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Abstract 

This thesis is concerned with an experimental study of QCD and JETS using 

hadronic decays of 2’ bosons by the SLD experiment at the SLAC Linear Collider. 

The strong coupling a$(@.) has been measured, which is an important test of 

perturbative QCD theory. This comprehensive study comprised fifteen observables that 

describe hadronic final states; six event shapes, differential 2-jet rates defined by six 

different jet resolution/recombination schemes, energy-energy correlations and their 

asymmetry, and the jet cone energy fraction. The data were compared with QCD 

predictions both at fixed order, O(a,2), and including resummed analytic formulae 

based on the leading and next-to-leading logarithmic approximation. 

The consistency was checked between a,(@) values extracted from these dif- 

ferent measures. A final average of a,(&$) = 0.1200 f O.O,025(exp.) f O.O078(theor.), 

corresponding to Am = 253- +lg MeV, was obtained by combining all results. The 

dominant uncertainty is from uncalculated higher order contributions. 
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Chapter I 

Introduction 

Achieving precision tests of the Standard Model of elementary particle interactions 

is one of the key aims of high energy physics experiments. Some measurements in the 

electroweak sector have reached a precision of better than 1 96.’ However, measurements 

of strong interactions, and hence tests of the theory of Quantum Chromodynamics 

(QCD),’ have not yet achieved the same level of precision. This is largely due to the 

difficulty of performing QCD calculations, both at higher order in perturbation theory 

and in the non-perturbative regime, where effects due to the hadronization process 

are important. Perturbative QCD is a theory with one free parameter, the strong 

coupling Q,, which can also be written in terms of a scale parameter A. Tests of the 

perturbative QCD can therefore be reduced to a comparison of measurements of Q,, 

either in different hard processes which is QCD processes involving sufficiently large 

exchanges of momenta where a, is small enough for the perturbative approach to be 

valid, such as hadron-hadron collisions or e+e- annihilations, or at different energy 

scales Q. This thesis presents an experimental study of QCD and JETS*, by means of 

*The term of JETS is defined by the group which contains particles fly toward the almost same 

direction. 

measurement of a,, in hadronic decays of 2’ bosons produced by e+e- annihilations 

at the SLAC Linear Collider (SLC) an d recorded in the SLC Large Detector (SLD). 

Complications arise in making accurate QCD predictions.’ In practice, because 

of the large number of Feynman diagrams involved, QCD calculations are only pos- 

sible with present techniques to low order in perturbation theory. Perturbative calcu- 

lations are performed within a particular renormalization scheme,3 which also defines 

the strong coupling. Translation between different schemes is possible, without chang- 

ing the final predictions, by appropriate redefinition of a, and of the renorm&zation 

scule.4 This leads to a scheme-dependence of cy,, which can be alleviated in practice by 

choosing one particular scheme as a standard and translating all a, measurements to 

it. The modified minimal subtraction scheme (MS scheme)3 is presently used widely as 

this standard. 

An additional complication is the truncation of the perturbative series at finite 

order which yields a residual dependence on the renormalization scale, often denoted 

by p or equivalently by f = p’/Q’, which then becomes an arbitrary1 unphysical pa- 

rameter. It has been shown that the dominant uncertainty in cx,(M$) ‘measurements 

arises from this renormalization scale ambiguity. 5s Given that infinite order perturba- 

tive QCD calculations would be independent of p, the scale uncertainty inherent in a, 

measurements is a reflection of the neglected higher order terms. 

Distributions of observables in the process e+e- -+ hadrons have been calculated 

exactly up to O(crf) in QCD perturbation theory.7 One expects a priori that the 

size of the uncalculated O(af) and higher order terms will in general be different for 

each observable, and hence that the scale dependence of the a, values measured using 

different observables will also be different. In order to make a realistic determination 

of a, and its associated theoretical uncertainty using U(az) calculations it is therefore 

advantageous to employ as many different observables as possible. In this analysis 
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‘the data sample Fllected by the SLD in 1992 and 1993, comprising approximately 

60,000 events, have been used to make measurement of o&M;) using fifteen observables 

presently calculated up to CJ(a3) in perturbative QCD. ! 

In addition, for six of these fifteen observables, improved calculations can be for- 

mulated incorporating the resummation *-13 of leading and next-to-leading logarithms 

matched to the U(af) results; these matched calculations, i.e. resummedtO(a3) cal- 

culations are expected a priori both to describe the data in a larger region of phase 

space than the fixed order results, and to yield a reduced dependence of a,(Mi) on 

the renormalization scale. The resummed-@(az) calculations have been employed for 

six observables to determine a,(Ms), and the uncertainties involved in the matching 

procedure have been studied. 

Organization of this thesis is as follows; chapter 2 reviews the perturbative QCD 

predictions. Chapter 3 is devoted to a brief review of the SLC and the SLD. The 

hadronic event trigger and selection criteria are described in chapter 4. Monte Carlo 

event simulations are also treated there. The definitions of hadronic event observables 

and investigations of sensitivity for measurement of a,(A4;) using O((Y:) calculations 

are described in chapter 5. The analysis of the data and derivation of a,(Mi) using 

both O(af) and resummed-+O(a,2) calculations are presented in chapter 6. In chapter 7 

the running of a, compared with other experimental results and the optimization of the 

renormalization scale are discussed. Chapter 8 summarizes the results and concludes 

this thesis. 
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Chapter 2 

Theory of Perturbative QCD 

2.1 Quantum Chromodynamics 

Quantum chromodynamics (QCD),’ which is a non-Abelian gauge theory , de- 

scribes the strong interactions of quarks and gluons by means of a color force. The color 

charge, which has three kinds, namely red, green, and blue, is the source of the strong 

force. Each quark, belonging to a SU(3), triplet, has one of the three colors, while the 

gluon, belonging to a SU(3), octet! carries two labels, one is color and the other is anti- 

color. As a remarkable nature of non- Abelian theories, QCD has a triple gluon coupling 

as well as a four-gluon coupling as shown in Fig. 2.1. The gluon self-couplings have no 

analog in QED and are responsible for the asymptotic freedom, a remarkable property , 

of QCD. This implies the strong coupling of QCD, a,, decreases as energy scale (mo- 

mentum transfer) increases. In high energy e+e- annihilation processes, therefore, cr, is 

small enough to allow perturbative calculations. In contrast with the high energy pro- 

cesses, a, becomes so large when the energy decreases that the theory enters a strongly 

coupled regime (the’infra-red slavery) thereby making perturbative treatments invalid. 

The color confinement is believed to be a direct consequence of this infra-red slavery. 

6 

Triple-gluon 

CHAPTER 2. THEORY OF PERTURBATIVE &CD 

J, 
coupling 

x 
Four-gluon coupling 

Fig. 2.1. Triple-gluon and four-gluon couplings. 

2.2 The Ren,ormalization Group Equation 

When one calculates Feynman diagrams that contain loops, divergent integrals 

over loop momenta occur. In order to avoid this divergence, first the divergent expres- 

sions are made finite temporarily using some regufurization procedure.14 This intro- 

duces additional parameters, for example, a gluon mass m,, an ultraviolet momentum 

cut-off K, or a fractional space-time dimension D = 4 - 6:. Then these regularized di- 

vergences of perturbation theory are removed by .absorbing them into the definitions of 

physical quantities through a renormalization procedure.” This is done by some spec- 

ified treatment but arbitrary, which introduces a new dimensional scale /.L. Different 

renormalization treatments with different scale ~1 must lead to the same amplitudes 
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for a physical observable. The equations that express the invariance of the physics 

under changes of the parameter /I are known as the Renormalization Group Equation 

(RGE).” 

Renormalization is performed on the sum of connected Feynman diagrams with 

the external propagators removed. One way to control divergences in a quantity F is to 

introduce an ultraviolet cut-off K in the loop momentum integrals. Thus unrenormalized 

quantity Fr~(p,, go, a) is considered, where pi is momenta of external particle and gs is 

the basic vertex coupling. For a renormalizable theory such as QCD, it is possible to 

define renormalized quantity Fn by 

rRtPir9,d = =w90,d4w7k90, 4, (2.1) 

which are finite in the K -+ 00 limit but depends on the scale parameter p and a 

renormalized coupling g. Because Fr,r does not depend on p, one obtains 

drrJ -= 
dp 

$+zp($+~~)rR=o 

This expression can be usually written as 

( 
P& + 0; t Tr 

> 
rR'hg, p) = 0, 

where the ,0 function ,0(g) and the anomalous dimension -y(g) are defined by: 

(2.2) 

(2.3) 

(2.4) 

(2.5) ’ 

The p function is universal, while the y function depends on the quantity F. If Zr is 

expressed as a product of renormalization factors: y may be expressed as a sum of the 

corresponding contributions. 

In the method described above, the infinities from the divergent integral that 

has a form like J $$ has been made finite by taking a fixed cut-off parameter, a, on 

the momentum. Hence the infinity appears in the form lim,,, In IE’, and this term 

\is cancelled with the bare coupling gc to give a finite result at scale p. This is called 

the Momentum Scheme of renormalization (MObf). In an alternative approach, the 

most often used is dimensional regularization. l4 This considers the integral J ‘$ as a 

function of the space-time dimension D = 4 - c. This diverges like 

(2.6) 

where 7~ is Euler’s constant, i.e. 0.5772. . . . The 2/c term is infinite in the D + 4 

limit, however it can be cancelled in the same way as the In a* in the MOM scheme. 

This is the Minimul Subtraction scheme (MS). Alternatively, one can put -3/2 t YE 

into this infinity and those terms are also cancelled. This is essentially equivalent to 

the Modified Minimal Subtraction scheme ( MS)3 which is commonly used. A scale ti 

also appears in such a scheme as a necessary quantity to keep the dimensions correct. 

2.3 The Running Coupling s 

The renormalization scale dependence of the effective QCD coupling o, E gz/4a 

is controlled by the p function (Eq. (2.4)): 

da, P  B, j 
qy = -&y-pf-..., 

PO = 11 - in,, 
19 

PI = 51 - -3-n,, 

(2.7) 

where nf is the number of massless quarks than the energy scale p. 

In the Next-to-Leading Order (NLO), a, can be written by a solution to Eq. (2.7) 

as 
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0- J 
1 10 p (GeC: 

2 Fig. 2.3. Feynman diagrams in O(cyd) for 3-parton. The solid line stands for fermion and the 

curly line indicates gluon. 

necessary to go beyond the leading order. The form of Eq. (2.8) is scheme independent 

since the coefficients ,&, /I, are independent of the renormalization scheme. However, 

the expressions of physical cross sections are scheme dependent, and therefore the fitted 

value of A depends on the renormalization scheme. 

Fig. 2.2. The running of (Y,. 

Figure 2.2 shows the running coupling a, as a function of energy scale p from Eq. (2.8). 

If one only considers Leading Order (LO), the solution of Eq. (2.7) is 

(2.9) 2.4 Theoretical Predictions of QCD 

then it can be found that a change of the scale p by a factor of order 1, say ,u’ = 2~ 

yields 
In the e+e- annihilation, the perturbative QCD calculation of the hadronic cross 

sections in O((Y#) for 3-parton final states gives 

(2.11) 

= aS($ + NLO correction, (2.10) 

1 do 2cr, x: + z; --=- 
uc, dlld52 3if (1 - ZJ(1 - 22)’ 

where a0 is Born cross section. Here the dimensionless energy fractions are defined as 

2Ei 
ZjE----, Q (2.12) 

where Ei is the energy of three decay particles (i = l:quark,*2:antGquark, 3:gluon) and 

Q is the center-of-mass energy. Figure 2.3 shows the Feynman diagrams considered. 

and includes a change in Q, which is of the NLO. Therefore in the leading order of 

perturbation theory one can not specify the scale at which a, evaluated, and it is 

. 
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collinear 
singularity \ 

i&a-red 
divergence 

\ (soft singularity) 

Fig. 2.4. Dalitz plot for 3-parton final state. Each quark, anti-quark, and gluon is carrying 

fractional energy Zi = 2Ei/Q. The shaded area is the allowed kinematic region in the massless 

The differential cross section in Eq. (2.11) diverges as 11 or 52 goes to 1 and u 

is infinite. In other words, the differential cross section diverges when the energy of 

the gluon goes to zero or when the outgoing quark (or anti-quark) and gluon become 

parallel. The first type of divergence is referred to as an infra-red divergence (soft 

singularity), while the second is referred to as a collinear singularity. In order to make 

the origin of these divergences clear, Fig. 2.4 shows the Dalitz plot for the decay of a 

virtual photon (or 2’ boson) with invariant mass Q  into a massless quark, anti-quark, 

and gluon. These singularities can be ,avoided by taking some regularization procedure. 

The QCD predictions up to U(a,) * 7~17 for all observables defined in chapter 5 have 

the general form 

1_ . da(y) = A(y)G8 + lB(y) + A(y)2xboln f] Ga2, 
ut dy 

12 CHAPTER 2. THEORY OF PERTURBATIVE QCD 

where y is the variable in question; ui is the total hadronic cross section; &, = a,/2s; 
I ,f = g/s; 4 = (33 - 2n,)/(l27i); and nf is the number of active quark flavors; nj = 5 

at fi = Mz. Feynman diagrams up to U(crt) for 2-, 3-, and 4-parton is shown in Fig. 

2.5. We have computed the coefficients A(y) and B(y) using the EVENT p&ram, 

which was developed by Kunszt and Nason. ’ It should be n$ed that a dependence 

on the QCD renormalization scale p enters explicitly in the second order term in Eq. 

(2.13). 

It has been found recently 8-13 that several observables, namely thrust (T):~~ heavy 

jet mass (p),19 jet broadenings (BT, Bw), ” differential 2-jet rate with Durham scheme 

( Dz(D-scheme)),2’ and energy-energy correlations (EEC),22 can be resummed, that 

is, leading and next-to-leading logarithmic terms can be calculated to all orders in 

a, using an exponentiation technique. This procedure is expected a priori to yield 

formulae which are less dependent on the renormalization scale. Using L = In(l/y), 

the fraction R(y: (I,) can then be written in the general form 

where 

C(a,) = 1 + 5 C&“, j 
7X1 

m  VI+1 

~(a,, L) = C CL” C GmJ”~ 
*=I m=l 

F(Y, as) = g F,(y)&“. 

The factor C to be exponentiated can be written 

t F(Y, as), (2.14) 

(2.15) 

(2.16) 

(2.17) 

where f&a,L) and f&crSL) are the Leading Logarithms (LL) and Next-to-Leading 

Logarithms (NLL). The functions ILL and fNLL depend only on the product a,L and 

. 



. 



2.4. THEORETICAL PREDICTIONS OF &CD 15 16 CHAPTER 2. THEORY OF PERTCJRBATIVE QCD 

Resummed formula 
LL NLL Subleading UC@:) QCD 

kt &Lz +&L +o;, +CT*O(L-1) A(Y)& 
2nd +K ‘L3 +c&~L~ +CC,~L +o;,~ 3 +&20(L-*) (B(y) - A2(y)/2)ds2 
3rd +&s3L4 +cT,~L~ +ia3Lz +CF,~L +G,~ +o;,~o(L-‘) 
4th +&.s4L5 +ds4L4 __ ___ I I - I 

: : 
/ II 

Table 2.1. Schematic representation of the expansion in the resummation of the LL, NLL, 

and subleading parts for In R(y, (I~). An expansion for the ~?(a:) QCD calculation is also 

shown. 

and 

InR”@ ‘%,4 = d(y)&, + 
d’(r) a(Y) - 2 

> 
Es2 $ cyaf). (2.24) 

Adding Eq. (2.23) and Eq. (2.24), and subtracting the overlapping first and second 

order terms from Eq. (2.23), yields8,g 

td(y)a,t qy)- T) a^,*, (2.25) 

where 

Cresum(l)(a~, L) 2 = G12&L2 + Gl,&L (2.26) 

Cresum(*)(a~, L) = G23ci,*L3 t G&,*L2. (2.27) 

Finally, one can derive Rresum+o(a:) (y, a,) by taking the exponential of Eq. (2.25). This 

procedure is called InR-matching. The expression of In R(y, a,) is shown schematically 

in Table 2.1. 

In an alternative approach, theoverlapping terms Cresum(‘)(~S, L) and Cresum(2)(~J, L) 

bre subtracted from IZ’“““” (as, L) in the form of an exponential. The exact formula up 

to CJ(af) is then to obtain as follows1*J3: 

Kesum+o(o~)(y, a,) = (1 + Cl&, $ C2c&*) [exp {Cresum(aS, L)} 

- exp { C-m(l)(Q.: L) $ Cresum(Z)(% L)}] 

t 1 t d(y)& t B(y)&* 

= (1 $ Cl& + C&‘)exp {Cresum(aS, L)} 

- (C*G, t C=sumqas, L)) 

- [c*a;,2 t C1&,C’-ya,, L) 

+ ; { Cresum(lycrs, L)}’ + Cressm(*)(crs, L)] 

td(y)a, +13(y)&*. (2.28) 

This is called R-matching, and differs from InR-matching in that the subleading term 

G21&,*L is not exponentiated. In order to raise this procedure to the same level as 

the InR-matching scheme, Eq. (2.28) may be modified by replacing Cre’um(aS, L) and 

Cresum(*)(crs, L) with C(ab, L) and C(*)(a,, L) = G&‘L3 $ G&*L* + G21d,2L, re- 

spectively. This procedure is called modijed R-matching*.‘* j 

The predictions of these matching schemes have some troublesome features near 

the upper kinematic limit y,,, because terms of third and higher order generated by 

the resummed calculations do not vanish at this limit. This situation can be corrected 

by invoking a replacement of L = In( l/y) in Eq. (2.25) with L’ = ln(l/y - l/y,,, $1). 
I 

This procedure is called modified InR-matching. 25 InR- and modified InR-matching are 

not applicable to EEC. We took the value of ymoz to be 0.5 for T, 0.42 for p, 0.41 for 

BT, 0.325 for Bw, and 0.33 for Dz(D). 

*It has also been called R-Gzl-matching,23 or intermediate malching.24 
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Finally, in order to account for the renormalization scale dependence, f~~~(cx# L) 

should be modified to fiv~~(a,L) t (a,L)‘w& lnf, and B(y) and Gss should be I 
I 

modieed to B(y) t d(y)%b In f and Gas + G1227rbo In f, respectively.7l’3 Thus, o, is 

observed in terms of the perturbative prediction of any observable in the form 

R(Q) = ro t rla,(p*) t rz(f)o:(p') t . . . (2.29) 

If all orders can be calculated, the dependence on the arbitrary renormalization scale 

factor f s p2/Q2 would cancel completely between (I, and the coefficient r;. However, 

if one choose p much different from the natural scale Q  then large logarithms of f 

remain uncancelled in any finite order, making prediction unreliable, which is discussed 

in chapter 6 in detail. 

CHAPTER 2. THEORY OF PERTURBATIVE &CD 
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Comoton 

Chapter 3 

Experimental Apparatus 

3.1 The SLAC Linear Collider 

The SLAC Linear Collider (SLC) is th e mear collider, which accelerates both 1’ 

electron and positrons to an energy of up to 50 GeV, built at Stanford Linear Acceler- 

ator Center (SLAC). As shown in Fig. 3.1, the SLC consists of mainly five systems; a 

polarized electron gun, damping rings, a linear accelerator (LINAC), arcs, and a final 

focus system. 

A longitudinally polarized electron beam can be created by irradiating a GaAs 

semiconductor cathode with a circularly polarized lsser.26 In 1993 a new type of strained 

lattice cathode was introduced to produce electrons with up to 80% polarization.27 

The laser strikes the cathode two times per 120 Hz machine cycle. The photo-emitted 

electrons are accumulated into a bunch. While one bunch of electrons eventually comes 

into collision with positrons at the interaction point (IP), the other electron bunch is 

used to create positrons. The electrons are accelerated through a high-gradient field to 

an energy of 50 MeV and then enter the first section of the LINAC. The electrons reach 

an energy of 50 MeV and positrons come from the positron target are accelerated to 

e+ 
Return Line 

Damping Ring 

Electron Spin 
Direction 

Thermionic 
Source 

Polarized e- 
Source 

Fig. 3.1. The layout of the SLAC Linear Collider. 
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z” 

Fig. 3.2. North (electron) damping ring beam transport. 

an energy of 1.2 GeV. 

The electrons and positrons.are diverted from the first section of the LINAC into 

two different damping rings. The damping ring? which are 35 m  in circumference 

are used to compress the bunches and remove any energy fluctuations (see Fig. 3.2). 

The electron spin is rotated from the horizontal plane to the vertical plane in order to 

preserve polarization in the damping ring. During the 1992 polarized run, the electron 

beam exiting the damping ring was made to pass through a pair of solenoids in the 

Ring-to-Linac (RTL) line, thus rotating the electron spin back to near longitudinal in 

order to finally achieve longitudinal polarization at the IP. For the 1993 run the IP spot 

size could be reduced by producing flat beam (i.e. e[liptica[) in the damping rings. In 

that case the RTL solenoids were off since a solenoidal field will introduce r-y coupling 

of the beam phase space due to the beam betatron motion. The electron spin is still 

transverse to the motion when the electron bunch comes into the LINAC. 
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After traveling around the damping rings, the electron and positron bunches are 

guided out of the rings and sent down the main two-mile 50 GeV linear accelerator 

and into two opposing arcs of 1 km in length. 

The arcs do not lie in the horizontal plane, so the beam transport is complicated 

by the motion in both dimensions perpendicular to the momentum of the electrons. 

In the flat beam mode, the north arc, through which the electrons are transported, is 

utilized to flip the spin from transverse to longitudinal by way of spin bumps.2g The 

spin bumps utilize a strong resonance between the vertical betatron tune and the spin 

tune. In practice, a vertically polarized beam at the end of the LINAC can be made 

longitudinal at the IP by a pair of large betatron oscillations in the north arc.sc’ This 

was standard practice for the 1993 run. 

Three superconducting quadrupole magnets in the final focus compress both e+ 

and e- beams to 2.6 by 0.8 pm widths just before the collision. One electron and 

positron in each bunch occasionally interact with producing a Z boson. The parameters 

of the SLC are listed in Table 3.1. 

Horizontal Emittance 3.5-4.0 x10- m  4.0 x10- m  ~1 
Repetition Rate 120’Hz 

Up time 60% 
Luminosity 23 Zs/hour 

Total Zs, Unpolarized 1,000 
Total Zs, Polarized 10,000 

Poralization 22% 

120’Hz 
70%, 

40 Zsfhbur 
- 8 

50,000 
62% 

Table 3.1. The parameters of the SLC. 
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3.2 The SLC Large Detector 

The e+e- annihilation events produced at the 2’ re ‘I onance by the SLC have been 

recorded using the SLC Large Detector (SLD).31 The SLD, shown in Fig. 3.3, com- 

bines excellent tracking, calorimetry, and particle identification into a state-of-the-art 

experimental apparatus. The SLD is a cylindrically symmetric detector within a 0.6 

Tesla solenoidal magnetic field to measure momentum of charged particles. Charged 

tracks are measured in the central drift chamber (CDC) and in the vertex detector 

(VXD). Charged particle identification is made with the Cerenkov Ring Imaging De- 

tector (CRID). Particle energies are measured in the Liquid Argon Calorimeter (LAC), 

which contains both electromagnetic and hadronic sections, and in the Warm Iron Car- 

olimeter (WIG) which is also used for muon tracking and identification. 

The coordinate system used by the SLD is defined that its origin is at the center 

of the detector, z-axis points to the positron direction, y-axis vertically up, and z-axis 

makes the overall frame right-handed. 

Major components of the SLD are described in the following. 

3.2.1 Vertex Detector 

The innermost detector, the vertex detector (VXD),32 surrounds the small beam 

pipe as shown in Fig. 3.4. The feasibility of the VXD lies in getting 3 dimensional 

information on charged tracks. The VXD uses silicon chips called charged coupled de- 

vices (CCDs)* , to make high resolution space point measurements of charged particle 

tracks. One major disadvantage of CCDs is that they require a long time to read out 

signals as shown in Table 3.2. Because of this reason, CCDs can not be used for much 

higher beam crossing rate, for example at LEP, than at the SLC. 

*The same type of solid state devices are also utilized in modern video cameras 
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SLD 
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..---_. I__- \  h 
, Magnet Coil 

v, Moveable Door 
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1 

Fig. 3.3. The cutaway and quadrant view of the SLC Large Detector. 
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The VXD is,comprised of 480 CCDs, mounted on 60 thin aluminum-ceramic 

boards (ladders) arranged in four cylindrical layers. The various parameter’s of the 

CCDs and the VXD are listed in Table 3.2. I 

80% of charged deposited in 1 to 2 pixels 
VXD parameters 

Active area of ladder 1 8.5 x 100 mm2 
Number of ladders 60 

3.2.2 Drift Chambers 

Most of the charged particle tracking is carried out by the drift chambers. A central 

drift chamber (CDC)3’ covers the barrel region and four endcap drift chambers (EDC) 

cover the forward/backward regions. The CDC is 2 m  long with an inner radius of 0.2 

m  and an outer radius of 1.0 m, and is filled with the gas mixture of 75% CUs, 21% 

Ar, 4% isobutane, and 0.3% HsU. The primary component of the gas mixture chose 

CO2 because of its character both of a low drift velocity and of low diffusion constant. 

Isobutane was added as a quencher at a level low enough to keep the mix nonflammable. 

Argon was added to increase the gain to the desired level as wire stability was marginal 

despite large tension in the high field electrostatic design of the basic cell. Finally water 

CHAPTER 3. EXPERIMENTA LJ APPARATUS 
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Stripline 

Beampips 
(25 m m  rad) 

Fig. 3.4. The SLD Vertex Detector (VXD). 

was added and its presence could ameliorate the effects of wire aging in the radiation 

environment of SLC. The CDC contains 640 cells arranged in 10 concentric superlayers. 

There are eight sense wires per cell. The layers alternate between giving axial and stereo 

information. The stereo layers are angled at f41 mrad with respect, to the beam axis. 

Charged particles passing through the CDC sensitive region ionize gas molecules 

and liberalize electrons along their trajectories. Since high voltages are applied to the 

guard and field-shaping wires, the liberated electrons drift towards a sense wires at a 

mostly uniform velocity of 9 pm/ns. Near the surface of the sense wires, the electric field 

becomes strong enough that when electrons reach its vicinity they produce a cascade, 

amplifying the charge. It is possible to determine how long it took the electrons to drift 

from the charged track to the sense wire by means of measuring the time information 

when the cascade is produced. This measured time combined with the drift velocity 

makes spatial information. Each wires of the CDC has an intrinsic resolution of 82 Pm 

, however, slight alignment errors in the wires and uncertainties in the drift velocity 
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reduce the effective resolution of the CDC to 92 pm. An inverse momentum resolution 
I 

of the CDC with 0.6 Tesla magnetic field is obtained to be: 

I 
u (GeV/c)-’ = 0.004g2 $ (0.0095/p)2. (3.1) 

The combined the CDC with the VXD momentum resolution is estimated to be: 

u (GeV/c)-’ = dO.OO262 $ (0.0095/p)2. (3.2) 

A resolution for two-track separation is 1 mm at 50% efficiency. Although the CDC 

is not designed for optimal energy-loss measurement, a dE/dx resolution of 6.5% is 

achieved for electrons in wide-angle Bhabha events, after correcting for geometry effects, 

diffusion, transport loss, and gain variations. 

3.2.3 cerenkov Ring Imaging Detector 

When a velocity of a particle exceeds the speed of light in a medium, the particle 

emits Cerenkov radiation. The cerenkov angle which is an opening angle 0 of a cone 

of cerenkov light is related to the velocity of the particle as: 

1 
case = -, 

Pn 
(3.3) 

where n is the index of refraction of the material and ,0 is the velocity of the particle in 

the material. From the measurement of the Cerenkov angle, combined with momentum 

information from the drift chambers, the mass of the particle and hence the identity of 

the particle spices can be ascertained. The cerenkov Ring Imaging Detector (CRID),33 

as shown in Fig. 3.5, is designed to measure the Cerenkov angle of the tracks and 

therefore perform particle identification. The barrel CRID uses liquid and gas radiators 

(see Table 3.3). The liquid radiator can differentiate between low momentum particles, 

while the gas radiator was chosen to be sensitive to the higher momentum particles. 
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k 
Liquid Rad!ator 

(Cs 54) 

Fig. 3.5. Operation of the barrel brenkov Ring Imaging Detector (CRID). 

The CRID measures circles of light by using a time proportional chamber which is 

basically a long drift chamber. The photons are converted by photo-ionization in the 

mixed ethane gas with 0.1% tetrakis (dimethylamino) ethylene (TMAE). When the 

molecule is hit by a single photon from cerenkov light, it releases a single electron. 

The photo-electrons then drift to the end of the detector where they are measured by 

proportional wires. The drift t ime yields information regarding the conversion depth, 

photon rings then may be reconstructed and the cerenkov angle m,easured. 

3.2.4 Liquid Argon Calorimeter 

The main calorimeter of the SLD is the Liquid Argon Calorimeter (LAC)% cov- 

ering both barrel and endcap region. The LAC consists of projective towers, longitudi- 

nally segmented into two electromagnetic (EM) sections of 21 radiation lengths in total 
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I 
Radiator material 

Liquid 
GF14 

Gas 
70% CzF,2 

and 30% N, 
4 

Index of refraction (for X = 190.7 nm) 1.277’ 1.001725 
Thickness of radiator 1 cm -45 cm 
Cerenkov angle (for p = 1) 672 mrad 59 mrad 
Radius of C&enkov ring (for /3 = 1) 
Local angle resolution 
Cumulative misalignment resolution 
Number of photoelectrons (for p = 1) 
Mmentum threshold: 

e 
R 
K 

17 cm 2.9 cm 
-12 mrad -4 mrad 
-10 mrad -10 mrad 

~(13 - 16) "(7 - 9) 

-1 MeV/c -9.5 MeV/c 
0.23 GeV/c 2.6 GeVJc 
0.80 GeV/c 9.1 GeV/c 

P 
Particle separation at 90” (30 level) 

e/n 
PIT 
a/K 
K/P 

1.5 GeVjc 1 17.3 GeV/c 

0.2 - 6.2 GeV/c 
0.2 - 1.1 GeV/c 1 2.1 - 3.8 GeV/c 

0.23 - 23 GeV/c 
0.80 - 37 GeV/c 

Table 3.3. The parameters of the barrel cerenkov Imaging Ring Detector (CRID). 

depth, and two hadronic (HAD) sections, which combine with the EM sections to give 

2.8 interaction lengths. The LAC covers 98% of the total solid angle, with about 80% 

of this in the barrel section. The remainder is covered by silicon-tungsten calorimetry 

at small scattering angles used to measure luminosity with Bhabha scattering. Figure 

3.6 shows the structure of a barrel LAC module. The barrel consists of 48 such modules 

in azimuth and 3 along the barrel in z. There are a total of 32448 towers in the barrel 

and 8640 in the endcap, providing a high degree of transverse segmentation. 

The performance of the LAC is studied by using Bhabha events. The energy 

resolution of the EM section is estimated to be a(E)/E = 15%/a. The resolution of 

Fig. 3.6. A module of the barrel Liquid Argon Calorimeter (LAC). 

the HAD section is estimated by comparing the momentum measurement in the drift 

chamber of isolated tracks with the energy response of the LAC. The resolution of the 

HAD section is obtained o(E)/E = 55%/a (preliminary). ’ 

3.2.5 Warm Iron Calorimeter 

The outermost detector of the SLD is the Warm Iron Calorimeter (WIC),35 which 

is sampling calorimeter with limited streamer tube and muon tracker. The total thick- 

ness of the WIC is 4.2 nuclear interaction lengths, comprised of 14 steel plates 5 cm 

thick. Wire planes between the steel layers are plastic streamer tubes bundled together 

to form planar chambers. The tower segmentation of the WIC follows that of the LAC. 

Muon tracking is also perform with the WIC. The chambers contain copper strips 

which are 1 cm wide and run the length of the chamber. Muon tracks are identified 
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by matching extypolated CDC tracks with hits in the WIC strips. The expected en- 

ergy resolution of the WIG is cr( E)/E = SO%/&?, which will give a hadroriic energy 

resolution by combining with the LAC of a(E)/E = 60%/G. 

3.2.6 Luminosity Monitor 

The integrated luminosity of the SLC is determined by the rate of the Bhabha 

events occur. This rate is proportional to how well the accelerator is colliding the 

electron and positron bunches. The cross section of the Bhabha events at small polar 

angles with respect to the beam axis is dominated by the photon t-channel process. 

This cross section has been calculated to high precision. The luminosity monitorss was 

designed to measure these small angle electrons and positrons and thus measure the 

beam luminosity. The luminosity monitor is useful for measuring the total Z boson 

cross section which is an important part of testing the Standard Model. 

The luminosity monitor employs silicon sampling detector with a pseud-projective 

pad readout. The energy resolution of this detector for measuring the energy of electrons 

is a(E)/E =20%/a. 

3.3 Trigger System 

Three triggers were used for hadronic events. In the 1993 (1992) runs the first 

required a total LAC electromagnetic energy greater than 12 GeV (8 GeV); the second 

required at least two well-separated tracks in the CDC; and the third required at least 

4 GeV (8 GeV) in the LAC and one track in the CDC. A selection of hadronic events 

was then made by two independent methods, one based on the topology of energy 

depositions in the calorimeters, the other on the number and topology of charged 

tracks measured in the CDC. 
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Fig. 3.7. SLC luminosity performance for 1991-1993. The last two months of the 1993 run 

are not indicated. 

3.4 Data Taking History 

Figure 3.7 shows‘how the SLC luminosity has evolved since 1991. It gives inte- 

grated luminosity in terms of numbers of the 2 events delivered by the SLC (one 2 is 
I 

defined as 30 nb-‘), whereas the actual number of events recorded by the SLD detector 

is reduced by data taking efficiency (typically -90 %). The maximum luminosity in 

1993 was about 5 x 10” crn-‘s-l using the flat beams. By the end of the 1993 run the 

number of 2 events recorded by the SLD was about 60,000. 
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Chapter 4 

Hadronic Event Selection and 

S imulations 

This chapter deals with criteria for hadronic event selection, Monte Carlo event 

generation and detector simulation which perform a center role in data corrections. 

The comparisons of the experimental data and Monte Carlo predictions on various 

quantities follow this in order to demonstrate validity of the Monte Carlo simulations 

and the data corrections based on them. 

based on the topology of energy depositions in the calorimeters, the other on the 

1 number and topology of charged tracks measured in the CDC. 

The analysis presented here used the charged tracks measured in the CDC and 

VXD. A set of cuts was applied to the data to select well-measured tracks and events 

well-contained within the detector acceptance. The charged tracks were required to 

have: (i) a distance from the measured interaction point, at the point of closest ap- 

proach, within 5 cm in the direction transverse to the beam axis and 10 cm along the 

beam axis; (ii) a polar angle 0 with respect to the beam axis within 1 cos6’ I< 0.80; 

and (iii) a momentum transverse to the beam axis pi > 0.15 GeV/c. Events were 

required to have: (i) a minimum of five such tracks; (ii) a thrust axis’s direction within 

1 cos 0~ I< 0.71; (iii) a total visible energy &v;. of at least 20 GeV, which was calculated 

from the selected tracks assigned the charged pion mass. From our 1992 and 1993 data 

samples 37,226 events passed these cuts. The efficiency for selecting hadronic events 

satisfying the 1 cos 0~ 1 cut was estimated to be above 96 %. The background in the se- 

lected event sample was estimated to be 0.3 f 0.1 %, dominated by 2’ --f r+r- events. 

Distributions of single particle and event topology observables in the selected events 

were found to be well described by Monte Carlo models of hadronic 2’ decays3’Js 

combined with a simulation of the SLD. 

4.1 Hadronic Event Selection 
4.2 Monte Carlo Simulations 

The quark and anti-quark pair produced in an e+e- annihilation manifests itself 

as jets of hadrons in the detector. Each of the pair has energy almost equal to the 

beam energy. The signature of hadronic events is therefore large number of charged 

particles in the tracking devices, and a large fraction of the center-of-mass energy in 

the tracking devices and the calorimeters. 

A selection of hadronic events was then made by two independent methods, one 

Monte Carlo simulations are essential to estimate detection efficiencies. radiative 

corrections, and hadronization effects. The production of Monte Carlo simulated data 

consists of three steps. The first step is the event generation, which generates hadronic 

events include jets of particles according to the differential cross sections predicted by 

the standard model. Once a pair of quark and anti-quark is produced, the probabilities 
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of quark and gluon emissions obey the perturbative QCD. However, the momentum 

transfer becomes enough small, typically N 1 GeV/c’ where hadrons (mesons and 

barfrons) should be produced, that the limitation of the perturbative QCD is appeared. 

To produce the hadrons some pragmatical models have to be assumed. We call this 

fragmentation model which are described in the next subsection in more detail. After 

fragmentation process the decay modes and branching ratio should also be taken into 

account. The second step is the detector simulation, which simulates the propagation 

of the particles and the signals induced by them in the detector, thus producing Monte 

Carlo raw data. In the third step, the Monte Carlo raw data are then fed the same 

event reconstruction and the same selection programs as used for the real data. This 

procedure allows us to reliably estimate a performance of the detector and the event 

reconstruction software as well as the acceptance edges introduced by the selection 

cuts. 
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4.2.1 Event Generators 

In this section, parton shower model and hadronization models with string frag- 

mentation and cluster fragmentation are discussed. 

Parton Showers l 

The Monte Carlo event generator produces quark and anti-quark pairs at a given 

center-of-mass energy. Their flavors are assigned according to their total cross section. 

The initial state photon radiation as well as initial virtual corrections based on the work 

by Berends, Kleiss and Jadach are included. 3g The parton shower method is widely 

used in the QCD generators4’v4r such as JETSET37v42 and HERWIG.ss The parton 

shower picture is derived within the framework of the leading logarithm approximation 

( LLA).43d5 Most parton shower algorithms are based on an iterative use of the basic 

branchings, i.e. q + qg, g + gg, and g -+ qq. Figure 4.1 shows schematic picture 

of parton shower evolution. The parton shower develops until the virtual mass of each 

parton reaches a cut-off mass (- 1 GeV/c2). The probability P that a parton branching 

a + bc will take place during a small change dt = dQ&,,./QZ,,, of the evolution 

parameter t = ln(Q~,,,,/h2) is given by the Altarelli-Parisi equations.43 The Altarelli- 

Parisi equation is given by 1 

dPa+bc -= 
dt / 

d,a”oPa+,&) 
2x 3 (4.1) 

where P,,aJt) are the Altarelli-Parisi splitting functions 

Pp-w(z) = CFZ: 
Pp--Lgg(z) = A# ,;y;‘“‘, 

PPdZ) = TR(Z2 + (1 - 2)2), (4.4) 
Fig. 4.1. Schematic picture of parton shower evolution in e+e- annihilation. 

where CF = 413, No = 3, and TR = nf/2. The z variable specifies the sharing of 
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four momentum between the daughters, with daughter b taking fraction z and c taking 

1-2. 

. The probability that no branching occurs during a small range of t values, 6t, 

is given by (1 - BtdP/dt.). When summed over many small intervals, the no-emission 

probability exponentiates 

Pna-emission(tmaz, t) = exp - (J t 

Thus the probability for a branching at a given t is the naive probability for a branching, 

Eq. (4.1), multiplied by the probability Eq. (4.5) that a branching has not already taken 

place. Gener.ally the Sudakov form factor4’j is introduced as 

(4.6) 

which is the probability that a parton starting from a maximum virtuality t will reach 

the fixed order cut-off tm;,,, which is related to the effective gluon mass Qs, without 

branching. The no-emission probability P,,o-em~ss~a(tmozr t) is then Sa(tmaz)/Sa(t). It 

is easy to pretabulated, for a each flavor a, at the beginning of a Monte Carlo run 

since the Sudakov form factor only depends on the parameter t. This is used for many 

programs as a part of the generation strategy. 

String Fragmentation 

The generated partons fragment into hadrons (hadronization). This process can , 

not be treated by the perturbative QCD because it takes place in the low momentum 

transfer region in which o, become large. This process should be treated with phe- 

nomenological models. One of the fragmentation models is the string fragmentation.47 

A string is stretched between a quark Q  and an anti-quark q, and a gluon is modeled 

as a kink on the string. As the q and q move apart, the potential energy stored in the 

string increases, and the string may break by the production of a new q’g pair, so that 
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the system splits into two color singlet systems q7 and q’ij. If the invariant mass of 

1’ rther of these string pieces is large enough, further breaks may occur. 

In the Lund string model, 48 the string breakup process is assumed to proceed 

until only on-mass-shell hadrons remain, each hadron corresponding to a small piece of 

string. The Lund model invokes the idea of quantum mechanical tunneling to produce 

the quark and anti-quark pairs which lead to string breakups. The tunneling probability, 

where qq will appear, in terms of the transverse mass ml of the q’ is given by 

eXp(-2) =exp(-$)exp(-$), (4.7) 

where K is a string constant, i.e. the amount of energy per unit length, deduced to be 

- 1 GeV/fm from hadron mass spectroscopy. This formula implies a suppression of 

heavy quark production from the sea (vacuum), u : d : s : c N 1 : 1 : 0.3 : 10-l’. Hence, 

c- and b-quark productions are negligible in the soft fragmentation in practice. The 

suppression of s-quark production, which would strongly affect the charge identification 

of the primary quark, is left as a free parameter. At least qualitatively, the experimental 

value agrees with theoretical prediction. The partons are formed into colorless hadrons 

with repetition of the string breakings. After this fragmentation process is completed, 

the unstable hadrons are decayed leaving stable hadrons. 

A fragmentation process described in terms of string at the q end of the system 

and fragmenting towards the q end should be equivalent. This asymmetry constrains 

the allowed shape of fragmentation functions f(z), w  h ere z is the fraction of available 

energy taken by a hdron, especially for two-jet z is the fraction of E $ pll along the jet 

axis. With some simplifying assumptions, the symmetric fragmentation function takes 

the form 

f(Z) c( 2-l (1 - z)“exp(-bm:/z), (4.8) 

with the two free parameters a and b. , which should be optimized to reproduce exper- 
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imental data. 

The width of the jets is given by 

. da 
- = ew-ptl+ 
46 

(4.9) 

with n1 is also a free parameter controls the width of quark transverse momentum. 

Fig. 4.2. One cluster fragmentation scenario; shower evolution, forced g + ~q branchings, 

cluster formation, and cluster decays. 

Cluster Fragmentation 

Cluster models are found in HERWIG. A parton shower picture is used to produce 

a partonic configuration. At the end of the shower evolution, remaining gluons are 

forcibly split into qij pairs. Figure 4.2 shows the picture of the cluster fragmentation. 

The quark of one splitting may be combined with the antiquark from an adjacent one 

to form a colorless cluster. These clusters subsequently decay into the final hadrons in 

HERWIG. 
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The concept of cluster fragmentation offers a simple, local and universal descrip- 

1 tion of hadronization. The long ordered fragmentation chains, present both in the string 

fragmentation and in the independent fragmentation4i are disappeared in. the cluster 

fragmentation. Simple clusters are appeared in their place and they are assumed to be 

the basic units from which the hadrons are produced. A cluster is ideally only char- 

acterized by its total mass and total flavor content. It does not possess an internal 

structure as the string fragmentation. 

, 

Parton shower evolution should give a cluster mass spectrum strongly damped at 

masses above a few GeV, so that two body decays would give a sufficient description. 

This is the concept of the preconfinement. 4s In order to avoid a rather large spread 

of cluster masses, which can not be treated by the preconfinement, it is necessary to 

introduce the possibility for a high-mass cluster to produce more than two hadrons. 

This is typically done by allowing branchings cluster -+ cluster + hadron or cluster + 

cluster + cluster. 

Flavors are generated at several different stages. First, at the branching g -+ 

q?j when the clusters are formed, the relative probabilities are given by the parton 

mass assignments in HERWIG. The second stage of flavor production occurs when 

larger clusters decay into smaller ones. A cluster qli& breaks, by the production of an 

intermediate q& pair, into clusters q1ij3 and q3q2. The third stage of flavor production 

is when a cluster decays into two hadrons. The flavor flow is above, i.e. a new q& 

pair splits the old cluster in the middle. Here quark, diquark, even charm production 

is allowed in HERWIG, with relative probability dictated by the phase space alone. 

Parameters in the Event Generators 

The parameters for the parton shower and phenomenological fragmentation pro- 

cesses in JETSET and HERWIG were optimized to reproduce various quantities. Both 
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in the JETSET and HERWIG program, the parton production step is controlled by 

the scale, parameter, &CD, and the invariant mass cut-off, &s in JETSET, which cor- 

responds to the gluon mass, mg, in HERWIG. Th e controlled parameters for parton 

shower and fragmentation parameters to describe the hadronization process are listed 

in Table 4.1. 

JETSET version 7.3 HERWIG version 5.5 
Parameter Name Value Parameter Name Value 

AQCD PARJ(81) 0.26 GeV &CD QCDLAM 0.18 GeV 
Qo PARJ(82) 1.0 GeV %  RMASS(13) 0.75 GeV 
a PARJ(41) 0.18 M  maz CLMAX 3.35 GeV 
b PARJ(42) 0.34 GeV-* 

uq PARJ(21) 0.39 GeV 

Table 4.1. The main parameters of JETSET and HERWIG. The values are used for this 

analysis. 

4.2.2 Detector Simulation 

The particles generated by event generators are traced through the detector by 

the SLD detector simulator based on the GEANT program.” This detector simulator 

was designed to take into account all the conceivable interactions which the particles 

might experience in the detector and to mimic the detector response to the parti- 

cles as closely as possible. The structures and materials of the detectors are precisely 

coded in the program and each particle is propagated by a small step from the inter- 

action point. At each step, interactions such as decays, multiple scattering, and the 

bremsstrahlungs take place according to probabilities associated with them. Electro- 

magnetic and hadronic showers are simulated via the GFLASH algorithm.‘l 

After the events are passed through the GEANT simulation, they are superim- 
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posed on a set of luminosity-weighted random triggers to simulate the backgrounds 

pboduced by the SLC accurately. The events are processed identically to the real data 

after they have been simulated and overlayed onto a random event. 

0.2 

r (b) 
C~~~I~~~I~~~I~~~I~~~l~~~l - _ - - -1 -0.5 0 “3 1 U 2 4 6 6 10 12 

CoSetrack pt (GeV/c) 

Fig. 4.3. The polar angle cos Otrack and transverse momentum of charged particles.Plots with 

error bars show experimental data and histograms indicate the Monte Carlo predictions 

(JETSET). 

4.3 Comparison of Data and Monte Carlo Simula- 

tions 

The detector simulator outputs the Monte Carlo event data in the format which 

is used for the real data collected with our data acquisition system. The Monte Carlo 

data are therefore fed to the same reconstruction program as used for the real data to 

take into account effects of reconstruction inefficiencies and fake tracks. 
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In order to reliably estimate the detector acceptance and efficiency, it is essential 

for the Monte Carlo events to reproduce the real data. We compare, in this section, 

the real data with the Monte Carlo (JETSET) data. Figure 4.3 shows (a) the polar 

angle of the charged tracks with respect to the beam axis and (b) the transverse 

momentum of the charged tracks. In order to extract good quality tracks, the selection 

cuts described in section 4.1 were applied. Figures 4.4 (a)-(c) show the observables 

for which the location of the hadronic event selection cuts may affect the detection 

efficiency significantly. The points with error bars are experimental data and histograms 

indicate the Monte Carlo predictions. Unless stated explicitly, the data plotted in these 

figures are those which passed all the cuts of the standard hadronic event selection 

except for the cut on the observable in question. 

the experimental data can be reliably calculated by our Monte Carlo program. 
I 
I 

As seen from the cos0~ distribution, where 19r is the polar angle of the thrust 

axis with respect to the beam axis, in Fig. 4.4 (a), the direction of the thrust axis 

is well reproduced by the Monte Carlo simulation. The visible energy, defined by the 

total energy of charged tracks with assuming that the charged pion mass in an event, 

is shown in Fig. 4.4 (b). The distinct peak around 5 GeV is the contribution from 

the beam-wall background and two-photon events. Slightly off-energy particles in the 

SLC accelerator tend to strike the surface of the SLD’s beam pipe and produce several 

low-energy tracks. The signature of the two-photon event is low multiplicity and low 

visible energy because the most of the available energy is carried away by the electron 

and positron into the beam pipe. Another peak around 50 GeV is from hadronic events. 

This figure tells us that the visible energy cut effectively removes the background events 

with a small loss of hadronic events. Figure 4.4 (c) shows the raw charged multiplicity 

distribution after all the cuts of the standard hadronic event selection. 

The good agreement between the real data and the Monte Carlo predictions 

demonstrates that the acceptance corrections, discussed in chapter 6, to be applied to 
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Fig. 4.4. A  comparison of experimental hadronic events and Monte Carlo predictions at fi = 

91.2 GeV. Plots with error bars show experimental data and histograms indicate the Monte 

Carlo predictions (JETSET). The distributions are (a) the polar angle of the thrust axis 

before thrust axis cut, (b) visible energy which is the sum of charged track energies assumed 

charged pion mass before visible energy cut, and (c) charged track multiplicity after hadronic 

event selection. 
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Chapter 5 

Hadronic Event Observables 

In this chapter the observables used in measurement of a,(Mi) are defined and 

discussed their features. The O(c$) perturbative QCD calculations exist for the observ- 

ables, which include six event shapes, differential P-jet rate calculated in six schemes, 

two particle correlations, and an angular energy flow. 

5.1 Event Shapes 

5.1.1 Thrust 

IIadronic event observables based on linear sums of particle momenta are stable 

against collinear splittings and therefore have a feasibility to be both free of singularities 

at the quark-gluon level and to be insensitive to fragmentation effects. One such a 

variable is thrust T defined by”: 

(5.1) 

where P; is the momentum vector of particle i and n’r is the thrust axis to be determined. 

Thrust is expressed as sum of thy length of the longitudinal momenta of the final state 
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Fig. 5.1. Histograms for the function (a) rA(r) and (b) rB(r) of the thrust. 

particles relative to the thrust axis i;r chosen to maximize T. We define r E 1 -T. For 

back-to-back two-parton final states r has a value of zero, while 0 < r < 5 for planar 

three-parton final states. Spherical events have r = $. 

The cross section for the thrust at the renormalization scale p using the O(cr:) 

formula is given by’ 

1 do(r) I 
-.- = 
u. dr 

Ao(r)& + [go(r) t As(r)%& In f] h2, 

and 

where u. is the cross section of e+e- --+qq, the renormalization scale factor f z p2/s, 

bo = $$f, and nf is the number of active quark flavors; nf = 5 at & = Mz. In order 

to compare with the measured cross section, Eq. (5.2) hasto be translated as follows: 

1 da 1 do -.- = 
ut dr uo(1 + y t O(aZ)) YG 
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-( > - 1-a” 22 
rY0 dr (5.4) ir 

= &I(T)& + [Bo(T) - 2Ao(r) t As(r)2&ln j] &’ 
. 

= A(r)& + [B(T) t A(r)2abolnf]c?S2, 

where ot is the total hadronic cross section, A(T) f A,(r) and B(r) E f&(r) - 2A,3(~). 

The coefficients AD(~) and B,(r) can be computed by the EVENT program,7 hence 

A(r) and B(r) are shown in Table 5.1. The errors of the coefficients are given by the 

standard deviation. The histogram for PA and ~B(T) are shown in Fig. 5.1. The 

EVENT program generates three and four-parton events with an appropriate weight 

which is not necessary positive. From Fig. 5.1(a) and 5.1(b) one can see the different 

kinematic boundary for the three and four-parton productions. It can be also found 

that B(T) has a singularity at T = l/3, the boundary of the three-parton region. 

From formula (5.4) and Table 5.1 one can easily calculate the thrust distribution 

at any given value of r, the energy scale & Am, and the renormalization scale p. 

In Fig. 5.2 (a) the predictions of QCD for the thrust are plotted for energy scale 

6 = A4z = 91.2 GeV at four different values of Am = 100, 200, 300, and 400 MeV at 

f = 1.0, and (b) deviations for A= = 100, 300, and 400 MeV from A= = 200 MeV 

at f = 1. Fig. 5.2 also shows (c) the predictions for energy scale fi = Mz = 91.2 GeV 

at four different values of f = 0.01, 0.1, 1.0, and 10.0 at Ajir~ = 200 MeV * , and (d) 

deviations for f = 0.01, 0.1, 10.0 from f = 1.0. The four curves for different values of 

f give an estimation of a part of the uncalculated higher order effect. 

5.1.2 Oblateness 

Oblateness is defined in terms of the energy flow of the event. The distribution of 

the energy flow is described using threeorthogonal axes. First axis has been defined as 
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Fig. 5.2. Physical prediction up to O((rz) for the thrust distribution at 6 = 91.2 GeV. 

(a) Dependence of Am and (b) deviation from the case of Am = 200 MeV at f = 1. (c) 

Dependence of f and (d) deviation from the case of f = 1. 

*This value is used for the discussions throughout this chapter 
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Fig. 5.3. Histograms for the function (a) OA(0) and (b) OB(0) of the oblateness 

n’r in previous section. The other two axes are denoted as ii,,j and rimin. The axis +i,,j 

can be found to maximize the momentum sum transverse to ii=. Finally, the axis ji,,,;,, 

is defined to be perpendicular to the two axes n’~ and Z,,j. The variables thrust-major, 

T,,,,j, and thrust-minor, Tmin, are obtained by 

~~~~ = “iFi,“? 1. 
t t 

The oblateness 0 is then defined by52: 

(5.6) 

0 = Tmaj - Tmin. (5.7) 

The value of 0 is zero for collinear or cylindrically symmetric final states, and extends 

from zero to & for three-parton final states. . 

The oblateness can be given in the general form similar to the thrust case (Eq. 

. 

3 

Table 5.1. Coefficients of the &$ and as2 terms for r and 0. 
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(5.4)): 

1 da(O) -.- = 
d0 

A(O)& t [B(O) t A(0)2& In f] 6,‘. (5.8) . ut 

The coefficients A(0) and B(0) are tabulated in Table 5.1. Figure 5.3 shows the 

histograms of (a) OA(0) and (b) OB(0). 

It should be noted that the second order corrections are negative in sign for the 

most of region. In Fig. 5.4 (a) the predictions of QCD for the oblateness are plotted 

for energy scale fi = Mz  = 91.2 GeV at four different values of A m  = 100, 200, 

300, and 400 MeV at f = 1.0, and (b) d eviations for A m  = 100, 300, and 400 MeV 

from A m  = 200 MeV at f = ‘1. Fig. 5.4 also shows (c) the predictions for energy 

scale fi = .%fz = 91.2 GeV at four different values of f = 0.01, 0.1, 1.0, and 10.0 at 

A m  = 200 MeV , and (d) deviations for f = 0.01, 0.1, 10.0 from f = 1.0. 
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5.1.3 The C-parameter 

The C-parameter is derived from the eigenvalues of the infrared-safe momentum 

tensors3: 

(5.9) 

where pt is the pth component of the three momentum of particle i, and i runs over 

all the final state particles. The tensor epo. is normalized to have unit trace, and the 

C-parameter is defined by: 0 

where Ai (i = 1,2,3) are the eigenvalues of the tensor or,,. For back-to-back two-parton 

final states C is zero, while for planar three-parton final states 0 5 C 5 5. For spherical 

events C = 1. 

0 0.2 0.4 0.6 

0 

.o 2 

t;i 
cc 

1.5 

1 

0.5 

0 

. t I’ 
*i ! 

i’i 
/’ 

; ‘.,. ,’ 
_-.C’ 

, . . . . . . . . ..._* 
* : . . . . 

L 
-. . . : 

I--. ..: ,, 
*. 

. 
..: , . . . 

\ . . . . I \ . . . . I \ 
: I \ 

0 0.2 0.4 0.6 

0 

c = 3(~1~2t~2~3t~3~*), (5.10) 
Fig. 5.4. Physical prediction up to O(oz) for the oblateness distribution at ,/Z = 91.2 GeV. 

(a) Dependence of A m  and (b) deviation from the case of A m  = 200 MeV at f = 1. (c) 

Dependence of f and (d) deviation from the case off = 1. 
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I 
0, dp 

AA(P) I B(P) W  
7.282 I -10332.0 14.5ps 

c A(C) 
0.010 3172.00 
0.030 805.00 
0.050 427.20 
0.070 277.00 
0.090 199.67 
0.110 153.18 
0.130 122.69 
0.150 100.13 
0.170 85.12 
0.190 72.68 
0.210 62.76 
0.230 55.13 
0.250 48.68 
0.270 43.26 
0.290 38.83 
0.310 35.23 
0.330 31.97 
0.350 29.09 
0.370 26.77 
0.390 24.64 
0.410 22.57 
0.430 20.93 
0.450 19.32 
0.470 18.06 
0.490 16.76 
0.510 15.73 
0.530 14.62 
0.550 13.69 
0.570 12.88 
0.590 12.09 
D.610 11.40 
D.630 10.70 
D.650 10.10 
3.670 9.48 
3.690 9.01 

239.06 
105.70 
63.23 
43.33 
32.34 

165.71 
76.15 
47.08 
33.13 
25.14 
20.01 
16.42 
13.72 
11.75 

1.993 5149.33 
1.076 6416.00 
0.708 5176.00 
0.504 4061.33 
0.392 3221.82 
0.306 2652.92 
0.251 2166.13 
0.208 1793.74 
0.172 1505.92 
0.150 1291.64 
0.128 1068.79 
0.111 921.50 
0.097 756.13 
0.086 655.41 
0.077 545.28 
0.068 473.65 
0.060 394.87 
0.054 328.10 
0.049 285.58 
0.043 226.83 
0.039 199.16 
0.035 157.32 
0.032 130.28 
0.029 99.09 
0.026 76.78 
0.023 57.75 
0.021 38.55 
0.018 22.34 
0.016 14.32 
0.014 7.32 
0.011 0.76 
0.007 12.04 
0.002 24.08 

9.69 
4.37 
2.10 
0.94 
0.43 
0.15 

0.024 

25 0.025 
0.035 

0.986 1867.60 
0.663 2690.29 
0.483 2676.23 
0.373 2424.55 
0.307 2186.93 
0.251 1949.06 
0.214 1729.76 
0.186 1566.21 
0.159 1395.91 
0.140 1280.61 
0.124 1163.04 
0.110 1072.00 
0.099 971.65 
0.090 884.06 
0.080 827.58 
0.073 767.54 
0.066 704.83 
0.062 658.42 
0.056 612.91 
0.052 570.94 
0.048 529.80 
0.044 500.91 
0.040 463.84 

Q 

0 

-100 

-200 

-300 

0.045 
0.055 

25.38 0.065 154.31 
20.59 0.075 122.93 
17.15 
14.56 
12.51 

0.085 
0.095 

i 100.19 
82.83 
69.42 
59.52 
50.45 
43.79 
37.81 
33.07 
28.87 
25.28 
22.14 
19.44 
17.07 
15.00 
13.12 
11.37 
9.88 
8.45 
7.14 
5.96 
4.87 
3.76 
2.77 
1.76 
0.80 
0.05 

10.20 
8.94 

0.105 
0.115 
0.125 

11.03 
9.69 

-400 
7.87 
6.99 
6.23 
5.61 
5.09 
4.58 
4.13 
3.78 
3.47 
3.15 
2.89 
2.64 
2.41 
2.19 
2.00 
1.79 
1.59 
1.39 
1.19 
0.95 
0.64 
0.29 
0.09 
0.06 
0.04 
0.02 
0.01 
0.01 

0.003 
0.001 

8.65 
7.72 
6.94 
6.34 
5.76 
5.27 
4.81 
4.44 
4.09 
3.78 
3.51 
3.25 
3.01 
2.84 
2.66 
2.43 
2.27 

0.135 
0.145 
0.155 
0.165 
0.175 
0.185 
0.195 
0.205 
0.215 
0.225 
0.235 
0.245 
0.255 
0.265 
0.275 

P P 

Fig. 5.7. Histograms for the function (a) pA(p) and (b) pB(p) of the heavy jet mass. 

5.1.4 Heavy jet mass 

Events can be divided into two hemispheres a, and b by a plane perpendicular to 

the thrust axis 6~. The heavy jet mass M,z, is then defined as”: 

0.038 435.00 
0.035 412.64 
0.033 386.62 
0.030 360.20 
0.028 338.69 

0.285 
0.295 
0.305 
0.315 
0.325 
0.335 
0.345 
0.355 
0.365 
0.375 
0.385 
0.395 
0.405 

2.13 
1.98 
1.84 
1.72 
1.60 
1.49 
1.37 
0.99 

MH = m=(-‘%, Mb), (5.12) 

where Ma and Mb are the invariant masses of the two hemispheres calculated by using 

four-momentum pi of the particles: 

0.026 324.58 
0.024 301.13 
0.022 285.96 
0.021 269.24 
0.019 255.88 
0.018 241.05 
0.017 229.26 
0.011 518.30 

1.710 
I 

8.49 
3.730 8.04 

h&=x& and Mb=xfi. , 
iI3 ieb 

1.750 3.85 
I.770 
I.790 
1.810 
I.830 
I.850 
I.870 
I.890 
I.910 
j.930 
I.950 
I.970 

0.48 
0.30 
0.22 
0.16 
0.13 
0.10 
0.08 
0.06 
0.04 
0.03 
0.02 
0.01 

305.20 
161.77 
99.81 Here we define the normalized quantity: 

MA 
P-FEZ 

7x* 

where E,;, is the total energy measured in a hadronic event. To first order in pertur- 

bative QCD, and for massless partons, the heavy jet mass and thrust are related by 

65.25 
43.82 
29.10 
18.99 
12.14 

0.415 

1 
0.003 

7.13 
3.80 l--- 1.55 
0.31 I.990 1 

Table 5.2. Coefficients of the h, and gS2 terms for C and p. 
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r = p. I 
The heavy jet mass can be parametrized by the form: 

1 d+) 
I 

-,- = 
ut dp 

A(p)& + [B(p) + A(p)2sboIn f] h2. (5.15) 

The coefficients A(p) and B(p) are tabulated in Table 5.2. Figure 5.7 shows the his- 

tograms of (a) pA(p) and (b) pB(p). 

In Fig. 5.8 (a) the predictions of QCD for the heavy jet mass are plotted for energy 

scale fi = Mz = 91.2 GeV at four different values of A* = 100, 200, 300, and 400 

MeV at f = 1.0, and (b) deviations for Am = 100,300, and 400 MeV from A= = 200 

MeV at f = 1. Fig. 5.8 also shows (c) the predictions for energy scale ,/X = h4z = 91.2 

GeV at four different values off = 0.01, 0.1, 1.0, and 10.0 at Am = 200 MeV , and 

(d) deviations for f = 0.01, 0.1, 10.0 from f = 1.0. 

5.1.5 Jet broadening 

Jet broadening has been used mainly for the study of hadron collisionss4 but also 

proposed for e+e- physics.*’ In each hemisphere a, b: 

(5.16) 

is calculated. The total jet broadening BT and wide jet broadening Bw are defined by 

BT = B, + Bb and Bw = max(B,, Bb), (5.17) 

respectively. Both BT and Bw are identically zero in two-parton final states, and are 

sensitive to the transverse structure of jets. To first order in perturbative QCD BT = 

Bw = $0. 

The jet broadening can be parametrized by the form: 

1 du(&,w) -. 
ut d&,w = A(B~,wkk + [B(&-,w) t A(B~,w)2~4lnf]d,*. (5.18) 

04 

1.5 *...*. F -- i 
1 F 

.” <. . . . .: .‘. h ,. , . 
'.- .___. ---.-'-i') 
I 

'I', -.-. 
I- 
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1 

OW 0 0.1 0.2 0.4 I D.! 5 

I P 

Fig. 5.8. Physical prediction up to O(a:) for the heavy jet mass distribution at fi = 91.2 

GeV. (a) Dependence of Am and (b) deviation from the case of Am = 200 MeV at f = 1. 

(c) Dependence off and (d) deviation from the case off = 1. 
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The coefficients 4( BT,w) and B( B T w are tabulated in Table 5.3. Figures 5.9 and 5.10 , ) 

show the histogramsof (a) BTA(BT) and BwA(Bw) and (b) BTB(BT) and B&B(Bw), 

respectively. I 

In Fig. 5.11 (a) the predictions of QCD for the total jet broadening are plotted 

for energy scale fi = Mz = 91.2 GeV at four different values of Am = 100, 200, 

300, and 400 MeV at f = 1.0, and (b) d eviations for Am = 100: 300, and 400 MeV 

from Am = 200 MeV at f = 1. Fig. 5.11 also shows (c) the predictions for energy 

scale fi = Mz = 91.2 GeV at four different values of f = 0.01, 0.1, 1.0, and 10.0 at 

Am = 200 MeV , and (d) deviations for f = 0.01, 0.1, 10.0 from f = 1.0. 

g 
a 50 

I- 

* 40 

In Fig. 5.12 (a) the predictions of QCD for the wide jet broadening are plotted 

for energy scale 6 = MZ = 91.2 GeV at four different values of Am = 100, 200, 

300, and 400 MeV at f = 1.0, and (b) d eviations for As = 100, 300, and 400 MeV 

from Am = 200 MeV at f = 1. Fig. 5.11 also shows (c) the predictions for energy 

scale 6 = Mz = 91.2 GeV at four different values of f = 0.01, 0.1, 1.0, and 10.0 at 

Am = 200 MeV , and (d) deviations for f = 0.01, 0.1, 10.0 from f = 1.0. 

0 -eJ30 
5 0 0.1 0.2 0.3 0.4 0.5 

BT BT 

Fig. 5.9. Histograms for the function (a) &A( &) and (b) &B(&) of the total jet broad- 

ening. 
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Fig. 5.10. Histograms for the function (a) BwA(Bw) and (d) BwB(Bw) of the wide jet 

broadening. 
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Fig. 5.11. Physical prediction up to U(oz) for the total jet broadening distribution at fi = Fig. 5.12. Physical prediction up to O(o:) for the wide jet broadening distribution at 6 = 

91.2 GeV. (a) Dependence of Am and (b) deviation from the case of Am = 200 MeV at 91.2 GeV. (a) Dependence of Am and (b) deviation from the case of A= = 200 MeV at 

f = 1. (c) Dependence off and (d) deviation from the case off = 1. f = 1. (c) Dependence off and (d) deviation from the case off = 1. 
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r 
BT 

0.005 

0.015 
0.025 
0.035 
0.045 
0.055 
0.065 
0.075 
0.085 
0.095 
0.105 
0.115 
0.125 
0.135 
0.145 
0.155 
0.165 
0.175 
0.185 
0.195 
0.205 
0.215 
0.225 
0.235 
0.245 
0.255 
0.265 
0.275 
0.285 
0.295 
0.305 
0.315 
0.325 
0.335 
0.345 
0.355 
0.365 
0.375 
0.385 
0.395 
0.405 

li I, dl 
A(BT) AA(BT 
10398.0 57.140 
2454.00 6.151 
1241.60 2.792 
780.29 1.648 
545.11 1.119 
403.64 0.810 
313.08 0.607 
250.00 0.477 
204.12 0.389 
167.79 0.314 
140.86 0.259 
118.96 0.220 
101.60 0.189 
87.19 0.159 
75.03 0.139 
64.84 0.121 
56.35 0.103 
48.96 0.090 
42.42 0.080 
36.74 0.069 
31.80 0.061 
27.21 0.053 
23.12 0.045 
19.49 0.042 
15.94 0.036 
12.55 0.030 
9.27 0.025 
5.75 0.020 
1.73 0.011 

-20274.7 1474.72 
6792.80 443.64 
10722.33 221.02 
10185.38 136.00 
9383.63 91.92 
7824.62 65.63 
6852.00 50.16 
5895.29 39.22 
5101.26 31.67 
4468.77 26.26 
3883.83 21.72 
3396.80 18.40 
3027.11 15.81 
2647.17 13.53 
2361.93 11.77 
2091.55 10.34 
1848.94 9.13 
1669.22 8.14 
1462.41 7.25 
1321.76 6.50 
1193.01 5.81 
1063.53 5.23 
969.12 4.73 
879.14 4.28 
825.87 3.74 
765.23 3.18 
748.51 2.59 
774.08 1.76 
532.20 0.97 
344.92 0.67 
239.11 0.51 
166.92 0.39 
111.31 0.30 
64.23 0.21 
31.89 0.14 
15.50 0.09 
7.02 0.06 
2.72 0.03 
0.73 0.02 
0.05 0.004 

T 
BW 

0.005 

0.015 

0.02: 
0.035 
0.045 
0.055 
0.065 
0.075 
0.085 
0.095 
0.105 
0.115 
0.125 
0.135 
0.145 
0.155 
0.165 
0.175 
0.185 
0.195 
0.205 
0.215 
0.225 
0.235 
0.245 
0.255 
0.265 
0.275 
0.285 
0.295 
0.305 
0.315 
0.325 

LA 
0s dB 

A(Bw) AA 
10396.0 57.140 
2454.00 6.1!51 
1241.60 2.792 
780.29 1.648 
545.11 1.119 
403.64 0.810 
313.08 0.607 
250.00 0.477 
204.12 0.389 
167.79 0.314 
140.86 0.259 
118.96 0.220 
101.60 0.189 
87.19 0.159 
75.03 0.139 
64.84 0.121 
56.35 0.103 
48.96 0.090 
42.42 0.080 
36.74 0.069 
31.80 0.061 
27.21 0.053 
23.12 0.047 
19.49 0.042 
15.94 0.036 
12.55 0.030 
9.27 0.025 
5.75 0.020 
1.73 0.011 

B(Bw) AB(hvl 
-706792. 207000. 
-41228.0 1155.40 
-6843.20 288.21 
1585.14 127.67 
3620.89 73.12 
4029.09 48.45 
3738.47 34.33 
3370.67 25.95 
3021.17 20.63 
2640.21 16.66 
2297.34 13.70 
1984.70 11.44 
1720.bO 9.76 
1502.67 8.42 
1279.59 7.34 
1107.74 6.39 
939.43 5.63 
799.79 4.94 
665.98 4.36 
527.03 3.88 
432.00 3.45 
334.78 3.06 
240.86 2.72 
167.97 2.42 
96.08 2.12 
36.42 1.82 
-18.51 1.51 
-51.24 1.16 
-23.22 0.67 
13.87 0.11 
2.37 0.04 
0.25 0.01 

0.002 0.001 

5.2 Jet Rates 
1 

5.2.1 Jet Clustering Algorithms 

Another useful method of classifying the structure of hadronic final states is in 

terms of jets. Jets may be reconstructed using iterative clustering algorithms’r in which 

a measure yi,, such as scaled invariant mass, is calculated for all pairs of particles i and 

j, and the pair with the smallest yij is combined into a single particle. This procedure 

is repeated until all pairs have yij exceeding a value l/cut, and the jet multiplicity of the 

event is defined as the number of particles remaining. The n-jet rate R,(Y,~) is the 

fraction of events classified as n-jet, and the differential 2-jet rate is defined as”: 

Dz(Ycut) - Rz(yd - Rz(ycut - AyNt) 
A~cut 

In contrast to &, each event contributes to Dz at only one ycUt. 

Several algorithms have been proposed featuring different yij definitions and re- 

combination methods. We have applied the E, EO, P, and PO variations of the JADE 

algorithm5’j as well as the Durham (D) and Geneva (G) schemes.” The six definitions 

of the jet resolution parameter yij and recombination procedure are ‘given below. 

In the Escheme, yij is defined as the square of the invariant mass of the pair of 

particles i and j scaled by the visible energy in the event, 

yij = (Pi + Pi)’ 
-G* ’ 

(5.20) 

with the recombination performed as I 

Pk = Pi  +P,, 

where pi and pj are four-momenta of the particles and pion masses are assumed in 

calculating particle energies. Energy and momentum are explicitly conserved in this 

scheme. 
Table 5.3. Coefficients of the 6, and GS2 terms for ET and Bw 
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scheme resolution parameter 

y 

EO --I 
P 

i 

PO 

D 
Zmin(E:.E~)(l-cosB,,) 

EL 

G (IE.E,(l-cod.,) 
‘+(E,+E,)2 --I Pk = Pi + Pj 

Table 5.4. Definition of the jet resolution parameter yij and of recombination schemes for the 

jet clustering rilgorithm. 
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recombination 
scheme does not conserve the total momentum sum of an event. 

In the P-scheme yij is defined by Eq. (5.21) and the recombination procedure is 

defined by 
Pk r Pi + Pj 

Q = &is 

EI. = Ei + Ej 

p’t = &(Z% +fi) 

Q = &is 

p?; = @i + Fj 

Ek =I 6k 1 

Q = &is 

$k=$i+fi 

El. =i Fk 1 

Q=CkEk 

Pk=Pi+Pj 

The EO-, P-, and PO-schemes are variations of the E-scheme. In the EO-scheme 

yij is defined by Eq. (5.20), while the recombination procedure is defined by 

Ek = Ei $ E, (5.22) 

(5.23) 

where Ei and Ej are the energies, and p7 and $, are the three-momentaof the particles. 

The three-momentum & is resealed so that particle k has zero invariant mass. This 

6k = $i t @j 

Ek = 1 p’k 1. 

(5.24) 

(5.25) 

This scheme conserves the total momentum of an event, but does not conserve the 

total energy. 

The PO-scheme is similar to the P-scheme, but the total energy Euis in Eq. (5.20) 

is recalculated at each iteration according to 

(5.26) 

In the D-scheme, 

Yij = 
2min( E,?, E,2)( 1 - COS 0iJ) 

EL 
3 (5.27) 

where Bij is the angle between the pair of particles i and j. The recombination is defined 

by Eq. (5.21). With the D-scheme, a soft particle will only be combined with another 

soft particle, instead of being combined with a high-energy particle, if the angle it 

makes with the other soft particle is smaller than the angle that it makes with the 

high-energy particle. 

The definition of y;, for the G-scheme is 

Yij = 
SEiEj(1 -cos0ij) 

9(Ei + Ej)’ ’ 
(5.28) 

and the recombination is defined by Eq. (5.21). In th is scheme soft particles are com- 

bined as in the D-scheme. In addition, yij depends only on the energy of the particles 

to be combined, and not on the .&is of the event. 
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I 
Bs(ywt), and &(Y,~) for D- and G-scheme are shown in Table 5.6. Figures 5.15 and 

5.16 show the functions of As(ycut), Bs(ycut), and &(yWt) for D- and G-scheme. 
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0 0.1 0.2 0.3 

ycut (E,EO,P,PO-scheme) 

,350 
a l 

c 300 
a? 

250 

(b) 

ycut (E,EO,P,PO-scheme) 

Fig. 5.13. Plots for the function (a) As(ycUt) and (b) BJ(Y,,,~) for E-, EO-, P-, and PO-scheme. 

The ratio of tree-jet events with jet resolution ycut for the total hadronic events 

can be parametrized in the form 

. fG(y,t) = Aj(~~t)& + [&(~~t) + Aj(ymt)2hlnfl h*, 

while the ratio of four-jet events can be given as 

(5.29) 

G(Ycut) = mYc&L2, (5.30) 

where s denotes E, EO-, P-, PO-, D-, and G-scheme. Then the 2-jet rate can be defined 

by Rs(ycut) G I-Rs(y,t)-R4(y,t). The values of the function Az(ycut) and &(yat) are 

the same for the E-, EO-, P-, and PO-scheme. There is no dependence on these schemes 

in the leading order. The values of A3(yat) and &(ycut) for E-, EO-, P-, and PO-scheme 

are given in Table 5.5. The next-to-leading order corrections for tree-partons Bs(y,,) 

for these schemes are also given in Table 5.5. The histograms corresponding with the 

values in Table 5.5 are shown in Figs. 5.13 and 5.14, respectively. The values of AS(ymt), 

The G-scheme has the wide negative region rather than the other schemes for the 

next-to-leading corrections of 3-parton. In Fig. 5.17-5.22 (a) the differential 2-jet rate 

predicted by the second order QCD for the six jet clustering schemes changing Am 

and (b) its deviations from Am = 200 MeV. The dependences of the renormalization 

scale are also plotted in Fig. 5.17-5.22(c)(d). 



5.2. JET RATES 71 72 

::, 1, , , I_:-;I.:_:.laT .(.,.. , ( 
0 0.1 0.2 0.3 

yc,,, (E-scheme) 

-_I50 
0' 

2 100 
m 

m50 

0 

-50 

-100 

-150 

-200 

-250 
0 0.1 0.2 0.3 

ycut (P-scheme) 

,300 
2 h (b) 

2260 -* 
_- . 

200 - l 

- .  

150- l 
.  

.  

loo - . 
. 

. . 
50: l . 

0. 
‘*.. 

0 IIII’1III’ ;*p*.. 
0 0.1 0.2 0.3 

ywt (EO-scheme) 
--200 

P 150 

&al 

50 

0 

-50 

-100 

-150 

-200 ~,,,,,,,,,,,,,,,,I 

0 0.1 0.2 0.3 

ycut (PO-scheme) 
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Fig. 5.16. Plots for the function (a) A~(y~t), (b) Bs(ycut), and (c) &(y,t) for G-scheme. 
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~43tycut) 
37.238 
24.353 
18.095 
14.215 
11.521 
9.526 
7.983 
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5.751 
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3.629 
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E 

BB(YC”l~ 
593.948 
566.729 
479.362 
402.483 
339.652 
288.465 
246.383 
211.411 
182.050 
157.181 
135.954 
117.719 
101.969 
88.301 
76.395 
65.992 
56.880 
48.882 
41.853 
35.670 
30.229 
25.443 
21.235 
17.540 
14.302 
11.471 
9.006 
6.869 
5.026 
3.448 
2.109 
0.987 
0.061 

EO 

BJ(Yc”t: 
9.932 

237.043 
253.045 
233.249 
206.784 
180.804 
157.206 
136.344 
118.089 
102.171 
88.299 
76.203 
65.645 
56.420 
48.353 
41.294 
35.118 
29.715 
24.993 
20.872 
17.283 
14.167 
11.473 
9.154 
7.171 
5.490 
4.079 
2.912 
1.965 
1.215 
0.644 
0.235 
.0.027 

P 

WYC”ll 
-219.994 

72.939 
124.764 
128.126 
118.089 
104.470 
90.562 
77.534 
65.765 
55.322 
46.147 
38.135 
31.170 
25.139 
19.938 
15.471 
11.656 
8.419 
5.696 
3.431 
1.573 
0.079 

-1.088 
-1.963 
-2.576 
-2.954 
-3.118 
-3.092 
-2.892 
-2.537 
-2.040 
-1.416 
-0.677 

-ET- 
BdYcu, 
-204.66 
100.81: 
152.37( 
154.34f 
143.04f 
128.40; 
113.654 
99.907 
87.489 
76.428 
66.642 
58.008 
50.398 
43.690 
37.775 
32.556 
27.947 
23.875 
20.274 
17.090 
14.273 
11.781 
9.577 
7.628 
5.906 
4.386 j 
3.046 
1.866 
0.828 
-0.082 
-0.878 
-1.573 
-2.177 

E, EO, P, PI 
b(Ycut) 
334.784 
116.578 
52.412 
25.991 
13.418 
6.985 
3.581 
1.769 
0.820 
0.343 
0.118 
0.019 

Table 5.5. Coefficients of the c& and I&* terms for 3-jet rate (&) and J-jet rate (&) calculated 

in E, EO-, P-, and PO-scheme. 
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- 
YC”f 
0.01 
0.04 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.11 
0.12 
0.13 
0.14 
0.15 
0.16 
0.17 
0.18 
0.19 
0.20 
0.21 
0.22 
0.23 
0.24 
0.25 
0.26 
0.27 
0.28 
0.29 
0.30 
0.31 
0.32 
0.33 - 

‘43(YC”fl B3(Yc.r) 
15.709 122.921 
10.209 116.725 
7.606 97.983 
6.001 81.631 
4.887 68.351 
4.059 57.591 
3.415 48.791 
2.900 41.513 
2.478 35.433 
2.127 30.309 
1.830 25.957 
1.576 22.239 
1.359 19.044 
1.170 16.287 
1.006 13.899 
0.863 11.826 
0.737 10.022 
0.62T 8.450 
0.530 7.079 
0.444 5.883 
0.369 4.840 
0.303 3.932 
0.246 3.142 
0.195 2.457 
0.151 1.865 
0.113 1.357 
0.081 0.922 
0.053 0.553 
0.029 0.243 
0.010 -0.014 
-0.006 -0.223 
-0.018 -0.389 
-0.027 -0.516 

B4(Ycu*) 
83.984 
28.021 
12.102 
5.765 
2.860 
1.434 
0.714 
0.349 
0.165 
0.071 

l- 
&(ycut) 

34.511 -664.349 
26.760 -297.560 
21.791 -130.236 
18.235 -43.312 
15.525 4.664 
13.372 31.627 
11.612 46.449 
10.141 53.934 
8.893 56.857 
7.820 56.907 
6.887 55.143 
6.069 52.255 
5.348 48.697 
4.707 44.778 
4.136 40.704 
3.624 36.619 
3.164 32.619 
2.749 28.771 
2.374 25.120 
2.035 21.692 
1.727 18.507 
1.448 15.573 
1.194 12.894 
0.964 10.470 
0.754 8.298 
0.563 6.374 
0.390 4.689 
0.233 3.239 
0.090 2.013 
-0.039 1.005 
-0.156 0.205 
-0.261 -0.394 

WYcu:) 

750.938 
435.257 
277.089 
185.741 
128.483 
90.657 
64.760 
46.584 
33.602 
24.222 
17.394 
12.408 
8.768 
6.121 
4.210 
2.845 
1.887 
1.228 
0.787 
0.502 
0.325 
0.217 

1 

Table 5.6. Coefficients of the 07, and c&z terms for 3-jet rate (Ra) and 4-jet rate (&) calculated 

in D- and G-scheme. 
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Fig. 5.23. Histograms for the function (a) sin ,yA(,y) and (b) sin xB(x) of the EEC. 

5.3 Particle Correlations 

Hadronic event observables can also be classified in terms of inclusive two-particle 

correlations. The energy-energy correlation (EEC)** is the normalided energy-weighted 

cross section defined in terms of the angle xij between two particles i and j in an event: 

where x is an opening angle to be studied for the correlations, A 
If 

is the angular bin 

width, and Ei and Ej are the energies of particles i and j. The angle x is taken from 

x = 0” to x = 180”. The shape of the EEC in the central region, x N 90”, is determined 

by hard gluon emission. Hadronization contributions are expected to be large in the 

collinear and back-to-back regions, x - 0” and 180’ respectively. The asymmetry of 

the EEC (AEEC) is defined as AEEC(>o = EEC(lS0” -x) - EEC(,y). 
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x (deg.) 
0.9 
2.7 
4.5 
6.3 
8.1 
9.9 
11.7 
13.5 
15.3 
17.1 
18.9 
20.7 
22.5 
24.3 
26.1 
27.9 
29.7 
31.5 
33.3 
35.1 
36.9 
38.7 
40.5 
42.3 
44.1 
45.9 
47.7 
49.5 
51.3 
53.1 
54.9 
56.7 
58.5 
60.3 
62.1 
63.9 
65.7 
67.5 
69.3 
71.1 
72.9 
74.7 
i6.5 
78.3 
80.1 
81.9 
83.7 
85.5 
87.3 
89.1 

4x) AA(x) B(x) AB(x) 

14.754 0.712 1984.0 2.476 
16.121 0.305 1026.0 2.508 
18.380 0.180 609.5 2.530 
14.312 0.122 485.6 2.569 
11.694 0.090 388.5 2.610 
9.924 0.070 313.4 2.655 
8.571 0.057 274.1 2.699 
7.523 0.046 221.8 2.754 
6.807 0.040 206.5 2.820 
6.262 0.034 168.2 2.893 
5.720 0.031 149.0 2.962 
5.264 0.027 155.2 3.038 
4.905 0.024 130.0 3.146 
4.588 0.022 121.8 3.237 
4.316 0.020 114.8 3.328 
4.123 0.018 105.3 3.453 
3.916 0.017 94.7 3.602 
3.721 0.015 91.0 3.735 
3.564 0.014 92.8 3.906 
3.402 0.014 91.3 4.069 
3.299 0.013 74.5 4.265 
3.180 0.012 76.4 4.500 
3.086 0.011 70.7 4.710 
3.002 0.011 67.3 4.976 
2.918 0.011 70.0 5.289 
2.841 0.010 62.6 5.626 
2.778 0.010 63.9 6.005 
2.704 0.009 61.6 6.423 
2.651 0.009 64.0 6.881 
2.608 0.008 55.9 7.448 
2.558 0.008 56.0 8.119 
2.530 0.008 52.2 8.869 
2.486 0.008 54.0 9.689 
2.457 0.008 51.2 10.760 
2.436 0.007 50.4 11.986 
2.413 0.007 48.3 13.424 
2.396 0.007 47.7 15.206 
2.370 0.007 51.4 17.349 
2.354 0.007 49.2 20.025 
2.351 0.007 46.5 23.560 
2.348 0.007 49.6 28.069 
2.354 0.007 44.7 34.062 
2.356 0.007 45.8 42.582 
2.355 0.006 46.4 54.952 
2.357 0.006 45.3 73.969 
2.359 0.006 46.5 106.799 
2.381 0.006 44.9 174.695 
2.401 0.006 43.5 161.594 
2.424 0.006 46.4 1.3 - 

Table 5.7. Coefficients of the Es and a,* terms for EEC. 

- 
901.3 
174.1 
59.5 
36.0 
26.1 
19.5 
12.8 
10.9 
9.2 
7.8 
5.8 
8.6 
5.0 
4.3 
5.4 
4.5 
3.1 
3.1 
4.8 
5.7 
2.5 
3.5 
2.4 
2.2 
2.8 
2.0 
4.9 
1.7 
4.8 
1.9 
1.7 
1.7 
1.5 
1.8 
2.8 
1.4 
1.5 
1.6 
1.3 
1.2 
2.5 
1.3 
1.5 
1.3 
1.3 
1.4 
1.4 
1.4 

x (deg.) 
90.9 
92.7 
94.5 ! 
96.3 
98.1 
99.9 
101.7 
103.5 
105.3 
107.1 
108.9 
110.7 
112.5 
114.3 
116.1 
117.9 
119.7 
121.5 
123.3 
125.1 
126.9 
128.7 
130.5 
132.3 
134.1 
135.9 
137.7 
139.5 
141.3 
143.1 
144.9 
146.7 
148.5 
150.3 
152.1 
153.9 
155.7 
157.5 
159.3 
161.1 
162.9 
164.7 
166.5 
168.3 
170.1 
171.9 
173.7 
175.5 
177.3 
179.1 

4x) AA(x) 
2.444 0.007 

0.007 
0.007 
0.006 
0.006 
0.007 
0.007 
0.007 
0.007 
0.007 
0.007 
0.007 
0.007 
0.007 
0.007 
0.008 
0.008 
0.008 
0.008 
0.009 
0.009 
0.009 
0.010 
0.010 
0.011 
0.011 
0.012 
0.013 
0.014 
0.014 
0.015 
0.017 
0.018 
0.020 
0.022 
0.025 
0.027 
0.031 
0.035 
0.041 
0.049 
0.058 
0.071 
0.090 
0.119 
0.166 
0.244 
0.427 
1.029 

B(x) AB(x) 
44.5 1.3 
44.0 1.5 
46.6 1.5 
46.9 1.4 
45.3 1.3 
47.8 1.3 
45.9 2.4 
50.5 2.3 
52.6 2.7 
50.7 1.4 
51.9 1.3 
54.4 1.6 
53.6 1.6 
54.7 1.4 
58.5 2.8 
57.4 1.9 
61.5 1.7 
63.6 1.7 
64.0 1.7 
65.2 1.9 
73.0 4.8 
78.4 1.9 
79.6 5.0 
77.3 2.0 
85.8 2.8 
88.9 2.2 
92.1 2.4 
100.5 3.5 
103.1 2.6 
117.5 5.7 
129.0 5.0 
126.1 3.3 
139.9 3.3 
151.0 4.6 
156.9 5.4 
179.0 4.5 
196.1 5.2 
216.9 8.8 
226.2 6.4 
256.2 8.3 
275.2 9.8 
300.0 11.2 
345.9 13.3 
337.1 19.7 
251.1 23.9 
274.1 38.4 
-235.4 54.6 
-1449.5 178.8 
-7999.8 403.1 J 
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The EEC has a perturbative QCD expansion up to 0(a3) in the form: 

EEC(x) = A(x)& t [B(X) t A(x)27rbolnf] &*. (5.32) 

The coefficients A(X) and B(x) are tabulated in Table 5.7. Figure 5.23 shows the 

histograms of (a) sin xA(x) and (b),sin xB(x). In Figs. 5.24 and 5.25 (a) the predictions 

up to O(crs) QCD for the EEC and AEEC are plotted for’energy scale fi = llfz = 

91.2 GeV at four different values of Am = 100, 200, 300, and 400 MeV at f = 1, and 

(b) deviations for Am = 100, 300, and 400 MeV from Am = 200 MeV at f = 1. 

Figures 5.24 and 5.25 also show (c) the predictions for energy scale fi = Mz = 91.2 

GeV at four different values of f = 0.01, 0.1, 1.0, and 10.0 at Ai;is = 200 I’vIeV, and 

(d) deviations for f = 0.01, 0.1, and 10.0 from f = 1.0. 

5.4 Angular Energy Flow 

Another procedure, related to the angle of particle emission, is to integrate the 

energy within a conical shell of opening angle x about the thrust axis. Here we define 

the Jet Cone Energy Fraction (JCEF)57: 

JCEF(x) = 

where 
. b 

Xi = arccos KI-!Z , ( > IGil 

(5.33) 

(5.34) 

is the opening angle between a particle and the thrust axis vector, Zr, whose direction 

is defined to point from the heavy jet mass hemisphere to the light jet mass hemisphere, 

and 0” 2 x 5 180”. Hard gluon emissions contribute to the region corresponding to 

the heavy jet mass hemisphere, 90” 5 x 5 180”. Schematic view of hadronic event is 

shown in Fig. 5.26. 
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Fig. 5.24. Physical prediction up to U(az) for the EEC distribution at 6 = 91.2 GeV. 

(a) Dependence of Am and (b) deviation from the case of Am = 200 MeV at f = 1. (c) 

Dependence off and (d) deviation from the case off = 1. 
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Fig. 5.25. Physical prediction up to (?(a:) for the AEEC distribution at 6 = 91.2 GeV. 

(a) Dependence of Am and (b) deviation from the case of Am = 200 MeV at f = 1. (c) 

Dependence of f and (d) deviation from the case off = 1. 
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Fig. 5.26. Schematic view of hadronic event. Thrust axis is also indicated by dashed line. 

Direction of the thrust axis vector is defined to point from the heavy jet mass hemisphere to 

the light jet mass hemisphere in this thesis. 
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Fig. 5.27. Histograms for the function (a) sin xA(,y) and (b) sin xE(,y) of the JCEF. 

The JCEF also has a perturbative QCD expansion up to O(af) in the form: 

JCEF(x) = A(x)& + [B(x) t A(x)2nboIn f] c%*. (5.35) 

The coefficients A(X) and B(X) are tabulated in Table 5.8. Figure 5.27 shows the 

histograms of (a) sinxA(x) and (b) sinxB(x). In Fig. 5.28 (a) the predictions up to 

U(at) QCD for the JCEF are plotted for energy scale ,/% = Mb = 91.2 GeV at four 

different values of Am = 100, 200, 300, and 400 MeV at f = 1, and (b) deviations for 

Am = 100, 300, and 400 MeV from Am = 200 MeV at f = 1. Figure 5.28 also shows 

(c) the predictions for energy scale fi = nfz = 91.2 GeV at for& different values of 

f = 0.01, 0.1, 1.0, and 10.0 at 12, = 200 MeV, and (d) deviations for f = 0.01, 0.1, 

and 10.0 from f = 1.0. 
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x (deg.) ’ B(x) AB(x) x (deg.) 4x) AA(x) B(x) AF(x) 
0.9 - - 90.9 0.164 0.002 5.928 0.898 
2.7 14968.3 217.0 92.7 0.475 0.004 14.308 1.174 
4.5 5338.25 53.06 94.5 0.752 ! 0.005 22.446 1.281 
6.3 2720.98 18.85 96.3 1.016 0.005 24.989 1.275 
8.1 1633.50 11.97 98.1 1.263 0.006 26.111 1.137 
9.9 1062.26 5.741 99.9 1.495 0.006 28.895 1.227 
11.7 765.472 10.58 101.7 1.717 0.006 32.016 1.457 
13.5 553.248 3.003 103.5 1.926 0.007 31.562 1.262 
15.3 420.379 2.057 105.3 2.137 0.007 36.979 2.602 
17.1 330.769 1.812 107.1 2.353 0.007 35.150 1.229 
18.9 265.279 1.412 108.9 2.570 0.007 36.021 1.245 
20.7 216.693 1.089 110.7 2.777 0.007 38.124 1.546 
22.5 180.596 1.383 112.5 2.987 0.008 38.481 1.497 
24.3 152.407 2.359 114.3 3.235 0.008 36.174 1.313 
26.1 127.483 0.487 116.1 3.466 0.008 39.769 2.723 
27.9 110.180 0.511 117.9 3.698 0.008 35.049 1.799 
29.7 97.231 1.637 119.7 3.963 0.008 36.283 1.530 
31.5 84.454 0.366 121.5 4.152 0.009 36.953 1.595 
33.3 74.370 0.281 123.3 4.289 0.009 38.737 1.559 
35.1 66.520 0.251 125.1 4.468 0.009 39.760 1.839 
36.9 59.645 0.253 126.9 4.637 0.009 47.781 4.800 
38.7 54.145 0.239 128.7 4.841 0.010 51.052 1.767 
40.5 49.166 0.340 130.5 5.087 0.010 52.278 4.969 
42.3 44.674 0.158 132.3 5.304 0.011 49.667 1.924 
44.1 41.138 0.166 134.1 5.582 0.011 54.039 2.668 
45.9 37.672 0.133 135.9 5.907 0.012 57.342 2.062 
47.7 34.922 0.112 137.7 6.257 0.013 57.960 2.315 
49.5 32.681 0.127 139.5 6.652 0.013 62.727 3.372 
51.3 30.562 0.129 141.3 7.093 0.014 62.590 2.439 
53.1 28.671 0.133 143.1 5.569 0.015 73.442 5.608 
54.9 26.946 0.101 144.9 8.159 0.016 79.252 4.874 
56.7 25.491 0.091 146.7 8.852 0.018 71.620 3.078 
58.5 24.213 0.099 148.5 9.631 0.019 82.093 3.069 
60.3 23.222 0.109 150.3 10.479 0.021 81.658 3.543 
62.1 22.070 0.065 152.1 11.585 0.023 84.317 5.200 
63.9 21.297 0.112 153.9 12.846 0.026 90.906 4.230 
65.7 20.626 0.112 155.5 14.324 0.028 96.887 4.399 
67.5 19.761 0.065 157.5 16.152 0.032 105.264 8.497 
69.3 19.142 0.071 159.3 18.352 0.037 90.321 5.787 
il.1 18.753 0.068 161.1 21.079 0.042 103.774 7.758 
72.9 18.352 0.051 162.9 24.683 0.050 81.440 9.254 
74.7 18.105 0.051 164.7 29.267 0.060 79.09 10.62 
76.5 17.888 0.048 166.5 35.340 0.073 52.85 12.58 
78.3 17.785 0.062 168.3 43.957 0.091 -32.65 15.98 
80.1 17.601 0.064 170.1 56.431 0.120 -210.72 23.28 
81.9 17.223 0.045 171.9 75.573 0.168 -411.i8 36.05 
83.7 16.885 0.065 173.7 108.518 0.246 -1215.70 49.64 
85.5 16.238 0.054 175.5 176.643 0.429 -3160.2 170.6 
87.3 14.410 0.054 177.3 363.771 1.031 -12186.7 338.5 
89.1 9.024 0.042 179.1 - - - - 

Table 5.8. Coefficients of the cFs and oi,’ terms for JCEF. 
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Fig. 5.28. Physical prediction up to O(crz) for the JCEF distribution at fi = 91.2 GeV. 

(a) Dependence of Am and (b) deviation from the case of Am = 200 MeV at f = 1. (c) 

Dependence of f and (d) deviation from the case off = 1. 
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Chapter 6 

Measurement of as (lb@) 

6.1 Data Analysis 

The fifteen observables defined in chapter 5 were calculated from the experimental 

data using charged tracks in hadronic events selected according to the criteria defined in 

chapter 4. The experimental distributions Ddota sL.D(y) were then corrected for the effects 

of selection cuts, detector acceptance, efficiency, and resolution, for neutral particles, 

particle decays and interactions within the detector, and for initial state photon radi- 

ation, using bin-by-bin correction factors Co(y): 

(‘5.1) 

where y is the observable; i is the, bin index; DMC sLo(y)i is the content of bin i of the 

distribution obtained from reconstructed charged particles in Monte Carlo events after 

simulation of the detector; and DMC hodron(y)i is that from all generated particles with 

lifetimes greater than 3 x lo-” s in Monte Carlo events with no SLD simulation 

and no initial state photon radiation. The bin widths were chosen from the estimated 

experimental resolution so as to minimize bin-to-bin migration effects. The Co(y) were 
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calculated using events generated with JETSET 6.337 using parameter values tuned to 
I 
1 hadronic e+e- annihilation data. 58 In addition, the multiplicity and momentum spectra 

of B hadron decay products were tuned to T4s data. 5g The hadron level distributions , 

are then given by 

D;f”,&,(Y)i = cD(Y)i. D$;(Y)~. (6.2) 

Systematic effects were investigated using a variety of techniques. The experimen- 

tal systematic errors arising from uncertainties in modeling the detector were estimated 

by varying the charged track and event selection criteria over wide ranges, and by vary- 

ing the tracking efficiency and resolution in the detector simulation. In each case the 

correction factors Co(y), and hence the corrected data distributions D,hd$&(y), were 

rederived. The data correction procedure was repeated by recalculating the correction 

factors Co(y) using events generated with HERWIG 5.5.38 In addition, a matrix cor- 

rection procedure6’ was employed, in which migrations between all pairs of bins are 

accounted for individually. The differences between the data distributions corrected by 

the bin-by-bin and matrix methods were found to be much smaller than the statistical 

errors. 

The hadron level data are shown in Figs. 6.1-6.3 an,d listed in Tables 6.1-6.7, 

together with statistical and systematic errors; they may be compared with data from 

other experiments that have applied corrections for detector effects. The central values 

represent the data corrected by the central values of the correction factors Co(y), which 

are shown in Figs. 6.4 (c)-6.7(c). For the EEC, AEEC, and JCEF, where there are 

bin-to-bin correlations and multiple entries per event per bin, the statistical error in 

each bin was estimated by taking the rms deviation of the contents of that bin over 50 

Monte Carlo samples, each comprising the same number of events as the data sample. 

The systematic errors derive from the uncertainties on the correction factors shown in 

Figs. 6.4 (c)-6.7 (c). Also shown in Figs. 6.1-6.3 are the predictions of the JETSET 

91 
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. 

r 
0.0 - 0.02 
0.02 - 0.04 
0.04 - 0.06 
0.06 - 0.08 
0.08 - 0.12 
0.12- 0.16 
0.16 - 0.20 
0.20 - 0.26 
0.26- 0.32 
0.32- 0.38 
0.38- 0.44 

$2 f (stat.) f (ezp.) 

7.01 f 0.10 f 0.50 
16.10zk0.15 It 0.15 
8.67~'~ 0.11 f 0.05 
5.08f 0.08 z!c 0.16 
2.91zt 0.04 zk 0.06 
1.57f 0.03 f 0.05 

0.917f 0.025 f 0.028 
0.495+ 0.015 YJY 0.025 
0.227% 0.010 + 0.016 
0.061f 0.005 rt 0.006 
0.003f 0.001 f0.003 

P $$ *(stat.) + (eq.) 
0.0 - 0.02 10.53f 0.12 f 0.41 
0.02- 0.04 17.38f 0.15 f 0.14 
0.04 - 0.08 6.21f 0.07 f0.16 
0.08- 0.12 2.39& 0.04 * 0.09 
0.12- 0.18 1.08f 0.02 f 0.04 
0.18 - 0.24 0.404f 0.014 io.021 
0.24- 0.32 0.102f 0.006 f 0.010 
0.32- 0.40 ).0047fO.O013f 0.0008 

Table 6.1. Distributions of r and p (see text). The data were corrected for detector effects 

and for initial state photon radiation. The first error is statistical, and the second represents 

the experimental systematic uncertainty. 

7.342 and HERWIG 5.5ss QCD + f ra mentation event generators. Good agreement g 

between the data and model predictions is apparent in all cases. 

Before they can be compared with the QCD predictions, the data must be cor- 

rected for the effects of hadronization. The correction procedure is similar to that 

described above for the detector effects. Bin-by-bin correction factors 

CH(Y)i = DE,C,on(Y)i 
R%on(Y)i’ (6.3) 

where Dzz,,(y)i is th e content of bin i of the distribution obtained from Monte Carlo, 

events generated at the parton.level, were calculated and applied to the hadron level 

data distributions Dfi&n(y); to obtain the parton level corrected data: 

D,d%,b)i = CH(Y)i . Dk:“o,(Y)i. (6.4) 

The phenomenological hadronization models implemented in JETSET 7.3 and HER- 

WIG 5.5 were used to calculate the C”(y). In the case of JETSET the Cr,(y) were 
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- JETSET 7.3 
--- HERWIG 5.5 

0 0.1 02 0.3 0.4 0.5 
& 

- JETSET 7.3 
--- HERWIG 5.5 
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i” 0 

2 10-l 
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10’ - JETSET 7.3 
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I” 
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@xv 

- JETSET 7.3 
--- HBRWIG 5.5 

0 0.2 0.4 0.6 0.8 1.0 ’ 

Fig. 6.1. The measured event shapes corrected to the hadron level. The error bars include 

the statistical and experimental systematic errors added in quadrature. The curves show the 

predictions of the QCD event generators JETSET 7.3 (solid) and HERWIG 5.5 (dashed line). 

. 
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- JETSET 7.3 
--- HERWIG 5.5 

10’ 

. 

s 
g 
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l Data 
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Fig. 6.3. The measured EEC, AEEC, and JCEF corrected to the hadron level. The error bars 

include the statistical and experimental systematic errors added in quadrature. The curves 

show the predictions of the QCD event generators JETSET 7.3 (solid) and HERWIG 5.5 

(dashed line). 

Fig. 6.2. The measured differential Z-jet rate corrected to the hadron level. The error bars 

include the statistical and experimental systematic errors added in quadrature. The curves 

show the predictions of the QCD event generators JETSET 7.3 (solid) and HERWIG 5.5 

(dashed line). 
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also recalculated for values of the parton virtuality cutoff Qu37~12 in the range 0.5 to 2.0 

GeV, and for reasonable variations of the parameters &CD, a, and or. The correction 

fac:ors Cr,(y) are shown in Figs. 6.4 (b)-6.7 (b), where the bands show the uncer- 

tainties due to model differences and parameter variations. The parton level data are 

shown in Figs. 6.4 (a)-6.7 (a). The data points correspond to the central values of the 

hadronization correction factors, and the errors shown are statistical and experimental 

systematic only; the hadronization uncertainty will be considered in the next sections 

which describe the fits to determine cr,(Mi). 

9s 

I 
1 

ET +* *(stat.) f (ezp.] 
0.0 - 0.02 0.018f0.005f0.007 
0.02 - 0.04 1.36f 0.04 f 0.18 
0.04 - 0.06 B-81& 0.11 f 0.32 
0.06 - 0.08 10.64f0.12 f0.16 
0.08 - 0.12 6.5214~ 0.07 f 0.10 
0.12 - 0.16 3.65 f0.05 f 0.04 
0.16 - 0.20 2.10+ 0.04 f 0.06 
0.20 - 0.26 1.12f 0.02 f 0.03 
0.26 - 0.32 0.384 f 0.013f 0.023 
0.32 - 0.38 0.050f0.005f0.011 
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.I 
BW &&- f (stat.) f (ezp.) 
0.0 - 0.02 0.550 f 0.028f0.213 
0.02- 0.04 13.86'f 0.14 zt 0.45 
0.04- 0.06 11.71f 0.13 f 0.20 
0.06- 0.08 7.38f 0.10 f 0.11 
0.08- 0.12 4.29f0.05 f 0.08 
0.12- 0.16 2.185f 0.038f0.128 
0.16 - 0.20 1.12 f 0.028f 0.061 
0.20 - 0.26 0.403f 0.014 +0.025 
0.26- 0.32 0.030f 0.004f0.005 

Table 6.2. Distributions of ET and Bw (see text). The data were corrected for detector effects 

and for initial state photon radiation. The first error is statistical, and the second represents 

the experimental systematic uncertainty. 

i 

0 

0.0 - 0.02 
0.02 - 0.04 
0.04- 0.08 
0.08- 0.12 
0.12- 0.18 
0.18 - 0.24 
0.24 - 0.32 
O-32- 0.40 
0.40 - 0.50 

‘$$ f (stat.) f (ezp.) 
9.07f0.11 f 0.19 

11.28f 0.12 f0.20 
5.98f0.06 f 0.07 
3.16f0.05 f0.06 
1.77f 0.03 f 0.03 

0.935f 0.021f0.028 
0.523f 0.013 60.013 
0.223f 0.009~0.010 
0.052f 0.004 SO.003 

c 
0.0 - 0.04 
0.04 - 0.08 
0.08 - 0.12 
0.12 - 0.18 
0.18- 0.24 
0.24- 0.32 
0.32 - 0.40 
0.40 - 0.52 
0.52- 0.64 
0.64 - 0.76 
0.76- 0.88 
0.88- 1.0 

$f$ f (stat.) f (up.) 
0.166f 0.011 f 0.015 

1.76 f0.03 f 0.04 
4.01f0.05 f 0:09 
3.57f0.04 f 0.10 
2.30~4~0.03 f 0.02 
1.!4 f 0.02 f0.016 
1.07 60.02 f 0.03 

0.718f 0.013f 0.024 
0.491f 0.011 f 0.013 
0.311f 0.008 f 0.022 
0.146f0.006f 0.012 
0.012 f 0.002f0.001 

Table 6.3. Distributions of 0 and C (see text). The data were corrected for detector effects 

and for initial state photon radiation. The first error is statistical, and the second represents 

the experimental systematic uncertainty. 
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Escheme EO-scheme P-scheme 
y:“t wYc”r) f (slat.) f (ezp.) DZ(Y,“,) rt (stat.) f (ezp.) Dz(Y,“l) 5 (stat.) f (ezp.) 

0.005 0.669 f 0.060 f 0.080 28.95 f 0.39 f 1.44 41.80 f 0.47 f 2.43 
0.010 2.60 f 0.12 It 0.1’2 25.25 f 0.37 f 0.50 31.06 f 0.41 f 0.63 
0.015 7.07 + 0.20 f 0.27 19.93 f 0.33 f 0.53 21.24 f 0.34 f 0.28 
0.02 10.48 f 0.24 zt 0.66 15.85 5 0.29 f 1.04 14.96 f 0.28 f 0.54 
0.03 12.28 f 0.18 f 0.39 11.66 f 0.18 f 0.15 10.82 f 0.17 f 0.37 
0.05 10.89 zk 0.12 f 0.34 7.01 0.10 f f 0.19 6.35 f 0.09 f 0.23 
0.08 7.22 f 0.08 + 0.22 3.85 f 0.06 f 0.05 3.16 f 0.05 f 0.09 
0.12 3.81 f 0.05 f 0.11 2.02 f 0.04 f 0.07 1.61 f 0.03 f 0.08 
0.17 1.97 f 0.03 * 0.05 1.08 f 0.02 rt 0.04 0.791* 0.021 f 0.037 
0.22 0.987 f 0.023 f 0.034 0.537 f 0.017 f 0.026 0.317 f 0.013 f 0.024 
0.28 0.467 f 0.015 f 0.017 0.204 f 0.010 f 0.015 0.069 f 0.006 f 0.005 
0.33 0.178 f 0.009 f 0.024 0.068 zt 0.006 5 0.021 0.008 + 0.002 f 0.007 

1 

J 
Table 6.4. &(ycut) calculated in the E-scheme, the EO-scheme, and the P-scheme (see text). 

The data were corrected for detector effects and for initial state photon radiation. The first 

error is statistical, and the second represents the experimental systematic uncertainty. 

Yd 

0.005 
0.010 
0.015 
0.02 
0.03 
0.05 
0.08 
0.12 
0.17 
0.22 
0.28 
0.33 

PO-scheme 
Dz(y,.t) f (stat.) f (ezp.) 

39.78 f 0.46 f 2.41 
29.85 f 0.40 f 0.78 
20.49 f 0.33 f 0.36 
14.52 f 0.28 f 0.23 
10.65f 0.17 f 0.37 
6.36 f 0.09 f 0.19 
3.21 f 0.05 f 0.12 
1.64 f 0.03 f 0.07 

0.944 f 0.023 f 0.057 
0.433 f 0.015 f 0.038 
0.169 f 0.009 f 0.015 
0.034 * 0.004 f 0.008 

D-scheme 
WY&) f (slat.) f (ezp.) 

101.06 zt 0.74 f 2.29 
26.85 f 0.38 f 0.34 
14.13 f 0.28 f 0.40 
9.00 f 0.22 f 0.44 
6.02 f 0.13 f 0.17 
3.30 f 0.07 f 0.11 
1.66 f 0.04 f 0.07 

0.831 f 0.024 f 0.038 
0.406 f 0.015 f 0.033 
0.173 f 0.010 f 0.011 
0.084 f 0.006 f 0.013 
0.027 f 0.004 f 0.048 

G-scheme 
D2(y,“t) f (stat.) f (ezp.) 

7.67 f 0.20 z!z 1.01 
33.63 f 0.43 f 0.84 
31.71 f 0.41 * 1.01 
20.46 f 0.33 f 0.55 
11.71+ 0.18 f 0.20 
5.55 f 0.09 It 0.12 
3.20 f 0.05 f 0.06 
1.92 f 0.04 f 0.05 
1.25 f 0.03 f 0.03 

0.768 zk 0.020 f 0.027 
0.409 f 0.014 * 0.019 
0.111 f 0.007 f 0.018 

x (deg.) 
0.0 - 3.6 
3.6 - 7.2 
7.2 - 10.8 

10.8 - 14.4 
14.4 - 18.0 
18.0 - 21.6 
21.6 - 25.2 
25.2 - 28.8 
28.8 - 32.4 
32.4 - 36.0 
36.0 - 39.6 
39.6 - 43.2 
43.2 - 46.8 
46.8 - 50.4 
50.4 - 54.0 
54.0 - 57.6 
57.6 - 61.2 
61.2 - 64.8 
64.8 - 68.4 
68.4 - 72.0 
72.0 - 75.6 
75.6 - 79.2 
59.2 - 82.8 
82.8 - 86.4 
86.4 - 90.0 

EEC(rad-‘) *(stat.) f(ezp.) 
2.265 f0.006 f0.055 
1.316 f0.006 f0.032 
0.874 f0.004 f0.020 
0.598 f0.003 f0.019 
0.425 *0.002 fO.O1l 
0.310 f0.002 f0.014 
0.241 fO.OO1 f0.005 
0.199 +0.001 f0.005 
0.168 fO.OO1 f0.006 
0.146 fO.OO1 f0.005 
0.128 +O.OOl f0.004 
0.118 fO.OO1 f0.003 

0.1099 f0.0008 f0.0026 
0.1014 +0.0009 f0.0031 
0.0935 f0.0008 f0.0027 
0.0901 f0.0009 f0.0021 
0.0867 f0.0008 f0.0023 
0.0827 f0.0009 f0.0023 
0.0802 fO.OO1O f0.0018 
0.0764 f0.0009 fO.0031 
0.0770 fO.OO1O fO.OO1O 
0.0752 f0.0008 f0.0031 
0.0736 f0.0008 f0.0013 
0.0751 fO.OO1O f0.0015 
0.0744 *0.0010 f0.0014 

Table 6.6. The EEC (see text). The data w 

--I- 
x (deg.1 

90.0 - 93.6 
93.6 - 97.2 
97.2 - 100.8 

100.6 - 104.4 
104.4 - 108.0 
108.0- 111.6 
111.6- 115.2 
115.2 - 118.8 
118.8 - 122.4 
122.4 - 126.0 
126.0 - 129.6 
129.6 - 133.2 
133.2 - 136.8 
136.8 - 140.4 
140.4 - 144.0 
144.0 - 147.2 
147.2 - 151.2 
151.2- 154.8 
154.8 - 158.4 
158.4 - 162.0 
162.0 - 165.6 
165.6 - 169.2 
169.2 - 172.8 
172.8 - 176.4 
176.4 - 180.0 

ere J corrected fc 

EEC(ra&‘) f(stat.) *(ezp.) 
0.0761 50.0009 f0.0013 
0.0764 f0.0009 f0.0025 
0.0777 f0.0009 f0.0023 
0.0809 f0.0012 f0.0016 
0.0834 fO.OO1O f0.0024 
0.0874 fO.OO1O f0.0022 
0.0931 f0.0013 f0.0015 
0.0968 zkO.0012 f0.0038 
0.1030 f0.0012 f0.0070 

0.111 fO.OO1 f0.002 
0.121 fO.OO1 f0.007 
0.136 f0.002 ztO.003 
0.151 f0.002 zto.004 
0.170 f0.002 f0.005 
0.193 f0.002 f0.006 
0.225 zkO.002 f0.008 
0.265 f0.002 ztO.007 
0.320 f0.003 f0.008 
0.390 f0.003 zto.013 
0.491 f0.003 zto.017 
0.636 , f0.004 f0.012 
0.847 f0.006 f0.007 
1.098 f0.005 *0.009 
1.276 f0.007 f0.044 
0.764 f0.007 1tO.050 

detector effects and for initial 

state photon radiation. The first error is statistical, and the second represents the experimen- 

tal systematic uncertainty. 
Table 6.5. Dz(y,t) calculated in the PO-scheme, the D-scheme, and the G-scheme (see text). 

The data were corrected for detector effects and for initial state photon radiation. The first 

error is statistical, and the second represents the experimental systematic uncertainty. 
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x (deg.) 
0.0 - 3.6 
3.6 - 7.2 
7.2 - 10.8 

lO.S- 14.4 
14.4 - 18.0 
18.0- 21.6 
21.6 - 25.2 
25.2- 28.8 
28.8 - 32.4 
32.4 - 36.0 
36.0- 39.6 
39.6 - 43.2 
43.2 - 46.8 
46.8 - 50.4 
50.4 - 54.0 
54.0 - 57.6 
57.6 - 61.2 
61.2 - 64.8 
64.8- 68.4 
68.4 - 72.0 
72.0 - 75.6 
75.6 - 79.2 
79.2 - 82.8 
82.8- 86.4 
86.4 - 90.0 

AEEC(rad-1) f(dd.) zk(ezp.) 

0.224 zkO.010 f0.002 
0.249 f0.009 It-o.005 
0.211 ~'~0.006 f0.005 
0.181 iO.004 1!zO.O05 
0.148 f0.004 f0.006 
0.121 zto.003 rko.004 

0.0972 f0.0024 *0.0029 
0.0785 f0.0022 f0.0062 
0.0645 +0.0017 f0.0024 
0.0513 f0.0020f0.0026 
0.0413 f0.0015 z!cO.O027 
0.0346 ztO.0016 f0.0021 
0.0275 f0.0013 f0.0060 
0.0213 ztO.0010 f0.0024 
0.0163 f0.0008 f0.0073 
0.0141 f0.0007 f0.0026 
0.0129 ztO.0010 f0.0008 
0.0110 zkO.0007 f0.0025 
0.0064 f0.0005 f0.0017 
0.0058 ztO.0006 50.0029 
0.0041 l 0.0004 f0.0020 
0.0012 ItO. zkO.0038 
0.0017 x!~O.O008 f0.0016 

x (deg.1 
90.0 - 93.6 
93.6 - 97.2 
97.2 - 100.8 

lOO.S- 104.4 
104.4 - 108.0 
lOS.O- 111.6 
111.6- 115.2 
115.2- 118.8 
118.8- 122.4 
122.4 - 126.0 
126.0- 129.6 
129.6 - 133.2 
133.2- 136.8 
136.8 - 140.4 
140.4 - 144.0 
144.0- 147.2 
147.2 - 151.2 
151.2- 154.8 
154.8- 158.4 
158.4 - 162.0 
162.0- 165.6 
165.6- 169.2 
169.2- 172.8 
172.8- 176.4 
L76.4- 180.0 
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JCEF(ra&‘) f(stat.) Ik(ezp.) 
0.0274 f0.0016 zkO.0010 
0.0403 f0.0020 f0.0012 
0.0442 zkO.0026 fO.OO1O 
0.0523 f0.0029 f0.0023 
0.0566 50.0029 f0.0024 
0.0613 zkO.0034 ztO.0026 
0.0725 f0.0039 f0.0017 
0.0832 f0.0055 f0.0046 
0.0858 f0.0051 ztO.0016 
0.0944 f0.0043 f0.0024 
0.1051 f0.0061 f0.0055 

0.114 f0.005 f0.002 
0.131 f0.005 f0.005 
0.148 ho.005 f0.006 
0.169 f0.007 f0.004 
0.188 f0.007 f0.005 
0.228 f0.008 f0.009 
0.275 f0.009 fO.O1O 
0.329 fO.O1l f0.013 
0.414 fO.O1l f0.019 
0.551 f0.012 f0.013 
0.751 f0.021 f0.021 
1.095 f0.024 f0.019 
1.639 10.032 f0.034 
1.530 f0.039 f0.049 b 

Table 6.7. The AEEC and JCEF (See text). The data were corrected for detector effects 

and for initial state photon radiation. The first error is statistical, and the second represents 

the experimental systematic uncertainty. 
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6.2 Measurement of S(AIi) from O(z) Calcdation 
I 

The strong coupling a,(Mi) was first measured by comparing the O((Y:) QCD 

calculations for each observable y with the corrected data at the parton level. Each 

calculation was fitted to the measured distribution l/o* . do/dy by minimizing x2 with 

respect to variation of Am In each y bin x2 was defined using the sum in quadrature 

of the statistical (ustat.) d p . an ex errmental systematic errors (asYS.) as follows: 

(6.5) 

where Dtz$,,(y) is the SLD d ata corrected to the parton level as .described in section 

6.1 and D~~~~heOr. (y) indicates the perturbative QCD predictions. Fits were performed 

at selected values of the scale f and were restricted to the range in y for which the 

0(af) calculation provides a good description of the corrected data. 

The fit ranges in y were chosen to ensure that the parton level data and the 

QCD calculations could be compared meaningfully. The range for each observable was 

determined according to the following requirements: (1) the hadronization correction 

factors CH(Y) satisfied 0.6 < CH(Y) < 1.4; (2) the systematic uncertainties on the de 

tector and hadronization correction factors, AC&y) and Act respectively, satisfied 

) ACn(y), Act I< 0.3; (3) three massless partons can contribute to the distribution 

at O(a,) in perturbative QCD; (4) the x2 per degree of freedom, x&, for a fit at f = 1 

is 5.0 or less. Requirements (1) and (2) ensure that the corrected data are well measured 

and that the hadronization corrections are modeled reliably. Requirement (3) ensures 

that the kinematic regions dominated by 4-parton production at O(oz) are excluded, 

as the calculation is effectively leading order, and hence unreliable, in these regions. 

Requirement (4) is an empirical constraint that ensures that the QCD calculation fits 

the data reasonably well; this is most relevant to exclude the so-called ‘two-jet region’ 

where multiple emissions of soft or collinear gluons are important and are not included 
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in the 0(a3) calculations, a matter discussed further in the next section. Since the 

4-jet rate & has been calculated only at leading order, for Dz the lower bound on ycut 

was chosen to ensure that R4 was smaller than 1%. These fit ranges are listed in Table 

6.8 and are shown in Figs. 6.4-6.7. For illustration, fits to the distributions are shown 

in Figs. 6.4(a)-6.7(a) for the case f = 1. The data are well described by O(af) QCD 

within the fit ranges. Fits were also performed in the same ranges for different choices 

of the renormalization scale f such that 10m4 5 f 5 10’. In each case the fitted value 

of Am was translated to a,(Mi) using Eq. (2.8) discussed in chapter 2. The value of 

a,(Mi) and the corresponding x& for the fit are shown as a function of the choice of 

f in Figs. 6.8 and 6.9 for all observables. Several features are common to,the results 

from each observable: a,(Mi) depends strongly on f; the fit quality is good over a 

wide range of f, typically f X 10e3, and there is no strong preference for a particu- 

lar scale for most of the observables; at low f the fit quality deteriorates rapidly, and 

neither a,(M$) nor its error can be interpreted meaningfully. For the oblateness the 

good fit region is f X lo-‘, which is much higher than for the other observables. For 

& calculated in the E-scheme the lowest x2 aol is found in the region around f N 10m4, 

which is much lower than for the other observables. 

Figures 6.8 and 6.9 form a complete representation of the results of the fits of 

U(az) QCD to the SLD data. It is useful, however, to quote a single value of a,( M$), 

together with its associated uncertainties, determined from each observable. For this 

purpose the following procedure was adopted. 

For each observable an f-range was defined such that xIr < 5.0 and f 5 4.0. 

The former requirement excludes the low f regions where the fit quality is poor, which 

has been show# to be due to poor convergence of the (?(a:) calculations. The latter 

requirement corresponds to a reasonable physical limit p < 2&. This range is arbitrary, 

but does ensure that the smallest a,(Mi) point (see Figs. 6.8 (a) and 6.9 (a)) is 

104 

I- 

CHAPTER 6. MEASUREMENT OF’ as( M;) 

uncertainties 
observable fit range f-range a&e) stat. exp. sys. had. SC&? 

T 0.06- 0.32 2 x 10-4-4 0.1245 f0.0008 ztO.0017 ho.0026 f0.0201 

.P 0.04 - 0.32 1.5 x 10-a- 4 0.1273 ltO.0008 f0.0020 f0.0005 ho.0096 

BT 0.12 - 0.32 5.7x 10-Z-4 0.1272 f0.0008 f0.0020 f0.0033 f0.0220 

Bw 0.06 - 0.26 2 x 10-S-4 0.1196 f0.0008 

0 0.08- 0.32 2x10-1-4 0.1343 f0.0013 

c 0.24 - 0.76 4 x 10-a-4 0.1233 f0.0009 

WE) 0.08 - 0.28 5 x 10-S-4 0.1273 f0.0006 

*j 

f0.0016 f0.0022 f0.0217 

Dz(E0) 1 0.05- 0.28 1 1.2x 10-z-4 0.1175 SO.0007 f0.0027 fO.OO1O f0.0083 

EEC 36.0' - 154.8' 3.5 x 10-a-4 0.1222 f0.0008 

AEEC 18.0' - 68.4' 9x 10-a-4 0.1121 l 0.0012! 

JCEF 100.8' - 158.4' 5 x 10-s- 4 0.1185 f0.0007 

-1 
ztO.0027 f0.0008 f0.0045 

Table 6.8. Observables used in U(af) QCD fits. For each the fit range, the range of the 

renormalization scale factor considered, central a,(Mi) value, statistical and experimental 

systematic errors, and hadronization and scale uncertainties are shown. 

- 
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. 

observable as(G) exp. error theoretical uncertainty 

r 0.1245 f0.0019 f0.0203 

P 0.1273 *0.0022 f0.0096 

BT 0.1272 zto.0022 f0.0222 

Bw 0.1196 f0.0027 f0.0076 

0 0.1343 f0.0020 f0.0120 

c 0.1233 f0.0021 f0.0189 

D?(E) 0.1273 *0.0017 f0.0218 

EEC 0.1222 f0.0031 f0.0125 

AEEC 0.1121 Iko.0034 *0.0035 

JCEF 0.1185 f0.0028 f0.0046 

Table 6.9. The as( M$) values derived from U(az) QCD fits. 
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considered for all variables except Br. The extrema of a,(Mi) values in this f-range 

1, tk tdfi , ere a en o e ne a symmetric renormalization scale uncertainty about their average, 

which we defined as the central value. The f-range, central.a,( Mi) value, and scale 

uncertainty are listed in Table 6.8 for each observable. 

For most observables the statistical error on a,( Mi) was defined by the change in 

a,(Mi) corresponding to an increase in x2 of 1.0 above the lowest value within the f- 

range defined above (see Figs. 6.8(b) and 6.9(b)). However, for the EEC, AEEC, and 

JCEF, where there are strong bin-to-bin correlations, the statistical error on os( Mi) 

was estimated by applying the same fitting procedure to ten sets of Monte Carlo events, 

each comprising the same number of events as the data sample, and taking the rms 

deviation over the ten samples. The statistical error is less than 1% of a,(Ms) for each 

observable, and is listed in Table 6.8. 

For each observable the experimental systematic error on a,( Mi) was estimated 

by changing the detector correction factor CD within the systematic limits shown in 

Figs. 6.4(c)-6.7(c), and by repeating the correction and fitting procedures to obtain 

Am and hence a,(M;) values. The systematic error, calculated from the resulting 

spread in a,(Mi) values, was found to be l-3% of a,(Mi) for each observable and is 

listed in Table 6.8. 

For each observable the hadronization uncertainty on a,( MS) was estimated by 

changing the hadronization correction factor C’J, within the systematic limits shown in 

Figs. 6.4(b)-6.7(b), and by repeating the correction and fitting procedures to obtain 

Am and hence a,( Mi) values. The hdronization uncertainty, calculated from the re- 

sulting spread in a,( Mi) values, was found to be 0.4-60/o of as(Mg) for each observable 

and is listed in ‘Table 6.8. 

The central values of a,(Mi) and the errors are summarized in Table 6.9. For 

each observable the total experimental error is the sum in quadrature of the statistical 

- 
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and experimental systematic errors, and the total theoretical uncertainty is the sum in 

quadrature of the hadronization and scale uncertainties. In all cases the theoretical un- 

certainty, which derives mainly from the scale ambiguity, dominates. This uncertainty, 

which arises from uncalculated higher order terms in perturbation theory, varies from 

about 3% of a,(Mi) for the AEEC to about 17% of a,(Mi) for &. The a, values 

from the fifteen observables are consistent within these theoretical uncertainties. Since 

the same data were used to measure all observables, and the observables are all highly 

correlated, combining these results by means of an unweighted average to obtain, then 

yields 

crd(M~) = 0.1225 f O.O026(exp.) f O.O109(theor.), 

where the experimental error is the sum in quadrature of the average statistical (&0.0009) 

and average experimental systematic (f0.0024) errors, corresponding to the assump- 

tion that all are completely correlated. The theoretical error is the sum in quadrature 

of the average hadronization (f0.0024) and average scale (~tO.0106) uncertainties. 

As a cross-check weighted averages were performed in order to combine the results 

from different measures. Weighting by experimental errors yields an average a,(!@) 

value different from the above by $0.0009; weighting by the total errors yields an 

a,(Mi) value different by -0.0013. Th ese differences are of the same order as the 

statistical error on a single a,(@) measurement and are hence negligible. 
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0 0.1 0.2 0.3 0.4 
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0 0.1 0.2 0.3 0.4 
C” & m* 
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c, I.0 
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+a I.0 
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Fig. 6.4. The measured 7, p, BT, and Bw corrected to the parton level. The error bars include 

the statistical and experimental systematic errors added in quadrature. The curves show the 

predictions of the 0(az) calculations (solid line) and the resummed+U(a:) calculations with 

M&matching (dashed line). The renormalization scale factor was fixed to 1. Sizes of the (b) 

hadronization correction and (c) detector correction factors; the width of the bands indicate 

the systematic uncertainties. 
l 
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0 0.2 0.3 0.4 0.6 
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Fig. 6.5. The measured 0, C, &(E), and Dz(E0) corrected to the parton level. The error Fig. 6.6. The measured &(P), Dz(PO), L&(D), and Dz(G) corrected to the parton level. The 

bars include the statistical and experimental systematic errors added in quadrature. The error bars include the statistical and experimental systematic errors added in quadrature. The 

curves show the predictions of the 0(af) calculations (solid line) and the resummedtU(oz) curves show the predictions of the e)(c$) calculations (solid line) and the resummed+e)(az) 

calculations with InR-matching (dashed line). The renormalization scale factor was fixed to calculations with InR-matching (dashed line). The renormabzation scale factor was fixed to 

1. Sizes of the (b) hadronization correction and (c) detector correction factors; the width of 1. Sizes of the (b) hadronization correction and (c) detector correction factors; the width of 

the bands indicate the systematic uncertainties. the bands indicate the systematic uncertainties. 
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100 120 140 160 180 

Fig. 6.7. The measured EEC, AEEC, and JCEF corrected to the parton level. The error 
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f 7730431 

bars include the statistical and experimental systematic errors added in quadrature. The 

curves show the predictions of the Q(at) calculations (solid line) and the resummed+U(a~) 

calculations with InR-matching (dashed line). The renormalization scale factor was fixed to 

1. Sizes of the (b) hadronization correction and (c) detector correction factors; the width of 

the bands indicate the systematic uncertainties. 

Fig. 6.8. (a) o,(M$) and (b) & from the U(az) fits to the event shapes (top) and jet rates 

(bottom) as a function of renormalization scale factor f. 
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Fig. 6.9. (a) cr,(Mi) and (b) & from the U(az) fits to the EEC, AEEC, and JCEF as a 

function of renormalization scale factor f. 

6.3 Measurement of ,(&I:) from Resummed+B(z) 

Calculation 

The strong coupling a,( Mi) was next measured by comparing the resu- 

mmed+U(cyz) calculations with the corrected data at the parton level for those observ- 

ables for which the resummed+e)(af) calculations exist, i.e. thrust (T), heavy jet mass 

(p), total (BT) and wide (Bw) jet broadening measures, differential 2-jet rate (Dz) 

calculated in the D-scheme, and energy-energy correlations (EEC). We considered all 

four matching schemes discussed in Section 4, namely, I&-, modified InR-, R-, and 

modified R-matching. However, modified R-matching is not applicable to Dz because 

the subleading term Gzl * is not calculated in this case. For the EEC InR-matching 

a b d modified InR-matching schemes cannot be applied reliably6* and were not used. 

The fit ranges were initially chosen to be the same as for the U(az) fits except for 

the EEC, for which the fits were performed within the angular range 90” 5 x 5 154.8”, 

where the lower limit is the kinematic limit for the resummed+0(at) calculation. For 

the fit to Dz (D-scheme) a procedure63 using the matched calculation for 0.03 5 y, < 

0.05 and the O(CZ~) calculation for 0.05 5 y,t _ < 0.33 was adopted. Fits to determine 

AZ, and hence a,(@), were performed as described in the previous section. For 

illustration Figs. 6.4(a), 6.6(a), and 6.7(a) show the results of the resummed+e)(c$) 

QCD fits using the modijied fnR-matching scheme with the renormalization scale factor 

f = 1. The data are well described by the QCD calculations within the fit ranges, and 

also beyond the fit ranges into the so-called ‘two-jet region’ or ‘Sudakov region’ where 

the resummed contributions are large. syl’ This is discussed further at the end of this 

section. Figures 6.10 and 6.11 show (a) a,(Mz) and (b) the corresponding x2,,, derived 

from fits at different values of f, for the four matching schemes. 

Several features should be noted from Figs. 6.10 and 6.11. For each matching 

schemeand each observable the dependence of a,(@) on f (Figs. 6.10(a) and 6.11(a)) 

is weaker than that from the O(az) fits (Figs. 6.8(a) and 6$(a)); the range of f for 

which the fit quality is good (Figs. 6.10(b) and 6.11(b)) is in all cases smaller than the 

corresponding range from the U(az) fits (Figs. 6.8(b) and 6.9(b)), and some observ- 

ables, most notably BT and Bw, do display preferences for particular scales, typically 

in the range lo-* < f < 10. However, using the R-matching scheme it was found that 

the fit qualities for & and Bw to be very poor for all scales. For a given observable, 

at any given f the values of a,(@) and ,I& are typically similar for both of the InR- 

matching schemes; however, the results from the two R-matching schemes are typically 

*The value of G11 cannot be estimated until a complete calculation of Gzz is available.62 
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systematically different both between the two schemes and with respect to the two 

lnR-matching schemes. 

. Since there is a priori no strong reason to reject individual matching schemes 

from consideration, it is necessary to consider an additional theoretical uncertainty 

deriving from the matching ambiguity; this will be discussed below. 

In order to quote a single a,(@,) value, and corresponding errors, for each ob- 

servable the same procedure was applied as for the 0(az) fits to the results from each 

matching scheme. Table 6.10 summarizes the f-ranges, central values of a,( Mi), and 

scale uncertainties. The experimental and hadronization systematic uncertainties were 

estimated by the methods described in the previous section and found to be similar to 

those from the 0(af) analysis. For each observable the average a,(Mi) value over all 

four matching schemes was then taken. The maximum deviation of cx,(Mi) from the 

central value was defined as the matching uncertainty, and was added in quadrature 

with the hadronization and scale uncertainties to obtain a total theoretical uncertainty 

for each observable. The scale and matching uncertainties both derive from uncalcu- 

lated higher order perturbative contributions and are therefore correlated, although to 

an unknown degree. The inclusion of both contributions in the total theoretical un- 

certainty therefore represents a conservative, though not unreasonable, estimate of the’ 

effects of the higher order contributions. The central a,(Mi) value, total experimental 

error, defined as the sum in quadrature of the statistical and experimental systematic 

errors, and the total theoretical uncertainty are listed in Table 6.10. 

Comparing the results in Tables 6.9 and 6.11 it is apparent that the values of 

a,(Mi) from the resummed+O(a~) fits are lower than those from the O(Q~) fits by 

about 3% (T), 6% (p), and 7% (BT and Bw), but higher by about 4% (Dz(D)) and 

5% (EEC). In addition, for all observables except Dz(D), the theoretical uncertainty 

is considerably smaller for the resummed+e)(a:) case than for the 0(a:) case, despite 
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InR matching mod. InR matching R matching mod. R matching 

obs. fit range Q,(M;) f AQ, Q,(M;) f AQ, Q,(M;) f AQ, Q,(.@) f AQ, 
f-range f-range f-range f-range 

T 0.06 - 0.32 0.1196f 0.0089 0.1203 f 0.0089 0.1226 f 0.0110 0.1187 f 0.0091 

2.7 x 1O-3 - 4 2.7 x 1O-3 - 4 1.9 x 10-a - 4 2.3 x 1O-3 - 4 

P 0.04 - 0.32 0.1151 f 0.0039 0.1162 f 0.0047 0.1178 f 0.0061 0.1146 f 0.0044 

1.1 x 10-Z - 4 1.1 x 10-a - 4 4.9 x 10-a- 4 1.0 x 10-Z - 4 

BT 0.12 - 0.32 0.1175 f 0.0030 0.1211 f 0.0015 0.1177f 0.0017 

6.7 x 1O-2 - 4 3.0 x 10-l - 4 3.6 x 1O-2 - 4 

Bw 0.06 - 0.26 0.1083 f 0.0016 0.1095 f 0.0003 - 0.1107f0.0034 

8.2 x 10-a - 4 1.9 x 10-l - 4 4.9 x 10-Z - 4 

ND) 0.03 - 0.22 0.1312f 0.0060 0.1313 f 0.0059 0.1251 f 0.0053 N/A 
1.5 x 10-l - 4 1.6 x 10-l - 4 7.0 x 10-Z - 4 

EEC 90.0'- 154.8” N/A N/A 0.1239 f 0.0049 0.1336 f 0.0028 

6.1 x 1O-2 - 4 2.7 x IO-’ - 4 

Table 6.10. Observables used in resummed+U(ai) fits. For each the fit range, the range of 

the renormalization scale factor considered, the central a,(M$) value, and scale uncertainty 

(Aa,) are given. Results are shown separately for each of the four matching schemes consid- 

ered. Acceptable fits to the data could not be obtained for Br and BW with the R-matching 

scheme. 
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observable %(hbj) exp. error theoretical uncertainty 

l- 0.1180 zkO.0018 f0.0115 

P 0.1163 +0.0020 f0.0064 

BT 0.1160 *0.0020 ztO.0048 

BW 0.1074 f0.0025 f0.0042 

Dz(D) 0.1297 f0.0035 zto.0073 

EE’C 0.1279 10.0032 ztO.0069 

Table 6.11. The o*(Mi) values derived from resummed+C?(az) QCD fits. 

the extra matching uncertainty contribution to the former. For &(D) the theoretical 

uncertainty is essentially the same for both O(az) and resummed+O(crz) cases, which 

may relate to the fact that the resummation of next-to-leading logarithms of ycut to 

all orders of ad is not complete t lo In all cases, however, the theoretical uncertainty is 

larger than the experimental error. 

Combining the resummed+e)(af) results from all six observables using an un- 

weighted average weobtain cr,(&fi) = 0.1192f0.0025(exp.)f0.0070(theor.), where the 

total experimental error is the sum in quadrature of the average statistical (+0.0007) 

and average experimental systematic (f0.0024) errors, and the total theoretical error 

is the sum in quadrature of the average hadronization(f0.0016) and average scale and 

matching(f0.0065) uncertainties. As a cross-check weighted averages were performed 

in order to combine the results from different measures. Weighting by experimentab 

errors yields an average a,(@) va ue different from the above by -0.0011; weighting 1 

by the total errors yields an a,(Mi) value different by -0.0015. These differences are of 

the same order as the statistical error on a single crs(M,$) measurement and are hence 

negligible. 

tA complete analytic expression has recently been obtained.e4 
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It is interesting to compare the resummed+CJ(az) result with the 0(a$) result. 

IThe final value quoted in the previous section is the average of the O(crz) results over all 
I 
15 observables, whereas the value quoted above is the average of the resummed+U(a~) 

results over a subset of 6 observables. For the purposes of comparison the 0(az) results 

were averaged for r, p, BT, Rw, 02(D), and EEC to obtain cr,(Mi) = 0.1242 f 

O.O026(exp.) f O.O132(theor.). For the same set of six observables, therefore, it could 

be found that the central a,(Mi) values derived from 0(a$) and resummed+e)(a~) 

fits in the same range of each observable are in agreement to within the (correlated) 

experimental errors, and that the theoretical uncertainty is significantly smaller when 

the resummed calculations are employed. 

From Figs. 6.4(a), 6.6(a), and 6.7(a), it is clear that the resummedtO(a,2) cal- 

culations are more successful than the O((Y~) calculations in describing the two-jet 

(Sudakov) region. This implies that multiple emissions of soft gluons, which are taken 

into account in the resummed terms, contribute significantly to this region. Therefore, 

for each observable we extended the fit range into the two-jet region and extracted 

a,(@) as a function of the renormalization scale factor f. Requirements (l)-(3) (sec- 

tion 6.2) were applied. In addition, for Da(D) we required the 5-jet production rate 

R5 to be less than 1%; for the EEC the upper limit of the fit range was extended to 

x = 162” by applying the empirical criterion ,& < 5. The fit ranges are listed in Table 

6.12. 

The same procedure as above was applied to define a range of renormalization 

scale factor f over which to calculate a central a,(@) value and scale uncertainty for 

each observable; the f-range, central Q,( MS) value, and scale uncertaidty are listed in 

Table 6.12 separately for fits using each of the four matching schemes. Good fits with 

xi,, < 5 could not be obtained using the R-matching scheme for r, ET, Bw, and Dz(D) 

for any extension of the fit range beyond that used for the O(c$) fits. By comparing 
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r 

L 

1 
I 

obs. fit range 

InR matching mod. InR matching R matching mod. R matching 

a@;) f Aas as(M;) f Aa, as(@) l Aas as($) f Aa, 

T 

P 

WT 

f-range f-range f-range f-range 

0.02 - 0.32 0.1170f 0.0086 0.1184 zt 0.0075 - 0.1191 f 0.0045 

7.0 x 10-a - 4 1.4 x 10-l - 4 6.3 x IO-’ - 4 

0.02 - 0.32 0.1153f 0.0071 0.1146 f 0.0072 0.1140 f 0.0054 0.1124f 0.0071 

2.6 x 1O-2 - 4 3.4 x 10-Z - 4 2.0 x 10-l - 4 4.0 x 10-Z - 4 

0.04 - 0.32 0.1177f 0.0040 0.1202 * 0.0021 - 0.1175f 0.0023 

2.0 x 10-l - 4 6.7 x 1O-2 - 4 1.1 x 10-I - 4 

ww 0.04 - 0.26 O.lOi8 f 0.0024 0.1089 f 0.0014 - 0.1106 f 0.0032 

1.4 x 10-I - 4 2.8 x 10-l - 4 5.4 x 10-Z - 4 

Dz(D) 0.01 - 0.22 0.1269xt 0.0026 0.1268 f 0.0025 - N/A 
1.3 x 10-I -4 1.3 x 10-I - 4 

EEC 90.0’ - 162.0” N/A N/A 0.1233 f 0.0043 0.1337 * 0.0027 

6.9 x lo-’ - 4 5.0 x 10-l - 4 

Table 6.12. Observables used in resummed+O(az) fits with the fit ranges extended into the 

two-jet region. For each the fit range, the range of the renormalization scale factor considered, 

the central a,(Mz) value, and scale uncertainty (AaS) are given. Results are shown separately 

for each of the four matching schemes considered. Acceptable fits to the data could not be 

obtained for T, BT, Bw, and &(D) with the R-matching scheme. 
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observable 4%) exp. error theoretical uncertainty 

T 0.1159 f0.0017 f0.0090 

P 0.1144 f0.0019 f0.0074 

BT 0.1157 f0.0020 f0.0053 

ww 0.1070 1tO.0025 f0.0041 

Dz(D) 0.1274 f0.0034 f0.0027 

EEC 0.1285 f0.0032 f0.0068 

Table 6.13. The a,(M$) values derived from resummed+O(ai) QCD fits with the fit ranges 

extended into the two-jet region. 

Tables 6.10 and 6.12 it can be seen that the maximum change in a,(@) when the fit 

range is extended into the two-jet region is -0.0026 for T (InR-matching), -0.0038 for 

p (R-matching), -0.0009 for BT (modified InR-matching), -0.0006 for Bw (modijed 

InR-matching), -0.0045 for Dz(D) (modified InR-matching), and -0.0006 for the EEC 

(R-matching). These shifts are smaller than, or comparable with, the experimental 

errors, and are much smaller than the theoretical uncertainties. 

For each observable the average a,(Mi) value over all four matching schemes, 

and the matching uncertainty, were calculated as before. The central a,(Mi) value, 

the total experimental error, and the total theoretical uncertainty, defined as before, 

are listed in Table 6.13. Averaging over the six observables, as above, then yields 

a,(Mi) = 0.1181 f O.O024(exp.) f O.O057(theor.), 

which is in good agreement with the above average of results from the restricted fit 

ranges. 
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Fig. 6.10. (a) a,(@) and (b) ,yf, from the resummed+O(of) fits with InR- (top) and Fig. 6.11. (a) a,(Mi) and (b) xf, from the resummed+O(o~) fits with R- (top) and 
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Chapter 7 

Discussions 

7.1 Running Coupling of s 

The nature of QCD, which is a non-Abelian theory, is characterized by an asymp- 

totic freedom. This implies the strong coupling a, decreases as energy scale increases, 

which is known as a running coupling of a,. 

Significant progress in the theoretical predictions for the reaction of hadronic 

decays or r decays in e+e- annihilation has been made since the end of the end of the 

data taking at the PEP and PETRA in the late 1980s. Figure 7.1 just shows several 

recent results as well as the SLD results in this thesis among many progress results. 

The running of Q, in terms of Am = 100, 200, and 300 MeV are also shown in Fig. 

7.1, which are predicted by QCD. The ALEPH65 and CLEO collaborationsor reported 

measurement of cry, using hadronic r decays: 

a,( ib’;) = 0.330 f 0.046 (ALEPH) (7.1) 

and 

a,(M,2) = 0.309 f 0.024 (CLEO). (7.2) 

-__- by=3OOMeV 

__ A== 200 MeV 

_--- by= 100 MeV 

ALEPH (T de-cays) 

0 I I 

1 10 lo2 
Q (GeV) 

Fig. 7.1. The energy scale dependence of (I,. Several recent results from different experiments 

are shown here. 

The analysis comprised not only the total T hadronic width but also spectral moments 

of the invariant mass distribution of the hadron, which have been calculated to O(c$). 

The CLEO collaboration also reported preliminary results67 dn e+e- jet rates in 

the four-flavor continuum at center-of-mass energy 6 = 10.53 GeV. Their analysis 

comprise the differential P-jet rate calculated in the Durham scheme, which is similar 

to those at higher energies. The o, value at fi = 10.53 GeV is obtained 

o,(10.532GeV2) = 0.164 f O.O04(exp.) f O.O14(theor.) (CLEO). (7.3) 

, 123 
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The theoretical uncertainty is dominated by the renormalization scale dependence of 
I 

the #(of) prediction. 

Proceeding to higher energies. a, has been measqed using the resummed+O(c$) 

prediction by the TPC/2y and TOPAZ collaborations at 29 and 58 GeV respectively. 

The result of TPC/2y using the differential 2-jet rate calculated in the Durham scheme 

is?* 

o,(29’GeVZ) = 0.160 f 0.012 (TPC/Zy), 

and that of TOPAZ using the thrust, heavy jet mass, and differential 2-jet rate (Durham 

scheme) is6’ 

a,(58*GeV2) = 0.132 f 0.008 (TOPAZ). 

The errors are also dominated by the renormalization scale uncertainty. 

Figure 7.1 shows the experimental evidence for the variation of a,(&*) with Q. 

Experiment I Theory I a*(@) I 
ALEPHz4 shapes and jet rates Resnmmed+O(o~) 0.125 f 0.005 
DELPR15 shapes, jet rates, and correlations (J(d) 0.113f 0.007 
DELPHIZ3 shapes, jet rates, and correlations Resnmmed+O(o?) 0.123 f 0.006 

L370 1 shapes, jet rates, and correlations Resummed+O(a~) 0.125 It 0.009 

OPAL6 1 shapes, jet rates, and correlations CXO?) 0.122fs.scs ” nnr. 
shapes, jet rates, and correlations 

shapes, jet rates, and correlations 
shapes, jet rates, and correlations 

Table 7.1. Summary of some of the a, measurement at the 2’ resonance. 

*The analysis utilized the dependence of jet rates on the min imum jet energy Various methods to set the renormalization scale in the perturbative QCD pre- 

fThe analysis utilized the dependence of the angular size of the cone. dictions up to 0(az) have been proposed in the literature: 

126 DISCUSSIONS 

At 2’ energy the study of the strong coupling o, was performed by not only SLD 

but also the four experimental groups at LEP. In order to compare the results in this 

analysis with those from LEP, the values of 03(Mi) are summarized in Table 7.1. The 

results from SLD are consistent with the LEP experiments in e+e- annihilation at the 

2’ resonance. 

7.2 Optimization of Renormalization Scale 

One of the serious difficulties making impossible precise determination of the 

strong coupling a, is the scale uncertainty of the perturbative ‘QCD predictions. A 

measurable observable described in chapter 5 is written in the form 

R(y,f) = d(y)& t 
1 
B(Y) t d(y)$ln f 1 &*t . . . . (7.4) 

where j = p2/Q2, /3s = 11 - 2nf/3, and c& 2 &*)/2x is the renormalized coupling 

defined in a specific renormalization scheme such as m. Since R(y, j) is a physical 

quantity, it must be independent of the choice of the renormalization scale p as well as 

renormalization scheme. However, the predictions depend on p because of the truncated 

perturbative QCD predictions to a given finiteorder a:. In fact only up to O(a3) (0(aS) 

for T decays or total hadronic decay width) and the LL and NLL terms to all orders 

in cr, can be controlled now. 

The renormalization scale dependence of the truncated &CD, predictions is often 

used as a guide to assess the accuracy of the perturbative predictiqns, because this de- 

pendence reflects the presence of the uncalculated terms. However, the renormalization 

scale dependence of R(y, j) only re ec fl ‘t s one aspect of the total series, which has been 

recently pointed out by Maxwell et al..” 
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l Fastest Apparent Convergence (FAC). i3 This corresponds to a choice of renormal- 

ization scale p such that the next-to-leading order coefficient: 

a(y) t d(y)$ In f = d. 

Thus, the renormalization scale factor is set to 

fs$=exp[-i(g)]. (7.6) 

a Principle of Minimum Sensitivity (PMS).74 S’ mce the exact (all orders) result is 

independent of the renormalization scale, the idea is that one should choose the 

second order approximation R”(“I) (y, f) to mimic the property of the exact result 

and to be as insensitive as possible to the choice of the renormalization scale p. 

This suggests that 

(7.7) 

and the PMS scheme chooses the renormalization scale factor: 

(7.8) 

l Brodsky-Lepage-Mackenzie (BLM).4 In the BLM scale-fixing method, the scale is 

chosen such that the coefficients d(y) and a(y) are independent of the number of 

quark flavors nf renormalizing the gluon propagators. This prescription ensures 

that, as in quantum electrodynamics, vacuum polarization contributions due to 

fermion pairs are all incorporated into coupling rather than the coefficients. In 

the case,of non-Abelian theory, the BLM method resums the corresponding gluon 

as well as quark vacuum polarization contributions because the coupling a, is 

controlled by /3 function. 

128 

Figure 7.2 shows the optimized scale for each observables over a range of the 

kinematical variables using FAC and PMS. It should be emphasized that FAG and PMS 

in NLO are very similar since the difference between them is the term of N exp(-Pr//?i). 

It is also true that NNLO (Next-to-Next-to-Leading Order) FAC and PMS remain 

close to each other.75 For the PMS approach, however, the coupling and p function are 

unphysical quantities, and it is not clear even if their all orders are defined. 

Figure 7.3 shows the (Y, values obtained from (a) FAC and PMS, and (b) fitting at 

fixed. scale f = 1 and fitting of f and Al;c?s simultaneously. The results from SLD (this 

thesis) are also indicated in the figure. For BT fitting procedure using FAC and PMS 

could not be done due to poor convergence at FAC and PMS scale. For D2 calculated 

in PO-scheme and AEEC by fitting of f and Am could not be done because a clear 

minimum point of x2 could not be found between the f range considered. From Fig. 

7.3 the results of SLD covers the results from above four scale fixing methods, namely 

FAC, PMS, fixed scale f = 1, and fitting of f and Am, except for AEEC. It should 

be noted that the evaluation of the uncertainties on a, in the SLD results is the most 

conservative. 

l Fitting /L and A;~Ts to the dah6 This method is a simultaneous best fit for /J and 

Am for each observable over a range of the kinematical variables. 
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Fig. 7.2. Optimized scale f as a function of variable for event shapes. Solid line shows the 

scale from FAC, and dashed line shows PMS,  and dotdashed line shows BLM method. 
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Fig. 7.3. The results of a, using various scale optimizing methods. (a) Solid circle shows the 

results of FAC, open circle those of PMS,  and triangle indicates the results of SLD (this 

thesis). The error bars for FAC and P M S  are only experimental errors, and those for the SLD 

results are total errors including both experimental and theoretical uncertainties. (b) Solid 

circle shows the results at the fixed scale f = 1, and open circle those of fitting of scale f and 

A m  simultaneously whose errors are experimental errors only. The results of SLD are also 

indicated. 
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Chapter 8 

Conclusions 

The strong coupling a,( @) has been measured by analyses of fifteen different ob- 

servables that describe the hadronic final states of about 60,000 2” decays recorded by 

the SLD experiment. The observables comprise six event shapes (7, p, BT, Bw, 0, and 

C), differential 2-jet rates (Dz) defined by six different jet resolution/recombination 

schemes (E, EO, P, PO, D, and G), energy-energy correlations (EEC) and their asym- 

metry (AEEC), and the jet cone energy fraction (JCEF). The quantity JCEF has 

been measured for the first time. The measured distributions of these observables are, 

reproduced by the JETSET and HERWIG Monte Carlo simulations of hadronic Z“ 

decays. The coupling was determined by fitting perturbative QCD calculations to the 

data corrected to the parton level. Perturbative QCD calculations complete to O(a,2) 

were used for all fifteen observables. In addition, recently-performed resummed calcula- 

tions were matched to the U(a:) calculations using four matching schemes and applied 

to the six observables for which the resummed calculations are available. 

It can be found that the O(o:) calculations are able to describe the data in 

the hard 3-jet region of all 15 observables for a wide range of the QCD renormaliza- 

tion scale factor f. The fitted o.(Mi) value depends strongly both on the choice of 

f, which limits the precision of the a,(M;) measurement from each observable, and 
I 1 on the choice of observable. The AEEC shows the smallest renormalization scale un- 

certainty of about 3%, which is just larger than the experimental error. The a,(@$) 

values from the various observables are consistent with each other only within the scale 

uncertainties. The large scale uncertainties and systematically different a,(Mi) values 

determined from different observables imply that the uncalculated O(at) perturbative 

QCD contributions are significant and cannot be ignored if a,(Mi) is to be determined 

with a precision of better than 10%. 

The resummed+6(a~) calculations yield a reduced renormalization scale depen- 

dence of a,(@), and fit a wider kinematic region, including the two-jet or Sudakov 

region, and give similar fitted values of a,( @) to the U(of) case. However, the different 

matching schemes give different a,(Mi) values, which reflects a residual uncertainty in 

the inclusion of terms in the resummed+C?(az) calculations. For all observables except 

&(D) the theoretical uncertainty is smaller than in the O(at) case, but still dominates 

the uncertainty in the measurement of as(A4z). 

Figure 8.1 summarizes the measured o,(M$) values from all fifteen observables 

using O(af) calculations, and from the six observables using resumm- 

ed+O(c$) calculations in the extended kinematic region. Since the same data were 

used to measure all observables, and the observables are highly correlated, the results 

were combined by taking unweighted averages of the ad(@) values and experimental 

and theoretical errors, obtaining 

os(Afi) = 0.1225 f O.O026(exp.) f O.OlOg(theor.) O(4) 

a,(@) = 0.1181 f O.O024(exp.) f O.O057(theor.) resummed $ 0( of), 

where in both cases the theoretical uncertainty is dominated by the lack of knowledge 

of higher order terms in the QCD calculations. Here the estimation of the theoreti- 

cal uncertainty is larger than that quoted by some of the LEP experiments because 

131 
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more observables and wider variations of the renormalization scale have been con- 

sidered, and unweighted averages have been taken. These average values are shown 

in Jig. 8.1; they are consistent with measurements from other e+e- experiments at 

the Z” resonance55,23*24,62,70 and from lower energy e+e- and deep inelastic scattering 

experiments.‘6 

One expects a prioti the a,(&$) value determined from a resummed+e)(az) fit 

to be more reliable than that from an 0(az) fit. However, the former is only available 

for six of the fifteen observables. In order to quote a final result, therefore, we took the 

unweighted average of the a,( A4;) va ues and uncertainties over the combined set of six 1 

resummed+e)(a~) results and nine c?(az) results for which there is no corresponding 

resummedtO(a:) result. This yields a final average of 

a,(@) = 0.1200 k O.O025(exp.) & O.O078(theor.), 

also shown in Fig. 8.1, corresponding to Am = 253!‘:: MeV. 
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Fig. 8.1. Compilation of final values of a,(&$. For each observable the solid bar denotes 

the experimental error, while the dashed bar shows the total uncertainty comprising the 

experimental error and theoretical uncertainty in quadrature. Shown separately for the C?(c$ 

results and resummed+O(c$) results are a vertical line and a shaded region representing the 

average crJM$) value and uncertainty, respectively, in each case. Also shown is the final 

average of six resummed+U(cYz) and nine O(az) results indicated by stars. 
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