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Chapter 1 

Introduction 

Perhaps one of the main impedimenta to rapid progreaa in the development of the 

social, behavioral and biological aciencea ia the omnipresence of qualitative data. All 

too often it ia aimply impossible to obtain numerical data; the researcher haa the choice 

of qualitative data or no data at all. [31] 

This apology ( or excuse ) indicates the need of analyzing categorical data. A specific case in 

which categorical data makes an appearance is a contingency table. Although the literature 

is replete with methodologies for the analysis of small size contingency tables, relatively few 

methods have been proposed for the case when there are many cells of the tables and many 

missing or zero values. The intent of this thesis is to indicate that non-linear regression 

with categorical predictors yields a reasonable methodology for analyzing such large sparse 

tables. 

The first section of this chapter introduces the concepts of categorical variables and 

of contingency tables. It is included purely for the sake of completeness and is intended 

to neither enlighten nor stimulate the knowledgeable reader. The second section offers 

some history of the methodology used to study contingency tables, and indicates possible 

shortcomings of these procedures when applied to large sparse tables. 

1.1. Basics. 

A categorical variable is a measurable mapping from some measure space to a finite 
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set. The elements of the range are called categories. Classifications such as sex, occupation, 

race, and marital status immediately present themselves as examples of categorical variables. 

Male, female, sometimes, and never are examples of specific categories of the classification 

%exb . AnJr random variable can be transformed into a categorical variable. Let X be 

a random variable, {Pi};==, a partition of the range of X, and {oj}y=l a set. Then the 

mapping 

C(X) = O!i if X E Pi (1.1.1) 

is categorical. 

From this construct it is clear that all data may be considered categorical, since any 

measurement is inherently of finibe precision and consequently can only be reported as lying 

in a certain interval. Although this view may seem a bit extreme and counter-productive, 

it is not without its proponents [31]. The approach taken here is to consider any map- 

ping derived by (1.1.1) to be categorical only if the number of categories is “reasonably 

small”. What constitutes “reasonably small” is left undefined, it being assumed the reader 

is sufficiently intelligent to interpret it in a “reasonable” manner. 

Let S be an arbitrary set, and {Cj}y.-r be mappings Ck: S -+ I’,,+, where rrnl. is some 

set of mk distinct symbols. The relation N may be defined on S by al - 82 M Cj(al) = 

Cj(bs)Vi. It is easy to show that - is an equivalence relationship. A ml x m2 x --- x m, 

contingency table is defined to be any function g which is constant on these equivalent 

classes. It is noted that the functions (Cj} are categorical variables. Consequently a 

contingency table may also be thought of as a function in which all points having the same 

categorical predictors are mapped into a single value. Such tables arise frequently from 

the cross-classification of a population according to several characteristics. In this instance 

the set S would be the set of individuals in the population, with Ck corresponding to 

the kth characteristic of the cross-classification, {I’i}zr the distinct instances of the kth 

characteristic, and g(+) being either the number of individuals in the population having 

the specified traits or the proportion of individuals in the population having .the specified 

traits. The elements of the range in the former case are known as counts and in the latter 

proportions. 
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It is possible to consider this a particular instance of a regression model where the 

existence of a mapping j: S -+ B is assumed and the random variables observed are the 

(r~ + I) - tuples (Cl(a), . . . , Cn(a), f(s)). Th is i d fl en from the contingency table in that 

it is not assumed that Cj(ar) = Cj(az)Vi implies f(al) = f(a2). Thus, points having 

the same categorical predictors are allowed to have different responses. This type of data 

commonly arises when a population is cross-classified according to a set of characteristics 

after which some type of experiment is performed and a continuous response is observed 

for each member. It should be noted that in this set-up a contingency table still may be 

appropriate if the response is discrete, the particular response may be considered another 

classification of the population. 

Given a ml X rn2 X - - - m, contingency table G it is possible to construct a ml x m2 x 

. . . x m, table whose (il, &, . . . , i,)‘* entry is G(ir , i2 , . . . ,in). Auy entry not in the range 

of G is called a missing value and any entry which is zero will be called a zero entry. These 

entries arise from several different causes. Two of the most common ones are: 

1. Because of the finiteness of the sample size an entry which would not be zero if au 

infinite sample size was drawn is zero. These are known as zeros due to sampling 

variation. 

2. Due to the classification of the entries certain combinations may be impossible or 

redundant. Such zeroes are known as structural zeroes. 

Zeroes due to sampling variation occur frequently when the sample size and the total 

number of elements in the table are of the same order of magnitude, and is a common 

occurrence when the population is classified according to many characteristics. A nation- 

wide educational survey may not have anyone classified as a white, eastern European Jewish 

male between twenty-five and thirty years of age who farms in the midwest, although there 

do exist people belonging to this category. 

A natural example of structural zeroes may be found in genetics. Certaindlele combi- 

nations are known to be fatal and thus classifying animals according to these genotypes will 
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necessarily yield zeroes counts for certain combinations. These entries are known a priori 

to be zero and any analysis of the data should take this into account. 

There have been many methods of analyzing contingency tables which have no zero 

cells, and many of these methods have been successfully adopted to the case of structural 

zeroes. The same is not quite true for the case of sampling zeroes, and it is this case which 

shall be of primary interest in this work. 

1.2. Brief Overview. _ 

The literature of contingency tables is vast and scattered. No attempt has been made 

to be thorough and the topics presented are more likely to represent the author’s preference 

rather than any concept of “importace”. 

The use of contingency tables dates back at least to the early nineteenth century with 

the work of Quetelet [26]. Th e actual analysis of contingency tables, however, is considered 

to have begun with Pearson [25], who first proposed the classical x2 test. Pearson adopted 

the view that categorical variables could always be thought of as a discretization of some 

possible unknown continuous random variable and insisted that all analysis be based on this 

assumption. This necessitated some logical acrobatics to deal with apparently dichotomous 

predictors. Hence Pearson considered live vs. dead to be extreme values of some continuous 

scale of “health” and argued that employed vs. unemployed were a discretization of some 

continuous “amount of work’ variable. 

In the same year Yule [32] proposed another theory for contingency tables. His view was 

that the categorical variables were fixed and did not arise from any discretization process. 

This was in direct opposition to Pearson’s work, leading to a long and bitter correspondence 

between the two. For a long period of time during and following this debate the study of 

contingency tables was constrained to 2 x 2 tables. Progress was made in 1935 when Bartlett 

(31 derived a definition for second order int,eractions in 2 x 2 x 2 tables . 
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To facilitate the discussion, the following notation will be used. Consider a table 

having three categorical predictors, A, B, C with categories Ai, Bj, Ck, where i 2 I, j < 8, 

and k <_ t. Let Xijk = P(Ai fl Bj fl ck), and let Pijk be the sample estimates of rijk. The 

standard summation notation iS assumed, ie p.jk = Cipijk, pi.. = Cj,kPijk, etc. 

Bartlett’s definition of no second order interactions can then be written as 

Plll P221 = Pll2 P222 

P121 P211 P122 P212 - 
(1.2.1) 

His method of testing required the solution of a cubic equation. The definition of no 

interaction in a 2 x 2 x 3 table was also defined, although this required the solution of two 

simultaneous degree four equations in two variables. 

Since then much research has arisen in the study of contingency tables and interactions. 

Most of the later work, however, can be traced to one of two methods presented in the 1950’s. 

The first method was introduced by Lancaster [24] in 1951, who developed a method of 

partitioning a x2 statistic in order to develop a concept of interaction in the general r x a x t 

table. In the notation above, the hypothesis of no three-way interaction can be written as 

H: Pijk = P+k : Pi-k Pij- -- 2 
pi.. p.j. p..k P.j* P-k Pi.- P..k + Pi.. P.j- 

Letting 

fiijk = pi.. p.je p~*r(x?!L + --!?ic + --!!e- - 2) 
P.j. P-k pi.. p..k pi.. p.j. 

the &i-square statistic for the hypothesis (1.2.2) can be written as 

(1.2.2) 

(1.2.3) 
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c (P ijk - fiijk)2 = 
c 

(Pijk - Pi- P.j* P-kJ2 _ 
c 

(P .jk - P.j. p..k)2 

ijk Pi- P.j. P..k ijk 
pi.. p.j. P.-k 

ik P.j. P-k 

-c (Pi.k - Pi.* p.-k)2 _ C (Pij. - pi- p-j.)2 

ik pi-- p..k ij 
pi-- p.j. 

(1.2.4) 

Each term on the right hand side of (1.2.4) corresponds to a test of independence of two 

(or more) predictors. For example, & is the x2 statistic for the hypothesis that factors 

A and B are independent. It was these individual terms that Lancaster used to define the A 

interactions between the predictors. 

The second approach came in 1956 with the work of Roy and Kastenbaum [28]. Gen- 

eralizing Bartlett’s definition of independence (1.2.1) to the r x u x t table they defined 

interaction in terms of the (r - 1)(8 - l)(t - 1) ratios: 

Prrf Pijt 

I 

Prrk Prjt 

Pirf Prjt Pirk Prjk 

iLp-1 

isa- 

k<t-1 

(1.2.5) 

The hypothesis of no interaction was defined as all of the terms being equal to one. They 

tested the hypothesis of no interaction by the maximum likelihood method, leading to 

(r - l)(a - l)(t - 1) simultaneous equations of degree three. The standard x2 formula was 

then used as a test criterion. 

One important method derived from this approach which was initiated by Birch [6] and 

used by many subsequent authors [S], [7], [22], is the log-linear model. Following Goodman’s 

[22] notation, the probabilities pijk were written as 

(1.2.6) 
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with the ANOVA-like constraints 

for all i, j, k (1.2.7) 

The /\‘s represented the possible effects of the three variables. The main effects were AA, XB, 

and Xc, the first order interactions were represented by AAB, JAC, and XBc, while AABC 

represented the second order interaction. The model had the advantage of having simple 

methods for estimating these effects, allowing straight forward calculations for testing of 

the presence of given interactions and havin, r a obvious extension to arbitrarily large and 

complex tables. 

Assuming the elements in the table represent counts, difficulties arise in these proce- 

dures when some of the entries are zero. The behavior of Lancaster’s x2 statistic is not well 

understood nor is well-behaved and consequently looses much of its appeal in these cases. 

More drastic is the behavior of the log-linear model. log 0 = -03, creating rather unpleas- 

ant consequences in fitting model (1.2.6). Eliminating those categories which contain zero 

entries looses information and is unreasonable when the number of such entries is of even 

moderate size. 

There has been two main lines of attack to salvage the above mentioned theories. The 

first and to some extent less successful approaches have dealt with sampling zeroes. One 

approach considered was to eliminate empty cells or cells having few entries by collapsing 

adjacent rows of the table. Craig [12] demonstrated a methodology of collapsing two ad- 

jacent rows which yielded consistent estimates of the corresponding cell means and a x - 

square statistic which converged asymptotically to a x2 distribution. Bishop [8] approached 

the problem from the log-linear model and examined conditions under which collapsing the 

table by adding over a variable would not affect any multi-factor effects. However, for large 
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tables with many missing cells, the method of collapsing of a table to eliminate all missing 

entries may not be feasible since it may reduce the table to a size much smaller than desired. 

Consequently, this method works best only when the number of zero cells is a small fraction 

of the total number of cells. 

Another approach has been to replace the zero entries with some positive number 

and to carry out the analysis with the altered table. Probably the simplest method along 

these lines is due to Berkson [4] who suggested replacing 0 with the value l/2. Variants of 

thjs procedure have arisen in the literature, including suggestions of adding either one or 

one half to all cells in order to eliminate zero entries. A more sophisticated methodology 

would be to replace the zeroes in the table with the expected values of the cells under some 

model. Demjng and Stephan [13] introduced the iterative proportional fitting procedure for 

fitting the table with the maximum likelihood estimates of the expected cell frequency. The 

procedure has the advantage over Berkson’s suggestion of being less arbitrary, but relies 

very much on the parametric model assumed. Both methods may be attacked on a general 

philosophical ground that analyzing data that has been augmented by addition of values 

of either an arbitrary nature or by assumption of a specific parametric model should be 

avoided whenever possible. 

There have been several successful strategies proposed for structural zeroes. By and 

large these have been the classical techniques with minor modifications to account for the 

zeroes. To simplify the discussion the remainder of the chapter will consider only R x C 

tables. 

One type of table with structural zeroes which occurred early in the history of contin- 

gency tables was separable tables [21]. A table having unordered categories and structural 

zeroes is said to be separable if it is possible to reorder the categories of the predictors in 

order to obtain a table having block diagonal form; that is if there exists a partition of 

the categories of the first predictor {Ai}~=~ and a partition of the categories of the second 

predictor { Bi}y=o such that the lrtr = 0 if r E Ai, u E Bj, with i # j. In such cases 

the analysis reduces to the analysis of n contingency sub-tables which are asymptotically 

independent. Standard techniques then can be applied to the individual tables (211. 
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A second approach, applied to non-separable tables, extending the log-linear model 

(1.2.6) is the concept of quasi-independence, due to Goodman [21]. Let S = {(i, j) 1 ~ij # 0). 

The probabilities Xii are written 

log Zij = 8 + X3 + A; + AcB for (i, j) E S 

with the constraints 

(1.2.9) 

(1.2.10) 

The model of quasi-independence in this case can be expressed as AcB = 0 for (;, j) E S. 

Methods corresponding to the analysis of tables lacking structural zeroes can then be applied 

(see [14] for example). 

Recently several methods have appeared in the literature to estimate the means of 

large contingency tables which have many empty cells due to sampling variations. These 

methods are based on the assumption that the categories of the table are ordered so that 

there is a smooth transition of cell probabilities as one proceeds along any row or column. 

Fienberg and Holland [16] analyzed sparse tables in a Bayesian framework and considered 

estimators based on a Dirichlet prior and a squared - error loss function. The smoothness 

condition was expressed by having the cell means satisfy a functional equation involving a 

C2 function of the row and column number. 

More recently, Simonoff [29] has adapted the maximum penalized likelihood methodol- 

ogy of density estimation to the estimation of cell means in large sparse contingency tables. 

Assuming a multinomial likelihood for the cells, the estimates of the cell means are those 

values which maximize the multinomial likelihood minus some penalty which measures the 

“roughness” of the estimates. Unfortunately, implementation of the procedure to large 

tables is difficult and the behavior not well understood in these cases. 
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One final methodology considered which can be used to relate the behavior of neigh- 

boring cells to each other is the method of scoring. This methodology does not appear 

often in the statistics literature but is not uncommon in other fields. Fisher [17] is usually 

credited with the 6rst use of scoring. The approach is to assign some values to the cate- 

gorical predictors in order to maximize the correlation between the predictors. A detailed 

description can be found in Kendall and Stuart [23]. The approach followed by the psy- 

chometricians is different. The philosophy of theirs is closely related to Pearson’s ideas of 

categorical variables in contingency tables. The purpose of optimal scoring, as it is called in 

the literature, is to assign to the categories of the predictors a value corresponding to some 

unseen metric. These values, called scores, relate the discrete variables to some continuous 

measurement. Once assigned, the scored variables are treated as continuous random vari- _P 

ables and standard techniques can be applied to them. The term “optimal” comes from the 

fact that the scores are assigned as to optimize the fit between the scored variables and the 

model fitted. A laborious and detailed theory of the above may be found in [31]. 



Chapter 2 

The Algorithm 

Given a ml x ~23 x -* *m, contingency table with Yil,i I,..., i,, as the (ir, i-~, . . . ,i,)th 

entry, a relatively flexible model which may be hypothesized is 

K*,is,...,i, = u(ksj(ij))9 

j=l 

where Sj are scores and U(o) is a ‘(smooth” function. Such a model can be fitted by adapted 

version of a general procedure called P.ACE, which is itself an adaptation of another 

procedure called ACE. 

The first section of this chapter briefly describes the P.ACE algorithm, as well as 

its predecessor ACE. The second section describes in detail the model and motivates the 

algorithm used. 

2.1. ACE and P.ACE. 

Alfred RCnyi [27], in 1959 considered the problem of defining the dependence of two 

random variables (X, I’). C onsideration of certain natural conditions which he felt such 

a measure should possess led to the concept of maximal correlation between (X,Y) to be 

the definition he chose. The maximal correlation between two random variables q and v is 

defined as 
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WV, 4 = s;; cor(fbh 9(d), 
* 

where the sup is taken over all functions for which the left hand side is defined. 

f.n the paper necessary conditions for the existence of two functions f and g such that 

S(V, V) = Cor(f(rl),g(v)) were proved. Such functions can be thought of expressing the 

natural scale when considering the relationship between (X, Y) since f(X) and g(Y) are in 

some sense as similar as possible. No attempt was made, however, to establish a method 

for determining f and 9. 

fn 1982 Breiman and Friedman [lo] considered the following generalization of of this 

problem: 

Given XI,..., X,,Y rL2(f2, 8, P) determine ~1,. . . , pp and 19 which minimize 

E(fi(Y) - Cf==, Pi(Xi))2 with respect to all square integrable functionala subject to 

the constraint E(#(Y)) = 1. 

They were able to prove existence and uniqueness of such functions and developed a 

procedure of determining these functions. Their procedure, christened ACE for Altema- 

ting Conditional Expectation, is an iterative procedure yielding a sequence of functions 

{d’),& . . . , pf’}& which converge to the solution under some regularity conditions. 

A related problem may be posed: Given Y, Xl,. . . , X, a8 before, determine B, & ,. . .,4,, 

which minimize 

E(, - e(e#i(Xi)))‘* 
i=l 

(2.1.1) 

Such a problem may occur when the Y variable is thought of as a response and the vector 

of X variables are thought of as predictors, and it is desired to predict the value of Y 

from the X’s. The ACE algorithm yields a prediction rule for the transformed Y, which 

may not be optimal for predicting the u&r-formed response. The naive approach to 
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this problem is to apply the ACE algorithm to determine 9, and {~}~=r which minimize 

E (8(Y) - C!Lr pi(xi))2 and define 8 = 8” and di = pi for i = 1,. . . , p. For noninvertible 

9 this methodology is of little value. Further, given the existence of 9-l, this approach in 

general does not yield the desired result. If 0 and (#i}f=r minimize both 

E(B-r(Y) - C#i(X;))2 and E(y - e(~di(&)))2 (2.1.2) 
i i 

then 

d-'(E(Y 1 t#i(xi))) = E(@-l(Y) 1 eo,CX,)). (2.1.3) 
i=l i=l 

This is in general not true. In particular if 8 is either non-linear concave or convex Jensen’s 

inequality prevents (2.1.3) from occurring. 

A solution to this prediction problem, known as P.ACE for Predictive ACE, was 

proposed by Friedman and Owen (191. As with ACE it is an iterative procedure and is 

outlined below. 

set et”) = pr) = PI”’ = . . . &’ = id; 

Set i=l. 

Iterate until convergence of 8(‘1, I@, ... fjfl 

d’+‘)(Y) ia a “smooth” of Y on & dk’(&) 

pl) 
2 

3 
= those functions uhich minimize E Y - B(~~=,~!‘+‘l i * (X 0) 

i-i+1 

End outer loop iteration 

The second step of the inner-loop is implemented by a procedure which alternately 

updates each 4:’ while fixing the other functions, and continues until each 4 function 
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converges. A special caSe of this method will be used to analyze contingency tables and is 

discussed in detail in the next section. 

2.2. Notation and Description of Algorithm. 

The notation for the remainder of the work is now defined. Let (Y, X1,. . . ,X,) = 

(I’,$) be random variables on some probability space (a, 8, P). Let Xi be categor&d 

variables, with Xi: CI -+ {1,2,. . . , n;} where Izi < 00 for for i = 1,. . . ,p. Associated with 

each categoricdvariable is a scoring with the constraint that the sum of the scores be equal 

t0 zero . Let Pj = {f: N -+ B 1 & f(k) = 0). Then every S E pni is a scoring for Xi. 

An additional constraint may be imposed if Xi is an ordered categorical variable. If 4 is 

the order relation amongst the categories (1 , . . . , ni} of Xi then the scores S should satisfy 

S(i) < S(j) for i 4 j. 

No assumptions are made concerning the joint distribution of 2. The model postulated 

is 

E(YIxl=~l,...,xP=2,)=~~j(~S~(X;)), (2.2.1) 
j=l i=l 

where m is finite and Sj E gni. S,(a) are elements. from a class of functions which are 

constrained only by a vague concept of “smoothness”. Some scaling of the scores is required 

to insure that the scores and the function are well-defined. The scaling used by the author 

is II C Si(Xi)lloo = 1. 

Two particular instances of this model are now presented. The first example is the 

model 

m P 

Y = COj(cS{(Xi)). 
j=l izl 

(2.2.10) 
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in this case no error is assumed in the formulation of the model and any deviation of 

the data from the model is due exclusively to sampling errors. Such a model arises when 

yi, ,...,ip = P(Xr = ir,...,xp = ip) and the elements of the table are the proportions of 

counts falling in that position. In this particular case the constraints Yi,,...,ip 1 0 and 

C. . Xl ,...,ip $1 v..r(p = 1 are imposed. 

On the other hand, if the Yil,...,ip are rates corresponding to those elements of the 

population having characteristics (XI = ir , . . . , X, = i,), then a more appropriate model 

might be 

Y = eOj(kSj(Xi)) + t, (2.2.lb) 
j=l i=l 

where it is assumed that the c is independent of (Y,g), with E(C) = 0. Although the 

previous model could be thought of as a special case of this with c representing the sampling 

error, this is not the intent. In theory, data collected from model (2.2.lb) could have several 

observations corresponding to the same predictor variables while in model (2.2.la) at most 

one observations could ever arise for a particular set of predictor variables. 

A particular instance of the random variables (Y,g) is a finite set of points in !JI x W, 

denoted by (Yi, rZi)$r = (fi, Xl,i,. - - 3 Xp,i)y=r- It is desired to fit to this instance a model 

of the form (2.2.la) or (2.2.lb). For the time being it will be assumed that m = 1 so that 

the outer sum contains exactly one summand. The model is then fitted by choosing scores 

Si and a function B which minimize 

2(X - e(kSj(Xj,i)))*- 

i=l j=l 

(2.2.2) 

A variant of the P.ACE algorithm mentioned in the previous section is used to fit 

the model. The procedure iteratively updates the function 6(-) and the scores Sj until 

convergence. For the scores fixed 8(-) is determined by ‘smoothing” the data Yi on the sum 

of the scores CTZI Sj(Xj)- Re a d ers unfamiliar with smoothing procedures will find a short 

discussion in the appendix. 
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For 8(e) fixed, determining the scores Sj is a large non-linear minimization problem. 

A direct attack is expensive and consequently a simple “approximate8 solution is chosen. 

It is sufficient to consider optimizing %(X1). Let 1; = {j : Xii = ;}. Then 

C{(fi - e(CSi(xi$))12 = Cr((Yi - e(‘)7Sj(Xij))}‘. 
(2.2.3) 

i Ii 

Consequently, to minimize the left hand side it is sufficient to minimize each summand on 

the right hand side. From symmetry it is evident that only one term , which for definiteness 

sake is taken to be 11, is needed to be analyzed in detail. There are two approaches which 

will yield the desired result. The first method is a simple application of calculus and is left 

as an exercise for the reader. The second method is more convoluted and obscure. It is 

the second method which will be illustrated, not because of any perversity of the author 

but rather because it illustrates the original P.ACE procedure, and yields a result that is 

easily interpreted. 

Let Sj be some set of scores, to; = c Sj(Xl,j), St be the value of the optimal score for 

the first predictor variable at the point 1, and 6 = S: - Sl(1). The problem thus reduces 

to finding the value of 6 which minimizes 

C(fi - B(Wi + a))” 
II 

(2.2.4) 

Assume B(s) E C2 SO that B(w; + 6) = #(lOi) + 6 B’(tui) + O(S2). For each i let 6: to be 

that value which minimizes (Yi - d(wi + 6:))2. Then CIi (Y;. - B(wi + St))2 is minimized 

over all sets of numbers {aJ}i, and all that remains is to select a single value for 6. To 

simplify notation let fi = Y - B(wi + st), and mi = e’(toi + 6:). 

C (yi - e(Wi + S))2 = C (yi - d(wi + 6:) + O(Wi + 6;) - 8(Wi + li))2 

11 11 

= C CEi + B(wi + a,+) - (S(Wi + 6;) + (6 - 6;) mi + o(a - b:)])’ 
11 
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= C (Ci + (6 - 6:) 7TZi f O(6 - 6:))2 

=~~~+2Crimi(6-6:)+C(6-61)2m~+0({6-6~}2) 
II I1 II 

Equation (a) results from a flagrant abuse of O(m) notation, whereas equation (b) is a valid 

consequence of the fact that cimi = 0 since 6: minimizes ((Yi - 8(wi + 6t))2. It is clear that 

to minimize this it is necessary and sufficient that 0 = Cr, (6 - 6:) mf, or equivalently 

(2.2.5) 

It is noted that the optimal “global” increment is a weighted average of the optimal 

“local” increments. For mf small, a small deviation from 6: and consequently a small change 

in the function e(n) results in a small increase of the squared error. Conversely for rnf large, 

a small deviation from 6; results in a large increase of the squared error. Consequently, a 

rational procedure would down-weight those values for which mf is small and give greater 

weight to those values for which mf is large. The updating algorithm (2.2.5) does precisely 

this. 

Apart from ease of interpretation this solution is less than optimal for updating the 

scores. The determination of 6; is time consuming, appearing directly in the numerator 

and indirectly in the denominator of (2.2.5). To simplify even further, the ubiquitous 

Taylor’s theorem is invoked twice. Without loss of generality it may be assumed that 

m; # 0. Hence 0 = Yi - e(Wi + 6;‘) = Yi - (B(wi) + 6; B’(wi) + O([6t12)}, which with 

mi = B’(wi + a,?) = 0’(wi) + O(6:) yields K - B(wi) = mi 6: + O((6,f12). Substituting these 

two expressions into (2.2.5) and after some sleight of hand involving the further misuse of 

O(-) one arrives at 



Chapter 3 

Some comparisons 

Whenever a new method is suggested which either extends or generalizes existing 

procedures an important question is its performance in cases when the previous procedures 

yield satisfactory results. If the new method fails in these cases or yields results differing 

significantly from the previously found results, some question of value is raised. It is clearly 

not possible to examine all cases in which the classical procedures have analyzed tables 

successfully, and yet reasonable performance on just a few cases is sufficient to establish 

some basis of trust in it, especially if in these cases the results of the old and the new are 

comparable. In what follows, several ‘real” data sets are extracted from various sources for 

which the classic model seems appropriate and the results are compared to the results of 

the P.ACE algorithm. 

As described in the previous section, different results for P.ACE may be obtained by 

use of different smoothers. In particular, a type of parametric P.ACE may be obtained if the 

smooths are constrained to lie in some parametric family. As stated earlier, this parametric 

P.ACE procedure is not advocated. However, the relationship between P.ACE and some 

of the classic procedures is most easily seen by use of this parametric P.ACE procedure as 

an intermediary. In four examples a classical model is shown to be related to the P.ACE 

procedure in which the curve is forced to lie in some parametric family. If the range of the 

non-parametric smoother of the P.ACE procedure encompasses this parametric family 

then it can be deduced that the P,ACE procedure generalizes some variant of the classical 

procedure. 
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(2.2.6) 

Despite its appearance, this updating algorithm is easily implemented. The term 

ri - e(C;=lSj(X;j)) is merely the residual of the model from the observation and can 

computed when calculating 8(e). As explained in the appendix 8’ ( CT=, S *(Xi,j)) , likewise 

can be estimated at this time. The difference between the solution (2.2.6) and the solution 

of (2.2.5) is of order O(c5 - 6:) which is small when the algorithm is close to the true 

minimizing functions. 

No order constraints for the scores corresponding to ordered categorical variables have- 

yet been imposed. If alternately smoothing and applying the updating algorithm (2.2.6) 

yields as the result scores with the correct order, then the constrained problem coincides 

with the unconstrained problem and no difficulty arises. If, on the other hand, this is not 

the case the offending scores must be coerced into submission. This is accomplished by use 

of the pool adjacent violators algorithm. The method is discussed in detail in [2]. Since the 

order of the scores the procedure Snds yields information about the data this approach of 

forcing a particular ordering of the scores will not be considered here. 

The algorithm is then continued with the new scores and categories until convergence. 

The procedure of pooling the scores for ordered variables if necessary and continuing the 

algorithm continues until the procedure converges with the scores of ordered categories 

obeying the order constraints. 

Thus a method of determining scores and a function to minimize (2.2.2) is determined 

and all that remains is to extend this method for determining functions and scores to 

minimize 

(2.2.7) 

where N is some small number. 
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To this end a greedy algorithm is employed in conjunction with the procedure outline 

above. Let {Br,S~l,. . . , SF)) be the function and scores obtained by minimizing (2.2.2). 

Define a new set of response variables ?i = Yi - CT=, 81(~~=, SF’(rykj)), for i = 1,. . . , n. 

The second set of functions and scores are then determined according to the methodology 

described above using the residuals from the first fit as the new response variable. This 

procedure of replacing the response variable with the residuals from the previous fit and 

finding the minimizing function and scores for (2.2.2) yields the sequence of functions and 

scores, and is repeated until it is deemed that no acceptable improvement in the model is 

obtained. In practice, however, it has been found in the examples tried so far that one 

summand is sufficient to capture most of the structure in the data. 

Further modifications can be made to the algorithm. The most obvious corresponds 

to the method of obtaining the smooth functions e(.). Various smoothing algorithms are 

present, although experience has shown this to have minor impact. Robust smoothers 

can be utilized, as well as monotone smoothers, or requiring the smooths tn he in some 

parametric family. Except for a brief discussion in the following chapter these issues will 

not be addressed in any detail, and the reader is invited to implement any or all of the 

above, according to his/her indiscretion. The actual smoother implement in the examples 

included here is a variable span smoother having three separate band-widths, each being 

fitted to the data by a local least-squares algorithm [18]. 

To summarize, the algorithm used to fit (2.2.la) and (2.2.lb) is as follows: 

set i = 1 

While sum of residuals squared shors large enough decrease 

B(O) = sr! = . . . = s(‘! = jd 
i 9 PT' 

Set k = 1 

Iterate until (2.2.2) f aila to decrease 

By+‘)(Y) = BmOoth Of Y Oil CS!k!(Xj) I.8 

SC!.+‘) updated according to (2.2.6) 14 

End innermost loop 
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Set Bi = 8:'. Sj,i = Si: 9 

Set Y = Y - x Sj,i(Xj) 

i-i+1 

End outer loop 
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3.1. Exponential models. 

The fkst family is a two parameter family of exponentials, FE = {ae”Ia, b E 2). The 

parameter b is included because of the scale constraint on the scores. To simplify notation 

assume the table under consideration is an r x u x t table. betting 

(3.1.1) 

the model corresponding to this family is 

Y.* rjk = aexp{b (G(i) + S2(i) + Ss(k))} = aPliP2j P3k (3.1.2) 

where Pli, P2jt and P3k satisfy Ci log PI; = Cj log p2j = Et log p3k = 0 Vi, j, and k and 

are chosen to minimize 

C( xjk - mi P2j P3kJ2 (3.1.3) 

This corresponds to the model of independence and is closely related to Birch’s method 

of analyzing contingency tables having no higher order interactions [6]. This method of 

estimation consists of taking logarithms of the response variable and applying standard 

ANOVA constraints to the transformed data. In the case of independence this reduces to 

the model 

log qjk = ‘hi+ 72j + 73k + C (3.1.4) 

where xi 7li = Cj 72j = Ck 73, = 0 Vi, j, k. When the estimates are given by 



I 

Section 3.1: Ezponential modela 23 

7jk = c 
ij=k ij=k 

they can be shown to minimize 

CC log Kjk - 7li - 72j - 73t - C)2. (3.1.6) 

(3.1.5) 

Another method to fit this model is to use the maximum likelihood estimates. In the case 

of independence the estimates are given by 

7jk =l"g(E yi,i,i,/ C 1) 

i;=k ij=k 

(3.1.7) 

It is seen that using the first method of estimation, models (3.1.2) and (3.1.4) differ 

only in that model (3.1.4) minimizes on a log transformed scale while the proposed model 

(3.1.2) minimizes on the original scale. Consequently, in the case where model (3.1.4) is 

appropriate one might expect that they yield similar results. The estimates given by (3.1.5) 

can be considered as the average of the log of the responses while the estimates given by 

(3.1.7) are the log of the average of the responses. Although Jensen’s inequality forces the 

estimates to differ, if the log is semi-linear in the region of interest the estimates should be 

similar, and consequently the the results of models (3.1.2) and (3.1.6) should be similar. 

As an example a data set was analyzed using the P.ACE algorithm , the Birch method, 

and the maximum likelihood method. The data consisted of 60 observations taken from the 

U.N. Demographic Yearbook 1980 [30]. The response variable was German infant mortality 

rate and the predictors consisted of four categorical variables described on page 33. Also 

listed on that page are the scores derived from the Birch analysis (labeled Anova), from 

the maximum likelihood method, (labeled ML.), and from the P.ACE procedure (labeled 

PACE). 

The following two pages contain plots of the corresponding curves. On page 34 the 

sum of scores corresponding to the Anova analysis is plotted in plusses against the response 



I 

Section 3.2: Linear modela 24 

variable and the corresponding exponential curve is drawn through using dotted lines, Also 

on the graph are the sum of scores corresponding to the PACE procedure plotted in circles 

with the estimated curve plotted in solid lines. On page 35 the curve corresponding to the 

P.ACE analysis is reproduced. The sum of scores of the maximum likelihood procedure is 

plotted as plusses and the dotted line represents the corresponding exponential curve. As 

can be seen from the following pages the scores are all very similar to each other, and the 

curves corresponding to them are nearly identical. 

Since all three curves are monotone increasing, large scores correspond to increased 

mortality rates while small scores correspond to decreased mortality rates. In all three 

procedures the ordering of the scores within each category is the same, indicating agreement 

of the procedures in ~the relative ranking of attributes related to increase mortality. The 

largest and smallest scores occur in the category of age at death, indicating that this is the 

most important factor in determining early and late mortality. The period of elapsed time 

involved in the different age groups vary, making direct comparisons difficult. It should be 

noted that the two periods of smallest time elapsed (less than one day and between one 

and six days) have the largest scores, indicating that these periods of time are at greater 

risk than any other period involved, while the category consisting with the largest amount 

of elapsed time (five to eleven months) has the smallest scores, indicating the smallest risk 

group. Both country of birth and sex of child follow as important factors, with scores of 

approximately equal magnitudes. The scores corresponding to the year of birth are very 

small, indicating that year of birth is the least informative category. 

3.2. Linear models. 

The second family consisted of the two parameter family of linear functions, FL = 

{az +6 1 a,6 E 9p). Th e p arameters a and b are required because of the scaling of the 

scores. The model corresponding to this family is 



Section 5.2: Linear modeb 25 

YiI,...,ip = (2 GSitij) + ’ (3.2.1) 

Such a model can be thought of arising from taking logarithms of (3.1.2) with the re- 

sponse in (3.2.1) corresponding to the logarithm of the response in (3.1.2). The linear model, 

however, arises naturally in several untransformed models. This particular restriction of the 

smoother corresponds exactly to a procedure described by Young [31]. The method sug- 

gested for fitting such models was to alternate between optimizing the scores and the linear 

fit, a procedure corresponding exactly in spirit, if not in detail, to the P.ACE procedure. 

Consequently, P.ACE can be thought of as a direct generalization of this method. 

As an example a data set was analyzed using the P.ACE algorithm in which the 

smooth functions were constrained to be linear and the unmodified P.ACE procedure. 

The data consisted of 140 observations taken from the U. N. Demographic Yearbook [30]. 

The response variable was expected number of years prior to death and the predictors 

consisted of the nationality, age, and sex of the subject as well as the year of the estimate. 

These can be found on page 36, as well as the scores derived from both models, 

On the following page the sum of the scores corresponding to the linear model is plotted 

in plusses against the response variable and the corresponding straight line is drawn using 

dotted lines. Also on the same graph are the scores corresponding to the unmodified P.ACE 

procedure drawn in circles and the corresponding curve drawn using a solid line. As can be 

seen from the graph and the table, the two sets of scores are very similar and not surprisingly 

the curves are also quite similar. 

Large scores correspond to a decrease in life expectancy, while small scores correspond 

to an increase. With one exception (Cuba uerutLd Italy ) the ordering within each category 

is the same, indicating that both procedures agree in the relative effect and importance of 

the different categories. As was to be expected, age was the most important factor. The 

next overall important variable was sex, indicating that females tended to have a definite 

advantage over males in terms of life expectancy. Much less important was the year of the 

estimate, and almost irrelevant was the country. Since it was the country variable which 



Section 8.8: Boz-Coz models 26 

displayed the difference in ordering, not too much importance should be placed on this 

aberration. Overall, the fit seems quite close. 

3.3. Box-Cox models. 

A family of functions of transformations was introduced by Box and Cox in 1974 191. 

The family, now known as Box-COX transformations, is a one parameter family of curves 

defined by FCB = (Jo (2) = zA ] X E ZR}, with the condition that js(z) = Iim~,sjA(z) = 

In(z). Given a sequence-of predictor and response variables ((Zi, yi)}zr it was suggested 

that a linear fit be found to the transformed sequence ((Zip jA(vi))};N=r , where X is chosen 

to maximize the fit. Thus the model fitted is 

f,(Y) = Uo+xUj Zj f~ E FCB (3.3.1) 

This suggests that an appropriate class of parametric curves to consider in the P.ACE 

methodology may be the three parameter family of scale and location shifts of the inverses 

of the Cox-Box transformations, namely F& = {K,(a z + b) 1 a, b E 8, Jo* E FcB}. 

It should be noted’that this family contains a large class of functions, including both the 

linear and exponential curves considered earlier. The model corresponding to this family of 

curves can be written as 

-7. * = r,;‘(a + b ksj(zij)) - :1,...,sp 
j=l 

h* E FCB (3.3.2) 

Clearly the two models are closely related. Superficially it appears possible to trans- 

form one into the other by merely inverting the function jx(-). By the argument in chapter 

two, however, it is clear that one would not expect the function jx(*) of (3.3.1) to be the 



Section 8.8: Boz-Coz models 27 

inverse of the function, r;;‘(e), of equation (3.3.2). Except in cases where the function is 

linear the two functions correspond to different values of A, although in many cases it would 

seem reasonable that the two values of X be close. 

When there are ORGY a few distinct values of each predictor it is possible to consider 

the predictors to be categorical. Writing 

a0 + c ajzj = (00 + C ajzj) +btx { 'jtzb; 'i'> (3.3.3) 

where b’ is included to satisfy whatever prerequisite scaling is being invoked for scores, it 

can be seen that the centered and scaled predictors aj(zi - Zj)/b’ correspond to scores in 

the categorical model (3.3.2). There is a difference, however, between the scores of (3.3.2) 

and the “scoresn of (3.3.3). Wh ereas the scores of the P.ACE procedure are chosen as to 

maximize the fit to the model and are subjected only to scale and location constraints, the 

scores of (3.3.3) are constrained to be scale and location shifts of the values of the original 

predictors, reducing the amount of flexibility in the model. betting a’ = as + C ajZj and 

Sj'(Zi) = aj(Zj,i - Zj)/b’, the Box Cox model can be written as 

fx(Y) = a’ + b’ C Sj’(Xj) (3.3.4) 

making the relationship to the parametric version of P.ACE transparent. 

With this identification it is possible to compare the two procedures on a data set. 

The data examined comes from the Box Cox paper 191. The data resulted from attaching 

to yarn of three different lengths three different sets of weights and subjecting the yarn 

to swings of three different amplitudes. The response was the number of swings prior to 

the breaking of the yarn. Since the number of distinct values of the predictor variables 

is small, it is possible to consider them as categorical and use the P.ACE procedure on 

them. From the discussion above, however, it can be seen that the resulting scores from the 

two procedures can not be compared, making it difficult to evaluate the two procedures. 

To eliminate this problem the Cox-Box model was replaced by the model (3.3.2). This 
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replacement allowed the same degree of freedom in determining the scores and had both 

models minimize the squared error between the fit and the data in the same metric. Given 

that the Box-Cox model and the model (3.32) are similar, this approach does not appear 

to be entirely unreasonable. 

The scores of the two procedures, as well as the predictors and the true and estimated 

values of the response of both models can be found on page 38. OR page 39 the sum of 

scores corresponding to the P.ACE procedure is plotted in circles against the response 

variable and the fitted line is drawn using a solid line. The sum of scores corresponding 

to the pseudo-Box-Cox model is plotted in plusses against the response on the same graph 

and the corresponding curve is plotted in a dotted line. 

Note that the curve and the estimates agree rather closely. The curve chosen to 

maximize the fit was j(z) = z-r’*‘. The inverse of this is the function j(v) = y-0.06’, 

which is in close agreement with the transformation Box and Cox found in their paper, 

namely j(y) = y-“‘s. Two of the three predictors, length and load, show very good 

agreement in the scores, and in all cases the ordering is the same. 

3.4. Logistic models. 

The four parameter family of curves FL, = {a + beef+d/(l + ee”+d)l a, b,e,d E !ll} 

encompass a large number of curves not contained in the families previously considered. 

When the response variable represents the probability, P, of the occurence of some event 

given a specific set of covariates z1, . . . , zb, a model often used is the logistic model, 

P(Zl, . . ..Zk) = 
eh+C Oizi 

1 + ,)+C Oizi 
(3.4.1) 

corresponding to the sub-family of FL, in which the additive term is zero and the mul- 

tiplicative term is one. The reason for the popularity of the model (3.4.1) is due to an 
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equivalent formulation, 

qa,. - *,4 
In1 -P(z1,...,zt) = c aizi + b (3.4.2) 

which allows a linear analysis of the transformed response. As noted previously, such an 

analysis will not be optimal when predicting responses from the covariates and in such caSes 

the model fitted should be (3.4.1). 

Often the covariates are measurements of some continuous variable. However, as in 

the case of the Box-Cox models, if the exists only a few distinct values of the covariates 

they can be considered categorical. In such cases the linear term in (3.4.1) .md (3.4.2) is 

replaced by a location and scale shift of sums of scores. 

To demonstrate an instance in which both the logistic model and the P.ACE pro- 

cedure seem to be in some agreement the win-loss record of the American baseball league 

in 1948 was examined [l]. The predictor variables consist of each of the eight teams in 

the American league and the response for the # jfi entry of the table is the number of 

games team i won against team j that season. This data is an example of a table having 

structural zeros along the main diagonal, since presumably a team does not play against 

itself. Initially there appears 56 observations, a pair of wins and losses corresponding to 

each pair of teams. However, with four exceptions each pair of teams played 22 games, 

effectively reducing the number of observations to 28. Given such a symmetry it would be 

reasonable to expect any model based on the data to reflect this symmetry as well. 

A straight forward application of the P.ACE methodology would construct a model 

of the form 

# of wins of team A against team B = 8(&,;,(A) - Sro,,(B)). (3.4.3) 

In this model each team would have two scores, one score for the games it won and one 

score for the games it lost. A reasonable alternative would be to fit the model 
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# of wins of team A against team B = B(S(A) - S(B)) (3.4.4) 

which assign a single score to each team. This model would not only reflect the symmetry of 

the problem but also reduces the number of estimated parameters by 8. It is this later model 

that is fitted. This is accomplished by fitting model (3.4.3) with the additional constraint 

that S win(A) = -SdA)- 

The logistic model fitted was of the form 

# of wins of team A against team B = Q + /3 x L(S(A) - S(B)) (3.4.5) 

where L is some scale and location shift of the standard logistic curve and the numbers 

a and /? are chosen to maximize the fit. In both models the scores can be thought of 

representing some measure of the strength of the teams while the functions represent the 

means to translate the relative strength two teams into the expected number of wins for 

either team. 

The observed values and the estimates from both models may be found on page 40, 

as well as the scores obtained by both methods. Page 41 contains the graph of the sum of 

scores of the P.ACE procedure versus the observed values plotted in circles with the curve 

estimated by the procedure drawn in a solid line. On the same graph the sum of scores 

of the logistic fit versus the observed values are plotted in plusses with the corresponding 

logistic function plotted in a dotted line. The two curves are remarkably similar. The 

scores are comparable as are both fits to the data. The ordering of both scoring systems 

is the same and coincides with the 6nal standings of the league at the end of the season, 

reinforcing the interpretation that the scores represent some measure of relative strength of 

the teams. 
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3.5. Comments. 

Four different parametric models were considered in this chapter: the exponential 

model, the linear model, models arising from Box-Cox transformations and the logistic 

model. In each case the PACE model was shown to generalize to some variant of the 

parametric model. For each of the parametric models a data set was selected for which 

that particular model fitted well. However, no single parametric model was appropriate for 

all four data sets. On the other hand, the P.ACE model fitted all four sets well, yielding 

results similar to those obtained by the corresponding parametric models. Thus the P.ACE 

procedure has the advantage of freeing the investigator from having to postulate possibly 

wrong parametric model assumptions without the concern of possibly obtaining very dif- 

ferent results if a particular parametric model is appropriate. Because of this flexibility the ” 

P.ACE model may be used as a model selection procedure directing the researcher towards 

a specific parametric model. 

On the other hand, it is reasonable to believe that data sets exist for which none of 

the standard parametric models are appropriate while the genera! P.ACE model fits well, 

although the author has yet encountered such a set. Thus the P.ACE procedure may be 

viewed as a method of fitting a non-parametric model of a contingency table without further 

reference to any parametric model. In addition, ELI advantage of the procedure is that it 

appears to be relatively insensitive to missing values in the table. This aspect is discussed 

in further detail in the next chapter. 

3.6. Graphs and Tables. 

This section contains graphs and tables of the data considered in this section. As a 

matter of consistency the following conventions have been been followed. Whenever the 

P.ACE procedure is compared with an alternate procedure 

1) The sum of scores obtained by the P.ACE procedure versus the observations are 
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plotted as circles. 

2) The curve obtained by the P.ACE procedure is plotted as a solid line 

3) The sum of scores obtained by the alternate procedure versus the observations are 

plotted as plumes. 

4) The parametric curve obtained by the alternate procedure is plotted as a dotted line 
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German Infant Mortality Data 

Predictor variables 

1) country of birth 0 
1 

2) year of death 0 
1 
2 

3) sex of infant 0 

1 
4) age at death 0 

1 _r 
2 
3 
4 

predictor ML. 

1 - 0.150 
0.150 

2 0.025 
- 0.004 
- 0.021 

3 - 0.139 
0.139 

4 0.567 
0.648 

- 0.575 

0.050 
- 0.690 

East Germany 
West Germany 

1971 
1972 
1973 
male 
female 
less than one day 
less than six days 
less than twenty seven days 

less than five months 
less than eleven months 

Scores 

hova P.ACE 

- 0.129 - 0.161 
0.129 0.161 

0.027 0.036 
0.018 0.006 

- 0.046 - 0.042 

-0.130 - 0.152 
0.130 0.152 

0.560 0.561 
0.595 0.651 

- 0.592 - 0.559 
0.073 - 0.069 

- 0.636 - 0.584 
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Life Expectancy Data 

predictor Linear P-ACE 
scores scores 

1) Country 

Chile -0.081 - 0.075 
Cuba 0.069 0.049 
Singapore - 0.028 - 0.019 
Kuwait 0.032 0.028 
Mexico - 0.054 - 0.051 
Italy 0.053 0.053 
Scotland 0.009 0.015 __ 

2) XT 
at birth 0.661 0.627 
at ten years 0.490 0.489 
at twenty-five years 0.137 0.162 

at fifty years - 0.439 - 0.420 
at seventy-five years - 0.849 - 0.862 

3) sex 
male 
female 

- 0.542 - 0.502 
0.542 0.502 

4) year of estimate 
1970 
1975 

- 0.162 - 0.129 
0.162 0.129 
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Predictor P.ACE 
scores 

Box-Cox 
scores 

Length 
250 mm 

300 mm 
350 mm 

Amplitude 

8mm 
9mm 
10 mm 

actual pace Box-Cox 
values estimates estimates 

0.90 1.08 0.91 
1.18 1.73 1.37 

- 0.434 - 0.454 1.70 2.10 1.85 
-0.011 0.039 2.10 1.39 1.60 

0.444 0.415 2.20 2.81 2.14 
2.66 2.15 2.46 
2.92 3.40 ,_~. 2.89 
3.32 2.38 3.32 

0.405 0.330 3.38 3.09 3.35 
- 0.144 - 0.001 3.60 6.16 4.28 

- 0.261 - 0.329 3.70 6.31 4.52 
4.38 3.59 3.91 
4.42 4.90 4.55 
5.66 6.20 8.04 

0.151 0.193 6.20 5.17 6.17 

0.045 0.024 6.34 7.68 7.34 

- 0.195 - 0.217 6.74 6.12 6.24 
8.84 8.22 6.77 

10.22 5.95 . 8.58 
10.70 11.24 12.97 
11.40 10.77 9.42 
11.98 13.38 11.82 
14.14 16.57 16.69 

Box - Cox model: 15.68 13.61 18.35 
20.00 20.50 15.58 

y. . . = (0.892 - 0.114 Cj Sj(ij))-14eD 31.84 31.53 25.71 
11,*2,*Z 

36.36 36.38 36.97 

Load 

40 gm 
50 gm 

60 gm 
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Baseball Data 

LOSSES 

Baseball P.ACE Logistic games 

Team scores scores won 

Cleveland 0.434 0.441 96 

Boston 0.362 0.418 95 

New York 0.240 0.383 95 

Philadelphia 0.080 0.160 84 

Detroit 0.051 0.028 78 

St. Louis -0.287 -0.370 59 

Washington -0.313 -0.463 55 

Chicago -0.566 -0.560 51 
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Chapter 4 

Simulations 

The algorithm has been demonstrated to perform reasonably well on a few “real” data ex- 

amples. It’s performance on sparse tables has yet to be examined. The intent of this chapter 

is to demonstrate the performance of the procedure under several different conditions using 

simulated data. 

4.1. The Data. 

All the simulated data arose from a 4 x 4 x 3 x 2 x 3 contingency table. This table 

of 288 cells was considered an acceptable compromise between tables of larger sizer which 

were computationally very expensive to analyze and tables of smaller size which could be 

less informative. For all simulations the scores were fixed and were as follows: 
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predictor 

1) 

2) 

3) 

4 

5) 

scores 

0.10 
- 0.0333333 
- 0.10 

0.0333333 

- 0.22 
- 0.14 

0.02 
0.34 

0.20 
0.20 

- 0.40 

- 0.1597079 
0.1597079 

- .1202921 
- .08 

0.2002921 (4.1.1) 

The scores for predictor one were chosen so that the inner two scores were separated 

by a relatively small distance while the outer two scores were at a much greater distance 

away. The intent was to see if given the relatively large separation of the outer scores and 

the relatively small separation of the inner scores if the P.ACE procedure could distinguish 

and separate the inner scores. The scores for predictor 2 are a scale and location shift of 

the sequence 8, 16, 32, 64. The geometrically increasing separation of consecutive scores 

offered another method of assessing the procedure’s ability to distinguish within categories 

scores. Two of the scores of predictor 3 were chosen to be equal to see if the procedure 

would be able to detect this fact. The scores for predictor 4 were random. It was the 

author’s intent to have them equal to r/20, although his skill in basic arithmetic prevented 

this from occurring. The scores for predictor 5 were what is known as a “kludge”. The 

algorithm scales the scores so that the maximum of the absolute value of the sum of the 
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scores is 1. Hence it was desirable to have the maximum of the sum of scores to be 1 and 

for symmetry reasons to also have the minimum of the sum of scores to be -1. The two 

criteria were satisfied by setting the scores of predictor 5 to the values presented. 

From the examples in chapter 3 three parametric curves seem to be appropriate; the 

linear curve, the exponential curve, and the logistic curve. The curves were defined on the 

range of the scores, i.e. [-1, l] , and were standardized by scaling and shifting them to have 

the value of 0 at -1 and 1 at 1. The three curves used to generate the data were 

1) linear f(z) = y 

2) exponential f(2) = e3 - e 
-1 

e - e-l 
(4.1.2) 

e7.sr 
3) logistic f(z) = 1 + e7.so 

With the data generated, normal errors were then added. To test the procedure in the 

best circumstances a trial with no noise was run. In addition noise with twelve diflerent 

values of standard deviations were also considered; 

CT = .025, .05, .075, .lO, .125, .15, .175, .20, .25, .30, .40, .50 (4.1.3) 

Several small values of o were included to observe the influence of increasing the amount of 

noise in the data. The large values were included to observe the breakdown of the model. 

F’rom the scaling of the curves used to generate the data a standard deviation of d = .125, 

for example , corresponds to a noise to signal ratio of 12.5 %. 

After generating the data eleven different proportions of data were removed from the 

table to observe the behavior of the algorithm in cases of missing data. The proportions 

chosen are listed below: 
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proportion number number 
removed removed left 

0 0 288 
5 14 274 
10 29 259 
15 43 245 
20 58 230 
25 72 216 
30 86 202 
40 115 173 
50 144 144 
60 173 115 

70 202 86 (4.1.4) 

Two methods were chose to eliminate the data from the table. 

1) random deletions - the data to be discarded as missing is chosen uniformly from the 

table. For example, if 29 observations are to be deleted, then with equal probability 

any of the (‘,“p) sets of 29 numbers are chosen. 

2) select deletions - this is a meager attempt to model some kind of dependence be- 

tween the observations which are missing and their position in the table. The cells 

corresponding to the second category of the first predictor or the second category of 

the third predictor had a greater chance of being eliminated. More precisely, let Cj(x) 

be the category of the j’* predictor corresponding the the cell entry z. Then if a 

total of z observations were to be removed from the table, z/9 would be removed 

from {zlCo(z) = C&z) = 2}, 22/9 would be removed from {z]C3(z) # Co(z) = 2}, 

z/9 would be deleted from (zjCe(z) # Cs(z) = 2}, and the remaining z/3 from 

{4Co(4 # Ws(4 # 21. 

Thus, to summarize, a contingency table with 5 predictors Xl,. . . , Xs was considered. 

The response could be expressed as 
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Y;,,...,i& = f(f: Sj(ij)) + f (4.1.5) 
j=l 

where the scores are given in (4.1.1) and the function is one of the functions in (4.1.2). The 

noise, e, was normal with zero mean and standard deviation one of the values in (4.1.3). 

One of the several different proportions listed in (4.1.4) were removed by either random 

deletions or selected deletions. 

For each combination 100 trials were run. In each case the curve generated by the pro- 

cedure was evaluated at intervals of one tenth from -1 to 1 to obtain some measure of how 

close the curve found approximated the true curve. A problem arises when the maximum _T 
of the sum of true scores corresponding to the the observations in the deleted table was less 

than one. If the procedure found the true curve, it would actually determine only a portion 

of the curve interior to the range (-1, l]. Since the procedure used the scale convention 

that the maximum sum was one, the portion would be magnified by some constant and 

would have the affect of altering the apparent fit between the true and estimated curve. 

To lessen this, the procedure kept track of the “correct? scaling of the scores, extending 

by linear approximation those values which were outside the range of the approximating 

curve. Although this practice is not optimal, the two scales differed only rarely in tables 

which had many missing observations and the differences were usually quite small. 

4.2. Results. 

For each of the combinations listed above two measures of goodness of fit are calculated. 

The Srst measure is the standard deviation of the fit to the data. This is the square root of 

the average square deviations of the data to the value estimated by the P.ACE algorithm. 

The second is the standard deviation of the fit to the model. This is the the square root of 

the average of the squared deviations of the true underlying curve to the curve estimated 
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by the P.ACE algorithm, evaluated at the points (-1.0, -0.9,. . . ,0.9,1.0}. The results 

can be found in table Ia through table Vfi at the end of this chapter. 

The fist observation concerns the deviation of the fit to the data. In all cases consid- 

ered the error is relatively constant across the differing amounts of missing data and the 

type of deletion used. For the exponential and linear models, except for very low levels of 

noise to signal ratios the deviation of fit to the data is smaller than the standard devia- 

tion of the noise added to the data. This suggests that the procedure is over-fitting the 

data, although the difference between the two numbers is quite small in most cases and is 

unlikely to be very serious. The fit for the logistic model is somewhat worse, only a few 

cases having a smaller standard deviation to fit than the standard deviation of the noise 

-‘added. This is most likely due to the fact that unlike the exponential and linear curves, the 

logistic curve is neither convex nor concave. The procedure appears to perform quite well 

in general when trying to fit straight lines and only slightly less well in fitting functions 

which deviate slightly from linear. The convexity of the exponential functions considered 

is relatively small, undoubtably accounting for some of the success of the procedure in that 

case. The logistic function, however, is highIy non-Iinear and the procedure has difficulty 

in finding the exact curve. 

The second observation concerns the standard deviation of the fit to the model. As 

would be expected, the fit degenerates as either the number of observations missing or the 

noise to signal ratio increases. What is important to note is that the deterioration of the 

fit is not very sensitive to the number of missing values. This indicates that the procedure 

may be of use when large amount of data is missing. 

The ability of the procedure to locate the correct scores appeared to be very insensitive 

to either the type of deletions, the underlying model, the amount of noise or the amount 

of data, provided that noise to signal ratio was 30% or less. For this reason only one set of 

scores have been included. Page 63 contains the average scores obtained from the P.ACE 

procedure for the logistic model with 30% of the observations selectedly deleted and with a 

noise to signal ration of 25%. Included also are the true scores and the standard deviation 

of each score from its mean. As can be seen, there is close agreement between the estimated 
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scores and the true values, and the estimated scores tend to be rather stable. There seems to 

be a tendency to find scores having greater uniformity in between score spacings than exists 

in the original scores. The two inner scores of predictor 1 have been separated somewhat 

and the procedure has brought the scores of predictor 2 closer to a set of uniformly spaced 

scores. Nevertheless, these affects are rather slight. 

To obtain some idea of how well the model estimated the the underlying curve two 

graphs were drawn for each of the underlying curves. To illustrate the ability of the proce- 

dure to find structure in sparse tables all the examples were chosen from tables missing 50 

% of the observations. There seemed to be little dependence of the curves on the type of 

deletion present in the table. The tables with random deletions and 30 % noise to signal ra- ,- 
tio and also the tables with select deletions with 15 % noise to signal ratio were chosen from 

each of the three different curves. The true value of the curve was drawn in circles at each 

of the points (-1.0, -0.9,. . . , 0.9,l.O). Also at these points the median, the quartiles, and 

the 5 and 95 percentiles were ca!culated from the 100 trials of the simulation and plotted. 

The medians were connected with a straight line, the quartiles with dotted lines and the 5 

and 95 percentiles with dotted lines, giving some idea of how well the curves were approxi- 

mated. The curves are rather self-explanatory. Just a few points should be mentioned. The 

flaring out at the ends is common in smoothers and is caused by the asymetric position of 

the data in the window of the smoother. It should be noticed that interior to the interval 

(-1, l] the fit is rather good and the 5 and 95 percentiles are close to the true values. F’rom 

the graphs it appears as if the procedure is somewhat median biased, although the curves 

corresponding to 15 % noise to signal ratio have very little bias in the interior of the range. 

4.3. Conclusions. 

The P.ACE algorithm presented offeres a method of fitting the model 
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Y. I* ,...,ij = 8k owl) 

( 1 I 

(4.3.1) 

to contingency tables. The model appears to be a reasonable model, corresponding to 

certain established parametric models such as the independent model or the logistic model. 

As shown in chapter 3, it also yields similar results to these classical models in those 

instances that the models describe the data well. 

There appears to be several advantages of using the P.ACE algorithm and the model 

(4.3.1) . The first advantage is in the generality of the model and the few assumptions made 

about the data. Because the model mimics the classical models well it can also be used as 

a means of model selection, and prove useful in exploratory analysis of contingency tables. 

In many cases the scores obtained by the procedure can help give some indication of the 

relative importance of each predictors, and can give some means of interpreting the effects 

certain predictors on the response. 

The second advantage is the ability to perform well under conditions in which much 

of the data is missing. The method can provide estimates for the zero cells of a table while 

making a minimal set of assumptions and can help detect patterns in tables which may be 

difficult to observe otherwise. 

There are also several disadvantages of the procedure. The procedure does not perform 

well when the contingency table is small or when the range of the response is large compared 

the the number of observations. The first problem is due to the fact that the procedure 

is estimating a large number of parameters and small tables do not provide enough infor- 

mation. The second problem is related to the smoothing algorithm incorporated into the 

procedure. The amount of possible curvature in the output of the smoother is a function 

of the bandwidth, which is bounded below by the number of data points. Thus small data 

sets can not produce a smooth curve with a large curvature. The yam data of chapter 3 

illustrates this point. 

There is a definite lack of theory. It is straightforward to show that under general 

conditions an optima1 set of scores and functions exist which minimize the mean square error 
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of the model (4.3.1). It is equally straight forward to construct examples of non-uniqueness 

of the solutions. There is also no proof of convergence of the algorithm, although in practice 

t,his had never presented any problem with the data used. 

In spite of the shortcomings, however, the method presented seems to be a useful 

method in the exploratory analysis of contingency tables, and one worth pursuing. 

4.4. Graphs and Charts. 

This section contains the charts and graphs discussed in the earlier sections of -this 

chapter. 
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Table la 

standard deviation of fit to data 

linear model with random deletions 

proportion of data missing 
1 .oo .05 .lO .15 .20 25 .30 .40 .50 -60 .70 1 

.ooo 

.025 

.050 

.075 

.lOO 

.125 

.150 

,175 

.250 

.300 

.400 

.oo .Ol .Ol .Ol .02 .02 .02 .03 .03 .04 .04 

.02 .03 .03 .03 .03 .03 .03 .04 .04 .04 .05 

.05 .05 .05 .05 .05 .05 .05 .05 AI6 .06 .06 

.O? .07 .07 .07 .07 .07 .08 .08 .08 .08 .08 

.lO .lO .lO .lO .lO .lO .lO .lO .lO .lO .lO 

.12 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 

.15 .15 .15 .15 .15 .15 .15 .15 .15 .14 .14 

.17 .17 .17 .17 .17 .17 .17 .17 .17 .17 .17 

.19 .20 .19 .19 .20 -20 .19 -19 .19 .19 .19 

.24 .24 .24 .24 .24 .24 .24 .24 .24 .23 .23 

.29 .29 .29 .29 .29 -29 .29 .29 .28 .28 .28 

.39 .39 .39 .38 .39 .39 .38 .38 .38 .37 .36 

.500 .49 .48 .49 .49 .48 .48 .49 .48 .47 .47 .46 
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Table lb 

standard deviation of fit to model 

linear model with random deletions 

proportion of data missing 
.oo .05 .lO .15 .20 .25 .30 .40 .50 .60 .70 

.ooo .OO -02 .03 .04 .04 .05 .05 .06 .07 .07 .ll 

.025 .Ol .02 .03 .04 .04 .05 .05 .06 .08 .09 .ll 
8 

t .050 .03 .03 .04 .04 .06 .06 ~06 .06 .08 .lO .ll 
a 
Fi .075 .04 .05 .05 .05 .06 .06 .07 .07 .09 .lO .13 

a .lOO .05 .06 .06 .07 .06 .07 .08 .08 .09 .lO .15 

: .125 .07 .07 .08 .07 .09 .09 .lO .09 .12 .12 .14 

.150 .08 .08 .08 .09 .lO .09 .lO .lO .13 .13 .16 
d 
e .175 .09 .09 .lO .09 .lO .lO .12 .12 .12 .17 .17 
V 

i .200 .12 .ll .12 .12 .12 .lI .13 .14 .16 .19 .24 
a 
t ,250 .13 .13 .14 .14 .14 .16 .16 .18 .21 .21 .26 
i 

0 .300 .15 .16 .17 .17 .18 .20 .19 .21 .25 .25 .31 
n 

.400 .24 .25 .24 .27 .26 .29 .29 .35 .37 .42 .43 

,500 .30 .33 .33 .37 .40 .41 .39 .42 .46 .57 .56 
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d 
e 
V 

i 
a 
t 
i 

0 

n 

Table IIa 

standard deviation of fit to data 

linear model with select deletions 

proport ion of data missing 
I .oo .05 .lO .15 .20 .25 .30 .40 .50 .60 .70 

.ooo .oo .Ol .Ol .Ol .02 .02 .02 .03 .03 .04 .04 

,025 .02 .03 .03 .03 .03 .03 .03 .03 .04 .04 .05 

.050 .05 .05 .05 .05 .05 .05 .05 .05 .06 .06 .06 

.075 .07 .07 .07 .07 .07 .07 .08 .08 .08 .08 .08 

.lOO .lO .lO .lO .lO .lO .lO .lO .lO .lO .lO .lO 

.125 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 

.150 .15 .14 .14 .14 .15 .15 .15 .15 .14 .14 .14 

.175 .17 .17 .17 .17 .17 .17 .17 .17 .17 .17 .16 

.200 .19 .19 .19 .19 .19 .19 .19 .19 .19 .19 .19 

.250 .24 .24 .24 .24 .24 .24 .24 .24 .24 .23 .24 

.300 .29 .29 -29 .29 .29 .29 .29 .29 .28 .28 -27 

.400 .39 .39 .38 .38 .38 .38 .39 .38 .38 .37 .36 

.500 .48 .48 .48 .48 .48 .48 .48 .47 .47 .46 .45 
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Table IIb 

standard deviation of fit to model 

linear model with select deletions 

proportion of data missing 
.oo .05 .lO .15 .20 .25 .30 .40 .50 .60 .70 

.ooo .OO .Ol .Ol .02 .02 .02 .03 .04 .04 .06 .ll 

.025 

.050 

.075 

.lOO 

.125 

,150 

.175 

.200 

.250 

.300 

~ .400 

.Ol .Ol .02 .02 .02 .03 .03 .03 .04 -08 .08 

.03 .03 .02 .03 .03 .03 .04 .04 .06 .07 .09 

.04 .04 .04 .04 .04 .05 .05 .05 -08 .lO .15 

.05 .07 .06 .06 .06 .06 .07 .07 .08 .ll .14 

.07 .07 .06 -06 .08 .08 .08 .lO .ll .12 -17 

.08 .08 .08 .09 .09 .lO .09 .lO .13 .13 .18 

.09 .09 .09 .lO .lO .lO .ll .13 .16 .16 .22 

.I0 .I1 .13 .12 .I3 .14 .14 .15 .I5 .19 .26 

.14 .15 .16 .17 .18 .19 .20 .20 .25 .25 .34 

.19 .20 .20 .22 -22 .24 .26 .28 .31 .36 .45 

.24 .30 .29 .31 .34 .36 .36 .38 .39 .40 .54 

[ .500 ) .37 3: .40 .39 .40 .45 .46 .47 .50 .54 .65 ) 
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Table IIIa 

standard deviation of fit to data 

exponential model with random deletions 

proportion of data missing 
.oo .05 .lO .15 .20 .25 .30 .40 .50 .60 .70 ’ 

.ooo .Ol .02 .02 .02 .02 .02 .02 .03 .03 .04 .04 

.025 .03 .03 .03 .03 .03 .03 .03 .04 .04 .04 .05 

.050 .05 .05 .05 .05 .05 .05 .05 s-.05 .06 .06 .06 

.075 .07 .07 .07 .07 .07 .08 .08 .08 .08 .08 .08 

.lOO .lO .lO .lO .lO .lO .lO .lO .lO .lO .lO .lO 

d’ i 
.125 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 

.150 

.175 

.200 

.250 

.300 

.400 

.500 .48 .48 .48 .48 .48 .48 .48 .47 .47 .47 .44 

.15 .15 .15 .15 .15 .15 .15 .15 .15 .14 .15 

.17 .17 .17 .17 .17 .17 .17 .17 .17 .17 .16 

.20 .20 .19 .19 .13 .19 .19 .19 .19 .19 .19 

.24 .25 .24 .24 .24 .24 .24 .24 .24 .23 .23 

.29 .29 .29 .29 .29 .29 .29 .29 .28 -28 .27 

.39 .39 .39 .38 .39 .38 .38 .38 .37 .37 .36 
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Table IIIb 

standard deviation of fit to model 

exponential model with random deletions 

proportion of data missing 
.oo .05 .lO .15 .20 .25. .30 .40 .50 .60 .70 

.ooo .02 .04 .04 .04 .04 .04 .05 .06 .06 .06 .08 

.025 .04 .05 .05 .05 .05 .05 .05 .05 .05 .07 .09 

.050 .06 .06 506 .06 .06 .06 .06 .06 .07 .09 .ll 

.075 .07 .07 .06 .07 .08 .07 .08 .09 .09 .ll .12 

-100 .08 .09 .09 .09 .09 .09 .lO .lO .13 .14 .15 

.125 .09 .lO .lO .lO -11 .lO .ll .12 .14 .14 .15 

.150 .ll .12 .12 .12 .13 .13 .14 .16 .16 .19 .22 

.175 .13 .14 .15 .14 .15 .16 .16 .16 .20 .20 .24 

.200 .14 .14 .17 .17 .17 .18 .17 .20 -21 .28 .27 

.250 .18 .18 .23 .23 .25 .26 .26 .26 .27 .33 .35 

.300 .24 .25 .25 .26 .25 .28 .29 .30 .31 .36 .43 

.400 .32 .33 .32 .36 .35 .40 .43 .44 .48 .53 .59 

.500 .49 .49 -48 .50 .50 -51 .54 .60 .61 .64 -65 
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Table Na 

standard deviation of fit to data 

exponential model with select deletions 

proportion of data missing 
.oo .05 .lO .15 .20 .25 .30 .40 .50 .60 .70 

.ooo .Ol .02 .02 .02 .02 .02 .02 .03 .03 .04 .04 

.025 .03 .03 .03 -03 .03 .03 .03 .04 .04 .04 .05 

.050 .05 .05 .05 .05 .05 .05 .05 .05 .06 .06 .06 

,075 .07 .07 .07 .08 .08 

.lOO .lO .lO .lO .lO .lO 

.125 .12 .12 .12 .12 .12 

.150 .15 .15 .15 .15 .15 

.175 .17 .17 .17 .17 .17 

.200 .20 .20 .19 .19 .19 

.250 .24 .24 .24 .24 .24 

.300 

.400 

.29 .29 .29 .29 .29 

.39 .39 .39 .39 .39 

.500 ( .48 .48 .48 .48 .48 

.08 .08 .08 .08 .08 .08 

.lO .lO .lO .lO .lO .lO 

.12 .12 .12 .12 .12 .12 

.15 -15 .14 .14 .15 .14 

.17 .17 .17 .17 .17 .16 

-19 .19 .19 .19 .19 -19 

.24 .24 .24 .24 .24 .23 

.29 .29 .29 .28 .28 .27 

.38 .38 .38 .37 .37 .36 

.48 .48 .47 .47 .46 .45 
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!hable lVb 

at andard deviation of fit to model 

exponential model with select deletions 

proportion of data missing 
I -00 .05 .lO .15 .20 .25 .30 .40 .50 .60 .70 

.025 .04 .04 .04 

.050 .05 .05 x)5 

,075 .05 .06 .07 

.lOO .07 .07 .08 

.125 .08 .08 .08 

.150 .09 .09 .lO 

,175 .12 .12 .13 

.200 .12 .12 .14 

.250 .17 .18 .19 

.300 .22 .23 -23 

.400 .26 .29 .32 

.500 .43 .45 .47 .48 .48 .47 .48 .49 .49 

.04 .04 .04 .04 .04 .05 

.04 .04 .04 .05 .05 .06 

.05 .05 .05 .06 .06 .07 .08 .ll 

.07 .07 .07 .06 .07 .08 .09 .15 

.08 .07 .07 .08 .09 .l 1 .ll .13 

.08 .09 .09 .ll .lO -11 .12 

.ll .12 .12 .12 .13 .14 .15 

.14 .14 .14 .15 .16 .15 l 18 

.15 .16 .16 .17 .17 .18 .21 .22 

.19 .20 .20 .19 .22 .26 .26 .32 

.24 .25 .26 .25 .29 .30 .33 .39 

.35 .37 .39 .39 .40 .41 

.07 

.07 

.54 

.53 

.ll 

.12 

.15 

.22 

.24 

.57 

.59 
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I .  

d’ 

Table Va 

standard deviation of fit to data 

logistic model with random deletions 

proportion of data missing 
I .oo .05 .lO .15 .20 .25 .30 .40 .50 .60 .70 

.ooo .04 .04 .04 .05 .05 .06 .06 .07 

.025 .05 .05 .05 .05 .06 .06 .07 .08 

.050 .06 .06 .07 .07 .07 .07 .08 .09 

,075 .08 .08 .09 .09 .09 .09 .lO .ll 

.lOO .ll .I1 .I1 .ll .ll .ll .I2 .12 

.125 .13 .13 .13 .13 .13 .14 .14 .14 

.150 .15 .15 .15 .I5 .16 .I6 .16 .16 

.175 .I8 .18 .18 .18 .18 .18 .18 .18 

.200 .20 -20 .20 .20 .20 .20 .20 .21 

,250 .25 .25 .25 .25 .25 .25 .25 .25 

,300 .29 .30 .30 .30 .30 .30 .30 .30 

.400 .39 .39 .39 .39 .39 .39 .39 .39 

.500 .49 .49 .49 .49 .48 .48 .49 .48 

.09 .I0 .12 

.09 .lO .12 

.09 .I1 .I2 

.ll .12 .13 

.13 .14 .14 

.15 .15 .16 

.I7 .17 .17 

.19 .19 .19 

.21 .21 .21 

.25 .25 .25 

.30 .30 .29 

.40 .39 .38 

.48 .48 .47 
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Table Vb 

at andard deviation of fit to model 

logistic model with random deletions 

proportion of data missing 
I -00 .05 .lO .15 .20 .25 .30 .4n .Fin .c;n .7n .-- --- --- -.- 

.ooo .oo .oo .oo .Ol .Ol .02 .02 .03 .05 .lO .15 

.025 
I 

.Ol .Ol .Ol .02 .02 .02 .03 .05 .07 .lO .18 

.050 .02 .02 .03 .03 .04 -03 .04 .05 .ll .09 .17 

.075 .03 .03 .04 .04 .04 .04 .06 .06 .07 .ll .14 

,100 .04 .04 .05 .05 .05 .06 .05 .06 .09 .13 .15 

.125 .05 .05 .06 .06 .06 .06 a09 .09 .09 .13 .20 

.150 .07 -06 .07 .08 .08 .09 .09 .ll .ll .16 -19 

.175 .07 .09 .09 .lO .lO .08 .I0 .I0 -12 .15 .23 

.200 .08 .lO .ll .lO .ll .ll .ll .12 .16 .17 .23 

.250 .ll .ll .14 .12 .13 .I3 .13 .16 .18 .19 .30 

,300 .12 .15 .14 .16 .16 .17 .16 .19 .22 .20 .39 

.400 .21 .22 .20 .20 .23 .23 .21 .27 .31 -38 .46 

.500 1 25 .26 .27 .30 .30 .33 .36 .35 .44 .52 .60 
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0 
n 

L 

Table Via 

standard deviation of fit to data 

logistic model with select deletions 

proportion of data missing 
I .oo .05 .lO .15 .20 .25 .30 .40 .50 .60 .‘70 

.ooo .04 .04 .04 .05 .05 .06 .06 .07 .09 .lO 

,025 .05 .05 .OO .05 .06 .06 .07 .08 .09 .lO 

.050 .06 .06 .07 -_ .07 .07 .08 .08 .09 .lO .ll 

.075 .08 .08 .09 .09 .09 .09 .lO .lO .ll .12 

.lOO .ll .ll .ll .ll .ll .ll .12 .12 .13 .14 

.125 .13 .13 .13 .13 .13 .I4 .14 .14 .15 .15 

.150 .15 .15 .15 .16 .16 .16 .16 .16 .17 .17 

,175 .18 .18 .18 .18 .18 .18 .18 .18 .19 .19 

.200 .20 -20 .20 .20 .20 .20 .20 .21 .21 .21 

.250 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 

,300 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30 

.400 .39 .39 .39 .39 .39 .39 .39 .39 .39 .39 

.500 .49 .49 .49 .49 .49 .49 .49 .48 .48 .47 

.12 

.ll 

.13 

.13 

.15 

.16 

.18 

.20 

.21 

.25 

.29 

.38 

.46 
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Table VIb 

standard deviation of fit to model 

logistic model with select deletions 

proportion of data missing 
.oo .05 .lO .15 -20 .25 .30 .40 .50 .60 .70 

.ooo .oo .oo .oo .Ol .Ol .02 .02 -03 .05 .lO .15 

,025 .Ol .Ol 1.00 .Ol .02 .03 .03 .05 .05 .07 .16 

.050 .02 .02 .02 .03 .03 .04 .04 .05 .07 .09 .20 

.075 .03 .03 .03 .03 .05 .04 .05 .06 .08 .12 .20 

.lOO .04 .04 .05 .04 .05 .OS .07 .07 .lO .16 .19 

.125 .05 .05 .06 -06 .07 .08 .07 .09 .12 .13 .23 

.150 .07 .06 .07 .08 .08 .08 .09 .ll .12 .15 .23 

,175 .07 .08 .08 .lO .lO .09 .09 .13 .14 .15 .26 

.200 .08 .09 .09 .lO .lO .ll .ll .14 .I6 .18 .26 

.250 .ll .12 .12 .13 .14 .15 .14 .15 .19 .19 .28 

.300 .13 .13 .13 .16 .17 .18 .18 .19 .21 .28 .33 

.400 .17 .20 .21 .20 .23 .24 .26 .26 .35 -37 .46 

.500 .28 .30 .29 .30 .35 .37 .38 .41 .41 .45 .55 
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Scores found for Logistic Model 
select deletions 

30% observations missing 
Standard Deviation = 0.25 

Predictor True 
Scores* 

1) 0.100 0.104 3.71 

- 0.033 - 0.048 3.94 

- 0.100 - 0.100 3.52 

0.035 0.044 4.05 

2) 

3) 

4) 

5) 

- 0.220 - 0.206 3.55 

- 0.140 - 0.141 3.35 

0.020 0.014 4.32 

0.340 0.332 4.32 

0.200 
0.200 

- 0.400 

- 0.160 - 0.154 2.51 

0.160 0.154 2.51 

-0.120 
- 0.080 

0.200 

Estimated standard 
Scores deviation” 

0.188 3.00 
0.186 3.49 

- 0.373 4.56 

- 0.113 3.05 

- 0.077 3.38 
0.191 3.01 

* Three significant digits given only 
* Standard deviations expressed in terms of lo-*. 
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Appendix 

Smoothing Algorithms 

There is much literature on smoothing and the reader unfamiliar with these techniques 

is referred to Ill], 1181, (201. What follows is an abbreviated discwsion, concentrating 

primarily on the method employed in the P.ACE procedure demonstrated in this work. 

Given a set of observations {(z;, ~;)}~=r, 8 possible summary of the data is 

Vi= f(zi) + ri (A4 

where f(-), called the smooth, satisfies some smoothness constraint and is chosen to mini- 

mize 

krf = e(vi - ,f(zi))"- (A-2) 
i=l i=l 

The model (A.l) is appropriate, in particular, if it is assumed that the underlying random 

variables which generated the observations satisfy 

E(Y 1 X = z) = g(z) (A-3) 

in which case the smooth f(o) of (A.l) can be viewed as an estimate of the conditional 

expectation g(z) in (A.3). A smoother is a procedure which has as input a set of bivariate 

observations and returns the smooth function satisfying the decomposition (A.l). 

One method of estimating the smooth is by use of local linear least squares fits. Let 

{(Xi, Yi)}y=r be 8 fixed set of n bivariate observations, assuming Xi < X, if i < m. At 
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each observation point Xi let J&(X,) be the set of observations {(Xl, Y,)}~~~zI;‘-l,t). 

Fix k. The local linear smoothing procedure defines the smooth at Xi to be the vaIue of 

the least squares straight line of the points in Jk(Xj) eraluated at the point Xi. Linear 

interpolation is used to extend the definition of the smooth to abscissa values other than 

those included in the observations. 

The number 2 k + 1 is known 8s the span and controls the variability of the output of 

the smoother. As the span increases the curvature 8s well as the variance of the estimated 

curve decreases while the bias increases. Thus when smoothing a scatterplot it is desirable 

to decrease the span in those regions in which the underlying curve has high curvature and 

the observations have small variance. Likewise, in those regions in which the underlying 

curve has small curvature and the observations have high variance 8 large span is desired. 

One possible approach to a such 8 variable span smoother is to use a point-wise convex 

combination of different fixed span smoothers with weights depending on some goodness- 

of-fit measure, More precisely, let Cl,. . . , C, be the smooth curves obtained by using p 

different spans of a local linear smoother. The smooth curve CJ generated by such a 

variable span smoothing procedure can be written as 

cj(xj) = ewkfxj) Ck(Xj) 
k=l 

bw 

where the weights {wk(xj)}k are, for each Xi, a partition of unity. 

One simple method of defining these weights would be to let Wk(Xj) be proportional 

to (5 - ck(xj)) -2. The difiiculty with this approach is that wk(xj) need not be close 

to wk(xj+l)n This results m 8 curve Cl(*) w ‘c may have high frequency components. hl h 

Consequently, some alternate definition is necessary which will insure that the weights vary 

“smoothly”. One approach is to consider the cross-validated squared errorAifference in 

some neighborhood of the point Xi. Fixing 8 number I, using this approach the weights 

can be expressed as 
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I 

-2 

(Ym- q(xm)) (A-5) 

where C;(Xm) is the value at the point Xm of the least squares line fit to the points 

Jk(xm) - (Xm}* Th e smallest span has on average the smallest difference between the 

corresponding curve and the observations. This is due to the fact that the observation is 

used to form its own prediction, and its relative influence increases as the span decreases. 

Thus there is a bias towards smaller spans due to overWing. Since the observations contain 

noise, a small difference between the smooth and the observations does not imply a small 

difference between the smooth and the underlying curve f(e) in (A.l). Consequently a bias 

towards small spans doers not guarantee a good overall fit. Cross-validation is a method of 

getting rid of the bias. 

Such a smoothing technique was employed in the P.ACE procedure demonstrated in 

this work. A set of three fixed span local linear smoothers were implemented with spans 

10% , 20% and 50% of the number of observations and the number I used to determine the 

neighborhood size of (A.5) was set to 10% of the number of observations. 

There exist simple updating formulas for the local linear smoothers which allow an 

order n algorithm for the computation of the fixed span smoother. The calculations of the 

weights of (A.5) can be incorporated as part of the local linear smoother. 

The P.ACE algorithm as implemented requires in addition to the smooth function 

some estimate of its derivative. The local linear smoother uses least square lines to define 

the smooth at a point Xi. Associated with the line is a slope mj which can be used as an 

estimate of the slope of the curve at Xi. For each span at each observation Xi the slope 

of the least squares lime is stored. A convex combination of the slopes at ear& observation 

point using the weights defined by (A.5) is then formed. Although this would seem to yield 

a reasonable estimate of the derivative practice has shown that the resulting- curve tends 

to contain high frequency components. Consequently, to dampen these components a local 

linear smoother with span 40% of the observations is applied to the convex combination 

and the resulting curve is taken as the estixmte of the derivative. 
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