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Abstract

This thesis describes a 29GeV electron - nucleon scattering experiment carried out at
Stanford Linear Accelerator Center (SLAC). Highly polarized electrons are scattered off
a polarized ND; target. Scattered electrons are detected by two spectrometers located
in End Station A (ESA) at angles of 4.5° and 7° with respect to the beam axis.

We have measured the spin structure function g; of deuteron over the range of
0.029 < z < 0.8 and 1.0 < @* < 12.0(GeV/c)? giving the integral of g¢ over the range
0 <z <1 to be 0.0396 £ 0.0035 + 0.0039 at average Q@ = 3.0(GeV/c)?.

This integral indicates a discrepancy of more than three standard deviations from
the prediction of the Ellis-Jaffe sum rule, f; g¢dz = 0.068 + 0.005 at Q2 = 3.0(GeV/c)?
while our result of ¢¢ in good agreement with SMC results. Combined with g; of the
proton, the measurement of the integral of [y (g} — g7')dz = 0.1586 £ 0.0103 + 0.0162, was
consistent with the prediction by the Bjorken sum rule, f; (¢¥ — ¢7)dz = 0.169 + 0.008.
We also obtained the strong coupling constant at @? = 3.0(GeV/c)? to be 0.417+3:956
“using the power correction for the sum rule up to third order of «a,. This result is
in agreement with the strong coupling constant a,(Q? = 3.0(GeV/c)?) obtained from
various experiments.

Using our deuteron results and the axial vector couplings of hyperon decays, the
total quark polarization along the nucleon spin is found to be 0.286 = .055, implying
that quarks carry only 30% of the nucleon spin. The strange sea quark polarization is
also determined to be —0.101 £ .023. These measurements are in agreement with other

experiments and provide the world most precise measurement of these quark polarization.
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Chapter 1

Introduction

The electron-nucleon scattering has played an important role in advancing our under-
standing of the nucleon structure. In Quantum electrodynamics (QED), the electron is
treated exactly as a point like particle which does not have any structure, whereas the
nucleon is treated as a substance which have a complex structure. In electron-nucleon
scattering, virtual photons are exchanged between the electron and the substructure of
the nucleon. Therefore, this makes us to investigate the nucleon structure by using the

photon probe.

In the 1950’s, the elastic and quasi-elastic electron-nucleon scattering experiments[1]
indicated that the nucleon has a finite size of order 10~'3cm. Several experiments in the
middle of 1960s[2] established that the cross section fell with increasing momentum
transfer, suggesting a composite nucleon model. In 1969, results from deep inelastic
scattering of electrons off a hydrogen target at SLAC[3] showed that the cross section
is larger than expected by the composite model, and that the cross section has only a
weak dependence on momentum transfer(Q?). This behavior, refer to Bjorken scaling, is
interpreted to imply that the nucleon is composed of point-like charged particles. These
point like particles were named as partons by Feynman in 1967. The precise measurement
of the nucleon structure[4] showed that the charged partons carry only a half of the nucleon

momentum, and that neutral partons which carry the other half of the nucleon momentum

12
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exist in the nucleon. These charged and neutral partons are later identified as quarks
and gluons which are described by Quantum Chromodynamics(QCD). Now, we believe
that the nucleon is composed of valence quarks, sea quarks, and gluons. There are three
valence quarks in the nucleon which determine net quantum numbers such as charge and
baryon number. Sea quarks are created in pair by gluon which have no net quantum
number. Gluons mediate the color force which composes these partons together.

As nucleon spin is 1/2, it had been assumed that only the valence quarks are
responsible for the nucleon spin analogous to the baryon number or nucleon charge, and
that sea quarks and gluons were not polarized in the nucleon. In such a naive picture,
the SU(6) model of baryons describes well the magnetic moments of the baryons [5].

Bjorken derived a sum rule for the combination of the structure functions of the
proton and neutron using current algebra and an assumption of iso-spin symmetry|[6).
This sum rule predicts that the integral of the difference of spin structure functions of the
proton and the neutron over Bjorken x from zero to one is equal to a sixth of the axial
vector coupling strength in neutron beta decay, [y [¢2(z) — g7 (z)]dz = §94/gv. Because
this sum rule can be derived also using QCD calculations, it is thought of as a fundamental
sum rule. Bjorken himself said 'If the sum rule is violated, QCD is wrong.’[7]. This sum

_rule is usually called the Bjorken sum rule.

Ellis and Jaffe derived another sum rule predicting the spin structure functions of
the proton and neutron[8] separately, [} ™ (z)dz = + % (F+ D)+ 3(3F — D) where the
sign is plus for proton, minus for neutron and F and D are the hyperon decay constants.
They assumed the SU(3) flavor symmetry and unpolarized sea quarks. The sum rule
obviously depends on the nucleon model, so that it is thought to be less fundamental
than the Bjorken sum rule. This sum rule is referred to the Ellis-Jaffe sum rule.

Even though these sum rules were established in the early 70s, we had to wait for
the experimental proof until 1976 when deep inelastic scattering of polarized electrons and
polarized nucleons was possible along with the development of polarized electron beam
and polarized nucleon. The experiment was carried out by the SLAC-Yale collaboration

[9], where a large asymmetry was observed as predicted by the quark-parton model. Their
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results[10] were consistent with the Ellis-Jaffe sum rule for the spin structure function of

proton within their large experimental error.

T I T T I |

forer —

| ELLIS—JAFFE * EMC
0.18 - Sum Rule = SLAC —

Loy,

0.06 |- +ﬂ- -

(x)dx

I

0.02 0.1 0.5

10-93 X m 7542A5

Figure 1.1: The integral of the spin-dependent structure function g,(z) for the proton
with EMC and SLAC data. The horizontal axis shows Bjorken x in logarithm scale. The
vertical axis is the integral of the g;(z) down to the x value. The arrow on the vertical

- axis shows the Ellis-Jaffe sum rule for the proton. The smooth extrapolation toward x=0
indicates that the extrapolated value is different from the prediction.

In 1988, EMC(European Muon Collaboration) at CERN published the results from
high precision measurements of the scattering of polarized muons off polarized protons in
butanol[11], indicating that the spin structure function of the proton was in disagreement
with the Ellis-Jaffe sum rule as shown in Figure 1.1. They concluded that the quark
carries only a small fraction of the proton spin and the strange sea quark has a significant
fraction of opposite polarization with respect to the proton spin. This new and surprising
results were called as ’the spin crisis’ and denied the naive idea that only valence quarks
carry the nucleon spin, and sea quarks and gluons are not polarized.

The E142 Collaboration at SLAC published the results from the first measurement
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of the neutron spin structure function using 3He target [12]. Their results were consistent
with the Ellis-Jaffe sum rule at Q? = 2.0(GeV/c)? within one standard deviation ! and
with the Bjorken sum rule obtained using the QCD correction to third order in o, within
one standard deviation. However, their measurements denoted that the quark carried
only about a half of the nucleon spin.

These measurements suggested that our understanding of the nucleon spin is far
from the whole picture. We need not only to do more theoretical work, but also more
experiments. Where is the other part of the nucleon spin? Why do quarks carry only a
small fraction of whole nucleon spin although the SU(6) model is successful for predicting
the magnetic moment of baryons. We have to find answers for these questions.

This ’Spin Crisis’ has led several experiments to measure the nucleon spin structure
functions to find the answer, and to reach further understanding of the nucleon spin; the
Spin Muon Collaboration (SMC) at CERN [15],(16], HERMES at DESY([17] and E143
at SLAC [18],[19].

The E143 is an international collaboration consisting of about 90 physicists and
graduate students from 17 institutes. The purpose of E143 was to investigate the spin
structure functions of both the proton and the deuteron. The experiment was imple-

_mented using the highly polarized electron beam accelerated by the Linac and the solid
ammonia target located in End Station A (ESA). Figure 1.2 shows the aerial view of
the SLAC. The long structure stretched from up to down is the 3 km long Linac. The
building at the end of the Linac is ESA. The experiment was carried out in ESA with
the high statistics. This high statistical measurement was able to test the Ellis-Jaffe and
Bjorken sum rules with a higher accuracy than the EMC and E142 measurements. It
gave more understanding of how the nucleon spin is carried by quarks. The variation of
the beam energy also provided the information of Q% dependence of the spin structure
functions.

This thesis describes E143 investigating the electron scattering off deuterons in NDj

1A reanalysis by D. M. Kawall and J . A. Dunne is giving the integral of the g; for neutron to be
—.036 + .009 which is two standard deviations away from the prediction by Ellis-Jaffe [13] [14].
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Figure 1.2: Aerial view of the Stanford Linear Acceleration Center. The long structure
stretched from up to down is 3 km long Linear accelerator (Linac). The building at the
end of the Linac is End Station A where the experiment was carried out.
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at 29 GeV and presents the results from this experiment. This measurement determined
the spin structure function g, of deuteron with high accuracy. The covered x range is
0.029 < xp; < 0.8 at an average Q% = 3.0(GeV/c)2.

In Chapter 2, the formulae of deep inelastic electron-nucleon scattering are derived.
The principle of spin structure function measurement and the Ellis-Jaffe and Bjorken
sum rules are explained. The experimental setup and devices are described in Chapter
3. In Chapter 4, the analysis procedures to reconstruct electron tracks and to calculate
the cross section asymmetry including various corrections will be explained. In Chapter
5, the measured data and the results of the structure function and the integral are given
including the estimation of systematic errors. Finally, a conclusion and a look into the

future are given in Chapter 6.



Chapter 2

Theory of the deep inelastic scattering

Electron-nucleon scattering at large momentum transfer range occurs mainly through the
exchange of a photon in electromagnetic interactions. Figure 2.1 shows the Feynman
diagram of electron-nucleon scattering, where k¥ and k' are the four momenta, s and s’
are the polarization vectors of the electrons in the initial and final states, @ is the angle
of the scattered electron with respect to the electron direction of the initial state, ¢ is the
four momentum transfer defined by ¢ = k — ¥/, p is the four momentum of the nucleon,
and A is the polarization vector of the nucleon. The gray circle at the photon nucleon
-vertex involves complex interactions due to the substructure of the nucleon and hadron-
ization process. The substructure of the nucleon is parameterized later using several
assumptions. Lines from the circle indicate particles coming out from fragmentation of
the initial nucleon.

The momenta of the particles involved in this process are expressed as

ky = (E, k), (2.1)
pu = (M, 6)) (2.2)
K, = (E', k), (2.3)

where E and k are the energy and the momentum for the electron of the initial state, E’
and K are the energy and the momentum for the electron of the final state, and M is the

nucleon mass.

18
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e kEks) KEKS)a

Figure 2.1: Feynman diagram of electron-nucleon deep inelastic scattering

We also define several kinematical variables for our convenience neglecting electron

mass,

Q*=-¢=2(k-k) = 2EE'(1-cosf)

= 4EE'sin?*(4/2)
= 2MzxyFE, (2.4)
v = E-F, (2.5)
_ Q2 _ Q2
T = 2p-q 2My’ (2.6)
= r_24
y = % e (2.7)

The variable z is called ’Bjorken x’ and sometimes denoted as zg.

In the following sections, the cross sections for the unpolarized and polarized pro-
cesses, ie. the spin-averaged and spin-dependent cross sections for the deep-inelastic e-N
scattering will be described. The spin structure function, g, is expressed using the spin-
averaged and spin-dependent cross sections. After that, the sum rules giving predictions

for the integrated value of g; will be explained.
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2.1 Spin-averaged cross section

The spin-averaged cross section is that of electron scattering off nucleons averaged over
the electron and nucleon spin of the initial and final states. Using the assumptions as
discussed in Appendix B.2, the differential cross section in laboratory system is expressed
as given in Equation (B.23) by

do et E
dE'dQ ~ 1672Q?2 tan%(6/2) E'

[Wa(r, @) + 2tan?(0/2)W1 (1, Q)],  (2.8)

where Wi (v, Q%) and W,(v, Q%) are the nucleon structure functions of two independent
kinematical variables, v and Q2. If we impose the Bjorken scaling of the structure func-
tions in the limit of (v, Q% — 00), the structure functions can be written as a function of

a single variable, x, by

Fi(z)= thrilb MW, (v, Q%) (2.9)
Fy(z) = CI}’E vWa (v, Q%) (2.10)

The scaling means that the structure function depends only x which is proportional

to the ratio of the Q? to the v, and is independent of Q% or v as demonstrated by
_many experiments. This scaling denotes that the deep inelastic scattering of electron
and nucleon is interpreted as the incoherent sum of the elastic scattering of electrons
and charged partons (quark) in nucleons and z is interpreted as the momentum fraction
which the scattered quark has in the nucleon. This experimental fact is an evidence that
the quarks compose the nucleon. Scaling is now explained by the asymptotic freedom
in QCD: the strong coupling constant depends on the momentum transfer Q? and it
decreases with increasing momentum transfer. The quark acts like a free particle in the

large Q? region due to the small strong coupling constant.

As mentioned in Chapter 1, a nucleon is composed of three valence quarks, sea
quarks, and gluons in the Parton Model picture. Because the gluon does not contribute
to the electromagnetic interaction, the structure functions, Fi(z) and F3(z) are expressed

as the incoherent sum of the quark distribution functions, ¢;(+ ({), ) and (1 (), z) for
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the quarks and anti-quarks by

Fi@ = 33 @) +a(ha) +alha) + &l o) (211)
Fa) = 3 adlalts) +a(ho) +ahe) +alhal, (212

where the sum is taken over all quark flavors and the arrow denotes the quark helicity
with respect to the nucleon spin. The largest contribution to these functions comes from
the light three quarks and those from the heavy flavors, ¢, b, and t are suppressed due
to the heavy masses of ¢, b, and t quarks.

The spin-averaged cross section is rewritten using these new functions by

d%o et E 11 2 .,
- =12 - tan®(6/2)Fi()| .
dE'd  1672Q2tan?(0/2) B! [VF 2(z) + 37 tan" (0/2) Fila) (2.13)
The spin-averaged cross section can be expressed using the Fj(z) and R(z) which
is the cross section ratio for the longitudinally and transversely polarized virtual photons.
Using the R(z) defined by Equation (2.47), the relation between Fj(z) and Fy(z) is given
by

2z(1+ R)
== 2.
FR=F 1142 (2.14)
“where 7 is
4M2 2 2
poMe 9 (2.15)

Q2 2
Substituting the Equation (2.14) into the Equation (2.13), the unpolarized cross section

is expressed using the F} and R as,

dc ¢ E4E+E)F() (2.16)
dE'dQ ~ 16m2Q2E' uvM D’ )
where D' is given by
1-6(2-v)
D = -(—_—_, 2.17
y(1+ €R) (2.17)
with

! (2.18)

T Ir2(i+ £)ten’(6/2)
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2.2 Spin-dependent cross section

In the polarized electrons scattering off polarized nucleons, the cross section depends on
the helicities of both particles of the initial state. We define the four cross sections of the
polarized process for the different directions of the electrons and nucleons in the initial
state as shown in Figure 2.2. The nucleon is polarized longitudinally or transversely
to the electron beam axis. The electron is polarized along the beam axis, parallel or
anti-parallel. The combinations of these two electron and nucleon spin states compose
the four cross sections. The two cross sections for the longitudinally polarized nucleon
are called as the parallel configurations and those for the transversely polarized nucleon

are called as the perpendicular configurations.

Beam axix

NS
G G e 1 Nucleon Spin
ot o

f‘ Electron Spin
Paralell  Perpendicular

Figure 2.2: Definitions of the cross sections for the four combinations of the electron and
nucleon spin. The gray and black arrows indicate the direction of the spin for nucleons
and electrons respectively, where the electron beam direction is from bottom to top. The
nucleon is polarized longitudinally or transversely with respect to the beam axis. The
electron is polarized parallel or anti-parallel to the beam axis. We call these cross sections
as the longitudinal or transverse configurations according to the direction of the nucleon
spin. The cross sections are indicated by ¢ with two arrows for superscripts. The two
arrows show the spin direction of nucleons and electrons respectively.

To extract the spin dependent part of the cross sections for the parallel and perpen-

dicular configuration, we give the following cross section differences of the two different
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orientations of the electron spin as derived in Equations (B.24) and (B.26),

d*(o™ - o) et FE '
T VR TreTor [MG\(v,@°)(E + E' cos6) - Q°Go(1, Q)] ,  (2.19)
(ot — o) et E .. .
a0 = TongE 5 Heind [MG1(v, @) + 2EG,(v,@?)] , (2.20)

where G, (v, Q%) and G»(v, Q%) are the spin structure functions and H is the sign of the
inner product of the nucleon spin vector and the momentum of the scattered electron in
the perpendicular configuration.

While W, (v, Q%) and W, (v, Q?) represent the spin-averaged structures of nucleons,
G1(v, @?) and G3(v, @?) are the spin-dependent structure functions of the nucleon. We
expect to see a scaling of the spin structure functions in analogy to the spin-averaged

structure functions:

az) = ) éigoo MG, (v, @%), (2.21)
go(z) = ”éizr_nm) MGy (v, Q%), (2.22)

where g1(z) and go(z) are the spin structure functions in the scaling limit. The cross
section differences are expressed in terms of the scaled spin structure functions, g;(r)

and gs(z) by,

dz(gﬂ- - O-TT) et E' g (.’E) Q2
dE'dQ = 167r2Q2E'_ Mo (E + E'cos§) — Myzgg(x) ) (2.23)

d2(o+t — o+1) R . () O
dE'dQ = 167707 E4E’H sin 6 I:.M—l;- + M2 gz(z) , (2.24)

Similar to Fi(z) or F3(z), the spin structure function g, is expressed by the quark

distributions as,
0(@) = 3T a2 +a(12) - alh2) - 6]
= 2 Y dAu), (2.25)

where 1 is the quark flavor and Ag; is defined to be the helicity distribution of a quark
flavor labeled i, Agi(z) = [¢:(T,z) + (1, 2)] — [, ) + &, 7))
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On the other hand, the spin structure function g, has no expficit interpretation in
the parton model. It relates the quark momentum transverse to the nucleon momentum.
g2 is expected to be small in contrast to the g; and sensitive to the higher twist effect in
QCDJ[20].

2.3 Cross section asymmetry

In order to investigate the spin structure of nucleons, we measure the asymmetries of
the cross sections for the different spin orientation of electrons instead of the cross sec-
tion difference. Two cross section asymmetries for two different nucleon spin direction,

parallel and perpendicular to the electron beam are defined by

ot _ ott

A= A (2.26)
ot —g*t

A= =1 (2.27)

where the notation of the cross sections are the same as given in Figure 2.2. An advantage
of using the cross section asymmetry over the cross section difference is that the target
density, the spectrometer acceptance and, the detection efficiency are canceled in the
“asymmetry which reduces the systematic errors due to these factors.
Substituting Equations (2.16), (2.23) and, (2.24) into Equations (2.26) and (2.27),

the cross section asymmetries are expressed in terms of the structure functions to be,

A= (E—}l-E’) Ffz;) [(E + E' cos0) g (z) — %292(:5)] , (2.28)
A= T m e 1)+ Za)]. (229)

The spin structure functions g; (z) and g2(z) can be expressed in terms of the cross section

asymmetries by
_ k()

0
g1(z) = D A + tan EAJ.] ; (2.30)

/
vhi(e) |Bcosft B, HsinﬂA"] .

92(z) =

~ 2sinfD' E (2:31)
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These formulae show that the spin structure functions for nucleons; g1(z) and go(x) are

derived from the measurements of the cross section asymmetry.

2.4 Virtual photon cross section

For studying the nucleon structure, the virtual photon-nucleon interaction provides more
direct information for the spin dependent scattering than the electron-nucleon scattering
process.

For the photon-nucleon scattering, only four cross sections are independent under
the assumptions of angular momentum conservation, parity and time reversal invariances.

These four cross sections are given with the following helicity configurations by,

Ug (1, %; 1, %)
of (1, —%; 1, —%)
1
o : (o, %;10, 5)1
ol . (1, =530, 5)

-where the first two numbers in the parenthesis denote the the helicities for the initial
photon and nucleon, and the second two numbers for the final photon and nucleon re-

spectively. These cross sections are expressed in terms of the nucleon structure functions

by (21]

=2 R+ g - 22, (2.32)
ag = [ L gz] (2.33)
ot = B (1 + z;) F, - KIZFI] , (2.34)

o= 2T g 4 g, (235)

. . 2
where K is the flux of the virtual photons defined by K = v — ,_,QM[5]
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Using these cross sections, we introduce the new asymmetrie.s A, and A, for the

virtual photon-nucleon scattering as follows,

Ay=—2—1 (2.36)

(2.37)

This A, is similar to the A in Equation (2.26), but polarized electrons are replaced by
the polarized virtual photon. Using Equations (2.32), (2.33), and (2.35), A; and A, can

be expressed in terms of the spin structure functions by

() = (01(0) — P 5u(2), (2.38)
Ax(z) = 7-(01(z) + 2(2)). (2.39)

We notice that the factor 4% is very small (typically, less than 0.05) in our kinematical
region. Therefore, g;(z) dominates the virtual photon asymmetry A,. If the term of the
v%g2(z) is neglected in Equation (2.38), A4;(z) can be expressed in terms of the quark
distributions by

A (.’l?) — gl(x) — Zi ef[q,(T,a:) + q-l(Ta .’17) - Qi(*lf, IE) — q-t(law)]
! Fi(z)  i€la(t,z) + &t z) + (. z) + &0, 2)°

where g; is defined in Equation (2.12). In the naive SU(6) model, the A;(z) is given to

(2.40)

be 5/9 for the proton and 0 for the neutron.

Via the virtual-photon cross section asymmetry A4,(z), the cross section asymmetry
Ay can be expressed in terms of the parton distribution. From Equations (2.30), (2.31),
(2.38) and (2.39), the cross section asymmetries A and A, are expressed in terms of the

virtual photon cross section asymmetries, 4; and A, by
Ay (z) = D(Ai(z) +nAs(z)) (2.41)

AL(z) = d(As(z) — CA(z)) (2.42)
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where D, d, , and ¢ are the kinematical quantities defined by[22] '

FE'e
"7
D= 1+€eR’ (2.43)
ev/Q?
T’ - E _ E,e) (2-44)
[ 2¢
d=c¢ e (2.45)
_n(1+¢)
(=5 (2.46)

with € defined in Equation (2.18) and R(z) is the cross section ratio for longitudinal to

transverse virtual photon defined by,

20l
R —_ a_g‘—_*__a;‘. (2-47)

Substituting Equations (2.32), (2.33), and (2.34) into Equation (2.47), the R is expressed
in terms of the Fi(z) and Fy(z) by

2
R=<1+i’—) ME s (2.48)

Q?) vk
In Equation (2.41), the contribution from the second term in the right-hand side is
~small due to the small factor, 7 (typically 0.1) and the small quantity, A2(z) in contrast
to A;(z). Therefore A is nearly proportional to A, which is expressed in terms of the
parton distributions. The D in Equation (2.41) is the proportional coefficient between
A;(z) and Ay(z) and is called as the depolarization factor. It is a pure QED factor
indicating the depolarization effect of the process of the emitting the virtual photon. Using
the depolarization factor, the A (z) is expressed in terms of the parton distributions by
Ay(@) =~ D ez[Qi(T, z) + q:,-(T, z) —¢(},z) - ‘zi(i, x)]’

Zi€l[ai(h 2) + @& (1, 2) + ¢, 7) + &1, 2))]

where the depolarization factor decreases with the increasing r as D ~ 0.78 at z = 0.03

(2.49)

and D ~ 0.23 at z = 0.8. Therefore, the investigation for the A} is equivalent that for the
helicity distribution of the quarks in the nucleon with an analyzing power of the factor

D.
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2.5 ¢g; of deuteron

The deuteron is a system consisting of a proton and a neutron. The spin structure
function for deuteron, then, can be expressed in terms of those functions for proton and
neutron.

The deuteron is a spin 1 and parity even particle composed of two spin 1/2 nucleons.
Thus, the deuteron is a mixture of S (L=0) and D (L=2) states. These S and D states

are expressed using the Clebsh-Gordon coefficients by

J=1Jz;=1>5 = |[L=0,L;=0>|S=1,S;=1> (2.50)

|J=1,Jz=1>p = \/§|L=2’LZ=2>|S=1,SZ=_1>

/3
- E|L=2,LZ=]>|S=1,SZ=0>

/1
+ E|L=2,LZ=0>|S=1’SZ=1>, (251)

where J and J, are the magnitude and the Z-component of the total angular momentum,
L(S), Lz(Sz) are the magnitude and the Z-component of the orbital angular momentum
(spin).

» A probability that a nucleon spin is anti-parallel to the deuteron spin in the D-state

is calculated to be

3 3 3
s+ 3505=1, (2.52)

where 0.5 comes from that one of two nucleons has a spin anti-parallel to the deuteron
spin in the Sz = 0 state. If the polarized deuterons contain the D-state with a fraction
wp, the deuteron cross section, chT, is expressed in terms of nucleon cross sections, a,TvT

and o}l by

3 3
UIT = (1 - pr) 0’11;; + praﬁ, (253)

where the first arrow is the nucleon spin and the second arrow is the helicity of electron.

The nucleon cross section is the sum of those for the proton and neutron, oy = g, + o,.
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Similarly, aI* can be written by,

3 3
ot = (1 - pr) olf + pra#, (2.54)

Taking into account the D-state probability, the cross section asymmetry of the

deuteron is described as follows
1 TT g 1t

o o o
A= 22 = (- qun B, (2:55)
oq + a aN +o
where we assume the parity invariance on the cross sections, ie. ol = o7, a,‘,,T = oW,
and ol} = o}.

Equation (2.55) shows that the asymmetry of the deuteron is smaller than the spin-

3
aligned proton and neutron system by a factor of (1 — §wD)' The A“ for deuteron is
expressed in terms of the A” "™ for proton and neutron with conventions of o4 = 2Ff,

p=Flp,0'n=F1nlby

3 F” F"
d__
Similarly, the transverse asymmetry, A, is expressed by
3 F F}
d _ 1
Al =(1- -2—wD) (A’J’_de + AJ_2Fd) (2.57)

Using these equations, the spin structure function g¢ for deuteron is expressed in terms

-of those for proton and neutron, ¢} and g7 by

26¢ = (1- Sup) (67 + o). (2:58)
Under the assumption that the D-state probability wp is independent of z, we can integ-
rate Equation (2.58) and obtain the relation between the integrals of deuteron, proton,
and neutron,
2rf = (1 - gwp) (T +T7), (2.59)
where I is given by
T = /01 dzgi(z), (2.60)

where ¢ stands for deuteron, proton, and neutron denoted by d, p, and n.

1The factor for the FlN giving the cross section is identical for proton, neutron, and deuteron. Then,

the factor is canceled in the formula of the asymmetry.
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2.6 Sum rules

The Bjorken and Ellis-Jaffe sum rules will be explained in this section. These sum rules
give predictions on integrals of the spin structure function g;(x) over x range from 0 to
1. The confirmation of these sum rules is the most important purpose in this experiment
because we can examine the spin structure of the nucleon and the dynamics of the quarks

with these sum rules.

2.6.1 Bjorken sum rule

The Bjorken sum rule is originally derived by Bjorken base on current algebra assuming
Iso spin symmetry on proton and neutron quark distribution function[6], giving that the
integral of the difference of spin structure functions g, of proton and neutron is equal
to one sixth of the neutron beta decay axial coupling. Now, this sum rule is derived by
QCD calculation [23] and is also called as the QCD sum rule.

The original derivation of the sum rule is based on current algebra stated from the
ratio of the axial vector coupling constant to the vector coupling constant of neutron beta

decay which is expressed in terms of the quark distributions by [24]
(£) = jww-vo-jen-eu)
-{FEm - e - e - e}, (2:61)

where the v and dP(™ are the distribution functions of u and d quark including both of
quark and anti-quark of proton (neutron) with the Z-component of the spin to the nucleon
spin indicated by the arrows. Under the iso-spin symmetry, u? = d® and d? = u", and

the ratio is given by
(£) = wn-vel-wn-ew)
v n
= Au- Ad, (2.62)

where Ag; is defined to be ¢f (1) — ¢ ({) which is explained to the expectation value of
the helicity of the quark flavor ¢ in the proton.
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Assuming that u, d, and s quark exist in the nucleon, g,(z) in (2.25) derived from

Parton model can be written by
201(z) = o€ [a(t) - a(d)]
4 1 1
= gAu(z) + Ad(z) + 5As(), (2.63)

where e; is the charge of the quark ¢ in the unit of electron charge. ¢g?(z) and g7(z) are

expressed with the iso-spin symmetry by,

26°(z) = %Au"(z) + %Ad”(z) + %As”(x), (2.64)
20" (z) = %Au”(z) + %Ad”(z) + %As”(x), (2.65)

where the quark distribution functions correspond to that in proton. If we subtract g7

from gf, we can obtain the difference without the strange quark:

_ 1

PHORFAOEE:

[Au(z) — Ad(z)] . (2.66)

These Au(zx) and Ad(z) are the helicity distribution of the u and d quarks with the mo-
mentum fraction z. The integral of these helicity distribution over x gives the expectation

“value of the helicity in the proton to be,

! Ag(z)d
Jo f(}qu) % _ Ag (¢ =1u,d). (2.67)

Therefore, the integral of the Equation (2.66) over x is given to be
1
M-1r= 5 [Au - Ad]. (2.68)
Inserting Equation (2.62) into Equation (2.68), we obtain the Bjorken sum rule;

1g9a
?—TIt=-=2, 2.69

1 1 6 gv ( )
The only assumption used to derive the Bjorken sum rule is iso-spin symmetry which

is a fundamental principle in particle physics. Therefore, this sum rule was thought to

be fundamental. However, we can not compare this prediction with the measured results
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directly because this sum rule is valid only in the scaling limit, ie. .Qz = 00. Although
the scaling of the structure function is a good approximation, the structure function has
Q? dependence as observed as the scaling violation due to the QCD effect. To make
precise comparison of measurements with the Bjorken sum rule, the prediction of the
Bjorken sum rule has to be corrected to the value at an actual kinematical region of the

measurements.

The QCD correction is calculated to third order of the strong coupling constant
a,[25] to be

R e el O REC N

The predicted value at Q? = 3.0(GeV/c)? with a, = 0.360 £ .050[26] 2 and g4/gv =
1.2573 + 0.0028[26] s,

I’ —T™ =0.169 £+ .008, (2.71)

“where the error was estimated from the ambiguities of the strong coupling constant and

the neutron axial vector coupling.

From Equation (2.70), the ratio of the I'’ — I'* obtained from experiments to the
predication from the Bjorken sum rule in the scaling limit is expressed in terms of the

strong coupling constant,

p_Tn 2 3
% _358(%) —2022(%) . (2.72)
1ga m ™ T

6 gv

The measurement for the I'” — I'*, then, determines the strong coupling constant at the

measured Q2.
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Figure 2.3: SU(3) baryon octet: proton, neutron and ¥~ are involved by an octet of
spin 1/2 baryons as shown in the figure. The each particle is plotted by the iso-spin and
the hyper charge, B + S. The baryons in the octet are assumed to be symmetry under
transformations exchanging doublets of iso-spin, V-spin, and U-spin. This symmetry
suggest that the baryons are composed by three kinds of the quarks, u, d, and s which
are symmetry under the exchange of each two flavor of the three quarks.

2.6.2 Ellis-Jaffe sum rule

The Ellis-Jaffe sum rule give a prediction for the spin structure function for each nucleon
separately, while the Bjorken sum rule predicts the difference of proton and neutron. The
“assumptions of SU(3) flavor symmetry and the unpolarized strange quark in the nucleon
are used to extract the Ellis-Jaffe sum rule and depend on the nucleon model. Therefore,
this sum rule is thought as a less fundamental sum rule than the Bjorken sum rule.
Similar to the case for the Bjorken sum rule, we need two axial vector couplings of
8 decay which are involved in the spin 1/2 baryon octet as shown in Figure 2.3. The ratio
of the axial vector coupling constant to the vector coupling constant of ¥~ beta decay is

expressed in terms of the quark distributions in neutron under the V-spin symmetry by

ZWe used the strong coupling constant at 7 mass for the running coupling constant, because the
m2 = 3.16(GeV/c)? is very close to 3.0(GeV/c)?. Although the combined result of the strong coupling
constants from the 7 decay rates was calculated to be a,(m2) = 0.360 + 0.041 by the Particle Data
Group (PDG), the theoretical uncertainty ﬁlay be underestimated. Therefore, I assigned the uncertainty
of the strong coupling constant to be 0.05 which was larger than the calculated value.
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[24]

(Z_C)E_ = —[u"(1) - u"O]+[s"(1) — ")
= —Au" + As (2.73)

Using iso-spin symmetry, Au™ = AdP and As™ = AsP, the axial vector coupling of the
¥~ beta decay is , then, written in terms of quark distributions in proton by,

(g—") = Ad — As. (2.74)
9v ] s-

This equation gives a formula on quark helicity distributions in proton other than Equation(2.62).
Using g} and g} given in Equations (2.64) and (2.65) together with Equation(2.62)
and (2.74), the integrals of g; are given by

w1 5 1
™ = 4 — (—gi) + o [(gg) +2 (g—") ] + 2 As, (2.75)
12 9v /. 36 av n 9v /s 3

where + for proton and — for neutron. If we assumes the contribution from the strange
quark is zero, i.e. strange quark is not polarized in nucleon, the g; integrals are expressed
by these well measured axial vector couplings. These relations are known as Ellis-Jaffe
_sum rule.

As mentioned in the previous section, the QCD correction is very important to
compare the predictions with a measurement. The QCD correction for the Ellis-Jaffe

sum rule up to third order of a, [27] is calculated to be

@) = [1- 5 - asm (%) - 202158 (%) | (g0 + o)
= [1-="-35833(==) —20. = —a3 + —
2™ (Q?) [ —* —3.5833 () —20.2153 (= £ 7505 + 3508

as aa 2 3 1
+|1-0.333% _0.5495 (—) ~ O(a)?| =aq, (2.76)
™ 1 9
with conventions of a3 = Au — Ad, ag = Au + Ad — 2As, and ay = Au + Ad + As.
Under the assumption of SU(3) flavor symmetry, any axial vector couplings between

the spin 1/2 baryons are expressed by two constants F and D. Neutron beta decay is

equal to F'+ D and ¥~ beta decay is F — D. These constants were determined to be
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F+ D =1.2573+0.0028 and F/D = 0.58 % 0.02[26]. The a3 and as are expressed using
F and D to be

a3 = F+D (2.77)
as = 3F-D. (2.78)

Note that ag is equal to ag providing the strange quark is not polarized. Then, the [*™

is given in terms of the F' and D by,

/0 ' dzgd™ (z,Q%) = [1 - 0‘7 — 3.5833 (%)2 — 20.2153 (%)3] (i%(F +D) + 31—6(3}«“ - D))

2
+ [1 —0.333% _ 0.5495 (ﬁ) _ 0(a,)3] LsF - D).
T T 9

The predictions for nucleons are calculated with o, = 0.36 & 0.05 at Q% = 3.0(GeV/c)?
to be,

I'? = 0.160 £ .008, (2.80)
I'* = 0.068 =+ .005, (2.81)
'™ = —0.009 =+ .006, (2.82)

where the D-state correction for the deuteron is included to that for deuteron with wp =
0.06 & 0.01 [28].

Without the assumption for the unpolarized strange quark in the nucleon, ay may
not be equal to ag. Generally, including QCD correction, the measured I'; determines

the ap. From Equation(2.79), a, is expressed by
1 s . -1
ao = [91“'{("’ - (:t%(F + D)+ (3F - D)) (1 -2 )] (1 03332 . ) . (2.83)

Once qy is calculated from the measured I'y, quark polarizations are expressed in terms

of ap, F, and D by

Au = %(ao +3F + D) (2.84)
Ad = %(a0 —2D) (2.85)
CAs = %(ao —3F + D) (2.86)

Au+Ad+As = ay. (2.87)

(2.79)



Chapter 3

Experimental setup

In this chapter, the experimental setup will be explained which includes the polarized
electron source, beam acceleration and transport, the Mgller polarimeter, the polarized

target, and the spectrometer system.

3.1 Polarized electron

The polarized electrons were produced by injecting circularly polarized photons onto
_the GaAs photo-cathode. Figure 3.1 shows the schematic view of the Polarized Electron
Source (PES). The circularly polarized photons with wave length of 865 nm were pro-
duced by the Ti:Sapphire laser and excited the electrons into the conduction band. The
excited electrons were polarized in the direction determined by the photon helicity which
was changed randomly to reduce systematics. Subsequently, the left- and right-handed
electrons in the conduction band are extracted by high voltage applied for the cathode
and transported into the accelerator.

The photo-cathodes for the polarized electron gun based on GaAs crystals has been
developed at SLAC. Recently, they established a new technology to improve the electron
polarization using strained GaAs[29]. First, we will explain the principle of obtaining
polarized electrons with the unstrained GaAs crystal, then, the mechanism to improve

the electron polarization with the strained GaAs crystal.

36
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e Laser YAG—pumped Ti:S .
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Figure 3.1: Polarized electron source: Dye Laser is replaced by Flash-lamped
Ti:Sapphire laser system for E143 operation. Circularly polarized photons made by the
laser are introduced into GaAs electron cathode and excited electrons in the bounding
state into the conduction band. A static electric field and a bending magnet carry the
emitted electrons into the Linear Accelerator.
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3.1.1 Unstrained GaAs

m, = -1/2 +1/2

=T~ J=1/2 conduction band
Eg=1.43eV
AN & _
m‘ = +3/2 AEspin-orbit =0.34 eV J —3/ 2 state
"f' J=1/2 state

Figure 3.2: Energy level of the unstrained GaAs: the unstrained GaAs has bound
states which have angular momentum J = 3/2 and 1/2. These states are degenerate by
the Z-component of the angular momentum. The transition by right-handed and left-
handed photons are shown by the solid and dashed lines. The relative probability for
these transitions determined by Clebsh-Gordon coeflicients are shown in circles.

_Figure 3.2 shows the band structure of the unstrained GaAs crystal. There are bound
states with the magnitude of the angular momenta, J = 3/2 and J = 1/2 in GaAs which
are degenerate with the Z-component of the angular momenta, m; = £1/2, +3/2 as shown
in the figure. The solid or dashed lines indicate the allowed transitions by the right- or
left-handed photons respectively.

The transition probabilities into the conduction band at the energy level of 1.43 eV
above the J = 3/2 states are proportional to the corresponding Clebsh-Gordon coefficients
of 3/2@®1 or 1/2@1. The numbers in the circle are the relative transition probabilities
calculated from the coefficients.

The transition probability is also influenced by the transition energy. The transition
from the J = 1/2 states is suppressed by using a laser with the wave length corresponding

to 1.43 eV.
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Providing the transition from the J = 1/2 states is negligiblé, the transition from
the m; = £3/2 states has a probability three times larger than that for m; = +1/2 states
as shown in Figure 3.2. If the incident photon is polarized in left- (right-) handed, the
electrons with +1(—1) helicity are produced three times more than those with —1(+1)
helicity. Therefore, the helicity of the electrons in the conduction band are determined by
the photon helicity and the theoretical limit of the polarization is 50% for the unstrained
GaAs. In practice, we need to optimize the laser photon energy to obtain the high
electron current because the quantum efficiency of the transition from the J = 3/2 states

decreases as the photon energy close to 1.43 eV.

3.1.2 Strained GaAs

\/ Active
Layer
Eg
7
g‘yp" 1.75 eV
Substrate //
Strained
GaAs
(0.11 pm)
Eg=1.50 eV
GaAs1-xP
1 1-x'x
GaAs x=0.27
(0.25 um) (2.5 um)
GaAs1xPx
graded from
0<x<0.27

(2.5 um)

1-08
7621A12

Figure 3.3: The strained GaAs was grown on the GaAsP substrate. The GaAsP
substrate has 27% of the phosphorus contamination. This GaAsP was grown on the
GaAs substrate via the graded GaAsP crystal as a buffer area. The phosphorus fraction
in the buffer GaAsP substrate is increasing from 0 to 27% to accommodate the lattice
mismatch.
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As mentioned, the electron polarization is limited up to 50% for the unstrained GaAs
crystal as the photo-cathode. To improve the electron beam polarization, a new photo-
cathode for the electron gun was developed at SLAC by using a strained GaAs crystal.
The strained GaAs is obtained as a thin layer of the GaAs crystal growing on GaAsP

substrate as shown in Figure 3.3.

Incident
photon

After

Figure 3.4: Schematic view of the strain for the GaAs crystal: The GaAs has a cubic
structure with the lattice spacing of 5.65A. The strained GaAs is obtained by developing
the GaAs crystal on GaAsP crystal which has the lattice mismatch by 1%. This mismatch
on the lattice strains the GaAs crystal and the spacing of the lattice is changed as shown
in the figure. The lattice is stretched in the direction perpendicular to the strained surface
which we define to be the strained axis.

The GaAsP crystal has a smaller lattice size than the size of the GaAs and the
mismatch strains the GaAs crystal. The schematic view of the strained GaAs crystal is
shown in Figure 3.4. The unstrained GaAs crystal has a cubic structure with Ga and As
nuclei placed one by one with the lattice spacing of 5.654. The strained GaAs has the
rectangle structure due to the lattice mismatch as shown in the figure. If the laser photon

incidents to the strained GaAs in the direction shown in the figure, along the strained
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axis, the J = 3/2 degenerate levels are split into states with a energ_}; gap of 0.05 eV [30]

according to m;.

Strain Axis Parallel to Eg=143eV

Incident Photon Axis

§ = A
i +3/2 AE 0 =0.05 eV

AE - =0.34 eV
Sprfblt
mj=—1/2 +1/2
1194

(b) Strained Ga As 7825A3

Figure 3.5: Energy level of the strained GaAs: the degeneration in J = 3/2 states come
untied due to the strain. The states are split by the energy gap of 0.05 eV. This energy
gap suppresses the transition from m; = +1/2 and improves the electron polarization.

The Figure 3.5 shows the energy levels of the strained GaAs crystal. Because of the
‘energy gap of 0.05 eV in the strained GaAs, the transition to the conduction band from

the states of m; = £1/2 is suppressed compared with that from the states of m; = +3/2.
Thus, the polarization of the electrons in the conduction band is increased up to 100% if
the photon energy is close to the transition energy, 1.43 eV. Figure 3.6 shows the electron
polarization as a function of the wavelength of the laser indicating that the polarization
using the strained GaAs cathode exceeded 50% and reached almost to 90%. The strained
GaAs with the thickness of 0.1 ym was used in the experiment.

The photon energy optimization decreases the quantum efficiency of the main trans-
ition, resulting the decrease of the electron current. Fortunately, we needed only a low
intensity beam of typically 3.0 x 10° electrons/pulse in contrast to that for SLD operation
and the PES was able to maintain a high electron polarization between 85% and 87%

during the experiment.
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Figure 3.6: Electron polarization as a function of the photon wave length. The results
by various electron cathodes are shown. The open and solid circles show the results by
the strain GaAs with the thickness of 0.3 and 0.1 um respectively.

The PES was operated at 120Hz. Because the AC line has 60 Hz frequency, every
odd or even spill is created at the same phase of the AC line. To suppress the systematic
_effect on the electron beam due to the phase of the AC line, the electron helicity was
changed spill by spill randomly by Pseudo Random Number Generator which generated
33 bits random sequence one by one and will be mentioned in Chapter 4 in detail.

The electron beam spill width was typically 2.2 us. The current of the electron

beam was a order of 10° electrons/spill.

3.2 Beam line

Figure 3.7 illustrates the beam acceleration and transportation into End Station A. The
polarized electrons were injected into the 2-mile Linear Accelerator (Linac) and accel-
erated up to 29 GeV. The Linac retained the electron’s longitudinal polarization during

the acceleration. No depolarization effect was observed due to the acceleration and the



3.2. BEAM LINE : 43

transportation of the electron beam into ESA[31). |

The electron was bent at the end of Linac by a magnet at an angle 8, of 428 mrad
into the ESA beam line. In this bending process, the electron spin was rotated due to its
anomalous magnetic moment. The angle of the direction of the electron spin from that

of the electron momentum, A¢ is given by

_ 0.136n(g - 2)E
o 2mc? ’

Ad (3.1)

where g is the gyro magnetic ratio of the electron, E is the beam energy, m is the mass of
the electron. To retain the longitudinal electron polarization after the process, this A¢
has to be equal to Nm where N is an integer. This condition was satisfied by adjusting
the beam energy to be[32],

E=324-N. (3.2)

The beam energy was decided to be 29.11GeV which was the highest energy satisfying
the condition to keep the electron polarization.

Two Mgller polarimeters located at the end of the Linac and in the ESA measured
the beam polarization. These measurements for the beam polarization before and after
the bending allowed us to calibrate the beam energy independently with the precision of

0.05% by using the relation of the polarization and the beam energy.

Two toroidal current monitors were placed on the beam line to measure the beam
current. These monitors produced a signal proportional to the electron current passed
through the toroidal coils. These devices were calibrated carefully with respect to the
signal from a Digital to Analog Converter, DAC[33]. For some historical reason, these
current monitors were called as Toroid2 and Toroid3. Toroid2 and Toroid3 were located
at 9.1 meters upstream and 5.6 meters downstream of the target respectively. The sys-
tematic error was calculated to be less than 1.0% from the spreads of the reading of these
monitors at the same DAC voltage [33].

Figure 3.9 shows the beam position on the target which was changed for each spill.
This rastering reduced a depolarization effect caused by radiation damage and heat up

of the target. Two pair of Helmholtz coils located at about 70 meters upstream of the
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Figure 3.7: The polarized electrons pro-
duced by the PES were injected into the
Linac and accelerated up to 29 GeV. The
electrons were bent at the end of Linac
and introduced into ESA. The electron
spin was rotated in the bending magnet
as shown in this figure and the beam en-
ergy was set to maximize (retain) the lon-
gitudinal polarization. The ESA Mgller
polarimeter was located at the entrance
of ESA. Two independent spectrometers
were placed in ESA to detect the scattered
electron from the target. A part of SLD
operation has been removed from the ori-
ginal figure.
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Figure 3.8: Schematic view of appar-
atus location in ESA: the electron beam
passed through ESA from up to bottom
in this figure. The Mgller foil was at the
entrance of ESA and was placed on the
beam line only when we calibrated the
electron polarization with the Mgller sys-
tem. Four chicane magnets were turned
on only when we investigated A, to cor-
rect the deviation of the electron beam due
to the transverse magnetic field of the tar-
get. The spectrometer magnets B1 and B3
mark the beginning of the spectrometer
systems.
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target were used to steer the beam position for the rastering. The coils had a rounded

rectangular shape, about 1.5m by 0.5m. They were controlled by Linac Main Control
Center (MCC).

{mm)

ADC eniput
H
T

SOOOCOOO OO

T
0
Q000000000
R R O e R o X R
SO0 OO0V OO0
OOO O O SOOGS0 0 O QO
QOO O O OO0 OO0 O 0OO0

=

=
L

Figure 3.9: Beam rastering: the center
of beam spill is plotted with respect to the
target center. The center of beam spills
are obtained by the foil arrays.

Figure 3.10: Output of a foil array: Ho-
rizontal axis corresponds to the address of

the foil. Vertical axis shows the corrected
ADC output.

We monitored the actual beam position with a set of two dimensional foil arrays
which was located at 11 meters downstream of the target. Each foil array was consisted
of 48 foil strips placed at 1 mm interval and an anode plane behind the foil array. Both of
the foil and the anode plane made from the 25 ym thickness aluminum. The electron beam
hitting the foils induces electron current between the foil and the anode, of which signal
is proportional to the beam current through the foil. Figure 3.10 shows the distribution
of the ADC readout signal from the foils which gives us the beam current profile.

There were two spill monitors used to trace the beam quality; one is the bad-spill
monitor which is a scintillation counter placed about a meter off the beam line near the
entrance of ESA. The monitor measured electron beam scattered off from the center of
beam line. When the beam is stable and passes cleanly through the beam line, the bad

spill monitor gives no signal. The other is the good-spill monitor which is a scintillation
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counter located under the target and detected the scattered partiéles from the target.

Thus the signal from this monitor indicates that the beam is on target.

E143 Chicane System for
Transverse Target Field
Side View
Chicane

11 ] A U I R —tyieo | | Beamaxis

[4 | B [ i‘ >
Electron trace

Chicane Chicane Target Chicane

Figure 3.11: This is the schematic view of the chicane system. All chicane magnets
induced magnetic fields perpendicular to the beam axis. The system corrected the electron
spin to be parallel to the beam axis at the deuteron target. The unscattered electrons
went to the beam dump unless hitting the beam pipe.

In order to study A, the target was rotated by 90° around the vertical axis mechan-
ically. This also changes the strong target magnetic field perpendicular to the beam axis
-and bends the electron beam into a wrong direction off the beam dump. The magnetic
field rotates the spin of electrons and produces a misaligned incident angle. To avoid
these problems, a chicane system consisting of four chicane magnets was installed in the
beam line as shown in Figure 3.11. All these magnetic fields were set perpendicular to
the beam axis. Though the spin is rotated by these fields, the effects are canceled at
the target and there is no depolarization effect. The beam level after the chicane system

stayed lower than the nominal level, but parallel to the the beam line.

3.3 Mpgller system

The Mgller system is the polarimeter to measure electron polarization by using the Mgller

scattering. The beam polarization in this experiment was calibrated by ESA Mgller
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system.
'The cross section of Mgller scattering is expressed in center of mass system by [34],

(7 + cos? §) sin? 6
(3+cos?26)?2 |’

do _ o®(3+cos’6)?

dQ s sin @ 1-hF

(3.3)

where @ is the scattering angle from the direction of the initial electron momentum, P,
and P; are the beam and the target foil polarization. The cross section asymmetry for

the different orientation of the electron helicity is expressed by

Nt — Nt

_ _ 7 + cos? §) sin® @
= NUFNTC

(
BPy (3 + cos? §)?

A

(3.4)

This asymmetry for the Mgller scattering reaches to the maximum at the scattering
angle of 90°. Using the target foil polarization, p; obtained from the measurement for
magnetization of the foil, we can determine the beam polarization, p, from the measured
asymmetry.

The Mgller foil target was made of a ferro-magnetic material which contains 49%
Fe, 49% Co, and 2% Va. The foil target was mounted at 20° off the beam axis and placed
inside a 100 Gauss magnetizing field. Taking the gyro-magnetic ratio for the material to

be gess = 1.889 £ 0.005 [35], the electron polarization of the foil was given by

M
Nug’

P; = (0.94011 £ 0.00280) (3.5)

where M is the foil magnetization, N is the number of electrons per unit volume, and pp
is the Bohr magneton. To obtain the systematic error coming from the foil thickness, the
target polarization for the six foils was measured and was found to be 0.0803 for the 20
pm foil and 0.0814 for the 30, 40, and 154 um foils.

Figure 3.3 shows the schematic view of ESA Mgller polarimeter. The target foil
was located near the entrance of ESA. The scattered electron which passed through the
window of the mask was bent by the magnet and its momentum was analyzed. The
light gray area shows the detector acceptance for the scattered electrons. The scattered
electron was detected by the single arm and double arm detectors. The single arm detector

was consisted of eight silicon pad detectors. The double arm detector was assembled by
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Figure 3.12: Mgller polarimeter schematic view: The upper and lower parts show the
horizontal and vertical views respectively. This figure is enhanced in the transverse
direction with respect to the beam line. Polarized electrons come from the left side of
the figure. Scattered electrons are bent by the magnet and detected by double arm and
single arm detectors to analyze the momentum.
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seven lead glass blocks of 4 - 4 inch mounted with a 2 inch phoﬁo—tube. The double
arm detector was placed behind the single arm detector and two sets of these detectors
were set above and below the horizontal plane respectively as shown in Figure 3.3. The
double arm detector had a large acceptance covering the electron scattering angle between
70° and 110° in the center of mass frame. This acceptance was large enough to count
both of the Mgller electrons in time coincidence. One of the Mgller electrons will be
then detected in the upper array and the other in the lower array. Figure 3.13 shows
the time difference between signals measured by the two detectors. This coincidence
counting suppressed the back-ground rate and reduced the systematic error of the beam

polarization measurements.
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Figure 3.13: Time difference between
signals from the two appropriate detectors
in the upper and lower arrays of the double
arm detectors. There is a sharp peak with
1.1 ns resolution on the low background.

Figure 3.14: Horizontal axis shows the
detector channel of the Silicon micro-strip
detector corresponding to the momentum
of the Mgller electrons. Vertical axis is
the number of times by a channel of the
detector. The expected spectra by elec-
trons on K, L, M, and N shell in atoms of
the target foil are shown.

The recent study on the Mgller scattering shows that the orbital momentum of elec-

trons on the atomic shells influences the momentum spectrum of the scattered electron
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[36]. Figure 3.14 shows the momentum distribution obtained from a Monte-Carlo simula-
tion for the Linac Mgller polarimeter. The spectra by electrons on K, L, M, and N shells
of atoms in the target foil are shown in the figure. The momentum spectrum for electrons
scattered with the electrons on K-shell is broader than others. Therefore, the fraction of
Mgiller electrons from those shells in a certain momentum range is different from that in
the whole momentum range. Because only electrons on the M-shell are polarized for the
target material, the polarization of electrons in Mgller target would change depending on
the momentum acceptance of the detector. However, the double arm detector has a wide
momentum acceptance to cover almost the whole momentum dependence range and the

correction due to the K-shell effect was estimated to be less than 1%[34].

3.4 Polarized target

The polarized nucleon target is essential for the measurement of the spin structure of the
nucleon. We used the frozen ammonia as the target material, in which three hydrogens
bound to the nitrogen were replaced to deuterons for the deuteron measurement. There

are two reasons why we choose ammonia as the target; one was that the deuterized ammo-
| nia, NDj, contains deu terons with a large fraction of about 30%, and the other is that the
material has high radiation resistivity and stands against flux 4 — 8 x 10'®particles/cm?
before depolarizing to e~! [37].

The target was frozen by a *He evaporation type refrigerator at 1 K. Super conduct-
ing Helmholtz coils surrounding the target provided 5.1 Tesla magnetic field. The target
was polarized by using the Dynamic Nuclear Polarization (DNP) method which uses
microwaves to improve the nucleon polarization. In the following, this will be explained
for the case of proton polarization.

We assume a simple system of electron and proton in a magnetic field neglecting
the spin-spin interaction of these two particles. These particles have spin 1/2 and their

spin states are degenerate without magnetic field. When magnetic field is applied, the



3.4. POLARIZED TARGET 51

energy split of these states, AE and given by
H
AE =EZ (3.6)
2
where p is the magnetic moment of the proton or the electron and H is strength of
magnetic field. Using Boltzmann distribution of a form of e2E/¥8T for the occupation

number of the state, polarization of proton or electron in a magnetic field is given by

N1t —N| €AE/%8T _ o~AE/2k5T AF
= N T +N .L = eAE/2kpT + e—AE/2kpT 2kBT) ’

where kg and T are the Boltzmann constant and the temperature, N 1 and N | are

= tanh ( (3.7)

the number of protons or electrons with +1/2 and —1/2 spin along the magnetic field
respectively. If we use 1 K° for temperature and 5 Tesla for magnetic field into Equation
(3.7), we obtain the polarization of about 0.5% for proton and 100% for electron. We
call this polarization due to the energy split as polarization at thermal equilibrium.

This proton polarization at the thermal equilibrium is not sufficient for the polarized
proton target and we need introduce the DNP method. The basic idea of the DNP method
is to utilize the high electron polarization to improve the proton polarization by using
microwave.

Figure 3.15 shows the four energy states of four combinations of proton and electron

_spin in a magnetic field. The occupations for these four states at thermal equilibrium are
shown in the column labeled as TE. wl, w2, w3, and w4 indicate the transition between
the two states as shown in the figure.

If the target was exposed to the microwave with the energy corresponding to the
transition w3, the electrons and protons in the |e : —1/2,p : —1/2 > state are carried
into the |e : 1/2,p : 1/2 > state. The electrons and protons in |e : 1/2,p : 1/2 > state
falls into |e : —=1/2,p: —1/2 > or |e : —=1/2,p : 1/2 > states thermally. Because the
transition w4 is even slower than the transition w3 or w1 [20], the occupation fraction of
the electrons and protons in the |e : —1/2,p : 1/2 > states increases and the occupation
fractions of the electrons and protons in these states are settled as shown in the column
of w3. As the result, the proton polarization is improved to be tanh(A/2) corresponding

to the electron polarization in thermal equilibrium, instead of tanh(8/2).
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Figure 3.15: The energy states of electron-proton system in a magnetic field are shown.

“The indices of ket vector indicate electron and proton spin. The energy split due to the
proton spin is expanded in the figure. The quantities in the right side indicate the relative
occupation of the states in three cases. T.E. stands for thermal equilibrium according
to the Boltzmann distribution. Saturation wy and wj indicate the occupations when we
drive these transition with microwave cause relaxation between these two states. The
lowest number gives proton polarization under these conditions.
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If the target was irradiated by the microwave with the energy éorresponding to the
transition of w2, the occupation fraction of the particles in the |e : —1/2,p: —1/2 > state
increases and the occupation fractions of the particles in these four states are settled as
shown in the column of w2. The magnitude of the proton polarization is to be same as
that for the case of w3, but the direction of the proton spin is opposite to that for the
case of w3. The wave length inducing the transitions w2 and w3 are 140.127+0.213 GHz
where plus for w2 and minus for w3 [20].

The deuteron is a spin 1 particle and makes three energy splits in a magnetic field
according to the spin states. The polarization of the deuteron, P, is defined by,

N+1 — N—l

P, =
I Ny NOL N

(3.8)

where N*1:0 is the number of deuteron in the spin states indicated by the superscripts.
If the magnitudes of the energy splits between Sz = +1 and Sz = 0 are identical, a
microwave with a certain frequency enhances the deuteron polarization as well as that
for the proton.
Although the polarized deuteron is obtained with one frequency microwave, the
improvement of the deuteron polarization using the 44 MHz frequency modulation of the
_microwave was discovered by SMC [38]. It is understood as that the two energy splits
due to the deuteron spin are not identical. Letting the frequency of the microwave be 1,
for the transition between the deuteron spin Sz =1 and Sz = 0 and v, for the transition
between Sz = 0 and Sz = —1, the polarized deuteron is obtained with microwaves of the
frequencies of v, — 1, and v, — v, where v, is the frequency of the microwave required for
the spin flip of electrons. The polarized deuteron in the opposite direction is obtained with
microwaves of the frequencies of v, + v, and v, + v5 . In short, the deuteron polarization
requires the microwaves with two different frequencies and the frequency modulation for
a certain microwave provides these two frequencies.
We used the microwave frequencies of 136.48 GHz and 136.78 GHz frequency mod-
ulated by 44 MHz to implement the polarized deuteron in the positive and negative

directions respectively. We found some improvement for the deuteron polarization by
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3-5% with this frequency modulation.[20]
Figure 3.16 shows the E143 polarized target system. Liquid helium kept the am-

monia target and the super conducting magnet at 1 K°. The magnet produced 5.1 Tesla
magnetic field around the target cell to align the nucleon spin. The target insert had four
cells which were filled by ND3, NH;, empty (nothing in it), and carbon or aluminum.
We can select one of cells on the beam line by using a mechanical control. Each target
cell had a dimension of ¢25 - 30mm. The microwave was fed to the target cell through
a pipe and horn from the top of the system. The power of the microwave was about 1
Watt at the target cell.

The target polarization was measured with Nuclear Magnetic Resonance (NMR).
The NMR is induced by a oscillating magnetic field perpendicular to the static magnetic
field, the super-conducting magnet in E143 target system. A small fraction of the nucleon
in the material oscillates between the spin up and down states with a frequency of the
oscillating magnetic field. This signal resonates at the frequency determined by the static
magnetic field and the magnetic moment of the nucleus. This phenomenon is called as
Nuclear Magnetic Resonance (NMR).

The NMR signal was measured by using the technique of the Q-meter. A coil
- made from Copper and Nickel was placed in each target cell perpendicular to the static
magnetic field. When we induce the oscillating magnetic field by using this NMR coil,
the inductance of the NMR coil is modified by the target material existing in the coil to
be [39]

L(w) = Lol + 4mn[X' (w) — ix" ()]}, (3.9)

where w is the frequency of the oscillation magnetic field, L(w) is the inductance of the
NMR coil at the given frequency, Ly is the inductance of the coil in the vacuum, 7 is the
filling factor of the material in the coil, x'(w) and x”(w) is the real and imaginary parts of
the complex susceptibility of the material. The x”(w) is related to the target polarization

, Pt, by the relation of [39]

Py = K/o X" (w)dw, (3.10)
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Figure 3.16: The electron beam comes from the left side of the figure. The magnets
induce the 5.1 Tesla magnetic field along the beam axis. We rotated the target system
by 90° along the vertical axis in the investigation for the 4.
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Figure 3.17: The NMR signal of the thermal equilibrium for N D3 under 5.1 Tesla and
1 K measured by Q-meter circuit. It corresponds to about 0.068% polarization.

where K is a constant involving the nucleus property. The imaginary part of the induct-
ance is the real part of the impedance of the coil. In the Q-meter, the circuit is driven by a
constant current source and the variable capacitance is set to absorb the phase part of the
_impedance of the coil. Therefore, the voltage of the circuit of the Q-meter is proportional
to the real part of the impedance of the coil and the variation of the x” with the frequency
can be observed as the variation of the voltage of the coil. Figure 3.17 shows the NMR
signal as a function of the frequency w for thermal equilibrium of N Dj; target. This x” is
zero for all frequencies except for a small band close to the resonant frequency as shown
in Figure 3.17, thus the area of the NMR signal above the base line is proportional to the
target polarization from the Relation (3.10). The target polarization in the experiment
was calibrated by using this NMR signal of thermal equilibrium corresponding to 0.068%.
We used the enriched ® N nucleus instead of the usual ¥N. While the N nucleus

has the magnetic moment equal to that for deuteron, the >N has the magnetic moment
equal to that for proton and the NMR signal does not overlap to that for the deuteron. We

were then able to measure both polarizations for the deuteron and the nitrogen nucleus in
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the target and the effect of the nitrogen polarization was corrected ;;roperly as discussed

in Section 4.2.5 and in Appendix D.

3.5 Spectrometers

Figure 3.18 shows a schematic view of the spectrometers. There were two independent
spectrometers to detect electrons scattered off the ND; target. These spectrometers were
located along an angle of 4.5° and 7° from the beam axis. We call these spectrometers

the 4.5° and 7° spectrometers respectively. Both spectrometers had two bending dipole

SLAC E142/E143 Spectrometers
TOP VIEW Dipole Magnets Hodoscope

"2

éerenkov

Quadrupole

Dipole Magnets

Hodoscope gg;%srs
SIDE VIEW (7°) Counter
ND3

Target

meter s82TAS

Figure 3.18: This figure shows horizontal and vertical views of the spectrometer layout.
The scale shows the distance from the target in meter. The vertical view is the layout
for the 7° spectrometer.

magnets. B1 and B3 have the length of 118 inch and B2 and B4 have the length of 136
inch. The central momenta for the spectrometers were set to 11.5 GeV/c and 12.5 GeV/c
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for the 4.5° and 7° spectrometers. The two magnets in each spectrométer bent electrons in

directions opposite to each other. This configuration has a larger momentum acceptance

compared to the configuration bending in same direction [40]. Figures 3.19 and 3.20 show

the momentum acceptance. The momentum acceptance of 4.5° and 7° spectrometers was

from 6 and 7 GeV/c to beyond 20 GeV/c. respectively. The quadrapole magnet in

the 4.5° spectrometer enhances the position dependence of electron momentum on the

vertical axis and spreads electrons onto a larger detector area along the horizontal axis.
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Figure 3.19: Momentum acceptance of

" the 4.5° spectrometer: the horizontal axis
shows the momentum, the vertical axis
shows the solid angle of the spectrometer
acceptance. The solid line shows the solid
angle of the acceptance of the E143 4.5°
spectrometer. We indicate the acceptance
of SLAC 20 GeV/c spectrometer by the
half-dashed rectangle in contrast to the
E143 spectrometer.
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Figure 3.20: Momentum acceptance of
the 7° spectrometer: the horizontal and
vertical axes indicate the momentum and
the solid angle of the spectrometer accept-
ance respectively. The solid line shows
the solid angle of the acceptance of the
E143 7° spectrometer. We indicate the
acceptance of the E130 spectrometer and
the SLAC 8 GeV/c spectrometer by the
dashed line and the half-dashed rectangle
respectively in contrast to the E143 spec-
trometer.

A large photon background from the bremsstrahlung, pion decays etc. were expec-

ted at the small scattering angles. The spectrometer suppressed the photon background
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Figure 3.21: Electron trace on the 4.5°
spectrometer: (a) is on the bending plane,
and (b) is on the horizontal plane. The
traces are drawn for various momenta
from 7.5 GeV/c to 19 GeV/c. Note that
the figure’s geometry is distorted so that
the trace of a 10 GeV/c electron at the
center of the acceptance appears as a
straight line.
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Figure 3.22: Electron trace in the 7°
spectrometer: (a) is on the bending plane,
and (b) is on the horizontal plane. The

traces are drawn for various momenta
from 7 GeV/c to 19 GeV /c. Note that the
figure’s geometry is distorted so that the
trace of a 10 GeV/c electron at the cen-
ter of the acceptance appears as a straight
line.
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with the two bounce system [40]. In this system, the magnets and the collimators were
located such that the photon must hit those at least twice to reach the spectrometer

acceptance.
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Figure 3.23: The dotted and dashed lines show the fractional momentum resolution for
the 4.5° and 7° spectrometers respectively. The solid line shows the momentum resolution
by the energy measurement with the lead glass shower counter. The small dashed line
‘indicates the resolution corresponding to 10% error of Bjorken x.

Figures 3.21 and 3.22 show the ray-traces for the 4.5° and 7° spectrometers. Note
that the figure’s geometry is distorted so that the trace of a 10 GeV/c electron at the
center of the acceptance appears as a straight line. In this configuration, we set the magnet
layout to measure particle momenta from the trajectory gradients with largest possible
acceptance. The momentum resolution of this configuration is worse than that for the
same bending configuration, but it is acceptable for the experiment. Figure 3.23 shows
the expected momentum resolution for each spectrometer and the momentum resolution
coming from the requirement of Az/z. The small dashed line in Figure 3.23 shows the

momentum resolution to this requirement. The momentum resolutions of the 4.5° and 7°
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spectrometers by the tracking shown by the dotted and dashes lines in this figure satisfied
the requirement except in the high momentum region. It may be critical to the binning
for the data in the high x region and will be studied in Section 5.6.3.

The several detectors were located after the bending magnets to detect electron
tracks as shown in Figure 3.18. The detector systems are identical for both spectrometers
composed of two threshold Cerenkov counters, seven hodoscope planes, a lead glass
shower counter, and two scintillation trigger counters which will be explain in the following

sections.

3.5.1 Cerenkov counter

Two threshold type Cerenkov counters were set in each spectrometer to identify electron
tracks. Because electrons and pions give different momentum thresholds for emission of
the Cerenkov light, we can identify the incident particle by measuring the Cerenkov light
in the momentum region above the threshold. The signals obtained from the Cerenkov
counter was used as one of the online trigger signals.
Cerenkov light is emitted when a charged particle passes through a medium faster
than the light speed in the medium. The Cerenkov light is emitted in a cone of angle 6
“which is given by

1
cosf = v (3.11)

where, n is the refractive index of the medium, 3 is the relativistic 8 function. If 1/ng is
larger than 1, the Cerenkov photon is not emitted. Defining that ¢’ is the light speed in
the medium and v is the speed of the particle, the Equation (3.11) is rewritten by

cosf = %, (3.12)

From Equation (3.12), the Cerenkov light is often understood in the analogy of the shock
wave emitted by the object moving with the ultrasonic speed.
Since the § of the high energy electron with a few GeV/c momentum is extremely

close to 1.0, the high energy electron in a medium always emits the Cerenkov light to
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the direction of angle, arccos(1/n), from the track. In order to implement the electron-
pion separation, we have to chose a medium which gives n8 > 1.0 for electrons and
nf < 1.0 for pions in the experimental momentum region. If we want the separation up
to 13 GeV/c of the momentum, the refractive index of the medium, n has to be less than
1.000058 because 13 GeV /c pion has § = 0.9999424. In such a medium, only the electron
emits the Cerenkov light for the momentum lower than the threshold, 13 GeV/c.

Mirro

Photo-multiplier

w gy

Figure 3.24: Schematic view of Cerenkov counter C2. The cylindrical tank was filled
with depressured N, gas. Cerenkov photon emitted by the incident electron tracks were
reflected by three mirrors and focused on the photo-tube.

The two Cerenkov counters are made of aluminum cylinders placed along the spec-
trometer axis. The dimensions of the cylinders are 400 cm in length by $160 cm for the
long counter (Cerenkov2, C2), 200 cm by $118 cm for the short counter (Cerenkovl, C1).
To minimize d-ray production and multiple scattering, the aluminum window of 1 mm
thickness was used.

We used N; gas as the medium. Since the N, gas produces scintillation light as
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well as Cerenkov light for charged particles, pions below the Cerenkov threshold produce
light. However, the N, gas has a good transparency at UV region, down to 150 nm wave
length, and with use of the wave-length shifter, we improved the S/N ratio for Cerenkov
light and the detection efficiency for electrons.

The Mirrors were placed at the end of the cylinder to collect Cerenkov photons to
the photo-tubes. C2 had 3 mirrors which cover an area of 65 cm by 115 cm. C1 had 2
mirrors which cover areas of 40 cm by 51 ¢cm and 38 ¢cm by 51 cm for the 4.5° and 7°
spectrometers respectively. All mirror surfaces were coated with aluminum and MgF,
to optimize the mirror reflectivity. We obtained 90% of the reflectivity for 200 nm light.
These mirrors were aligned properly by survey measurements using a solid state laser
together with a simulation [41].

We used photo-tubes, Hamamatsu R1584-01 with UV glass window which have the
large diameter and high quantum efficiency. The surfaces of the photo-tubes were coated
with wave length shifter of 2430 nm thickness of para-terphenyl and overlayed with 25
nm thickness of MgF; to protect the wave length shifter against evaporation and aging.

The refractive index for a given gas pressure is given by using Lorenz-Lorentz

relation [41],

%832—: — K(\)p, (3.13)
where n()) is the refractive index at wave length A, p is the density of the gas, and K is a
constant, 0.163cm®/g for N,. The pion thresholds of the Cerenkov counters were set at
13 GeV for C2, and 9 GeV for C1. These pion thresholds correspond to Nj pressures of
240 mmHg and 500 mmHg for the C2 and C1 respectively. Coincidence of these short and
long Cerenkov counters selected electron tracks and rejected pion tracks cleanly because
only a few % of pion emit scintillation light. The purity of the electron sample was
estimated to be more than 99% from the study for the experimental data.

The number of photons by the Cerenkov emission is expected by the following

formula [42],
Y
— in2
N =2raLsin 0/,\1 Azdz\, (3.14)
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where « is the fine structure constant, L is the length of the mediufn, 9 is the Cerenkov
angle, and A; and A; are the lower and upper limits for the sensitive region in the wave
length. If we assume the sensitive region of the PMT between 150 nm and 550 nm in the
wave length, the refractive index n is 1.000058, the length of the counter, L, is 4 m, the
number of the Cerenkov photon is expected to be 106. Actually, the number is reduced
due to the transparency of the N, gas, the mirror reflectivity, and quantum efficiency
of the photo-tube, etc. Including these reduction factors, the number of the Cerenkov

photon was estimated to be 8.2 £ 0.5 by a Monte-Carlo simulation [41].

Detection efficiency

The detection efficiencies of the Cerenkov counters were studied under an assumptions
that the probability of detecting photo-electrons (Cerenkov ADC count) is Poisson distri-
bution [41]. Table 3.1 shows the efficiencies defined to be the probability to produce one

or more photons which was evaluated from the Cerenkov ADC spectrum. All of these

4.5°. 7°.
C1 C2 C1 C2
Mean ADC | 165.6 &+ 56.6 127.1 £ 42.3 158.8 + 54.2 137.2 £ 55.5
Nope 8.61+0.5 9.0£0.5 8.6x0.5 6.11+0.5
Eff. 99.98+ < 0.01 | 99.99+ < 0.01 | 99.98+ < 0.01 | 99.78+ < 0.11

Table 3.1: Cerenkov counter efficiency from ADC spectra.

counters have high detection efficiencies of more than 99%. The numbers of Cerenkov
photons N, were evaluated from the ADC spectra close to the value of 8.2+0.5 obtained

from the Monte-Carlo simulation.

3.5.2 Hodoscope

There were seven plane hodoscopes on each spectrometer. The purpose of hodoscope

systems was to reconstruct charged particle tracks. A track is used to determine the
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particle’s momentum from the reverse matrix of the spectrometer niagnet.

A hodoscope was assembled with finger scintillation counters which were placed
parallel to each other so that hits on the finger of the hodoscope gave the information
on the track position in the transverse direction with respect to the finger axis. Every
finger overlapped its neighbor finger by 2/3 of its width as shown in Figure 3.25. This
configuration improved the effective spatial resolution of the hodoscope allowing a time

coincidence measurement between fingers overlap.

- \iﬁ/m\ﬁi"

Figure 3.25: Finger overlap: The di- Figure 3.26: Hodoscopes schematic
mension is of H1U hodoscope. view: the first set was composed by four

hodoscopes which determined position of
tracks in u, X, y, y axes. The second set
was composed by three planes which de-
termined position in x, y, u axes. C2
counter was located between H4Y and
H5X planes.

The seven hodoscopes were located along the spectrometer axis in order of H1U,
H2X, H3Y, H4Y, H5X, H6Y, and H7U as shown in Figure 3.26, where X,Y, and U
correspond to the x, y, and diagonal measurement of the track position respectively. The
planes 1 through 4 were between Cerenkovl and Cerenkov 2, and planes 5 through 7
were between Cerenkov 2 and the shower counter.

Table 3.2 and 3.3 show the dimensions of the finger scintillators of the hodoscopes
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in the 4.5° and 7° spectrometers. Table 3.4 lists the finger lengths for the U hodoscope.
H2X, H3Y, H5X, and H6Y had a higher spatial resolution than others and therefore these
hodoscopes dominated the momentum resolution of the spectrometer. H1U, H4Y, and
H7U had a roll to improve the signal purity and reliability and to remove any accidental
double hit. H2X, H3Y, H5X, and H6Y were built by Syracuse group originally for E142
which investigated deep inelastic scattering of the electron with gas 3He target [23]. H4Y
was built by SLAC, and H7U by French group for E142. H1U was built by TOHOKU

group for E143.

Plane | width(mm) | length(mm) | thickness(mm) | number
H1U 45 Various 6.2 25
H2X 20 590 6.2 34
H3Y 30 430 6.2 31
H4Y 47.6 355.6 6.2 20
H5X 30 1070 6.2 27
H6Y 30 510 6.2 55
H7U 75 Various 10 21

Total finger number 213

Table 3.2: Hodoscope dimensions on 4.5° spectrometer.

Plane | width(mm) | length(mm) | thickness(mm) | number
H1U 45 Various 6.2 25
H2X 30 690 6.2 23
H3Y 30 430 6.2 36
H4Y 47.6 482.6 6.2 20
H5X 30 1070 6.2 27
H6Y 30 510 6.2 55
H7U 75 Various 10 21

Total finger number 207

Table 3.3: Hodoscope dimensions 7° spectrometer
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H1U H7U
length(mm) | number | | length(mm) | number

200 2 200 2
260 2 300 2
320 2 400 2
380 2 500 2
440 2 600 2
500 2 700 2
560 2 760 2
620 2 820 7
680 2
720 1
740 6

Total 25 Total 21

Table 3.4: U-hodoscope dimensions

High voltage modules were located in the counting house located upstairs of ESA.
We stretched more than 120 SHV coaxial cables from the counting house into ESA to
supply high voltages for these photo-tubes. To reduce the number of the SHV cables
Afrom the counting house to ESA, we used high voltage splitters in the spectrometer. One
long SHV cables provided high voltage for up to four photo-tubes. Figure 3.27 shows
the circuit of the splitter; where the voltage was determined by a ratio of the variable

resistance to the inner resistance of the photo-tube.

A photo-tube detected a signal from a single finger. Photo-tubes which were used
for all hodoscopes except for the H1U plane are specified in Reference [23]. The photo-
tubes for the H1U plane were H3167 by Hamamatsu. This photo-tube has a % inch
diameter, a length of 103 mm, a sensitive region of 300 - 650 nm in the wave length, a
gain of 2.0 x 10® and a rise time of 1.8 ns at -1.5 kV. The upper limit for the high voltage
is -1.9 kV. The scintillator used for the H1U plane is SCSN38 by Kuray which has a

density of 1.05g/cm® and a refractive index of 1.59. The scintillation light wave length
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Figure 3.27: Hodoscope High voltage splitter. Only two of the four outputs are drawn.

distributes from 400 beyond 500 nm.

The output signals of the photo-tube was processed by a LeCroy 4413 discriminator
mounted in two CAMAC crates in each spectrometer-hut. The threshold was —30 mV
for H1U and —50 mV for the others. Output ECL signals with 20 ns width were sent
to the counting house by twisted pair cables. Each signal went to a LeCroy 2277 TDC
through a gate-card which ignored any signal when the input gate was closed. The gate
was called as Hod-gate made by trigger logic which fired for passing charged particles.
The LeCroy 2277 TDC recorded up to 16 signals for each channel. The resolution of the

~TDC is 1 ns and the TDC buffer is 16 bit for each signal. Therefore the dynamic range
is 65us. Because the spill width was about 2.2us in length, this dynamic range is enough

to record the hodoscope hits for a spill.

timing calibration

The timing at each hodoscope was obtained by comparing the measuring timing with
the expected timing of the reconstructed track passing through the hodoscope. Where
the track reconstruction was performed by using information from the hodoscopes, the
Cerenkov counters, and the shower counter. The procedure of the track reconstruction

will be described in Section 4.1.3.

We first take time difference between the measured timing and the expected track
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Figure 3.28: The spectra of At of the hodoscopes for the 4.5° spectrometer after the
calibration. The time difference between the hodoscope hits and the reconstructed tracks
are plotted. The results from fingers are accumulated together about a hodoscope plane.
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Figure 3.29: The spectra of the At for the 7° spectrometer after the calibration. The
time difference between the hodoscope hits and the tracks are plotted. Results from
fingers are accumulated together about a hodoscope plane.
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timing at a given hodoscope as follows,

At = (t — tg — t,) — trec (3.15)

where the t,, is the TDC count of the hodoscope fingers, the ¢4 is the propagation delay of
scintillation light in the hodoscope finger, the t, is the TDC pedestal including the time
delay due to the electric line, and the ¢,.. is the timing of the reconstructed track passing

the finger.

The propagation delay in the scintillator was calculated from the hit position and
the propagation speed in the scintillator. The hit position on a finger was determined
taking a time coincidence with another finger crossing to the finger. The propagation

speed for each finger was calculated from E142 run as nearly equal to 15 cm/ns [23].

We tuned the At spectrum to center at 0 by adjusting the TDC pedestal ¢, with
iteration procedure. Figures 3.28 and 3.29 show the spectra of the At for the 4.5° and 7°
spectrometers after several iterations. We plotted only the hits used for reconstruction
of tracks. All hodoscopes were well calibrated resulting the sharp peaks at zero. Table
3.5 shows the time resolution of the hodoscopes evaluated from these plots. The time

- resolution of about 1 ns was obtained for all hodoscopes.

Plane | time resolution (ns) for 4.5° sp. | time resolution (ns) for 7° sp.
H1U 1.18 1.14
H2X 0.90 0.74
H3Y 0.72 0.93
H4Y 0.88 0.89
H5X 0.77 0.75
H6Y 0.69 0.77
H7U 1.05 1.04

Table 3.5: Time resolution of the hodoscopes
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Hodoscope efficiency

We calculated the detection efficiency of the hodoscope defined by the probability to make
hits for passing tracks.
The track was reconstructed by a fitting as described in Section 4.1.3. To improve

the reliability for the track sample, we required,
1. Both Cerenkov counters have hits in the trigger,
2. Six planes of the seven hodoscopes have hits,
3. Spatial matching between the shower cluster and the track within 20 mm,
4. The track was reconstructed within 10 mm from the target center.

To ignore the effect of the finite spatial resolution of the tracking giving the improper
finger address, we accepted the event when any finger within the width plus 50 mm from
the track position has a hit.

Figure 3.30 and 3.31 show the inefficiency for the hodoscopes in the 4.5° and 7°
spectrometers respectively for run 1334. Horizontal axis shows the hodoscope plane

“index from 1 to 7. Vertical axis shows the inefficiency of each plane in logarithm scale.

3.5.3 Shower counter

The shower counter was placed at the end of the spectrometer to measure energy of the
electron. The shower counter is a multi-segment electro-magnetic calorimeter built with
lead glasses. High energy electrons incident to the lead glass induce an electro-magnetic
shower due to bremsstrahlung and pair creation and produce a large number of electrons,
positrons, and gammas. These electrons and positrons lose their energy ionizing atoms
and emitting Cerenkov light in the lead glass. The total amount of the Cerenkov light is
proportional to the total path length of the electrons and positrons in the shower counter

which is proportional to the initial energy of the electron [42], thus the shower counter
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Figure 3.30: Plane inefficiency for run Figure 3.31: Plane inefficiency for run
1334 in 4.5° spectrometer 1334 in 7° spectrometer

measures the energy of the electron by collecting the Cerenkov light in the lead glasses
with photo-tubes.

The counter was built with 200 lead glass blocks of 62 - 62 - 750mm as shown in
Figure 3.32. The radiation length of the lead glass is 3.7 cm. Because the 750 mm lead

_glass corresponds to 24 radiation length, electrons lose more than 99.9% of the energy in
the lead glass.

The output from each photo-tube was divided into five line as shown in Figure
3.33. These four lines went to ADC via 200 ns delay line. Each ADC channel was able to
collect a datum once in a spill of 2.2 us because we read and initialized the ADC buffer
after every spill. Thus, we were able to collect the data up to four times in a spill. Each
four of the fifth line were summed and divided into two lines. One of them was sent to
TDC via a discriminator to measure the timing of the signal. Another line was used to
make the signal from the whole counter. This signal from the whole counter made one of
online electron trigger signal as will be mentioned later.

There were three purposes for the shower counter; (1)providing online electron

trigger signal, (2)measuring the electron energy, and (3)particle identification using a
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Figure 3.32: 200 of lead glass blocks
were composed in fly-eye configuration.
Photo-tubes which were mounted behind
each lead glass detected the signal from
the lead glass.

ADC
———>
QQQ |—
>
200ns L,

Photo-tube

trigger

Figure 3.33: An output of each photo-
tube was divided into five lines. One of
them was used for online triggering and
TDC . Other lines went to ADC for calor-
imetry via 200 ns delay line.
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neural network algorithm. The calibration to calculate the electron .energy deposit from
the shower ADC is important for measuring the electron energy and will be described in

the following section.

Shower counter calibration

As mentioned in the previous section, the light collected by photo-tubes is proportional
to the energy deposited by electrons. In order to calculate the electron energy, we need to
find the proportional constants between ADC counts and energy deposited by electrons.

Energy deposit in each lead glass block can be calculated with the constant as follows,
E! = F{ x ADC! (:1=1,200: j=1,4), (3.16)

where E! is the energy deposited on the i-th block of the j-th trigger in a spill, FY is
the proportional constant, and ADC’,-" is the ADC counts. There were 200 blocks, and 4
ADC channels for each block making a total of 800 constants for each shower counter.

The radiation length of the lead glass is enough so the electron loses all of its energy
in it. Therefore, the energy deposited in the lead glass by an electron is equal to the
tracking momentum giving E/P=1 which we use to obtain the calibration constants.
Total energy deposited by an electron was found by clustering the blocks with energy
deposit using Cellular Automata [43] which will be mentioned in Section 4.1.2.

The sample of clusters for doing the calibration required low pion contamination
since pions produce a E/P of less than 1. Pions lose only a fraction of its energy in the
lead glass. To reject any pion and junk cluster from the sample, we required the following

conditions,

1. A track must be associated to the cluster within 10 ns in time and 50 mm in both

x and y.
2. The energy deposited in the central block must be higher than 5 GeV.

3. The fraction of cluster energy deposited in the central block must be higher than

0.65.
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4. Classified as an electron by the neural network.

Lead glass blocks are classified as shown in Figure 3.34. The first category is “non-
edge block” which means not on the edge of lead glass array. The second is “edge-block”
which has only three adjacent blocks. Last one is “corner block” which has only two
adjacent blocks. Sometime we call a cluster whose center is on a non-edge (edge, corner)
block as a non-edge (edge, corner) cluster. The calibration was done with different ways

for these three classes of blocks.

Non-edge Edge Corner

Figure 3.34: Classification for the shower block (cluster)

The electron energy is mostly deposited in the center block and spread over the
>surrounding eight blocks [44]. Hence, we required that the total energy deposited in
these nine blocks gives E/P = 1 for the non-edge cluster. The constant for the block

was corrected after every iteration by the averaged E/P as,

(F)) = B (3.17)
<E/P>]

where F} is the constant for the i-th block and jth ADC channel, < E/P >! is an
averaged E/P which was taken at this iteration, (F?)Prime is a new constant.

For the edge clusters, we can not require E/P to be 1 because a part of electron
energy escapes out of the counter. However, the edge block and its adjacent five blocks
are supposed to occupy a certain fraction of the energy deposit with respect to the total

energy of electron. This fraction was estimated from the well calibrated non-edge block
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data as 0.92 [44]. Hence, the constant for the edge block was calibrated by

0.92F}

F}Y = -
( ) < Eedgeﬁ/P >,J-

(3.18)

where the < E,ige6/P >f is defined similar to that for the non-edge cluster but the total
energy deposited of the six blocks.

The edge block was calibrated also with a energy fraction to the total energy deposit
when an electron passed through the adjacent block. It was estimated to be 6.5% [44]
and we corrected the constant by

_ 0.065F/
< Eegge/P >

(Ff) (3.19)

In these two correction method for the edge block, we selected which gave a smaller
correction than the other to prevent the divergence of the constant due to the statistical
fluctuation.

The corner block was calibrated using a energy deposited in the corner block by an
electron passing through the inside diagonal block. The ratio of the energy deposit to the
electron momentum, E orner/P was studied to be 2% [44]. We corrected the constant by

0.02F}
< Eeorner/P >

(F)) = (3:20)

Table 3.6 shows the results of the shower calibration. Each run corresponds to a
typical run of a run block which was a bunch of runs classified due to some hardware

changes.

run# | <E/P>45 | <E/P > 7
1560 | 1.000 =+ .054 | 1.000 £ .057
2750 | 1.000+.054 |1.001 +.059
2926 | 1.000+.055 |1.000 +.060

Table 3.6: E/P after the calibration. The error is the standard deviation of the distribu-
tion of E/P.
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3.5.4 Trigger counter

Photo-tube

Photo-tube Lightguide Lightguide

Linear Fun-in

| 700 Linear Fun-in

Discriminator Discriminator
Coincidenced output

Figure 3.35: Front trigger counter: Fish-tale acrylic light guides introduced emitted

photons into the photo-tubes. Two outputs on a side was combined linearly by a linear
Fan-in. Then these signals are discriminated by 30 mV threshold. The coincidence of the
outputs was sent to the trigger electronics. Outputs of the Fan-ins were also recorded by
TDC independently.

E143 spectrometer had two scintillator trigger counters. The front trigger counter was
set between Cerenkov counter 1 and Hodoscope H1U plane. The dimension of the counter
was 700-450-6 mm as shown in Figure 3.35. The scintillator was made of Kuray SCSN38
with higher photon emission than for Bicron [45]. We used the photo-tube Hamamatsu
H3690 which has a dimension of qbl% inch x 113 mm, a sensitive region of 300-650 nm in
the wave length, a current gain of 5.3 x 10° and a rise time of 2.0 ns at -1.5 kV. The limit
of the high voltage is - 1.9 kV. Figure 3.35 shows the assembly of the photo-tube and
the scintillator for the front trigger counter. These photo-tubes were connected through
light-guides to the scintillator.

The rear trigger counter was placed between Cerenkov counter 2 and Hodoscope
H5X plane. The scintillator was Kuray SCSN38 with the dimension of 1100 - 550 - 13
mm. Signals were read out by two photo-tubes through the twisted acrylic light guides
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attached at each end of the scintillator. The photo-tubes were Hamamatsu H1161 of ¢60
mm diameter with the sensitive wavelength from 300 to 650(nm). The current gain is

5.3 x 10° and the rise time is 2.6 ns at -2.0 kV.

Lightguide

‘ ~ Phototube
¢ . _/——
Phototube _ - :454)
_ . — 70—

| 1100 | 300

Discriminator -
- Output Discriminator

Figure 3.36: Rear trigger counter: The outputs from both sides were processed by a

Lightguide

discriminator with 50 mV threshold. The coincidence of these signals was used as one of
online trigger signal. Each outputs were recorded by TDC.

The coincidence of these front and rear scintillation trigger counters were used as an
online trigger with a rate suppressed by a pre-scaler. The signal served as the hodoscope

gate and the trigger for pions which will explained in Section 3.5.5.

Cosmic ray test

The time resolutions of the scintillation trigger counters were measured with the signal
produced by cosmic-rays [46]. Figure 3.37 shows the location of the investigation. A
coincidence of two scintillation counters, counter A and B, each having an area of 5-5
cm defined the timing and location of the passing of a cosmic-ray. The signals from the
photo-tubes of both sides of the front trigger counter were processed by discriminators

and a mean timer. The mean timer gives an averaged timing of two input signals by,

t 4+t
thy = — : 2 4 ta, (3.21)
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F Entries 4136
450 - Meon  0.9753E-01

RMS 0.8407
ALLCHAN 4131,
X /ndf92.23 / 39
Constant 42174 8.615
Meon 0.1151 £ 0.1204E-01
Sigmo 0.7642 + 0.8816E-02

Cosmic ray
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200 |
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0_-5‘ «ls é Els 1110‘ 112 s
Figure 3.37: Setup of the time resolu- Figure 3.38: Time difference between
tion measurement: Counter A and B are counter A and the front trigger counter.

scintillation counters which have the di-
mension of 50 - 50 - 20mm. The coincid-
ence of these counters defined the passing
of cosmic ray.
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where t) is the mean timer output, t; and ¢; are the timing of the inputs, and tg4 is
the delay time of the circuit. We used the mean timer instead of the coincidence to
compensate the timing shift due to the propagation of photons in the scintillator. The
time differences of the three combinations among counter A, B, and the front trigger

counter were recorded by TDC with 25 ps/channel. Dividing the area of the front trigger

2 ) 32 & I D 38
%aoo g i"..‘f:' —0.8612;-18? 450 a::‘n" -0.:‘1135
g RMS 0.4909 £ RMS 0.8644
= ALLCHAN 4136. z L ALLCHAN 4132.
5700 [ /01278 7 17 5 400 X/ndl9276 7 40
2 Constant 679.9% 14.26 H Constont 407.5% 8.371
€ Meon —-0.8841E-01 0.7473E-02 Eso I Mean -0.1801 % 0.1253E-01
€600 Sigmo 0.4704 + 0.6392E-02 < o |Sigma 0.7910+ 0.1031E-01
300
500
250
400
200
300
150
200 [ 100
100 | 50
Def. A - Def. 8 e Def. B - Trigger "
Figure 3.39: Time difference between Figure 3.40: Time difference between
counter A and counter B. counter B and the front trigger counter.

| counter into three by three, we took the data at the divided nine points of the counter.
Figure 3.38, 3.39, and 3.40 show the time differences. These histograms contain all of
data which were taken at the nine points. The resolution of these distributions come
from the intrinsic time resolutions of these individual counters. Thus, for example, the

resolution in Figure 3.38, o4, can be written by

o4 =1/0% + 0%, (3.22)

where 04 and oF are the resolution of counter A and the front trigger counter respectively.
Therefore, we calculated the intrinsic time resolutions for these three counters from these
three distributions. The intrinsic time resolution of the front trigger counter was obtained

to be 0.71 ns.
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Figure 3.41: Time difference between Figure 3.42: Time difference between
counter A and the rear trigger counter counter B and the rear trigger counter.

Similarly, the resolution for the rear trigger counter was obtained from Figure 3.41

and 3.42 to be 0.56 ns.

3.5.5 Trigger electronics

E143 spectrometer system opened the gates for TDC and ADC whenever a trigger signal
~ was generated. This trigger signal was generated independently in the 4.5° and 7° spec-
trometers. The number of the gate for the ADC and the hits for the TDC were limited
up to four and sixteen, or less respectively in a spill. The number of electrons in a spill
is typically one or less, on the contrary, the number of pions was higher than that for
electrons. Thus, we imposed the following requirements for the trigger electronics for the

efficient measurements of electrons and pions:
1. Open the ADC and TDC gate for all electrons,

2. Open the ADC and TDC gate in a fraction of times for pions to prevent the trigger

burst by many pions.

Figure 3.43 shows the basic picture for the E143 trigger electronics. Basically, the passing



3.5. SPECTROMETERS 83

oloctrgg)
sl
pion

electron

|main-or E_, ADC

v

hod-gateE > TDC

Figure 3.43: Basic idea of the E143 trigger logic: the main and pion-or triggers are
generated when electrons and any charged particles pass through the spectrometer re-
spectively. The “or” product of the main and pion-or triggers composes the main-or
trigger which opens the ADC gate. The hod-gate trigger which opens the TDC gate is
generated also when electrons and charged particles pass the spectrometer. The rate for
the charged particles ( not for electron) is suppressed by different factors for pion-or and
hod-gafe triggers.

of electrons and any charged particles are defined by the coincidence signal of the two
Cerenkov counters and the two scintillator trigger counters respectively. The “or” product
of the two coincidence signals composes the main-or trigger which opens the ADC gate
“and the hod-gate trigger which opens TDC gate. The difference of these trigger signals
is the suppression factor for the coincidence signal for the scintillation trigger counters.
This suppression is to prevent the trigger burst by many pions and the difference of the

suppression factors is because of the acceptance of the number of signals of the ADC and
TDC in a spill.

Figure 3.44 shows the logic of the main trigger and the other coincidenced signals
in detail. S1 and S2 are the output signals from the front and rear trigger counters after
processed through discriminators. HodSum is the logical sum of the output signals from
all fingers of H2X hodoscope. The coincidence of S1, 52, and HSUM generated SciCoin.
The rate of the signal was reduced by a pre-scaler with a factor N4 in order to prevent
the trigger burst by many pion tracks. This pre-scale factor N4 was normally set to 4

for the 4.5° spectrometer and 1 for the 7° spectrometer.
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Figure 3.44: The logic of the main trigger and the other triggers are shown. S1 and
S2 are signals from the front and rear trigger counters, HodSum is a sum of all outputs
of the H2X hodoscope, C1 and C2 are outputs from the Cerenkov counters, ShwSum is
a sum of outputs from the lead glass blocks, and BG is the beam gate opened whenever
beam came into ESA. A black half circle is a coincidence and a gray circle is a pre-scaler
to reduce the signal rate. The coincidence of the ShowSum, C1, C2, and BG composes

the main trigger.
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The Cerenkov counters are very important to identify electron tracks. The signals
from these counters were processed through two discriminators with 30 mV and 50 mV
thresholds. These signals were labeled as C1-L, C1-M for C1 and C2-L,C2-M for C2.

The shower counter provided four ADC and one trigger signal as shown in Figure
3.33. One of those outputs was used to make shower trigger signal. This trigger signal is
the sum of signals from all 200 lead glasses and processed through discriminators with
three threshold levels. The signals corresponding to these threshold level are denoted
very low, low, and medium and labeled by ShwSum-VL, ShwSum-L, and ShwSum-M.

The main trigger was the coincidence of C1-L, C2-L, ShwSum-L, and beam gate
which was open whenever beam came into ESA and sent from Linac Main Control Center
(MCQ). This main trigger provided information of the electron passing the counter for
the online process. The rate of the main trigger was typically 1.5 for 4.5° spectrometer

and 0.3 for 7° spectrometer per spill.

ShwSum-VL

SciCoin
ShwSum-L

S/N4,C1-M
S/N4,C1-M hod-gate
CI-L,C2-L

Figure 3.45: Logic of pion-or and hod-gate triggers is shown. The closed wedge-shape
is the or logic. S/N4:C1-M,S/N4:C2-M, and C1-L:C2-L are given in Figure 3.44. The
gray circles are the pre-scaler suppressing the signal rate.

Figure 3.45 shows the logic of the pion-or and the hod-gate triggers. The pion-or
trigger was the trigger generated any charged particle including pion. These pre-scaler
factors in the figure were set to 32 for 4.5° spectrometer and 8 for 7° spectrometer.

Typically, the rate was 0.35/spill and 0.25/spill for 4.5° and 7° spectrometer respectively.
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TDC recorded data for any hits of hodoscopes, shower countef, Cerenkov counters,
and the other triggers when the hod-gate trigger was fired. Gate-card ignored ECL signals
from the discriminator to TDC if the hod-gate was closed. The hod-gate was generated
by or product of the SciCoin and the coincidence of the Cerenkov counters which is always

enable to open the hod-gate for the electron.

ShwSum-M
S$N4,C1-M in-or
ShwSum-M :'__‘

S/N4,C2-M

S/N4
C1-M,C2-M

plon-or
main

Figure 3.46: Logic of the main-or trigger which was generated by the main trigger which
fired only for passing of electrons and the pion-or trigger which fired for the passing of
charged particles. The main-or trigger opened the ADC gate for the shower counter and
the Cerenkov counters.

Figure 3.46 shows the logic of the main-or trigger. The main-or trigger opened the
-ADC gate to record data for the energy deposit of the shower counter and spectra of the
Cerenkov counters. The number of the main-or trigger was limited by the electronics
of the shower counter up to four or less per spill by the electronics used for the shower
counter. This trigger was primarily formed by the the main trigger and the pion-or trigger

to record the electron data and the pion data reduced by pre-scaler.

3.6 Data acquisition and data handling

The experiment has been carried out from Nov. 1993 to Feb. 1994 at ESA of SLAC.
The Linac was operated at 120 Hz with a 3.0 - 10%lectron/spill current typically. Beam
energy was switched 10, 16, and 29 GeV to study the Q2 dependence of the structure

functions. Table 3.7 lists the run summary.
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Target field | Energy (GeV) Target Beam charge Electrons
(electrons - 10'3) | (triggers - 105)

Longitudinal 29.13 NH;3 130 39
ND; 170 7

16.20 NH;3 37 11
NDj; 17 7.5

9.8 NH; 19 6

ND; 16 7

Transverse 29.13 NH; 56 17
ND; 69 30

Either/none all C,AlLLEmpty 16 8

Total 2-.108

Table 3.7: E143 data summary: The longitudinal and transverse target fields mean
the direction of the target polarization with respect to the beam axis. The transverse
asymmetry A, was measured only for 29 GeV beam.

The data were processed in the counting house of ESA. Figure 3.47 shows the online
control and the data acquisition system which was based on CAMAC system controlled
by VAX4000.300. Three DEC3000.400 computers analyzed and monitored online data
on network. A VAX station 4000.60 was used as a tape server to store the data in 8mm
data tapes which can save up to 2.5 Giga bytes of information. We used about 300 tapes
for E143.

The data were processed with a E143 analysis program. It was a hybrid program
compiled from C and Fortran source codes. C codes served as the main routine for
process communication, graphical interface etc. The main part of the physics analysis

was coded by Fortran.

We analyzed the data stored of the 8mm tapes with a basic event reconstruction
process and stored the results in other 8mm tapes. The latter 8mm tapes were called
DST which stands for Data Summary Tape. The date size was reduced by a factor 4 in
the DST in contrast to the initial data. The physics calculation was done using the DST.
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Figure 3.47: Data acquisition and control system

The DST contained the following information:
1. beam spill data

(a) Pulse height of good spill monitor
(b) Pulse height of bad spill monitor
(c) Output of Toroid current monitor
(d) Beam position and width

(e) Electron beam helicity
2. timing of trigger signals
3. Track data

(a) track momentum

(b) track direction and position
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4. Cerenkov timing and pulse height
5. Shower cluster data

(a) Cluster centroid
(b) Cluster energy

(c) Neural network response

We made summary files from the DST. The summary file contained only the num-
bers of tracks binned in z and Q? according to different definitions. These definitions are

summarized to be
1. Basic electron definition, energy = shower counter deposit,
2. léasiC electron definition, energy = track momentum,
3. No tracking (defined only shower cluster and Cerenkov),

4. Basic pion definition(No main trigger, no Cerenkov hits, neural network indicates

no electron), etc.



Chapter 4
Analysis

The purpose of this chapter is to describe the analysis to give the cross section asymmet-
ries, A and A, from the data of deep-inelastic scattering of the 29 GeV electrons off the
deuterized ammonia target. These asymmetries are used to calculate the spin structure
functions g, as mentioned in Chapter 2.

The event reconstruction and the particle identification to select a good electron
sample will be explained first. Then, the calculation of the asymmetries from the obtained

electron sample will be explained including the corrections for the asymmetry.

4.1 Event selection

4.1.1 Beam analysis

We required to record data from the good beam spills by excluding the unstable beam
spills in the analysis for the cross section asymmetry. The beam stability were examined
with several devices; good spill monitor, bad spill monitor, toroid current monitor, and

foil arrays, as given in the following sections.

1. The good spill monitor, a scintillation counter located under the deuteron target,
measured scattered charged particles from the target. The signal from the monitor

was read by a ADC module. We took data for the analysis only when the spill has

90
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-Figure 4.1: Spectrum of ADC value from the good-spill monitor on run 2876. The
horizontal and vertical axes show the ADC count and the number of times per 20 ADC
count respectively. The solid line shows the good-spill spectrum for the spills accepted
by the other requirements. The dashed line shows the spectrum which was not accepted

by other requirements. The dotted line shows upper and lower thresholds for the ADC
value of the good-spill monitor.
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the ADC value of the counter between the upper and lower limits determined by

using the mean value of the ADC spectrum to be
Achd c0.5< ADng < ADCyd - 1.75, (4.1)

where ADCyy is the ADC value from the good spill monitor, ADC,, is the averaged
ADC value. In order to avoid the statistical fluctuation of the mean value, the first
236 spills of each run were excluded from the analysis and were only used to

determine the mean value.

The lower limit excluded spills which did not hit the target and the upper limit
excluded spills which hit high density materials around the target such that the
magnet coil etc. Figure 4.1 shows an example of the spectrum of ADC value with

the lower and upper limits indicated by the dotted lines.

. The bad spill monitor was also a scintillation counter set at the entrance of the

ESA 1 m from the beam line. This spill monitor gave no signal if the beam was
stable. The limit for the ADC value of the bad spill monitor was determined by a

dynamical method similar to that for the good spill monitor as,
ADCy < mzn(ADCM -3, 150.), (4.2)

where ADC)q is the ADC value from the bad spill monitor, ADC}yq is the averaged

ADC value. Figure 4.2 shows an example of the spectrum for the bad-spill monitor.

. We used two toroidal current monitors to measure the beam current spill by spill.

Figure 4.3 shows a spectrum of the toroid2 current monitor, where the x-axis is
the beam current in the unit of 10° electrons/spill. We set the cut values for the

current monitor as,
maz(lrz — 0.75,0.5) < lipre < min(Iypre + 0.75,5.0), (4.3)

where I, is the beam current measured by the toroid 2, I, is the average of the

current. The lower threshold was set to avoid a run with low beam current.
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Figuré 4.2: Spectrum of ADC value of the bad-spill monitor on run 2876 with the same
convention as Figure 4.1.
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Figure 4.3: Spectrum of the beam current obtained from the toroid2 current monitor
on run 2876 with the same convention as Figure 4.1.
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4. Two foil arrays, each consisting of 48 foils, were set perpendicﬁlar to each other to
measure the beam profile projected on x and y axes. Figure 4.4 shows the spectrum
of the beam size obtained from the foil array spectra, where the beam size was
defined to be s, = \/33—4-75 with s; and s, which are the standard deviations of

the beam profile in x and y-axes. The beam size s, must satisfy the conditions,
maz (35 — 30,,,0.5) < 83 < min(3y + 30,,,5.0), (4.4)

where 3, is the average of the beam size in mm, o,, is the standard deviation of the

spectrum of the beam size in mm.
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Figure 4.4: The spectrum of the beam spot size on run 2876 shows in mm with the
same convention as Figure 4.1.

5. The beam position was changed spill by spill according to the rastering pattern as
shown in Figure 3.9. We excluded the spills whose positions were off more than 12
mm from the center of the rastering pattern. The center of the raster pattern was

determined by the averaged position of the beam spot dynamically.
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A Figure 4.5: Horizontal axis shows the distance of the beam position from target center.
The beam position was determined by foil arrays. The solid line shows the spectrum for
the spills accepted by the other requirements. The dashed line shows the spectrum of the
spills excluded by the other requirements. The dotted line shows the upper limit, 12 mm
from the target center.
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6. Figure 4.5 shows the spectrum of the distance of the beam posftions from the target
center for run 2876. Beam spills whose positions were deviated more than 12 mm
from the center of the target were also excluded from the analysis. This requirement
reduces the ambiguity of the energy correction for the scattered electron because the
electron scattered at the outer part of the target pass through complex materials

around the target.

1| {ofo|1[§|o]1]{o[§[1]0]0
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Figure 4.6: Pseudo random number generator, PRNG makes a 33 bit array pseudo-
randomly. The previous 33 bits determine the next bit of the PRNG by the exclusive-or
product of 19th and 33rd bits. This bit then decides the helicity of the beam spill. We
assign 0 for left-handed spill and 1 for right-handed spill.

In addition, we checked the consistency of the beam helicity determination. The beam
helicity was chosen by a Pseudo Random Number Generator (PRNG). Figure 4.6 shows
the logic of the PRNG. The PRNG makes random numbers from an algorithm that uses
as input the previous 33 bits in its sequence. Therefore, we can predict the following
sequences generated by the PRNG, i.e. helicity of the next beam spill by knowing the
initial 33 bit pattern. The information of the beam helicity actually used was read
from the PES (Polarized Electron Source) and stored on tape. During the analysis, we
examined the information from the PES comparing with the prediction by the PRNG. If
the prediction was different from the PES information, the spill was excluded from the
analysis. The next 32 spills were also excluded so that the prediction algorithm can be

re-synchronized. Typically, less than 0.1% of the spills were excluded by this requirement.
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4.1.2 Shower cluster finding

An electron incident on the lead glass shower counter deposits the energy on several lead
glass blocks around the incident point. To reconstruct the energy of the electron from
these energy deposits, we organized the hits on the blocks into clusters by using blocks
having deposited energy of more than 50 MeV to reject the influence of fluctuation of the
ADC pedestal. We adopted a cellular automata program which was a kind of Hopfield

neural network [43] for the clustering.

The cellular automata program set a network which had 200 neurons corresponding
to the lead glass blocks. Every neuron was connected to the nearest eight neurons in the
real geometry by synapses which mediate information to each other. The state of the
neuron was indicated by a real number. The initial states of the neurons were equal to
the energy deposits on the lead glass blocks corresponding to these neurons. From the

initial state, the network evolved according to the following two rules.

1. An evolution of a neuron was determined by the eight neurons surrounding it. If
there is any neuron greater than the center neuron, the center neuron is set to be
the greatest one among the eight neurons. If the center neuron is greater than any

one of the eight neurons, the center neuron is not changed and labeled as the Virus.

2. The Virus is to be the center of the cluster. We had a special rule that a neuron

seized once by a Virus is not involved by any other Virus.

These rules guaranteed the good separation if several particles are incident close
to each other. Figure 4.7 shows such an example and indicate how the lead glass blocks
are organized from the state 1 to state 3 through the evolution of the cellular automata.

In this example, these blocks are clustered into two groups.

The total energy deposit of a cluster was calculated from the sum of the energy

deposits of the blocks in the cluster. The centroid of the cluster, Zcuster a0d Yeruster Was
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Figure 4.7: An evolution of cellular automata is shown in three steps. (a) The initial
state. The states of the neurons are set to be equal to the energy deposit of the lead
glass blocks. Neurons with no number mean that the energy deposit of the block is lower
than the threshold, 50 MeV. Two cells filled by different gray colors are Viruses with
the highest energy deposit in the surrounding blocks. (b) The next state. The neurons
hatched by the light and dark gray colors are seized by these Viruses. (c¢) The final state.
In this case, neurons are clustered into two groups. We notice that several cells seized
by the 7.0 Virus were not seized by the 8.0 Virus in the evolution from (2) to (3) due to
the second rules.

determined by,

i: Eiz(y):
x(y)cluster = ﬂ“g—_’ (45)

where i stands for the associated blocks, F; is the energy deposit of the i-th block, z; and
y; are the x and y position of the center of the i-th block. From a study for the matching
between the reconstructed track and the cluster centroid, the spatial resolution was ob-
tained to be about 10 mm [47). Figure 4.10 and 4.11 show the spectra of the distances
in x and y of the centroid of the shower cluster from the position of the reconstructed
track for the 4.5° and 7° spectrometers. We notice that this spatial resolution includes

the resolutions from the shower cluster centroid and the tracking position.
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4.1.3 Track finding

The tracking was performed by using information from the Cerenkov counters, the hodo-
scopes, and the shower counter. The information from these detectors were stored in
a data format for the tracking routine. Every detector was virtually treated as a wire
chamber in the tracking routine for convenience. The leading information contained in

this data is
1. Three dimensional position specifying the wire location,
2. Vector parallel to the wire direction,
3. Spatial resolution of wires,

4. Timing of signals corrected by time of flight and propagation delay at the reference

point (the surface of the shower counter),
5. Timing resolution.

In the case of hodoscopes, the line of the central axis of the finger is taken as the
location and the vector of the wire. The spatial resolution was set to 1/4/12 of the
finger width which was calculated from the square distribution. Table 4.1 shows the time
resolution for each plane.

Because the Cerenkov counter covers all of the acceptance of the spectrometer, it
was treated as a wire with a spatial resolution of 100 m. The time resolution of the
counter was set to 1 ns.

A cluster of the shower cluster was interpreted as the hits of two wires along x and y
axes whose intersection was at the center of the cluster. The position on the z coordinate
was set to be zero at the surface of the shower counter. From a study for the matching in
time between the shower cluster and the reconstructed track, the time resolution of the
shower cluster was measured to be less than 1.0 ns [48]. Therefore, the spatial and time

resolutions were set to 10 mm and 1.0 ns respectively.
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Plane | 4.5° spectrometer (ns) | 7° spectrometer (ns)
1 14 1.3
2 11 11
3 1.1 1.1
4 14 1.0
5 1.1 0.9
6 1.1 1.0
7 14 1.2

Table 4.1: Time resolution for hodoscope fingers in ns: the time resolution for every
finger in a hodoscope plane was assumed to be identical.

For the track reconstruction, we first search hits in the time window of 15 ns in which
we have the most hits. These hits were fitted for the reconstruction of the first track.
Any hit deviated from the fit in either time or space, was removed from the fitting. If
the number of the remaining hits was greater than those in any track classification shown
in Table 4.2, the track was accepted. The fitting procedure was repeated until all tracks

was reconstructed.

Class | Cerenkov | Hodoscope | Shower
1 1 4 1
2 1 4 0
3 0 4 1
4 0 6 0

Table 4.2: Track classification according to the minimum number of hits on each detector.

Figures 4.8 and 4.9 show the distance between the extrapolated point on the target
and the center of the target where the extrapolation back on the target was performed
by using the reverse matrix of the spectrometer magnet. We required that a track was

reconstructed within 10 mm from the center of the target to be included in the analysis.
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Figure 4.8: Track extrapolated position
at target to the center of the target in the
4.5° spectrometer.
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Figure 4.10: Matching of tracks and
clusters for the 4.5° spectrometer: The up-
per figure shows the matching in x, and
lower figure shows the matching in y.
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Figure 4.9: Track extrapolated position
at the target to the center of the target in
the 7° spectrometer.
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Figure 4.11: Matching of tracks and
clusters for the 7° spectrometer: the upper
figure shows the matching in x, and lower
figure shows the matching in y.
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Figure 4.10 and 4.11 show the difference in x and y between the extrapolated po-
sition of the tracks on the shower counter and the center of the the shower cluster. We
required that tracks and clusters have to be within 40 mm in both x and y, and 10 ns in

time.

Tracking efficiency

Tracking efficiency does not affect the cross section asymmetry providing it is identical
for the beam spills of both electron helicities. Of course, it would be a serious problem
if the efficiency is different for the beam helicity because it may give a false asymmetry.

We examined the tracking efficiency by using the shower cluster. The fraction when
the reconstructed track was properly associating to a shower cluster was defined to be
the tracking efficiency.

We first have to remove any cluster produced by noise or gamma from the cluster
sample because these contamination improperly decrease the tracking efficiency in this

definition. To improve the purity of the cluster sample, we required the following,

1. No edge cluster. The cluster on the edge is unreliable because a part of the energy

may leak to the outside of the shower counter.

2. Cluster energy greater than 8 GeV. The junk cluster was expected to be distributed

on such low energy region.
3. Both Cerenkov had a hit (low threshold)
4. Neural network response more than 0.9.

We adopted only electron clusters as the sample because we were able to require the
Cerenkov hits and the neural network response and these requirements should purify the
sample.

For the cluster sample, we examined matching with the tracks which was recon-

structed by the regular tracking algorithm mentioned previously. We required that the
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track is reconstructed within 40 mm in x and y, and 10 ns in time. These requirements
were the same for those for the ’good track’ in the usual analysis.

The tracking efficiencies were calculated separately for the beam helicity, +1 and —1
and the spectrometers. Table 4.3 shows the results for run 1334. The tracking efficiencies

had no significant difference for the beam helicities and produced no false-asymmetry.

Spectrometer 4.5° 7°
helicity —1 [ 93.5+0.3 | 98.2+0.5
helicity +1 | 93.4+0.3 | 98.0+ 0.5

Table 4.3: Tracking efficiency

4.1.4 Electron identification

It is important to reject any hadron track from the analysis to obtain the cross section
asymmetry because the cross section is defined by the number of scattered electrons. In
principle, we can separate electron and hadron(pion) tracks by using (1) the Cerenkov

counter and (2) the E/P ratio.

Cerenkov ADC

Basically, the long and short Cerenkov counters generate no signal for pions with the
momentum less than 9 GeV/c and 13 GeV/c respectively. We can then reject the low
momentum pion using the requirement for coincidence of the two Cerenkov counters.

Figures 4.12 to 4.15 show the ADC spectra of the Cerenkov counters. We re-
quired that the track fired the coincidence signal of the Cerenkov counters and the shower
counter(main trigger) and the Cerenkov ADC value to be more than 40 for the track to
be electron.

The detection efficiencies for electrons and the pion contaminations were estimated

for the Cerenkov counters. For both of electron and pion samples, we required that the
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Figure 4.12: ADC spectra of Cerenkov
counter 1 for the 4.5° spectrometer. The
solid line shows the ADC spectrum of
- Cerenkov counter 1 for electrons identi-
fied by the neural network response of the
shower counter and the E/P ratio. The
dashed line shows the spectrum for pions
defined by the requirements for the neural
network and E/p ratio opposite to those
for electrons.
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Figure 4.13: ADC spectra of Cerenkov
counter 2 for the 4.5° spectrometer. The
spectra are shown with the same conven-
tion as Figure 4.12.
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Figure 4.14: ADC spectra of Cerenkov
counter 1 for the 7° spectrometer. The
spectra are shown with the same conven-
tion as Figure 4.12.
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Figure 4.15: ADC spectrum of
Cerenkov counter 2 for the 7° spectro-
meter. The spectra are shown with the
same convention as Figure 4.12.

track is ’good track’ which has a good association to the target and the shower cluster.

We rejected tracks associated to the edge of the shower counter because the shower cluster

on the edge was less reliable. From the sample of the good track, the electron and pion

sample was defined by E/P ratio and the neural network response which will be mentioned

-in Section 4.1.4. The requirements for the electron and pion samples are summarized;

1. electron,

(a) E/P ratio between 0.8 and 1.2,

(b) The neural network response more than 0.9,

2. pion ,

(a) E/P ratio less than 0.8,

(b) The neural network response less than 0.0.

The Cerenkov spectra are shown for these two samples. The efficiency for electron ID

were calculated from the fraction of electron tracks which had the Cerenkov ADC greater
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than 40. The pion contamination was calculated from the ratio of the pion sample to
the electron sample with ADC value of more than 40. Table 4.4 shows the efficiency
for electron ID and the pion contamination for the four Cerenkov counters. The good

efficiencies of more than 95% were obtained for all Cerenkov counters.

4.5° C1 4.5° C2 7° C1 7 C2
Efficiency % 99.1+£0.0(97.7£0.0]97.6+0.1 |95.2+0.1
pion contamination % | 14.6 £0.1 | 7.04+£0.1 {129+0.1| 51+0.2

Table 4.4: Efficiency for electron ID and pion contamination of the requirement for the
Cerenkov counters.

E/P ratio

E/P is a ratio of the energy measured by the shower counter to that obtained from the
tracking. Since the mass of the electron is negligible, it has become custom in this analysis
to label the tracking energy as “momentum” and the shower counter energy as “energy”.
The momentum was calculated from the tracking data using magnetic reverse matrix
‘element, and the energy was extracted from the total energy deposited in the shower
cluster.

Figure 4.16 and 4.17 shows the E/P ratios for the 4.5° and 7° spectrometers where
we plotted only the “non-edge” sample given in Figure 3.34. The solid and dashed lines
show the spectra for the electron and pion sample defined by using the hits from the
Cerenkov counters and the neural network response of the shower counter. We accepted
tracks with E/P of between 0.8 and 1.2 as electron tracks.

The efficiency for electron ID and the pion contamination were calculated using a
electron sample and a pion sample which were defined by ADC value of the Cerenkov
counters and the neural network response. We required for both of the electron and pion

sample to be a ’good track’ with a good association to the target and the shower cluster.

The electron and pion samples were classified as follows:
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Figure 4.16: E/P on 4.5° spectrometer:

_The solid line shows the E/P spectrum for
electron defined by the Cerenkov counters
and the response of the neural network.
The dashed line is the E/P spectrum for
pions excluded by Cerenkov counters and
neural network.
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Figure 4.17: E/P on 7° spectrometer
with the same convention as figure 4.16.
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1. electron,

(a) Both Cerenkov ADC greater than 40,

(b) Neural network response more than 0.9,
2. pion,

(a) Both Cerenkov ADC less than 40,

(b) Neural network response less than 0.0.

The efficiency for electron ID and the pion contamination were calculated using the two
samples. The efficiency for electron ID was the fraction of the electron sample in the
region of E/P between 0.8 and 1.2. The pion contamination was the ratio of the pion
sample to the electron sample in the region of E/P between 0.8 and 1.2. Table 4.5 shows
the efficiency for electron ID and the pion contamination. This E/P cut did the effective

pion rejection keeping the good efficiency for electron ID.

Spectrometer 4.5° 7°
Efficiency % 94.4340.1 95.5+0.1
Pion contamination % | 0.44+0.0 | 1.1 +0.0

Table 4.5: The efficiency for electron ID and the pion contamination of the requirement
for the E/P ratio.

neural network

We also used a neural network algorithm to identify the type of particle incident onto the
shower counter. The main difference in shower response between electrons and pions is
the total of the energy deposit. Generally, a pion has a lower momentum than an electron
because the pion comes from the fragmentation of a nucleon. In addition, a hadron will
lose only a part of its energy in the shower counter. Therefore, the energy deposited by

a pion is distributed mostly below 5 GeV with a 29GeV electron beam.
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Figure 4.18: Total energy deposited in
the nine blocks which are the central block
“of a cluster and eight blocks surrounding
the central block. The upper and lower
figures show the spectra for electron and
pion samples. These electron and pion
samples were defined by the ADC value of
the Cerenkov counters and the E/P ratio.
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Figure 4.19: The ratio of the energy de-
posited in the central block of a cluster
to the total energy deposited in the nine
blocks defined in Figure 4.18 is plotted.
The spectra are shown with the same con-

ventions with Figure 4.18.
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Figure 4.20: The spectrum of the en- Figure 4.21: Number of blocks with the
ergy deposited in 16 blocks surrounding energy deposited more than 50 MeV in a

the nine blocks is shown. The spectra cluster. The spectra are shown with the
are shown with the same conventions with same conventions with Figure 4.18.
Figure 4.18.

In order to demonstrate the difference of the characters of the electron and pion
clusters, we investigated the several quantities of the shower counter for the electron and

_the pion sample which were defined by the Cerenkov counters and E/P ratio as:
1. electron,

(a) Both Cerenkov hits within 10 ns,

(b) E/P between 0.8 and 1.2,
2. pion,

(a) No hits on both Cerenkov counters within 10 ns,

(b) E/P less than 0.8,

Figure 4.18 shows the total energy deposited in nine blocks of a cluster. The nine blocks
were defined by the central block and eight blocks surrounding the central block in a
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cluster. While the spectrum for the electron sample is distributed in the region greater
than 6 GeV, the energy deposited by the pion sample is found hardly beyond 7 GeV.
Figure 4.19 shows the ratio of the energy deposited in the central block to the total
energy deposited in the nine blocks. The spectrum for the electron sample peaks at
~ 0.8 and that for the pion sample, on the other hand, peaks at ~ 0.4. Figure 4.20 shows
the energy deposited in 16 blocks beyond the nine blocks. The spectrum for the pion
sample has a tail longer than that for the electron sample. Figure 4.21 shows the number
of blocks with the energy deposit more than 50 MeV in a cluster. The number of blocks

involved by the pion cluster is less than that for the electron cluster.

Sinaps(positive) i

Sinaps(negative) ss———

Input layer

,,,,,,

Figure 4.22: Multi layered perceptron for the particle identification on the shower
counter has thirteen inputs. Gray and black arrows indicate positive and negative syn-
apses. The thickness of these lines indicate approximately the amplitude of the synapses.
For example, the first neuron in the input layer excites the first neuron of the second
layer, but the third neuron of the input layer calms the first neuron of the second layer.
The state of the neurons in the second layer was determined by the total of the signals
from the input layer with a Sigmont function. The same was true between the second
and output layer.

To identify the type of the particle using all of these information we used a neural
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network algorithm. The network was a multi-layered perceptron as shown in Figure 4.22.
‘There were 13 neurons in the input layer, and there were two outputs indicating electron
and pion likelihoods. The network is a complex structure which works as a function which
has 13 inputs. Each neuron has synapse joints with every adjacent neuron in the next
layer. Each neuron, except those in the input layer, can be between 1 (=excited) and -1
(=calmed). The condition of a neuron in the second and output layers is determined by
all of neurons in the previous layer. A signal from a neuron is mediated by a synapse. A
synapse has an amplitude determined by training as mentioned later.
The condition of a neuron, y; was determined by a Sigmont function as follows,
exp*e —1

expke +1
a= Z f,'j.’l:,', (46)

i
where x; is the condition of a neuron in the input or second layer, &;; is the amplitude
of the signal mediation by a synapse from a neuron in the input or second layer to a
neuron in the second or output layer respectively. The Sigmont function is similar with
a step function varying from -1 to 1. We used the Sigmont function instead of a naive
step function because the former can be differentiable.

The 13 inputs, V; — Vi3, for the neural network were as follows,

1. V;: Total energy in the nine blocks of the cluster. The nine blocks are the center

block of the cluster and eight blocks surrounding it.
2. Vj: Ratio of the energy in the central block to total energy of the nine blocks.
3. V3: Energy in the sixteen blocks which are beyond the nine blocks.
4. V4 — Vy5: Energy deposited in each of the nine blocks.
5. Vi3: Number of blocks in the cluster.

We developed the neural network using a Monte-Carlo simulation. A package for

detector simulation, GEANT, simulated events in the shower counters. We studied the
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response of the neural network for incident electrons and pions and we compared the

responses of the neural network to the true answer which was the input to the simulation.

If the response was not the same as the true answer (for example, the network said that the

cluster was generated by electron, while the true answer was by pion), we adjusted every

synapse’s amplitude to give a more correct response. This correction was done using a

back propagation method[43]. In the back-propagation method, the synapse between the

output layer and the second layer is corrected at first. After that, the synapse between

the second layer and the input layer is corrected. We iterated this process until we got

the proper answer from the network.
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Figure 4.23: Spectrum of the neural net-
work response for the 4.5° spectrometer
is shown. Horizontal axis shows neural
network response, +1 for electron like
clusters and -1 for pion like clusters . Ver-
tical axis shows number of times/0.04 in
logarithm scale. The solid and dashed
lines show the spectra for clusters match-
ing with electron and pion tracks defined
by the Cerenkov counters and E/P ratio
respectively.

-
)
T

Figure 4.24: Spectrum of the neural net-
work response for 7° spectrometer: The
spectrum is shown with same conventions
as the 4.5° results.
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Figure 4.23 and 4.24 show the neural network response for run 1334. The horizontal
axis shows the response which is 1 for electron clusters and -1 for pion clusters. The
solid and dashed lines show the responses for the electron and pion samples respectively
defined by the Cerenkov counters and the E/P ratio. We required that the neural network
response had to be more than 0.9 to identify a particle as an electron.

The efficiency for electron ID and the pion contamination were extracted by a
calculation similar to that for the ADC of the Cerenkov counters or the E/P ratio. The

electron and pion samples were defined by
1. electron,

(a) Both Cerenkov ADC more the 40,

(b) E/P ratio between 0.8 and 1.2,
2. pion,

(a) Both Cerenkov ADC less than 40,

(b) E/P ratio less than 0.8.

Table 4.6 shows the efficiency for electron ID and the pion contamination calculated from
these electron and pion samples. The results indicate the higher efficiency and the lower
pion contamination comparing to a conventional method for the particle identification

resulting ~90% of efficiency for electron ID and ~10% of pion contamination[43].

4.5° 7°
Efficiency % 98.11+0.01 98.84+0.0
Pion contamination % | 0.3+ 0.0 | 0.8+ 0.0

Table 4.6: Efficiency for electron ID and pion contamination for neural network response



4.1. EVENT SELECTION

115

The electron sample

Finally, the requirements for the electron sample are summarized to be

1. The main-trigger fired,

2. The ADC outputs from both Cerenkov counters were more than 40,

3. The track extrapolated back to the target within 10mm in x,

4. Track and Cluster agreed with each other by less than 40 mm in x and y and less

than 10 ns in time,

5. 08 < E/P <12,

6. neural network response was more than 0.9,

QXGeVie)?

Figure 4.25: Data profile on z—Q? plane
from run 1334 for the 4.5° spectrometer.
The x and y axes show Bjorken x in log-
arithmic scale and Q? in linear scale re-
spectively. The box area is proportional
to the number of counts in each bin in
logarithmic scale.
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Figure 4.26: Data profile on z — Q?
plane from run 1334 for the 7° spectro-

meter with the same convention as Figure
4.25.
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We obtained electron data scattered inelastically from the deuteron target over
a wide kinematical region as shown in Figure (4.25) and (4.26). The kinematics for
the electron was calculated using the momentum evaluated from the tracking with the
reverse matrix of the spectrometer magnets and the scattered angle from the beam axis.
We excluded counts outside the deep-inelastic region where the momentum transfer was
less than 1.0(GeV/c)? where the scaling is not a good approximation for the structure
function due to the large strong coupling constant. We also excluded data in the resonance
region where the effective mass of the final hadron system was less than 2.0GeV/c?. The
e-N scattering has A resonances in the region where the cross section does not indicate
the proper information of the nucleon structure.

When satisfied, these two kinematical conditions retained enough statistics to give
the cross section asymmetry in the region from 0.029 to 0.8 in Bjorken x and from
1.0(GeV/c)? to 12.0(GeV/c)? in Q2. The representative values of z and Q2 for a bin was

calculated from the averaged = and Q? over the data which were included in the bin.

4.2 The cross section asymmetry

» As the results of the analysis in the previous section, we obtained a clean electron sample
frém the measurement. The purpose of this section is a derivation of the cross section
asymmetries A and A;. These cross section asymmetries are calculated from the number
of scattered electrons off the polarized deuteron target.

If we assume that the beam is polarized 100% and the pure deuteron target is also
longitudinally or transversely polarized 100%, a number of electrons detected by the

spectrometer, N1 is expressed by,
NTENM = gD Q) p(t)NAIQ(t) (H =L,R), (4.7)

where the superscripts of the arrows for N, o, and Q indicate the directions of the target
and beam helicities, o is the cross section for the scattering, Q is a total beam flux, p(t)

is the target density, N4 is the Avogadro number, [ is the length of the target, and Q(t)
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is the acceptance and the detection efficiency of the spectrometer. In principle, the p(t)
and the () may change during the experiment and then are functions of the time, .
Using the number of electrons detected by the spectrometer and the total beam

flux, the rate asymmetry is written by

NN JQTEN — Nt /QT(f—)T
NN /QHEN + Nt /QH ()t

Although the target density and the acceptance and the detection efficiency of the spec-

Ajw) = (4.8)

trometer was varied during the experiment, influences due to the time fluctuation of
these factors was negligible because the beam helicity was changed randomly spill by
spill. Therefore, the factors of p(t)N4I2(t) were same for left- and right-handed spills
and were canceled in the rate asymmetry. The rate asymmetry is then supposed to be
same as the cross section asymmetry in the ideal case.

In the actual experiment, the beam polarization and the target polarization were less
than 100% and the target contained many nucleons other than the deuteron. The beam
and target polarization and the dilution factor which is the ratio of electrons scattered
from the deuteron to those from all of the target materials relate the rate asymmetry to

the cross section asymmetry to be

ApL
pepef’
where p, is the beam polarization, p; is the target polarization, and f is the dilution

A= (4.9)

factor.
Equations (4.9) is the relation of the rate asymmetry and the cross section asym-
metry accounting only the leading corrections. Actually, the other corrections smaller
than these leading corrections are also important to the high precision measurement for
the spin structure function. To do that, we measure the rate asymmetry not only for the
electron, but also for the positron defined to be
ep _ NITY/QISN — NI/ QIS
I = NG IOt T NI /oTeT

where Af# , is the rate asymmetry for the electron and positron, NI is the number
fi(L) e.p

(4.10)

of electrons or positrons detected by the spectrometer, QIl* is the total of the beam
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current. The rate asymmetry for the positron was investigated revérsing the polarity of
the spectrometer magnet.
In the following subsections, we will discuss about the procedure to extract the cross

section asymmetry from the rate asymmetry measured directly in the experiment.

4.2.1 The dead time correction

The dead time correction is defined by the ratio between the true trigger rate and the
measured trigger rate. The dead time effect basically depends on the trigger rate. Con-
sequently, it may affect the rate asymmetry if the trigger rates for left- and right-handed
spills had a large difference.

The rate asymmetry corrected by the dead time effect is expressed as,

NIg™ NI

SO~ St Cr
AC,P ! Q Q 4.11
(Ajw)' = Nﬂeu NI (411)
CL + ———L-C
QﬂHi QI

where Cp r is the dead time coefficient for the electron (positron) rate obtained by the
left- or right-handed spill.

We calculated the dead time coefficient for a given run;

> tm > nx P(n,m)
C —_ m n
LR Y min(m, 4) x tn,

, (4.12)

where t,,, is the number of times there were m trigger(s) in a spill, n is the index to
indicate the expected trigger rate, and P(n,m) is the matrix element which is defined as
the probability to detect m triggers if there are n real triggers. Because the number of
triggers in a spill was limited by shower counter electronics to four or less, the measured
trigger number could only go up four even if there were more triggers in a spill. The
term of min(m,4) was inserted instead of m due to this trigger logic.

The matrix element P(n,m) was calculated by a Monte Carlo simulation[49]. In

the simulation, we assumed;
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1. Triggers distributed randomly in time,
2. Dead time between triggers was 32ns,
3. n and m were limited to 10.

The 10 x 10 unitary matrix elements are shown in Table 4.7.

measured true trigger
trigger 1 2 3 4 5 6 7 8 9 10

1 1.000 | 0.028 | 0.002
2 0.972 | 0.086 | 0.007
3 0.913 | 0.155 | 0.019 | 0.003
4 0.838 | 0.235 | 0.049 | 0.008 | 0.002
5 0.745 | 0.321 | 0.088 | 0.022 | 0.006 | 0.002
6 0.627 | 0.371 | 0.147 | 0.049 | 0.013
7 0.532 | 0.407 | 0.206 | 0.083
8 0.422 | 0.415 | 0.249
9 0.323 | 0.405
10 0.249

Table 4.7: The probability matrix to the number of triggers detected by the spectro-
meter. The matrix elements are calculated under the assumptions dead time=32 ns, Spill
“length=2200 ns. A blank means the element is 0.

We did not assume symmetry between left- and right-handed spills for the dead
time coefficient, i.e. the coefficients were calculated separately for each handedness.

The dead time correction for both spectrometers are shown in Figure 4.27 and 4.28.
The dead time coefficient depends on the trigger rate, and that increased the trigger rates
by several percents. The corrections for the left- and right-handed spills usually were
similar, so the dead time correction was very small on the asymmetry. Figure 4.29 and
4.30 indicate the asymmetry of the dead time correction for left- and right-handed spills

defined by,
Cp—Chg

A= ZL—SR
de CL+Chr

(4.13)
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The uncertainty of the dead time correction was estimated to be less than 1.0%
of (1 — Cpr) from the detail study of the simulation. Therefore, the uncertainty on the

asymmetry from the dead time correction was negligible.

4.2.2 beam polarization
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= E 143 Double Arm Mgller Polarization vs QE -
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=
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Figure 4.31: The electron polarization is plotted as a function of the quantum efficiency
- of the cathode of the polarized electron source. The electron polarization is measured
by ESA Mgller polarimeter. The o shows the spread of the measurements and the opseqn
shows the mean of these measurements. A step function plotted by a solid line was
obtained from the fit with the oacqn and determined the beam polarization in the analysis.

The beam polarization was determined by ESA Mgller polarimeter as mentioned in Sec-
tion 3. The results from the single arm polarimeter and the double arm polarimeter,
and also the Linac polarimeter which is located at the end of the Linac, were in good
agreement with each other(34].

Figure 4.31 shows the relation between the quantum efficiency of the electron cath-
ode and the beam polarization measured by the ESA Mgller polarimeter. The o shows the

spread of the measurements and the opfeqm is the mean of these measurements. From a
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step function obtained from a fit to the oaseqn, the beam polarizatioh was determined for
each run. The beam polarization was 84 - 86% during the experiment with the absolute

uncertainty of 2%.

4.2.3 Target polarization
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- Figure 4.32: The horizontal axis shows run number, the vertical axis shows the NDj
target polarization. The sign of the polarization is plus for forward, minus for backward
to the beam direction.

Target polarization was measured by the NMR signal obtained by the Q-meter module of
the Liverpool type calibrated by that for the thermal equilibrium shown in Figure 3.17.
The uncertainty of the target polarization was dominated by the statistical error of the
NMR measurement for thermal equilibrium to be 4.0% relative to the polarization [50].
Figure 4.32 shows the target polarization during the experiment as a function of
the run number. The negative polarization mean that the direction of the polarization is
opposite to the beam direction. The target polarization was obtained up to 40% and the

average was about 25%.
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Figure 4.33: The correction for the target polarization due to the beam heat effect. The
horizontal axis shows the beam current in a unit of 100 electron/spill. The vertical axis
shows the correction in % defined by the difference of the corrected polarization from the
measured polarization.
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The electron beam heated up the target center where the beam was rastered and the
fringe part of the target was refrigerated by the circulated liquid helium directly. So, the
target had a gradient of its temperature between the center and the fringe parts. Because
the deuteron polarization depends on the temperature, the deuteron polarization is not
uniform in the target cell due to the temperature gradient.

On the other hand, the NMR coil surrounded the larger volume of the target ma-
terial than the volume which was actually on the beam line. So, the results from the
NMR measurement averaged the gradient of the target polarization and gave a polar-
ization higher than the polarization where the beam was rastered. The correction was
estimated from the actual depolarization with varying the beam current [51]. The cor-
rection decreased the target polarization by 1.5% of that with a typical electron current.
The correction factor for each run are plotted in Figure 4.33 as a function of the beam
current. The correction factor is defined to be the difference between the uncorrected

and corrected beam polarizations.

4.2.4 Dilution factor

The target contains not only polarized deuterons, but also unpolarized materials. The
materials decrease the asymmetry in proportion to a factor called the dilution factor.
The dilution factor is the ratio between the number of electrons scattered from the
deuterons in NDj and that from all materials. Neglecting common factors like Avogadro
number and Beam flux etc., the number of electrons scattered by a material is generally

to be

N = fz'l(N,,ap + Noon)g, (4.14)

where p is the density of the material, [ is the length of the material, A is the mass number
of the nucleus, N, and N,, are the numbers of proton and neutron in the nucleus, o, and
o, are the cross sections for proton and neutron respectively, and g is the EMC effect
coefficient for the nucleus. The EMC effect coefficient is the ratio of the cross section

per nucleon between a heavier nucleus and a deuteron. The EMC effect coefficient was
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determined by a fit done by S. Rock and L. Stuart using the data of deep-inelastic
scattering experiments[52](53].

We introduced the packing fraction p; which is the percentage of the target cell
occupied by ND; beads. The number of electrons scattered from the NDj is expressed
using the packing fraction by,

Ly -
Nnps = pND3 21““ Ps {3(op + 04) + (7o, + 80n)gn} s (4.15)

where pnps is the density of NDj, 21 is the atomic mass number of NDj, I is the length

of the target cell, and gy is the EMC effect for nitrogen nuclei. Similarly, the number of

electrons scattered from the deuteron is

N
Np = p"’—D3—-21“”—pf3(a,, +02). (4.16)

We assumed that the other parts of the target cell were filled by liquid helium. The

number of electrons scattered from the liquid helium is then expressed as,

e lce (1 —
Ny, = P2 “4( Pr) (20, + 20,), (4.17)

where the pg. is the density of the liquid helium.
There were also other materials in or around the target, for example the wall of the
cell, the NMR coil etc. Accounting for all of these materials, the dilution factor, f was

calculated as follows,
f= o
- - NND3+NH6+ZNothera,
where the Y Nih.rs represents the contributions from materials other than ammonia and

(4.18)

helium.

We divide both of the numerator and the denominator by o, to simplify such that o,
and o, are replaced by 1 and 0, /0, respectively. In the actual calculation, we assumed
the ratio of 0, /0y is equal to Fu,/F3, which is calculable from the well measured Fyy/ Fp,.
The Figures 4.34 and 4.35 show the dilution factor for the 4.5° and 7° spectrometers. The
dilution factor was obtained to be 0.23 ~ 0.25 depending on z because of the variation
of the cross sections and-the EMC effect. The error of the dilution factor was calculated

from the errors of the cross section, EMC effect, the packing fraction, density of materials.
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Figure 4.34: Dilution factor on 4.5° Figure 4.35: Dilution factor on 7° spec-

spectrometer. The dilution factors are trometer. The dilution factors are calcu-
calculated from averaged r and Q? for lated from averaged r and Q? for each
each data point. data point.

4.2.5 Nitrogen correction

Nucleons (nuclei) other than deuteron could either dilute the asymmetry, or contribute
- to the asymmetry because a small fraction of these nucleons (nuclei) is polarized. In ad-
dition, a contamination of NH; gives an asymmetry of protons. We named the correction

due to these polarized nucleons (nuclei) other than deuterons as nitrogen correction.

As mentioned in Section 3.4, we used °NDj as the target material. The nominal
1N nucleus contaminated the target material by 2.0%. The contamination of proton,
ie. NHj, was estimated to be 1.5%. These three kinds of nuclei and nucleon other
than deuteron, '°N, N, and proton, were polarized in the target. These nitrogen and
proton polarizations as a function of the deuteron polarization were measured as shown
in Figure D.2 and D.1. We measured only the !N polarization and assumed that the 4N

polarization had the same magnitude and the sign opposite to that for the 1°N.

Assuming the contamination by these nuclei and nucleon, the cross section asym-
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metry was corrected by the nitrogen correction as follows !,

II J-
= - — 1Asl, 4.19
J') [ papaf 2 h] ( )
where the factor of 1, and v, are the functions of the deuteron polarization and typically
to be
v, ~ 0.98, (4.20)
vy ~ 0.06, (4.21)

and A, is the asymmetry for the proton measurement which we used the results from the
E143 measurement using NHj target for.
This correction depends on the deuteron polarization varied due to the experimental

conditions and the correction was then applied for each run in the analysis.

4.2.6 Positron subtraction

The measured tracks are not only electrons which come from deep-inelastic scattering,
but also from other processes, such as pair creation by gammas from neutral pion.
Taking an account of the processes other than deep-inelastic scattering, the cross

“section counting the electron, oT(-)¥1 is expressed by,

UT((—).L(T) _ O.T(‘—N(T) +o T(‘—)l(T) (422)

pazr

where UT( R

and a;(,::)m) is the cross section counting the electron from the pair creation etc.

is the cross section counting the electron from the deep inelastic scattering,

We assumed that the cross section counting electrons from the back-ground pro-
cesses for deep-inelastic scattering was charge symmetric. Under the assumption, this
cross section was estimated from the measurement counting positrons using the reverse
magnetic field because the positrons came only from the charge symmetric process. There-

fore, the cross section counting the positron g}(“ (" gives the cross section of the charge

lrefer Appendix D for the detail of the derivation of the formula.
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symmetric process as,

gl HD = GHOwn, (4.23)

The cross section for deep-inelastic scattering was extracted by subtracting the
cross section counting positrons from that counting electrons. We define the total cross
sections, 0¢ and o”, and cross section asymmetries, A¢ and AP, counting electrons and
positrons by,

0 = gJ(N 4 g1 (4.24)

of = a:,(‘_)i + gl (4.25)

. oleN gt
I = AT 1T

(4.26)

p oI N _ gt

= 4.27
(I(L) 02(4—)¢ + 0_2(4—)1‘ ( )

The cross section asymmetry for deep-inelastic scattering, Aﬁfi, is described with these
electron and positron cross sections by,

(1M = N — (g1t = g1

AdifL —
L s | L [ o L [
o° o?
— e _ AP
= Al ge—gr ~ Al ze—5 (4.28)
) e
The factor pra— is the correction for the dilution for the cross section asymmetry due

to the contamination o_f the charge symmetric process. The second term in Equation
(4.28) is the correction due to the asymmetry which the charge symmetric process has.
Figures 4.36 to 4.43 show these factors.

In the actual calculation, we used the electron and positron asymmetry obtained
from the Equation 4.19 for the ideal A? and A? in the Equations (4.26) and (4.27). We
used also the ratio of the counting rates defined to be

o NI QI 4 NI /01t
e =P NIOW QI NI ) gitelt _ Niet ottt - it ofet

(4.29)

for the ideal ratio of the v./(oe — 0p). This is true for the ratio of the o,/(c. — 0,). It is

allowed if the temporal fluctuation of the target density and the acceptance and efficiency
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of spectrometers were averaged and there was no bias for the electron and positron data
and the assumption was guaranteed because we changed the magnet setting several times

during the experiment.

4.2.7 Radiative correction

The cross section for deep-inelastic scattering is dominated by the one photon exchange
process as shown in the Feynman diagram in Figure 2.1. However, the actual processes of
the deep-inelastic scattering contain not only the naive one photon exchange process, but
also other processes, for example two photon exchange processes, vacuum polarization,
internal-bremsstrahlung etc. In addition, the energy of the scattered electron is varied
by the interaction with the external field. To extract the cross section asymmetry for
the one photon exchange process from the measured cross section asymmetry, we should
estimate the radiative correction.

The radiative correction is categorized into internal and external radiative correc-
tions. The internal radiative correction is due to processes involving self interaction like
vertex correction or real photon emission. The external radiative correction is due to in-
teractions with external fields. Leading diagrams accounting in the radiative correction,

“are shown in Figure 4.44.

The internal radiative correction was calculated based on the method by N.Kukhto

and N.Shmeiko [54]. In the radiative correction, contributions from the various higher

order diagrams and radiative processes were accounted as follows:

—

. Electron vertex correction,

N

. Vacuum polarization,

w

. Two photon exchange,
4. Elastic radiative process,

5. Quasi-elastic radiative process,
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RADIATIVE CORRECTIONS
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Figure 4.44: Leading diagrams accounting the in radiative correction
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6. Inelastic radiative process.

The proton and neutron form factors for elastic- and quasi-elastic processes were taken
from References [55] and [56]. The deuteron form factor for elastic- and quasi-elastic
radiative processes was extracted from a fit done by L.M.Stuart [57]. The unpolarized
nucleon structure function for inelastic radiative process was taken from References [59]

and [60).
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- Figure 4.45: Radiative correction on 4.5 Figure 4.46: Radiative correction on
° for 4 4.5° for A}

The external radiative correction was calculated by Stuart [57] with the formula of
Oeatltarts) = [ I(Bo, B, t)in(E, EI(E', By, ta)AEdEY, (4.30)

where Fj is the initial energy of electron, E% is the energy of the final state electron,
and I(E, E',t) is the probability that the energy E becomes to E' after passing through
a material of depth t. Then, Equation (4.30) means a cross section that final scattered
electron has energy E} for given materials.

The external radiative correction was calculated assuming a target model estimated
by T. Liu [51] accounting only the external bremsstrahlung.

Figure 4.45 , 4.46,74.47, and 4.48. show the evaluated radiative correction for A

and A, of the 4.5° and 7° spectrometers. The radiative correction, RCj 1, is the difference



134 CHAPTER 4. ANALYSIS

0.01 0.01/
: foum;
£0.005 £0.006}
£, ] £o0004
1 = S
0.005| +++ of il
o [
-0.01f 0,004}
0015} '0‘006;'
i -0.008
-0.02 | 00t =
10 X Bjm'ken1 10 X Bjorkenl
Figure 4.47: Radiative correction on 7° Figure 4.48: Radiative correction on 7°
for A" for A 1

of the cross section asymmetry defined by the one photon exchange process ( Born cross
section ), Ay, 1, and that defined by the measured cross section including any radiative

and higher order interactions, Aﬁfj_.

A“,_L = Aﬁ:j_ + Rclly_L- (431)

'The radiative correction for A decrease the asymmetry in low-x region by less than
10.01. On the other hand, the radiative correction for A, is consistent with zero but the
large uncertainty.

We defined the radiative correction for the cross section asymmetry in the additional
form as shown in Equation (4.31). The reason why we did not introduce the multiplicative
form was the definition is too sensitive to the statistical fluctuation on where the asym-
metry, Aﬁfi was very small. In principle, the radiative correction due to the background
from the elastic and quasi-elastic scattering etc. should be defined to be a multiplicative
form and it corrects not only the central point of the data, but also the magnitude of
the statistical error. Therefore, We prepared another correction factor for the statistical

error. The statistical error was corrected by the factor to be

&) = 6 /RC}, (4.32)
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where J) is the statistical error radiatively corrected, 6ﬁ“’ is the statistical error for the
asymmetry before the radiative correction, and RC’ﬁ‘ is the correction factor. The factor

for A on both spectrometers was calculated as shown in Figures 4.49 and 4.50.

"4.2.8 Results

The corrections from the dead time, the beam polarization, the target polarization, the
dilution factor, and the nitrogen polarization are the factors which depend strongly on
the experimental conditions. We then applied these corrections for each run data. Res-
ults from many runs were summarized on the corrected asymmetry separately for the
target configuration (longitudinal or transverse), the spectrometer (4.5° or 7°), and the

spectrometer magnet setting (electron or positron mode) as follows,

< A(z)f >= - : i ’ , (4.33)
L Gy

2

L (AR N
% L(x) (Eomaray - e ae) (ai(xm"i)z]
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Figure 4.51: Aj on 4.5° spectrometer Figure 4.52: A, on 4.5° spectrometer

where < A(z);? > is the averaged asymmetry, (A;(z);? )’ is the rate asymmetry correc-
ted by the dead time effect, ; (z)ﬁ’ ‘| is the statistical error of the cross section asymmetry

for each run.
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Figure 4.53: Aj on 7° spectrometer Figure 4.54: A, on 7°. spectrometer

The cross section asymmetry for the deep-inelastic process was calculated by using

the Equation (4.28) with the averaged electron and positron asymmetry. Finally, we
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applied the radiative correction for the asymmetry. Figure 4.51, 4.52, 4.53, and 4.54

show the results of the cross section asymmetry for both spectrometers and both target

configurations.

4.2.9 Study for the systematic effects on the asymmetry

We studied the systematic effects on the cross section asymmetry caused by the direction

of the target polarization and the magnetic field on the target.
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Figure 4.55: The x? distribution of the Figure 4.56: The x? distribution of the
difference of the A; taken with different difference of the A4, taken with different
target polarization direction in 4.5° spec- target polarization direction in 4.5° spec-
trometer. trometer.

The target is polarized by the DNP method with a strong magnetic field and a mi-
crowave relaxation technique as mentioned in Section 3. The combination of the direction
of the magnetic field and the wave length of the microwave determines the direction of
the target polarization. The backward and forward polarization is then possible with the
same magnetic field.

We calculated the asymmetry separately for runs which were taken with the positive

and negative polarization and magnetic field respectively. Then, we took the difference
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Figure 4.57: The x? distribution of the Figure 4.58: The x? distribution of the
difference of the Aj taken with different difference of the A, taken with different
target polarization direction in 7° spectro- target polarization direction in 7° spectro-
meter. ’ meter.

of these two results and calculated the x2 of the data by,
x> = Aq(z)?/0a(z)?, (4.34)

where Ay is the difference of two asymmetries, o4 is the statistical error of A4 calculated

. by,

o4(z) = \'/cr,[,m,(:l:)2 + Opeg()?, (4.35)

where o, and o,¢, are the statistical errors of the asymmetries taken with the positive
and negative polarization or magnetic field. Figures 4.55 to 4.58 show the x? spectra of
the difference of the asymmetries taken with the different target polarization direction.
In these four spectra, much part of the data distributes in the region of x? less than 2.0.
Our results then seem to have no significant difference due to the polarization direction.
We calculated also the mean of the difference for each data set. These mean values are

within two standard deviations from zero as follows,

- A“-(4.5): ' Ay

~0.006 £ 0.007,

A;(4.5): Ag = —0.011 % 0.014,
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Figure 4.59: The x? distribution of the Figure 4.60: The x? distribution of the
difference of the A taken with different difference of the A, taken with different

magnetic field direction in 4.5° spectro- magnetic field direction in 4.5° spectro-
meter. ' meter.

Ay(7) A4 =0.0100.012,

A, (7): Ag = —0.015 £ 0.022.

Therefore, we observed no significant effect due to the direction of the target polarization.

Figures 4.59 to 4.62 show the x2 spectra of the difference of the asymmetries taken
“with the different direction of the magnetic field. Much part of the data distributes in
the region of x? less than 2.0 in these four spectra. Our results then seem to have no
significant difference due to the polarization direction. We calculated also the means of

the difference for each data set as,

A(4.5) : A4 = 0.003 £ 0.008,

AL (4.5): Ay = —0.014£0.017,
A7) : Az = —0.023 £0.012,
A (7): Ag = —0.003 £ 0.023,

which give no significant differences from zero beyond two standard deviations. We

observed no systematic effect on the asymmetry due to the magnetic field on the target.
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Chapter 5

Results

We will first show our calculation of the spin structure function g, for deuteron from the
cross section asymmetries obtained in the previous chapter. We determine the integral
of the g%(x) over x to examine the prediction from the Ellis-Jaffe sum rule. The quark
polarization are also measured for each flavor using the integral of the g¢(z).
Combining the gf(z) to the proton spin structure function from E143[18], we obtain
the spin structure function for neutron, ¢7(z) and the difference of the spin structure
functions for proton and neutron, ¢¥(z) — ¢7*(z) and calculate these integrals to compare

- to the predictions from the Ellis-Jaffe sum rule and the Bjorken sum rule.

5.1 ¢; at a common Q?

The cross section asymmetries, A; and A) were measured at the fixed angles and the
fixed beam energy which gives Q? correlated with x as shown in Figures 4.25 and 4.26.
For comparison of the measured I'; with the predictions from the Bjorken and Ellis-Jaffe
sum rules, we have to obtain the spin structure function g; at a common Q? because the
predictions depend on Q? due to the power corrections of the strong coupling constant
a,(Q?) as shown in Equations 2.70 and 2.76.

We calculated the g;(z) at a common Q? using two empirical methods treating the

@? dependence of the spin structure function in order to obtain the g;(z) at a common

141
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Q?; one is to assume that A,(z,Q?) and As(z,Q?), the virtual f)hoton cross section

asymmetries are independent of @2, and other is to assume that g;(z, Q?)/Fy(x, Q?) is

independent of Q2. In both assumptions, the spin structure function was calculated via

the A, (z, Q%) and A, (z, Q?), or g,(z, Q?)/ Fi(x, Q?) respectively. These quantities related

the cross section asymmetries A(z, Q%) and A, (x, Q%) to the spin structure function

g1(z, Q%) whose @2, and Q2 are the measured Q? and the common @2, at which those

asymmetries were measured or obtained respectively.
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Figure 5.1: The closed and the open
- circles show A;(z) from 4.5° and 7° spec-
trometers respectively. The error bars are
statistical only.
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Figure 5.2: The difference between
A;(z) from both spectrometers is plotted.
We subtracted the results of the 7° spec-
trometer from those of the 4.5 ° spectro-
meter. The error bar is the quadratic sum
of those statistical errors. The dashed and
two dotted lines indicate the center value
and the band within two standard devi-

ations from the mean of these points.

In the first method, the virtual photon cross sections, A;(z, Q%) and Ax(z, Q2,)

are first calculated from the cross section asymmetries, A(z,Q2) and A (z,Q%) in

Equations (2.41) and (2.42) as follows,

Al (.’II, Q?n) =

A” (.’II, Q?n) _ nA.L(J;y an)

D(1+n¢)

a1 + 1) (5-1)
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CAy(z,Qn) | Av(z,QF)

Ax(z,Q%) = = =,
Q) = Da3ne) * a1+ n0)

where A and A, were measured at various Q2 from 1.27 to 9.17(GeV/c)?. The kin-

(5.2)

ematical variables, D, d, 1, and ( were given by Equations 2.43, 2.44, 2.45,and 2.46 at the
measured Q?, Q2. From the assumption, these A;(z, @2) and Ax(z, Q%) are considered

to be same as A;(z,Q3) and Ax(z, Q3) at the common Q?, Q2. Therefore, the following

formula gives the spin structure function at the common @3,

Fl(x7 Q%)

2y _ 2 2
91(2,Q0) = T3 [41(5, Q) + 74z, Q1)) (5.3)
where 72 and F; were given at the common Q2.
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Figure 5.3: ¢,/F from both spectro- Figure 5.4: The

meters are plotted-together. The closed
and open circle indicate the results from
4.5° spectrometer and 7° spectrometer re-
spectively. The error bars show only the
statistical error.

difference of ¢,(z)/Fi(z) by 7° spectro-
meter from those by 4.5° spectrometer are
plotted. The error bar indicates the quad-
ratic sum of those statistical errors. The
dashed and dotted lines show the central
value and the band within two standard
deviations from the mean value.

In the second method, the quantity, g;(z, Q2%,)/Fi(z, @2) was calculated from the

cross section asymmetries as follows,
91 (IL’, Q?n) _ 1

ey = 75 (A1, Q) + tan(6/2)A L (z, Q7)) (5.4)

Fl(z)an) B D
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xj

4.5° spectrometer

7° spectrometer

Qx4

A

Q% Ay

0.029 — 0.033
0.033 — 0.037
0.037 — 0.041
0.041 — 0.047
0.047 — 0.052
0.052 — 0.059
0.059 — 0.066
0.066 — 0.075
0.075 — 0.084
0.084 — 0.095
0.095 — 0.107
0.107 — 0.120
0.120 — 0.135
0.135 — 0.152
0.152 — 0.171
0.171 - 0.193
0.193 - 0.217
0.217 — 0.245
0.245 — 0.275
0.275 — 0.310
0.310 — 0349
0.349 — 0.393
0.393 — 0.442
0.442 — 0.498
0.498 — 0.561
0.561 —- 0.631
0.631 — 0.711
0.711 — 0.800

1.27
1.39
1.52
1.65
1.78
1.92
2.07
2.22
2.38
2.53
2.69
2.84
3.00
3.15
3.30
3.45
3.59
3.73
3.85
3.98
4.10
4.20
4.30
4.40
4.47

0.020 &+ 0.038
-0.002 &+ 0.028
0.045 £ 0.025
0.005 =+ 0.025
-0.016 £ 0.023
0.022 + 0.022
0.012 + 0.022
0.024 £ 0.022
0.061 + 0.024
0.060 % 0.026
0.038 £ 0.029
0.114 + 0.031
0.144 £ 0.034
0.141 + 0.038
0.113 £ 0.042
0.154 & 0.049
0.107 £ 0.051
0.120 + 0.059
0.079 % 0.095
0.244 £ 0.085
0.273 £ 0.094
0.404 £ 0.118
0.404 + 0.212
0.243 £ 0.193
0.464 + 0.245

3.17 | -0.031 £ 0.062
3.48 | 0.034 £ 0.043
3.79 | 0.047 £ 0.036
4.11 | 0.041 £ 0.034
443 | 0.051 £ 0.033
4.77 1 0.161 £ 0.033
5.13 | 0.066 £ 0.033
5.49 | 0.161 £ 0.034
5.86 | 0.099 £ 0.039
6.23 | 0.166 £ 0.042
6.60 | 0.106 £ 0.047
6.96 | 0.224 £ 0.051
7.33 | 0.260 £ 0.058
7.68 | 0.238 £ 0.070
8.03 | 0.263 £ 0.082
8.36 | 0.270 £ 0.103
8.67 | 0.392 £ 0.125
8.92 | 0.106 £ 0.313
9.05 | 0.082 £ 0.308
9.17 | 0.546 £ 0.534

Table 5.1: A; for both spectrometer. The error is statistical only.
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where D' is defined in Equation (2.17). This g;(z, Q2,)/Fi(z, Q2) is equal to that at the
common @2 under the assumption that the g;(z, @?)/Fi(z, @?) is independent of the Q2.
The g1(z, Q3) at the common Q3 was given to be

(@) = 2222 £ (5, ). (5.5)

Figure 5.1 shows the A;(z) as a function of z for the 4.5 ° (closed circles) and 7°
(open circles) spectrometers. Table 5.1 lists the measured values of the A;(z) for both
spectrometers. In order to examine the Q? dependence of the A,(z), figure 5.2 shows
the difference of A;(z) between the 4.5° and 7° spectrometers. The error bar is the
quadratic sum of the statistical errors. The dashed and dotted lines indicate the mean
and the band within two standard deviations from the mean. The mean of these data were
0.030 £ 0.016 which is within two standard deviations from zero indicating the validity
of the assumption that the Al(xj is independent of Q2.

Figure 5.3 shows the g,(z)/F;(z) as a function of z for the 4.5 ° (open circles) and
7° (open circles) spectrometers. Table 5.2 lists the measured values of the g,(z)/Fi(z)
for both spectrometers. Figure 5.4 shows the difference of ¢;(z)/Fi(z) between the 4.5°
and 7° spectrometers to examine the Q? dependence of the g;(z)/F;(x). The dashed and
“dotted lines indicate the mean value of 0.028 + 0.016 and the band within two standard
deviations from the mean value. The mean value was within two standard deviations
from zero indicating the validity of the assumption that the g;(z)/Fi(z) is independent
of Q2.

From Figures 5.2 and 5.4, we concluded that g,(z)/Fi(z) and A4, (z) are independent
of Q2. Thus, for further calculation, we combined the 4.5° and 7° data weighted by the
statistical error for g,/F; and A;. The combined results are shown in Figure 5.5 and 5.6
together with the A,(z) data from SMC[16]. Our measurements of A,(z) are in good
agreement to those from SMC in the overlapped region and shows similar behavior as
predicted by Carlitz and Kauer model in Appendix C, ie. the A;(z) approaches to 1 at
z =1 and 0 at z = 0 respectively.

As will be mentioned later, these two assumptions did not cause any significant
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j

4.5° spectrometer

7° spectrometer

Q%

gl/Fl

Q_?n gl/Fl

0.029 — 0.033
0.033 — 0.037
0.037 — 0.041
0.041 — 0.047
0.047 — 0.052
0.052 - 0.059
0.059 — 0.066
0.066 — 0.075
0.075 — 0.084
0.084 — 0.095
0.095 — 0.107
0.107 — 0.120
0.120 — 0.135
0.135 — 0.152
0.152 - 0.171
0.171 - 0.193
0.193 - 0.217
0.217 — 0.245
0.245 ~ 0.275
0.275 - 0.310
0.310-—0:349
0.349 — 0.393
0.393 — 0.442
0.442 — 0.498
0.498 — 0.561
0.561 — 0.631
0.631 — 0.711
0.711 — 0.800

1.27
1.39
1.52
1.65
1.78
1.92
2.07
2.22
2.38
2.53
2.69
2.84
3.00
3.15
3.30
3.45
3.59
3.73
3.85
3.98
4.10
4.20
4.30
4.40
4.47

0.015 & 0.037
0.006 % 0.028
0.047 £ 0.025
0.009 £ 0.024
-0.012 £ 0.023
0.016 £ 0.022
0.006 £ 0.022
0.024 £ 0.022
0.058 £ 0.024
0.067 £ 0.026
0.030 £ 0.028
0.111 £ 0.031
0.141 £+ 0.034
0.131 £+ 0.037
0.121 % 0.041
0.131 £ 0.046
0.107 £ 0.051
0.120 &+ 0.059
0.157 &+ 0.067
0.203 £+ 0.078
0.268 £+ 0.093
0.364 £+ 0.112
0.222 £+ 0.138
0.156 £ 0.175
0.558 £ 0.223

3.17 | -0.020 £ 0.062
3.48 | 0.044 + 0.043
3.79 | 0.053 £ 0.036
4.11 | 0.033 £ 0.034
4.43 | 0.045 £ 0.033
4.77 | 0.158 £ 0.033
5.13 | 0.058 £ 0.033
5.49 | 0.167 £ 0.034
9.86 | 0.075 £ 0.037
6.23 | 0.147 £ 0.040
6.60 | 0.125 + 0.044
6.96 | 0.213 £ 0.050
7.33 | 0.249 £ 0.058
7.68 | 0.210 + 0.067
8.03 | 0.235 £ 0.079
8.36 | 0.304 £ 0.098
8.67 | 0.376 £ 0.123
8.92 | 0.414 £ 0.166
9.05 | -0.131 £ 0.243
9.17 | 0.125 £ 0.384

Table 5.2: g;/F; for both spectrometer. The error is only statistical
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Figure 5.5: g,/F; for deuteron: The res-
“ults from both spectrometers were com-
bined. The error bars are statistical only.
The black area indicates the size of the
systematic errors. -
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Figure 5.6: A, for deuteron: The closed
and open circle show the A;(z) results
from E143 and SMC respectively. The
error bars are statistical only. The open
and closed areas indicate the sizes of the
systematic errors for £E143 data and SMC
data respectively.
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difference for g;(z). Furthermore, the E143 analysis including the data taken at beam
energies of 16 GeV and 10 GeV demonstrated that g,(z)/F;(z) was independent of Q?
over the range of 0.3 < Q? < 10.0(GeV/c)? [58]. Therefore, I used the g,(x) obtained by
the second method under the assumption that g;(z, Q?)/F(z, @?) is independent of Q?

in the further calculation.

5.2 Deuteron spin structure function

The spin structure function for the deuteron was calculated from A (z, Q%) and A, (z, Q?))
using the Equations (5.4) and (5.5). The structure function Fi(z, Q%) was evaluated by
using F>(z, Q%) and R(z, @?) in the Equation (2.14). The Fy(z, Q?) was calculated by us-
ing the parameterization obtained from the results of muon-nucleon scattering at CERN
by New Muon Collaboration (NMC)[59]. The R(z,Q?) was calculated from a global

analysis for the past SLAC electron-nucleon deep-inelastic experiments[60]. We set the
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Figure 5.7: F,(z,Q?) by the NMC para-
meterization at Q3 = 3.0(GeV/c)?

Figure 5.8: R(z,Q? by the SLAC
global analysis at Q3 = 3(GeV/c)?

common Q3 at 3.0(GeV/c)? which was nearly equal to the average of the measured Q2.
Figures 5.7 and 5.8 show Fy(z, Q?) and R(z, Q2) at the common Q? = 3.0(GeV/c)?.
Figure 5.9 shows the g; for the deuteron at Q® = 3.0(GeV/c)? obtained from
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Figure 5.9: The closed circles show the g,(z) for deuteron at Q? = 3.0(GeV/c)?. The
error bars are statistical only. The results under the assumptions that A; is independent
of Q? are shown b}; the opeﬁ circles for comparison. The dark area indicates the size of
the systematic error of g¢(z).
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the E143 measurement. The closed circles show the g;(z) under the assumption that
g1(z, Q%) /Fi(z,Q?) is independent of Q2. The error bars are only statistical. The dark
area shows the size of the systematic error. For comparison, the results obtained under
the assumption that A;(z,Q?) and Ay(x,@?) are independent of Q? are also plotted by
the open circles just aside of the closed circles indicating that the two assumptions caused

no significant difference for g,.

5.3 Proton spin structure function
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Figure 5.10: The spin structure function g;(z) for proton at Q2 = 3.0(GeV/c)?; The
g1(z) for proton was recalculated using the results of the polarized e-p scattering from
E143 [18]. The error bars are statistical only. The dark area shows the size of the
systematic error.

The results for the proton spin structure function, ¢¥(z) from E143 were published else-
where [18]. We recalculated the g¥(z) for this analysis with the updated programs using
the new data set. The updated programs used for this analysis were basically same as

those used for analysis in Ref. [18], but we applied newly the beam heating correction
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zj Q2 | gl a/F) 9%(A14,)
0.029 — 0.033 | 1.27 | .065 + .166 | .073 + .166
0.033 — 0.037 | 1.39 | .024 + .111 | .014 + .111
0.037 — 0.041 | 1.52 | .164 + .089 | .162 + .089
0.041 — 0.047 | 1.65 | .028 + .073 | .025 + .073
0.047 — 0.052 | 1.78 | -.033 % .062 | -.036 & .062
0.052 — 0.059 | 1.92 | .038 + .054 | .041 & .054
0.059 — 0.066 | 2.07 | .012 + .047 | .014 + .046
0.066 — 0.075 | 2.22 | .045 + .042 | .045 + .042
0.075 — 0.084 | 2.48 | .081 + .037 | .082 & .037
0.084 — 0.095 | 2.78 | .090 + .033 | .090 + .033
0.095 — 0.107 | 3.11 | .051 + .029 | .052 & .029
0.107 — 0.120 | 3.43 | .087 +.027 | .086 + .027
0.120 — 0.135 | 3.74 | .094 + .024 | .094 + .024
0.135 — 0.152 | 4.07 | .133 + .023 | .132 + .023
0.152 — 0.171 | 4.41 | .067 + .021 | .066 + .021
0.171 — 0.193 | 4.75 | .110 + .020 | .109 =+ .020
0.193 — 0.217 | 5.10 | .054 + .019 | .049 + .019
0.217 — 0.245 | 5.44 | .076 + .018 | .072 + .018
0.245 — 0.275 | 5.76 | .063 + .017 | .066 + .017
0.275 — 0.310 | 6.08 | .084 + .017 | .080 % .017
0.310 — 0.349 | 6.43 | .085 + .016 | .081 + .016
0.349 — 0.393 | 6.77 | .069 + .016 | .063 + .016
0.393 — 0.442 [ 7.11 | .051 + .015 | .044 + 015
0.442 — 0.498 | 7.41 | .046 + .015 | .045 & .015
0.498 — 0.561 | 7.67 | .055 + .014 | .050 & .014
0.561 — 0.631 | 8.92 | .040 + .016 | .051 + .016
0.631 — 0.711 | 9.05 | -.009 + .017 | -.015 + .016
0.711 — 0.800 | 9.17 | .006 + .017 | -.004 + .016

Table 5.3: gf under the two assumptions; g¢%(g,/F)) was taken assuming that
91(z, Q*)/Fi(x, Q%) was independent of Q?. g¥(A,A4;) was calculated assuming that
Ai(z,@Q?) and Ay(z, Q?) are independent of Q2.
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for the present analysis. For the old date set, we added a series of runs which were
lost in the previous due to the wrong headers of the data files. We removed data from
several runs due to the bad beam conditions, the bad target conditions etc. From these

improvements, the g¥(z) integral for the data region was obtained to be
0.8
recalculated : / g1(z)Pdz = 0.117 % 0.004(stat) = 0.007(syst), (5.6)
0.029
to be compared with the previous value of

0.8
published : / _91(@)"dz = 0.120 % 0.004(stat) £ 0.008(syst),  (5.7)
0.02

where the systematic error decreased slightly because the error of the beam polarization
was estimated to be 2% which was taken to be 4% in the previous calculation. Figure 5.10
shows the g}(z) obtained from the reanalysis at Q® = 3.0(GeV/c)%. The error bars are
statistical only. The dark area shows the size of the systematic error. In the followings,

we use the updated g7 (z).

5.4 Neutron spin structure function and g7 (z) — ¢g}(z)

From the deuteron and proton spin structure functions, we can derive the neutron struc-
ture function. The Equation (2.58) gives the relation between the g;(z) of deuteron,

neutron, and proton to be

el o) 55

where wp is the D-state probability of the deuteron fixed at 0.06 £ 0.01 [28] in the whole

- - g@) =

x region. Figure 5.11 shows the results of the neutron g7(z) at Q? = 3.0(GeV/c)?. The
error bars are statistical only. The dark area shows the size of the systematic error.

The difference g¥(z) — g}(z) which can be compared to the prediction from the
Bjorken sum rule was calculated by combining of our deuteron and proton results. This

difference is expressed in terms of g¢(z) and g (x) by,

o) - (&) = 20 @) - T3 5 o) 9)

Figure 5.12 shows the difference, ¢f(z) — ¢7(z) at Q% = 3.0(GeV/c)2.



5.4. NEUTRON SPIN STRUCTURE FUNCTION AND GP(X) — GV (X) 153

10 1
XB
Figure 5.11: The neutron g;(z): the closed circle shows the results from the E143 at
Q? = 3.0(GeV/c)?. The error bars are statistical only. The dark area shows the size of
the systematic error.
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Figure 5.12: ¢{(z) — ¢7(z) at Q% = 3.0. The error bars are statistical only. The dark
area shows the size of the systematic error.
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5.9

systematic error

We estimated the systematic errors for g; possibly arose from the following sources,

1.

2.

Beam polarization,

Target polarization,

. Target dilution factor,

Radiative correction,
F; and R,
D-state probability of deuteron,

Nitrogen correction,

which will be explained in the following sections.

5.5.1 Beam polarization

Beam polarization was evaluated from the quantum efficiency of the cathode of the po-
larized electron source. The correlation between the quantum efficiency and the beam

polarization was calibrated by the measurement of Mgller polarimeter as shown in Figure

431
1.

2.

The E143 collaboration studied the following uncertainties and estimated to be [61];
Quantum efficiency parameterization 0.25%,

Analyzing power 0.25%,

. Agreement between foils 0.5 %,

Foil measurement uncertainty 1.0 %,

. Environmental influences 1.0 %,

Anomalous data spread 1.2 %,

where the ’Agreement between foils’ is the systematic error due to the deviation of

the data obtained from the foils with various thicknesses, the *Environmental influences’

is the error due to the geometrical location of the foil and other equipments near the
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Figure 5.13: Systematic error of zg,
for deuteron due to the beam polariza-

tion. Horizontal axis indicates Bjorken x
in logarithm scale. Vertical axis shows x
times error of g;(z): The solid and dashed
curves are the systematic error of zg,(z)
due to the beam polarization and the total
systematic error.
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Figure 5.14: Systematic error of zg,
deuteron due to the target polarization:
the results are shown with the same con-
ventions as Figure 5.13
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foil target. The total uncertainty of the beam polarization was estimated to be 2.0% in
absolute. Because the beam polarization was 84 ~ 86%. typically, the fractional error,
0P,/ P, was to be 2.4%. The error of g; due to the uncertainty of the beam polarization
was estimated by using,

. Fl(x’ Qg)
= _D'

i}

691 (.’E) (A" - RC) Pb y

(5.10)

where we neglect of the error of A; because this error is suppressed by the factor of
tan(6/2) which is 0.04 for 4.5° spectrometer and 0.06 for 7° spectrometer. The A;— RC is
the cross section asymmetry including any higher order and radiative process, ie. the cross
section asymmetry measured actually. Because the radiative correction is independent of
the beam polarization, we subtracted the radiative correction from the A.

Figure 5.13 shows the beam polarization uncertainty of zdg;(z) for deuteron. The
solid curve shows the error of zg; () due to the beam polarization and the dashed line is
the total systematic error of zg;(z). Because the x axis is in logarithm scale, the g,(z)

integral over x is proportional to the area of zg;(z) in this figure, that is
91(z)dx = zg1(x)d(log z). (5.11)

Therefore, the plot of the error of zg; (z) in logarithm scale is good to see the contribution

of the error to the integral of g;(z).

5.5.2 Target polarization

The target polarization was extracted from the measurement of the NMR signal calib-
rated by thermal equilibrium signal which corresponds to polarization by the Boltzmann
distribution. The statistical error of the thermal equilibrium measurement dominated the
uncertainty of the target polarization which was estimated to be 4.0% for the deuteron

target [50],

OP,
t _ o, 12
7, = 0.040 (5.12)
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The error of g; was calculated with Equation (5.10) substituting P, for P,. Figure 5.14

shows the systematic error of zg,(z) for deuteron due to the uncertainty of the target

polarization with the conventions same as those in Figure 5.13.

5.5.3 Dilution factor

The dilution factor is defined to be the fraction of events from the polarized deuteron in

the target to the total events. The error of the dilution factor was calculated from the

following sources;

1.

The coefficient of the EMC effect — the ratio of the cross section of a nuclear per
nucleon with respect to that of the deuteron. The uncertainty of the EMC coefficient
was estimated from 0.3 to 1.3% relative depending on z [53]. We assigned the EMC

effect uncertainty conservatively to be 1.5% over all x.

. Cross section ratio — The ratio g4/0, has 2.0% uncertainty relative to itself [62].

NMR coil uncertainty — The NMR coil uncertainty is due to the lack of knowledge
of how much wire exist in the target effectively. We assumed it had 20% relative

error [63].

Packing fraction — The packing fraction is a percentage filled by the ammonia
beads in the target cell. The packing fraction error depends on the target cell. We
used the error of the most frequently used one, which is 2.0% [64].

Material weight — We included also the absolute uncertainties in the weight of the

ammonia and helium in the target which we assumed to be 4% relative. [65].

Figure 5.15 shows the systematic error of zg%(z) due to the dilution factor.

5.5.4 Radiative correction

The radiative correction gives the uncertainty of g#(x). Only the uncertainty of the

radiative correction for the Aj(z) was included because that for A, (z) was suppressed
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Figure 5.15: The systematic error of g, Figure 5.16: The systematic error of

of deuteron due to the dilution factor: the zg¥(z) due to the radiative correction:
results are shown by the solid curve. The only the uncertainty on the correction for
dashed curve is the total of the systematic Aj was accounted. The results are shown
error. with the same conventions as Figure 5.15

by the small factor tan /2 as shown in Equation (5.5). The uncertainty of the radiative
correction was evaluated with a varying of input models and the error of the data points.

The error of g¢(z) due to the radiative correction was calculated by,
09: = =0RC, (5.13)

where 0RC is the unce_rtainty of the radiative correction for the Ay. Figure 5.16 shows

the error of zg¢(z).

5.5.5 Total cross section

F; /D' in Equation (5.5) has an uncertainty due to the error of the spin-averaged structure
functions. This uncertainty contributes to the systematic error of g¢(z).
F1/D’ in Equation (5.5) is expressed in terms of F; and R by,

P (1+7%)y(1 + €R)
D~ 2+ R(1-e2-y)

(5.14)
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and in terms of the total cross section by [22],

F; 1 g M Y
L= , 5.15
D' opmon 2(2 — y) tan?(6/2) (5.15)
where o is the total cross section, o,y is the Mott cross section given by,
40?(E")? cos?(0/2
OMott — ( )Q4 ( / ). (516)

In principle, the uncertainty of F; /D’ calculated by using Equation (5.15) or (5.14)
should be identical. On the other hand, the uncertainty calculated by using the Equation
(5.14) without any account for a correlation between the errors of F; and R is larger than
that calculated by using the Equation (5.15) because the accuracy of the total cross section
is nearly equal to that for F;. Therefore, the proper way to calculate the uncertainty of
F1 /D' is either using Equation (5.14) accounting the correlation between the errors of Fj
and R or using the Equation (5.15). We calculated the error of Fy /D' by using Equation
(5.15).

We assumed that the fractional uncertainty of the total cross section is same as that
of F;. We estimated the uncertainty of the F; using two FORTRAN codes, F2GLOB.F
and F2NMC.F. F2GLOB.F provides the F, for various kinematic region from a fit
- using results of past SLAC experiments [62]. It also gives the statistical, systematic, and
normalization errors evaluated from the experimental results. F2NMC.F provides F; with
NMC parameterization [59] which was obtained from the NMC muon-nucleon scattering.
F2NMC.F is more reliable than F2GLOB.F in low x region due to the availability of the
data used to determine the parameters.

The error of F, was calculated by,

Fstat 2 glob ~ 2
%EZ\J((SF?} ) +norm2+(1——FTF2N2-M—C> , (5.17)

where F$%! is the statistical error which was provided by F2GLOB.F, norm is a normal-

ization uncertainty 1.7% which was derived from Ref.[62], and the last term comes from

the model dependence. Using the fractional error of F3, the systematic error of g; due to
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the total cross section is given by,

691(z) = () 6:(%) = gi1(z) 6£2(%)- (5.18)

The last term in Equation (5.17) gives a huge uncertainty in the low z region of
z < 0.08 because of large discrepancy between Fy(z) obtained from F2GLOB.F and
F2NMC.F. It is an obvious over-estimation for the error because the NMC parameter-
ization is more reliable at low x than F2GLOB. F2GLOB states that the routine is not
useful in the region of z < 0.08 due to the poor statistics in the fit.

Figure 5.17 shows Fy(z) data from the NMC experiment and the parameterization
curve at Q% = 3.0(GeV/c)?[59]. Only the data obtained at Q? between 2.5 and 3.5
(GeV/c)? are plotted. The two dotted lines indicate the band within 4% relative uncer-
tainty from the parameterization curve. This relative uncertainty of 4% is acceptable
for the F; error in the low x region from the figure. Therefore, we took that F; has the
relative uncertainty of 4% in the region of z < 0.08.

Figure 5.18 shows the error of zg%(z) due to the uncertainty of Fy/D'.

5.5.6 D-state probability

The D-state probability, wp is a fraction of the deuteron in D-state (L=2) as mentioned
in Section 2.5. It was estimated from the calculation using various models to be 5.5 ~
6.5%[28] and we assigned to be wp = 6 + 1% which covers all of the results. This
uncertainty causes an ambiguity of the g, not for deuteron but for neutron and proton -
neutron showing Equations (5.8) and (5.9). The uncertainties of I'"™ and I'? — ' due to

the D-state probability are 3% of I'¢.

5.5.7 Nitrogen correction

Nitrogen correction is a correction due to the polarized nucleon other than deuteron in
the target. This is a small correction and the uncertainty of the correction factors are

negligible for the cross section asymmetry or g; () as stated in Section 4.2.5. The nitrogen
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correction for the cross section asymmetry is expressed to be,

‘T Vll l:pd?df - VQAP] ’ (519)
where 1, and v, are the correction factors which are approximately 0.98 and 0.06 re-
spectively and A, is the cross section asymmetry for proton. Although the uncertainties
for the v, and v, are negligible, the error of the cross section asymmetry of the proton
in the correction may affect due to the large magnitude of the asymmetry for proton in
contrast to that for deuteron. Therefore, we estimated the uncertainty due to the proton
asymmetry by
Fi vy

where 0A, is the statistical error of the proton asymmetry. We calculated only the
uncerté,inty from the A due to the proton asymmetry.

The uncertainty of I'* due to the error of A, was estimated to be 0.0001 which was
smaller than ten times of the other error, for example 0.0016 for the dilution factor and

then it was negligible to the I'¢.

5.6 Integrals of g;(z)

We first calculated the integral of ¢,(z) over the data region of 0.029 < z < 0.8. To
estimate the shape of g;(z) in the outside of the data region where (0.8 < z < 1)
and (0 < z < 0.029), we used the extrapolation for g,(z) towards z = 1 and z = 0

respectively.

5.6.1 integral in data region

We calculated the integral of g, I'4s, Over the data region of 0.029 < z < 0.8 using the

rectangle approximation of,

Fdata = Zgl (123) X A.’L‘i, (521)
i
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where ¢ is the index for the bin, Az; is the size of the bin. The statistical error, oI5t

was calculated by,

(0TGeta)® = Z{ng(wz)"“‘xAza}z, (5.22)

where dg; (z;)*** is the statistical error of g;(z;). The total systematic error, 6T'5;, was

calculated by,

@ree)’ =3 [Z og1 (z,);y’Az,r (5.23)

J

where j is the index for the source of the systematic error, dg;(z;);¥° is the uncertainty
of g, due to the systematic error. The systematic errors of ¢;(z) for different bins from
the same source are correlated to each other. We therefore summed the error on all bins
linearly as shown in Equation (5.23). The results of I'ysq, 0754, and 8T'3Y;, are shown

in Table 5.4.

g% g |A-g
Tauta | 0.0384 | —.0326 | 0.1495
sTatet | 0.0035 | 0.0083 | 0.0103
ST | 0.0036 | 0.0095 | 0.0142

Table 5.4: Integral of g;(z) on the data region: The integral of g;(z) for deuteron,
neutron, and proton - neutron in the region of 0.029 < z < 0.8 are shown.

5.6.2 Low x extrapolation

Because our measurement reached down to x=0.029, we had to estimate the g; for z <
0.029. In such a low x region, sea quarks dominate the scattering and the information of
the initial parton spin is then lost by the gluon emission. According to Regge theory[66]
g1 approaches to 0 at the low x region and is proportional to z® with 0 < a < 0.5, where
the « is the Regge intercept at £ = 0.

In the past experiments, the spin-averaged structure function F,(z) has been meas-

ured down to a lower x region with higher accuracy than the spin structure function, ¢ (z).
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These experiments showed that the spin-averaged structure function is described by the
Regge theory in such a low x region. The Figure 5.19 shows the F5(z) for deuteron from
NMC, where only the data taken between Q? = 2.5(GeV/c)? and Q? = 3.5(GeV/c)? are
plotted. The solid line shows the NMC parameterization for Fy(x) at Q% = 3.0(GeV/c)?.
The dash-dotted line show the reduced x? if we involve the data into the Regge form
fitting up to there. The evolution of the reduced x? demonstrated that the fit by the

Regge form is acceptable up to around z = 0.1.

0.4
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0.26
0.24

0.22

0.2'A...1- . . .J....l- . :0
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Figure 5.19: F, from NMC in the region between 2.5 < Q% < 3.5(GeV/c)?. The left
y-axis shows the F; and the right-hand y-axis shows the reduced x2. The solid line shows
NMC parameterization at @Q? = 3.0(GeV/c)?. The dashed line shows the reduced x? for
the fit with the data up to there. The fit was done with two parameters p;z?? suggested
by Regge theory.

Therefore, assuming that g, was proportional to £* in the low x region of z < 0.1,
we fitted the Regge forms with three fixed « of 0, 0.25 and 0.5 to the data up to x=0.1.
Figures 5.20, 5.21, and 5.22 show the low x fits for g¢, g7, and g} — g7 respectively. All
of these fitting curves do not describe the data well. However since the contribution to

the integral from the low-x region is small, we took the shape of ¢, (z) determined by the
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Figure 5.20: Extrapolation toward £ = 0 for g; of deuteron with Regge form. The
dotted, solid, and dashed lines show the fits with the forms of Cz°, Cz%%, and Cz%
where C is a fitting parameter. These fits were done using the data up to z=0.1.

fit with @ = 0.25 and calculated the integral,

0.029
Ciow = /0 Cz*Bdz, (5.24)

where C is the parameter determined from the fit.
To estimate the uncertainties in the low-x region, we considered the statistical and
systematic errors of the data points, uncertainty of the parameter o and the data region

used in the fit.

The statistical error of the extrapolation, dI'{!%* was calculated by,

0.029
§Tstat — /0 5C*% dz, (5.25)

where 6C is the error of the fitting parameter.
For the systematic-error, we assume that the fitted curve has the fractional uncer-

tainty same as the average of the fractional systematic error of the data points, d¢;¥° and
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Figure 5.21: Extrapolation toward x=0 of g; of neutron. The fitted curves are indicated
with the same conventions as Figure 5.20.
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Figure 5.22: Extrapolation toward x=0 of g} — g7. The fitted curves are indicated with
the same conventions as-Figure 5.20.
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8ys

calculated the systematic error of the extrapolation, 0I';},

sys __ < 8y8 0.029 0.25
oY, =04, Cz’*dz, (5.26)
0

where C is the fitted parameter with a = 0.25.

The uncertainty of the extrapolation due to the parameter o was estimated to be

the largest difference in I'j,, with a = 0, or @ = 0.5 from that with o + 0.25.

The uncertainty due to the fitted region was evaluated by varying the upper limit
from z = 0.05 to 0.13 corresponding to the first 5 to 13 data points. The largest difference
in T'j5, from that obtained at the upper limit of £_0.1 was taken as the uncertainty due

to the fitting region.

'Table 5.5 shows the summary of the integral and the errors of the low x integral.
The 8Tf is the quadratic sum of the uncertainties due to the parameter o and the fitted

region.

g% g | d-g

Ciow 0.0011 | —0.0030 | 0.0084

o jtat 0.0003 | 0.0007 | 0.0009

oryy 0.0002 | 0.0005 | 0.0008

5F{;fu 0.0008 | 0.0028 | 0.0059
fitting parameter | 0.11 | —0.32 | 0.88
error of parameter | 0.03 0.08 0.09
Reduced x? 0.66 1.01 1.23

Table 5.5: Integral of g; in the low x region, 0 < z < 0.029: The extrapolations were
determined from the fits using the Regge form with o = 0.25 with the data up to z = 0.1.
The 6T'{% is the uncertainty due to the error of the fitted parameter. The ;% is the
uncertainty due to the systematic error of the data which were used by the fit. The
JF{O’L was the quadratic sum of the uncertainties due to the Regge parameter o and the

variation of the fitting region.
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5.6.3 High x extrapolation

For the region of x > 0.8, we determined the shape of g,(z) using a formula, C(1 — z)3.
This formula is based on the assumption that a struck parton with a large momentum

fraction is also carrying the spin of the nucleon [67].

9 | g |d-gf

fitting parameter | 0.41 | —0.50 1.90

error of parameter | 0.21 | 0.50 0.62
Reduced x? 1.35| 1.06 1.03

Table 5.6: The fitting parameter evaluated from the fits with the last three data using
the formula of C(1 — z)® where C is the fitting parameter.

The fit was performed using the last three data points in the region of 0.55 <
z < 0.8. The integral for the high x region of 0.8 < z < 1.0, T4y is calculated
by /0 :0 C(1 — z)*dz with the parameter C' determined by the fit. The statistical and
syster'natiC errors of the integral, 6T/} and 6T}Y, were evaluated from the errors of the
data points using the similar method as used for the low x extrapolation. Table 5.6 shows

_the fitting parameter obtained from the fits. Figures 5.23, 5.24, and 5.25 show the fits for
g1 of deuteron, proton, and the difference of proton - neutron respectively.

The uncertainty due to the variation of the lower limit of the fitting region was
estimated in a similar manner as used for the low-x fitting. The lower x limit was varied
from 0.4 to 0.6 corresponding to the last six to two data points. The largest difference
in Thign at £ = 0.55 was taken as the uncertainty.

As mentioned in Section 3.5, the expected momentum resolution is worse than that
corresponding to the bin size of the x in the high x region of 0.53 < z. It may be critical
for the high x extrapolation because the extrapolation using the data binned on x with
the narrower size than the resolution of the spectrometer affects the result. We examined
the variation of the highx extrapolation with the data which were combined by each two

data points. The fitting was done with the last two points which correspond to the last
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Figure 5.25: Extrapolation toward x=1 on g}(z) — g7(z). The last three data points
determined the fit.

four data in the original data array. The deviation of the integral from that obtained
using the original data was accounted as one of the systematic error.

The Table 5.7 shows the summary of the integrals of g; for deuteron, neutron, and
~proton - neutron in the region of 0.8 < £ < 1.0 obtained from the extrapolations. The
JI‘ﬁ;h is the quadratic sum of the uncertainties due to the variation of the fitting region
and the bin size of the data used to determine the fit.

5.7 Test of the sum rules

The complete integral of g;(z) in the region of 0 < z < 1, I' was obtained by combining

the results of the three regions as,
I' =Tow + Cdata + Fhigh- (5.27)

The statistical errors in the three regions were combined quadratically by,

STetet — \/(511?2% 2 4 (51*;2%)2 + (ﬂﬂﬁt;th)Z (5.28)
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gt g | A-g

Tfor(0.8 < z < 1) | 0.0002 | —0.0002 | 0.0008
oTgtat, 0.0001 | 0.0002 | 0.0003
ST3Y, 0.0000 | 0.0000 | 0.0001
SThith 0.0002 | 0.0005 | 0.0006

Table 5.7: Integral of g,(z) in the high x region of 0.8 < z < 1.0 were evaluated
from the extrapolation toward z = 1. The statistical error of the integral, 6T} is the
uncertainty due to the statistical error of the data points. The systematic error, 6T}%;,
is the uncertainty due to the systematic error of the data points. JI‘{;::;,‘ is the quadratic
sum of the the uncertainties due to the variation of the fitting region and the bin size of

the data used to determine the fit.
where the 6I'*** is the statistical error of the complete integral. The systematic errors in
the three regions were combined linearly. The uncertainty of the fit in the low and high

x regions, 0T'* and 5I‘ﬁ;h were included into the total systematic error, 6I'*¥* as,

STV = \/ (8T7% + 6T e, + 51“;{{;,,)2 + (51‘{;';,)2 + (51“{:1;,,)2. (5.29)

Table 5.8 shows the integrals of g; at Q% = 3.0(GeV/c)? with the statistical and
systematic errors. The lower part of the rows shows the contributions from the various
uncertainties to the total systematic error.

We also calculated the integrals of ¢;(z) at @*> = 10.0(GeV/c)? to compare to
the results from S};in Muon Collaboration (SMC) under the assumption that g, /F; was
independent of Q2. Table 5.9 shows the I' at Q% = 10.0(GeV/c)?. The statistical and
the systematic errors were calculated in the same procedure as used for the calculation

at Q% = 3.0(GeV/c)2.

5.7.1 Ellis-Jaffe sum rule for deuteron

As shown in the Table 5.8, the g;(z) integral for deuteron at Q? = 3.0(GeV/c)? was

evaluated as, -

I'¢ = 0.0396 + 0.0035(stat.) + 0.0039(syst.), (5.30)
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gt gt |9 -t
T 0.0396 | —.0358 | 0.1586
Setat 0.0035 | 0.0084 | 0.0103

Beam polarization 0.0011 | 0.0008 | 0.0039
Target polarization | 0.0016 | 0.0049 | 0.0071
Dilution factor 0.0016 | 0.0054 | 0.0079
I'*¥¢ | Radiative correction | 0.0024 | 0.0057 | 0.0068
FR/D 0.0009 | 0.0022 | 0.0053
D-state probability - 0.0012 | 0.0012
Low z extrapolation | 0.0009 [ 0.0030 | 0.0060
High z extrapolation | 0.0002 | 0.0005 | 0.0007
Total 0.0039 | 0.0105 | 0.0162

Table 5.8: Integral of g, in the region of 0 < z < 1 at Q? = 3.0(GeV/c)%: contributions
to the systematic error from each source are shown in the lower part of the table.

9% g | d-gf
I'for(0 <z <1) | 0.0400 | —0.0380 | 0.1641
Statistical error | 0.0030 | 0.0073 | 0.0089
Systematic error | 0.0041 | 0.0115 | 0.0183

Table 5.9: Integral of g; in the region of 0 < z < 1 at Q* = 10.0(GeV/c)?. The results
were evaluated under the assumption that g,(z)/Fi(z) is independent of Q2.
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where the first error is the statistical error and the second error is the systematic error.
The theoretical prediction including the QCD correction up to third order of the o, =
0.36 £ 0.05 [27] at @% = 3.0(GeV/c)? s,

I'* = 0.068 % 0.005, (5.31)

with the D-state probability of deuteron wp = 0.06. I'¢ from the E143 experiment differs
from that of the Ellis-Jaffe sum rule for deuteron by about four standard deviations, where
the standard deviation was taken as a quadratic sum of the statistical and systematic errors
of the integral and the uncertainty in the Ellis-Jaffe sum rule.

» In order to verify the consistency of our results to those from SMC, we calculated
the g; () for deuteron at Q% = 10.0(GeV/c)?. The results of zg¢(z) from E143 and SMC
are plotted in Figure 5.26 together. The closed and open circles show the zg,(z) for
deuteron from E143 and SMC réspectively. The error bars are only statistical. The dark
and open areas indicate the size of the systematic errors for E143 and SMC respectively.
‘These results are in a good agreement to each other in the overlapped region.

These results are summarized together with the theoretical prediction from the
Ellis-Jaffe sum rule at Q% = 10.0(GeV/c)?,

'Y = 0.0400 + 0.0030(stat.) + 0.0041(syst.) : E143,
I'? = 0.034 + 0.009(stat.) =+ 0.006(syst.) : SMC,
I'? = 0.070 £ 0.004 : theory, (5.32)

showing that [ from E143 at Q? = 10.0(GeV/c)? is consistent to that from SMC.
However, the I'* predicted by the Ellis-Jaffe sum rule is different from both of the exper-
imental results by more than three standard deviations.

The Figure 5.27 illustrates the comparison of the I'* measurements and the the-
oretical prediction as a function of Q2. The closed and open circles show the results
from E143 and SMC at Q% = 3.0 and 10.0(GeV/c)? respectively. The error bars are
the quadratic sum of the statistical and systematic errors. The solid line shows the the-

oretical prediction including the QCD correction up to third order of a,(Q?). The @Q?
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Figure 5.26: zg; of deuteron: the results from E143 and SMC are plotted together
by the open and closed circles respectively. Both results were evaluated at the common
@? = 10.0(GeV/c)?. The error bars are statistical only. The dark and open areas indicate
the size of the systematic errors for E143 and SMC respectively.
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Figure 5.27: I'¢ with the prediction of the Ellis-Jaffe sum rule: The horizontal axis
shows 2 and the vertical axis shows I'*. The open and closed circles indicate the results
from E143 and SMC respectively. The error bars are the quadratic sum of the statistical
and systematic errors. The solid line shows the prediction of the Ellis-Jaffe sum rule up
to third order of a,. The dotted lines show the band within one standard deviation from
the prediction.



176 CHAPTER 5. RESULTS

evolution of the prediction was calculated using the running stroxig coupling constant,
a,(Q?) with A= = 0.364 £ 0.052 GeV which was evaluated in Section 5.7.3, where
nys is the number of quark flavors. The dotted lines show the band within one standard
deviation from the prediction. The uncertainty of the prediction was calculated from the
errors of the A®/=%) hyperon decay constants, F and D, and the D-state probability of
the deuteron. The results from both experiments indicate a large discrepancy of more

than three standard deviation from the prediction.

5.7.2 Ellis-Jaffe sum rule for neutron
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Figure 5.28: The g, of neutron from E143 and E142 are plotted together by the open and
closed circles respectively. Both results were evaluated at the common Q% = 2.0(GeV/c)?.
The error bars are statistical only. The dark and open areas indicate the size of the
systematic errors for E143 and E142 respectively.
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Figure 5.29: I'" results with the prediction of the Ellis-Jaffe sum rule: The horizontal
axis shows Q? and the vertical axis shows I'*. The open and closed circles indicate the
results from E143 and E142 respectively. The error bars are the quadratic sum of the
statistical and the systematic errors. The solid line shows the prediction of the Ellis-Jaffe
sum rule up to third order of «,. The dotted lines show the band within one standard
deviation from the prediction.
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The T for the neutron at Q% = 3.0(GeV/c)? using our deuteron and proton results was

obtained to be,
I™(Q? = 3.0) = —0.0358 & 0.0084(stat.) + 0.0105(sys.). (5.33)

This result indicates a discrepancy from the prediction of the Ellis-Jaffe sum rule for

neutron,

I'"(Q? = 3.0) = —0.009 + 0.006 : theory, (5.34)

by 1.8 times of the standard deviation.

Figure 5.28 shows the g (z) for neutron at Q% = 2.0(GeV/c)?. The closed and open
circles show the g7(z) obtained from E143 and E142 [12] respectively. These results are
in a good agreement to each other.

f‘igure 5.29 shows I'* from E143 and E142 with the predicted curve by Ellis-Jaffe
sum rule including the QCD correction up to third order of a, as a function of Q2. The
@? evolution of the prediction was calculated using the running strong coupling constant,
a(Q?) with A®/=% = 0.364 & 0.052GeV which was evaluated in the next section. The
error bars are the quadratic sum of the statistical and systematic errors. The results from
E143 and E142 which are shown by the open and solid circles are in a good agreement
" and lower than the prediction. However, the accuracies of the results are not enough to

exclude the Ellis-Jaffe sum rule for neutron.

5.7.3 Bjorken sum rule

The difference of the integrals of ¢¥(z) and ¢7(z), I'” — I'" are obtained from Table 5.8
to be,

I? — I™(Q? = 3.0) = 0.1586 = 0.0103(stat.) & 0.0162(sys.), (5.35)

which is consistent with the prediction from the Bjorken sum rule at Q? = 3.0(GeV/c)?
given by, -
I'? — I™(Q* = 3.0) = 0.169 £ 0.008 : theory. (5.36)
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Figure 5.30: zg]—zg}: the closed and open circle show the results at Q% = 10.0(GeV/c)?
from E143 and SMC [16] respectively. The error bars are only statistical. The closed
and open areas show the size of the systematic errors for E143 and SMC results.
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We evaluated the g?(z) — gP(x) at Q% = 10.0(GeV/c)? for comparison to the SMC
results. These two data are consistent with each other as shown in Figure 5.30. The

integrals from these measurements are,

I? -I(Q*=10.0) = 0.1641 % 0.0089(stat.) £ 0.0183(sys.) : E143 (5.37)
I -I™(Q*=10.0) = 0.199+0.038 :SMC  (5.38)

where the error of the SMC result contains both of the statistical and systematic errors
[16]. The two results are in good agreement with the prediction of the Bjorken sum rule

at @ = 10.0(GeV/c)? given by,
I'? — I'"(Q? = 10.0) = 0.187 £ 0.003 : theory. (5.39)

The Figure 5.31 shows thev comparison of the I'’ — I'* measurements and the the-
oretical prediction as a function of Q2. The solid and open circles show the results from
E143 and SMC at the averaged Q? respectively. The solid line shows the theoretical
prediction including the QCD correction up to third order of @,(Q?). The dotted lines
show the band within one standard deviation from the prediction. The uncertainty of the
 prediction was calculated from the errors of the A"/=% and the hyperon decay constants,
F and D. The results from both experiments are in good agreement with the prediction.

Figure 5.32 shows the strong coupling constants obtained from the various exper-
iments. Using the measurement of I'? — I'", we calculated the strong coupling constant
as(Q? = 3.0) to be 0.417+39%% with the Equation (2.72) and plotted as the open circle.
The closed triangle is the average of the results of 7 decay measurements by Particle
Data Group (PDG) [26]. The closed square is the NMC result obtained from the meas-
urements for the scaling violation of the spin-averaged nucleon structure function [68].
The closed circle is the result of CCFR obtained from the measurement for the Gross-
Llewellyn Smith sum rule [69]. The solid curve is the running coupling constant, a,(Q?)
obtained from the fitting using these data plotted in the figure. We used the renormal-

ization scheme with the number of flavor, ny = 4 to obtain the running strong coupling
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Figure 5.31: I'? — I'" with the prediction of the Bjorken sum rule: The horizontal axis
shows Q? and the vertical axis shows '’ —I™. The open and closed circles show the results
from E143 and SMC respectively. The error bars are the quadratic sum of the statistical
and systematic errors. The solid line shows the prediction of the Bjorken sum rule up to
third order of a,. The dotted lines show the band within one standard deviation from
the prediction.
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constant. The data were fitted to the formula of [26]

aa(Qz) =

127 6(153 — 19n;) log[log(Q2/A2)]]  (5.40)

1-—
(33 — 2ny) log(Q?/A?) (33 —2ns)%  log(Q?/A?)
where A is the parameter determined to be 0.36410.052 GeV by the fitting. The reduced
x? of the fit was 0.33. This running coupling constant was used to obtain the Q? evolution

of the sum rules shown in Figures 5.27, 5.29, and 5.31.
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Figure 5.32: The strong coupling constant «;, as a function of Q2. The open circle is the
result from E143. The closed triangle is the result obtained from the decay width of the
7 lepton [26]. The closed circle is the result from NMC [68] obtained by the measurement
for the scaling violation of the spin-averaged nucleon structure function. The closed circle
is the result from CCFR [69] obtained by the measurement for the Gross-Llewellyn Smith
sum rule. The solid line and the dotted lines show the running coupling constant and the
band within one standard deviation obtained by the fit using these data.
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5.8 Quark polarization

We calculated the quark polarization with I'? by using the Equation (2.87). We found

the quark polarization to be,

Au = 0.822+0.019,

Ad = -0.435+0.019,
As = -0.101 %+ 0.023,
AY = Au+ Ad+ As = 0.286 % 0.055, (5.41)

where the errors include both of statistical and systematic uncertainties of 'Y, the error
of D-state probability on the deuteron, uncertainties of axial vector couplings, and the
error of the strong coupling constant in the QCD correction. These results demonstrate
that the strange quark is polarizéd significantly opposite to the nucleon spin and the total
quark polarization is about 30% of that for the nucleon; indicating that a large portion
of the nucleon spin is still missing.

Figure 5.33 shows the strange quark polarizations as a function of the total quark
polarization from various experiments. We recalculated the quark polarizations from
- EMC][11] and E142[12] with the QCD correction up to third order of a, [27]. The values
from the E143 deuteron measurement is in good agreement with the other results with
the highest accuracy among these measurements. The averages of the quark polarizations

were calculated to be

As

—0.103 £ 0.015, (5.42)
Au+Ad+As = 0.279 % 0.039, (5.43)

indicating again that the strange quark is polarized significantly opposite with respect to
the nucleon spin and the quark carries only about 30% of the nucleon spin. These results
denote that the assumption of the unpolarized strange quark to derive the Ellis-Jaffe
sum rule is invalid and reconfirmed the ’spin crisis’ with the higher accuracy than those

obtained before.



184 CHAPTER 5. RESULTS

As | o EMC
. O E142
0- 2 E143 proton _
i » E143 deuteron
- o SMC proton
-0.05 - © SMC deuteron ' ! 1
01 - ; H A
e { 74 S ]
- ' L A Y F) '
1 I 1]
- T ¥ ol 1
-0.15 |- l
02|
i 1 1 l 1 1 1 1 1 1 L 1 1 1 1 1 1 L 1 i L A il 1 1
0.1 0.2 0.3 0.4 0.5 0.6
Au+Ad+As

Figure 5.33: The quark polarization evaluated from various experiments are plotted.
The horizontal and vertical axes show the total quark polarization and the strange quark
polarization. The shaded areas indicate the band within one standard deviation from the
average of the polarizations, As = —0.103 & 0.015 and Au + Ad + As = 0.279 & 0.039.
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Conclusion and a look into the future

We have measured the deuteron spin structure function ¢;(z) in the E143 experiment
at SLAC using the highly polarized electron beam and the highly polarized frozen ND;
target. The experiment provided the high precision data for the structure function from
z =0.029 to 0.8. The integral of the spin structure function g, for deuteron over = at the
averaged Q2 = 3.0(GeV/c)? and the prediction from the Ellis-Jaffe sum rule were found
to be,

Experiment T = 0.0396 + 0.0035(stat.)  0.0039(sys.), (6.1)
Theory Y = 0.068 % 0.005. (6.2)

The result indicate_that the Ellis-Jaffe sum rule describes the data improperly. It denotes
that the assumption to derive the Ellis-Jaffe sum rule which is the unpolarized strange
sea quark, is not valid.

Combining the E143 deuteron and proton data [18], we obtained the difference of
the integrals, I? — I'*. The I’ — I'" from this experiment and the prediction by the

Bjorken sum rule are to be,

Experiment I? —T" = 0.1586 % 0.0103(stat.) £+ 0.0162(sys.), (6.3)

Theory I?P-r" 0.169 £ 0.008. (6.4)
From these results, we confirmed that the Bjorken sum rule gives a consistency to the

185
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experimental results at @2 = 3.0(GeV/c)? with the high accuracy. It means that Iso Spin
symmetry is valid for the spin structure function g, for nucleon and the Perturbative
QCD well describes the scaling violation of the spin structure function.

Strong coupling constant a, at Q? = 3.0(GeV/c)? was evaluated by using up to the

third order of QCD correction for the Bjorken sum rule to be,
as(Q* = 3.0(GeV/c)?) = 0.41713:958 (6.5)

giving the consistency with the other measurements.

Quark polarization for each flavor was calculated using our deuteron data and
hyperon decay constants under the assumption of flavor SU(3). The polarization of
strange quark was found to be significantly negative, As = —0.101 £ 0.023, suggesting
that the assumption of the Ellis-Jaffe sum rule that the strange quark in nucleon is
unpolarized, is incorrect. The total quark polarization was found to be 0.286 %+ 0.055
which is much less than the prediction of 1.0 from the non-relativistic quark model and of
0.65 from the relativistic treat of bag model[70]. Now, ’spin crisis’ is not ’crisis’ anymore.
Our understanding of the nucleon spin had been wrong and we have to establish a new
model to describe the spin of the nucleon properly.

Many theoretical works have been carried out to explain the small total quark
polarization.

The quark content of the nucleon spin was calculated employing the lattice QCD. M.
Fukugita et al.[71] obtained AY = 0.18 £.10 and As = —.109+.030 which is reasonably
consistent with our results. S. J. Dong et al. [72] calculated to be AX = 0.25 + .12 and
As = —.12 £+ .01 which is also consistent with our results.

A way to salvage the naive quark model of the nucleon, is to introduce a large gluon
polarization. The diagram shown in Figure 6.1 causes a gluon contribution to the total
quark polarization evaluated from the polarized e-N scattering. Accounting this effect
called axial anomaly, the quark polarization evaluated from the polarized e-N scattering,
Aq is expressed to be [73] -

Af=Aq - %AG, (6.6)
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where AG is the gluon polarization. The strong coupling constant d, decreases with the
increasing Q2 and AG has Q? dependence like In Q? thus the second term of the RHS.
of Equation (6.6) does not vanish in the scaling limit of Q2 — oo. Therefore, the QCD
correction by the power of ¢, is not valid to correct this anomalous gluon contribution
and we measure not the Ag, but the Ag in the e-N scattering. If AG ~ 2, the total quark
polarization are corrected to be % ~ 0.6 and As ~ 0 which are consistent to the results
of the relativistic treat of the bag model. Of course, this large gluon polarization have to
be canceled by the orbital angular momentum to conserve the angular momentum of the
nucleon. An advantage of this model is conserving a non-singlet term like Au— Ad in the
e-N scattering if the anomalous contribution is identical for three flavors. The Bjorken
sum rule is then still valid in this model.

Skyrme model is being discussed recently because this model gives 0 quark polariza-
tion. In this model, the quark is i-nterpreted to be a soliton solution of the SU(N.) x SU(N¢)
chiral Lagrangian where N; and N¢ are the numbers of the color and flavor of quarks in
the nucleon. Notice that the quark in this model is mass-less. Although the whole of the
nucleon spin is carried by the orbital motion of the quarks in this model, an possibility
is denoted by Ref.[74] that the 1/N, expansion and the quark mass correction make the
quark carrying < 30% of the nucleon spin which is consistent to the experimental result.

More experiments are needed to make a further understanding of the spin structure
of the nucleon. The @? dependence and the low-x behavior of the spin structure function
are curious to examine the perturbative QCD and to study the higher twist effect.

SLAC-E154 directly measured the spin structure function of neutron using gaseous
3He target which was previously measured in SLAC-E142, but with higher beam po-
larization and higher energy electron beam than SLAC-E142. This measurement will
improves the results of E142 and give the precise data for the neutron spin structure
function. E154 ended its measurement in Fall of 1995 and the analysis is in progress.

SLAC-E155 will start in 1996 to measure the spin structure function of proton and
deuteron with the 50 GeV polarized electron beam. This 50 GeV electron beam allows

us to provide precise data down to lower z than the current SLAC data and to clarify
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the low-x behavior of the spin structure function with high accurac&.

SMC experiment will keep their measurement for the spin structure function until
1996 and the measurement will decrease the ambiguity of their current results [16] [15]
and provide the more precise data of the g; at low x region due to the high energy beam.

The gluon polarization may be a key to solve the nucleon spin. An exclusive meas-

photon
q
q
1-94
gluon 7587A4

Figure 6.1: The Feynman diagram of photon-gluon fusion. The virtual photon and
gluon make the quarkonium, qd. The cross section of the interaction is supposed to

depend on the gluon and photon helicities. charmonium, J/¥ is the best candidate to
' tag the interaction because the charm quark is found hardly in the nucleon.

urement is suggested in positron-nucleon or proton-proton scattering to investigate gluon
polarization[75]. The production rate for J/¥ should depend on the gluon polarization in -
both cases, because the dominant process of the J/¥ production is photon-gluon fusion
as shown in Figure 6.1 or gluon-gluon scattering in e-N or NN scattering respectively.
The following two projects, HERMES at DESY and Relativistic Hadron and Ion Col-
lider, RHIC at BNL can possibly provide this most interesting measurement for the gluon
polarization.

HERMES project[17] at DESY is measuring the polarized positron scattering with

many kinds of polarized gaseous target. It has a large detector surrounding the interaction
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point and the detector allows to study not only the inclusive cross section on a wide
kinematical region, but also the exclusive measurement like quark-gluon fusion.

An polarized proton-proton scattering experiment is planed in RHIC at BNL. This
experiment will measure the gluon polarization in the nucleon which is not found yet.
Fermi National Accelerator Laboratory (FNAL) E-704 studied the gluon polarization in
the nucleon using scattering of polarized protons or anti-protons off polarized proton

target [76]and no gluon polarization was found but with the large experimental error.
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Appendix B

Spin-dependent cross section

The cross section in the laboratory frame are expressed in terms of the lepton tensor,

L# and the hadron tensor ,W,, by [21]

d?o € E’
dE'dQ  16m2Q* E

L*W,,, (B.1)

where E and E' are the energy of the initial and final state electron respectively, Q? is
defined in Equation (2.4). In the following sections, we derive these tensors and the cross
section for the polarized electron and nucleon scattering. We will use the kinematics

“defined in Section 2.

B.1 Lepton tensor
The lepton tensor is calculated from Dirac spinor and electro-magnetic current(5],
L* = S ak, sy u(k, s)a(k, s)y u(k', s

3’

= Tr|> u(k,s)a(k, ')y u(k, s)a(k,s),v"|, (B.2)

3,
where u and # are Dirac spinor and hermit conjugation of that, and v* is gamma matrix.
Because we investigate the iriclusive scattering, the tensor is summed over the final spin

states. A product of spinor summed over the spin states, is described by four momentum
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and mass of the particle [77]. Then the term of the final lepton is eipressed to be
S u' = (K +m), (B.3)

where k' is the Feynman dagger defined in reference. [78]

Because the initial lepton is polarized, the products of the Dirac spinor are not
summed over the initial spin states. Even though, we sum the product over the spin
states and apply the spin projector[21] for our convenience. The spin projector extracts

one of helicity states from the product,

ST

ug = (k+m)5 (1+754), (B.4)

1.2.3

where +y; is defined by 5 = 19°y'y2y® and s is a spin vector. Substituting these equations

into equation(B.2), the lepton tensor is expressed by
I# = STr(F + m)y (K +m)(1+ 35 4)7°]. (B:5)
The trace is expanded by using ¢g* and 7% as follows,
L* =2 (K"K + K"k* — (k- k')g") + 2m*g" + i2me"*% g, s5. (B.6)

The last term in this equation is an antisymmetric term with respect to a change of the
 initial lepton helicity. As shown later, the hadron tensor has also such symmetric and
antisymmetric parts. To be convenient, we define the symmetric and antisymmetric parts

of the lepton tensor to be,
LS =2 (K"K + K"k* — (k- k') g"™) + 4m*g* (B.7)

LY = i2me™q s (B.8)

B.2 Hadron tensor

The hadron has the complex substructure and thus we can not determine the hadron
tensor in explicit terms. “Altliough, the following assumptions limit which vector product

can be involved into the tensor;
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1. Parity conservation,

2. Time reversal conservation,
3. Hermiticity,

4. Translation invariance,

5. Current conservation.

Under these assumptions, the hadron tensor is expressed by using four structure functions

to be [21],

tIuQV % ”2 D-q b-q
s 1( . q2 Mp°q s s q2

q2
iM?VG ,  IMVG , ,
¢\ +W5#umq”(p-qk ~A-qp"), (B.9)

where W, W,, G, and G, are four structure functions of the hadron. These structure

functions are the function of v and Q2.

The requirement of the current conservation for the lepton tensor is giving a relation

of

O, L* = ¢, L* = O(same for v). (B.10)

This formula means that a term which has g, or g, is erased in the contracting with the
lepton tensor. Effectively, we can erase terms which have g, or g, in the equation(B.10). If
we divide the hadron tensor into symmetric and antisymmetric parts, the equation(B.10)

is rewritten to be

.E_W

—=p,p, (B.11)

WSu=_Wgu+
" P Mp-g

iM2uG, | iMV2G,
W §7] = — € Vv, pAT + —_ € v, d ¢ AT - A . 7 B.].2
A og g e ? P qp") (B.12)
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B.3 Tensor contraction and the cross section

The contraction of the lepton tensor and the hadron tensor is expressed in the symmetric

and antisymmetric terms to be
L”"W,w = LgvVWS,w + LﬁuWA“u, (B.13)

where the contraction between the symmetric and antisymmetric terms is to be 0 under
the parity invariance.
Using Equations (B.7) and (B.11), the tensor contraction for the symmetric terms

are expressed to be

W.
Ll"VW v - 2 k’#kl’ + k"jk# - k M k’ gﬂll [_W g vV + Y z y]
s "Ysu [ ( ) ] 19, M(p A q) DPuP

2vW, ; N2

= 4EE' [W;cos(8/2) + 2W, sin*(8/2)] . (B.14)

= A(k-K)W, +

Using Equations (B.8) and (B.12), the tensor contraction for the antisymmetric

terms are expressed to be

L Wau = mMG, [(q ‘A)(g-s) —¢*(s- /\)] —4muGag®(s- A) +4miPG, [q2(x\ - q)(s- p)] .
(B.15)
Let the electron polarize parallel or anti-parallel to its momentum, the electron polariz-

ation vector, s is expressed using its helicity, H;, to be

E.0,0E ) . (B.16)

s=Hz(—;0,0,—-
m m

We assume two nucleon polarizations parallel or perpendicular to the electron momentum.

The polarization vector for these states are expressed to be

parallel A=(0;0,0,1), (B.17)

perpendicular A = (0; cos @, sin ¢, 0), (B.18)
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where the event plane is defined to be z-x plane and the sign of tile momentum of the
scattered electron in x to be positive. The nucleon in the perpendicular configuration is
polarized in the angle of ¢ from the x-axis.

Using these polarization vectors, the tensor contractions for the anti-symmetric

terms are expressed by
parallel LYW, = —2H,Q? [MG1 (E'cosf + E) — G2Q2] , (B.19)

perpedicular  LY'Wa,, = —2H|Q*E’sinf cos ¢ [MG, + 2GE]. (B.20)

Thus the cross section between the polarized electron and the polarized nucleon are

expressed to be

parallel
d2o ™M) e E
dE'dQ ~ 16m2Q2 E

W, éot2(a/2) +2Wy| - 2H, [MG\ (E' cosf + E) — G2Q?)] ,
(B.21)

perpendicular
2o e E

!
2 ! o3
dE'dQ ~ 16m2Q? E [[Wa cot?(8/2) + 2W1] — 2H,E' sinf cos ¢ [MG + 2G-E]] ,

(B.22)

where the superscripts of the o show the directions of the spin of the nucleon and electron
respectively. The cross section for the unpolarized reaction is obtained averaging these
cross sections for the polarized reaction over the electron helicity to be

3 |90t dEdq| T 167207 wan?(6/2

; % [W; +2tan?(0/2W1] . (B.23)

The differences of the cross sections with the flip of the electron helicity, on the

other hand, are expressed as follows,

parallel :
A AL -
dE'dQ dE'dQ  1672Q% E

4[MG\(E'cosf + E) — GoQ?],  (B.24)
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perpendicular
d’ct ot et FE

—_— — il ! 2

If the nucleon is polarized along the x axis, ie. ¢ = 0° or 180° in the perpendicular

configuration, the Equation (B.25) is rewritten to be

d?ot 2ot e E _,
- = - i 2 . B.

where H is +1 or —1 corresponding to ¢ = 0° or 180°. Because ¢ is defined from the
x-axis giving the positive sign of the scattered electron momentum in x, H is equal to the

sign of the inner product of the electron momentum and the spin vector of the nucleon.



Appendix C

Kauer and Carlitz model

R. Carlitz and J. Kauer developed a phenomenological model for the spin structure of
the nucleon[79]. They expressed the spin structure for three regions over x using three
assumptions separately and combined them together.

They assumed the SU(6) model was useful at the middle region, z ~ 0.3 because
the nucleon is composed by three quarks in the SU(6) model. In this model, the wave

function of proton is expressed in terms of u and d quarks to be,

1
lpt) = 7 [Ruturdy — uruydy — wpupdy + .. ], (C.1)

where the arrow show the direction of the quark spin with respect to that of the nucleon

spin. From the wave function, the expectation value for the quark polarization is given

to be
5 1 4
Ay = —_U = — — = =
u Ut uy 3 3 3,
1 2 1
Ad = dT—d¢-—§—-§——§, (C.2)
which give the total quark polarization to be
h h

The virtual photon cross section asymmetry A, defined by Equation (2.36) is expected
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by the SU(6) model for nucleons to be,

4/9Au+1/9Ad 5
P _ —_—
Ar= 4/92+1/91 9 (C4)

A" — 4/9Ad +1/9Au
Yo4/9141/92

In the high x region, they assumed the struck parton with the large momentum

(C.5)

fraction carrying also the nucleon spin. The asymmetry A, (z), then, approaches to 1 at
z=1.

In low x region, they assumed the Regge theory. Because the gluon take away the
initial spin of the struck quark, the asymmetry approaches to 0 at z = 0 with Regge
form.

Figure C.1 shows the expected shape for the virtual photon asymmetries A4,(z) for

proton and neutron from these three assumptions.
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Figure C.1: The Carlitz and Kauer model for 4,(z)



Appendix D

Derivation of nitrogen correction

In the frozen ® N Dj target, a small polarization of nucleons (nuclei) other than deuterons
were recognized. Then the cross section asymmetry for the target included the contri-
butions from those nucleons (nuclei). We derive the relation between the cross section
asymmetry for the deuteron and that for the actual target.

We defined the contaminations of N (n.4) and proton(n,) to be

B #0f NH,
" = HofNDs+ #ofNH (D-1)
14
#of "N (D.2)

e = HofAN + #of BN’
and the polarizatioil, th_e cross section, and the cross section asymmetry of these nucleon
and nuclei as p, o, and A with subscription d, p, 14, and 15 respectively. The measured
cross section asymmetry is expressed in terms of these quantities,

A=p 3(1 — mp)0apaAd + 3m,0,Pp Ap + (1 — M14)T15P15A15 + MaT14P14 41
b 304 + 015 + other

,  (D3)

where we neglected 7, and 7,4 in the denominator. We introduce the dilution factor which

was defined in Section 4.2.4, so the equation can be rewritten to be

Op D, 015 P15 014 D14
A= 1-1n,)A “2IP Y 1- ——A ——Ayul. D4
popaf |( Up) \d + Upod Pa p + ( M4 304 Pa 15+ Tha 304 pa 14 ( )

The asymmetry of the nitrogen nucleus and deuteron is expressed in terms of the
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unpaired nucleons to be
0,A
o545 = p3 Lon (D.5)
oA, + o, A,
oAy = %——QN (D.6)
UdAd = (1 - 1.5wD)(0pAp + O’nAn), (D7)

where gy is the EMC effect for nitrogen nucleus, and wp is the D-state probability of
the deuteron. We use the EMC effect of N for both nitrogen nuclei. We assume
the polarizations for both nitrogen nuclei to be p;4 = —p15 = py because the magnetic

moments for those nuclei have opposite sign. We substitute these equations into Equation

(D.4),

e PN Dp 1-— 4 PN Op
A 1 PN\ 4 2, - AAN —A,|. (D.
Pepaf [{( Tp) + —-—-—9(1 " 1.5wp) pa } d+ (nppd + 9 pg gN) Od p] (D.8)

We solved the equation for the cross section asymmetry of the deuteron and obtained

1 A
Ag=— —1A,l, D.9
‘T [pdpdf 2 p] (D-9)
where v; and v, are given to be

— (1 _ Th4 PN
n=01-n)+ 50 = 1.5wp) 1.5wp) pa’ (D.10)

- Pp , 1 —1apn Op
vy = - + — =, D.11
= (e LB, ) 2 (011

The contaminations of the 74 and 7, were estimated to be 2.0% and 1.5% respect-
ively. The D-state probability is fixed to be 6.0+ 1.0% [28]. We used the results from the
proton measurement of E143 [18] for the proton asymmetry. We assumed that the ratio
of the total cross sections, 0,/04, was the same as the ratio of the structure functions,
Fyp/ Fyq. The structure functions were obtained from the NMC parameterization[59]. The
EMC effect is obtained from a fit using data from References [52] and [53]. The polar-
ization of the proton and the nitrogen nucleus as a function of the deuteron polarization

were measured by using the NMR technique as shown in Figures D.1 and D.2[80].
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ation.



