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Abstract

Coherent radiation emitted from a relativistic electron bunch consists of wavelengths
longer than or comparable to the bunch length. The intensity of this radiation out-
numbers that of its incoherent counterpart, which extends to wavelengths shorter
than the bunch length, by a factor equal to the number of electrons in the bunch. In
typical accelerators, this factor is about 8 to 11 orders of magnitude. The spectrum of
the coherent radiation is determined by the Fourier transform of the electron bunch
distribution and, therefore, contains information of the bunch distribution.

This dissertation utilizes two aspects of coherent transition radiation, bunch infor-
mation and high intensity, to study the stimulation of coherent transition radiation
as a new source of high-intensity far-infrared radiation. Coherent transition radiation
emitted from subpicosecond electron bunches at the Stanford SUNSHINE facility is
observed in the far-infrared regime through a room-temperature pyroelectric bolome-
ter and characterized through the electron bunch-length study. To measure the bunch
length, a new frequency-resolved subpicosecond bunch-length measuring system is
developed. This system uses a far-infrared Michelson interferometer to measure the
spectrum of coherent transition radiation through optical autocorrelation with reso-
lution far better than existing time-resolved methods. Hence, the radiation spectrum
and the bunch length are deduced from the autocorrelation measurement.

To study the stimulation of coherent transition radiation, a special cavity named
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ABSTRACT iil

BRAICER is invented. Far-infrared light pulses of coherent transition radiation emit-
ted from electron bunches are delayed and circulated in the cavity to coincide with
subsequent incoming electron bunches. This coincidence of light pulses with electron
bunches enables the light to do work on electrons, and thus stimulates more radiated
energy. The stimulation of radiation is observed through detuning measurements of
the cavity and agrees with theoretical predictions.

The possibilities of extending the bunch-length measuring system to measure the
three-dimensional bunch distribution and making the BRAICER cavity a broadband,

high-intensity, coherent, far-infrared light source are also discussed.
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Chapter 1

Introduction

The progress in the development of new high-intensity light sources has always played
an important role in helping the progress in the study of various phenomena in sci-
ence. Not only do these new light sources widen the roads of study by providing
powerful and effective tools to speed up existing experiments and increase the accu-
racy of measurements, but they also open up brand new avenues of study in areas
where human beings have never explored before because of the limitations of old
low-intensity light sources. In the past, many light-producing processes such as laser
and synchrotron radiation have been studied and used as powerful light sources in
different spectral regimes from near infrared light to hard x-rays. These new light
sources have enabled many new directions of research in science, such as non-linear
optics and x-ray surface science, which can not be done by traditional low-intensity
light sources.

However, in the far-infrared regime, no high-intensity light sources are generally
available so far, and the conventional blackbody-type sources such as mercury arc
lamps are still the most widely used as light sources. These low-intensity sources have
become the major limitation of applications in this regime. Since the usable signal

level is limited by the sources’ low intensity, methods to reduce the effect of thermal



noises such as using liquid helium to cool down detectors’ temperature and averaging
over large numbers of measurements have to be employed in order to increase the
accuracy of measured data. These methods significantly increase the complexity of
experimental apparatus as well as the time required to prepare and run experiments.
Yet the improvement in accuracy sometimes is not effective. Hence, the need for
high-intensity light sources in the far-infrared regime is obvious. Although there are
new developments in free-electron and chemical lasers targeting at this regime, new
ways to produce broadband, high-intensity, coherent light covering this regime still
need to be explored because of the spectroscopic nature of many applications.

On the other hand, the reduction of longitudinal phase space volume, especially
the electron bunch length, of electron sources has become an interesting direction
in the development of accelerators. New techniques are becoming available to pro-
duce electron bunch lengths in the subpicosecond range. When such short electron
bunches radiate, the emitted light is coherent, and its spectrum covers most part of
the far-infrared regime. Since there are typically 108-10'! electrons in these bunches,
the radiated intensity can be expected to be significantly higher than that from the
conventional low-intensity lamps in the far-infrared regime.

Therefore, the production of subpicosecond electron bunches provides a new direc-
tion in the generation of broadband, high-intensity, coherent, far-infrared light. This
thesis has explored a new way using stimulated transition radiation emitted from
the subpicosecond electron bunches generated at the Stanford SUNSHINE facility
to produce high-intensity, coherent, far-infrared radiation. This chapter introduces
the coherent radiation emitted from an electron bunch and provides the background
knowledge for the central part of the thesis. The chapter also describes the sub-
picosecond bunch length generation and compression scheme used at the Stanford

SUNSHINE facility, where all the experiments in this thesis are performed.



As described in the second chapter, a new autocorrelation method using a far-
infrared Michelson interferometer has been developed as part of this thesis to char-
acterize the spectrum of coherent transition radiation emitted from electron bunches
and, furthermore, to measure the eleciron bunch length. The experimental results
have verified the production of subpicosecond electron pulses at SUNSHINE. As the
first frequency-resolved subpicosecond bunch length measuring system, this method
has been demonstrated at SUNSHINE as a convenient, simple, compact, and trans-
portable electron beam instrument with much higher resolving power than any exist-
ing time-resolved method. The possibility of extending this method to measure the
three-dimensional bunch distribution is also discussed.
~ In the final chapter, a newly invented device named the BRAICER cavity is intro-
duced which circulates coherent transition radiation emitted from previous electron
bunches and coincides these light pulses with subsequent incoming bunches to stim-
ulate more radiated energy from the electrons. The detuning measurement of this
cavity confirms the observation of stimulated coherent transition radiation for the first
time and proved the principle of this new idea of producing high-intensity far-infrared
radiation through the stimulation of coherent transition radiation. Following the ex-
perimental verification of this idea, new ways of using stimulated coherent transition
radiation emitted from subpicosecond electron bunches as broadband, high-intensity,
far-infrared light sources are proposed. Not only will this new far-infrared light source
provide broadband, high-intensity radiation for existing applications, its subpicosec-
ond time structure will also facilitate new designs of pump-probe applications in the

far-infrared regime.



1.1. COHERENT RADIATION FROM AN ELECTRON BUNCH 4

1.1 Coherent Radiation from an Electron Bunch

Since the radiation emitted from subpicosecond electron bunches provides a promising
source for high-intensity, far-infrared radiation, it is worth taking a closer look at
a bunch of electrons radiate. The spectral field variations for different radiating
processes involving only a single electron such as synchrotron and transition radiation
have been very well studied. When a bunch of N electrons participate in a radiating
process, the total emitted field at the observation point is the sum of the single-
electron field emitted from each electron in the bunch with an appropriate phase
factor associated with that electron.

Therefore, according to the emitted wavelength compared to the length of the
electron bunch, the radiated spectrum can be divided into to two parts. For wave-
lengths shorter than the bunch length, fields emitted from all electrons in the bunch
are at random phases, and they add up incoherently. Hence, the total intensity is
only proportional to N, the number of electrons in the bunch. This is called the
incoherent part. On the other hand, for wavelengths longer than the bunch length,
fields emitted from all electrons are at about the same phase, and they add up co-
herently. Hence, the total intensity is proportional to N2. This is called the coherent
part. It is clear that the coherent part has N times more intensity than its incoherent
counterpart. This coherent enhancement due to electron bunching was first predicted
by Motz[1]. The difference in intensity is about 8-11 orders of magnitude in typical
accelerators. Therefore, if the bunch length is in the subpicosecond range, the corre-
sponding high-intensity coherent part of the radiated spectrum is in the far-infrared

regime.



1.1. COHERENT RADIATION FROM AN ELECTRON BUNCH 5

1.1.1 The Theoretical Perspective

The theoretical derivation of coherent radiation emitted from bunched electron beam
has been carried out by Nodvick and Saxon[2]. To show the theory, let us first
assume the following geometry that R = R is the position vector of length R from
the observation point to the center of the bunch which contains N monoenergetic
electrons, and r; is the position vector from the center of the bunch to the j** electron®.

Hence, the vector from the j** electron to the observation point is
x; = z;i; = R +rj, (1.1)

where fi; is the unit vector directed from the j** electron to the observation point.
The total electric field from the bunch measured at the observation point at frequency
v is, therefore, the sum of the electric field emitted from the j** electron with the

phase factor e*i%i j.e.,
N o
Etotnl(V) = ZEj(V)eikj‘xj
Jj=1

N
— Z Ej(y)ezri(u/c)ﬁ,--r,' e21ri(v/c)ﬁj-n, (1-2)

i=1
where k; = 2x(v/c)fi; is the wave vector of the electric field from the j** electron.
Using far-field approximation (i.e., R > r;), we have fi; ~ fi and E;(v) ~ E.(v)
for all the electrons in the bunch, where E.(v) is the single-electron field emitted
from an electron at the bunch center at frequency v. The radiated total intensity is

proportional to the square of the absolute value of the total electric field

Low(v) & |Biota(?)]?

N
Z Ee(y)e%ri(u/c)ﬁ-r,'

=1

2

~
~

'In this thesis, the notation & is used to represent a unit vector, i.e., |a| = 1.
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N N
— E Ee(V)e21ri(u/c)ﬁ-rj Z E:(V)e—21ri(u/c)ﬁ-r,,
k=1

Jj=1
Y 2 o 2 1 i
= Z|Ee(u)| + E |Ee(v)| e2mi(v/e)(xi—ru) B (1.3)
j=1 Jile=1
ik

If we denote I.(v) as the single-electron intensity emitted at frequency v with the

relation I.(v) o |E.(v)|?, then the total intensity becomes

N N
Lota(v) = Z I(v) + Z Ie(l/)ez“(u/c)(r"_"‘)'ﬁ. (1.4)
j=1 j,‘l;é—_;gl
J

This can be separated into the incoherent contribution

Iinc(V) = ;Ie(l/)

= NL(v) (1.5)
and the coherent one
N .
Lan(v) = Z Ie(y)ez""’(y/c)(rj_rh)'ﬁ
j1k=1
Itk
N
= IL(v) Z e2miv/e)xi—ra)h (1.6)
j)k=1
J#k

Since there is typically a very large number of electrons (say, 102 or larger) distrib-
uted in a typically small volume in space (say, 1 mm?® or smaller), a continuous prob-
ability function can be used to approximate the electron distribution in the bunch.
Let us assume that the number of electrons in the volume element d3r centered at
the position vector r originating from the bunch center is NS(r)d®r, where S(r) is

the probability of finding electrons at r satisfying

/ S(r)dr = 1. (1.7)
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Therefore, the discrete summation in Eq. (1.6) can be approximated by an integral

Laa(v) ~ L()N(N —1) / d3r / 3! e2m/E-E) B g () 5 (1)

X 2
- Ie(V)N(N _ 1) l/ d3r ezm(U/c)r.ﬁS(r)

L()N(N - )f(v;), (18)

where the bunch form factor f(v; i) is defined as?
2

f(v;h) = ’/ d3r ezari(U/c)r-ﬁS(r)

(1.9)

Hence, the total intensity detected at the observation point emitted from an electron

bunch is expressed as the sum of coherent and incoherent contribution

Lota(v) = Iinc(v) + I.on(v)
= I(v)N[1+ (N - 1)f(v;i)). (1.10)

The incoherent contribution Ii,.(v) is only proportional to the number of electrons
in the bunch, N, while the coherent contribution I..»(v) is proportional to N2. The
later contribution can be N times larger than the former one at frequencies where

the form factor f(v;h) is close to unity.

1.1.2 The Bunch Form Factor

At this point, it is worth examining the form factor f(v;f) closely. It is easy to show
that 0 < f(v;i) < 1 for all frequencies. In the low frequency (long wavelength) limit,
where v — 0 (A = ¢/v — 00), the form factor f(v;fi) approaches unity. Therefore,
the total intensity Iiota(v) is dominated by the coherent part I..n(v) and, hence, is

proportional to N2. On the other hand, in the high frequency (short wavelength)

2 Although the form factor can be expressed as a two-variable function, i.e., f(v,1), we rather
treat fi as a parameter here (separated by a semi-colon) than a variable (separated by a comma)
because in most experiments the observation points are fixed, so are the corresponding i’s.
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limit, where v — oo (A — 0), the bunch form factor f(v; ) vanishes. Thus, I;oa(V)
is dominated by the incoherent contribution I;n.(v) and is only proportional to N. In
between, the intensity Iiota(v) is determined by the Fourier transform of the three-
dimensional bunch distribution.

In order to simplify the bunch from factor, let us choose the following Cartesian
coordinate system with the origin at the bunch center, fi in the zz plane, the direction
of electron-beam propagation as #, the direction of (2 x i) x Z as X, and the direction

of Z x i as §. Hence, the vectors fi and r can be expressed as®
n = sinfX+ cosfdz (1.11)

r = zX+yy+ 23, (1.12)

where 4 is the angle between fi and %. Let us also assume that the transverse bunch

distribution and the longitudinal one are separable, i.e.,

S(r) = 5(z,y,2) = g(z, y)h(2). (1.13)

The form factor in Eq. (1.9) can then be written as

2

f(v;0) = ‘ / B I Bg(r)

fi-f=cos §

oo oo 2xi(v/c)zsind too 27i(v/c)zcos b ?
= V dy| dzg(z,y)e dz h(2)e . (1.14)

oo

3As a consequence of this definition, the coordinate system changes with the orientation of i,
which is fine here since the following discussions do not depend on the choice of fi. However, this
definition may not be desirable in situations that there is a preferable coordinate system other than
this one. Under such restriction, one can define fi and r with respect to the preferable system as

i = sinfcosyX+sinfsiny§ + cosfz
r = zx+yy+z%,

where 8 is the angle between & and % (i.e., cos@ = i - £), and 9 is the angle between % and the
projection of fi on the 2y plane [i.e., cos¢ = (fi — cos0 %) - %/sin6 = i - £/ sin 4].
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1.1.2.1 On-Axis Observation

The bunch form factor will have the simplest expression if the bunch has azimuthal
symmetry about the direction of electron-beam propagation Z, and the observation
point is chosen in this direction (i.e., # = 0; on-axis observation). Under these
assumptions, the contribution from the transverse bunch distribution g(z,y) becomes
unity for all frequencies because [*2° dz [ dy g(z,y) = 1, and the form factor is
only determined by the Fourier transform of the longitudinal bunch distribution A(z).
Hence, we have

2
f(v;0=0)= V dz e2 /)2 ()| . (1.15)

For example, if the bunch is symmetric about % with rectangular longitudinal distri-

bution of length 20, i.e.,

h(z) = 1/(20;) for |z| <o, , (1.16)

0 otherwise
then the corresponding form factor, from Eq. (1.15), is

sin(2nvo,/c)]?

2rva,/c (1.17)

fwio=0=|

As another example, for a similar bunch with Gaussian longitudinal distribution of

equivalent length /27 o, that is,*

1
h(z):mae 1203, (1.18)

4The equivalent width of a one-dimensional distribution function f(=) is defined as the width of
an “equivalent” rectangular distribution which has the same height as the maximum of f(=), i.e.,

. = Je f(z)d=
T max  f(z)

2€(—o00,+00)

If f(z) is a normalized bunch distribution, i.e., fj: J(z)de = 1, then we have weq =

[ce(max_:'_ ) f(z))~'. For a higher-dimensional distribution function, the equivalent width can be
—c0,+00 .

defined in a similar way.
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the form factor is also Gaussian

F(v;0 = 0) = e=C@mes/o) (1.19)

1.1.2.2 Off-Axis Observation

As indicated by Eq. (1.14), the form factor will no longer remain its simplest form
as shown in Eq. (1.15) when the observation point is chosen off-axis, i.e., § =
cos™!(fi - ) # 0. The transverse bunch distribution will contribute to the form factor
even for an azimuthally symmetric bunch. Furthermore, the longitudinal distribution
will have less effect on the form factor at larger angles § due to the decrease in effective
longitudinal length o, sin§. If the bunch has azimuthal symmetry, the form factor
can sometimes be simplified through the choice of a cylindrical coordinate system.
Assuming that (p,¢) is the polar coordinate system defined on the zy plane with
z = pcos¢ and y = psin¢, then the transverse contribution in Eq. (1.14) can be

expressed as a Bessel transform
+o00 +o00 . . 2
|/ dy/ dz g(m’y)e%n(v/c)zuno‘
27 +o0 . .
— l/o d¢[) pdpg(p)e2m(v/c)pcos¢sm0

47? [/:w 9(p)Jo(2mvpsin 0/c)pdp] 2 , (1.20)

2

where Jy is the zeroth order Bessel function. Two facts also have been used in the
derivation: the transverse bunch distribution g is only a function of p [i.e., g(z,y) =
g(p)], and the identity 2rJo(u) = [Z" e™°*?d¢. In the case of a cylindrical bunch

distribution of length 20, and radius o, with the transverse distribution defined by

o(0) = { 1/(wol) for0<p<o, (1.21)

0 otherwise
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and the longitudinal one by Eq. (1.16), the bunch form factor at frequency v and
observation angle 6 is

2Jy(27vo,sin 8/c) sin(2rvo, cosb/c)]’
2nvo,s8inf/c 2nvo, cosf/c

f(v;0) =

: (1.22)

where J; is the first order Bessel function. On the other hand, for a Gaussian bunch

distribution of equivalent length v/27 o, and equivalent diameter v/2x o, with

9(z,y) = e+ (1.23)
2T o,

as the transverse distribution and Eq. (1.18) as the longitudinal one, after carrying

out the integrations in the Cartesian coordinate system, the form factor becomes
f(V; 0) — e—(21rucrp sinf/c)? e—(21rua, cos0/c)2. (1.24)

The “apparent” equivalent length when observed at angle  becomes /2 (o, cos 8 +
o,sin #) in an analogy to Eq. (1.18).

1.1.3 The Form Factor and the Degree of Coherence

It is interesting to point out that the form factor f(v;#) is indeed related to the
spectral degree of coherence of the emitted radiation at frequency v and observation
angle §. From the coherence theory in optics, the complex degree of coherence for an
extended light source can be expressed in the form of diffraction calculation through
the van Citter-Zernike theorem[3]. When the electron bunch radiates, the radiation is
actually emitted from this three-dimensional extended source; in addition, the deriva-
tion of the bunch form factor as shown in Eq. (1.9) is equivalent to the calculation of
diffraction effect for a three-dimensional weighted “aperture”. Hence, the form factor
represents the spectral degree of coherence of the three-dimensional extended light

source, which is the emitting electron bunch. Through the following discussion, it
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will become clear how this form factor is related to the spectral degrees of temporal
and spatial coherence.

In the case of on-axis observation, the form factor f(v;8 = 0) is indeed the spectral
degree of temporal coherence of the emitted radiation at frequency v. For frequencies
whose corresponding wavelengths are much longer than the bunch length, the form
factor is near unity, and the radiation is temporally coherent (the degree of coherence
approaches unity). However, for frequencies with wavelengths much shorter than the
bunch length, the form factor approaches zero, and the radiation is temporally inco-
herent (the degree of coherence approaches zero). The degree of temporal coherence
at different frequencies is determined by the longitudinal (or equivalently, temporal)
distribution of the bunch.

On the other hand, the transverse contribution of the form factor for an off-axis
observation as shown in Eq. (1.20) is indeed the spectral degree of spatial coherence of
the emitted radiation at frequency v and observation angle §. To simplify the discus-
sion, let us assume that the bunch length is much shorter than the transverse beam
size (i.e., 0. < 0, 0or 0,/0, — 0), so the variation of the form factor is determined by
the transverse contribution. For frequencies with corresponding wavelengths much
longer than the effective transverse bunch size (e.g., o, sin #), the form factor is near
unity, and the radiation is spatially coherent. However, for frequencies with shorter
wavelengths than the effective bunch size, the form factor approaches zero, and the
radiation is spatially incoherent. The degree of spatial coherence at different frequen-
cies and observation angles is determined by the transverse distribution of the bunch.
Therefore, it can be concluded that the bunch form factor as expressed in Eq. (1.9)
is the spectral degree of “three-dimensional” (temporal and spatial) coherence of the

emitted radiation from the three-dimensional electron bunch.
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1.1.4 An Example: Coherent Synchrotron Radiation

From the theory of coherent radiation stated above, we know that both coherent and
incoherent radiation is emitted for any electron bunch length. However, in existing
storage rings, only the incoherent part of synchrotron radiation has been observed;
in contrast, none of the coherent part of the radiation has been detected because it is
suppressed by the surrounding metallic vacuum chamber which dimension happened
to be comparable to or smaller than the electron bunch length. However, if the bunch
length can be reduced to values shorter than the vacuum chamber dimension, coherent
synchrotron radiation should be observable. To demonstrate this, let us look at an
example of coherent synchrotron radiation with the shielding effect of the metallic

surroundings{4].

1.1.4.1 Method of Calculation

In order to calculate the radiated spectrum of coherent synchrotron radiation with the
shielding effect of the metallic beam pipe, it is necessary to start with an expression
for single-electron synchrotron radiation with such effect [i.e., a suitable I.(v) for
Eq. (1.10)]. Although expressions for synchrotron radiation emitted by an electron
in ﬁee space can be found in many references, they do not include the shielding
effect from the metallic boundary. However, Nodvick and Saxon gave an expression
for synchrotron radiation which has included this effect and is used in the following
calculation(2]. Let us assume that if an electron of velocity v follows a circular orbit of
radius p in the mid-plane of two infinite parallel metallic plates separated by a distance
a, then the total emitted synchrotron radiation power in the frequency interval from
nyg to (n + 1)y is found to be’[2, Eq. (A1)]

P(v) = (

8mve

2\ j<naB/=p
a )

[ﬂzJ’z(vn,pH (]7" {o a)’ T2 (1mip)| (1.25)

_1—1 3,54e00 nJ

SIn this thesis, we will assume the CGS system as the default unit system.
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where J,(z) and J)(z) are the n* order Bessel function and its derivative, v is the
revolution frequency of the circular motion with vy = v/2wp, n is the largest integer

satisfying nvy < v, B = v/c with ¢ the speed of light, and

1uip = \/(nB)? — (jmp/a)? . (1.26)

Since the orders of Bessel functions involved in the caculation are typically large
numbers (n ~ pv/c, typically thousands or larger), it is important to calculate J,.(z)
and J; (z) of large integral orders in an efficient way. The standard backward recursive
method becomes impractical because of the large numbers of recursive substitutions
and the machine underflow problem at large integral orders. Fortunately, the uniform
asymptotic expansions of Bessel functions provide powerful and efficient solutions for

this problem/[5]:

VAT Aj(n2/3 i'(n?/3
2
z

nzk nb/3

( 2)1/4 lAl(n2/3C) 3 ck(¢) Ai'("2/3C) d"(o] (1.28)

Ji(nz) = v

n2k n2/3

where ( satisfies
2 1+4v1—22
gg~3/2 —In _+z_z —VI—22 forlz] <1, (1.29)

and Ai(z) and Ai'(z) are Airy functions. Some of the coefficients ax(¢), be(¢), cx(€),
and di(¢) are listed below and others can be found in Ref. [5]:

ay = 1,
a = (81¢% — 462t* + 385t%) — —— (3t — 5¢%) — 455
1152 4‘3/2 4¢3 ’
5
— 3
bo = 8 [41/2(31‘, — 5t°) — Cz]

1
— -9 1/2 3
o m CHA(—9t+ Tt )+C]
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Table 1.1: Basic conditions for coherent synchrotron radiation calculations. The
bunch length 20 is defined in Eq. (1.16) for the rectangular distribution and in
Eq. (1.18) for the Gaussian one.

Parameter Notation Value
Bunch length 20, 30 um (0.1ps)
Electrons per bunch N 109
Electron energy £ 40 MeV
Magnetic field B 1.9kG
d = 1,
_ 1 2 4 6 5 3y, 385
d = 1150 (—135¢* + 594¢° — 455¢ )+C3/2( 9t + Tt )+4€.3 ,

where ¢t = (1 — 22)"1/2,
The total radiated coherent synchrotron power at frequency v from an electron
bunch is calculated using the conditions listed in Table 1.1, Eqs. (1.10), (1.25), and

the relations

_BE _ B xE[MeV]
= ¢B~ 29.98 x BlkG] ™

where e is the electronic charge, m is the electronic mass, 4 is the Lorentz factor,

and the units of the quantities are listed in the associated square brackets[6]. In the
results, the calculated power is normalized to that emitted from a single electron
bunch in each pass and is converted to spectral photon flux (in photons/sec/100%
Bandwidth) using the following relation

dF(l/) _ Ptotal(l/)
dv/v hyy '

where F(v) is the photon flux (in photons/sec) at frequency v, and & is Planck’s

constant. To emphasize the contribution from the longitudinal bunch distribution,
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Figure 1.1: Coherent synchrotron radiation emitted from rectangular (dotted) and
Gaussian (solid line) bunches without the shielding effect from the metallic beam
pipe. The vertical line indicates the bunch length 20, set in the calculations. The
spectrum for the incoherent contribution is also shown as the dashed line.

on-axis observation of the cylindrically symmetric electron beam is assumed in these

calculations.

1.1.4.2 Results

The calculated spectral photon flux emitted from rectangular and Gaussian bunches
without the shielding effect from the metallic beam pipe is shown in Fig. 1.1. For
wavelengths longer than the bunch length (coherent part), the radiated spectra for
both distributions are coherent. However, for wavelengths shorter than the bunch
length (incoherent part), the spectra change from coherent to incoherent, and the
rate of change is determined by the Fourier transform of the bunch distribution. The
Gaussian bunch has steeper change between the coherent and incoherent part, while

the rectangular bunch has more high frequency lobes extending from the coherent
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Figure 1.2: Coherent synchrotron radiation emitted from Gaussian bunches of differ-
ent lengths with the shielding effect due to the metallic beam pipe.

part into the incoherent one. The ratio of the coherent contribution to the incoherent
one in the coherent part is proportional to the number of electrons in the bunch (i.e.,
10° in this example).

To demonstrate the shielding effect of the metallic beam pipe, the calculated spec-
tra for Gaussian bunches of different lengths for a pipe size of a = 2 ¢cm are shown in
Fig. 1.2. All radiation with wavelengths longer than the vacuum pipe dimension is
suppressed by the shielding effect of the vacuum chamber. When the bunch length
is longer than the vacuum pipe dimension, the coherent contribution is shielded by
the vacuum chamber, and the whole spectrum is identical to that of the incoherent
contribution at wavelengths shorter than the pipe dimension. This is what would be
expected in existing storage rings. As the bunch length is reduced, the coherent radi-
ation begins to show up at wavelengths shorter than the pipe dimension. Therefore,
to observe coherent radiation emitted from an electron bunch, it is necessary to make

the bunch length shorter than the beam pipe dimension.
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Figure 1.3: Existing typical high-power light sources in different spectral regimes.
The data for plasma lasers are shown as ®. Newly developed free-electron lasers in
the far-infrared regime listed in Table 1.2 are not shown here.

The high intensity of coherent synchrotron radiation emitted from subpicosecond
electron bunches as demonstrated above shows a new and promising direction in the
development of high-power, far-infrared light source. As a reference, the existing
high-power light sources such as lasers and synchrotron radiation sources in different
spectral regimes are shown in Fig. 1.3[7]. Lasers, synchrotron radiation sources, and
microwave sources have covered most part of the spectrum from microwaves to hard
x-rays. What are not shown in the figure are newly developed free-electron lasers in

the far-infrared regime, which are listed in Table 1.2. Although these free-electron
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Table 1.2: Peak power of newly developed free-electron lasers in the far-infrared
regime. Data source: the FEL Virtual Library at the World Wide Web URL http:
//sbfel3.ucsb.edu/www/vl fel.html.

Free-electron laser Wavelength tuning range Peak power

UCSB mm-FELI[8] 338 pm-2.5 mm 1-15kW

UCSB pm-FEL(8] 63-338 um 1-6kW

Stanford Firefly[9] 15-65 pm 100-500 kW

Stanford STI[9] 3-15um 0.67-2.86 MW

CLIO FEL[10] 3-40 pm a few MW (100 MW max)
FELIX Infrared FEL[11] 5-110 ym 20 MW max

lasers have wide wavelength tuning ranges, they are narrowband in nature. Therefore,
from millimeter waves to far-infrared light (wavelength longer than 10 um) there is
‘ba,sica.lly no high-power broadband light source available. The calculated spectral peak
power of coherent synchrotron radiation from the 0.1-ps electron bunch described in
Table 1.1 is shown in Fig. 1.4. The spectral power from a 2000 K blackbody radiator
is also shown in the figure for comparison, which is expressed as the power emitted
from unit area in unit bandwidth[12, Sec. 13.2]

P 2mhv* 1
dA(dv/v) 2 eh/*T _1°

where k is the Boltzmann constant, and 7T is the absolute temperature of the radiator.

(1.30)

The peak power of coherent synchrotron radiation is at least 6 orders of magnitude
higher than that of blackbody radiation in the far-infrared regime. When compared
to other high-power light sources in Fig. 1.3, coherent synchrotron radiation is located
at about the middle of the vertical range and basically fills the gap (cf., the curve
for the rectangular bunch distribution in Fig. 1.4) between microwave sources and
CO, lasers. If one calculates the simple-minded “peak” power from the ratio of the
total radiation energy (cf., Fig. 1.4) to bunch duration (0.1 ps), this would give a peak
power of 1.74 MW /mrad for the Gaussian bunch distribution and 3.50 MW /mrad for

the rectangular one! Hence, coherent synchrotron radiation, in this example, shows
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Figure 1.4: Calculated spectral peak power of coherent synchrotron radiation and
black body radiation in 0.1% bandwidth. The peak power of coherent synchrotron
radiation is normalized to the bending angle [in W/mrad (bending)], while the power
of blackbody radiation is normalized to the radiating area (in W/cm?). The total
energy radiated from one Gaussian electron bunch is 0.174 uJ/mrad (bending) and
form the rectangular one, 0.350 pJ/mrad (bending).

an excellent candidacy as a simple, high-power, broadband, far-infrared light source.

1.2 The Stanford SUNSHINE Facility

In order to study the production of high-intensity, coherent, far-infrared radiation

through different radiating processes form subpicosecond electron bunches and the
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Table 1.3: Typical SUNSHINE operating conditions. The electron bunch length will
be determined in the second chapter.

RF parameters Electron parameters
RF frequency 2856 MHz Bunch length < 1lps
Repetition rate 10 pulses/sec | Electrons per bunch 108-10°
Pulse duration ~ 1us Electron energy 30MeV
Bunches per RF pulse ~ 3000 Bunch spacing 350 ps (10.5cm)

physics of subpicosecond electron beam, an electron facility named SUNSHINE (Stan-
ford UNiversity SHort INtense Electron source) has been designed and built on cam-
pus of Stanford University since 1991{13]. With a specially designed electron gun[14]
and a matched magnetic compressor, SUNSHINE is capable of producing subpicosec-
‘ond electron bunch train[15]. The typical operating conditions of SUNSHINE are
listed in Table 1.3. At a repetition rate of 10 Hz, SUNSHINE produces 1-us-long
electron macro-pulses which contains around 3000 electron bunches with 108-10°
electrons in each bunch. The bunches are separated by 10.5cm (350 ps) distance
and are accelerated up to 30 MeV. This thesis uses these electron bunches to explore
a new way to produce high-intensity, broadband, far-infrared radiation. The detail
of the production of subpicosecond electron bunches at SUNSHINE is elaborated in
Ref. [15]. Only the principle of the bunch generation and compression system will be

discussed here.

1.2.1 Bunch Generation and Compression System

The bunch generation and compression system used at SUNSHINE, as shown in
Fig. 1.5, consists of two major components: a 1}/2-cell thermionic RF gun and an alpha
magnet with energy filters[15-17]. The RF gun operating at 2856 MHz produces 2.5-
MeV/c electron bunches in which the electrons are distributed along a thin line in the

energy-time phase space with higher energy electrons located at earlier time and lower
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Figure 1.5: Schematic diagram of the bunch generation and compression system used
at SUNSHINE.

energy electrons, later time. These energy-time correlated bunches are then steered
into the alpha magnet for compression. The magnet will guide the electrons in the
magnet along a-shaped paths with higher energy electrons following longer paths and
lower energy electrons, shorter paths; hence, the earlier electrons in the bunch, which
have higher energy, will spend more time in the magnet by following longer paths
while the later electrons, less time. By correctly setting the magnet’s strength, it is
possible to compress part of the electron bunch into sub-picosecond duration. This
optimally compressed part is then selected by energy filters located in the magnet and
transported through a 30-MeV linear accelerator and a beam transport line to the
radiation source point. When transporting the electron bunch, the velocity spread in

the bunch can cause significant bunch lengthening (compared to the bunch length);
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Figure 1.6: Principle of bunch compression at SUNSHINE. The electron energy-time
distributions at (a) the exit of the gun, (b) the exit of a-magnet, and (c) radiation
source point are shown.

therefore, it is necessary to compensate for this effect by overcompressing the bunch
so that the minimum bunch length is reached at the source point.

This principle of bunch compression is demonstrated in Fig. 1.6[15]. At the exit
of the gun, the electrons are distributed within a thin line in the energy-time phase
space with a negative slope [cf., Fig. 1.6(a)]. Instead of compressing the bunch into
the minimum bunch length right at the exit of the alpha magnet, an overcompression
is applied to compensate for the bunch lengthening due to the velocity spread in the
bunch when transporting it to the radiation source point. The overcompression will
turn the line into a distribution of positive slope at the exit of the magnet as shown in
Fig. 1.6(b). After transporting the beam farther downstream at the radiating source
point, where the electrons radiate, part of the bunch (for example, 55.30 < By S
55.76) reaches its minimum length (At ~ 0.48 ps) as an up-right distribution shown
in Fig. 1.6(c). By adjusting the energy filters in the alpha magnet to allow only

this part through the system, an electron bunch of subpicosecond duration can be
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achieved.

1.2.2 The Detector for Coherent Radiation

To detect the far-infrared radiation emitted from subpicosecond electron bunches
produced at SUNSHINE, a room-temperature bolometer is used because the radia-
tion from the electron bunches is intense enough to produce a decent signal with a
very good signal-to-noise ratio (typically, a few hundreds) [16-18]. This bolometer
consists of a Molectron P1-65 LiTaO; pyroelectric detector of 5mm diameter and a
pre-amplifier. The detector’s sensitivity is uniform over a spectral range from ultra-
violet light to millimeter waves covering the full range of coherent radiation. The
-coherent far-infrared radiation is absorbed by the pyroelectric crystal in the detector,
and produces a thermal expansion in the crystal. The expansion changes the intrinsic
electric polarization and, thus, changes the electrical property of the crystal. This
change is proportional to the rate of change of the incident radiation and is amplified
by the following electronic circuits. The electronic bandwidth of the detector can be
selected from 20 Hz up to 70 MHz by an appropriate external resistor. This bolome-
ter’s electronic bandwidth is set to around 20 Hz to measure the total radiated energy
in each 1-ps-long macropulse with a responsivity of pre-amplification x 1.21V/mJ,
which has been calibrated against a Scientech thermopile power meter. By measuring
the voltage signal of the bolometer, the radiated photon energy in each macropulse
can be obtained. It is worth noticing that the measured bolometer signals shown in
this thesis are normalized to a unit gain of pre-amplification. So the energy measured
in the macro-pulse can be obtained simply from the ratio of the “quoted” bolometer

signal to the unit-gain responsivity 1.21V/mJ.
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1.3 Observations of Coherent Synchrotron Radia-
tion

The prediction of coherent synchrotron radiation came straight out of the theory
when the appropriate phase contributions from electrons in the bunch are consid-
ered; however, the observation of this coherent radiation did not come directly out of

experiments when people first tried to study it.

1.3.1 Previous Observations

Historically, storage rings became natural places for experiments to observe coherent
synchrotron radiation because of the circular motion of the electron beams in these
accelerators and the concern of electron energy loss through coherent emission of syn-
chrotron radiation. Since the metallic vacuum pipes surrounding the electron beam
suppresses any radiation of wavelengths longer than the pipe dimensions, all attempts
to observe coherent synchrotron radiation from storage rings have failed because the
electron bunch lengths were unfortunately longer than the vacuum pipe dimensions.
Moreover, the Gaussian electron bunch distribution in storage rings made the ob-
servation of partially coherent radiation of wavelengths somewhat shorter than the
bunch lengths impossible since the intensity drops down very quickly for wavelengths
shorter than the bunch lengths (cf., Fig. 1.1). Only incoherent synchrotron radiation
was observed and verified against theory. This unfortunate circumstance, however,
brought a relief to these storage rings since the electrons only loose energy through
incoherent synchrotron radiation.

On the other hand, the advance in accelerator technology makes it possible to
produce electron bunch lengths of a few picoseconds (millimeters) long with “steep-

edged” distributions which, like rectangular distribution, have slower-dropping “tail”
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Figure 1.7: Schematic layout for the observation of coherent synchrotron radiation at
SUNSHINE.

spectra at wavelengths shorter than the bunch lengths (cf., Fig. 1.1). Since the bunch
lengths in linear accelerators are comparable to or shorter than the vacuum pipe
dimensions, the observation of coherent synchrotron radiation becomes possible. In
1989, Nakazato et al. made the first observation of coherent synchrotron radiation
from 2.5-mm-long (8.3-ps-long) bunches of 180-MeV electrons produced at the Tohoku
Linac[19], and later in 1991 Blum et al. also observed coherent synchrotron radiation
from 2-mm-long (6.7-ps-long) electron bunches of 300 MeV energy at the Cornell
Linac[20]. Both experiments have observed coherent radiation in the millimeter-
wavelength regime and confirmed the quadratic dependence of radiation intensity on
electron charges in the bunch. However, no absolute measurement of intensity or

energy for coherent synchrotron radiation was reported in either paper.

1.3.2 The Observation at SUNSHINE

Equipped with an advanced electron bunch generation and compression system, SUN-
SHINE is capable of producing subpicosecond electron bunches and intense coherent

radiation from these bunches in the far-infrared regime. At SUNSHINE, coherent
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synchrotron radiation is generated when 30-MeV electron bunches are deflected by a
2.2-kG dipole magnet shown in Fig. 1.7[16]. This coherent radiation is collected by
a 100-mm-diameter spherical mirror located 1.3 m away from the source point. The
angular acceptance for the radiation is limited to 40 mrad by the mirror diameter.
The radiation focused by the mirror is deflected into a copper condensing cone[21],
which then channels the radiation through a 1.25-mm-thick high-density polyethylene
(HDPE) window of 19 mm diameter into a room-temperature bolometer. Since the
diameter of the pyroelectric detector is only 5mm, an additional copper condensing
cone is installed between the HDPE window and the bolometer to direct all radiation

through the window onto the detector surface.

1.3.2.1 Quadratic Dependence on the Electron Current

Theoretically, the coherent radiation intensity is expected to scale with the square of
the number of electrons in the bunch. To verify this, a good way to change the beam
current without affecting the bunch length is important and has to be investigated.
A direct way to reduce the beam current would be to use mechanical scrapers in
the beam line; unfortunately, they are not available at SUNSHINE. Changing the
cathode heating power in the RF gun would be a neutral way to vary the beam
current, but this also affects the momentum distribution of the electrons at the gun
exit because of the change of the beam loading in the gun. Since the bunch length
is determined by a combination of electron momentum distribution at the gun exit
and compression in the alpha magnet, the resulting bunch length is changed when
the cathode heating has changed. Therefore, the only practical way to vary the beam
intensity at SUNSHINE is to use the high energy filter in the alpha magnet to scrape
off the high-energy part of the beam while keeping the low energy filter fixed. Since
the alpha magnet strength is adjusted to compress most of the high-energy electrons

into a short bunch, this method seems to have the least effect on the bunch length.
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Figure 1.8: Bolometer signal of coherent synchrotron radiation as a function of elec-
tron beam current.

The energy of the collected coherent synchrotron radiation from each macro-pulse
is measured with the bolometer as a function of the electron beam current. The
current distribution across the macro-pulse is measured through a pulse transformer
surrounding an insulated section of beam pipe. No means are available at SUNSHINE
to measure both the radiation intensity and the beam current signal from individual
electron bunches. Since the transformer can not resolve individual bunches and the
current signal is not uniform across the macro-pulse, the signal is dissected into about
400 slices in time through a LeCroy digital oscilloscope, and the sum of the squares
of the number of electrons in each each slice is then calculated (denoted as ¥ N?) to
approximate the sum of the squares of the number of electrons in each bunch, which is

expected from the ideal case. The measured bolometer signal as a function of ¥ N? is
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shown in Fig. 1.8[16]. The coherent radiation intensity shows the expected quadratic
dependence on the electron charges over 3 orders of magnitude. Small deviations
from the ideal quadratic scaling are due to unavoidable variations of bunch length for
different segments of the momentum spectrum selected by the method of changing

the electron beam current.

1.3.2.2 Total Energy Measurement

The total collected energy of coherent synchrotron radiation from each macro-pulse
is measured as[16]

262 J per macro-pulse

with an rms electron intensity of 4.6 x 10® electrons per bunch. This measurement
has excluded the possibility of the contribution from other sources such as wake field
and ionization radiation. To compare this result with theory, a few factors which are

significantly different from ideal calculations have to be taken into account[16]:

1. As the electrons are passing through the dipole magnet, the emitted radiation
changes direction and sweeps across the mirror. These rays of different angles

are accepted differently by the collecting optics.

2. As the electrons enter the magnet, the field increases from zero to its nominal
strength over a distance of 40 mm (equal to the pole gap). This fringe field

contributes significantly to the production of radiation.

3. The opening angle of coherent synchrotron radiation is a function of photon fre-
quency and changes with the magnetic field. This affects the collection efficiency

for different frequencies as well as different source points in the magnet.

4. The HDPE window has a 87% trasmission efficiency in the far-infrared regime.
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5. The bunch length and beam current changes along the macro-pulse due to a vary-
ing RF field level in the gun caused by beam loading. Through the measurement
of momentum distribution in the macro-pulse, the effect of beam loading on the
bunch length can be studied in simulations of electron bunch production, and
the bunch length variation across a macro-pulse can be derived from these sim-
ulations({15,16]. Simulations show that the bunch length varies from 1.2 ps down

to 0.2 ps in different parts of a macro-pulse.

When these factors are considered in the theoretical calculation described in Sec. 1.1.4
with the assumption of a Gaussian bunch distribution, the calculated total energy
from a macro-pulse accepted by the collecting optics with a resulting overall 47%

collection efficiency is[15,16]
217 pJ per macro-pulse.

This calculated result agrees with the measured one within a 17% difference. Calcula-
tions further indicate that the total radiation intensity is equivalent to that emitted in
40 mrad of bending angle from 2856 identical Gaussian electron bunches with equiva-
lent bunch length of 0.475 ps and beam intensity of 4.6 x 10® electrons in each bunch.
Each bunch radiates a total energy of about 0.168 uJ, and about 0.076 uJ of the

radiated energy is accepted by the collecting optics.



Chapter 2

Coherent Transition Radiation

.As described in the previous chapter, the experimental results of coherent synchrotron
radiation emitted from subpicosecond electron bunches agree very well with theoret-
ical calculations. This provides a promising direction of using the coherent radiation
from subpicosecond electron bunches to develop a new high-intensity, far-infrared
light source. However, the way to produce coherent synchrotron radiation dose not
offer an easy and clean way to collect and manipulate the emitted radiation for ap-
plications using this radiation. As the electrons are moving along a curved path in
the dipole magnet, the emitted radiation changes its direction and sweeps across the
collecting optics along this path. This long curved emitting path extents the radia-
tion source size and increases the complexity of the optics for efficient light collection.
Besides, in order to have enough deflection strength on the electron beam, the size
of the dipole magnet used to generate the radiation can not be made compact. All
these undesirable features put drawbacks on the applicability of coherent synchrotron
radiation as an easy-to-use light source.

- On the other hand, coherent transition radiation, which will be discussed in this
chapter, has some advantages over coherent synchrotron radiation in the respect

of being a “user-friendly” light source. As the electron bunch moves from vacuum
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into matter or vice versa, coherent transition radiation is emitted from the point of
incidence. Since the radiation has a very well defined geometry of emission, the light
collection and manipulation optics becomes very simple. Furthermore, the device
to generate this radiation is simple and compact—for example, a metal foil held by
a metal ring. These features make coherent transition radiation an attractive light
source.

This chapter introduces coherent transition radiation emitted from subpicosecond
electron bunches and discusses the properties of this radiation. In order to character-
ize the spectrum of coherent transition radiation, a new autocorrelation method based
on a far-infrared Michelson interferometer has been developed at SUNSHINE. Using
this method, the spectrum of the coherent radiation emitted from subpicosecond elec-
tron bunches is measured for the first time. This method also yields an interesting
byproduct: a new subpicosecond bunch-length measuring system. Through the char-
acterization of the spectrum of coherent transition radiation and the measurement
of the electron bunch length, the production of subpicosecond electron bunches at
SUNSHINE was confirmed, and the possibility of using coherent transition radiation
as a high-intensity far-infrared light source is verified. This provides the foundation
for the next chapter.

Not only does this autocorrelation method have a great value to this thesis, but it
also plays an important role in the field of accelerator physics by providing a new and
effective way to measure subpicosecond electron bunch lengths in accelerators. Due
to the requirements for the next-generation particle colliders and light sources, the re-
duction of electron bunch length has become an interesting aspect in the development
of particle accelerators. Its progress greatly affects the design of next-generation syn-
chrotron light sources, future linear colliders, free-electron lasers, and high-intensity
coherent far-infrared light sources. These proposed future machines demand femtosec-

ond electron bunch lengths which can not be measured with any existing instrument,
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Figure 2.1: Transition radiation for the case of a perfect conductor. This case can
be viewed as the electron collides with its positive image charge. The arrow with a
dashed line indicates the direction of the emitted radiation.

for example, a streak camera. Hence, a bunch-length measuring system capable of
characterizing subpicosecond pulses such as this autocorrelation method will provide

a powerful tool in support of these developments.

2.1 Transition Radiation

Transition radiation is generated when an electron passes the interface of two media
of different dielectric constants. The sudden transition in the dielectric constants of
the media along the electron’s path causes a discontinuity in the electric field at the
interface. This discontinuity makes the electron radiate at the medium boundary,

and the radiation is called transition radiation. This phenomenon was first predicted
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by Ginsburg and Frank in 1946[22].

2.1.1 A Simple Picture

To understand this process, let us first consider a special case. As shown in Fig. 2.1,
an electron of velocity v moves from vacuum into a perfect conductor in a direction
normal to the interface. Since the metal is a perfect conductor, a positive image charge
of the electron with equal charge located at the same distance as the electron from
the metal-vacuum interface but on the opposite side to the electron can be introduced
to simulate the required boundary conditions without the presence of the metal. As
referred as method of images[23, Sec. 2.1], this method reduces the problem from
- complicated boundary-value problem into a simpler two-charged-particle collision
problem.

Hence, the solution to the radiation emitted during collisions can be directly ap-
plied to this transition radiation problem. The energy radiated per unit angular
frequency (w = 27v) per unit solid angle by N particles during the collision can be
expressed as[23, extended from Eq. (15.1)]

&£E 1 ’
dwd  4n2c

N . h . .
Z/% [an X (n X ﬁJ) e,w[t_ﬁ.rj(t)/c] dt (21)

J=1

where i is the unit vector of the direction of the radiation, g; is the charge of the j**
particle, 3, is the vector in the direction of the j** particle’s motion with velocity v;
and |B;| = B; = vj/c, cis the speed of light, and r;(¢) is the position vector of the jt*
particle at time ¢. Let us suppose that the frequencies w of the radiation that we are
interested in are much smaller than 1/7, where 7 is the duration of the collision. In
this limit (wr < 1, or w — 0), the exponential factor in Eq. (2.1) is equal to unity,

and the integrand is a perfect differential. The radiation at these low frequencies only
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depends on the initial and final velocities; hence, we have

. dE 1 i": B 4 x (8 x B;)
wb dwdfl ~ dnlc |2 JBi C | T "5 B,

where ,Bg-inm’l) and ﬁgﬁn“l) are the initial and final 3’s for the j** particle.

, (2.2)

For the system shown in Fig. 2.1, we have two particles: one electron of charge
@1 = —|e| with ﬁ&"‘““‘) = 3 and one image positron of charge ¢go = +|e| with ﬁ?"“i“‘) =
—f3, where e is the electronic charge. For both particles, Bl — o, Applying these

conditions to Eq. (2.2), we have

h Q€ _ 1 | —lelax(AxB) _+leldx(Ax[-B])[
w0 dwd® | dnte 1-4-8 1-#-[-g]
& |ax(fixp) ﬁx(r‘ix[-))2
" x| 1-4-8 1+h-0
€ 2ax (AxB) |
T 4rc|(l-a-B)1+a-B)| " (23)

By denoting § as the angle between i and —f [i.e., cos§ = i - (—B)], we can derive
the spectral energy density per solid angle for transition radiation as
?e _ei B?sin? §
dwdQ  72¢c(1— B2cos?h)?’

Since the collision time 7 is very short, this expression is valid for, but not limited

(2.4)

to, frequencies in the far-infrared regime.

On the other hand, when an electron emerges from a perfect conductor into vac-
uum, the problem can be treated as if the electron and its positive image charge
were created at the metal-vacuum interface. Both charges are accelerated form rest
to velocity v and traveling in opposite directions. By substituting appropriate initial
and final B’s into Eq. (2.2) for both particles, the angular spectral energy density can
be derived and shares the same formalism as described in Eq. (2.4) with the previous
case. Finally, for the case of oblique incidence, the energy density can be derived from
Eq. (2.2) with appropriate geometry for the electron and its image charge. However,

the derivation is out of the séope of this thesis.
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Figure 2.2: Transition radiation for the case of two different dielectric media. The
arrows with dashed lines indicate the direction of the emitted radiation in two media.

2.1.2 General Cases

The result of transition radiation using method of images is only valid for the case of
perfect or near perfect conductors. To calculate the radiation for the case of normal
dielectric materials, one has to solve the Maxwell’s equations with appropriate bound-
ary conditions. This problem has been solved before[24], and only results relevant to

this thesis are discussed in the following sections.

2.1.2.1 Normal Incidence on a Single Interface

When an electron of velocity v moves from one medium of dielectric constant &;
into another of dielectric constant e, in a direction normal to the interface as shown

in Fig. 2.2, the angular spectral energy density for backward transition radiation
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(radiated into the left-hand half-space in medium 1) is expressed as[24, Sec. 24]
d251 _ ezﬂz\/e_l SiIl2 01 COS2 01

dwdQ n2c
(82 — 61)(1 — ,3261 + ,3\/62 — & sin2 01)
(1 — B2 cos? 6;)(1 + ﬂ\/ez — g1 5in? 6;)(e2 cos by + \/6162 — e}sin’ 6;)
(2.5)

X

’

where 3 is defined as v/c, and the dielectric constants ¢; and e; are, in general,
complex numbers and functions of frequency. The angular spectral energy density
for forward transition radiation (radiated into the right-hand half-space in medium
2) can be obtained from Eq. (2.5) by swapping subscripts (i.e., 1 = 2) and replacing
B with —B. The frequency dependence of the radiation energy density is determined
by the frequency dependencies of the complex dielectric constants e;(w) and e;(w).
The radiation is polarized in the direction parallel to the radiation plane, which is
the plane containing the wave propagation vector and the normal to the interface.
The directions of polarization are circularly symmetric about the electron moving
direction.

This formula can be applied to any case for which the dielectric constants of the
materials are known in the frequency range of importance to the problem. One
interesting case is that for a perfect conductor, whose dielectric constant is infinitely
large (i.e., |e(w)| — oo, for all frequencies w). At this limit, Eq. (2.5) reduces to
Eq. (2.4). It is worth noticing that “good” conductors such as silver, gold, and
aluminum behave almost like perfect conductors in the far-infrared regime. This will

be discussed in Sec. 2.1.3.

2.1.2.2 Oblique Incidence on a Plate

Let us consider the most general case for transition radiation. As shown in Fig. 2.3,

an electron of velocity v penetrates a plate in vacuum of dielectric constant ¢ and
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Figure 2.3: Transition radiation for the case of oblique incidence on a plate. The
arrow with a dashed line indicates the direction of the total emitted radiation.

thickness a. It moves in the direction at an angle 9 to the normal of the plate surface.
The emitted transition radiation no longer has a single component of polarization with
respect to the radiation plane; instead, it has components parallel and perpendicular
to the plane. Before we show these components, let us choose the following Cartesian
coordinate system as shown in Fig. 2.3 with B in the zz plane, where 3 is the electron
motion vector and |B| = f = v/c: the direction normal to the plate surface as Z, the
direction of Z x B as ¥, and the direction of (2 x B) x % as %. Hence, the vectors 3

can be expressed as
B = BX+pB,¥+8.%
= PBsinypx+ Bcosy i, (2.6)

since 8, = 0.
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The parallel component of spectral angular energy density radiated into the right-
hand half-space (i,e., the forward direction) is[24, Sec. 25]

dzgil'lbrwnrd _ e2ﬂz2 C032 03
dwd 72 sin?4,
2
x e—1
(1= . cos 0. — BEaA( — o con b7 — B cost 0]
Bl 2
¢
X (23 + y)2e—i(wa/c):: _ (23 _ y)2ei(wa/c)z ’ (2.7)

Bl = (z+)(1 - B.cosb, + fuz)
X[(1 = B2 — Ba cos b, — B.z)sin? 8, + BB, cos e (/)
+ (z—y)(1 - B:cosb, — B,2)
x[(1 — B2 - Ba cos b, + B.z)sin? 0, — B,B. cos B,]"“*/)
— 2z[(1 - B.cos 8. + B.y)(1 — B2 — B. cos . )sin> 4,
+B.(Be cos 8, — sin® 6,)(B.2% + y — Bay cos B,)]e(wa/v)1-Becose) (9 g)

and
z=1/e—sin’d,, y=ccosh,. (2.9)

On the other hand, the perpendicular component of spectral angular energy density
radiated into the right-hand half-space is expressed as

P ara €8P cos? 8, cos? ,
dwdQ w2 sin? 4,
2
« e—1
\[(1 — Bz c086,)% — B222][(1 — B, cos 8,)2 — B2 cos? 4]
B} 2
¥

, (2.10)

(2) + y/€)2e—i(wa/c)z _ (27 — y/€)2ei(wa/c)z

where

B; = (z+ %)(1 — B. cos b, + B.x)e~*(we/)=
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+ (z- %)(1 — B, cos b, — B,x)e'“e/o)=
— 2z(1— B, cosd, + 5. cos 0z)e'i(”°/”‘)(1'ﬂ’ cosbe) (2.11)

The oscillatory exponential factors are the interference effects caused by the radiation
emitted from both interfaces. When the thickness is reduced to zero (¢ — 0), all
radiation components vanish since the interference is destructive.

The direction of the emitted radiation for forward transition radiation is described

by the direction cosines defined with respect to the axes z, y, and z:

cosf, = siné cosg,
cosf, = sind sing, (2.12)
cosf, = coséb,

where # is the angle between the wave propagation vector and the +2 axis, and ¢ is
the azimuthal angle defined on the zy plane with respect to the +z axis.

Similarly, the two components of spectral angular energy density for radiation
emitted into the left-hand half-space (i.e., the backward direction) can be obtained
from these equations simply by replacing 3 with —@3 for all corresponding components.
For the direction of backward radiation, the direction cosines are still expressed as
Eq.' (2.12), however, with respect to the —z, y, and —z axes with 4, the angle between
the wave propagation vector and the —z axis, and ¢, the azimuthal angle defined on
the zy plane with respect to —z axis.

If the plate is a perfect conductor (¢ — o0), the two components of the spectral
angular energy density for the forward radiation is only emitted from the metal-to-

vacuum interface and can be simplified as[24, Sec. 25]

A€ €207 cos? Y | sin@ — 3 cos ¢ sin ¢ 1° (2.13)
dwdQ w2¢  [(1— Bsinfcos #sinp)? — B2 cos? § cos? | )

A& ara _ e?B? cos?y [ B cos 8 sin ¢ sin 1 1? (2.14)
dwdQ nlc (1 —Bsinfcos psin)? — B2cos?fcos?yp|
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Similarly, the expressions of energy density for the backward radiation is only emitted
by the vacuum-to-metal interface and is derived by replacing S with —3 in the above
equations. For normal incidence (¢ = 0), the parallel components reduces to Eq. (2.4),

while the perpendicular components vanish for both forward and backward radiation.

2.1.3 Dielectric Constants of Metals

As described in the previous section, the frequency dependency of transition radiation
is determined by that of the complex dielectric constants of participating media. Only
when the dielectric constants in the frequency range of interest are known theoretically
or experimentally, the calculation of transition radiation will become possible. In
-this thesis, we are interested in radiation in the far-infrared regime emitted from
conducting metal foils such as silver, gold, and aluminum placed in vacuum or air
(€air = 1). So it is necessary to know the dielectric constants of these well conducting
metals in the far-infrared regime.

By assuming that the conduction electrons in metals form a free-electron gas, the
Drude model[25,26] gives a very good agreement between the experimental results of
reflectance of silver, gold, and aluminum and the theoretical values using the predicted
dielectric constants in the far-infrared regime[27-29]. By modeling the conduction
electrons as damped harmonic oscillators driven by the external electromagnetic field,
the complex dielectric constant at angular frequency w (w = 27v) is obtained, in CGS
unit, as[28,29]

ew)=1- —”T— + de, (2.15)

where (1, is the plasma frequency, é¢ is a small contribution from “bound-electron”
absorptions, and 7 is the relaxation time, which is related to the damping constant
7 by 7 = 1/4. Traditionally, the parameters chosen for the Drude model are the dc

conductivity o(0) and the relaxation constant 7. The plasma frequency can then be
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Table 2.1: Parameters used in the Drude model for the calculation of dielectric con-
stants of silver, gold, and aluminum.

Metal o(0) (sec™) T (sec)
Silver (Ag) 5.41 x 10'7  3.65 x 10714
Gold (Au) 3.68 x 1017 2.46 x 10~1¢

Aluminum (Al) 3.18 x 10!7 8.01 x 10715
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Figure 2.4: The magnitudes of the dielectric constants for silver (solid), gold (dashed),
and aluminum (dotted line) for frequencies in the far-infrared regime.

expressed as

Q2 = 4no(0)/r. (2.16)

The contribution of ¢ is small in the far-infrared regime and is ignored here (i.e.,
6c = 0). The parameters used to calculate the dielectric constants of silver, gold, and
aluminum are listed in Table 2.1[27].

Using the listed parameters, the absolute values of the dielectric constants for
the three “good” conducting metals are calculated for frequencies in the far-infrared

regime and shown in Fig. 2.4. Since the magnitudes of the dielectric constants for
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Figure 2.5: The angular distribution of single-electron transition radiation emitted
from a perfect conductor for the case of normal incidence. The electron energies
shown here are v = /2 (dotted), 5 (dash-dotted), and 10 (solid line).

these good conductors are at least four orders of magnitude above unity in the far-
infrared regime, the numerical difference between the energy density calculated for
perfect conductors [using Eq. (2.4)] and real conductors [using Eqgs. (2.5) and (2.15)] is
negligible. Hence, the formulas for the perfect conductor case can be used to simplify

the calculations for good conductors without loosing significance.

2.2 Properties of Transition Radiation

We have introduced the formalism for transition radiation emitted from different
cases. Since the good conductors such as silver, gold, and aluminum behave like a per-

fect conductor in the production of transition radiation in the far-infrared regime, we
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will, for simplicity, use the formulas for a perfect conductor [i.e., Eqs. (2.4) and (2.13)]

to discuss the properties of transition radiation.

2.2.1 The Radiation Pattern

The first property of transition radiation we will explore is the radiation pattern.
As expressed in Eq. (2.4) for the normal incident case, the radiation field has a
zero at § = 0 and a maximum of e?y?/(47?B%c) at sin§ = 1/(B7), where 7 is the
Lorentz factor with 4 = 1/4/1 — B%. The radiation has azimuthal symmetry, and its ¢
dependence is shown in Fig. 2.5. For v < +/2, the maximum is located at § = /2. As
the energy of the electron increases (i.e., v increases), this maximum moves toward
-the forward direction (@ = 0), and its amplitude increases quadratically with 4. For
a relativistic electron (y > 1), this maximum is located at the angle § ~ 1/4 with
an amplitude of e?y2/4x%¢c. Both forward and backward transition radiation have the
same angular distribution.

For the case of oblique incidence, transition radiation in both directions have
similar angular distributions as that for the normal incident case. However, the
angular distributions of the radiation in both directions have slight asymmetry. As
shown in Fig. 2.6, the radiation lobe closer to the z axis (the ¢ > 0 side) is slightly
smaller than that at larger angle side (closer to the z axis or the ¢ < 0 side) for the
oblique incident case when referred to the geometry in Fig. 2.3. The average of these
two lobes is about the same height as the lobes for the normal incident case. At larger
electron energy this asymmetry is reduced, and the radiation distribution is closer to
that for the normal incident case.

The orientations of the radiation lobes are also different in both normal and oblique
incident cases. The radiation lobes for the normal incident case are symmetrically
distributed around the direction of electron motion (z axis). For the oblique incident

case, as described in Eq. (2.13) and shown in Fig. 2.7, the forward radiation lobes
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Figure 2.6: The angular distribution of transition radiation emitted from a perfect
conductor for the cases of normal (1) = 0°, dashed) and oblique (¢ = 30°, solid lines)
incidence in the forward direction. The electron energies shown here are ¥ = 10 and
60. The angle ¢ is defined with respect to the directions of electron motion, i.e.,
¢ = 0 — ¢ when referred to the geometry in Fig. 2.3. Positive ¢ means the angle is in
the counterclockwise side of 1, while negative ¢ means the angle is in the clockwise
side of 9.
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270

Figure 2.7: The radiation lobes for forward and backward transition radiation in the
zz plane for (a) normal (¢ = 0) and (b) oblique () = =/6 = 30°) incidence. The
radiation lobes are plotted in a polar coordinate using the angle of radiation (8 in
units of degree) and the relative amplitude to the maximum at that angle. The arrows
indicate the direction of electron motion expressed as the angle ¢ with respect to the
+2z axis (180° — 0° line). The plate is located on the z axis (270° — 90° line) when
referred to the geometry in Fig. 2.3. The electron energy is set to y = 10.

are emitted into the direction of electron motion B at an angle v to the +2 axis;
however, the backward radiation lobes in this case are emitted in the direction at an
angle T — 1 to the +2z axis. These directions are the same as those of transmitted
(forward) and reflected (backward) waves from the wave incident in the direction of
electron motion. The asymmetry of the radiation lobes for oblique incidence is also
clear in the figure, which shows that the lobes closer to the 2 axis (180° — 0° line)
are smaller than those closer to the z axis (270° — 90° line) when referred to the

geometry in Fig. 2.3.



2.2. PROPERTIES OF TRANSITION RADIATION 47

5.0E-36 —

) -

D aoE3s |

N -

: n

S 3.0E-36 —

o) B

> -

<) -

8 {

S 20536 [

g |

S -

S 1.0E-36 —

n - -
- > B

0.0E+0 I/VIJ_JJL.I—[-/'I |Jlll-[l[—"‘—l | ]llllll | | |J[HII

1 10 100 1000 10000

Y

Figure 2.8: Collected transition radiation energy for a single electron as a function of
electron energy. © is the acceptance angle of the collecting optics.

2.2.2 Collection Efficiency

As described in the previous section, transition radiation from an electron originates
at the point of incidence and is radiated into all directions with a special radiation
pattern. In this section, we will study the collection efficiency of the radiation with
respect to the energy of the electron and the angular acceptance. To simplify the
discussion, only the radiation from a perfect conductor for normal incidence will be
considered here. Assuming that the angular acceptance of the collecting optics is ©,
the energy collected within that angle can be expressed, using Eq. (2.4), as

2 e d2¢ e? 1
'/(; d¢/o dwd® sinfdf = 2rfBc 1 — 2 cos? @

x {(1 +A%)(1 - B*cos* @) In 8 :ngg:ggg J—rgi
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Figure 2.9: Collection efficiency as a function of electron energy + for acceptance
angles © as multiples of 1/4.

—2B8(1 — cos ©)(1 + A% cos® @)} (2.17)
Consequently, when the acceptance angle is w/2, the total energy emitted becomes
d€& 21r /2 dzg .
o = j / q Sin 6de
)m(“ﬂ) —2ﬂ] (2.18)

which only depends on the energy of the electron. The collection efficiency for the

acceptance angle O is defined by the ratio of Eq. (2.17) to Eq. (2.18). For a relativistic
electron (8 ~ 1 and v >> 1), the energy collected is proportional to In~ since =5~
at this limit. This logarithmic dependence on electron energy is demonstrated in

Fig. 2.8 for different acceptance angles. The dependence starts approximately at
v7~1/0.
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Figure 2.10: Collection efficiency as a function of electron energy + for fixed accep-
tance angles ©.

At first glance of Fig. 2.5, it seems to be reasonable to hypothesize that larger
portions of radiation energy will be collimated into the ® = 1/7 radiation cone at
larger electron energy since the maximum energy density increases proportionally to
4%. However, unlike synchrotron radiation, this collimation of energy into the forward
direction at large electron energy is not true for transition radiation. Although the
maximum increases like 42, the width of the cone reduces like 1/4. As a result, the
angular integrated energy within a cone of ® = 1/gamma is about a constant portion
of the total radiated energy. As shown in Fig. 2.9, the collection efficiency within a
© = 1/ cone is about constant (~ 2%), and most of the energy (~ 98%) is located
outside this cone for large electron energies (y > 10). For smaller electron energies,

the collection efficiency increases because the angle ® = 1/ is getting closer to /2,
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Figure 2.11: Collection efficiency as a function of acceptance angle @ at different
electron energies +.

not the result of better collimation.

Since the radiated energy of transition radiation is not concentrated within an
angle of, say, 1/7, it is worth investigating the collection efficiency for different ac-
ceptance angles and electron energies in order to design effective collection system
of the radiation. The collection efficiency as a function of electron energy at fixed
acceptance angles is shown in Fig. 2.10. The efficiency is negligible for electron ener-
gies v smaller than about 1/0, where O is the acceptance angle. For v greater than
about 1/0, the efficiency starts to increase with electron energy, however, at very
low rate. For example, for the acceptance angle as large as 0.5rad, the collection

efficiency is about 46% at v = 10, 72% at 4 = 100, and 85% at 4 = 10000! On the
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other hand, the collection efficiency as a function of acceptance angle for fixed elec-
tron energies is shown in Fig. 2.11. The dependence on the acceptance angle varies
with electron energy. At smaller energy (say, v < 5), the efficiency slowly increases
with the acceptance angle; however, at larger energy (say, ¥ > 30), the efficiency first
increases quickly as the acceptance angle increases, then slowly steps its way to full
100%. For example, at 4 = 60, the collection efficiency is about 46% at acceptance

angle © = 0.2rad, 64% at © = 0.4rad, 80% at ® = 0.8rad, and 92% at © = 1.2rad.

2.2.3 The Polarization of Transition Radiation

Polarization of transition radiation is an important property of the radiation when
considering the superposition of transition radiation from two or more radiation
sources. Detailed descriptions of polarization components for normal and oblique
incident cases have been discussed in Sec. 2.1.2. However, it would be useful if one
can obtain intuition from a simple picture. In this section, we will discuss how to use
the simplified picture described in Sec. 2.1.1 to derive the polarization components.
In the two-particle collision model introduced in Sec. 2.1.1 for the case that the
electron is moving from vacuum into the conductor, the polarization of the radiating
electric field emitted in the direction of f is, from Eq. (2.2), in the direction of
g; i x (A X ,Bg-initi“l)) for the j** particle since ,Bg-ﬁml) = 0. For the electron, we have
¢1 = —|e| and ﬁ&i““‘“l) = B, and for its image charge, ¢» = +|e| and ﬁ&“‘“i‘” = -0.
Hence, the polarization of the radiating electric field is in the direction of —fi x (i x 3)
for the case of backward transition radiation. The sum of electric fields in all backward
directions will produce an electric field for the deceleration of both charges. On the
other hand, in the two-particle creation model in Sec. 2.1.1 for the case that the
electron is moving from the conductor into vacuum, the polarization of the radiating
electric field emitted in the direction of & is, from Eq. (2.2), in the direction of

—g; i x (i X ,Bgﬁn‘l)) for the j** particle since ﬁg-inm‘l) = 0. With appropriate conditions
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Figure 2.12: The polarization of transition radiation for normal incidence. The arrows
with dashed line indicate the direction of the radiating rays. The hollow-headed
arrows are the polarization components of the radiation. The three-dimensional solid
arrows are the corresponding acceleration/deceleration electric fields acting on the
electron. Bold arrows are the direction of the electron motion. Shown in the left is
the relation between the radiation plane (white) and the metal surface (shaded). In
the right, only the radiation plane is shown, and the metal is shown as a bold line.

for ,Bg-ﬁml), the polarization of the radiating electric field is in the direction of fix (fix3)
for the case of forward transition radiation. The sum of electric fields in all forward
directions will produce an electric field for the acceleration of both charges.

The polarization of transition radiation for the case of normal incidence is shown
in Fig. 2.12. The radiation has only one component which is parallel to the radiation
plane (shown as the white plane) because the acceleration/deceleration electric fields
acting on the electron are in the plane. The polarization components for forward and
backward transition radiation in the same radiation plane are mirror images of each
other. The polarization components for all the radiation planes are symmetric about
the axis of incidence (direction of the electron motion) for both forward and back-
ward radiation. On the other hand, the polarization of the radiation for the oblique
incident case shown in Fig. 2.13 has two components: parallel and perpendicular to

the radiation plane. This is due to the fact that the acceleration/deceleration electric
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Figure 2.13: The polarization of transition radiation for oblique incidence. All the
symbol are the same as those in Fig. 2.12.

fields acting on the electron are not in the plane. The polarization components for
forward and backward transition radiation in the same radiation plane are, in this
case, symmetric about the point of incidence, instead of mirror images. If the polar-
ization components of all radiation planes are considered, the polarization vectors are
actually symmetric about the direction of the electron motion (in the ¢ direction as
referred to Fig. 2.7) for the forward radiation and about the axis of “reflection” (in

the 7 — 1) direction as referred to Fig. 2.7) for the backward one.

2.3 Observation of Coherent Transition Radiation

Unlike synchrotron radiation, the production of transition radiation is not an un-
avoidable radiating process in accelerators, and there is no concern of electrons loos-
ing energy through the emission of coherent transition radiation in accelerators since
p'articles in accelerators will not encounter such radiating structure. Hence, the study

of coherent transition radiation did not become an urgent and major interest in the
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past. However, the study of incoherent transition radiation has become one of the

major topics in the design of high-energy particle detectors historically[30].

2.3.1 Previous Observations

Ever since Ginsburg and Frank in 1946 predicted the production of transition ra-
diation when charged particles pass through the interface of two media of different
dielectric constants, most of the historical experiments were done to characterize in-
coherent transition radiation in the range from x-rays to visible lights[24]. These
experiments showed very good agreement with transition radiation theory. The use
of this radiation in different wavelength regimes has also been investigated. In the x-
Tay regime, transition radiation is used in particle detectors to measure the energy of
particles through stacked transition radiators[31,32]. The possibility of using stacked
radiators to produce intense x-rays for industrial use has also been studied[33]. In
the visible-light regime, optical transition radiation is used to measure the transverse
emittance of electron beams[34].

Although there were many theoretical papers and experimental reports on incoher-
ent transition radiation in the past, the observation of coherent transition radiation
has not been reported until recently when the accelerator technology became mature
enough to produce short electron bunches, and the investigation of coherent radiation
of different forms became a new and interesting direction in the field of accelerator
physics. Following the success in the observation of coherent synchrotron radiation,
coherent transition radiation became the next topic of interest to the groups who
have observed coherent synchrotron radiation. In 1991, Happek et al. made the first
observation of coherent transition radiation from about 2-mm-long electron bunches
of 300 MeV energy at the Cornell Electron Storage Ring injector linac[35], and later in

1992 Shibata et al. also observed coherent transition radiation from 42-MeV electron
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Figure 2.14: The “radiator-mirror” scheme for transition radiation designed to ex-
amine the “formation” of transition radiation; however, it actually examines the
interference of the radiation from two transition radiators.

bunches at Kyoto University[36]. Both groups generated radiation in the millimeter-
wave regime and confirmed the quadratic dependence of intensity on the beam current.
Interestingly, both experiments used the “radiator-mirror” scheme as shown in
Fig. 2.14 to examine the “formation” of forward transition radiation. Introduced by
early Russian theoreticians in the theory of transition radiation, “formation length”
is the distance measured along the particle trajectory for which the phase difference
between the forward transition radiation field and the particle self-field is just equal
to one radian[31,32,34,37]. If one measures the total intensity (radiation field plus
particle field) along the particle trajectory at a distance L away from the radiator,
the interference term of the two fields will become negligible (i.e., two fields are
inicoherent) when L is much greater then the formation length Z; defined as

Be

%= w(1 — Bcosb)’

(2.19)
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where 6 is the angle of the radiation with respect to the particle’s direction. This
only describes the interference of the radiation and the particle field; however, it
does not imply any sort of distance necessary for transition radiation to be “formed.”
Researchers first designed this “radiator-mirror” scheme in the hope to use the mirror
placed downstream of the radiator to obstruct the formation of transition radiation
and reflect it for the observation of this formation process. This later was understood
as the interference between the forward transition radiation emitted by the upstream
radiator and the backward one emitted from the mirror. As shown in Fig. 2.14, the
phase difference between the radiation emitted from the mirror (M) and the radiation
emitted from the radiator (R) and, later, reflected by the mirror due to the optical
path difference is

L Lcosé
0 = o(z-17)
_ wL(1—Bcosh)
= Be
= %, (2.20)

where L is the distance between the radiator and the mirror, 4 is the angle between
the radiation and the electron motion, and Z has the same expression as the formation
length Zs in Eq. (2.19). The coincidence of Z in this derivation and the formation
length Z¢ is due to the relative velocity between the radiation (traveling with speed
c) and the particle (moving with speed v = B¢). The total intensity measured from

this scheme is the coherent sum of the two radiated electric fields

2
I o B+ B

= |Ewm/[’|1 - €??
\ L
— 9| B [l—cos (E)] (2.21)

where the minus sign for E&'}Q is the additional = phase shift due to reflection from

the mirror. This is what the two groups have observed. No measurement on the
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Figure 2.15: Experimental setup for coherent transition radiation measurements.

radiation emitted from a single radiator has been done in these experiments. In
the experiments conducted at SUNSHINE discussed in the following section, this

confusion was avoided by simply observing backward transition radiation.

2.3.2 Observation at SUNSHINE

After the observation of coherent synchrotron radiation at SUNSHINE which con-
firmed the generation of subpicosecond electron bunches, a more detailed study of
backward coherent transition radiation emitted from a single radiator and the possi-
bility to use this light generating process as a high-intensity far-infrared light source
has been conducted here at Stanford University. Coherent transition radiation is gen-

erated when the 30-MeV electron beam of subpicosecond bunch length passes through
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Figure 2.16: Bolometer signal of coherent transition radiation as a function of electron
beam current.

a 25.4-pm-thick aluminum (Al) foil of 20mm diameter shown in Fig. 2.15[16]. This
foil supported by a copper ring using the drumhead stretching technique is oriented at
a 45° angle to the beam direction so that backward transition radiation is emitted at
a right angle to the electron direction and is extracted from vacuum into air through
a 1.25-mm-thick high-density polyethylene (HDPE) window of 19 mm diameter and
87% transmission in the far-infrared regime. Adjacent to the downstream side of the
aluminum foil is a screen coated with zinc sulfide (ZnS) to monitor and optimize the
electron beam size as well as its position. This additional monitoring foil will not af-
fect the measurement of backward transition radiation emitted from the radiator foil.
A room-temperature pyroelectric bolometer collects the radiation emitted through

the window and a copper light cone with an acceptance angle of ® = 113 mrad.
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2.3.2.1 Quadratic Dependence on the Electron Current

In an analogy to coherent synchrotron radiation, the intensity of coherent transition
radiation would be expected to scale with the square of the number of electrons in the
bunch. This is verified by measuring the energy of the collected backward coherent
transition radiation from each macro-pulse with the bolometer as a function of the
electron beam current. As discussed in Sec. 1.3.2.1, the electron current is varied
by closing the high energy filter in the alpha magnet to scrape off some electrons
while keeping the low energy filter fixed. In this way, the effect on the electron bunch
length is minimized. With the same reason described in Sec. 1.3.2.1, the measured
bolometer signal is shown in Fig. 2.16[16] as a function of 3 N?, which gives the
closest approximation to the sum of the square of the number of electrons in each
bunch. The measured intensity shows the expected quadratic dependence on the
electron charges for almost 3 orders of magnitude. Small deviations from the ideal

quadratic scaling are due to unavoidable variations of bunch length by the method of

changing the electron beam current described in Sec. 1.3.2.1.

2.3.2.2 Total Energy Measurement

The total collected energy of coherent transition radiation from each macro-pulse is
measured as[16]

382 pJ per macro-pulse

with an rms electron intensity of 3.08 x 102 electrons per bunch. This measurement
has excluded the possibility of contributions from other sources such as wake fields,
ionization radiation, and synchrotron radiation from upstream steering magnets[16].
In order to compare this result with theory, three factors have to be considered: the
87% transmission efficiency of the HDPE window, 36% collection efficiency through
113 mrad acceptance angle [cf., Eqs. (2.17), (2.18), and Fig. 2.11], and the varying
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bunch length across the macro-pulse described in Sec. 1.3.2.2. When these factors
are taken into account in the theoretical calculation and using Egs. (1.10), (2.7),
(2.10), and (2.15) with Table 2.1, and the assumption of Gaussian electron bunch
distribution, the calculated total energy from a macro-pulse accepted by the bolometer
with an overall 31% (= 36% x 87%) collection efficiency is[16]

487 J per macro-pulse.

This calculated result agrees with the measured one within a 22% difference. Cal-
culations further indicates that the total radiation intensity is equivalent to that
emitted from 2856 identical Gaussian electron bunches with equivalent bunch length
pf 0.483 ps and beam intensity of 3.08 x 102 electrons in each bunch. Each bunch
radiates a total energy of about 0.544 uJ, and about 0.171 uJ of the radiated energy
is accepted by the bolometer through the HDPE window and the light cone.

2.4 Spectral Characterization and Bunch-length

Measurements

The characterization of coherent transition radiation is closely related to the mea-
surement of the electron bunch distribution, or equivalently the “bunch-length” mea-
surement. Since the spectrum of coherent radiation from any radiating process is
determined by both the Fourier transform of the bunch distribution and the intrinsic
single-electron spectrum of the radiating process, the measurement of bunch dis-
tribution plays a very important role in the characterization of coherent radiation.
Especially for transition radiation, the single-electron spectrum has no frequency de-
pendence in the far-infrared regime. The spectrum of coherent transition radiation,
hence, can be characterized by the bunch-length measurement. On the other hand,

if the spectrum of coherent transition radiation is measured, the bunch distribution
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can also be deduced from this frequency information.

2.4.1 Time-domain versus Frequency-domain Measurement

To measure the electron bunch length, it is intuitive to use a time-resolved method,
which resolves the beam-generated signal in the time domain. However, when the
bunch length is in the sub-picosecond regime, it is beyond the resolution of time-
resolved methods developed so far. In addition, the complexity and the cost of hard-
ware for fast time-resolved methods such as a streak camera increase to a great extent
as the resolution approaches one picosecond. Therefore, it is necessary to develop a
new bunch-length measuring technique with femtosecond resolving power.

As an alternative, a frequency-resolved technique extracts the frequency content of
a beam-generated signal. From this frequency information, the particle distribution
can be deduced. Unlike time-resolved techniques, it does not require fast processing
speed and complex hardware. Since the necessary broad bandwidth required for short
pulses can be achieved by optical methods, a subpicosecond time resolution can be
obtained. This is a well-known technique in the characterization of femtosecond laser
pulses[38] and has been suggested for subpicosecond bunch-length measurements|39].
The method utilizes a far-infrared Michelson interferometer to measure coherent tran-
sition radiation emitted at wavelengths longer than or equal to the bunch length via
optical autocorrelation. The bunch length can be determined by analyzing the mea-
sured frequency information.

At the SUNSHINE facility, we have developed a new bunch-length measuring sys-
tem based on this frequency-resolved method. Using subpicosecond electron pulses
generated at SUNSHINE(16,17], we have verified this technique[17,18] and developed
it into a simple, low-cost instrument for subpicosecond bunch-length measurement[40].
In the following sections, we will describe the principle of this autocorrelation tech-

nique, analysis and interpretétion of bunch-length measurements, and experimental
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results. Through this frequency-resolved bunch-length measurement, the spectrum of
coherent transition radiation is characterized, which provides the foundation for the

study of stimulated coherent transition radiation.

2.4.2 Remarks on the Bunch Form Factor

As described in Sec. 1.1.2, the most effective way to measure the longitudinal bunch
distribution is through the measurement of coherent radiation emitted in the forward
direction'. In this direction, the transverse bunch distribution does not contribute
to the bunch form factor for an azimuthally symmetric beam. However, it is worth
noticing that transition radiation does not produce radiation in the forward direction
{6 = 0). Hence, in order to use transition radiation to measure the bunch length,
observing the radiation in an off-axis direction (# # 0) is necessary. In the case of
an off-axis observation, the transverse bunch distribution will contribute to the form
factor even for a transversely symmetric beam.

Minimizing transverse contribution is important for clean sub-picosecond bunch-
length measurements. For example, for a Gaussian bunch distribution with equivalent
length v/27 0, and equivalent diameter v/27 o, defined in Eqs. (1.18) and (1.23),
the off-axis bunch form factor f(v;8) in Eq. (1.24) shows an apparent equivalent
length of v/27 (0, cos 6 + o, sin §) when the bunch is observed at an angle 4. In the
forward direction (¢ = 0), the transverse contribution vanishes, and the equivalent
length reduces to v/27o,. However, for large angles or big transverse beam sizes,
the transverse contribution will result in an apparent bunch length measurement

[V27 (0. cos § + o, sin §)] that is longer than the actual one (/27 o). This transverse

1The forward direction, here, refers to the direction of the axis of symmetry for the radiation. For
a general oblique incident case as shown in Fig. 2.3, the forward direction is defined as the direction
of electron motion (in the direction of ¥) for forward transition radiation, and the direction of
“reflection” (in the direction of # — /) for backward transition radiation. In the following discussions,
the angle  is defined with respect to this forward direction.
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contribution, however, can be ignored if the condition
o,8in0 < o, cosd

or, equivalently,
op,tanf < o, (2.22)

is satisfied. On the other hand, for a cylindrical slug of beam with radius ¢, and length
20, defined in Eqgs. (1.16) and (1.21), the transverse contribution can be ignored if the
first lobe of J1(z)/z from the transverse contribution in Eq. (1.22) contains most part
of sin(z)/z from the longitudinal contribution in the same equation. This condition

can be expressed as

c ca
Yong = 57 < Vit =

20, cos § 270,sin 6’

1
where ul(ozg

the first zero of Jy(z)/z with Ji(a ~ 3.8317) = 0. It can be further simplified as

is the frequency at the first zero of sin(z)/z, and ut(,lzn is the frequency at

mo,tan/3.8317 < o,. (2.23)

Both conditions in Eqgs. (2.22) and (2.23) show that small transverse beam size at
the radiation source point is essential in reducing the transverse contribution. Such
condition is assumed in the following analysis and is automatically obtained when
the beam conditions are optimized in experiments. Hence, good focusing to produce
small transverse beam size and a reasonable angular acceptance for the detector is

crucial for accurate sub-picosecond bunch-length measurements.
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Figure 2.17: Schematic diagram of a Michelson interferometer designed for bunch-
length measurement.

2.5 Autocorrelation Bunch-length Measuring

Method

As a frequency-resolved method, this method uses a far-infrared Michelson interfer-
ometer to measure the spectrum of coherent transition radiation via optical autocor-
relation. Coherent transition radiation emitted by electron pulses carries the infor-
mation of bunch distribution in its frequency content. By analyzing the frequency

information, the bunch length can be derived.

2.5.1 Michelson Interferometer

Since the spectrum of coherent transition radiation emitted by subpicosecond electron

bunches is in the far-infrared regime, a far-infrared Michelson interferometer is used
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to measure the spectrum via optical autocorrelation, and the bunch length can be
deduced from the autocorrelation measurement. A Michelson interferometer used
to measure the bunch length is shown schematically in Fig. 2.17. It consists of a
beam splitter, a fixed and a movable mirror, and a detector. When light enters the
Michelson interferometer, the beam splitter splits its amplitude into two mirror arms.
As these two rays are reflected from the mirrors, they are recombined at the beam

splitter and sent into the detector.

2.5.1.1 Working Principle

To see how this interferometer can be used to measure the bunch length, let us first
assume the beam splitter is “ideal”. An ideal beam splitter has constant amplitude
reflection (R) and transmission (T') coefficients over all frequencies, which satisfy
|R|? = |T|? = 1/2. As shown in Fig. 2.17, for an incoming light pulse of electric
field E with intensity proportional to |E|?, the light pulse split by the beam splitter
and reflected by the fixed mirror has a field amplitude of T(RE) when it reaches
the detector; on the other hand, the light pulse reflected by the movable mirror
has an amplitude of R(TE) at the detector. Note that perfect reflection on the
mirrors is assumed. At zero optical path difference, the pulses completely overlap
at the detector, and the total intensity reaches the maximum |R(TE) + T(RE)|* =
4|RT*|E|* = |E|*>. Al the incident energy goes into the detector. As the path
difference increases but is still shorter than the bunch length, the two pulses overlap
partially, and the total intensity decreases. Part of the incident energy now goes
back to the source. When the path difference of two arms is larger than the bunch
length, the two pulses are totally separated in time, and the resulting intensity at the
detector is |R(T'E)|* + |T(RE)|? = 2|RT|?|E|* = |E|?*/2. Only half of the incident
energy goes into the detector, while the other half goes back to the source. The

intensity is constant over all path differences greater than the bunch length and is
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called the baseline. The variation of intensity about the baseline as a function of
optical path difference is defined as the interferogram. Therefore, the width of the

peak in the interferogram can be used to estimate the bunch length.

2.5.1.2 Energy Conservation in the Interferometer

Since the interferometer does not produce radiation, the conservation of radiation
energy is important. This energy conservation requirement, as we will see, implies
a very important property of the beam splitter. To show this, let us assume the
amplitude reflection and transmission coefficients at frequency v are two complex
quantities, i.e.,

R = |R|e*= (2.24)
T = |T|e*=. (2.25)

A lossless beam splitter will split the incident radiation energy into a reflected and a

transmitted part, and energy conservation requires
|R* + |T|* = 1. (2.26)

As shown in Fig. 2.17 and stated in the previous section, the intensity going into the
detector at zero path difference is |R(T'E) + T(RE)|?, while the intensity going back
to the source at this point is |T(TE)+ R(RE)|?. The sum of these two intensity has
to be equal to that of the incident radiation |E|?; hence, it implies that

|2RT)? + |R* + T?| = 1. (2.27)
By expanding the above equation and using Egs. (2.24), (2.25), and (2.26), we have

1 = 4|RP|T|®+ |R|* + |T|* + 2Re(RT*)?
2(BPIT + (IBI® + |T?)? + 2Re [| R |T ?e*(n-0r)]

= 1+ 2|RPT|*[1 + cos 2(6r — 67)]. (2.28)
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Solving this equation, we obtain the following condition for energy conservation
cos2(fgr — br) = —1. (2.29)

Therefore, the energy conservation requires that the angular difference between R

and T should be an odd integral multiple of 7/2, i.e.,
s
Op — b7 = 5(2777, + 1), (2.30)

where m is an integer.

On the other hand, if the beam splitter’s amplitude reflection and transmission
coeflicients expressed in Eqgs. (2.24) and (2.25) have the angular relation described
in Eq. (2.30) at angular frequency w = 27v, the sum of the intensity going into the
detector and the source at path difference § becomes

2

IT(RE) + R(TE)e“"*"S/c 2 + lR(RE) n T(TE)e_i“"s/c

= 2|RPITP|E*[1 + cos(wd/c)] + |RI*|E[* + |T|*| E|*
+2|R|?|T|?|E|? cos(20g — 207 + wé/c)

(IR + [TI*)*|E* + 2| RI*|T|*| E|*{cos(wb/c) + cos(2m + L)r + wb/c]}
= |E[, (2.31)

where m is an integer. This is equal to the incident radiation energy. Hence, the
angular requirement on the amplitude reflection and transmission coefficients of the
beam splitter in Eq. (2.30) is a sufficient and necessary condition for energy conser-
vation in the interferometer. This condition is met in the Michelson interferometer

with a realistic beam splitter as will be discussed in Sec. 2.5.2.

2,5.1.3 The Interferogram and the Form Factor

The interferogram is obtained by measuring the detector signal as a function of the

path difference in the two arms. The measured energy of the recombined radiation
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pulses at the detector can be expressed in the time domain with an additional time

delay 6/c for the movable arm as

1(6) /_ :” ITRE(t) + RTE(t + g)’zdt
= 2T Re [ " BB (¢ + g)dt +2|RTY? | CIEQP A,  (232)

where 4 is the optical path difference and ¢ the speed of light. Alternatively, a

similar expression can be obtained in the frequency domain by adding an extra phase

—iwb /e

difference e to the radiation from the movable arm at angular frequency w = 27v.

Thus, the total energy measured at the detector is expressed as

4+ - - .
1(6) / ITRE(w) + RT E(w)e*/""dw

+o0 ~ . +oo0 -
- 2Re/ |RT|?|E(w)[?e=*°dw + 2 / |RT]?|E(w)[?dw, (2.33)

Although the two expressions for I(6) in Egs. (2.32) and (2.33) look different, they

are related by the Fourier transform

E(w) = E(t)e™!dt. (2.34)

1 /+°°
v27l' —oo
The baseline is defined as the intensity at § — +o00, where the two pulses are totally
separated; hence, we have

4+
2| RT|? / |E(t)?dt (time domain),

o (2.35)

Too ox +oo -
2 / |RT|?|E(w)|*dw (frequency domain).

By definition, the interferogram can be written as

S©6) = I(6) - I

+o0
2|RT|? Re/ Et)E*(t + g)dt (time domain),
oo P | (2.36)
2 Re / - |RT|*|E(w)|?e*/°dw (frequency domain).
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Therefore, the interferogram S(§) is the autocorrelation of the incident light pulse
(cf., the time domain part), and its Fourier transform is the power spectrum of the

pulse (cf., the frequency domain part). Solving for |E(w)|? in Eq. (2.36) yields

- 1 +oo0 .
|E(w)]? « TR /_ _ S(6)e*leas, (2.37)

where |E(w)|? = |E(~w)|? since E(t) is a real function. Using Eq. (1.10) and the

relation Io.a(v) o |E(27v))|?, the bunch form factor can be obtained from

s 1 1 teo i2xvbfc 1o
) & 7 [ T /_ T S(@)ermds 1), (238)

Hence, the interferogram contains the frequency spectrum of coherent transition ra-

diation and can be used to derive the bunch length.

2.5.1.4 Examples

To demonstrate how the width of the interferogram can be used to derive the bunch
length, let us consider the following examples with an ideal beam splitter in the
Michelson interferometer. The transverse bunch contribution is also assumed to be
negligible when compared to the longitudinal bunch contribution. From the time
domain part of Eq. (2.36), the interferogram is proportional to the autocorrelation of
the shape of the light pulse, which is the same as the longitudinal bunch distribution.
Hence, the interferogram is directly related to the autocorrelation of the longitudinal
bunch distribution.

For example, for a rectangular bunch of length 20, with the longitudinal bunch

distribution defined as Eq. (1.16), the interferogram can be expressed as

s@) o« [ :’" R(2)h*(z + 6)dz

- (/_Z _/06) <2¢17

0 otherwise

2
) dz for 8| < o,
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Figure 2.18: The interference of the Mylar beam splitter.

1 (1_ ﬂ) for |6] < o

= 20, 20,

0 otherwise

(2.39)

The full width at half maximum (FWHM) of the interferogram is calculated as 2o.
Hence, the bunch length is equal to the FWHM of the interferogram for a rectan-
gular bunch distribution. As the second example, for a Gaussian bunch distribution
of equivalent bunch length /27 o, with longitudinal bunch distribution defined by
Eq. (1.18), the interferogram becomes

@) o [ bz + B)dz

1 + - 2+ z+6 2 20.2
2no? / eI 4
1
= —-—2\/1?6_6/462. (2.40)

—0o0



2.5. AUTOCORRELATION BUNCH-LENGTH MEASURING METHOD 71

The FWHM of this Gaussian interferogram is 4vIn2¢,. Therefore, the equivalent
bunch length for a Gaussian bunch distribution is /7/8In2 ~ 0.7527 times the

interferogram FWHM. Thus, the two examples give the following results:

Equivalent Bunch Length { 1, for a rectangular bunch (2.41)

Interferogram FWHM 0.7527, for a Gaussian bunch

2.5.2 Beam-splitter Interference Effects

So far, the above discussions are based on the assumption that the reflectance and
transmittance of the beam splitter is constant for all frequencies. Unfortunately,
suitable beam splitters used in the far-infrared regime (a Mylar foil in our design) do
not provide constant and equal reflectance and transmittance for all frequencies. This
departure from an ideal beam splitter is caused by the interference of light reflected
from both surfaces of the beam splitter shown in Fig. 2.18, which is equivalent to

thin-film interference in optics[12, Sec. 9.7] with multiple reflection and transmission.

According to the design of the Michelson interferometer in Fig. 2.17, the beam
splitter, which is a Mylar foil of thickness ¢ and refractive index n, is mounted at a
45° angle to the direction of incoming light as shown in Fig. 2.18. The phase difference
between the two adjacent parallel reflecting (or similarly, transmitting) rays due to
the difference in optical path at angular frequency w = 27v, when referred to the

geometry in Fig. 2.18, is expressed as
2l ¢
v = o(dm o)
w
where c is the speed of light in vacuum. Snell’s law gives for this geometry

nsin ¢ = (2.43)

1
\/5,
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and solving for [ and ¢ in terms of ¢, we have[41]

Il = ng

= t(n2 1)_1/2
q9 = 2 .

Hence, the phase factor for the optical path difference becomes
eid: — ei2t(w/c)\/n2—(1/2)
e 17t /n’—(1/2), (2.44)

where o = 1/X = v/c is the wavenumber at frequency v (and wavelength )).
The total amplitude reflection coefficient for the foil with multiple reflection is

expressed as[42]
R=r + t27'2t16i¢ + tgrg’tlei"’ + tzrgtle"‘b + -y (2.45)

where 1) is defined in Eq. (2.44), r; and ¢; are the amplitude reflection and trans-
mission coefficients of the air-to-Mylar interface at an incident angle of 45°, and r,
and ¢, are the amplitude reflection and transmission coefficients of the Mylar-to-air
interface at an incident angle ¢ defined in Eq. (2.43). The four quantities 7y, ¢, 7,
and ¢, are related by the Stokes relations[12, Sec. 4.5]:

Te = —T (246)
tity, = 1—ri. (2.47)

Using Stokes relations and summing over the infinite power series, the total amplitude
reflection coefficient becomes

1—¢*
R: —|’I'1|1—_'r2—.

7o (2.48)

The total phase of the reflected wave can be expressed, from the polar form of

Eq. (2.48), as
(1 —r}) cos(3/2)
(L+rd)sin(y/2) |

0r =7 — tan™! [ (2.49)
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No absorption in the foil is assumed, and the refractive index is assumed to be con-
stant (n = 1.85) over all frequencies of interest[41]. Similarly, the total amplitude
transmission coefficient for the same condition is[42]
T = t:t:16% + targt1€™¥/? + tyrjt €592 4 ...
1o gt 2.50
= ( _rl)l—'rfe"'b' (2.50)
Hence, the total phase of the transmitted wave is expressed as
1 [(1+7})sin(4/2)
(1 —r})cos(/2)]
The phase difference between R and T, using the relation tan~! A + tan~'(1/4) =
{2m + 1) /2 for m as an integer, can be obtained from Eqs. (2.49) and (2.51) as

Oy = tan™ (2.51)

o et [ rDeos@/2)] L [( 4 rd)sin(y)2)
br—0r = ta (1 + r?)sin(v¥/2) tan [(l—rf)cos(¢/2)

= 7r—(2m+1)zr2—

= [2(—m)+1]zzr—, (2.52)

where m is an integer. Hence, the phase difference between R and T is an odd
integral multiple of 7/2 for all frequencies. In addition, it is straight forward to show
|R|? + |T|* = 1 for all frequencies. This result is consistent with energy conservation
in the interferometer as required from the discussions in Sec. 2.5.1.2.

It is worth noticing that r, is different for parallel and perpendicular polarization
components; however, the above results are valid for both components. The corre-
sponding r’s for parallel and perpendicular polarization at a 45° incident angle, using
Eq. (2.43), are[12, Sec. 4.3]

i n? — \/2n2 -1
il = (2.53)
n?+ 202 -1
1—+v2n2-1
o= i (2.54)

1+v202 -1’
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Figure 2.19: The efficiency of a Mylar beam splitter as a function of frequency for
different thicknesses: 12.7 (solid), 25.4 (dashed), and 50.8 um (dash-dotted line) for

unpolarized light.

respectively. Hence, it is necessary to consider the effects of corresponding R and T
(ie., R, R+, TV and T*) for both polarization components of the light.

The efficiency of the beam splitter defined as [RT|? is shown in Fig. 2.19 for some
typical thicknesses for unpolarized light [i.e., (|RIT!|? 4 |R*T+|?)/2 is shown]. Unlike
the ideal beam splitter, the efficiency is not constant over all frequencies and becomes
zero at certain frequencies where light reflected from both surfaces of the beam splitter
interferes destructively. Equations in the time domain such as Eq. (2.32) are no
longer valid for the case of varying efficiency and need to be replaced by appropriate
convolution integrals; however, equations in the frequency domain like Eq. (2.33)
still hold. The width of the interferogram can not be directly used for bunch-length

estimation as discussed in the previous section unless the correction for interference
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effects on the interferogram are included.

2.5.3 Bunch-length Analysis

Although the interference effects on the interferogram caused by the complex reflec-
tion and transmission coefficients of the beam splitter do not seem to have simple
analytical forms, these effects can be included numerically for known bunch distri-
butions, and the bunch length can be derived from this analysis. Both Gaussian
and rectangular bunch distributions are currently used in this study. While most real
bunch distributions are neither Gaussian nor rectangular, the bunch lengths estimated
from the two distributions will give reasonable bounds for the real one.

The beam-splitter-affected interferogram can be obtained numerically by using the
spectrum of a known bunch distribution and Eqgs. (2.33), (2.48), and (2.50). Some
numerical results of the beam-splitter interference effects for a rectangular bunch
distribution are shown in Fig. 2.20. For an ideal beam splitter, the interferogram
is non-negative and has the expected triangular peak with its FWHM equal to the
bunch length [cf., Fig. 2.20(a)]. For Mylar beam splitters, negative valleys appear in
the interferograms, which are due to suppression of the low frequency area by the first
zero of the beam-splitter efficiency. These valleys move closer to the main peak as
the beam-splitter thickness (¢) decreases [cf., Fig. 2.20(b)—~(d)]. For very thin beam
splitters [thinner than about half the equivalent bunch length ({;)], they merge with
the main peak and make the peak narrower [cf., Fig. 2.20(d)]. The effects are similar
for a Gaussian distribution.

Detailed results on how the FWHM values in the interferogram change with the
equivalent bunch length for both Gaussian and rectangular distributions are shown
in Fig. 2.21 for different Mylar beam-splitter thicknesses. The raggedness of the lines
for the rectangular distribution is due to the high-frequency lobes of the sinc func-

tion. In contrast, the Gaussian distribution has a smoother variation of the frequency



2.5. AUTOCORRELATION BUNCH-LENGTH MEASURING METHOD 76

60 \— (a) ideal beam splitter

40 —

- FWHM =1,
20 (—

Hllll[lll!lIl[IiIIIII[I[lII!

w
o

(b)yt=1

== N
o O

[=]

]III[]II[IIII[]IIIIIJ]II[[I

w
o

- (c)t=iy/2

Intensity (arbitrary units)
S 3
I I I __J

10 — FWHM = I,

llllllllllllllI[lllllllllllI

@t=1/3

&
o
N L R I

FWHM =0.83 1,

-1
O—TIlllllllllllll[I[IIIIIII[IIIIII

-15 -10 5 0 5 10 15
Optical path difference (units of I,,)

Figure 2.20: The simulation of the beam-splitter interference effects on a rectangular
bunch distribution with different beam splitters: (a) an ideal beam splitter and Mylar
beam splitters of thicknesses (¢) (b) equal to, (c) half, and (d) one third of the
equivalent bunch length (1;).
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Figure 2.21: Interferogram FWHM’s as functions of equivalent bunch lengths of both
Gaussian (dotted) and rectangular (solid lines) bunch distributions for different Mylar
beam-splitter thicknesses: 12.7, 25.4, 50.8, and 127 ym. Within the same distribution,
the lines are shown from the bottom to the top in the increasing order of thickness.

spectrum, and the resulting slopes of the lines are smoother. When the equivalent
bunch length is shorter than about twice the beam-splitter thickness, the valleys in
the interferogram are separated from the main peak, and the relation between the in-
terferogram FWHM and the equivalent bunch length is the same as that for the ideal
beam splitter in Eq. (2.41). The slopes of the lines become unity for the rectangular
distribution and about 1/0.75 for the Gaussian one. As the equivalent bunch length
becomes greater than about twice the beam-splitter thickness, the valleys cut into the
main peak and narrow its width. This peak-narrowing effect reduces the slopes of the

lines for the rectangular distribution at longer bunch lengths and, hence, makes the
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interferogram width less sensitive to the bunch-length change and increases the esti-
mated range of the bunch length. Therefore, a Mylar beam splitter with a thickness
matched to the expected range of the bunch length is important for effective bunch-
length measurement. As indicated in Fig. 2.21, thicker beam splitters are preferable
for bunch-length measurement. However, the absorption of thicker beam splitters
will, at some point, reduce the signal level and pose a constraint on the selection of
the thickness. Once the beam splitter is chosen, the bunch length can be derived
from the measured interferogram width with the help of Fig. 2.21.

2.6 Bunch-length Measurements

‘As discussed in previous sections, the theoretical part of this new bunch-length mea-
suring method shows promise of being a useful particle beam instrument in acceler-
ators. To verify this theory, such an interferometer, as shown in Fig. 2.17, has been
assembled and tested at the SUNSHINE facility to characterize its subpicosecond

electron bunches.

2.6.1 Experimental Setup

For this experiment, the SUNSHINE facility was operated to produce 1-us-long elec-
tron macro-pulses at 10 Hz containing a train of about 3000 electron bunches at an
energy of 30 MeV. Each bunch had about 3.5 x 107 electrons. The bunch length is to
be determined by this autocorrelation method. As shown in Fig. 2.17, transition ra-
diation is generated when the electrons pass through a 25.4-pm-thick aluminum (Al)
foil. The foil supported by a copper ring using the drumhead stretching technique is
oriented at a 45° angle to the beam direction so that backward transition radiation
is emitted in the direction normal to the beam path and can easily be extracted from

the evacuated beam line into air via a 1-mm-thick high-density polyethylene (HDPE)
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window of 19mm diameter. Since backward transition radiation is emitted at the
aluminum surface, the focal point of an off-axis paraboloidal mirror is aligned with
this surface to convert the divergent radiation into parallel light without introducing
extra optical path difference at different angles to the extracted light pulse. The
parallel light then enters a far-infrared Michelson interferometer.

The interferometer consists of a Mylar beam splitter supported by an aluminum
ring using the drumhead stretching technique, a fixed and a movable first-surface
mirror, and a room-temperature detector. The beam splitter is mounted at a 45°
angle to the direction of incident parallel light. There are four beam splitter thick-
nesses used in the experiment: 12.7, 25.4, 50.8, and 127 um mounted on different
aluminum rings exchangeable in the experiment. The movable mirror is moved by a
Newport 850-B linear actuator, which is controlled by a Newport PMC200-P motion
controller and commanded by a 486-based PC through a GPIB interface. The detec-
tor described in Sec. 1.2.2 is attached to a copper light-cone[21], which funnels the
light into the detector. The detector signal is digitized into the computer through a
National Instrument AT-MIO-16F-5 data acquisition board. With the computer in-
terfaces, the autocorrelation measurements are performed automatically through the

program under the LabVIEW control environment implemented on the computer.

2.6.2 Results

It has been confirmed in the previous experiment[16] discussed in Sec. 2.3.2.1 that
backward transition radiation emitted by the electron pulses generated at SUNSHINE
is coherent. Therefore, the spectrum measured by the autocorrelation method con-
tains the information of the bunch distribution and can be used to derive the bunch
length. By recording the detector signal as a function of the position of the movable
mirror via the computer program, a typical 16-mm-long autocorrelation scan with

10-pm mirror step size using a 12.7-um-thick beam splitter was measured as shown
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Figure 2.22: Typical 16-mm-long autocorrelation scan and derived spectra for the
radiation from subpicosecond electron pulses. The autocorrelation scan is shown in
(a). The raw spectrum and the one corrected for the Mylar beamsplitter efficiency
are shown in (b). The spectral resolution is 0.3125 cm™?.

in Fig. 2.22 for the characterization of the spectrum of coherent transition radiation.
The raw (uncorrected) spectrum as calculated with Eq. (2.37) from this interferogram
and the spectrum after correction for the Mylar beamsplitter efficiency are also shown
in the same figure. The total 16-mm mirror movement corresponding to 32-mm op-
tical path difference results in a spectral resolution of 0.3125 cm™!. Below 10cm™!,
the spectra are believed to be contaminated by slow drifts of machine parameters
during the half-hour measurement. The whole raw spectrum is well contained within
the frequency range up to the second zero of the beamsplitter located at wavenumber

o = 230cm™". The spike around the second zero of the beamsplitter in the corrected
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spectrum is an artifact resulting from a large over-correction due to poor signal-to-
noise ratios in this spectral range. The roll-off rate of the corrected spectrum at high
frequency is closer to that of a rectangular distribution rather than that of a Gaussian
distribution. The multitude of absorption lines in the spectrum are identified as water
absorption lines[43] caused by humidity in ambient air since the interferometer is not
protected from it.

To measure the bunch length, shorter scans containing only the central part around
the peak are sufficient since only the width of the peak is important in this method.
Short 2.2-mm-long interferograms with 5-um mirror step size are measured for four
different Mylar beam-splitter thicknesses and shown in Fig. 2.23. This 5-ym mirror
step size corresponding to a 33-fs time resolution is sufficiently accurate for these
experiments; however, finer resolution could be achieved by the actuator through
smaller step size. Especially, the system has no difficulty to make submicrometer
movement, which means that it is capable of having subfemtosecond time resolution.
The actual choice of step size or resolution is determined by the expected bunch
length. This time resolution is far better than that of the best of time-resolved
methods, the streak camera, which is about 0.5ps so far. The beam parameters
are kept the same when different beam splitters are used. As shown in Fig. 2.23,
the valleys around the main peak are separated farther apart as the beam-splitter
thickness increases. This widens the main peak [cf., Fig. 2.23(a)—(c)] until the valleys
are out of the peak [cf., Fig. 2.23(c) and (d)]. In Fig. 2.23(d), even the base of the
peak can be seen. Specifically, we note that for a beam splitter thickness ¢ = 50 pm
the width of the main peak does not change anymore and therefore represents a
true measure of the bunch length. In the figure, the FWHM’s of the main peaks are
measured in terms of mirror movement, while corresponding widths in terms of optical

path difference are twice of them. These measured interferogram FWHM’s and the
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Figure 2.23: Interferograms measured for different Mylar beam-splitter thicknesses:
(a) 12.7, (b) 25.4, (c) 50.8, and (d) 127 um. The FWHM’s of the main peaks are
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Table 2.2: Measured interferogram FWHM’s in optical path difference (OPD) for
different beam-splitter thicknesses and the corresponding estimated equivalent bunch
lengths deduced from Fig. 2.21 for Gaussian and rectangular distributions.

Beam splitter Interferogram FWHM Estimated equivalent bunch length (yum)

thickness (pm) OPD (pm) Gaussian Rectangular
12.7 55.6 60.8 100.6
254 774 72.8 103.2
50.8 112.3 86.9 111.0
127.0 110.4 83.1 109.1

rectangular distribution are shown in Table 2.2. The estimated bunch lengths provide
bounds for the real bunch length. As the beam-splitter thickness increases from 12.7
to 50.8 pm, the bound narrows down, which indicates the estimation gets better for
thicker beam splitter. Additionally, the bounds stay the same for 50.8- and 127-
pm beam splitters and agree with the estimation made from Eq. (2.41) for the ideal
beam splitter . It is also worth noticing that the estimated bounds are consistent
over a 10-fold change in the beam-splitter thickness. In addition, as indicated in
Table 2.2 the variation of the estimated equivalent bunch length for the Gaussian
bunch distribution is 34%, while the variation in estimated bunch length for the
rectangular one is only 9.8%. This further indicates that the real bunch distribution
is closer to the rectangular one than the Gaussian one, which is consistent with the
conclusion derived from the roll-off rate of the corrected spectrum discussed in the
previous paragraph. The estimated equivalent bunch length is about 110 um long
(0.367 ps), which corresponds to an rms bunch length of ¢, ~ 32 um or o; ~ 106fs
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assuming a rectangular bunch distribution?.

2.6.3 Alternative Sources

For linear accelerators, using a solid metal foil to generate coherent transition radi-
ation for the interferometer does not seem to cause a problem although it generally
destroys the electron-beam quality after the foil. However, such destructive way is not
desirable in circular accelerators. Non-destructive methods such as using a bending
magnet to generate coherent synchrotron radiation[44] and using a metal foil with
a center hole to generate coherent diffraction radiation[45,46] are suitable for this
application. Unlike the case for transition radiation, the single-electron spectrum of
these radiating processes is not constant in frequency. In order to extract bunch in-
formation f(v;ii), the measured spectrum has to be corrected for the single-electron

spectrum of these radiating methods [i.e., I.(v) in Eq. (1.10)].

2.6.4 Measurement Summary

A new frequency-resolved bunch-length measuring method specialized for subpicosec-
ond electron pulses has been developed at the Stanford SUNSHINE facility. This
method measures the autocorrelation of coherent transition radiation emitted at
wavelengths longer than or equal to the bunch length via a far-infrared Michelson
interferometer. The bunch length can be derived from the interferogram with special

consideration of interference effects in the beam splitter. Measurements have verified

>We define the root-mean-square (rms) bunch length of a normalized one-dimensional bunch

distribution f(z) as
+o0 1/2
lems = (/ zzf(z)dz) .

For the Gaussian bunch distribution defined in Eq. (1.18), lrms = o, while for the rectangular one
defined in Eq. (1.16), lyms = 20, //12.
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this method by showing consistent results over a broad range of beam-splitter thick-
nesses for subpicosecond electron bunches. In a separated study, it has been shown
that this method will work also for bunch length on the order of one picosecond[47].
Based on a low-cost, easy-to-operate, compact, and transportable Michelson inter-
ferometer, this autocorrelation method demonstrates femtosecond resolving power

beyond the reach of existing time-resolved methods.

2.7 Bunch Distributions and Phase-retrieval

Methods

‘From the theory of Michelson interferometer discussed in Sec. 2.5.1.3, the autocor-
relation method will only measure the power spectrum of the incident light pulse.
Phase information, however, is lost in the measurement. In order to obtain the bunch
distribution, the phase information has to, somehow, be retrieved from the measured
amplitude information through numerical methods with some assumed constrains

applied to the measured data.

2.7.1 Longitudinal Distribution

In principle, the measured spectral information can be used to reconstruct the bunch
distribution and give a better bunch-length measurement. However, there are some
practical difficulties in reconstructing the electron distribution for this experiment.
First, the spectrum is contaminated by water absorption lines[17,18] because the in-
terferometer is not protected from humidity. These lines are hard to remove, and
their effects on the reconstructed distribution are not clear. Secondly, the zeros of the
beam-splitter efficiency produce artificial peaks when the spectrum is numerically cor-

rected for the beam-splitter interference effects[17,18]. Unfortunately, in the presence
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of measurement noises, these peaks are also not easy to remove. Finally, there are
infinite distributions which give the same autocorrelation even if the constraints for
non-negative and real electron distribution are employed[48]. This one-dimensional
phase-retrieval problem is equivalent to that of an under-determined system, and the
non-uniqueness is followed from the ezistence of the Fundamental Theorem of Alge-
bra for polynomials of one variable[48,49]. Although one-dimensional phase-retrieval
methods have been suggested for this reconstruction problem[44,50,51], they can not
guarantee the uniqueness of the solution, not to mention the immunity against noises
in data. Structures generated by these reconstruction methods need to be verified as

to whether they are real bunch structures or artifacts produced by the methods.

2.7.2 Three-dimensional Distribution

Although one-dimensional phase-retrieval methods do not give unique solutions to the
bunch distribution, going to two- and higher-dimensional phase-retrieval methods can
give almost unique solutions to this problem. This is equivalent to the problem of an
over-determined system, and the uniqueness is followed from the nonezistence of the
Fundamental Theorem of Algebra for polynomials of two or more variables[48,49].
This surprising result shed light on the possibility of extending this bunch-length
measuring method to a three-dimensional bunch distribution measurement.

By recalling that the bunch form factor f(v;ii) is indeed a two-variable function,
measuring the spectrum through the autocorrelation method at different observation
angles (§ and ¢) will give the information of the three-dimensional k-space (k., k,,
and k., with k = 2r/X = w/c) of the bunch distribution when the angular spectral
distribution [i.e., d?€/dwd$}] of the radiating process has been deconvolved. This is
similar to the x-ray computed tomography (CT) scans in the medical applications,
which measures x-ray transmission through the body at different angles. By applying

a three-dimensional phase-retrieval method, it is more likely to obtain an unique
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solution to the three-dimensional bunch distribution. However, more complicated
hardware and longer measuring time are necessary for this extension. And definitely,

more study has to be devoted to investigate and realize this new idea.



Chapter 3

Stimulated Coherent Transition

Radiation

The characterization of coherent transition radiation described in the previous chap-
ter shows that the spectrum of the radiation emitted from subpicosecond electron
bunches covers a broad range in the far-infrared regime from millimeter waves to
about 100-gm radiation (cf., Fig. 2.22). Furthermore, the energy characterization
discussed in Sec. 2.3.2.2 also shows promise for the use of coherent transition radi-
ation as a new way to produce high-power far-infrared light. In the measurement,
each electron bunch radiates a total energy of about 0.544 xJ, and about 0.171 uJ
energy is collected by the bolometer. The bunch length is estimated about 0.483 ps.
If one calculates the simple-minded “peak” power by the ratio of the total radiation
energy to bunch duration, this would give a peak power of about 1.13 MW for the
total emitted radiation and 354 kW for the collected part of radiation! To get a more
precise estimate from the spectral peak power, one can compare the energy radiated
from a bunch to that described in Fig. 1.4. Such comparison would give an estimated
spectral peak power on the order of about a few hundred watts (collected) to a few

kilowatts (total) per 0.1% bandwidth in the far-infrared regime. These results are
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already far better than blackbody radiators (cf., Fig. 1.4) and are in the middle range
among other existing high-power light sources shown in Fig. 1.3.

In order to further increase the power of coherent transition radiation, a few di-
rections can be considered. A direct way to do this is to pack more electrons in one
electron bunch since the intensity increases quadratically with the electron number.
An alternative direction is to decrease the bunch length, which will increase the spec-
tral range to produce photons with higher energy. However, both methods depend
upon the bunch generation and compression system, which may or may not provide
an extra degree of freedom for such improvements. Any dramatic improvement in
these directions requires new ideas and a major design change in the system. In-
stead of increasing the power through spontaneous emission of coherent transition
radiation, a possible direction is to use stimulated emission of coherent transition
radiation to boost the radiation power. In this way, it does not require changes in
the bunch generation and compression system; however, a special device is needed to
make stimulation possible.

Similar to the principle of lasers, the emission of coherent transition radiation from
subpicosecond electron bunches is stimulated when an “external” electromagnetic
stimulation is appropriately arranged through a special device. The extra amount
of radiation energy through stimulation is proportional to this external stimulation.
Hence, the total radiation energy through stimulated emission can be much larger
than that through spontaneous emission. Unlike lasers, such stimulated emission
of coherent transition radiation from electron bunches is not in favor of any color,
nor does it require population inversion since the energy states of free electrons are
continuous. Therefore, stimulated coherent transition radiation is a good direction to
produce high-power, broadband, coherent, far-infrared radiation.

In this chapter, we will study the possibility of using stimulated coherent transition

radiation as a new high-intensity far-infrared light source. Through the invention of a
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special cavity named BRAICER, a new way of using a train of subpicosecond electron
bunches generated at SUNSHINE to produce self-stimulated, broadband, coherent
radiation is explored. In the cavity, far-infrared light pulses of coherent transition
radiation emitted from subpicosecond electron bunches are delayed and circulated to
coincide with subsequent incoming electron bunches. This coincidence of light pulses
with electron bunches enables the light to do work on the electrons, thus, stimulates
more radiated energy. The stimulation of radiation is observed through detuning
measurements of the cavity and agrees with theoretical predictions[52]. Following
this observation, different cavity designs to produce high-intensity radiation in multi-
pulsed and fast Q-switched modes will be discussed.

3.1 Stimulation of Transition Radiation

Stimulated transition radiation is emitted when electrons pass through the interface
between two media of different dielectric constants in the presence of an external
electromagnetic field in phase with the spontaneous transition radiation. The special
phase relation enables the external field to do work on the electrons so that additional
energy is extracted from the electrons to the radiation field. This phenomena was
predicted in theory several years ago[53,54].

Since Maxwell’s equations are linear, the field solution to stimulated transition
radiation in the inhomogeneous wave equations can be split into two linearly in-
dependent parts[54]: the general solution of homogeneous equations for the external
field and the special solution of inhomogeneous equations including the electron beam.
The former part is equivalent to Fresnel’s equations for reflection and refraction of the
external field, while the latter part is just ordinary spontaneous transition radiation
emitted from electrons. Let us assume the electric field solution to the first part is

Eext, and that to the second part is E,,. Then the total field for stimulated transition



3.1. STIMULATION OF TRANSITION RADIATION 91

radiation is the sum of these two fields: E..;+E,;. Hence, the total radiated intensity
is proportional t0 |Ee + Egp|2. The extra output energy

Ag x |Eext + Espl2 - |Eext|2 - |Esp|2
= 2Re(Eex - E2) (3.1)

is the stimulated radiation which is due to the work done by the external field on
electrons[54]. This extra stimulated energy is proportional to the applied external
field. When the external field E.,; is in phase with the spontaneous field E,, (i.e.,
Eexi - E;, > 0), the energy is extracted from electrons into the radiation field, and the
extra stimulated energy is maximized. This process is called stimulated emission. On
the other hand, when the external field is out of phase with the spontaneous field (i.e.,
E...-E;, <0), the energy is transferred from the external field into electrons, and the
electrons are accelerated by the external field. This is called stimulated absorption.
Stimulated absorption may be useful for the acceleration of electrons and is out of

the scope of this thesis.

3.1.1 External versus Self Stimulation

In order to make stimulation happen, it is necessary to supply the “external” stim-
ulation field in some way. One direct way is to use an external high-intensity light
source such as a laser to achieve high stimulation electric field. The electrons will
then emit radiation through stimulation. The stimulated radiation will have the same
bandwidth as the external light source. This can be viewed as an amplifier for the ex-
ternal source. However, such way of stimulation requires designs to incorporate other
high-intensity light sources and complicates the design of the experimental apparatus.

" Another direction to supply an “external” stimulation field is to use a special
structure to delay the previously generated spontaneous radiation and to coincide

this radiation with electrons at the following stage of the radiating process. Such a
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Figure 3.1: A single-bunch auto-stimulation design through a multi-foil structure.

structure for self-supplied stimulation field can be realized in a simpler design and is
quite suitable for the production of broadband radiation. In the following sections,

two different structures for single-bunch and multi-bunch cases will be discussed.

3.1.2 Single-bunch Auto-stimulation

When there is only one electron bunch produced in the time period of interest (e.g.,
a low repetition rate in the bunch generation system), one can consider a multi-foil
structure shown in Fig. 3.1 to generate the self-supplied stimulation field. Although
the speed of light ¢ is always faster than the speed of electrons v in vacuum (i.e.,
B = v/e < 1), this situation is totally reversed in a dielectric material with a refractive
index n greater than one. The speed of relativistic electrons in this material is not so
different from that in vacuum. However, the speed of light in this material is slower
than that in vacuum by a factor of n (i.e., Cmaterial = ¢/n). This usually makes the

electrons traveling much faster than light, i.e., 8 > ¢/n (e.g., consider n = 1.85 for
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Mylar in the far-infrared regime). Hence, by selecting the appropriate foil thickness
t and foil spacing [, the radiation emitted from the previous foil can be delayed
to coincide with the electrons at the corresponding interface of the next foil. Such
coincidence could provide a way to stimulate the emission of transition radiation.
To derive the resonance condition, let us consider the geometry shown in Fig. 3.1.
The electrons are traveling in the direction normal to the foil surfaces. The phase
difference between the radiation emitted from the material-to-vacuum interface of the
first foil and that from the corresponding interface of the second foil is
b = w (lczsﬂ N tz;):ﬂ B l;ct)
= %[t(nﬂ cos® — 1) — I(1 — Bcos B)), (3.2)

where w is the angular frequency of the light, and 4 is the angle between the radiation
direction and the electron motion. The condition of resonance is obtained by setting
this phase difference to zero, i.e., the electrons catch up the light at corresponding
interface of the second foil. This condition can be expressed as

1—[Bcosé

~ nBcosf—1 (3-3)

¢
l

This resonance condition is also that for the radiation emitted from the vacuum-
to-material interfaces of all foils. Besides, there is a strong destructive interference
between the radiation from both sets of interfaces. This interference effect will reduce
the total intensity. Furthermore, the multiple reflection and transmission of the foils
will also reduce the strength of the stimulation field and, hence, the total intensity.
These are the undesirable features of this structure. However, if the losses are neg-
ligible, the field of light pulses will increase linearly with the number of foils that
the electrons have passed through. Hence, the intensity of light pulses will increase

quadratically with the number of foils passed.
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Figure 3.2: A multi-bunch cross-stimulation structure using a time-delayed loop.

3.1.3 Multi-bunch Cross-stimulation

When there is a train of equally spaced electron bunches produced within the time
period of interest, one can consider the structure as shown in Fig. 3.2 as a way
to produce the self-supplied stimulation fields. This multi-bunch cross-stimulation
structure uses a time-delayed loop to delay and circulate the radiation emitted from
previous electron bunches. By adjusting the amount of delay, light pulses can coincide
with subsequent electron bunches and, thus, provide a way to stimulate the emission
of radiation. The resonance condition for this structure using the geometry shown in
Fig. 3.2 can be expressed as

m
La= L, (3.4)
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where Lq is the length of the time-delayed loop, and L, is the distance between two
adjacent electron bunches. The parameters m and n are mutually primed integers
with m smaller than the total number of electron bunches in the bunch train. This
condition means that as the light pulses have traveled n turns in the loop, they will
coincide with the subsequent m** incoming electron bunch.

If the intensity loss during circulation is negligible, the field of light pulses will
increase linearly with the number of electron bunches that they have encountered.
Hence, the intensity of light pulses will increase quadratically with the number of
encountered electron bunches. Since there are about 3000 electron bunches in each
1-us-long macro-pulse produced at SUNSHINE, the total intensity of stimulated ra-
diation using this structure can be much greater than that emitted from the same
number of bunches through spontaneous emission if the circulation loss is minimized.
In the following sections, different designs using this time-delayed structure will be
studied both theoretically and experimentally to explore the possibility of using them

for the production of high-intensity far-infrared radiation.

3.2 The BRAICER Cavity

As discussed in the previous section, the multi-bunch cross-stimulation design using a
time-delayed structure shows a promising direction in the production of high-intensity
radiation. Especially, it fully utilizes the feature of long trains of electron bunches at
SUNSHINE. Unlike the multi-foil single-bunch auto-stimulation design, it does not
have any intrinsic loss problem, and the circulation loss can be minimized through
better component designs. In this section, a specially designed cavity using this time-
delayed principle to produce broadband stimulated coherent transition radiation will
be studied.
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Figure 3.3: Conceptual schematic diagram of the BRAICER cavity.

3.2.1 A Conceptual Design

To observe stimulated transition radiation, we have designed a special cavity named
BRAICER (Broadband Radiation Amplifier via Inducing and Circulating Emission
of Radiation). The conceptual schematic diagram of the BRAICER cavity is shown
in Fig. 3.3. It consists of a metallic foil radiator/reflector (R), two off-axis parabolic
reflectors (P1 and P2), and two plane reflectors (M1 and M2). The focal points of
P1 and P2 are aligned with points A and B, respectively. When divergent transition
radiation is emitted from A, it will become parallel after P1. This parallel light is
then transported through M1 and M2 to P2, which will focus this parallel light onto
a point at B. In the same way, transition radiation emitted from point B will also be
transported and focused at point A.

To see how this cavity works, let us assume the loop length (e.g., A — P1 — M1
— M2 — P2 — B) is equal to the distance between two adjacent electron bunches of
a train of NV identical equidistant electron bunches. No loss in the cavity is assumed.

When the first bunch passes 4through A and B, it radiates forward (to the left-hand
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side) and backward (to the right-hand side) transition radiation. We will first focus on
the forward radiation (emitted at A). By assuming the emitted field is E, the radiated
energy is proportional to |E|? in the forward radiation. This radiation travels from
A counterclockwise (CCW) to B. As it reaches B, the next incoming electron bunch
also arrives at B. Hence, the total radiated field is E (traveling radiation from the
first bunch reflected by R) + E (spontaneous backward radiation emitted from the
second bunch). The radiated energy is now proportional to |E + E|? = 4|E|?, and
the extra stimulated energy is proportional to 2|E|?. The combined radiation then
travels from B clockwise (CW) to A. As it reaches A, the third electron bunch also
crosses A. This time, the total radiated field is 2E (traveling radiation from the first
and second bunch reflected by R) + E (spontaneous forward radiation emitted from
the third bunch). The radiated energy is then proportional to |2E + E|? = 9|E|?, and
the extra stimulated energy is proportional to 4|E|%. This process goes on until all
N bunches have passed through the cavity. The radiated energy after N bunches is
then proportional to N?|E|%.. Comparing this to the total energy radiated from the
same NN electron bunches through spontaneous emission, which is only proportional
to N|E|?, this resonant cavity radiates N times more energy. The same process also
applies to the backward radiation emitted from the first bunch. Therefore, there are

two independent radiation pulses traveling in opposite directions around the cavity.

3.2.2 The Polarization Issue

The “in-phase” condition for the stimulation field (i.e., Ey: - E;, > 0) requires not
only the phase of the stimulation field E.,; to be the same as that of the spontaneous
field E,, through appropriate timing method (e.g., the time-delay of the stimulation
field) but also the polarization of the stimulation field to have the same direction and
distribution as that of the spontaneous field through appropriate optical arrangement.

Some ways to adjust the phase of the stimulation field to synchronize with that
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Figure 3.4: The polarization alignments in the BRAICER cavity. Two designs to
demonstrate (a) in-phase and (b) out-of-phase polarization alignments are shown.
-The solid arrows trace the polarization of forward transition radiation emitted from
the radiator R which starts from the left-hand side of R and travels counterclockwise
in the cavity to the right-hand side of R as the stimulation field. The hollow-headed
arrows (near B) show the polarization of backward transition radiation emitted on
the right-hand side of R.

of the spontaneous field through different timing methods have been discussed in
Sec. 3.1.1. In this section, we will discuss the importance of the polarization issue in
the stimulation of transition radiation when designing the optics for the BRAICER
cavity.

As shown in Fig. 3.4, two different cavity designs demonstrate different polarization
alignments. Since the cavity only consists of metallic reflectors, the only change of
polarization vectors is the reversing of vectors after each reflection. By tracing the
change of polarization vectors through out the cavity, the in-phase condition can be
verified. In Fig. 3.4(a), the polarization of transition radiation emitted from one side
of the radiator R after one-loop-length-long travel will have the same direction as that
of the radiation emitted from the other side of R. This optical arrangement along with

the resonance condition in Eq. (3.4) will meet the in-phase condition for stimulated
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emission. On the other hand, the design shown in Fig. 3.4(b) makes the polarization
of transition radiation emitted from one side of R after one-loop-length-long travel in
the opposite direction to that of the radiation emitted from the other side of R. This
violates the in-phase condition. However, with the resonance condition in Eq. (3.4),
this design will meet the “out-of-phase” condition for stimulated absorption (i.e.,
Eex - Ej, < 0) for the acceleration of electrons. Hence, it is important to trace the
polarization of radiation in the cavity in order to make sure that the optical design

will meet the requirement for stimulation.

3.2.3 Resonances of the Cavity

‘According to the discussion in the above section, the BRAICER design shown in
Fig. 3.3 will meet the polarization requirement for stimulated emission. Combined
with the condition for the cavity loop length discussed in Sec. 3.2.1, transition radi-
ation from bunches will resonate in the cavity and stimulate emission of transition
radiation. In addition to the resonance at the loop length d, equal to the inter-bunch
distance dj,, the BRAICER cavity will also resonate at other loop lengths. When
the loop lengths are integral multiples of the inter-bunch distance (say di, = m dip),
the radiation emitted by an electron bunch will travel around the cavity once and
meet the next m*™ incoming bunch. All these resonances described so far are called
first-order resonances. Similarly, if the loop lengths are half-integral multiples of dy,
(say dip = Zdip,m 0dd), the radiation emitted by a bunch must travel around the
cavity twice (e.g., A 2% B 2% A) to meet the next mt* incoming bunch. These are
categorized as second-order resonances. Thus, the order of resonance is defined by
the number of loop travel around the cavity necessary for the light pulse to meet a
subsequent electron bunch. In general, it takes a pair of mutually primed integers
(m,n) to specify a resonance, where m is called the indez of the resonance, and n,

the order of the resonance. The m®* resonance of the nt® order has the resonance
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Figure 3.5: A BRAICER cavity with a beam splitter to monitor the progress of
stimulation.

condition of

dyp = % dip, (3.5)

which means that the light pulse emitted from some electron bunch has to travel n
times around the cavity in order to meet the next m* subsequent bunch. If there
are no cavity losses, these resonances will reach an amplitude proportional to about
m(N/m)?|E|> = N%|E|?/m, which is independent of the order of the resonance n.
The dependence on m, the index of the resonance, comes from the fact that there are
m almost identical light pulses separated by a distance of dy, traveling in the cavity
as a group each encountering about N/m electron bunches. However, in the presence
of cavity losses, the final amplitudes greatly depend on these losses, and higher order

resonances will reach lower amplitudes due to longer travel in the cavity.
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3.2.4 The Theoretical Perspective

In order to verify the stimulation of radiation, it is necessary to have a special mecha-
nism to probe the radiation in the cavity. The easiest way is to insert a beam splitter
(BS) in the path of radiation to couple a portion of the circulated energy out of the
cavity as shown in Fig. 3.5. When the light pulses are circulating clockwise in the
cavity, part of their energy will be coupled out to the port OP1. On the other hand,
as the light pulses are traveling counterclockwise in the cavity, a fraction of the light
will be coupled out to the port OP2. Both ports are similar to but independent of
each other. Hence, only the case for one port needs to be considered.

Let us first assume that the amplitude reflection (R) and transmission (7') coef-
ficients of the beam splitter are constant of frequency and satisfy |R|? + |T|? = 1.
For analytic simplicity, the beam splitter is assumed to be located in the middle of
the loop. The cavity loss is also assumed to be uniform in the cavity with a, the
field attenuation per unit length. Hence, the remaining percentage for the light after
travelling a distance of [ is defined as a!. Because of the linearity of Maxwell’s equa-
tion discussed in Sec. 3.1, we can consider the contribution from each light pulse and
use superposition principle for electric fields to calculated the total field and intensity
from these light pulses. When a light pulse is emitted at R from some electron bunch,
it travels back and forth around the cavity, loses energy along the way because of
cavity losses, and couples out some energy into the ports every time when it passes
through the beam splitter. When tracing a light pulse emitted on the right-hand
side of R (backward transition radiation) from the k** electron bunch in a train of
N electron bunches with inter-bunch distance of d,, the electric field coupled out to

OP1 from this pulse can be expressed in the time domain as

EII}HS(t) —_ Radlp/zE(t _ tO _ kleb) + Rasdlp/2T2E(t _ tO . ki:: _ 2d_;p)

+Ra®w/*T*E(t — ty — k%‘i - 4@) +---
C
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= Ra%/? i (adin)zj E(t—to— k%‘i — 21%), (3.6)
i=0

where FE is the field of coherent transition radiation emitted from one electron bunch,
the time ¢ is referenced to the beginning of the bunch train, ty = dip/2¢ is the time
for the pulse to travel from R to BS, dj, is the loop length, c is the speed of light, and
k is an integer ranging from 0 to N — 1. Similarly, when tracing a light pulse emitted
on the left-hand side of R (forward transition radiation) from the k** electron bunch,
the electric field coupled out to OP1 from this pulse is expressed as

EMS(t) = Ro*w/TE(t—ty— kd—;b E 11;—") + Ra™/*T3E(t — to — kd#j’ - 3%—")

+Randl"/2T5E(t —to— kd;cb _ 5@.) N
(s}

dip
[

. (3.7)

These two series of light pulses (ER®S and EFM3) will cross stimulate each other while

= Ra®Y (a%T)"" Blt —to - k%ﬁ —(@2j+1)

=0

traveling in the cavity and meeting subsequent electron bunches. For example, if
dip = dip, EFHS after traveling one loop length in the cavity will stimulate radiation
emitted on the left-hand side of R by the following bunch and, furthermore, after
an additional loop-length-long travel stimulate radiation emitted on the right-hand
side of R by the third subsequent bunch, and so forth. Hence, the total electric field
coupled out to OP1 from all the bunches is the sum of Egs. (3.6) and (3.7) over all

k’s, i.e.,
N-1
Ewalt) = Y [EF™S()+ ELPS(t)]
k=0
iy /2 =& gy dn .dip
= Ra®/*y 3" (a%T) E(t—to~ k=2~ j=2). (3.8)

k=0 ;=0
Transforming this expression into the frequency domain using Eq. (2.34) yields a

simple one for the electric field

N-1 o .
Eia(w) = Ra%/?3" 3" (adlv T)J B (w)eieltdn/o+ildp /)]
k=0 ;=0
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Figure 3.6: Some typical resonances of the BRAICER cavity for Gaussian and rec-
tangular bunch distribution. Resonances shown here are for (a) Gaussian bunches at
a first-order (7d;,) resonance and for rectangular bunches at a (b) first- (7dy), (c)
second- (6.5d;, = 2dp), and (d) fourth-order (6.25ds, = Zd;,) resonance.

— Radlp/zE(W) Nz:l ei“’k(dib/c) i (ad'l’ T)J eiwj(dlp/c)
k=0 =0
1 — e*“Ndin/e 1
1— eiwd;b /e 1 — adlr Teiwdlp Je?

= Ro*/*E(w) (3.9)

where E(w) is the field of coherent transition radiation emitted from one electron
bunch at angular frequency w. The common phase factor e*%#/% resulting from the

time shift to has been ignored here since it does not offer any important physics.
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Using Parseval’s formula derived from Eq. (2.34):

+o00 +oo 2
[ IEGr = [ 1B W) P, (3.10)
the total energy coupled out of the cavity is
+oo . 1— eind;b/c 2 1 2
2 _d 2
gtotal & -/;oo dw |R| a lplE(w)l 1 — eiwd;b/c 1— adlpTeiwdlp/c

+oo - sin?(wNdsp/2¢) 1 2
- 2090 | B(w)|? i : . (3.11
,/:oo dw [E[*a® | E(w)| sin?(wdip/2¢) |1 — ade Teiwdp/e (3.11)

Expressions in the frequency domain such as Egs. (3.9) and (3.11) can be directly
applied for beam splitters with varying R and T in the frequency domain.

The power spectrum |E(w)|? in Eq. (3.11) can be obtained from the bunch dis-
tribution using Eq. (1.10) and the relation Ioa(v) o« |E(27v))[2. In Eq. (3.11), the
factor sin?(wNdy,/2¢)/ sin?(wdjp, /2¢) results from the Fourier transform of a train of
N pulses separated at a distance of d;,. This factor has a spectrum of sharp peaks of
height N? distributed at integral multiples of wy = 27w¢/dy, with equivalent width of
wo/N. The cavity resonates when maxima of the factor |1 — a®r Te“w/¢|~2 overlap
with maxima of the factor sin?(wNds,/2¢)/ sin®(wds,/2¢) in Eq. (3.11), or equivalently,
maxima of the former factor are integral multiples of wy, i.e.,

m27rc . n27rc
dp,  dy’

(3.12)

where m and n are two mutually primed integers. This yields the same resonance
condition of the cavity as that in Eq. (3.5) discussed in Sec. 3.2.3.

The behavior of the cavity near different resonant points can be studied using
Eq. (3.11) and power spectra of known bunch distributions. Some calculated de-
tuning results [i.e., &oa as a function of dy, in Eq. (3.11)] for both Gaussian and
rectangular bunch distribution are shown in Fig. 3.6. In the calculation, it has been
assumed that there are 3000 bunches containing 2 x 10® electrons in each bunch. The

bunch distributions are defined by Eq. (1.18) for Gaussian bunches and by Eq. (1.16)
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for rectangular ones with a bunch length of 20, = 200 um. The beam splitter is as-
sumed to be a 127-pm-thick Mylar foil, for which R and T are defined by Egs. (2.48)
and (2.50), respectively. A cavity attenuation of a®* = 0.3 is also assumed. At
the first order resonance, the detuning curve for the rectangular bunch distribution
[cf., Fig. 3.6(b)] has more structures than that for the Gaussian one [cf., Fig. 3.6(a)]
because the former has more high frequency components in its power spectrum. In
addition, the valley-like structures around the resonance peaks result from the beam
splitter interference effect similar to that discussed in Sec. 2.5.3. At the second order
resonance shown in Fig. 3.6(c), the detuning curve has basically the same structures
as that for the first order resonance shown in Fig. 3.6(b) except that the horizontal
structure scale of the former is about half that of the latter because the light has
to travel twice as long in the former one. At the fourth order resonance shown in
Fig. 3.6(d), its horizontal structure scale is about one fourth of that of the first order
[cf., Fig. 3.6(b)] because the light has to travel four times as long. The slight shifts of
the resonance peaks from the theoretical predictions are due to the additional optical

path introduced by the Mylar beam splitter.

3.2.5 The On-resonance Gain

After studying the general properties of the BRAICER resonance through detuning
calculations, let us focus on the on-resonance behavior of the cavity. In order to study
the cavity at resonance, it is necessary to derive the energy coupled out of the cavity
as a function of time, or equivalently, the number of electron bunches having passed
through the cavity. Since the cavity is at resonance, we have the resonance condition
for the loop length as expressed in Eq. (3.5).

~ When the p** bunch has passed through the cavity, the electric field coupled out of

the cavity at this moment contributed from all the previous bunches can be derived
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from Eq. (3.8) as

res di. /2 d, 3 dib .dlp
E2y(t) = Ra%/* Y (a®T) E(t—to- e
k520
k+ji(m/n)=p
. di
= Ra%? Y (ad‘l’ T)J E(t —to — p—), (3.13)
k,i>0 ¢
k+j(m/n)=p

where p is an integer ranging from 0 to N — 1, and Eq. (3.5) and k& 4 jd = pda
have been used to simplify the equation. Solving k and j required in the equation
from k + j(m/n) = p for integers k,5 > 0 and 0 < p < N — 1, we obtain j = nl and
k = p— ml with the integer / = 0,1,..., |p/m|, where || denotes the floor function
which rounds z to the nearest integer in the —oo direction. Hence, the equation can

‘be further simplified as
d; lp/m]

E2n(t) = Ra®’B(t—to—p=) 3 (a*T)”
=0
n m|+1
Rodbel2E(s gy 1™ (o) (Lp/m|+1) .
— P — —_nN— . .
The corresponding Fourier transform of the equation is expressed as
1— (ad,pT)"(lp/mJH)

Exn(w) = Ra®»/? E(w)e™rdo/e (3.15)

1—(adeT)" °
where the common phase factor e*%»/? resulting from the time shift £, has been ig-
nored here. This frequency-domain expression can be extended for the beam splitters
with varying R and T in the frequency domain. The total energy coupled out of the
cavity at this moment, from either Eqs. (3.14) or Egs. (3.15), is

1-— (adIPT
1— (a%eT)"

(3.16)

)n(lp/mJ+1) 2
S;z-NocfblRlza"'P[ ] ’

where constant R and T are assumed for the beam splitter for simplicity, and &

J*Z|E(t)2dt = [T |E(w)|*dw is the total energy radiated from one electron bunch
into a light pulse.
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After all the electron bunches have passed through the cavity, the energy stored
in the cavity is decaying because the energy is still coupled out of the cavity. At the
time ¢ = ¢o + p(di/c), where the integer p > N, the electric field coupled out of the
cavity has the same expression as Eq. (3.13) except for the requirement on p. Solving
k and j from k + j(m/n) = p for integers j > 0,0 < k < N, and p > N, we obtain
j = nl and k = p — ml with the integer | = [(p — N + 1)/m],...,|p/m|, where
[¢] denotes the ceiling function which rounds z to the nearest integer in the +o0
direction. Substituting these solutions in Eq. (3.13), we have a simplified expression

: Lp/m| L
won(t) = Ro™/*E(t —t, - p@’-) > (a%T)”
€ i=[(p-N+1)/m]

@) (adlpT)ﬂf(P—NH)/m] _ (

)n(lp/mJ+1)
= Ra®™?E(t—ty—p
c

a®T
1—(a%T)"

(3.17)

Similar expression to Eq. (3.15) for the corresponding Fourier transform of Eq. (3.17)
can be obtained. The total energy coupled out of the cavity at this moment, from
Eq. (3.17), for constant R and T assumed for the beam splitter is

)nr(p—N+1)/m1 ~( )n(Lp/mJ+1) 2

a®T
1—(a%T)"

(adlr T

ron < Eu|R|*ate

(3.18)

The energy coupled out of the cavity as a function of time (as multiples of dy,/c)
at resonance can be studied using Eqgs. (3.16) and (3.18). Some typical calculated
results are shown in Fig. 3.7 for different cavity attenuations. The output shown is

the normalized factor defined as

. gres
Normalized Factor = W
1 — rle/m)+172
= for0<p< N
_ 1—-7 3.19)
- Flo-N41)/m] _ _|p/m]+17? » (3.
[ 1=, ] forp>N
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Figure 3.7: The on-resonance behavior of the BRAICER cavity for N = 100 and
dlp"—‘- ib (m=n=1).
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where
T = (a®T)" (3.20)

indicates the total cavity attenuation. For small 7 (high loss), the signal has a fast
rise to the equilibrium level which is approximately equal to (1 — 7)~2 (cf., Fig. 3.7
for 7 = 0.5 and 0.9). After the last electron bunch has passed through the cavity,
the signal quickly decays because of the high cavity loss. For r very close to unity
(low loss), the signal rises quadratically with time and reaches the maximum about
N? and decays slowly after the bunch train has passed the cavity (cf., Fig. 3.7 for
7 = 0.9999). It is worth noticing that the energy coupled out is this normalized factor
multiplied by &, |R|*a%>.

The signal gain of the cavity is defined as the maximum energy coupled out divided
by N&,, which is the total radiated energy for spontaneous emission. This is an
indicator of how effective the BRAICER cavity is producing stimulated radiation
when compared to the spontaneous emission case. Since the maximum energy coupled
out always happens when the last bunch is passing through the cavity, the signal gain

can be expressed as

TeS

Signal Gain = —2=N-1
ignal Gain NE,
[ n — m 2
(R adin [1— (o)™ 0/miD
B N 1— (a%T)"

(3.21)

[Rf?a [1- ruN-l)/mJH] :
N | 1—-71 ’

where 7 is defined in Eq. (3.20). However, for simpler comparison with different

attenuation 7, we will define the normalized gain as

1— ,-L(N—l)/mJ+1] 2

(3.22)

1
Normali in = —
ormalized Gain N [ 1=

The calculated normalized gain as a function of attenuation 7 is shown in Fig. 3.8.

This gain increases slowly for small 7 and quickly when 7 approaches unity. For small
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Figure 3.8: The on-resonance normalized gain of the BRAICER cavity for N = 100
and dy, = dip, (m = n = 1). The inset shows the normalized gain for 7 < 0.9.

7 (7 — 0), the normalized gain is about 1/[N(1 — 7)?], while for large 7 (r — 1), this
gain approaches the maximum N. Hence, it is necessary to minimize the cavity loss

(make 7 as close to unity as possible) in order to have a significant signal gain.

3.2.6 The Offset Effect

The discussions of the resonance behavior of the BRAICER cavity so far assume that
the electron bunches pass through the focal points of the parabolic mirrors P1 and P2.
However, things do not always go like the “ideal” case. If the electron bunches pass
through the cavity with an offset from the focal points of P1 and P2 demonstrated in

Fig. 3.9, some of the resonances will be affected by this offset effect. For example, if
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Figure 3.9: The offset effect in the BRAICER cavity. The electron bunches cross R
(at C and D) with an offset from the optical axis defined by the focal points of P1
and P2. The image points of C and D are displaced to | and J, respectively.

the loop length is an integral (say m) multiple of dy,, the radiation emitted from some
bunch at C after a travel around the cavity will not meet the next m®* subsequent
bunch at D to stimulate emission of radiation because the image point of C is displaced
to I; however, this radiation will further travel back to C to meet the next 2m** bunch
with {wo loop-length-long travel. This is exactly the second order resonance, instead
of the first one. On the other hand, resonances at half-integral multiples of dy, will
remain of the second order since the light pulses will meet the subsequent bunches at
the same point where they are emitted after two-loop-length-long travel. In general,
odd order resonances (say n**, n odd) will in this case become even order (2n**), while
all even order resonances retain their order.

~ Because of this offset, the two series of light pulses ERHS in Eq. (3.6) and EfHS in
Eq. (3.7) discussed in Sec. 3.2.4 will only stimulate radiation emitted from the same

side of R; that is, ERHS will ohly stimulate radiation emitted on the right-hand side of
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R by subsequent electron bunches and vice versa. No stimulation on alternative sides
will happen, and therefore ERHS and EFHS can be treated independently. Transform-
ing Eqgs. (3.6) and (3.7) into the frequency domain and summing over all electron

bunches (with respect to k), we obtain

N-1 o .
ERHS() = R/ >y (adl,,T) % E(w)etlk(din/c)+2i(dp/c)]
k=0 7=0

— Rad‘P/zE(w) Z iwk(dip /) Z ( dip T) tw2,1(d1p/c)
k=0
1— wN dip/c 1

— etwdipfe 1 — (adlr T)2eiw2dlp/c

2

= Rad‘P/zE(w)

(3.23)

and

N-1 o .
E'S(y) = Ra%/?Y" % (adl.,T)”“ B(w)eilk(dn/erH2i+1)(di/<)]
k=0 j=0

N-1 [ .
= Ra®/f(w) Z gik(dn/e) 3 (adlpT)z’“ i(25+1)(dip /)
=

_ esz dip/c adlp T eiwdlp /e
— eiwdip/c _ ( adlp T)2 eiw2d1p I’h

= Radll’/zE(w) L (3.24)

Hence, the resulting total energy is the incoherent sum of the two contributions, i.e.,
+oo - -
Eootal O / dw [IERHS(w)|2 + |ELHS(w)|2]
+00 _ 1— iwNd;y, /e
= [ do|Rpate | Bw)? |2

2
1 — eiwdib/ec [
2]

|2sm 2(wNdy, /2¢) 1+ o |T)?
Sln2 (wd,b/zc) ,1 (adlp T)2 uv2d1p/c

1
1 — (a%ieT)Ze™2p/

adlp Teiwdlp /c
1 — (o T)2ei2di/c

i

+oco ~
= [ dw|RPats| Ew) . (3.25)

This expression can be directly applied for beam splitters with varying R and T in
the frequency domain. Based on the analysis discussed in Sec. 3.2.4, the resonance

condition becomes

d1 m
dTi = o (3.26)
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where m and n are two mutually primed integers. For example, if di,/dip, = 1, then
m = 2 and n = 1, which means that at this loop length, the light pulses have to travel
2n = 2 loops to meet every other incoming bunch (m = 2). This is a second-order
resonance if there is an offset; however, it would be a first-order resonance if there

were no offset.

3.2.7 Reflection Losses of Metallic Reflectors

Since the BRAICER cavity consists mostly of reflectors to circulate the light pulses,
the reflection loss from these reflectors becomes one of the major factors of cavity
losses. In order to reduce reflection losses “good” reflectors are necessary for the
-construction of the cavity. As discussed in Sec. 2.1.3, silver, gold, and aluminum
are good candidates of reflectors because their conduction properties are near perfect
in the far-infrared regime. In this section, we will use the Drude model for silver,
gold, and aluminum to calculate their reflectance in the far-infrared regime. These
calculated results have been reported to have good agreement with experimental
results[27-29].

By solving Maxwell’s equations with appropriate boundary conditions, Fresnel’s
equations give the results for amplitude reflection and transmission coefficients. If the
light travels from a medium of refractive index n; into another medium of refractive
index n; at an angle 6; with respect to the normal of the interface, then the amplitude
reflection coefficients for parallel and perpendicular polarization are[12, Sec. 4.3]
ny cos 6; —n; cos b, tan(f; — 6,)
nycosf; + nicosf,  tan(6; + 6;)

oL Tcos i —nycosb,  sin(6; — ;)
~ mjcos;i+nycosd,  sin(6; +6,)’

ol

(3.27)

(3.28)
where 8, is the angle of transmission and can be obtained from Snell’s law:

n; sin §; = n, sin 4,. (3.29)
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For the case of reflection from a metal, the refractive index is a complex number and

has the following relation with its complex dielectric constant at angular frequency

n(w) = y/e(w), (3.30)

where e(w) can be obtained from the Drude model as shown in Eq. (2.15). The

w:

real part of n describes the propagation of the wave, while the imaginary part of n
describes the attenuation of the wave in the medium. The reflectances for parallel

and perpendicular polarization are then defined as

Rl = |rll? (3.31)
Rt = |rt] (3.32)

By setting n; = 1, ny = n(w) and using above equations and Eq. (2.15) with
Table 2.1, the reflectances of silver, gold, and aluminum placed in air (or vacuum) are
calculated. The dependencies on the incident angle at a fixed frequency of 10'2 Hz
are shown in Fig. 3.10 for both parallel and perpendicular polarization. For parallel
polarization [cf., Fig. 3.10(a)], the reflectances slowly drop down as the incident angle
increases and reach a minimum of about 0.2 at an angle of about 1.57rad. For
perpendicular polarization [cf., Fig. 3.10(b)], the reflectances slowly increase as the
incident angle increases and reach unity at an angle w/2. The reflectances as functions
of frequency at small (0.1rad) and large (1.5rad) angles are shown in Figs. 3.11
and 3.12 for both polarizations, respectively. The reflectances for both polarizations
in both cases slowly drop down as the frequency increases. Overall, perpendicular
polarization has higher reflectance than parallel polarization. Silver always has the
highest reflectance, and aluminum, the lowest among the three good conductors.
However, the difference is not significant. For small incident angles, reflectances are
very close to unity for both polarization components. Such near perfect reflectance

will help to minimize cavity losses and to maximize the signal gain.
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Figure 3.10: The reflectances of silver (solid), gold (dashed), and aluminum (dash-
dotted line) as a function of incident angle for (a) parallel and (b) perpendicular
polarization at frequency 10'? Hz. The inset in (a) magnifies the reflectances near the
angle § = 7/2.
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Figure 3.11: The reflectances of silver (solid), gold (dashed), and aluminum (dash-
dotted line) as a function of frequency at an incident angle § = 0.1rad for (a) parallel
and (b) perpendicular polarization.
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Figure 3.13: Simplified schematic diagram of the experimental realization of the
BRAICER cavity.

3.3 Experimental Verification

The theoretical results discussed in the previous section show a promising direction
to produce high-power far-infrared radiation through the generation of stimulated
coherent transition radiation from subpicosecond electron bunches in the BRAICER
cavity. In this section, we will describe how to use the BRAICER cavity to verify this
principle of stimulation for the first time experimentally at the SUNSHINE facility.

3.3.1 Experimental Setup

For this experiment, the SUNSHINE facility produces electron pulses at 10 Hz con-
taining a train of about 3000 electron bunches at an energy of 30 MeV. Each bunch
has about 2 x 102 electrons within a bunch length of about 200 um. The inter-bunch

distance is 10.5cm. By detecting radiation wavelengths longer than or equal to the
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bunch length, we are able to observe stimulated coherent transition radiation in the
far-infrared regime with a room-temperature bolometer.

A simplified schematic diagram of the experimental realization of the BRAICER
cavity is shown in Fig. 3.13. It consists of a foil radiator/reflector (R), two foil re-
flectors (F1 and F2), two gold-coated off-axis parabolic reflectors of 152-mm effective
focal length (P1 and P2), two gold-coated first-surface mirrors (M1 and M2), and a
127-pm-thick Mylar beam splitter supported by an aluminum ring (BS) using drum-
head stretching principle. All foil reflectors (R, F1 and F2) are made of 8-pm-thick
aluminum foils supported by aluminum rings stretched by the same method as that
for the beam splitter. The focal points of P1 and P2 are aligned with the surfaces of R
and with each other. The plane mirrors (M1 and M2) and the beam splitter (BS) are
mounted to a remote-controlled linear translation stage. This allows us to change the
loop length without affecting the alignment of the cavity. Some radiation is coupled
out by a beam splitter and collected into a room-temperature pyroelectric bolometer
through a copper light-cone. This light-cone and the bolometer combination will col-
lect all the photons coupled out of the cavity through the beam splitter and produce
a signal representing the total energy of the collected radiation. Hence, any increase
in the output signal indicates additional energy produced by stimulation.

Presently, the whole cavity is placed in air. The electrons are extracted from
the evacuated beam line through a 75-pm-thick stainless steel window. They cross
the cavity through the foils (F2, R, and F1), and are finally absorbed into a beam
dump. We simplify the assembly and alignment problems by placing the cavity in air
but suffer from multiple scattering problems caused by electrons passing through the
stainless steel window and the air, which reduces the radiation signal. Additionally,
radiation is absorbed by humidity resulting in significant cavity losses. Forward tran-
sition radiation emitted from F2 and the backward one emitted from F1 will not be

amplified by the cavity because of geometry but will contribute to the background.
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This is also true for Cherenkov radiation emitted in air.

3.3.2 Results

By performing detuning measurements on the cavity, we are able to scan through its
different resonances. This detuning procedure is carried out by measuring radiated
energy into the bolometer as a function of the loop length. A typical detuning scan is
shown in Fig. 3.14(a) where the loop length varies from 73d;, to 8dy,. Three resonances
are observed in this range located at 7;dip, 73d;s, and 84y, A theoretical prediction
using Eq. (3.11) for a perfectly aligned cavity-beam system, in which the electron
bunches cross the focal points of P1 and P2 (cf., Fig. 3.3), is shown in Fig. 3.14(b).
‘Electron beam parameters mentioned above along with the assumptions of uniform
bunch distribution and 70% cavity losses, which is chosen to match the measurements,
are used in the simulation. The comparison of experimental results and calculations
is based on the relative heights of resonant peaks to their baselines. Although the
second order resonance at 7;ds, and the fourth order resonance at 73dy, agree with
theory, there are still two major discrepancies between the two results: (1) the third
order resonance at 7§d;b in the measurement does not show the expected amplitude
predicted by theory, and (2) the resonances at 8dj, in both results behave differently.

By inspecting the oxidation trace on R, F1 and F2 caused by the electrons, we
conclude that the electrons pass through R with an offset from the focal points of
P1 and P2. This offset case is shown in Fig. 3.9 and discussed in Sec. 3.2.6. The
theoretical simulation of the offset effect using Eq. (3.25) is shown in Fig. 3.14(c) and
agrees with the measured scan for all the resonant peaks. The absence of odd order
resonances in the measurement further indicates that the measured resonant peaks are
real stimulation of radiation, instead of interference effects between radiation pulses.
For example, at 72dy(= 2d) the radiation emitted from C by a bunch after a three-

loop-length-long travel will co-propagate in the cavity with the radiation emitted
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Figure 3.14: Typical experimental and theoretical detuning scans of the BRAICER
cavity. An experimental scan is shown in (a) where the loop length varies from Tid
to 8di,. Note that a change of § in the beam splitter position corresponds to 26 in
actual loop length. The theoretical predictions are shown in (b) for a perfectly aligned
case and in (c) for an offset case.
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from D by the next 23" bunch. The two light pulses do not stimulate each other to
produce more radiated energy because of the offset; instead, they interfere without
producing any extra energy. No interference effects due to these two co-moving pulses
are observed at this loop length, which confirms that the bolometer only measures the
change in total energy due to stimulation, not the local intensity enhancement due to
interference effect. In addition, the resulting 6 order resonance at this loop length

predicted by the theory with the offset effect is too small to have a clear observation.

3.3.3 Measurement Summary

We have described the experimental verification of stimulated coherent transition
radiation through a BRAICER cavity. Utilizing subpicosecond electron bunches pro-
duced at the Stanford SUNSHINE facility, we are able to observe the coherent part,
whose wavelengths are longer than or equal to the bunch length, of stimulated radi-
ation in the far-infrared regime via a room-temperature bolometer. By performing a
detuning scan of the cavity, resonant peaks of the cavity have been observed. These
resonances along with theoretical simulations confirm the observation of stimulated
transition radiation for the first time. This implies that a BRAICER cavity can be
used to generate high-power coherent far-infrared radiation through stimulated emis-
sion of coherent transition radiation. To achieve this, a new vacuum compatible cavity
design is required to eliminate air’s absorption losses and scattering of the electron

beam through the stainless steel window.

3.4 Alternative Designs

The observation of stimulated coherent transition radiation through the BRAICER
cavity described in the previous section has proved the principle of using stimulation of

coherent transition radiation emitted from subpicosecond electron bunches to produce
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Figure 3.15: An offset insensitive BRAICER cavity design.

high-intensity far-infrared radiation. However, the design of the cavity shown in
Fig. 3.3 and the experimental setup used to prove this principle are not suitable
for the purpose of high-intensity light production because of high cavity losses and
sensitivity to alignment errors. Hence, new designs optimized for this purpose have to
be studied. One major design change to reduce cavity losses is to enclose the whole
cavity in an evacuated environment to eliminate air absorptions and the electron
multiple scattering problem due to an extra vacuum protection window. In this
section, we will show two different optics design principles for different modes of

operation.



3.4. ALTERNATIVE DESIGNS 124

3.4.1 An Offset Insensitive Design

One optical design change to increase the signal gain is to use an offset insensitive
design so that the image of the beam can trace the change in the incidence point and
make the stimulation more efficient. Such design will also ease alignment requirements
on some parts. An offset insensitive BRAICER cavity design is shown in Fig. 3.15.
This cavity consists a radiator/reflector (R), two paraboloidal mirrors (P1 and P2),
one partial reflector (PR), and one output light collecting mirror (P3). This cavity
only circulates transition radiation emitted from one side of R. The focal points of P1
and P2 are aligned with the mirror-facing surfaces of R and PR, respectively.

As shown in the figure, divergent rays of forward transition radiation emitted from
-the left-hand side of R are converted to parallel rays by P1, and focused to a point on
PR by P2. Some parts of the light are reflected by PR and travel back to the original
emitting point to meet subsequent incoming electron bunches, while the remaining
parts transmit through PR and are collected by P3 into the application apparatus.
The amount of energy coupled out of the cavity is controlled by the reflectivity of the
partial reflector PR, which can be as simple as a thin coat of good conducting metal on
a supporting substrate such as a Mylar foil. The polarization of the stimulation field is
aligned with the spontaneous field and enables stimulated emissions from subsequent
bunches. This condition is, for example, not fulfilled if a plane mirror were inserted
between P1 and P2. Similar to the original BRAICER design, this design is operated
in the multi-pulsed mode, which will output a train of light pulses while the electron

bunches are passing through the cavity.

3.4.2 A Q-switched Design

The offset insensitive design described in the previous section will eliminate the offset

effect which occurred in the original BRAICER design and increase the efficiency of
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Figure 3.16: A Q-switched BRAICER cavity design. The timing of the electron
bunches, the laser pulse, and the output light pulse for the first resonance of the first
order [i.e., (m,n) = (1,1)] are shown in the right part of the figure.

stimulation by increasing the overlapping of stimulation fields and electron bunches.
However, the presence of the partial reflector PR makes it impossible to increase both
the cavity gain and the output intensity at the same time since a constant portion of
the energy is always coupled out of the cavity when the electron bunches are present.
In order to increase the cavity gain, a switching mechanism has to be introduced into
the cavity design. This mechanism will maximize the cavity gain (or the Q factor
of the cavity) while the bunches are passing through the cavity and then maximize
the output intensity (so the Q factor of the cavity is reduced) after the bunches have
passed the cavity. This, in laser terminology, is called the Q-switched method.

- A Q-switched BRAICER cavity design is shown in Fig. 3.16. This design has
basically the same structure as the offset insensitive design shown in Fig. 3.15 except

now the partial reflector PR is replaced by a laser-activated mirror LAM. Derived
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from the offset insensitive design, this Q-switched design is also free from the offset
problem. The laser activated mirror will become highly reflective when the laser is
shining on it and highly transparent for waves in the far-infrared regime when the
laser is turned off. A candidate for such mirror is, for example, a mirror made of
semi-conducting material. When the laser with a photon energy greater than the
bandgap of the mirror material shines on the mirror, the electrons in the mirror are
excited into the conduction band, and the mirror becomes a good conductor, which
is highly reflective for waves in the far-infrared regime. On the other hand, when the
laser is turned off, the far-infrared coherent radiation does not have enough energy
to excite electrons into the conduction band, and the mirror acts like a dielectric
‘materia.l, which is transparent for the coherent radiation. Hence, if the laser is turned
on when the electron bunches are passing through the cavity, the cavity will resonate
with very high gain (assuming the cavity loss is minimized). For the m*® resonance of
the n** order, there are only m light pulses circulating in the cavity and the intensity
increases quadratically with the number of encountered electron bunches. When the
last electron bunch has passed through the cavity, the laser is turned off to allow these
m high-intensity light pulses to be released into the experimental apparatus through
P3. The only requirement on the activating laser pulse is a very sharp trailing edge
to allow the circulating light pulses to be released in a very short time period. There
is no special requirement on the duration of the laser pulse except that it has to be
longer than the duration of the electron bunch train.

Unfortunately, current laser technology and available materials make it difficult
to realize this Q-switched design[55]. If the laser-activated mirror LAM is made of
available semi-conducting materials, the laser required to activate the mirror has to be
able to produce immense radiation energy within about 1 s to match electron beam
conditions at SUNSHINE. Such lasers are not achievable with current technology.

The reflectance of the mirror is not near perfect (~ 0.99) when the laser is shining
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Figure 3.17: An alternative Q-switched BRAICER cavity design. The timing of the
electron bunches, the laser pulse, and the output light pulse for the first resonance of
the first order [i.e., (m,n) = (1,1)] are shown in the right part of the figure.

on it. This poses a significant limit on the gain of the cavity. In addition, the carrier
decay in the mirror is rather slow compared to the light-pulse duration after the laser
is turned off. During this slow transition, light pulses in the cavity will be absorbed
by the carrier-decay process. However, these constraints may be relieved when the
laser technology is advanced, and new materials are discovered.

In order to utilize available semi-conducting materials as the laser-activated mirror
in the Q-switched design, an alternative design of the Q-switched BRAICER cavity
is shown in Fig. 3.17[55]. This cavity has the basic structure of the previous one
(cf., Fig. 3.16) except that the laser-activated mirror LAM is inserted between P1 and
P2, and the end of the cavity is replaced by a plane mirror M. The normal of LAM

is oriented at an angle equal to Brewster’s angle with respect to the parallel rays.
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Brewster’s angle of a material with refractive index n placed in air (or vacuum) is
defined as[12, Sec. 8.6]
tan f = n. (3.33)

When the angle of incidence is equal to Brewster’s angle, 100% transmission is
achieved for the polarization component parallel to the plane of incidence. As electron
bunches are passing through the cavity and LAM is not activated by the laser, the
polarization component parallel to the plane of incidence at LAM has 100% transmis-
sion through LAM and is amplified in the cavity with the maximum gain. However,
the perpendicular component suffers reflection losses through LAM and is not ampli-
fied. The light circulating in this cavity is, therefore, polarized. After all electron
bunches have passed, the laser is then turned on and activates LAM to dump light
pulses out of the cavity. The three constraints discussed in the previous paragraph
will not affect the operation of this design because of the following reasons. First,
the laser does not have to be turned on for a long duration because the dumping of
light pulses takes a few bunch repetition periods (din/c). This eases the requirement
on the total laser output energy and makes current laser technology applicable to
this design. Secondly, the about 99% reflectance of LAM when it is laser-activated
is enough for the light-pulse dumping purpose. Finally, the long carrier-decay time
does not affect this operation since the laser can be turned off after light pulses have

been dumped.
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