfied

the

for

requirement except in the high momentum region. It may be critical to the binning

the data in the high x region and will be studied in Section 5.6.3.

The several detectors were located after the bending magnets to detect electron

tracks as shown in Figure 3.18. The detector systems are identical for both spectrometers

composed of two threshold ~erenkov counters, seven hodoscope planes, a lead glas

shower counter, and two scintillation trigger counters which will be explain in the following

sections.

3.5.1 ~erenkov counter

Two threshold type Cerenkov counters were set in each spectrometer to identify electron

tracks.’ Because electrons and pions give different momentum thresholds for emission of

the Cerenkov light, we can identify the incident particle by measuring the Cerenkov light

in the momentum region above the threshold. The signals obtained from the Cerenkov

counter wm used u one of the online trigger signals.

Cerenkov light is emitted when a charged particle p~ses through a medium faster

than the light speed in the medium. The Cerenkov light is emitted in a cone of angle 0

which is given by

(3.11)

where, n is the refractive index of the medium, ~ is the relativistic ~ function. If l/n@ is

larger than 1, the Cerenkov photon is not emitted. Defining that / is the light speed in

the medium and v is the speed of the particle, the Equation (3.11) is rewritten by

d
Cose = —,

v
(3.12)

From Equation (3.12), the ~erenkov light is often understood in the analogy of the shock

wave emitted by the object moving with the ultrwnic speed.

Since the ~ of the high energy electron with a few GeV/c momentum is extremely

close to 1.0, the high energy electron in a medium always emits the Cerenkov light to
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the direction of angle, arccos(l/n), from the track. In order to implement the electron-

pion separation, we have to chose a medium which gives n~ > 1.0 for electrons and

n~ < 1.0 for pions in the experimented momentum region. If we want the separation up

to 13 GeV/c of the momentum, the refractive index of the medium, n has to be less than

1.000058 because 13 GeV/c pion h= @= 0.9999424. In such a medium, only the electron

emits the Cerenkov light for the momentum lower than the threshold, 13 GeV/c.

Figure 3.24: Schematic view of Cerenkov counter C2. The cylindrical tank was filled

with depressured N2 g=. ~erenkov photon emitted by the incident electron tracks were

reflected by three mirrors and focused on the phot~tube.

The two Cerenkov counters are made of aluminum cylinders placed tiong the spec-

trometer axis. The dimensions of the cylinders are 400 cm in length by ~160 cm for the

long countir (Cerenkov2, C2), 200 cm by 4118 cm for the short counter (Cerenkovl, Cl).

To minimize d-ray production and multiple scattering, the aluminum window of 1 mm

thickness was used.

We used N2 gm w the medium. Since the N2 gw produces scintillationlight as
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well as ~erenkov light for charged particles, pions below the ~erenkov threshold produce

light. However, the N2 gw has a good transparency at UV region, down to 150 nm wave

length, and with use of the wave-length shifter, we improved the SIN ratio for Cerenkov

light and the detection efficiency for electrons.

The Mirrors were placed at the end of the cylinder to collect Cerenkov photons to

the photo-tubes. C2 had 3 mirrors which cover an area of 65 cm by 115 cm. Cl had 2

mirrors which cover are= of 40 cm by 51 cm and 38 cm by 51 cm for the 4.5° and 7°

spectrometers respectively. All mirror surfaces were coated with aluminum and MgF2

to optimize the mirror reflectivity. We obtained 90% of the reflectivity for 200 nm light.

These mirrors were aligned properly by survey measurements using a solid state Imer

together with a simulation [41].

We used phot~tubes, Harnamatsu R1584-01 with UV glass window which have the

large diameter and high quantum efficiency. The surfaces of the photo-tubes were coated

with wave length shifter of 2430 nm thickness of para-terphenyl and overlayed with 25

nm thickness of MgF2 to protect the wave length shifter against evaporation and aging.

The refractive index for a given gm pressure is given by using Lorenz-Lorentz

relation [41],

n(A)2– 1
= K(A)p,

n(A)2 + 1
(3.13)

where n(~) is the refractive index at wave length A, p is the density of the gas, and K is a

constant, O.163m3/g for N2. The pion thresholds of the Cerenkov counters were set at

13 GeV for C2, and 9 GeV for Cl. These pion thresholds correspond to N2 pressures of

240 mmHg and 500 mmHg for the C2 and Cl respectively. Coincidence of these short and

long Cerenkov counters selected electron tracks and rejected pion tracks cleanly because

only a few YOof pion emit scintillation light. The purity of the electron sample was

estimated to be more than 9970 from the study for the experimental data.

The number of photons by the Cerenkov emission is expected by the following

formula [42],

J

A2 1
N = 2rQLsin20 —dA,

Al A2
(3.14)
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where a is the fine structure constant, L is the length of the medium, O is the Cerenkov

angle, and Al and A2 are the lower and upper limits for the sensitive region in the wave

length. If we assume the sensitive region of the PMT between 150 nm and 550 nm in the

wave length, the refractive index n is 1.000058, the length of the counter, L, is 4 m, the

number of the ~erenkov photon is expected to be 106. Actually, the number is reduced

due to the transparency of the N2 gas, the mirror reflectivity, and quantum efficiency

of the phot~tube, etc. Including these reduction factors, the number of the Cerenkov

photon was estimated to be 8.2 + 0.5 by a Mon&Carlo simulation [41].

Detection efficiency

The detection efficiencies of the Cerenkov counters were studied under an assumptions

that the probability of detecting phot~electrons (Cerenkov ADC count) is Poisson distri-

bution [41]. Table 3.1 shows the efficiencies defined to be the probability to produce one

or more photons which was evaluated from the Cerenkov ADC spectrum. All of these

4.5°. 7°.

cl C2 cl C2

Mean ADC 165.6 A 56.6 127.1 * 42.3 158.8 & 54.2 137.2 k 55.5

Nw 8.6 * 0.5 9.0 * 0.5 8.6 * 0.5 6.1 A 0.5

Eff. 99.98& <0.01 99.99* <0.01 99.98A <0.01 99.78* <0.11

~ble 3.1: Cerenkov counter efficiency from ADC spectra.

counters have high detection efficiencies of more than 9970. The numbers of Cerenkov

photons NY were evaluated from the ADC spectra close to the value of 8.2 A 0.5 obtained

from the Monte-Carlo simulation.

3.5.2 Hodoscope

There were seven plane horoscopes on each spectrometer. The purpose of hodoscope

systems was to reconstruct charged particle tracks. A track is used to determine the
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particle’s momentum from the reverse matrix of the spectrometer magnet.

A hodoscope was =sembled with finger scintillation counters which were placed

parallel to e~h other so that hits on the finger of the hodoscope gave the information

on the track position in the transverse direction with respect to the finger axis. Every

finger overlapped its neighbor finger by 2/3 of its width w shown in Figure 3.25. This

configuration improved the effective spatial resolution of the hodoscope allowing a time

coincidence measurement between fingers overlap.

—L

Figure 3.25: Finger overlap: The di-

mension is of HIU hodoscope.

IEH5X
/

L’w

...
,.

Y

1/z

Figure 3.26: Horoscopes schematic

view: the first set wm composed by four

horoscopes which determined position of

tracks in u, x, y, y axes. The second set

W= composed by three planes which de

termined position in x, y, u axes. C2

counter wu located between H4Y and

H5X planes.

The seven horoscopes were located along the spectrometer axis in order of HIU,

H2X, H3Y, H4Y, H5X, H6Y, and H7U as shown in Figure 3.26, where X,Y, and U

correspond to the x, y, and diagonal me~urement of the track position respectively. The

planes 1 through 4 were between Cerenkovl and Cerenkov 2, and planes 5 through 7

were between Cerenkov 2 and the shower counter.

Table 3.2 and 3.3 show the dimensions of the finger scintillator of the horoscopes
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in the 4.5° and 7° spectrometers. Table 3.4 lists the finger lengths for the U hodoscope.

H2X, H3Y, H5X, and H6Y had a higher spatial resolution than others and therefore these

horoscopes dominated the momentum resolution of the spectrometer. HIU, H4Y, and

H7U had a roll to improve the signal purity and reliability and to remove any accidentd

double hit. H2X, H3Y, H5X, and H6Y were built by Syracuse group originally for E142

which investigated deep inelastic scattering of the electron with g= 3He target [23]. H4Y

was built by SLAC, and H7U by Prench group for E142. HIU w= built by TOHOKU

group for E143.

Plane width(mm) length(mm) thickness number

HIU 45 Various 6.2 25

H2X 20 590 6.2 34

H3Y 30 430 6.2 31

H4Y 47.6 355.6 6.2 20

H5X 30 1070 6.2 27

H6Y 30 510 6.2 55

H7U 75 Various 10 21

Total finger number 213

Table 3.2: Hodoscope dimensions on 4.5° spectrometer.

Plane width(mm) length(mm) thickness number

HIU 45 Various 6.2 25

H2X 30 690 6.2 23

H3Y 30 430 6.2 36

H4Y 47.6 482.6 6.2 20

H5X 30 1070 6.2 27

H6Y 30 510 6.2 55

H7U 75 Various 10 21

Total finger number 207

Table 3.3: Hodoscope dimensions 7° spectrometer
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HIU

length(mm)

200

260

320

380

440

500

560

620

680

720

740

Total I

number

2

2

2

2

2

2

2

2

2

1

6

25

H7U

length(mm)

200

300

400

500

600

700

760

820

Total

number

2

2

2

2

2

2

2

7

21

Table 3.4: U-hodoscope dimensions

High voltage modules were located in the counting house located upstairs of ESA.

We stretched more than 120 SHV coaxial cables from the counting house into ESA to

supply high voltages for these photo-tubes. To reduce the number of the SHV cables

from the counting house to ESA, we used high voltage splitters in the spectrometer. One

long SHV cables provided high voltage for up to four photo-tubes. Figure 3.27 shows

the circuit of the splitter; where the voltage was determined by a ratio of the variable

resistance to the inner resistance of the phot~tube.

A phot~tube detected a signal from a single finger. Phot~tubes which were used

for all horoscopes except for the HIU plane are specified in Reference [23]. The phot~

tubes for the HIU plane were H3167 by Hamamatsu. This photo-tube h= a ~ inch

diameter, a length of 103 mm, a sensitive region of 300-650 nm in the wave length, a

gain of 2.0x 106 and a rise time of 1.8 ns at -1.5 kV. The upper limit for the high voltage

is -1.9 kV. The scintillator used for the HIU plane is SCSN38 by Kuray which hw a

density of 1.05g/cm3 and a refractive index of 1.59. The scintillation light wave length
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Variable
resistances outputs

input

f

‘2

?
*

Figure 3.27: Hodoscope High voltage splitter. Only two of the four outputs are drawn.

distributes from 400 beyond 500 nm.

The output signals of the phot~tube was processed by a LeCroy 4413 discriminator

mounkd in two CAMAC crates in each spectrometer-hut. The threshold was –30 mV

for HIU and –50 mV for the others. Output ECL signals with 20 ns width were sent

to the counting house by twisted pair cables. Each signal went to a LeCroy 2277 TDC

through a gatecard which ignored any signal when the input gate was closed. The gate

was called as Hod-gate retie by trigger logic which fired for p~sing charged particles.

The LeCroy 2277 TDC recorded up to 16 signals for each channel. The resolution of the

TDC is 1 ns and the TDC buffer is 16 bit for each signal. Therefore the dynamic range

is 65ps. Because the spill width was about 2.2w in length, this dynamic range is enough

to record the hodoscope hits for a spill.

timing calibration

The timing at each hodoscope was obtained by comparing the meuuring timing with

the expected timing of the reconstructed track passing through the hodoscope. Where

the track reconstruction w= performed by using information from the horoscopes, the

Cerenkov counters, and the shower counter. The procedure of the track reconstruction

will be described in Section 4.1.3.

We first take time difference between the mewured timing and the expected track
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Figure 3.28: The spectra of At of the horoscopes for the 4.5° spectrometer after the

calibration. The time difference between the hodoscope hits and the reconstructed tra~s

are plotted. The results from fingers are accumulated together about a hodoscope plane.
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Figure 3.29: Thespectra of the At for the 7°spectrometer after the calibration. The

time difference between the hodoscope hits and the tracks are plotted. Results from

fingers are accumulated together about a hodoscope plane.
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timing at a given hodoscope w follows,

At= (tm – td – tp)– t,ec (3.15)

where the tm is the TDC count of the hodoscope fingers, the td is the propagation delay of

scintillation light in the hodoscope finger, the tp is the TDC pedestal including the time

delay due to the electric line, and the trecisthe timing of the reconstructed track pasing

the finger.

The propagation delay in the scintillator was calculated from the hit position and

the propagation speed in the scintillator. The hit position on a finger was determined

taking a time coincidence with another finger crossing to the finger. The propagation

speed for each finger was calculated from E142 run as nearly qual to 15 cm/ns [23].

We tuned the At spectrum to center at O by adjusting the TDC pedestal tp with

iteration procedure. Figures 3.28 and 3.29 show the spectra of the At for the 4.5° and 7°

spectrometers after several iterations. We plotted only the hits used for reconstruction

of tracks. All horoscopes were well calibrated resulting the sharp peaks at zero. Table

3.5 shows the time resolution of the horoscopes evaluated from these plots. The time

resolution of about 1 ns was obtained for all horoscopes.

Plane time resolution (ns) for 4.5° sp. time resolution (ns) for 7° sp.

HIU 1.18 1.14

H2X 0.90 0.74

H3Y 0.72 0.93

H4Y 0.88 0.89

H5X 0.77 0.75

H6Y 0.69 0.77

H7U 1.05 1.04

~ble 3.5: Time resolution of the horoscopes
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Hodoscope efficiency

We calculated the detection efficiency of the hodoscope defined by the probability to make

hits for passing tracks.

The track was reconstructed by a fitting as described in Section 4.1.3. To improve

the reliability for the track sample, we r~uired,

1.

2.

3.

4.

Both ~erenkov counters have hits in the trigger,

Six planes of the seven horoscopes have hits,

Spatial matching between the shower cluster and the track within 20 mm,

The track was rmonstructed within 10 mm from the target center.

To ignore the effect of the finite spatial resolution of the tracking giving the improper

finger address, we accepted the event when any finger within the width plus 50 mm from

the track position h= a hit.

Figure 3.30 and 3.31

spectrometers respectively

index from 1 to 7. Vertical

show the inefficiency for the horoscopes in the 4.5° and 7°

for run 1334. Horizontal axis shows the hodoscope plane

axis shows the inefficiency of each plane in logarithm scale.

3.5.3 Shower counter

The shower counter was placed at the end of the spectrometer to me~ure energy of the

electron. The shower counter is a multi-segment electromagnetic calorimeter built with

lead gl~ses. High energy electrons incident to the lead gl=s induce an electr~magnetic

shower due to bremsstrahlung and pair creation and produce a large number of electrons,

positrons, and gamm=. These electrons and positrons lose their enerW ionizing atoms

and emitting ~erenkov light in the lead glass. The total amount of the ~erenkov light is

proportional to the total path length of the electrons and positrons in the shower counter

which is proportional to the initial energy of the electron [42], thus the shower counter
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Figure 3.30: Plane inefficiency for run

1334 in 4.5° spectrometer
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Figure 3.31: Plane inefficiency for run

1334 in 7° spectrometer

meuures the energy of the electron by collecting the Cerenkov light in the lead glwses

with phot~tubes.

The counter was built with 200 lead glms blocks of 62

Figure 3.32. The radiation length of the lead glass is 3.7 cm.

.62. 750mm m shown in

Because the 750 mm lead

glws corresponds

the lead glus.

The output

to 24

from

radiation length, electrons lose more than 99.970 of the energy in

each photo-tube WM divided into five line as shown in Figure

3.33. These four lines went to ADC via 200 ns delay line. Each ADC channel ww able to

collect a datum once in a spill of 2.2 NSbecause we read and initialized the ADC buffer

after every spill. Thus, we were able to collect the data up to four times in a spill. Each

four of the fifth line were summed and divided into two lines. One of them was sent to

TDC via a discriminator to me~ure the timing of the signal. Another line was used to

make the signal from the whole counter. This signal from the whole counter made one of

online electron trigger signal as will be mentioned later.

There were three purposes for the shower counter; (l)providing online electron

trigger signal, (2)measuring the electron energy, and (3)particle identification using a
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Figure 3.32: 200 of lead glass blods

were composed in fly-eye configuration.

Phot~tubes which were mountid behind

each lead glass detected the signal from

the lead glass.

Figure 3.33: An output of each phot~

tube was divided into five lines. One of

them ww used for online triggering and

TDC . Other lines went to ADC for calor-

imetry via 200 ns delay line.
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neural network algorithm. The calibration to calculate the electron energy deposit from

the shower ADC is important for measuring the electron energy and will be described in

the following section.

Shower coun&r calibration

As mentioned in the previous section, the light collected by phototubes is proportional

to the energy deposited by electrons. In order to calculate the electron energy, we need to

find the proportional constants between ADC counts and energy deposited by electrons.

Energy deposit in each lead glws block can be calculated with the constant as follows,

E! = F: X ADC; (2=1,200: j=l,4), (3.16)

where ,E~ is the ener~ deposited on the i-th block of the j-th trigger in a spill, F: is

the proportional constant, and ADC: is the ADC counts. There were 200 blocks, and 4

ADC channels for each block making a total of 800 constants for each shower counter.

The radiation length of the lead glass is enough so the electron loses all of its energy

in it. Therefore, the ener~ deposited in the lead glws by an electron is equal to the

tracking momentum giving E/P=l which we use to obtain the calibration constants.

Total energy deposited by an electron ww found by clustering the blocks with energy

deposit using Cellular Automata [43] which will be mentioned in Section 4.1.2.

The sample of clusters for doing the calibration required low pion contamination

since pions produce a E/P of less than 1. Pions lose only a fraction of its energy in the

lead glms. To reject any pion and junk cluster from the sample, we required the following

conditions,

1. A track must be associated to the cluster within 10 ns in time and 50 mm in both

x and y.

2. The energy deposited in the central block must be higher than 5 GeV.

3. The fraction of cluster energy deposited in the central block must be higher than

0.65.
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4. Clwified asanelectron bythe neural network.

Lead glw blocks are classified as shown in Figure 3.34. The first category is “non-

edge block” which means not on the edge of lead glass array. The second is “edge-bloc~

which has only three adjacent blocks. L~t one is “corner block” which hw only two

adjacent blocks. Sometime we call a cluster whose center is on a non-edge (edge, corner)

block w a non-edge (edge, corner) cluster. The calibration was done with different ways

for these three cl=ses of blocks.

Non-edge Edge Comer

Figure 3.34: Clarification for the shower block (cluster)

The electron energy is mostly deposited in the center block and spread over the

surrounding eight blocks [44]. Hence, we required that the total energy deposited in

these nine blocks gives E/P = 1 for the non-edge cluster. The constant for the block

ww corrected after every iteration by the averaged E/P m,

(3.17)

where F: is the constant for the i-th block and j-th ADC channel, < E/P >; is an

averaged E/P which was taken at this iteration, (F:)prime is a new constant.

For the edge clusters, we can not require E/P to be 1 because a part of electron

energy escapes out of the counter. However, the edge block and its adjacent five blocks

are supposed to occupy a certain fraction of the energ deposit with respect to the total

energy of electron. This fraction w= estimated from the well calibrated non-edge block
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data u 0.92 [44]. Hence, the constant for the edge block was calibrated by

(F~)’= 0.92F/
a

< Eed9~/P >; ‘
(3.18)

where the < Eed9e6/p >: is defined similar to that for the non-edge cluster but the total

energy deposited of the six blocks.

The edge block ww calibrated also with a ener~ fraction to the total energy deposit

when an electron passed through the adjacent block. It was estimated to be 6.5% [44]

and we corrected the constant by

(3.19)

In these two correction method for the edge block, we selected which gave a smaller

correction than the other to prevent the divergence of the constant due to the statistical

fluctuation.

The corner block was calibrated using a energy deposited in the corner block by an

electron passing through the inside diagonal block. The ratio of the energy deposit to the

electron momentum, ECWnH/P was studied to be 2% [44]. We corrected the constant by

(3.20)

Table 3.6 shows the results of the shower calibration. Each run corresponds to a

typical run of a run block which was a bunch of runs classified due to some hardware

changes.

run # < E/P >4.5° < E/P >7°

1560 1.000 k .054 1.000 & .057

I 2750 I1.000+ .054 1.001+ .059

2926
I

1.000 + .055 I 1.000+ .060 j

Table 3.6: E/P after the calibration. The error is the standard deviation of the distribu-

tion of E/P.
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3.5.4 ~iggercounter

/

Photo-tube Lightguide

1

/’= Lightguide‘hoto”tube, I

I
vLinearFun-in

“trim’ator-e.cedout,utDiacrimhator

Figure 3.35: Front trigger counter: Fish-tale acrylic light guides introduced emitted

photons into the photo-tubes. Two outputs on a side was combined linearly by a linear

Fan-in. Then these signals arediscriminated by30mV threshold. Thecoincidence of the

outputs was sent to the trigger electronics. Outputs of the Fan-ins were also recorded by

TDC independently.

E143 spectrometer had two scintillator trigger counters. The front trigger counter was

set between Cerenkov counter 1 and Hodoscope HIU plane. The dimension of the counter

was 700.450.6 mm as shown in Figure 3.35. The scintillator was made of Kuray SCSN38

with higher photon emission than for Bicron [45]. We used the photo-tube Hamamatsu

H3690 which has a dimension of #l ~ inch x 113 mm, a sensitive region of 300-650 nm in

the wave length, a current gain of 5.3 x 106 and a rise time of 2.0 ns at -1.5 kV. The limit

of the high voltage is - 1.9 kV. Figure 3.35 shows the assembly of the photo-tube and

the scintillator for the front trigger counter. These photo-tubes were connected through

light-guides to the scintillator.

The rear trigger counter was placed between Cerenkov counter 2 and Hodoscope

H5X plane. The scintillator was Kuray SCSN38 with the dimension of 1100.550.13

mm. Signals were read out by two photo-tubes through the twisted acrylic light guides
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attached at each end of the scintillator. The photo-tubes were Hamamatsu H1161 of 460

mm diameter with the sensitive wavelength from 300 to 650 (nm). The current gain is

5.3 x 106 and the rise time is 2.6 ns at -2.0 kV.

Llghtguide

4
Phototube

\

Llghtguide

\
Phototube

n

4%

70

I +lloo~300+ I
I I

Discriminator
Discriminator

Figure 3.36: Rear trigger counter: The outputs from both sides were processed by a

discriminator with 50mV threshold. Thecoincidence of these signals wasusedas one of

online trigger signal. Each outputs were recorded by TDC.

The coincidence of these front and rear scintillation trigger counters were used as an

online trigger with a rate suppressed by a pre-scaler. The signal served as the hodoscope

gate and the trigger for pions which will explained in Section 3.5.5.

Cosmic ray test

The time resolutions of the scintillation trigger counters were measured with the signal

produced by cosmic-rays [46]. Figure 3.37 shows the location of the investigation. A

coincidence of two scintillation counters, counter A and B, each having an area of 5.5

cm defined the timing and location of the passing of a cosmic-ray. The signals from the

photo-tubes of both sides of the front trigger counter

and a mean timer. The mean timer gives an averaged

were processed by discriminators

timing of two input signals by,

tl + t2
tM=— + tdl,

2
(3.21)
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Cosfic ray

Counter A
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I Trigger counter

1 Counter B

Figure 3.37: Setup of the time resolu-

tion measurement: Counter A and B are

scintillation counters which have the di-

: L ID 31
Entries 4136
Meon

n

0.9753 E-01
RMS 0.8407

300

250

200

150

I 00

50

0
–6 -4 -2 0 24 6 8 10 12

ns
Del. h – F,o”t irigger

Figure 3.38: Time difference between

counter A and the front trigger counter.

mension of 50.50. 20mm. The coincid-

ence of these counters defined the passing

of cosmic ray.
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where tM is the mean timer output, tl and t2 are the timing of the inputs, and td is

the delay time of the circuit. We used the mean timer instead of the coincidence to

compensate the timing shift due to the propagation of photons in the scintillator. The

time differences of the three combinations among counter A, B, and the front trigger

counter were recorded by TDC with 25 ps/channel. Dividing the area of the front trigger

2N ID 32
Ent,’ms 4136

< 8W
:

-“ -0.861 2[-01

E

1 ‘

RMS o.4m
= Ucw 4136,
: 7W /n& 127.8 / 11
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Figure 3.39: Time difference between

counter A and counter B.

10 35
E“t ties 4136
Man -0.1733
RMS 0.8644

2
~
\ 4s

!,=

%W

~

z 3s0

300

250

2W

lW

100

50

0 1 1 , )., I 1 1
-6-4-202 4 681012

“s
Oef. B - Tr:gg.r

Figure 3.40: Time difference between

counter B and the front trigger counter.

counter into three by three, we took the data at the divided nine points of the counter.

Figure 3.38, 3.39, and 3.40 show the time differences. These histograms contain all of

data which were taken at the nine points. The resolution of these distributions come

from the intrinsic time resolutions of these individual counters. Thus, for example, the

resolution in Figure 3.38, ad, can be written by

~d = ~~: + ~;, (3.22)

where UAand OF are the resolution of counter A and the front trigger counter respectively.

Therefore, we calculated the intrinsic time resolutions for these three counters from these

three distributions. The intrinsic time resolution of the front trigger counter w= obtained

to be 0.71 ns.
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Figure 3.41: Time difference between

counter A and the rear trigger counter

Similarly, the resolution for the rear

and 3.42 to be 0.56 ns.

3.5.5 ~igger electronics
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Figure 3.42: Time difference between

counter B and the rear trigger counter.

trigger counter ww obtained from Figure 3.41

E143 spectrometer system opened the gates for TDC and ADC whenever a trigger signal

was generated. This trigger signal wm generated independently in the 4.5° and 7° spec-

trometers. The number of the gate for the ADC and the hits for the TDC were limited

up to four and sixteen, or less respectively in a spill. The number of electrons in a spill

is typically one or less, on the contrary, the number of pions W* higher than that for

electrons. Thus, we imposed the following r~uirements for the trigger electronics for the

efficient measurements of electrons and pions:

1. Open the ADC and TDC gate for all electrons,

2. Open the ADC and TDC gate in a fraction of times for pions to prevent the trigger

burst by many pions.

Figure 3.43 shows the basic picture for the E143 trigger electronics. Baically, the prosing
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~ hod-gate

Figure 3.43: Basic idea of the E143 trigger logic: the main and pion-or triggers are

generated when electrons and any charged particles p- through the spectrometer re-

spectively. The “or” product of the main and pion-or triggers composes the main-or

trigger which opens the ADC gate, The hod-gate trigger which opens the TDC gate is

generated dso when electrons and charged particles pms the spectrometer. The rate for

the charged particles ( not for electron) is suppressed by different factors for pion-or and

hod-gate triggers.

of electrons and any charged particles are defined by the coincidence signal of the two

Cerenkov counters and the two scintillator trigger counters respectively. The “or” product

of the two coincidence signals composes the main-or trigger which opens the ADC gate

and the hod-gate trigger which opens TDC gate. The difference of these trigger signals

is the suppression factor for the coincidence signal for the scintillation trigger counters.

This suppression is to prevent the trigger burst by many pions and the difference of the

suppression factors is because of the acceptance of the number of signals of the ADC and

TDC in a spill.

Figure 3.44 shows the logic of the main trigger and the other coincidence signals

in detail. S1 and S2 are the output signals from the front and rear trigger counters after

processed through discriminators. HodSum is the logical sum of the output signals from

all fingers of H2X hodoscope. The coincidence of S1, S2, and HSUM generated SciCoin.

The rate of the signal was reduced by a pre-scaler with a factor N4 in order to prevent

the trigger burst by many pion tracks. This pre-scale factor N4 wu normally set to 4

for the 4.5° spectrometer and 1 for the 7° spectrometer.
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Figure 3.44: The logic of the main trigger and the other triggers

Scicob
sm4

sm4,cl-M

SM4,C2-M

C1-L,CZL

C1-M,C>M

Mtin

ShwSum-VL

ShwSum-VL

ShwSum-M

are shown. S1 and

S2 are signals from the front and rear trigger counters, HodSum is a sum of all outputs

of the H2X hodoscope, Cl and C2 are outputs from the Cerenkov counters, ShwSum is

a sum of outputs from the lead gl~s blocks, and BG is the beam gate opened whenever

beam came into ESA. A black half circle is a coincidence and a gray circle is a pre-scder

to reduce the signal rate. The coincidence of the ShowSum, Cl, C2, and BG composes

the main trigger.
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The Cerenkov counters are very important to identify electron tracks. The signak

from these counters were processed through two discriminators with 30 mV and 50 mV

thresholds. These signals were labeled w Cl-L, Cl-M for Cl and C2-L,C2-M for C2.

The shower counter provided four ADC and one trigger signal as shown in Figure

3.33. One of those outputs was used to make shower trigger signal. This trigger signal is

the sum of signab from all 200 lead glasses and processed through discriminators with

three threshold levels. The signals corresponding to these threshold level are denoted

very low, low, and medium and labeled by ShwSum-VL, ShwSum-L, and ShwSum-M.

The main trigger ww the coincidence of Cl-L, C2-L, ShwSum-L, and beam gate

which W* open whenever beam came into ESA and sent from Linac Main Control Center

(MCC). This main trigger provided information of the electron passing the counter for

the online process. The rate of the main trigger ww typically 1.5 for 4.5° spectrometer

and 0.3 for 7° spectrometer per spill.

ShwSum-VL

&iCoin

ShwSmn-L

Figure 3.45: Logic of pion-or and hod-gate triggers is shown. The closed wedge-shape

is the or logic. S/N4:Cl-M,S/N4: C2-M, and C1-L:C2-L are given in Figure 3.44. The

gray circles are the prescaler suppressing the signal rate.

Figure 3.45 shows the logic of the pion-or and the hod-gate triggers. The pion-or

trigger was the trigger generated any charged particle including pion. These pre-scder

factors in the figure were set to 32 for 4.5° spectrometer and 8 for 7° spectrometer.

Typically, the rate w= 0.35/spill and 0.25/spill for 4.5° and 7° spectrometer respectively.
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TDC recorded data for any hits of horoscopes, shower counter, Cerenkov counters,

and the other triggers when the hod-gate trigger w= fired. Gat~card ignored ECL signab

from the discriminator to TDC if the hod-gate was closed. The hod-gate w= generated

by or product of the SciCoin and the coincidence of the ~erenkov counters which is always

enable to open the hod-gate for the electron.

Figure 3.46: Logic of the main-or trigger which w= generated by the main trigger which

fired only for passing of electrons and the pion-or trigger which fired for the passing of

charged particles. The main-or trigger opened the ADC gate for the shower counter and

the Cerenkov counters.

Figure 3.46 shows the logic of the main-or trigger. The main-or trigger opened the

ADC gate to record data for the energy deposit of the shower counter and spectra of the

Cerenkov counters. The number of the main-or trigger was limited by the electronics

of the shower counter up to four or less per spill by the electronics used for the shower

counter. This trigger ww primarily formed by the the main trigger and the pion-or trigger

to record the electron data and the pion data reduced by pre-scder.

3.6 Data acquisition and data handling

The experiment h~ been carried out from Nov. 1993 to Feb. 1994 at ESA of SLAC.

The Linac was operated at 120 Hz with a 3.0. 10gelectron/spill current typically. Beam

energy was switched 10, 16, and 29 GeV to study the Q2 dependence of the structure

functions. Table 3.7 lists the run summary.
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Target field

kngitudinal

Transverse

Either/none

Energy (GeV) Target

29.13 NH3

ND3

16.20 NH3

ND3

9.8 I NH,

ND3

29.13 NH3

ND3

dl C,Al,Empty

Total

Beam charge

(electrons ● 1015)

130

170

37

17

19

16

56

69

16

Electrons I

77 I
11 I

7.5 I
6 I

7 I

17 I

30 I

8 I

2.108 I

Table3 .7: E143 data summary: The longitudinal and transverse target fields mean

the direction of the target polarization with respect to the beam afis. The transverse

asymmetry Al WM me~ured only for 29 GeV beam.

The data were processed in the counting house of ESA. Figure 3.47 shows the online

control and the data acquisition systim which was b~ed on CAMAC system controlled

by VAX4000.300. Three DEC3000.400 computers analyzed and monitored online data

on network. A VAX station 4000.60 was used as a tape server to store the data in 8mm

data tapes which can save up to 2.5 Gigs bytes of information. We used about 300 tapes

for E143.

The data were processed with a E143 analysis program, It was a hybrid program

compiled from C and Fortran source codes. C codes served w the main routine for

process communication, graphical interface etc. The main part of the physics analysis

was coded by Fortran.

We analyzed the data stored of the 8mm tapes with a basic event reconstruction

process and stored the results in other 8mm tapes. The latter 8mm tapes were called

DST which stands for Data Summary Tape. The date size was reduced by a factor 4 in

the DST in contr=t to the initial data. The physics calculation w= done using the DST.
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Figure 3.47: Data acquisition and control system

The DST contained the following information:

1. beam spill data

(a)

(b)

(c)

(d)

(e)

Pulse height of good spill monitor

Pulse height of bad spill monitor

Output of Toroid current monitor

Beam position and width

Electron beam helicity

2. timing of trigger signals

3. Track data

(a) track momentum

(b) track direction and position
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4. Cerenkov timing and pulse height

5. Shower cluster data

(a) Cluster centroid

(b) Cluster ener~

(c) Neural network response

We made summary files from the DST. The summary file contained only the num-

bers of tracks binned in x and Q2 according to different definitions. These definitions are

summarized to be

1. Basic electron definition, energy = shower counter deposit,

2. B~ic electron definition, energy = track momentum,

3. No tracking (defined only shower cluster and Cerenkov),

4. B~ic pion definition (No main trigger, no ~erenkov hits, neural network indicates

no electron), etc.



Chapter 4

Analysis

The purpose of this chapter is to describe the analysis to give the cross section asymmet-

ries, All and AL from the data of deepinelastic scattering of the 29 GeV electrons off the

deuterized ammonia krget. These asymmetries are used to calculate the spin structure

functions gl w mentioned in Chapter 2.

The event reconstruction and the particle identification to select a good electron

sample will be explained first. Then, the calculation of the asymmetries from the obtained

electron sample will be explained including the corrections for the wymmetry.

4.1 Event selection

4.1.1 Beam amlysis

We required to record data from the good beam spills by excluding the

spills in the analysis for the cross section asymmetry. The beam stability

unstable beam

were examined

with several devices; good spill monitor, bad spill monitor, toroid current monitor, and

foil arrays, u given in the following sections.

1. The good spill monitor, a scintillation counter located under the deuteron target,

memured scat~red charged particles from the target. The signal from the monitor

ww read by a ADC module. We took data for the analysis only when the spill has

90
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value

Figure 4.1: Spectrum of ADC value from the good-spill monitor on run 2876. The

horizontal and vertical ues show the ADC count and the number of times per 20 ADC

count respectively. The solid line shows the good-spill spectrum for the spills accepted

by the other requirements. The d~hed line shows the spectrum which W= not accepted

by other requirements. The dotted line shows upper and lower thresholds for the ADC

value of the good-spill monitor.
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the ADC value of the counter between the upper and lower limits determined by

using the mean value of the ADC spectrum to be

ADC9~ .0.5< ADC~~ < ADCg~ .1.75, (4.1)

where ADC9d is the ADC value from the good spill monitor, ADC9d is the averaged

ADC value. In order to avoid the statistical fluctuation of the mean value, the first

236 spilk of each run were excluded from the analysis and were only used to

determine the mean value.

The lower limit excluded spills which did not hit the target and the upper limit

excluded spills which hit high density materials around the target such that the

magnet coil etc. Figure 4.1 shows an example of the spectrum of ADC value with

the lower and upper limits indicated by the dotted lines.

2. The bad spill monitor wu also a scintillation counter set at the entrance of the

ESA 1 m from the beam line. This spill monitor gave no signal if the beam was

stable. The limit for the ADC value of the bad spill monitor was determined by a

dynarnicd method similar to that for the good spill monitor as,

ADC~ < min(ADCti. 3, 150.), (4.2)

where ADC~ is the ADC value from the bad spill monitor, ADC~ is the averaged

ADC value. Figure 4.2 shows an example of the spectrum for the bad-spill monitor.

3. We used two toroidal current monitors to messure the beam current spill by spill.

Figure 4.3 shows a spectrum of the toroid2 current monitor, where the x-axis is

the beam current in the unit of 109 electrons/spill. We set the cut values for the

current monitor as,

maz(ltiz – 0.75, 0.5) < Itmz < min(~ + 0.75, 5,0), (4.3)

where Itm2 is the beam current measured by the toroid 2, ~ is the average of the

current. The lower threshold ww set to avoid a run with low beam current.
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Figure 4.2: Spectrum of ADC value of the bad-spill monitor on run 2876 with the same

convention = Figure 4.1.
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Figure 4.3: Spectrum of the beam current obtained from the toroid2 current monitor

on run 2876 with the same convention m Figure 4.1.
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4. Two foil arrays, each consisting of 48 foils, were set perpendicular to each other to

me~ure the beam profile projected on x and y axes. Figure 4.4 shows the spectrum

of the beam size obtained from the foil array spectra, where the beam size was

defined to be sb =
G

S2+ S2 with SZ and SVwhich are the standard deviations of

the beam profile in x and y-axes. The beam size sb must satisfy the conditions,

~x(~ – b.,, 0.5) < Sb < m~n(~ + 3ff8b,5.0),

where ~ is the average of the beam size in mm, u~bis the standard

spectrum of the beam size in mm.

30000

1

o ill .-.
3

IL-------
.-, :.--

..
2.. I

(4.4)

deviation of the

4 4.5 m

Figure 4.4: The spectrum of the beam spot size on run 2876 shows in mm with the

same convention as Figure 4.1.

5. The beam position ww changed spill by spill according to the rastering pattern as

shown in Figure 3.9. We excluded the spills whose positions were off more than 12

mm from the center of the rastering pattern. The center of the raster pattern was

determined by the averaged position of the beam spot dynamically.
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Figure 4.5: Horizontal axis shows the distance of the beam position from target center.

The beam position W* determined by foil arrays. The solid line shows the spectrum for

the spills accepted by the other requirements. The dwhed line shows the spectrum of the

spills excluded by the other requirements. The dotted line shows the upper limit, 12 mm

from the target center.
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6. Figure 4.5 shows the spectrum of the distance of the beam positions from the target

center for run 2876. Be~ spills whose positions were deviated more than 12 mm

from the center of the target were also excluded from the analysis. This requirement

reduces the ambiguity of the energy correction for the scattered electron because the

electron scattered at the outer part of the target pW through complex materials

around the target.

0 : 0 5 1 0 ~

XOR

Figure 4.6: Pseudo random number generator, PRNG makes a 33 bit array pseud~

randomly. The previous 33 bits determine the next bit of the PRNG by the exclusiv~or

product of 19th and 33rd bits. This bit then decides the helicity of the beam spill, We

wsign Ofor left-handed spill and 1 for right-handed spill.

In addition, we checked the consistency of the beam helicity determination. The beam

helicity wu chosen by a Pseudo Random Number Generator (PRNG). Figure 4.6 shows

the logic of the PRNG. The PRNG makes random numbers from an algorithm that uses

as input the previous 33 bits in its sequence. Therefore, we can predict the following

sequences generated by the PRNG, i.e. helicity of the next beam spill by knowing the

initial 33 bit pattern. The information of the beam helicity actually used was read

from the PES (Polarized Electron Source) and stored on tape. During the analysis, we

examined the information from the PES comparing with the prediction by the PRNG. If

the prediction was different from the PES information, the spill w= excluded from the

analysis. The next 32 spills were also excluded so that the prediction algorithm can be

desynchronized. Typically, less than 0.170 of the spills were excluded by this requirement.
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4.1.2 Shower cluster finding

An electron incident on the lead glws shower counter deposits the energy on several lead

gl=s blocks around the incident point. To reconstruct the energy of the electron from

these energy deposits, we organized the hits on the blocks into clusters by using blocks

having deposited energy of more than 50 MeV to reject the influence of fluctuation of the

ADC pedestd. We adopted a cellular automata program which was a kind of Hopfield

neural network [43] for the clustering.

The cellular automata program set a network which had 200 neurons corresponding

to the lead gl=s blocks. Every neuron ww connected to the nearest eight neurons in the

real geometry by synapses which mediate information to each other. The state of the

neuron w= indicated by a red number. The initial states of the neurons were qual to

the energy deposits on the lead glms blocks corresponding to these neurons. From the

initial state, the network evolved according to the following two rules.

1.

2.

An evolution of a neuron was determined by the eight neurons surrounding it. If

there is any neuron greater than the center neuron, the center neuron is set to be

the greatest one among the eight neurons. If the

one of the eight neurons, the center neuron is not

center neuron is greater than any

changed and labeled m the Virus.

The Virus is to be the center of the cluster. We had a special rule that a neuron

seized once by a Virus is not involved by any other Virus.

These rules guaran@ed the good separation if several particles are incident close

to each other. Figure 4.7 shows such an example and indicate how the lead gl=s blocks

are organized from the state 1 to state 3 through the evolution of the cellular automata.

In this example, these blocks are clustered into two groups.

The total energy deposit of a cluster wm calculated from the sum of the energy

deposits of the blocks in the cluster. The centroid of the cluster, Xdti.ti. and yd..~, was
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Figure 4.7: Anevolution ofcellular automata is shown in three steps. (a) Theinitid

state. The states of the neurons are set to be equal to the energy deposit of the lead

glass blocks. Neurons with no number mean that the energy deposit of the block is lower

than the threshold, 50 MeV. Two cells filled by different gray colors are Viruses with

the highest energy deposit in the surrounding blocks. (b) The next state. The neurons

hatched by the light and dark gray colors are seized by these Viruses. (c) The final state.

In this case, neurons are clustered into two groups. We notice that several cells seized

by the 7.0 Virus were not seized by the 8.0 Virus in the evolution from (2) to (3) due to

the second rules.

determined by,

(4.5)

where i stands for the associated blocks, Ei is the energy deposit of the i-th block, Za and

vi are the x and y position of the center of the i-th block. From a study for the matching

between the reconstructed track and the cluster centroid, the spatial resolution was ob

tained to be about 10 mm [47]. Figure 4.10 and 4.11 show the spectra of the distances

in x and y of the centroid of the shower cluster from the position of the reconstructed

track for the 4.5° and 7° spectrometers. We notice that this spatial resolution includes

the resolutions from the shower cluster centroid and the tracking position.
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4.1.3 ~=k finding

The tracking was performed by using information from the Cerenkov counters, the hod~

scopes, and the shower counter. The information from these detectors were stored in

a data format for the tracking routine. Every detector ww virtually treated = a wire

chamber in the tracking routine for convenience. The leading information contained in

this data is

1. Three dimensional position specifying the wire location,

2. Vector parallel to the wire direction,

3. Spatial resolution of wires,

4. Timing of signals corrected by time of flight and propagation delay at the reference

point (the surface of the shower counter),

5. Timing resolution,

In the case of horoscopes, the line of the central axis of the finger is taken as the

location and the vector of the wire. The spatial resolution was set to l/@ of the

finger width which ww calculated from the ~uare distribution. Table 4.1 shows the time

resolution for each plane.

Because the ~erenkov counter covers all of the acceptance of the spectrometer, it

was treated as a wire with a spatial resolution of 100 m. The time resolution of the

counter WM set to 1 ns.

A cluster of the shower cluster was interpreted as the hits of two wires along x and y

axes whose intersection w= at the center of the cluster. The position on the z coordinate

was set to be zero at the surface of the shower counter. Worn a study for the matching in

time between the shower cluster and the reconstructed track, the time resolution of the

shower cluster wm mewured to be less than 1.0 ns [48]. Therefore, the spatial and time

resolutions were set to 10 mm and 1.0 ns respectively.
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Plane 4.5° spectrometer (ns) 7° spectrometer (ns)

1 1.4 1.3

2 1.1 1.1

3 1.1 1.1

4 1.4 1.0
5 1.1 0.9

6 1.1 1.0

7 1.4 1.2

~ble 4.1: Time resolution for hodoscope fingers in ns: the time resolution for every

finger in a hodoscope plane W= resumed to be identical.

For the track reconstruction, we first search hits in the time window of 15 ns in which

we have the most hits. These hits were fitted for the reconstruction of the first track.

Any hit deviated from the fit in either time or space, was removed from the fitting. If

the number of the remaining hits was greater than those in any track classification shown

in Table 4,2, the track w= accepted. The fitting procedure was repeated until all tracks

ww reconst rutted.

Clw ~erenkov Hodoscope Shower

1 1 4 1

2 1 4 0

3 0 4 1

4 0 6 0

~ble 4.2: Track classification according to the minimum number of hits on each detector.

Figures 4.8 and 4.9 show the distance between the extrapolated point on the target

and the center of the target where the extrapolation back on the target was performed

by using the reverse matrix of the sWctrometer magnet. We required that a track was

reconstructed within 10 mm from the center of the target to be included in the analysis.
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D

Figure 4.8: Track extrapolated position Figure 4.9: Track extrapolated position

at target to the center of the target in the at the target to the center of the target in

4.5° spectrometer. the 7° spectrometer.
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Figure 4.10: Matihing of tracks and

clusters for the 4.5° spectrometer: The up

per figure shows the matching in x, and

lower figure shows the matching in y.

-y~
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Figure 4.11: Matching of tracks and

clusters for the 7° spectrometer: the upper

figure shows the matching in x, and lower

figure shows the matching in y.
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Figure 4.10 and 4.11 show the difference in x and y between the extrapolated p-

sition of the tracks on the shower counter and the center of the the shower cluster. We

required that tracks and clusters have to be within 40 mm in both x and y, and 10 ns in

time.

~acking e~ciency

Tracking efficiency does not affect the cross section asymmetry providing it is identicd

for the beam spills of both electron felicities. Of course, it would be a serious problem

if the efficiency is different for the beam helicity because it may give a false mymmetry.

We examined the tracking efficiency by using the shower cluster. The fraction when

the reconstructed track was properly associating to a shower cluster was defined to be

the tracking efficiency.

We first have to remove any cluster produced by noise or gamma from the cluster

sample because these contamination improperly decrease the tracking efficiency in this

definition. To improve the purity of the cluster sample, we required the following,

1.

2.

3.

4.

No edge cluster. The cluster on the edge is unreliable because a part of the energy

may leak to the outside of the shower counter.

Cluster energy greater than 8 GeV. The junk cluster WMexpected to be distributed

on such low energy region.

Both Cerenkov had a hit (low threshold)

Neural network response more than 0.9.

We adopted only electron clustirs u the sample because we were able to require the

Cerenkov hits and the neural network response and these requirements should purify the

sample.

For the cluster sample, we examined matching with the tracks which was recon-

structed by the regular tracking algorithm mentioned previously. We required that the
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track is reconstructed within 40 mm in x and y, and 10 ns in time. -These requirements

were the same for those for the ‘good track’ in the usual analysis.

The tracking efficiencies were calculated separately for the beam helicity, +1 and –1

and the spectrometers. Table 4.3 shows the results for run 1334. The tracking efficiencies

had no significant difference for the beam felicities and produced no fds+asymmetry.

4.1.4 Electron

I SwctrorneterI 4.5° I 7°

helicity –1 93.5 & 0.3 98.2 A 0.5

helicitv +1 93.4 & 0.3 98.0 k 0.5

Table 4.3: Tracking efficiency

identification

It is important to reject any hadron track from the analysis to obtain the cross section

asymmetry because the cross section is defined by the number of scattered electrons. In

principle, we can separate electron and hadron (pion) tracks by using (1) the Cerenkov

counter and (2) the E/P ratio.

Cerenkov ADC

B~icdly, the long and short ~erenkov counters generate no signal for pions with the

momentum less than 9 GeV/c and 13 GeV/c respectively. We can then reject the low

momentum pion using the requirement for coincidence of the two cerenkov counters.

Figures 4.12 to 4.15 show the ADC spectra of the Cerenkov counters. We re-

quired that the track fired the coincidence signal of the Cerenkov counters and the shower

counter (main trigger) and the Cerenkov ADC value to be more than 40 for the track to

be electron.

The detection efficiencies for electrons and the pion contaminations were estimated

for the Cerenkov counters. For both of electron and pion samples, we required that the
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Figure 4.12: ADCspectra of Cerenkov

counter 1 for the 4.5° spectrometer. The

solid line shows the ADC spectrum of

Cerenkov counter 1 for electrons identi-

fied by the neural network response of the

shower counter and the E/P ratio. The

dwhed line shows the spectrum for pions

defined by the requirements for the neural

Figure 4.13: ADC spectra of Cerenkov
counter 2 for the 4.5° spectrometer. The

spectra are shown with the same conven-
tion as Figure 4.12.

network and E/p ratio opposite to those

for electrons.
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Figure 4.14: ADC spectra of Cerenkov Figure 4.15: ADC spectrum of

counter 1 for the 7° spectrometer. The Cerenkov counter 2 for the 7° spectr~

spectra are shown with the same conven- meter. The spectra are shown with the

tion W’Figure 4.12. same convention m Figure 4.12.

track is ‘good track’ which hw a good association to the target and the shower cluster.

We rejected tracks ~sociated to the edge of the shower counter because the shower cluster

on the edge was less reliable. From the sample of the good track, the electron and pion

sample w= defined by E/P ratio and the neural network response which will be mentioned

in Section 4.1.4. The requirements for the electron and pion samples are summarized;

1. electron,

(a) E/P ratio between 0.8 and 1.2,

(b) The neural network response more than 0.9,

2. pion ,

(a) E/P ratio less than 0.8,

(b) The neural network response less than 0.0.

The ~erenkov spectra are shown for these two samples. The efficiency for electron ID

were calculated from the fraction of electron tracks which had the Cerenkov ADC greater
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than 40. The pion contamination was calculated from the ratio of the pion sample to

the electron sample with ADC value of more than 40. Table 4.4 shows the efficiency

for electron ID and the pion contamination for the four Cerenkov counters. The good

efficiencies of more than 9570 were obtained for all ~erenkov counters.

I 4.5° cl I 4.5° C2 I 7° cl I 7° C2

Efficiency % 99.1 ● 0.0 97.7 & 0.0 97.6 & 0.1 95.2 & 0.1

pion contamination % 14.6 + 0.1 7.0 k 0.1 12.9 * 0.1 5.1 & 0.2

Table 4.4: Efficiency for electron ID and pion contamination of the requirement for the

Cerenkov counters.

E/P ratio

E/P is a ratio of the energy mewured by the shower counter to that obtained from the

tracking. Since the mass of the electron is negligible, it has become custom in this analysis

to label the tracking energy m “momentum” and the shower counter energy a “energy”.

The momentum w= calculated from the tracking data using magnetic reverse matrix

element, and the energy ww extracted from the total energy deposited in the shower

cluster.

Figure 4.16 and 4.17 shows the E/P ratios for the 4.5° and 7° spectrometers where

we plotted only the “non-edge” sample given in Figure 3.34. The solid and dashed lines

show the spectra for the electron and pion sample defined by using the hits from the

Cerenkov counters and the neural network response of the shower counter. We accepted

tracks with E/P of between 0.8 and 1.2 as electron tracks.

The efficiency for electron ID and the pion contamination were calculated using a

electron sample and a pion sample which were defined by ADC value of the Cerenkov

counters and the neural network response. We required for both of the electron and pion

sample to be a ‘good track’ with a good association to the target and the shower cluster.

The electron and pion samples were clmsified as follows:
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0 1 1 1
0 02 04 04 0s 1 12 1A 1.6 18 2

Figure 4.16: E/P on 4.5° spectrometer:

The solid line shows the E/P spectrum for

electron defined by the Cerenkov counters

and the response of the neural network.

The dwhed line is the E/P spectrum for

pions excluded by Cerenkov counters and

neural network.

, 1 I +

1 12 . . 18
w

Figure 4.17: E/P on 7° spectrometer

with the same convention ~ figure 4.16.
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1.

2.

electron,

(a) Both Cerenkov ADCgreaterthan 40,

(b) Neurdnetwork response morethan O.9,

pion,

(a) Both~erenkov ADClessthan 40,

(b) Neural network response lessthan O.O.

The efficiency for electron ID and the pion contamination were calculated using the two

samples. The efficiency for electron ID was the fraction of the electron sample in the

region of E/P between 0.8 and 1.2. The pion contamination was the ratio of the pion

sample to the electron sample in the region of E/P between 0.8 and 1.2. Table 4.5 shows

the efficiency for electron ID and the pion contamination. This E/P cut did the effective

pion rejection keeping the good efficiency for electron ID.

Spectrometer 4.5° 7°

Efficiency % 94.4 & 0.1 95.5 & 0.1

Pion contamination % 0.4 & 0.0 1.1 * 0.0

~ble 4.5: The efficiency for electron ID and the pion contamination of the requirement

for the E/P ratio.

neural network

We dso used a neural network algorithm to identify the type of particle incident onto the

shower counter. The main difference in shower response between electrons and pions is

the total of the ener~ deposit. Generally, a pion has a lower momentum than an electron

because the pion comes from the fragmentation of a nucleon. In addition, a hadron will

lose only a part of its energy in the ‘shower counter. Therefore, the energy deposited by

a pion is distributed mostly below 5 GeV with a 29GeV electron beam.
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Figure 4.18: Total energy deposited in
thenineblocks which arethecentralblock
of a cluster and eight blocks surrounding

the central block. The upper and lower
figures show the spectra for electron and
pion samples. These electron and pion
samplesweredefinedby theADC valueof
the ~erenkov countersand the E/P ratio.

)

Figure 4.19: The ratio of the energy de

posited in the central block of a cluster

to the total energy deposited in the nine

blocks defined in Figure 4.18 is plotted.

The spectra are shown with the same con-

ventions with Figure 4.18.
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Figure 4.20: The spectrum of the en-

er~ deposited in 16 blocks surrounding

the nine blocks is shown. The spectra

are shown with the same conventions with

Figure 4.21: Numberof blocks with the

energy deposited more than 50 MeV in a

cluster. The spectra are shown with the

same conventions with Figure 4.18.

Figure 4.18,

In order to demonstrate the difference of the characters of the electron and pion

clusters, we investigated the several quantities of the shower counter for the electron and

the pion sample

1. electron,

which were defined by the Cerenkov counters and E/P ratio as:

(a) Both Cerenkov hits within 10 ns,

(b) E/P between 0.8 and 1.2,

2. pion,

(a) No hits on both Cerenkov counters within 10 ns,

(b) E/P less than 0.8,

Figure 4.18 shows the total energy

were defined by the central block

deposited in nine blocks of a cluster. The nine blocks

and eight blocks surrounding the centrti block in a



4.1. EVENT SELECTION 111

cluster. While the spectrum for the electron sample is distributed in the region greater

than 6 GeV, the energy deposited by the pion sample is found hardly beyond 7 GeV.

Figure 4.19 shows the ratio of the energy deposited in the central block to the total

energy deposited in the nine blocks. The spectrum for the electron sample peaks at

N 0.8 and that for the pion sample, on the other hand, peaks at N 0.4. Figure 4.20 shows

the energy deposited in 16 blocks beyond the nine blocks. The spectrum for the pion

sample has a tail longer than that for the electron sample. Figure 4.21 shows the number

of blocks with the energy deposit more than 50 MeV in a cluster. The number of blocks

involved by the pion cluster is less than that for the electron cluster.

Input layer

Figure 4.22: Multi layered perception for the particle identification on the shower

counter has thir~n inputs. Gray and black arrows indicate positive and negative syn-

apses. The thickness of these lines indicate approximately the amplitude of the synapses.

For example, the first neuron in the input layer excites the first neuron of the second

layer, but the third neuron of the input layer calms the first neuron of the second layer.

The state of the neurons in the second layer ww determined by the total of the signals

from the input layer with a Sigmont function. The same was true between the second

and output layer.

To identify the type of the particle using all of these information we used a neural
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network algorithm. The network was a multi-layered perception as shown in Figure 4.22.

There were 13 neurons in the input layer, and there were two outputs indicating electron

and pion likelihoods. The network is a complex structure which works ~ a function which

h= 13 inputs. Each neuron has synapse joints with every adjacent neuron in the next

layer. Each neuron, except those in the input layer, can be between 1 (=excited) and -1

(=calmed). The condition of a neuron in the second and output layers is determined by

all of neurons in the previous layer. A signal from a neuron is mediated by a synapse. A

synapse has an amplitude determined by training m mentioned later.

The condition of a neuron, ~i was determined by a Sigmont function as follows,

exp&a _l

Yi =
expka +1

(4.6)

where xi is the condition of a neuron in the input or second layer, &ij is the amplitude

of the signal mediation by a synapse from a neuron in the input or second layer to a

neuron in the second or output layer respectively. The Sigmont function is similar with

a step function varying from -1 to 1. We used the Sigmont function instead of a naive

step function because the former can be differentiable.

The 13 inputs, VI – V13, for the neural network were as follows,

1. Vl: Total energy in the nine blocks of the cluster. The nine blocks are the center

block of the cluster and eight blocks surrounding it.

2. V2: Ratio of the energy in the central block to total energy of the nine blocks.

3. V3: Energy in the sixteen blocks which are beyond the nine blocks.

4. V4 – V12: Energy deposited in each of the nine blocks.

5. V13: Number of blocks in the cluster.

We developed the neural network using a Monte-Carlo simulation. A package for

detector simulation, GEANT, simulated events in the shower counters. We studied the
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response of the neural network for incident electrons and pions ad we compared the

responses of the neural network to the true answer which was the input to the simulation.

If the response was not the same as the true answer (for example, the network said that the

cluster w= generated by electron, while the true answer w= by pion), we adjusted every

synapse’s amplitude to give a more correct response. This correction was done using a

back propagation method[43]. In the

output layer and the second layer is

the second

the proper

layer and the input layer

answer from the network.

back-propagation method, the synapse between the

corrected at first. After that, the synapse between

is corrected. We iterated this process until we got

Figure 4.23: Spectrum of the neural net-

work response for the 4.5° spectrometer

is shown. Horizontal axis shows neural

network response, +1 for electron like

clusters and -1 for pion like clusters . Ver-

tical axis shows number of times/O.04 in

logarithm scale. The solid and dashed

lines show the spectra for clusters match-

ing with electron and pion tracks defined

by the Cerenkov counters and E/P ratio

respectively.

Figure 4.24: Spectrum of the neural net-

work response for 7° spectrometer: The

spectrum is shown with same conventions

u the 4.5° results.



114 CHAPTER 4. ANALYSIS

Figure 4.23 and 4.24 show the neural network response for run 1334. The horizontal

axis shows the response which is 1 for electron clusters and -1 for pion clusters. The

solid and dashed lines show the responses for the electron and pion samples respectively

defined by the ~erenkov counters and the E/P ratio. We required that the neural network

response had to be more than 0.9 to identify a particle as an electron.

The efficiency for electron ID and the pion contamination were extracted by a

calculation similar to that for the ADC of the ~erenkov counters or the E/P ratio. The

electron and pion

1. electron,

samples were defined by

(a) Both Cerenkov ADC more the 40,

(b) E/P ratio between 0.8 and 1.2,

2. pion,

(a) Both Cerenkov ADC less than 40,

(b) E/P ratio less than 0.8.

Table 4.6 shows the efficiency for electron ID and the pion contamination calculated from

these electron and pion samples. The results indicate the higher efficiency and the lower

pion contamination comparing to a conventional method for the particle identification

resulting ~90% of efficiency for electron ID and N1O% of pion contamination [43].

4.5° 7°

Efficiency % 98.1 + 0.0 98.8 A 0.0

Pion contamination % I 0.3+ 0.0 I 0.8+ 0.0

~ble 4.6: Efficiency for electron ID and pion contamination for neural network response
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The electron sample

Finally, the requirements for the electron sample are summarized to be

1.

2.

3.

4.

5.

6.

The main-trigger fired,

The ADC outputs from both Cerenkov counters were more than 40,

The trwk extrapolated back to the target within 10mm in x,

Trwk and Cluster agreed with each other by less than 40 mm in x and y and less

than 10 ns in time,

0.8< E/P< 1.2,

neural network response ww more than 0.9,

6

5
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Figure 4.25: Dataprofileon Z–Q2 plane
from run 1334 for the 4.5° spectrometer.

The x and y axes show Bjorken x in log-

arithmic wale and Q2 in linear scale r~

spectively. The box area is proportional

10, ..........

t

2

1 t

Figure 4.26: Data profile on x – Q2
plane from run 1334 for the 7° spectr~

meterwith the sameconventionm Figure

4.25.

to the number of counts in each bin in

logarithmic scale.
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We obtained electron data scattered inelastically from the deuteron target over

a wide kinematical region = shown in Figure (4.25) and (4.26). The kinematics for

the electron was calculated using the momentum evaluated from the tracking with the

reverse matrix of the spectrometer magnets and the scattered angle from the beam axis.

We excluded counts outside the deepinelastic region where the momentum transfer was

less than 1.0(GeV/c)2 where the scaling is not a good approximation for the structure

function due to the large strong coupling constant. We abo excluded data in the resonance

region where the effective m=s of the final hadron system w= less than 2.0GeV/c2. The

e-N scattering h~ A resonances in the region where the cross section does not indicate

the proper information of the nucleon structure.

When satisfied, these two kinematical conditions retained enough statistics to give

the cr9ss section asymmetry in the region from 0.029 to 0.8 in Bjorken x and from

1.0(GeV/c)2 to 12.0(GeV/c)2 in Q2. The representative values of x and Q2 for a bin was

calculated from the averaged x and Q2 over the data which were included in the bin.

4.2 The cross section =ymmetry

As the results of the analysis in the previous section, we obtained a clean electron sample

from the measurement. The purpose of this section is a derivation of the cross section

asymmetries All and Al. These cross section symmetries are calculated from the number

of scattered electrons off the polarized deuteron target.

If we assume that the beam is polarized 100% and the pure deuteron target is also

longitudinally or transversely polarized 100%, a number of electrons detected by the

spectrometer, ~(+)l(t) is expressed by,

~(+)$(t) = ~t(+)~(t)Qt(t)~(t) p(~)~Az~(~)(H= L, R), (4.7)

where the superscripts of the arrows for N, o, and Q indicate the directions of the target

and beam felicities, o is the cross section for the scattering, Q is a total beam flux, p(t)

is the target density, NA is the Avogadro number, 1 is the length of the target, and Q(t)
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isthexceptmce andthedetition efficiency oftiespectrometir. Inprinciple, the p(t)

and the Q(t) may change during the experiment and then are functions of the time, t.

Using the number of electrons detected by the spectrometer and the total beam

flux, the rate asymmetry is written by

~(+)$/Qt(+)$ _ ~(t)t/Qt(+)t
(4.8)‘11(1) = ~t(t)$/Qt(t)J + ~t(t)t/Qt(t)t

Although the target density and the acceptance and the detection efficiency of the spec-

trometer ww mried during the experiment, influences due to the time fluctuation of

these factors was negligible because the beam helicity was changed randomly spill by

spill. Therefore, the factors of ~(t)~AZ~ (t) were same for left- and right-handed spills

and were canceled in the rate asymmetry. The rate asymmetry is then supposed to be

same as the cross section ~ymmetry in the ided case.

In the actual experiment, the beam polarization and the target polarization were less

than 100% and the target contained many nucleons other than the deuteron. The beam

and target polarization and the dilution factor which is the ratio of

from the deuteron to those from dl of the target materials relate the

the cross section wymmetry to be

electrons scattered

rate ~ymmet ry to

(4.9)

where pb is the beam polarization, pt is the target polarization, and ~ is the dilution

factor.

Equations (4.9) is the relation of the rate asymmetry and the cross section asym-

metry accounting only the leading corrections. Actually, the other corrections smaller

than these leading corrections are also important to the high precision measurement for

the spin structure function. To do that, we me~ure the rate asymmetry not only for the

electron, but ako for the positron defined to be

N:~t)$/Q:$+)$ – @$+)t/Q:~t)f
‘it) = Nj$t)$

/Q:~t)4 + N$$t)t/Q:$t)t
(4.10)

where A~~ll is the rate ~ymmetry for the electron and positron, N~$t)~ is the number

of electrons or positrons detected by the spectrometer, Q~$t)$is the total of the beam
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current. The rate =ymmetry for the positron ww investigated reversing the polarity of

the spectrometer magnet.

In the following subsections, we will discuss about

section asymmetry from the rate mymmetry measured

the procedure to extract the cross

directly in the experiment.

4.2.1 The

The dead time

dead time correction

correction is defined by the ratio between the true trigger rate and the

me=ured trigger

sequently, it may

spills hti a large

rate. The ded time effect b~ically depends on the trigger rate. Con-

affect the rate mymmetry if the trigger rates for left- and right-handed

difference.

The rate wymmetry corrected by the dead time effect is expressed as,

Ati(t)J Ati(t)t

(4.11)

where cL,R is the dead time coefficient for the electron (positron) rate obtained by the

left- or right-handed spill.

We calculated the dead time coefficient for a given run;

(4.12)

m

where tm is the number of times there were m trigger(s) in a spill, n is the index to

indicate the expected trigger rate, and P(n, m) is the matrix element which is defined a

the probability to detect m triggers if there are n red triggers. Because the number of

triggers in a spill was limited by shower counter electronics to four or less, the measured

trigger number could only go up four even if there were more triggers in a spill. The

term of min(m, 4) was inserted instead

The matrix element P(n, m) wm

of m due to this trigger logic.

calculated by a Monte Carlo simulation [49]. In

the simulation, we assumed;
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1. ~iggers distributed randomly in time,

2. Dead time between triggers w= 32ns,

3. n and m were limited to 10.

The 10 x 10 unitary matrix elements are shown in Table 4.7.

meuured

trigger

1

2

3

4

5

6’

7

8

9

10

1

1.000
2

0.028

0.972

3

0.002

0.086

0.913

4

0.007

0.155

0.838

true trigger

5

0.019

0.235

0.745

6

0.003

0.049

0.321

0.627

7

0.008

0.088

0.371

0.532

8

0.002

0.022

0.147

0.407

0.422

9

0.006

0.049

0.206

0.415

0.323

10

0.002

0.013

0.083

0.249

0.405

0.249

~ble 4.7: The probability matrix to the number of triggers detected by the spectr~

meter. The matrix elements are calculated under the assumptions dead time=32 ns, Spill

length=2200 ns. A blank means the element is O.

We did not assume symmetry between left- and right-handed spills for the dead

time coefficient, i.e. the coefficients were calculated separately for each handedness.

The dead time correction for both spectrometers are shown in Figure 4.27 and 4.28.

The dead time coefficient depends on the trigger rate, and that increued the trigger rates

by several percents. The corrections for the left- and right-handed spills usually were

similar, so the dead time correction was very small on the asymmetry. Figure 4.29 and

4.30 indicate the wymmetry of the dead time correction for left- and right-handed spills

defined by,

A&=
CL – CR

c~+c~. (4.13)
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.
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LO1 . ..+

Figure 4.27: Dead time correction m a
function of tie averaged trigger rate for

the 4.5° spectrometer: the horizontalads
shows the averagedra~ for main-or trig-
ger. The vertical As shows the dead
time correction. Only the results for left
handedspill are plotted.

Figure 4.29: The left-right asymmetry

on the dead time correction for the 4.5°
spectrometer.

Figure 4.28: Dead time correction for

the 7° spectrometer. The data for the left

handed spill are shown with

tions same as Figure 4.27.

the conven-

Figure 4.30: The left-right

on the dead time correction

spectrometer.

symmetry

for the 7°
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The uncertainty of the dead time correction W* estimated to be less than 1.0%

of (1 – C~,R) from the detail study of the simulation. Therefore, the uncertainty on the

wymmet ry from

4.2.2 beam

0.95

0.90

0.80

the dead time correction was negligible.

polarization

I I I I [

L E 143 Double Arm MOller Polari~tion vs QE

❑ o g ‘Mean
I

Systematic error * 0.02

1. # I,

‘*” ‘f

o 0.04 0.08 0.12 0.16

QE (Y.) n67m

Figure 4.31: The electron polarization is plotted as a function of the quantum efficiency

of the cathode of the polarized electron source. The electron polarization is measured

by ESA M@ller polarimeter. The u shows the spread of the memurements and the a~..n

shows the mean of these measurements. A step function plotted by a solid line was

obtained from the fit with the ~M~Gnand determined the beam polarization in the analysis.

The beam polarization was determined by ESA M@ller polarimeter as mentioned in Sec-

tion 3. The results from the single arm polarimeter and the double arm polarimeter,

and also the Linac polarimeter which is located at the end of the Linac, were in good

agreement with each other[34].

Figure 4.31 shows the relation between the quantum efficiency of the electron cath-

ode and the beam polarization measured by the ESA M@ller polarimeter. The o shows the

spread of the memurements and the ~M~~~ is the mean of these mewurements. From a
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step function obtained from a fit to the o~~an, the beam polarization ww determined for

each run. The beam polarization was 84-8670 during the experiment with the absolute

uncertainty of 270.

4.2.3 Target polarization

0

4.1

4.2

4.3

4-4

.

L

E .. .. .

t!i#141c !l##l, ,1, l!lc#, i, ,,, ,,, ,
1400 1800 2200 2-

run numkr

Figure 4.32: The horizontal axis shows run number, the vertical axis shows the NDa

target polarization. The sign of the polarization is plus for forward, minus for backward

to the beam direction.
—

Target polarization was measured by the NMR signal obtained by the Q-meter module of

the Liverpool type calibrated by that for the thermal equilibrium shown in Figure 3.17.

The uncertainty of the target polarization wm dominated by the statistical error of the

NMR memurement for thermal equilibrium to be 4.0% relative to the polarization [50].

Figure 4.32 shows the target polarization during the experiment as a function of

the run number. The negative polarization mean that the direction of the polarization is

opposite to the beam direction. The target polarization ww obtained up to 4070 and the

average was about 2570.

.
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Bamcurrent (ld”el=trodspfll)

Figure 4.33: The correction for the target polarization due to the beam heat effect. The

horizontal ~isshows the beam current inaunitoflOIOelectron/spill. Thevertical=is

shows the correction in-~o defined by the difference ofthe corrected polarization from the

measured polarization.

123

.

5



124 CHAPTER 4. ANALYSIS

The electron beam heated up the target center where the beam-was rastered and the

fringe part of the target was refrigerated by the circulated liquid helium directly. So, the

target had a gradient of its temperature between the center and the fringe parts. Because

the deuteron polarization depends on the temperature, the deuteron polarization is not

uniform in the target cell due to the temperature gradient.

On the other hand, the NMR coil surrounded the larger

terial than the volume which ww actually on the beam line.

volume of the target ma-

So, the results from the

NMR me~urement averaged the gradient of the target polarization and gave a polar-

ization higher than the polarization where the beam was rastered. The correction was

estimated from the actual depolarization with varying the beam current [51]. The cor-

rection decreased the target polarization by 1.570 of that with a typical electron current.

The correction factor for each run are plotted in Figure 4.33 as a function of the beam

current. The correction factor is defined to be the difference between the uncorrected

and corrected beam polarizations.

4.2.4 Dilution factor

The target contains not only polarized deuterons, but also unpolarized materials. The

materials decre~e the ~ymmetry in proportion to a factor called the dilution factor.

The dilution factor is the ratio between the number of electrons scattered from the

deuterons in ND3 and that from all materials. Neglecting common factors like Avogadro

number and Beam flux etc., the number of electrons scattered by a material is generally

to be

N= $(NPOP + Nnon)g, (4.14)

where p is the density of the material, 1 is the length of the material, A is the mass number

of the nucleus, NP and Nn are the numbers of proton and neutron in the nucleus, ap and

on are the cross sections for proton and neutron respectively, and g is the EMC effect

coefficient for the nucleus. The EMC effect coefficient is the ratio of the cross section

per nucleon between a heavier nucleus and a deuteron. The EMC effect coefficient was

—
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determined by a fit done by S. Rock and L. Stuart using the data of deep-inel~tic

scattering experiments[52] [53].

We introduced the packing fractionpf which is the percentage of the target cell

occupied by ND3 beads. The number of electrons scattered from the ND3 is expressed

using the packing fraction by,

~ND3 = PND3“lcell.Pf
21

{3(uP + an) + (70, + 8U.)gN} , (4.15)

where pND3 is the density of ND3, 21 is the atomic m~s number of ND3, ZCelfis the length

of the target cell, and gN is the EMC effect for nitrogen nuclei. Similarly, the number of

electrons scattered from the deuteron is

ND = PND3 . l~t! . Pf
3(OP + on).

21
(4.16)

We ~sumed that the other. parts of the target cell were filled by liquid helium. The

number of electrons scattered from the liquid helium is then expressed as,

~He = pHe . lceil. (1– Pf)
4 (20, + 2an), (4.17)

where the ~He is the density of the liquid helium.

There were also other materials in or around the target, for example the wall of the

cell, the NMR coil etc. Accounting for all of these materials, the dilution factor, $ was

calculated as follows,

f=
ND

(4.18)— NND3 f NHe + ~ Nothera ‘

where the ~ Ndher~ represents the contributions from materials other than ammonia and

helium.

We divide both of the numerator and the denominator by UPto simplify such that OP

and an are replaced by 1 and on/oP respectively. In the actual calculation, we resumed

the ratio of O./ap is equal to F2n/F2P which is calculable from the well memured F2d/F2p.

The Figures 4.34 and 4.35 show the dilution factor for the 4.5° and 7° spectrometers. The

dilution factor w= obtained to be 0.23 w 0.25 depending on x because of the variation

of the cross sections an&the ‘EMC effect. The error of the dilution factor was calculated

—

from the errors of the cross section, EMC effect, the packing fraction, density of materials.
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Figure 4.34: Dilution factor on 4.5°

spectrometer. The dilution factors are

calculated from averaged x and Q2 for

each data point.

Figure 4.35: Dilution factor on 7° spec-

trometer. The dilution factors are calcu-

lated from averaged x and Q2 for each

data point.

4.2.5 Nitrogen correction

Nucleons (nuclei) other than deuteron could either dilute the ~ymmetry, or contribute

to the asymmetry because a small fraction of these nucleons (nuclei) is polarized. In ad-

dition, a contamination of NH3 gives an ~ymmetry of protons. We named the correction

due

14N

ie.

to these polarized nucleons (nuclei) other than deuterons as nitrogen correction.

As mentioned in Section

nucleus contaminated the

3.4, we used 15ND3 as the target material. The nominal

target material by 2.0%. The contamination of proton,

NH3, w= estimated to be 1.5%. These three kinds of nuclei and nucleon other

14N and proton, were polarized in the target. These nitrogen andthan deuteron, 15N, ,

proton polarizations as a function of the deuteron polarization were measured m shown

in Figure D.2 and D. 1. We mewured only the 15N polarization and assumed that the 14N

polarization had the same magnitude and the sign opposite to that for the *5N.

Assuming the contamination by these nuclei and nucleon, the cross section asym-
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metry ww corrected by the nitrogen correction w follows 1, -

(4.19)

where the factor of V1 and V2 are the functions of the deuteron polarization and typically

to be

U1 - 0.98, (4.20)

V2 N 0.06, (4.21)

and Ah is the asymmetry for the proton measurement which we used the results from the

E143 meuurement using NHa target for.

This correction depends on the deuteron polarization varied due to the experimental

conditions and the correction was then applied for each run in the analysis.

4.2.6 Positron subtraction

The me~ured tracks are not only electrons which come from deep-inelastic scattering,

but also from other processes, such M pair creation by gammas from neutral pion.

Taking an account of the processes other than deep-inelastic scattering, the cross

section counting the electron, a~(+)$(t) is expressed by,

— ~$(t)~(t) = ~j[,t)$(t) + ~t(t)l(t) ,
pair (4.22)

‘(+)1(+) is the cross section counting the electron from the deep inel~tic scattering,where ~d~~

and ~t(~)l(+) .
pazr 1s the cross section counting the electron from the pair creation etc.

We resumed that the cross section counting electrons from the back-ground pro-

cesses for deep-inelastic scattering was charge symmetric. Under the assumption, this

cross section was estimated from the measurement counting positrons using the reverse

magnetic field because the positrons came only from the charge symmetric process. There-

fore, the cross section counting the positron o~(+)~(t) gives the cross section of the charge

1refer Appendix D for the detail of the derivation of the formula.

-
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symmetric process m,

t(+)$(t) = ~t(+)$(t)
‘pair P. (4.23)

The cross section for deep-inelastic scattering was extracted by subtracting the

cross section counting positrons from that counting electrons. We define the total cross

sections, Oe and oP, and cross section ~ymmetries, Ae and A~, counting electrons and

positrons by,

The cross section asymmetry for deep-inelmtic scattering,

electron and positron cross sections by,

(4.24)

(4.25)

(4.26)

(4.27)

A~~, is described with these

-

(4.28)

The factor ‘e is
ue —OP

to the contamination

the correction for the dilution for the cross section asymmetry due

of the charge symmetric process. The second term in Equation—

(4.28) is the correction due to the asymmetry which the charge symmetric process has.

Figures 4.36 to 4.43 show these factors.

In the actual calculation, we used the electron and positron asymmetry obtained

from the Equation 4.19 for the ideal Ap and Ap in the Equations (4.26) and (4.27). We

used also the ratio of the counting rates defined to be

Oe N:(t)J/Q:(t)$+ NJ(+)t/Q:(t)t
(4.29)

Oe —UP = ~j(t)$/Q:(t)$ + ~j(t)t/Q:(t)t _ ~;(t)l/Q;(-)l _ ~;(t)t/Q;(t)t ‘

for the ideal ratio of the u./(u. – Op). This is true for the ratio of the ~P/(~e – Op). It is

allowed if the temporal fluctuation of the target density and the acceptance and efficiency
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Figure 4.36: Thecorrection forthedilu-

tion due to the contamination of electrons

from processes other than deep-inelastic

scattering on 4.5° spectrometer for All.
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Figure 4.37: The correction for the dilu-

tion due to the contamination of electrons

from processes other than deep inelastic

scattering on 7° spectrometer for All.
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Figure 4.38: The correction for the dilu-

tion due to the contamination of electrons

from processes other than deep-inelastic

scattering on 4.5° spectrometer for Al.
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Figure 4.39: The correction for the dilu-

tion due to the contamination of electrons

from processes other than deep-inelastic

scattering on 7 spectrometer for Al.
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Figure 4.42: The correction due to the

asymmetry of the charge symmetric pr~

cess on 4.5° spectrometer: foq A1.

Figure 4.41: The correction due to the

asymmetry of the charge symmetric pro-

cesson 7° spectrometer for Ail.
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Figure 4.43: The correction due to the

asymmetry of the charge symmetric pro-

cess on 7° spectrometer for Al.
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of spectrometers were averaged and there was no bim for the electron and positron data

and the assumption ww guaranteed because we changed the magnet setting several times

during the experiment.

4.2.7 Wdiative correction

The cross section for deep-inelastic scattering is dominated by the one photon exchange

process as shown in the Feynman diagram in Figure 2.1. However, the actual processes of

the deep-inelmtic scattering contain not only the naive one photon exchange process, but

also other processes, for example two photon exchange processes, vacuum polarization,

internal-bremsstrahlung etc. In addition, the energy of the scattered electron is varied

by the interaction with the external field. To extract the cross section uymmetry for

the one photon exchange process from the memured cross section asymmetry, we should

estimate the radiative correction.

The radiative correction is categorized into internal and external radiative correc- -

tions. The internal radiative correction is due to processes involving self interaction like

vertex correction or real photon emission. The external radiative correction is due to in-

teractions with external fields. Leading diagrams accounting in the radiative correction,

are shown in Figure 4.44.

The internal radiative correction was calculated based on the method by N. Kukhto

and N. Shmeiko [54. In the radiative correction, contributions from the various higher

order diagrams and radiative processes were accounted as follows:

1. Electron vertex correction,

2. Vacuum polarization,

3. Two photon exchange,

4. El~tic radiative process,-.

5. Quwi-elastic radiative process,
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Figure 4.44: Leading diagrams accounting the in radiative correction
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6. Inelmtic radiative process.

The proton and neutron form factors for elastic- and qu~i-elastic processes were taken

from References [55] and [56]. The deuteron form factor for el=tic- and quasi-elastic

radiative processes was extracted from a fit done by L. M. Stuart [57]. The unpolarized

nucleon structure function for inelwtic radiative process w= taken from References [59]

and [60].

t
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Figure 4.45: Radiative correction on 4.5

0 for All
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Figure 4.46: Radiative correction on

4.5° for Al

The external radiative correction was calculated by Stuart [57] with the formula of

‘( /(~eZ~t., ~b) = ~ ~~, ~, t~)~an~(~, ~’)~(~’, ~j, t~)d~d~’, (4.30)

where E. is the initial energy of electron, E; is the energy of the final state electron,

and 1(E, E’, t) is the probability that the energy E becomes to E’ after passing through

a material of depth t. Then, Equation (4.30) means a cross section that final scattered

electron hw energy E; for given materials.

The external radiative correction was calculated assuming a target model estimated

by T. Liu [51] accounting only the external bremsstrahlung.

Figure 4.45, 4.46,-4.47, and 4.48. show the evaluated radiative correction for All

and Al of the 4.5° and 7° spectrometers. The radiative correction, RCII,1, is the difference

-
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Figure 4.48: Radiative correction on 7°

for Al

of the cross section mymmetry defined by the one photon exchange process ( Born cross

section ), All,L, and that defined by the measured cross section including any radiative

and higher order interactions, A~~.

AII,L = A~l + RCII,L. (4.31)

The radiative correction for All decrease the asymmetry in low-x region by less than

0.01. On the other hand, the radiative correction for Al is consistent with zero but the

large uncertainty.

We defined th; radiative correction for the cross section asymmetry in the additional

form as shown in Equation (4.31). The reason why we did not introduce the multiplicative

form was the definition is too sensitive to the statistical fluctuation on where the asym-

metry, A~~ was very small. In principle, the radiative correction due to the background

from the el~tic and quasi-elastic scattering etc. should be defined to be a multiplicative

form and it corrects not only the central point of the data, but dso the magnitude of

the statistical error. Therefore, We prepared another correction factor for the statistical

error. The statistical error ww corrected by the factor to be

611= d;’/Rc~~, (4.32)
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Figure 4.49: Radiative correction for

statistical error of All in the 4.5° spectro-

meter

where 611is the statistical error radiatively

t 1

10.1 m

Figure 4.50: Radiative correction for

statistical error of All in the 7° spectr~

meter

corrected, ~~’ is the statistical error for the

symmetry before the radiative correction, and RC~~ is the correction factor. The factor

for All on both spectrometers was calculated as shown in Figures 4.49 and 4.50.

4.2.8 Results

The corrections from the dead time, the beam polarization, the target polarization, the

dilution factor, and the nitrogen polarization are the factors which depend strongly on

the experimental conditions. We then applied these corrections for each run data. Res-

ults from many runs were summarized on the corrected asymmetry separately for the

target configuration (longitudinal or transverse), the spectrometer (4.5° or 7°), and the

spectrometer magnet setting (elect ron or positron mode) as follows,

(Aa(x)fi~)’

= [* ((Pb)2(R)1f(x)i~ )] 1
– v2(z)Ah(z)

i (~i(X)~~)2

< A(x)~~ >= 9 (4.33)
-
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Figure 4.51: All on4.5° spectrometer Figure 4.52: Al on4.5° spectrometer

where < A(z)~:~ > is the averaged asymmetry, (Ai (x) fi;~)’ is the rate asymmetry correc-

ted by the dead time effect, Ja(z)~~ is the statistical error of the cross section ~ymmetry

for each run.
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Figure 4.53: All on 7° spectrometer Figure 4.54: Al on 7°. spectrometer

-

The cross section mymmetry for the deep-inelastic process wm calculated by using

the Equation (4.28) with the averaged electron and positron asymmetry. Finally, we
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applied the radiative correction for the asymmetry. Figure 4.51, 4.52, 4.53, and 4.54

show the results of the cross section asymmetry for both spectrometers and both target

configurations.

4.2.9 Study for the systematic effects on the asymmetry

We studied the systematic effects on the cross section mymmetry caused by the direction

of the target polarization and the magnetic field on the target.

10L

,o~
0.5 1 1s 2 2s 3 33

1....1....1.........1s....,,,,,,,,,,,,,,
‘o 03 1 1.5 2 25 3 3.5 ~

Chiquam Chiquam

Figure 4.55: The X2 distribution of the Figure 4.56: The X2 distribution of the

difference of the All taken with different difference of the Al taken with different

target polarization ‘direction in 4.5° spec- target polarization direction in 4.5° spec-

trometer. trometer.

The target is polarized by the DNP method with a strong magnetic field and a mi-

crowave relaxation technique as mentioned in Section 3. The combination of the direction

of the magnetic field and the wave length of the microwave determines the direction of

the target polarization. The backward and forward polarization is then possible with the

same magnetic field.

We calculated the mymmetry separately for runs which were taken with the positive

and negative polarization and magnetic field respectively. Then, we took the difference

I
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Figure 4.57: The X2 distribution of the Figure 4.58: The X2 distribution of the

difference of the All taken with different difference oftheA1 taken with different

target polarization direction in7°spectro- target polarization direction in7°spectr~

meter. meter.

of these two results and calculated theX2 of the data by, —

(4.34)X2=A~(x)2/0d(Z)2,

where Ad is the difference oftwo asymmetries, ad is the statistical error of Ad calculated

by,

0a(x)2+~ne~(x)2, (4.35)

where oPO~and Oneg are the statistical errors of the ~ymmetries taken with the positive

and negative polarization or magnetic field. Figures 4.55 to 4.58 show the X2 spectra of

the difference of the asymmetries taken with the different target polarization direction.

In these four spectra, much part of the data distributes in the region of X2 less than 2.0.

Our results then seem to have no significant difference due to the polarization direction.

We calculated also the mean of the difference for each data set. These mean values are

within two standard deviations from zero as follows,

- Alf4.5) : ~ = –0.006 + 0.007,

A1(4.5) : & = –0.011 * 0.014,



4.2. THE CROSS SECTION ASYMMETRY 139

—

411 II

Chi~UaW

Figure 4.59: The X2 distribution of the

difference of the All taken with different

magnetic field direction in 4.5° spectro-

meter.

Cti ~uam

Figure 4.60: The X2 distribution of the

difference oftheA1 taken with different

magnetic field direction in 4.5° spectr~

meter.

AI,(7) : ~ = 0.010+ 0.012,
-

AL(7) : ~ = –0.015 * 0.022.

Therefore, we observed no significant effect due to the direction of the target polarization.

Figures 4.59 to 4.62 show the X2 spectra of the difference of the symmetries taken

with the different direction of the magnetic field. Much part of the data distributes in

the region of X2 less than 2.0 in these four spectra. Our results then seem to have no
—

significant difference due to the polarization direction. We calculated also the means of

the difference for each data set as,

AII(4.5) : ~ = 0.003+ 0.008,

A1(4.5) : ~ = –0.014 * 0.017,

AI,(7) : ~ = –0.023 & 0.012,

A1(7) : ~ = –0.003 + 0.023,

which give no significant differences from zero beyond two standard deviations. We

observed no systematic effect on the asymmetry due to the magnetic field on the target.
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Figure 4.62: The X2distribution of the

difference of the Al taken with different

direction of the magnetic field in 7° spec-

trometer.



Chapter 5

Results

We will first show our calculation of the spin structure function gl for deuteron from the

cross section =ymmetries obtained in the previous chapter. We determine the integral

of the g!(z) over x to examine the prediction from the Ellis-Jaffe sum rule. The quark

polarization are also memured for each flavor using the integral of the g~(z).

Combining the g!(z) to the proton spin structure function from E143[18], we obtain

the spin structure function for neutron, g~(x) and the difference of the spin structure

functions forproton andneutron, fl(x)-g~(z) andcalculate these integrals to compare

to the predictions from the Ellis-Jaffe sum rule and the Bjorken sum rule.

5.1 gl at a- cmmon Q2

The cross section asymmetries, Al and All were me~ured at the fixed angles and the

fixed beam energy which gives Q2 correlated with x as shown in Figures 4.25 and 4.26.

For comparison of the memured rl with the predictions from the Bjorken and Ellis-Jaffe

sum rules, we have to obtain the spin structure function gl at a common Q2 because the

predictions depend on Q2 due to the power corrections of the strong coupling constant

a$(Q2) as shown in Equations 2.70 and 2.76.

We calculated the gl (z) at a common Q2 using two empirical methods treating the

Q2 dependence of the spin structure function in order to obtain the gl (z) at a common

141
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Q2; one is to ~sume that Al (z, Q2) and A2(z, Q2), the virtual photon cross section

symmetries are independent of Q2, and other is to assume that gl (z, Q2)/F1 (z, Q2) is

independent of Q2. In both wsumptions, the spin structure function was calculated via

the Al (s, Q2) and A2 (z, Q2), or gl (z, Q2)/F1 (x, Q2) respectively. These quantities related

the cross section symmetries All(z, Q;) and Al (z, Q;) to the spin structure function

gl (z, Q:) whose Q; and Q: are the measured Q2 and the common Q2, at which those

asymmetries were measured or obtained respectively.

II I
I 1 1

10“1
X B1

Figure 5.1: The closed and the open

circles show Al(z) from 4.5° and 7° spec-

trometers respectively. The error bars are

statistical only. —

In the first method, the virtuti photon
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Figure 5.2: The difference between

Al(z) from both spectrometers is plotted.

We subtracted the results of the 7° spec-

trometer from those of the 4.50 spectr~

meter. The error bar is the quadratic sum

of those statistical errors. The dmhed and

two dotted lines indicate the center value

and the band within two standard devi-

ations from the mean of these points.

cross sections, Al (x, Q;) and A2(z, Q;)

are first calculated from the cross section asymmetries, All(z, Q;) and Al (z, Q;) in

Equations (2.41) and (2.42) as follows,

.

(5.1)



5.1. G1 AT A COMMON Q2 143

(5.2)

where All and Al were measured at various Q ~ from 1.27 to 9. 17( GeV/c)2. The kin-

ematical variables, D, d, q, and ~ were given by Equations 2.43, 2.44, 2.45, and 2.46 at the

memured Q2, Q:. ~om the assumption, these Al (z, Q;) and A2 (z, Q:) are considered

to be same as Al (z, Q~) and A2(z, Q~) at the common Q2, Q;. Therefore, the following

formula gives the spin structure function at the common Q;,

where 72 and F1 were given at the common Q:.

Figure 5.3: gl/F1 from both spectro-

meters are plotted together. The closed

and open circle indicate the results from

4.5° sp~trometer and 7° spectrometer re-

spectively. The error bars show only the

statistical error.

(5.3)
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Figure 5.4: The

difference of gl (z)/Fl (x) by 7° spectr~

meter from those by 4.5° spectrometer are

plotted. The error bar indicates the quad-

ratic sum of those statistical errors. The

dashed and dotted lines show the central

value and the band within two standard

deviations from the mean value.

In the second method, the quantity, gl (z, Q&)/Fl (z, Q;) was calculated from the

cross section asymmetries as follows,

91(Z, Q%)‘_ 1

~1(z,Q;)
- ~(All(z, Q;)+ tan(O/2)A1(z, Q~)), (5.4)

-
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xj 4.5° spectrometer 7° spectrometer

Q% Al E Al

0.029 – 0.033 1.27 0.020 k 0.038 -

0.033 – 0.037 1.39 -0.002 k 0.028 -

0.037 – 0.041 1.52 0.045 k 0.025 -

0.041 – 0.047 1.65 0.005 k 0.025 -

0.047 – 0.052 1.78 -0.016 & 0.023 -

0.052 – 0.059 1.92 0.022 * 0.022 -

0.059 – 0.066 2.07 0.012 + 0.022 -

0.066 – 0.075 2.22 0.024 k 0.022 -

0.075 – 0.084 2.38 0.061 + 0.024 3.17 -0.031 & 0.062

0.084 – 0.095 2.53 0.060 k 0.026 3.48 0.034 & 0.043

0.095 – 0.107 2.69 0.038 & 0.029 3.79 0.047 k 0.036

0.107 – 0.120 2.84 0.114 * 0.031 4.11 0.041 * 0.034

0.120 – 0.135 3.00 0.144 & 0.034 4.43 0.051 & 0.033

0.135 – 0.152 3.15 0.141 k 0.038 4.77 0.161 + 0.033

0.152 – 0.171 3.30 0.113 & 0.042 5.13 0.066 & 0.033

0.171 – 0.193 3.45 0.154 k 0.049 5.49 0.161 & 0.034

0.193 – 0.217 3.59 0.107 k 0.051 5.86 0.099 & 0.039

0.217 – 0.245 3.73 0.120 & 0.059 6.23 0.166 & 0.042

0.245 – 0.275 3.85 0.079 & 0.095 6.60 0.106 & 0.047

0.275 – 0.310 3.98 0.244 & 0.085 6.96 0.224 + 0.051

0.310– 0349 4.10 0.273 + 0.094 7.33 0.260 k 0.058

0.349 – 0.393 4.20 0.404 + 0.118 7.68 0.238 & 0.070

0.393 – 0.442 4.30 0.404 * 0.212 8.03 0.263 + 0.082

0.442 – 0.498 4.40 0.243 & 0.193 8.36 0.270 & 0.103

0.498 – 0.561 4.47 0.464 & 0.245 8.67 0.392 & 0.125

0.561 – 0.631 - 8.92 0.106 + 0.313

0.631 – 0.711 - 9.05 0.082 k 0.308

0.711 – 0.800 - 9.17 0.546 + 0.534

Table5.1: Al for. both spectrometer. The error is statistical only.
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where D’ is defined in Equation (2.17). This gl (z, Q~)/F1 (z, Q%) is equal to that at the

common Q: under the assumption that the gl (z, Q2)/F1 (z, Q2) is independent of the Q2.

The gl (z, Q;) at the common Q; ww given to be

(5.5)

Figure 5.1 shows the Al(z) as a function of x for the 4.50 (closed circles) and 7°

(open circles) spectrometers. Table 5.1 lists the measured values of the Al (z) for both

spectrometers. In order to examine the Q2 dependence of the Al(z), figure 5.2 shows

the difference of Al(z) between the 4.5° and 7° spectrometers. The error bar is the

quadratic sum of the statistical errors. The d~hed and dotted lines indicate the mean

and the band within two standard deviations from the mean. The mean of these data were

0.030 + 0.016 which is within two standard deviations from zero indicating the validity

of the assumption that the Al(x) is independent of Q2.

Figure 5.3 shows the gl (z)/Fl (z) as a function of x for the 4.50 (open circles) and

7° (open circles) spectrometers. Table 5.2 lists the measured values of the gl (x)/Fl (x) =

for both spectrometers. Figure 5.4 shows the difference of gl (z)/Fl (z) between the 4.5°

: and 7° spectrometers to examine the Q2 dependence of the gl (Z)/F1 (z). The dashed and

dotted lines indicate the mean value of 0.028+ 0.016 and the band within two standard

deviations from the mean value. The mean value w= within two standard deviations

from zero indicating the validity of the assumption that the gl (x)/Fl (x) is independent

of Q2.

From Figures 5.2 and 5.4, we concluded that gl (x)/Fl (x) and Al (x) are independent

of Q2. Thus, for further calculation, we combined the 4.5° and 7° data weighted by the

statistical error for gl /F1 and Al. The combined results are shown in Figure 5.5 and 5.6

together with the Al(z) data from SMC[16]. Our memurements of Al(x) are in good

agreement to those from SMC in the overlapped region and shows similar behavior w

predicted by Carlitz and Kauer model in Appendix C, ie. the Al(x) approaches to 1 at

x = 1 and O at x = O respectively.

As will be mentioned later, these two wsumptions did not cause any significant
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xj 4.5° spectrometer 7° spectrometer

e Q%91/Fl — 91/Fl
0.029 – 0.033 1.27 0.015 + 0.037 -

0.033 – 0.037 1.39 0.006 + 0.028 -

0.037 – 0.041 1.52 0.047 + 0.025 -

0.041 – 0.047 1.65 0.009 k 0.024 -

0.047 – 0.052 1.78 -0.012 & 0.023 -

0.052 – 0.059 1.92 0.016 k 0.022 -

0.059 – 0.066 2.07 0.006 k 0.022 -

0.066 – 0.075 2.22 0.024 ~ 0.022 -

0.075 – 0.084 2.38 0.058 & 0.024 3.17 -0.020 + 0.062

0.084 – 0.095 2.53 0.067 + 0.026 3.48 0.044 * 0.043

0.095 – 0.107 2.69 0.030 & 0.028 3.79 0.053 & 0.036

0.107 – 0.120 2.84 0.111 k 0.031 4.11 0.033 & 0.034

0.120 – 0.135 3.00 0.141 & 0.034 4.43 0.045 L 0.033

0.135 – 0.152 3.15 0.131 k 0.037 4.77 0.158 & 0.033

0.152 – 0.171 3.30 0.121 k 0.041 5.13 0.058 & 0.033

0.171 – 0.193 3.45 0.131 k 0.046 5.49 0.167 + 0.034

0.193 – 0.217 3.59 0.107 * 0.051 5.86 0.075 & 0.037

0.217 – 0.245 3.73 0.120 & 0.059 6.23 0.147 & 0.040

0.245 – 0.275 3.85 0.157 k 0.067 6.60 0.125 k 0.044

0.275 – 0.310 3.98 0.203 ~ 0.078 6.96 0.213 + 0.050

0.310– &349 4.10 0.268 & 0.093 7.33 0.249 k 0.058

0.349 – 0.393 4.20 0.364 k 0.112 7.68 0.210 & 0.067

0.393 – 0.442 4.30 0.222 k 0.138 8.03 0.235 + 0.079

0.442 – 0.498 4.40 0.156 & 0.175 8.36 0.304 & 0.098

0.498 – 0.561 4.47 0.558 & 0.223 8.67 0.376 + 0.123

0.561 – 0.631 - 8.92 0.414 & 0.166

0.631 – 0.711 - 9.05 -0.131 k 0.243

0.711 – 0.800 - 9.17 0.125 & 0.384

Table5.2: gl/_Flfor both spectrometer. The error is only statistical
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Figure 5.5: gl/F1 for deuteron: The res-

ults from both spectrometers were com-

bined. The error bars are statistical only.

The black area indicates the size of the

systematic errors. - -
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difference forgl(s). Furthermore, the E143 analysis including the-data taken at beam

energies of16GeV and 10 GeVdemonstratedthatgl(z)/F1(z) was independent ofQ2

over the range of0.3<Q2< 10.0(GeV/c)2 [58]. Therefore, Iusedthegl(x) obtainedby

the second method under the~sumption thatg1(s,Q2)/F1(z,Q2) is independent ofQ2

in the further calculation.

5.2 Deuteron spin structure function

The spin structure function for the deuteron wm calculated from All(z, Q%) and AL(z, Q;)

using the Equations (5.4) and (5.5). The structure function F1 (x, Q2) ww evaluated by

using F2 (z, Q2) and R(z, Q2) in the Equation (2.14). The F2 (z, Q2) WM calculated by us-

ing the parameterization obtained from the results of muon-nucleon scattering at CERN

by New Muon Collaboration (NMC) [59]. The R(z, Q2) ww calculated from a global

analysis for the pwt SLAC electron-nucleon deep-inelastic experiments[60]. We set the
.

n
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Figure 5.7: F2(z,Q2)by the NMC para-

meterization at Q: = 3.0( GeV/c)2
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Figure 5.8: R(z, Q2) by the SLAC

global analysis at Q: = 3(GeV/c)2

common Q; at 3.0( GeV/c)2 which was nearly equal to the average of the memured Q2.

Figures 5.7 and 5.8 show F2(w, Q!) and R(z, Q:) at the common Q; = 3.0( GeV/c)2.

Figure 5.9 shows the gl for the deuteron at Q2 = 3.0( GeV/c)2 obtained from
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Figure 5.9: The closed circles show the gl (x) for deuteron at Q2 = 3.0( GeV/c)2. The

error bars are statistical only. The results under the usumptions that Al is independent

of Q2 are shown by the-open circles for comparison. The dark area indicates the size of

the systematic error of gf(z).
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the E143 memurement. The closed circles show the gl (z) under the assumption that

gl (z, Q2)/~1(x, Q2) is independent of Q2. The error bars are only statistical. The dark

area shows the size of the systematic error. For comparison, the results obtained under

the assumption that Al (z, Q2) and A2 (z, Q2) are independent of Q2 are also plotted by

the open circles just aside of the closed circles indicating that the two assumptions caused

no significant difference for gl.

5.3 Proton spin structure function
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Figure 5.10: The spin structure function gl (z) for proton at Q2 = 3.0( GeV/c)2; The

gl (z) for proton was recalculated using the results of the polarized e-p scattering from

E143 [18]. The error bars are statistical only. The dark area shows the size of the

systematic error.

The results for the proton spin structure function, ~(z) from E143 were published else-

where [18]. We recalculated the ~(z) for this analysis with the updated programs using

the new data set. The updated programs used for this analysis were baically same as

those used for analysis in Ref. [18], but we applied newly the beam heating correction
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xj F 9f(91/Fl) 9!(A1A2)

0.029 – 0.033 1.27 .065 + .166 .073 + .166

0.033 – 0.037 1.39 .024 + .111 .014 * .111

0.037 – 0.041 1.52 .164 + .089 .162 + .089

0.041 – 0.047 1.65 .028 k .073 .025 & .073

0.047 – 0.052 1.78 -.033 + .062 -.036 k .062

0.052– 0.059 1.92 .038 + .054 .041 + .054

0.059 – 0.066 2.07 .012 k .047 .014 + .046

0.066 – 0.075 2.22 .045 & .042 .045 & .042

0.075 – 0.084 2.48 .081 + .037 .082 + .037

0.084 – 0.095 2.78 .090 + .033 .090 + .033

0.095 – 0.107 3.11 .051 * .029 .052 + .029

0.107 – 0.120 3.43 .087 & .027 .086 & .027

0.120 – 0.135 3.74 .094 + .024 .094 + .024

0.135 – 0.152 4.07 .133 & .023 .132 & .023

0.152 – 0.171 4.41 .067 * .021 .066 + .021

0.171 – 0.193 4.75 .110 + .020 .109 + .020

0.193 – 0.217 5.10 .054 * .019 .049 + .019

0.217 – 0.245 5.44 .076 + .018 .072 + .018

0.245 – 0.275 5.76 .063 + .017 .066 & .017

0.275 – 0.310 6.08 .084 + .017 .080 & .017

0.310 – 0.349 6.43 .085 + .016 .081 & .016

0.349 – 0.393 6.77 .069 & .016 .063 & .016

0.393 – 0.442 7.11 .051 + .015 .044 * .015

0.442 – 0.498 7.41 .046 & .015 .045 + .015

0.498 – 0.561 7.67 .055 & .014 .050 + .014

0.561 – 0.631 8.92 .040 + .016 .051 + .016

0.631 – 0.711 9.05 -.009 & .017 -.015 + .016

0.711 – 0.800 9.17 .006 + .017 -.004 & .016

Table 5.3: gf under the two assumptions; g~(gl/F1) was taken ~suming that

-–

gl (z, Q2)/Fl (x, Q2) ww independentof Q2. gf(AlA2) was calculated assuming that

Al (x, Q2) and A2(z, Q2) ‘we independent of Q2.
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for the present analysis. For the old date set, we added a series of runs which were

lost in the previous due to the wrong headers of the data files. We removed data from

several runs due to the bad beam conditions, the bad target conditions etc. From these

improvements, the ~(z) integral for the data region was obtained to be

PO.8
recalculated : ]oom~,(x) dp x = 0.117+ 0.004 (stat) + 0.007 (syst), (5.6)

to be compared with the previous value of

~blished: ~;, ( )gl x ‘dx = 0.120+ 0.004 (stat) + 0.008 (syst), (5.7)

where the systematic error decreased slightly because the error of the beam polarization

was estimated to be 2% which was taken to be 470 in the previous calculation. Figure 5.10

shows the fl(z) obtained from the reanalysis at Q2 = 3.0( GeV/c)2. The error bars are

statistical only. The dark area shows the size of the systematic error. In the followings,

we use the updated ~(x).

5.4 Neutron spin structure function and ~(z) – g?(z) -

~ From the deuteron and proton spin structure functions, we can derive the neutron struc-

ture function. The Equation (2.58) gives the relation between the gl (x) of deuteron,

neutron, and proton to be

— gy(x) =
1 – 3;2wDgf(x) – 9!(X),

(5.8)

where wD is the D-state probability of the deuteron fixed at 0.06+ 0.01 [28] in the whole

x region. Figure 5.11 shows the results of the neutron g;(x) at Q2 = 3.0( GeV/c)2. The

error bars are statistical only. The dark area shows the size of the systematic error.

The difference fl(z) – g?(x) which can be compared to the prediction from the

Bjorken sum rule was calculated by combining of our deuteron and proton results. This

difference is expressed in terms of g~(x) and fl(x) by,

k(x) - 9;(X) = 2d(x) - 1- 3~2wDg~(x)
(5.9)

Figure 5.12 shows the difference, ~(x) – g?(x) at Q2 = 3.0( GeV/c)2.
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area shows the size of tfie systematic error.
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5.5 systematic error

We estimated the systematic errors for gl possibly arose from the following sources,

1.

2.

3.

4.

5.

6.

7.

Beam polarization,

Target polarization,

Target dilution factor,

Radiative correction,

Fz and R,

D-state probability of deuteron,

Nitrogen correction,

which will be explained in the following sections.

5.5.1 Beam polarization

Beam polarization was evaluated from the quantum efficiency of the cathode of the po-

larized electron source. The correlation between the quantum efficiency and the beam

polarization w= calibrated by the measurement of M@ller polarimeter as shown in Figure

4.31.

1.

2.

3.

4.

5.

6.

The E143 collaboration studied the following uncertainties and estimated to be [61];

Quantum efficiency parameterization 0.25%,

Analyzing power 0.25%,

Agreement between foils 0.5 %,

Foil mewurement uncertainty 1.0 %,

Environmental influences 1.0 %,

Anomalous data spread 1.2 %,

where the ‘Agreement between foils’ is the systematic error due to the deviation of

the data obtained from tie foils with various thicknesses, the ‘Environmental influences’

is the error due to the geometrical location of the foil and other equipments near the
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foil target. The total uncertainty of the beam polarization was estimated to be 2.0% in

absolute. Because the beam polarization ww 84 M 86% typically, the fractional error,

JPb/Pb was to be 2.4%. The error of gl due to the uncertainty of the beam polarization

was estimated by using,

(5.10)

where we neglect of the error of Al because this error is suppressed by the factor of

tan(6/2) which is 0.04 for 4.5° spectrometer and 0.06 for 7° spectrometer. The All– RC is

the cross section mymmetry including any higher order and radiative process, ie. the cross

section asymmetry measured actually. Because the radiative correction is independent of

the beam polarization, we subtracted the radiative correction from the All.

Figure 5.13 shows the beam polarization uncertainty of xdgl (x) for deuteron. The

solid curve shows the error of xgl (x) due to the beam polarization and the dashed line is

the total systematic error of xgl (x). Because the x axis is in logarithm scale, the gl (z) -

integral over x is proportional to the area of xgl (z) in this figure, that is

91(x)~~ = Xgl(x)d(log x). (5.11)

Therefore, the plot of the error of xgl (x) in logarithm scale is good to see the contribution

of the error to the integral of gl (x).—

5.5.2 Target polarization

The target polarization ww extracted from the measurement of the NMR signal calib-

rated by thermal equilibrium signal which corresponds to polarization by the Boltzmann

distribution. The statistical error of the thermal equilibrium measurement dominated the

uncertainty of the target polarization which W* estimated to be 4.070 for the deuteron

target [50], -.
6P~
— = 0.040
P~

(5.12)
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The error of gl was calculated with Equation (5.10) substituting ~t for Pb. Figure 5.14

shows the systematic error of zgl(z) for deuteron due to the uncertainty of the target

polarization with the conventions same as those in Figure 5.13.

5.5.3 Dilution factor

The dilution fwtor is defined to be the fraction of events from the polarized deuteron in

the target to the total events. The error of the dilution factor was calculated from the

following sources;

1.

2.

3.

4.

5.

The coefficient of the EMC effect — the ratio of the cross section of a nuclear per

nucleon with respect to that of the deuteron. The uncertainty of the EMC coefficient

ww estimated from 0.3 to 1.3% relative depending on x

effect uncertainty conservatively to be 1.5% over all x.

[53]. We wsigned the EMC

Cross section ratio — The ratio u~/aP has 2.0% uncertainty relative to itself [62]. -

NMR coil uncertainty — The NMR coil uncertainty is due to the lack of knowledge

of how much wire exist in the target effectively. We ~sumed it had 2070 relative

error [63].

Packing fraction — The packing fraction is a percentage filled by the ammonia

beads in the target cell. The packing fraction error depends on the target cell. We—

used the error of the most frequently used one, which is 2.0% [64].

Material weight — We included also the absolute uncertainties in the weight of the

ammonia and helium in the target which we assumed to be

Figure 5.15 shows the systematic error of xg~(x) due to the

5.5.4 Wdiative correction

The radiative correction gives the uncertainty of gf(z). Only

radiative correction for the All(x) w~ included because that for

4% relative. [65].

dilution factor.

the uncertainty of the

Al(x) was suppressed
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Figure 5.15: The systematic error of zgl

of deuteron due to the dilution factor: the

results are shown by the solid curve. The

dmhed curve is the total of the systematic

error.

10“
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1

Figure 5.16: The systematic error of

zgf(z) due to the radiative correction:

only the uncertainty on the correction for

All was accounted. The results are shown

with the same conventions as Figure 5.15
—

by the small factor tan 0/2 m shown in Equation (5.5). The uncertainty of the radiative

correction was evaluated with a varying of input models and the error of the data points.

The error of g!(z) due to the radiative correction was calculated by,

(5.13)

—

where 6RC is the uncertainty of the radiative correction for the All. Figure 5.16 shows

the error of zg~(z).

5.5.5 Total cross section

F1/D’ in Equation (5.5) hw an uncertainty due to the error of the spin-averaged structure

functions. This uncertainty contributes to the systematic error of g~(s).

F1/D’ in Equation (5.5) is expressed in terms of Fz and R by,

FI (1+ T2)Y(1+ cR)
D’— = ‘22z(1+R)(1 –~)(2– y)’

(5.14)
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and in terms of the total cross section by [22],

(5.15)

where u is the total cross section, aMOtt is the Mott cross section given by,

~Mdt = 4a2(E’)2 cos2(e/2)

Q4 .
(5.16)

In principle, the uncertainty of F1/D’ calculated by using Equation (5.15) or (5.14)

should be identical. On the other hand, the uncertainty calculated by using the Equation

(5.14) without any account for a correlation between the errors of F2 and R is larger than

that calculated by using the Equation (5.15) because the accuracy of the total cross section

is nearly equal to that for F2. Therefore, the proper way to calculate the uncertainty of

F1/D’ “is either using Equation (5.14) accounting the correlation between the errors of F2

and R or using the Equation (5.15). We calculated the error of F1/D’ by using Equation

(5.15). -

We assumed that the fractional uncertainty of the total cross section is same as that

of F2. We estimated the uncertainty of the F2 using two FORTRAN codes, F2GLOB.F

and F2NMC.F. F2GLOB.F provides the F2 for various kinematic region from a fit

using results of past SLAC experiments [62]. It also gives the statistical, systematic, and

normalization errors evaluated from the experimental results. F2NMC.F provides F2 with

NMC parameterization- [59] which was obtained from the NMC muon-nucleon scattering.

F2NMC.F is more reliable than F2GLOB.F in low x region due to the availability of the

data used to determine the parameters.

The error of F2 was calculated by,

6F2

()\ – ‘nmm2+(1-$~c)2

JFftat 2
—=
F2 F2

(5.17)

where F~tat is the statistical error which was provided by F2GLOB.F, nmm is a normal-

ization uncertainty 1.770-which was derived from Ref. [62], and the last term comes from

the model dependence. Using the fractional error of F2, the systematic error of gl due to
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the total cross section is given by,

da(x)
dg~(x) = g~(x) — = 91(X) ~~2(x).

a(x) F2(x)
(5.18)

The l~tterm in Equation (5.17) gives ahugeuncertainty in the low xregionof

x < 0.08 because of large discrepancy between F2(x) obtained from F2GLOB.F and

F2NMC.F. It isan obvious over-estimation for the error because the NMC parameter-

ization is more reliable at low x than F2GLOB. F2GLOB states that the routine is not

useful in the region of x <0.08 due to the poor statistics in the fit.

Figure 5.17 shows F2 (x) data from the NMC experiment and the parameterization

curve at Q2 = 3.0(GeV/c)2[59]. Only the data obtained at Q2 between 2.5 and 3.5

(GeV/c)2 are plotted. The two dotted lines indicate the band within 4% relative uncer-

tainty from the parameterization curve. This relative uncertainty of 4% is acceptable

for the F2 error in the low x region from the figure. Therefore, we took that F2 has the

relative uncertainty of 4% in the region of x <0.08.

Figure 5.18 shows the error of xg~(x) due to the uncertainty of F1/D’.

- 5.5.6 D-state probability

The D-state probability, ~D is a fraction of the deuteron in D-state (L=2) as mentioned

in Section 2.5. It was estimated from the calculation using various models to be 5.5 N

6.5%[28] and we &signed to be ~D = 6 + 1% which covers all of the results. This

uncertainty causes an ambiguity of the gl not for deuteron but for neutron and proton -

neutron showing Equations (5.8) and (5.9). The uncertainties of rn and rp – rn due to

the D-state probability are 3% of rd.

5.5.7 Nitrogen correction

Nitrogen correction is a correction due to the polarized nucleon other than deuteron in

the target. This is a smll correction and the uncertainty of the correction factors are

negligible for the cross section ~ymmetry or gl (x) as stated in Section 4.2.5. The nitrogen
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Figure 5.17: F2 data from NMC ex-

periment and the parameterization curve.

Only the data between Q2 = 2.5( GeV/c)2

and Q2 = 3.5(GeV/c)2 are plotted. The

dotted lines show the band within the rel-

ative uncertainty of 470 from the paramet-

erization curve.
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correction forthe cross section asymmetry is expressed to be, “

(5.19)

where V1 and V2 are the correction factors which are approximately 0.98 and 0.06 re-

spectively and Ap is the cross section asymmetry for proton. Although the uncertainties

for the VI and V2 are negligible, the error of the cross section asymmetry of the proton

in the correction may affect due to the large magnitude of the asymmetry for proton in

contrmt to that for deuteron. Therefore, we estimated the uncertainty due to the proton

asymmetry by

(5.20)

where JAP is the statistical error of the proton asymmetry. We calculated only

uncertainty from the All due to the proton ~ymmetry.

The uncertainty of rd due to the error of Ap was estimated to be 0.0001 which

smaller than ten times of the other error, for example 0.0016 for the dilution factor and -

then it was negligible to the rd.

the

was

5.6 Integrals of gl(x)

We first calculated the integral of gl (z) over the data region of 0.029< x <0.8. To

estimate the shap; of ‘gl (x) in the

and (O < x < 0.029), we used the

respectively.

outside of the data region where (0.8 < x < 1)

extrapolation for gl (z) towards x = 1 and x = O

5.6.1 integral in data region

We calculated the integral of gl, r&ta over the data region of 0.029< x <0.8 using the

rectangle approximation of,

-.

rtit.= ~ gl (xi) x AXi, (5.21)
i
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where i is the index for the bin, Axa is the size of the bin. The statistical error, ~r~~

was calculated by,

where Jgl (~i) ‘tit is the statistical error of gl (xi). The

calculated by,

Axi}2 , (5.22)

total systematic error, dr~a was

(5.23)

where j is the index for the source of the systematic error, Jgl (xi)~ is the uncertainty

of gl due to the systematic error. The systematic errors of gl (x) for different bins from

the same source are correlated to each other. We therefore summed the error on all bins

linearly as shown in Equation (5.23). The results of rti~~, 6ra?~,

in Table 5.4.

9: 9? d-9Y

rhti 0.0384 –.0326 0.1495

~r~~ 0.0035 0.0083 0.0103

ar:~ti 0.0036 0.0095 0.0142

and dr~~ are shown

Table 5.4: Integral of gl (x) on the data region: The integral of gl (z) for deuteron,

neutron, and proton - neutron in the region of 0.029< x <0.8 are shown.

—

5.6.2 Low x extrapolation

Because our measurement reached down to x=O.029, we had to estimate the gl for x <

0.029. In such a low x region, sea quarks dominate the scattering and the information of

the initial parton spin is then lost by the gluon emission. According to Regge theory[66]

gl approaches to O at the low x region and is proportional to Xa with O s a <0.5, where

the a is the Regge intercept at t = O.

In the p~t experiments, the spin-averaged structure function F2 (x) h~ been meas-

ured down to a lower x region with higher accuracy than the spin structure function, gl (z).

.
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These experiments showed that the spin-averaged structure function is described by the

Reggetheory insuchalowx region. The Figure 5.19 shows the F2(z)for deuteron from

NMC, where only the data taken between Q2 = 2.5(GeV/c)2 and Q2 = 3.5( GeV/c)2 are

plotted. Thesolid line shows the NMCparameterization for F2(z)at Q2=3.O(GeV/c)2.

The dash-dotted line show the reduced X2 if we involve the data into the Regge form

fitting up to there. The evolution of the reduced X2 demonstrated that the fit by the

Regge form is acceptable up to around z = 0.1.

0.4 -
g A 4

~ 0.38 :

0.36 : t)

0.34 :

0.32 ~ /
..’.

0.3 : ..’

0.28 : /

/
0.26 :

1
0.24 :
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0.22 : : 0.5

0.2 I I o
10 ‘2 10 ‘1 XB

Figure 5.19: F2from NMCinthe region between 2.5< Q2 <3.5( GeV/c)2. The left

y-axis shows the F~mdthe right-hand y-axis shows thereduced X2. Thesolid line shows

NMC parameterization at Q2=3.0(GeV/c)2. Thedashed line shows thereduced X2 for

the fit with the data up to there. The fit was done with two parameters plxp’ suggested

by Regge theory.

Therefore, resuming that gl was proportional to x“ in the low x region of x <0.1,

we fitted the Regge forms with three fixed a of O, 0.25 and 0.5 to the data up to x=O. 1.

Figures 5.20, 5.21, and 5.22 show the low x fits for g~, g?, and fl – g? respectively. All

of these fitting curves do not describe the data well. However since the contribution to

the integral from the low-x region is small, we took the shape of gl (z) determined by the
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Figure 5.20: Extrapolation toward x = O for gl of deuteron with Regge form. The

dotted, solid, and dmhed lines show the fits with the forms of Cx”, Cx”.25, and Cx”.5

where C is a fitting parameter. These fits were done using the data up to x=O. 1.
.

fit with a = 0.25 and calculated the integral,

/

0.029
rlw = Cx”.25dx,

o
(5.24)

where C is the parameter determined from the fit.

To estimate [he Uncertainties in the low-x region, we considered the statistical and

systematic errors of the data points, uncertainty of the parameter a and the data region

used in the fit.

The statistical error of the extrapolation, dr~~t was calculated by,

/

0.029
Jrfgt= 8Cx”.25dx,

o
(5.25)

where 6C is the error of the fitting parameter.

For the systematic-error, we assume that the fitted curve has the fractional uncer-

tainty same as the average of the fractional systematic error of the data points, bg~y’ and



166 CHAPTER 5. RESULTS

~ 0.4n

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

aP

I

aD
-------

/--- . . . . . .-. 4..... 4P

~B 4 r 4D ““”””””-t
tt-..

II
v V.vz V.U4 V.V6 0.05 u. 1 0.12 0.14

x~

Figure 5.21:

with the same

Extrapolation toward x=O of gl of neutron. The fitted curves are indicated

conventions = Figure 5.20.
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Figure 5.22: Extrapolation toward x=O of fl – g~. The fitted curves are indicated with

the same conventions as-Figure 5.20.
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calculated the systematic error of the extrapolation, ~r~~

(5.26)

where C is the fitted parameter with a = 0.25.

The uncertainty of the extrapolation due to the parameter a ww estimated to be

the largest difference in rlm with a = O, or a = 0.5 from that with a + 0.25.

The uncertainty due to the fitted region w= evaluated by varying the upper limit

from x = 0.05 to 0.13 corresponding to the first 5 to 13 data points. The largest difference

in rlW from that obtained at the upper limit of x=O. 1 was taken u the uncertainty due

to the fitting region.

Table 5.5 shows the summary of the integral and the errors of the low x integral.

The ~r~~ is the quadratic sum of the uncertainties due to the parameter a and the fitted

region.

9: 9? d-9?

rlw 0.0011 –0.0030 0.0084

I drf~t 0.0003 0.0007 I 0.0009

6r;: 0.0002 0.0005 0.0008
Jrf; 0.0008 0.0028 0.0059

1-

fitting parameter 0.11 –0.32 0.88

error of parameter 0.03 0.08 0.09

Reduced X2 0.66 1.01 1.23

Table 5.5: Integral of gl in the low x region, O < x <0.029: The extrapolations were

determined from the fits using the Regge form with a = 0.25 with the data up to x = 0.1.

The dr;&t is the uncertainty due to the error of the fitted parameter. The 6r~~ is the

uncertainty due to the systematic error of the data which were used by the fit. The

Jr~~ was the quadratic sum of the uncertainties due to the Regge parameter a and the

variation of the fitting region.
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5.6.3 High x extrapolation

For the region of x >0.8, we determined the shape of gl (x) using a formula, C(l – X)3.

This formula is bwed on the ~sumption that a struck parton with a large momentum

fraction is also carrying the spin of the nucleon [67].

fitting parameter 0.41 –0.50

error of parameter 0.21 0.50

Reduced X2 1.35 1.06

Table 5.6: The fitting parameter evaluated from the fits

7
d-9r

1.90

0.62

1.03

with the last three data using

the formula of C(l – X)3 where C is the fitting parameter.

The fit ww performed using the last three data points in the region of 0.55 <

x < 0.8. The integral for the high x region of 0.8 < x < 1.0, rhigh is calculated

/

1.0
by C(l – x)3dx with the parameter C determined by the fit. The statistical and -

0.8
systematic errors of the integral, ~rfl~h and ~r~~~h were evaluated from the errors of the

T data points using the similar method as used for the low x extrapolation. Table 5.6 shows

the fitting parameter obtained from the fits. Figures 5.23, 5.24, and 5.25 show the fits for

gl of deuteron, proton, and the difference of proton - neutron respectively.

The uncertainty due to the variation of the lower limit of the fitting region was

estimated in a similar manner m used for the low-x fitting. The lower x limit WM varied

from 0.4 to 0.6 corresponding to the lwt six to two data points. The largest difference

in rhigh at x = 0.55 was taken w the uncertainty.

As mentioned in Section 3.5, the expected momentum resolution is worse than that

corresponding to the bin size of the x in the high x region of 0.53< x. It may be critical

for the high x extrapolation because the extrapolation using the data binned on x with

the narrower size than the resolution of the spectrometer affects the result. We examined

the variation of the high x extrapolation with the data which were combined by each two

data points. The fitting WM done with the lmt two points which correspond to the l~t
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Figure 5.25: Extrapolation toward x=1 on fl(s) – g?(z). The last three data points

determined the fit.

four data in the original data array. The deviation of the integral from that obtained

-

using the original data was accounted w one of the systematic error.

The Table 5.7 shows the summary of the integrals of gl for deuteron, neutron, and

proton - neutron in the region of 0.8 < x < 1.0 obtained from the extrapolations. The

Jr#9~ is the quadratic sum of the uncertainties due to the variation of the fitting region

and the bin size of_the data used to determine the fit.

5.7 Test of the sum rules

The complete integral of gl (x) in the region of O < x <1, r was obtained by combining

the results of the three regions as,

r = rlw+ rhta+ rhagh. (5.27)

The statistical errors in ~he three regions were combined quadratically by,

Jr’tOt = ~(drf&t)2 + (6r&L)2+ (6ri&h)2 (5.28)
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9? 9: d-9r
rfm(o.8 < x < 1) 0.0002 –0.0002 0.0008

dr~yh 0.0001 0.0002 0.0003

~rfl~;h 0.0000 0.0000 0.0001
~rjlt

high 0.0002 0.0005 0.0006

hble 5.7: Integral of gl (x) in the high x region of 0.8 < x < 1.0 were evaluated

from the extrapolation toward x = 1. The statistical error of the integral, ~r~~h is the

uncertainty due to the statistical error of the data points. The systematic error, Jr~~~h

is the uncertainty due to the systematic error of the data points. dr~gk is the quadratic

sum of the the uncertainties due to the variation of the fitting region and the bin size of

the data used to determine the fit.

where the 6rSt0t is the statistical

the three regions were combined

jit and Jrfi;h werex regions, Jrlw

I

error of the complete integral. The systematic errors in

linearly. The uncertainty of the fit in the low and high

included into the total systematic error, JrSYs m,

~r$y$ = d( ~~+’r::~h)’+(’rf~)z+(’rKh)zJr;%+ ar’y$ (5.29)

Table 5.8 shows the integrals of gl at Q2 = 3.0( GeV/c)2 with the statistical and

systematic errors. The lower part of the rows shows the contributions from the various

uncertainties to the total systematic error.

We also calculated the integrals of gl (z) at Q2 = 10.0 (GeV/c)2 to compare to
—

the results from Spin Muon Collaboration (SMC) under the assumption that gl /F1 was

independent of Q 2. Table 5.9 shows the r at Q2 = 10.0 (GeV/c)2. The statistical and

the systematic errors were calculated in the same procedure as used for the calculation

at Q2 = 3.0(GeV/c)2.

5.7.1 Ellis-Jaffe sum rule for deuteron

As shown in the Table 5.8, the gl (x) integral for deuteron at Q2

evaluated as,
-.

r~ = 0.0396 + 0.0035 (stat.) + 0.0039 (syst.),

= 3.0( GeV/c)2 was

(5.30)
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r
Jrstat

Beam polarization

Target polarization

Dilution factor

Radiative correction

F1/D’

D-state probability

Low x extrapolation

High x extrapolation

Total

9:

0.0396

0.0035

0.0011

0.0016

0.0016

0.0024

0.0009

0.0009

0.0002

0.0039

–.0358

0.0084

0.0008

0.0049

0.0054

0.0057

0.0022

0.0012

0.0030

0.0005

0.0105

&-9?

0.1586

0.0103

0.0039

0.0071

0.0079

0.0068

0.0053

0.0012

0.0060

0.0007

0.0162

Table5.8: Integral of gl in the region of O < x <1 at Q2 = 3.0( GeV/c)2: contributions -

to the systematic error from each source are shown in the lower part of the table.

—

9: 9? d-9Y

rf~(o < x c 1) 0.0400 –0.0380 0.1641

Statistical error 0.0030 0.0073 0.0089

Systematic error 0.0041 0.0115 0.0183

Table 5.9: Integral of gl in the region of O < x <1 at Q2 = 10.0 (GeV/c)2. The results

were evaluated under the assumption that gl (x)/Fl (x) is independent of Q2.
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where the first error is the statistical error and the second error is the systematic error.

The theoretical prediction including the QCD correction up to third order of the a. =

0.36 + 0.05 [27] at Q2 = 3.0( GeV/c)2 is,

rd = 0.068*0.005, (5.31)

with the D-state probability of deuteron wD = 0.06. rd from the E143 experiment differs

from that of the Ellis-Jtie sum rule for deuteron by about four standard deviations, where

the standard deviation was taken as a quadratic sum of the statistical and systematic errors

of the integral and the uncertainty in the Ellis-Jaffe sum rule.

In order to verify the consistency of our results to those from SMC, we calculated

the gl (z) for deuteron at Q2 = 10.0( GeV/c)2. The results of zg~(s) from E143 and SMC

are plotted in Figure 5.26 together. The closed and open circles show the zgl (z) for

deuteron from E143 and SMC respectively. The error bars are only statistical. The dark

and open areas indicate the size of the systematic errors for E143 and SMC respectively.

These results are in a good agreement to each other in the overlapped region.

These results are summarized together with the theoretical prediction from the

Ellis-Jaffe sum rule at Q2 = 10.0 (GeV/c)2,

rd =

rd =

rd ‘=

0.0400 * 0.0030 (stat.) * 0.0041 (syst.) : E143,

0.034 + 0.009 (stat.) + 0.006 (syst.) : SMC,

‘0.070 * 0.004 : theory, (5.32)

showing that rd from E143 at Q2 = 10.0(GeV/c)2 is consistent to that from SMC.

However, the rd predicted by the Ellis-Jaffe sum rule is different from both of the exper-

imental results by more than three standard deviations.

The Figure 5.27 illustrates the comparison of the rd measurements and the the

oretical prediction as a function of Q2. The closed and open circles show the results

from E143 and SMC at Q2 = 3.0 and 10.0( GeV/c)2 respectively. The error bars are

the quadratic sum of the statistical and systematic errors. The solid line shows the the

oretical prediction including the QCD correction up to third order of a8(Q2).The Q2
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Figure 5.26: zgl of deuteron: the results from E143 and SMC are plotted together

by the open and closed circles respectively. Both results were evaluated at the common

Q2= 10.0(Gev/C)2.TheerrorbarsarestatisticalOnly.Thedark and open areas indicate

the size of the systematic errors for E143 and SMC respectively.
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Figure 5.27: rd _with the prediction of the Ellis-Jaffe sum rule: The horizontal axis—
shows Q2 and the vertical axis shows rd. The open and closed circles indicate the results

from E143 and SMC respectively. The error bars are the quadratic sum of the statistical

and systematic errors. The solid line shows the prediction of the Ellis-Jaffe sum rule up

to third order of as. The dotted lines show the band within one standard deviation from

the prediction.
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evolution of the prediction ww calculated using the running strong coupling constant,

as (Q2) with A(nf=4) = 0.364 + 0.052 GeV which wm evaluated in Section 5.7.3, where

nj is the number of quark flavors. The dotted lines show the band within one standard

deviation from the prediction. The uncertainty of the prediction ww calculated from the

errors of the A(nJ=4), hyperon decay constants, F and D, and the D-state probability of

the deuteron. The results from both experiments indicate a large discrepancy of more

than three standard deviation from the prediction.

5.7.2 Ellis-Jaffe sum rule for neutron
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Figure 5.28: The gl of neutron from E143 and E142 are plotted together by the open and

closed circles respectively. Both results were evaluated at the common Q2 = 2.0( GeV/c)2.

The error bars are statistical only. The dark and open are~ indicate the size of the

systematic errors for E143 and E142 respectively.
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Figure 5.29: r“ ~esults with theprediction of the Ellis-Jaffe sum rule: The horizontal

axis shows Q2 and the vertical axis shows rn. The open and closed circles indicate the

results from E143 and E142 respectively. The error bars are the quadratic sum of the

statistical and the systematic errors. The solid line shows the prediction of the Ellis-Jaffe

sum rule up to third order of as. The dotted lines show the band within one standard

deviation from the prediction.
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The r for the neutron at Q2 = 3.0( GeV/c)2 using our deuteron and proton results was

obtained to be,

rn(Q2 = 3.0) = –0.0358 + 0.0084 (stat.) + 0.0105 (sys.). (5.33)

This result indicates a discrepancy from the prediction of the Ellis-Jaffe sum rule for

neutron,

r“(Q2 = 3.0) = –0.009 + 0.006 : theory, (5.34)

by 1.8 times of the standard deviation.

Figure 5.28 shows the gl (z) for neutron at Q2 = 2.0( GeV/c)2. The closed and open

circles show the g~ (z) obtained from E143 and E142 [12] respectively. These results are

in a good agreement to each other.

Figure 5.29 shows r“ from E143 and E142 with the predicted curve by Ellis-Jaffe

sum rule including the QCD correction up to third order of a. as a function of Q2. The

Q2 evolution of the prediction was calculated using the running strong coupling constant, -

as (Q2) with A(nf=4) = 0.364 + 0.052 GeV which was evaluated in the next section. The

error bars are the quadratic sum of the statistical and systematic errors. The results from

E143 and E142 which are shown by the open and solid circles are in a good agreement

and lower than the prediction. However, the accuracies of the results are not enough to

exclude the Ellis-Jaffe sum rule for neutron.
—

5.7.3 Bjorken sum rule

The difference of the integrals of g;(z) and g~(s), r~ – r“ are obtained from Table 5.8

to be,

rp – rn(Q2 = 3.0) = 0.1586+ 0.0103 (stat.) + 0.0162 (sys.), (5.35)

which is consistent with the prediction from the Bjorken sum rule at Q2 = 3.0 (GeV/c)2

given by, -.

rp – rn(Q2 = 3.o) = 0.169+ 0.008 : theory. (5.36)
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Figure 5.3o: z~–zg~: the closed and open circle show the results at Q2 = 10.0 (GeV/c)2

from E143 and SMC [16] respectively. The error bars are only statistical. The closed

and open are- show the size of the systematic errors for E143 and SMC results.
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We evaluated the fl(z) – g?(z) at Q2 = 10.0( GeV/c)2 for comparison to the SMC

results. These two data are consistent with each other as shown in Figure 5.30. The

integrals from these me~urements are,

r~ – rn(Q2 = 10.0) = 0.1641+ 0.0089 (stat.) + 0.0183 (svs.) : E143 (5.37)

r~ – rn(Q2 = 10.0) = 0.199+ 0.038 : SMC (5.38)

where the error of the SMC result contains both of the statistical and systematic errors

[16]. The two results are in good agreement with the prediction of the Bjorken sum rule

at Q2 = 10.0( GeV/c)2 given by,

rp – rn(Q2 = 10.0) = 0.187+ 0.003 : themy. (5.39)

The Figure 5.31 shows the comparison of the rp – r“ measurements and the the

oretical prediction as a function of Q2. The solid and open circles show the results from

E143 and SMC at the averaged Q2 respectively. The solid line shows the theoretical -

prediction including the QCD correction up to third order of a. (Q2). The dotted lines

show the band within one standard deviation from the prediction. The uncertainty of the

prediction was calculated from the errors of the A(”f=4) and the hyperon decay constants,

F and D. The results from both experiments are in good agreement with the prediction.

Figure 5.32 shows the strong coupling constants obtained from the various exper-

iments. Using the measurement of rp – r“, we calculated the strong coupling constant

as(Q2 = 3.0) to be 0.417+0.086_o.llo with the Equation (2.72) and plotted as the open circle.

The closed triangle is the average of the results of T decay measurements by Particle

Data Group (PDG) [26]. The closed square is the NMC result obtained from the meas-

urements for the scaling violation of the spin-averaged nucleon structure function [68].

The closed circle is the result of CCFR obtained from the measurement for the Gross-

Llewellyn Smith sum rule [69]. The solid curve is the running coupling constant, a$(Q2)

obtained from the fitting using these data plotted in the figure. We used the renormal-

ization scheme with the number of flavor, nf = 4 to obtain the running strong coupling
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Figure 5.31: rp ~ rn with the prediction of the Bjorken sum rule: The horizontal mis—
shows Q2 and the vertical =is shows rp – rn. The open and closed circles show the results

from E143 and SMC respectively. The error bars are the quadratic sum of the statistical

and systematic errors. The solid line shows the prediction of the Bjorken sum rule up to

third order of a,. The dotted lines show the band within one standard deviation from

the prediction.
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constant. The data were fitted to the formula of [26]

[

6(153 – 19nf) log[log(Q2/A2)]

a8(Q2) = (33 - 2n;l~g(Q2/A2) 1- (33 - 2n~)2 1log(Q2/A2) ‘
(5.40)

where A is the parameter determined to be 0.364+0.052 GeV by the fitting. The reduced

X2of the fit WM 0.33. This running coupling constant ww used to obtain the Q2 evolution

of the sum rules shown in Figures 5.27, 5.29, and 5.31.
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Figure 5.32: The strong coupling constant a, w a function of Q2. The open circle is the

result from E143. The closed triangle is the result obtained from the decay width of the

T lepton [26]. The closed circle is the result from NMC [68] obtained by the me~urement

for the scaling violation of the spin-averaged nucleon structure function. The closed circle

is the result from CCFR [69] obtained by the me=urement for the Gross-Llewellyn Smith

sum rule. The solid line and the dotted lines show the running coupling constant and the

band within one standard deviation obtained by the fit using these data.
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5.8 Quark polarization

We calculated the quark polarization with r~ by using the Equation (2.87). We found

the quark polarization to be,

Au = 0.822+ 0.019,

Ad = –0,435 + 0.019,

As = –0.101 + 0.023,

AZ E Au+ Ad + As = 0.286& 0.055, (5.41)

where the errors include both of statistical and systematic uncertainties of r~, the error

of D-state probability on the deuteron, uncertainties of axial vector couplings, and the

error of the strong coupling constant in the QCD correction. These results demonstrate

that the strange quark is polarized significantly opposite to the nucleon spin and the total

quark polarization is about 30% of that for the nucleon; indicating that a large portion

of the nucleon spin is still missing.
.

Figure 5.33 shows the strange quark polarizations as a function of the total quark

T polarization from various experiments. We recalculated the quark polarizations from

EMC[ll] and E142[12] with the QCD correction up to third order of as [27]. The values

from the E143 deuteron measurement is in good agreement with the other results with

the highest accuracy among these measurements. The averages of the quark polarizations—

were calculated to be

As = –0.103 + 0.015, (5.42)

Au+ Ad+ As = 0.279& 0.039, (5.43)

indicating again that the strange quark is polarized significantly opposite with respect to

the nucleon spin and the quark carries only about 30% of the nucleon spin. These results

denote that the assumption of the unpolarized strange quark to derive the Ellis-Jaffe

sum rule is invalid and reconfirmed the ‘spin crisis’ with the higher accuracy than those

obtained before.
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Figure 5.33: The quark polarization evaluated from various experiments are plotted.

The horizontal and vertical axes show the total quark polarization and the strange quark

polarization. The shaded are= indicate the band within one standard deviation from the

average of the polarizations, As = –0.103 + 0.015 and Au+ Ad + As = 0.279* 0.039.
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Chapter 6

Conclusion and a look into the future

We have measured the deuteron spin structure function gl(x) in the E143 experiment

at SLAC using the highly polarized electron beam and the highly polarized frozen ND3

target. The experiment provided the high precision data for the structure function from

x =0.029 to 0.8. The integral of the spin structure function gl for deuteron over x at the

averaged Q2 = 3.0( GeV/c)2 and the prediction from the Ellis-Jaffe sum rule were found

to be,

Ex~erjment rd =

Theory rd =

0.0396+ 0.0035(stat.) + 0.0039(sys.), (6.1)

0.068 + 0.005. (6.2)

The result indicate-that the Ellis-Jaffe sum rule describes the data improperly. It denotes

that the assumption to derive the Ellis-Jaffe sum rule which is the unpolarized strange

sea quark, is not valid.

Combining the E143 deuteron and proton data [18], we obtained the difference of

the integrals, rp – r“. The rp – r“ from this experiment and the prediction by the

Bjorken sum rule are to be,

Ex~erjment rp – rn = 0.1586& 0.0103 (stat.) + 0.0162 (sys.), (6.3)

Theory _ -rp _ r~ = o.16g + o.oo8. (6.4)

From these results, we confirmed that the Bjorken sum rule gives a consistency to the
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experimental results at Q2 = 3.0( GeV/c)2 with the high accuracy. It means that Iso Spin

symmetry is valid for the spin structure function gl for nucleon and the Perturbative

QCD well describes the scaling violation of the spin structure function.

Strong coupling constant a, at Q2 = 3.0( GeV/c)2 w= evaluated by using up to the

third order of QCD correction for the Bjorken sum rule to be,

a8(Q2 = 3.0( GeV/c)2) = 0.417~&~f~, (6.5)

giving the consistency with the other measurements.

Quark polarization for each flavor was calculated using our deuteron data and

hyperon decay constants under the assumption of flavor SU(3). The polarization of

strange quark was found to be significantly negative, As = –O. 101 + 0.023, suggesting

that the assumption of the Ellis-Jaffe sum rule that the strange quark in nucleon is

unpolarized, is incorrect. The total quark polarization was found to be 0.286 + 0.055

which is much less than the prediction of 1.0 from the non-relativistic quark model and of

0.65 from the relativistic treat of bag model [70]. Now, ‘spin crisis’ is not ‘crisis’ anymore. -

Our understanding of the nucleon spin had been wrong and we have to establish a new

model to describe the spin of the nucleon properly.

Many theoretical works have been carried out to explain the small total quark

polarization.

The quark content of the nucleon spin was calculated employing the lattice QCD. M.

Fukugita et al. [71] obtained AZ = 0.18+ .10 and As = –.109 + .030 which is reasonably

consistent with our results. S. J. Dong et al. [72] calculated to be AX = 0.25 + .12 and

As = –.12 + .01 which is also consistent with our results.

A way to salvage the naive quark model of the nucleon, is to introduce a large gluon

polarization. The diagram shown in Figure 6.1 causes a gluon contribution to the total

quark polarization evaluated from the polarized -N scattering. Accounting this effect

called axial anomaly, the quark polarization evaluated from the polarized e-N scattering,

A~ is expressed to be [73] .

A~= Aq – ZAG, (6.6)
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where AG is the gluon polarization. The strong coupling constant ~~ decreases with the

increasing Q2 and AG has Q2 dependence like In Q2 thus the second term of the RHS.

of Equation (6.6) does not vanish in the scaling limit of Q2 ~ 00. Therefore, the QCD

correction by the power of as is not valid to correct this anomalous gluon contribution

and we me=ure not the Aq, but the A~ in the e-N scattering. If AG -2, the total quark

polarization are corrected to be JZ w 0.6 and As N O which are consistent to the results

of the relativistic treat of the bag model. Of course, this large gluon polarization have to

be canceled by the orbital angular momentum to conserve the angular momentum of the

nucleon. An advantage of this model is conserving a non-singlet term like Au – Ad in the

e-N scattering if the anomalous contribution is identical for three flavors. The Bjorken

sum rule is then still valid in this model.

Skyrme model is being discussed recently because this model gives Oquark polariza-

tion. In this model, the quark is interpreted to be a soliton solution of the SU(NC) x SU(Nf)

chiral Lagrangian where NC and Nf are the numbers of the color and flavor of quarks in

the nucleon. Notice that the quark in this model is mass-less. Although the whole of the

nucleon spin is carried by the orbital motion of the quarks in this model, an possibility

is denoted by Ref. [74] that the l/NC expansion and the quark mass correction make the

quark carrying < 30% of the nucleon spin which is consistent to the experimental result.

More experiments are needed to make a further understanding of the spin structure

of the nucleon. Thg Q2_dependence and the low-x behavior of the spin structure function

are curious to examine the perturbative QCD and to study the higher twist effect.

SLAC-E154 directly measured the spin structure function of neutron using gaseous

3He target which was previously measured in SLAC-E142, but with higher beam po-

larization and higher energy electron beam than SLAC-E142. This measurement will

improves the results of E142 and give the precise data for the neutron spin structure

function. E154 ended its measurement in Fall of 1995 and the analysis is in progress.

SLAC-E155 will start in 1996 to measure the spin structure function of proton and

deuteron with the 50 GeV polarized electron beam. This 50 GeV electron beam allows

us to provide precise data down to lower z than the current SLAC data and to clarify
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thelow-x behavior of thespin structure function with high accuracy.

SMC experiment will keep their measurement for the spin structure function until

1996 and the measurement will decrease theambiguity of their current results [l6] [15]

and provide the more precise data of the gl at low x region due to the high energy beam.

The gluon polarization may be a key to solve the nucleon spin. An exclusive meas-

e: -
7587A4

Figure 6.1: The Feynman diagram of photon-gluon fusion. The virtual photon and

~ gluon make the quarkonium, q~. The cross section of the interaction is supposed to

depend on the gluon and photon felicities. charmonium, J/V is the best candidate to

tag the interaction because the charm quark is found hardly in the nucleon.

—

urement is suggested in positron-nucleon or proton-proton scattering to investigate gluon

polarization [75]. The production rate for J/W should depend on the gluon polarization in ~

both cases, because the dominant process of the J/Q production is photon-gluon fusion

as shown in Figure 6.1 or gluon-gluon scattering in e-N or NN scattering respectively.

The following two projects, HERMES at DESY and Relativistic Hadron and Ion Col-

lider, RHIC at BNL can possibly provide this most interesting measurement for the gluon

polarization.

HERMES project[17] at DESY is measuring the polarized positron scattering with

many kinds of polarized gaseous target. It has a large detector surrounding the interaction
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point and the detector allows to study not only the inclusive cross section on a wide

kinematical region, but dso the exclusive mewurement like quark-gluon fusion.

An polarized proton-proton scattering experiment is planed in RHIC at BNL. This

experiment will me~ure the gluon polarization in the nucleon which is not found yet.

Fermi National Accelerator Laboratory (FNAL) E-704 studied the gluon polarization in

the nucleon using scattering of polarized protons or anti-protons off polarized proton

target [76]and no gluon polarization was found but with the large experimental error.

—

-.
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Appendix B

Spin-dependent cross section

The cross section in the laboratory frame are expressed in

L~” and the hadron tensor ,WP. .by [21]

where E and E’ are the energy of the initial and final state

terms of the lepton tensor,

(B.1)

electron respectively, Q2 is

defined in Equation (2.4). In the following sections, we derive these tensors and the cross

section for the polarized electron and nucleon scattering. We will use the kinematics

defined in Section 2.

B. 1 Lepton tensor

The lepton tensor is calculated from Dirac spinor and electr~magnetic current [5],

LPV = ~E(k’, s’)yPu(k, s)z(k, s)~”u(k’, s’)
s’

[ 1
= Tr ~ U(k’, S’)u(k’, s’)y~u(k, S)u(k, s), y“ , (B.2)

s’

where u and ti are Dirac spinor and hermit conjugation of that, and ~~ is gamma matrix.

Because we investigate the inclusive scattering, the tensor is summed over the final spin

states. A product of spinor summed over the spin states, is described by four momentum
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and mass of the particle [77]. Then the term of the find lepton is expressed to be

z u’~ = (~’ +m), (B.3)

where ~) is the Feynman

Because the initial

summed over the initial

8’

dagger defined in reference. [78]

lepton is polarized, the products of the Dirac spinor are not

spin states. Even though, we sum the product over the spin

states and apply the spin projector[21] for our convenience. The spin projector extracts

one of helicity states from the product,

ua=(#+m)~(l+y5fl, (B.4)

where 75 is defined by 75 = i~o~l Y2Y3and s is a spin vector. Substituting these equations

into equation (B.2), the lepton tensor is expressed by

L~” = ~TT [(#’+ m)7P(#+m)(l + 7547”]. (B.5)

The trace is expanded by using g~v and &~~d”as follows,

LPV = 2 (k’Pkv+ k’vk~– (k. k’)g~”)+ 2m2gpv + 22m7p6vq7S6. (B.6)

The last term in this equation is an antisymmetric term with respect to a change of the

initial lepton helicity. As shown later, the hadron tensor has also such symmetric and

antisymmetric parts. To be convenient, we define the symmetric and antisymmetric parts

of the lepton tensoi to %e,

L~ = 2 (k’Pk” + k’vkP – (k . k’)g~”)

L~ = i2mE~~dvq7s8

B.2 Hadron tensor

+ 4m2gP” (B.7)

(B.8)

The hadron hm the complex substructure and thus we can not determine the hadron

tensor in explicit terms. ‘Although, the following assumptions limit which vector product

can be involved into the tensor;
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1. Parity conservation,

2. Time reversal conservation,

3. Hermiticity,

4. Translation invariance,

5. Current conservation.

Under these assumptions, the hadron tensor is expressed by using four structure functions

to be [21],

‘Pv= ‘1(-g~v+7)+~%(’~-%’~)(’v-Y’v)
iM2vG1 aMv2G2

+ Ep”pqpA’ +
P.q (p. q)2 &P~Pqp(P . q~’ - A . qp’), (B.9) -

where W1, W2, G1, and G2 are four structure functions of the hadron. These structure

functions are the function of v and Q2.

The requirement of the current conservation for the lepton tensor is giving a relation

of
—

OPL~V= qflL~” = O(same for v). (B.1O)

This formula means that a term which has qP or q“ is erased in the contracting with the

lepton tensor. Effectively, we can erase terms which have q~ or q. in the equation(B.10). If

we divide the hadron tensor into symmetric and antisymmetric parts, the equation (B.10)

is rewritten to be

v W2
Wsp”= –Wlgfiv+ ——

M p . qpPpV
(B.11)

WAPV=
iM-2VG-l iMv2G2 ~kVmqP(p. q~’

““mqpA’ + (P. q)2
– A . qp’)

P.q
(B.12)
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B.3 Tensor contraction and the cross section

The contraction of the lepton tensor

and antisymmetric terms to be

and the hadron tensor is expressed in the symmetric

~

where the contraction between

the parity invariance.

Using Equations

are expressed to be

=

——

r Bv Wpv

the symmetric and

LYWAM., (B.13)

antisymmetric terms is to be O under

(B.7) and (B.11), the tensor contraction for the symmetric terms

2[k’Pk” + k’”k~
[

- (k. k’)gg”] -Wlgpv + ~~~q)pppp
1

4(k . k’)W1 + ~~wj) [2(p . k’)(p . k) - (k . k’)p2].

4EE’ [W2 cos2(0/2) + 2W1 sin2(8/2)] . (B.14)

Using Equations (B.8) and (B.12), the tensor contraction for the antisymmetric

: terms are expressed to be

L~WA~. = mMGl [(q. ~)(q . s) - q2(s . A)] - 4mvG2q2(s.A) +4mv2G2 [q2(~ . q)(s . p)] .

(B.15)

Let the electron polarize parallel or anti-parallel to its momentum, the electron polariz-

ation vector, s is expressed using its helicity, H1, to be

(B.16)

We assume two nucleon polarizations parallel or perpendicular to the electron momentum.

The polarization vector for these states are expressed to be

paTallel A = (0;0,0, 1), (B.17)
-.

perpendicular A = (O;cos #, sin @,O), (B.18)
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where the event plane is defined to be z-x plane and the sign of the momentum of the

scattered electron in x to be positive. The nucleon in the perpendicular configuration is

polarized in the angle of@ from the x-axis.

Using these polarization vectors, the tensor contrwtions for the anti-symmetric

terms are expressed by

parallel L~ WAP. = –2H/Q2 [MG1 (E’ COS6 + E) – G2Q2], (B.19)

perpendicular L~WAPV = –2HIQ2E’ sin Ocos ~ [MG1 + 2G2E] . (B.20)

Thus the cross section between the polarized electron and the polarized nucleon are

expressed to be

~rallel
d2atl(t) e’ E’

dE’dQ = 16T2Q2F
[[w, cot2(e/2) + 2W,] - 2H, [MG1(E’ coso + E) - G,Q2]],

(B.21)

perpendicular
#at$(t) e4 El
dE!dQ = 16X2Q2~ [[W2 cot2(6/2) + 2W1] - 2H1E’ sin Ocos~ [MG1 + 2G2E]] ,

(B.22)

where the superscripts of the o show the directions of the spin of the nucleon and electron

respectively. The cross section for the unpolarized reaction is obtained averaging these

cross sections for the polarized reaction over the electron helicity to be

[

1 ~~t(t)$ ~t(+)t

1

e4

~ dE’dfi ‘a =
“ [W2 + 2 tan2(0/2)W1] .

16n2Q2 tan2(0/2) E
(B.23)

The differences of the cross sections with the flip of the electron helicity, on the

other hand, are expressed as follows,

parallel _ -
&otl ~o~ e4 E!

—4 [MG1 (E’ cos o + E) – G2Q2],dEld~ – dEld~ = 16X2Q2 E
(B.24)
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perpendiwlaT
@~+4 #o+t e4 E’

—4E’ sin Ocos # [MG1 + 2G2E] .
dE’d~ – dE’d~ = 16n2Q2 E

(B.25)

If the nucleon is polarized along the x axis, ie. @= 0° or 180° in the perpendicular

configuration, the Equation (B.25) is rewritten to be

(B.26)

where H is +1 or –1 corresponding to ~ = 0° or 180°. Because @ is defined from the

x-axis giving the positive sign of the scattered electron momentum in x, H is equal to the

sign of the inner product of the electron momentum and the spin vector of the nucleon.

—

-.



Appendix C

Kauer and Carlitz model

R. Carlitz and J. Kauer developed a phenomenological model for the spin structure of

the nucleon[79]. They expressed the spin structure for three regions over x using three

assumptions separately and combined them together.

They assumed the SU(6) model was useful at the middle region, x ~ 0.3 because _

the nucleon is composed by three quarks in the SU(6) model. In this model, the wave

function of proton is expressed in terms of u and d quarks to be,

[w) = ~ [2utUtd1 – utuJdt – u$utdt + . . .] , (Cl)

where the arrow show the direction of the quark spin with respect to that of the nucleon

spin. From the wale function, the expectation value for the quark polarization is given

to be

514
Au = Uf–U~=~–~=j,

which give the total quark polarization to be

(C.2)

(C.3)

The virtual photon cross section asymmetry Al defined by Equation (2.36) is expected

205
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by the SU(6) model for nucleons to be,

~P = 4/9Au + l/9Ad 5
1 4/92 + 1/91 = G

(C.4)

An = 4/9Ad + l/9Au
1 4/91 + 1/92 = 0

(C.5)

In the high x region, they assumed the struck parton with the large momentum

fraction carrying also the nucleon spin. The asymmetry Al (z), then, approaches to 1 at

X=l.

In low x

initial spin of

form.

region, they ~sumed the Regge theory. Because

the struck quark, the asymmetry approaches to

the gluon take away the

O at x = O with Regge

Figure C.1 shows the expected shape for the virtual photon asymmetries Al(x) for

proton and neutron from these three assumptions.

-.



207

1.0

0.8

0.6
AI

0.4

0.2

0

I I I I

Proton

-0.2
0 - - 0.2 0.4 0.6 0.8 1.0

x 7585AI0

Figure Cl: The Carlitz and Kauer model for Al(z)
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Appendix D

Derivation of nitrogen correction

In the frozen 15ND3 target, a small polarization of nucleons (nuclei) other than deuterons

were recognized. Then the cross section ~ymmet ry for the target included the contri-

butions from those nucleons (nuclei). We derive the relation between the cross section

mymmetry for the deuteron and that for the actual target.

We defined the contaminations of 14N(q14) and proton(qP) to be

#ofNH3
7P =

#ofND3 + #ofNH3
(D.1)

#of14N
714 =

#of14N + #of15N’
(D.2)

and the polarization, the cross section, and the cross section asymmetry of these nucleon—

and nuclei M p, o, and A with subscription d, p, 14, and 15 respectively. The memured

cross section asymmetry is expressed in terms of these quantities,

3(1 – qP)OdpdAd + 3qPOPPPAP+ (1 – q14)~15P15A15+ q14014P14A14
A=p~

3~d+ 015 + otheT ? (D.3)

where we neglected qP and q14 in the denominator. We introduce the dilution factor which

was defined in Section 4.2.4, so the equation can be rewritten to be

[

%p~A15 +q1430d Pd

1

~pPPA + (1 – ~14)30d Pd
A ‘Pbpdf (1 – ~p)Ad + ~P;~ P ~p~A14 . (D.4)

The asymmetry of the nitrogen nucleus and deuteron is expressed in terms of the

208



209

unpaired nucleons to be

OPAP
015A15 = ~9N

A~PAP+ on ngN014A14 =
3

OdAd = (1 – 1.5w~)(upAp

(D.5)

(D.6)

+ onAn), (D.7)

where gN is the EMC effect for nitrogen nucleus, and wD is the D-state probability of

the deuteron. We use the EMC effect of 14N for both nitrogen nuclei. We wsume

the polarizations for both nitrogen nuclei to be p14 = –p15 = pN because the magnetic

moments for those nuclei have opposite sign. We substitute these equations into Equation

(D.4),

We solved the equation for the cross section asymmetry of the deuteron and obtained

[

A
Ad=A —–

1
V2AP y

VI PdPdf

where V1 and V2 are given to be

The

(D.9)

(D.1O)

(D.11)

contaminations of the q14 and qp were estimated to be 2.0% and 1.570 respect-

ively. The D-state probability is fixed to be 6.0& 1.0% [28]. We used the results from the

proton measurement of E143 [18] for the proton asymmetry. We ~sumed that the ratio

of the total cross sections, ~P/~d, wm the same as the ratio of the structure functions,

~2P/~2d. The structure functions were obtained from the NMC parameterization[59]. The

EMC effect is obtained from a fit using data from References [52] and [53]. The polar-

ization of the proton and the- nitrogen nucleus m a function of the deuteron polarization

were measured by using the NMR technique N shown in Figures D.1 and D.2[80].
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Figure D. 1: Residual proton polariza-

tion as a function of the deuteron polariz-

ation.
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Figure D.2: 15N polarization m a func-

tion of the deuteron polarization.
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