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ABSTRACT

The SLAC Electron Trajectory Program is described and instructions
and examples for users are given. The program is specifically written
to compute trajectories of charged particles in electrostatic and mag-
netostatic focusing systems including the effects of space charge and
self-magnetic fields. Starting options include Child's Law conditions
on cathodes of various shapes. Either rectangular or cylindrically sym-
metric geometry may be used. Magnetic fields may be specified using
arbitrary configurations of coils, or the output of a magnet program
such as Poisson or by an externally calculated array of the axial
fields.

The program is available in IBM FORTRAN but can be easily converted
for use on other brands of hardware. The program is intended to be used

with a plotter whose interface the user must provide.
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I. INTRODUCTION

This report is intended as a user's reference manual for the SLAC
Electron Trajectory Program. It contains all the currently relevant
material from the earlier publications about this program which were
SLAC-51 and SLAC-166. In addition, I have included specific instruc-
tions for using a number of the special features which have been added
to the program. These features have usually been incorporated as a direct
result of the needs of some particular user and I wish to take this oppor-
tunity to express thanks to everyone who has at some time or other sug-
gested improvements to the program. I think we have all benefited by this
open process and it is for the purpose of making all these features bet-
ter available that this report is being prepared. The most recent version
of the program has benefited greatly from some careful program house
cleaning, including a complete revision of the plotting sections, making
the problem of interfacing with other plotter systems much easier. It
is a pleasure to acknowledge the contributions of Glen Herrmannsfeldt in

making these improvements.



IT. APPLICATION

The SLAC Electron Optics Program is specifically written to calcu-
late electron trajectories in electrostatic and magnetostatic fields.
Poisson's equation is solved by finite difference equations using bound-
ary conditions defined by specifying the type and position of the bound-
ary. Electric fields are determined by differentiating the potential
distribution. The electron trajectory equations are fully relativistic
and account for all possible electric and magnetic field components.
Space charge forces are realized through appropriate deposition of
charge on one cycle followed by another solution of Poisson's equation
which is in turn followed by another cycle of trajectory calculations.

The program may be used in either rectangular or cylindrical coor-
dinates. A special option allows space charge forces in a cylindrical
beam to be calculated in a rectangularly symmetric array of electric and
magnetic fields. Magnetic fields are read in either as axial strengths
or as arrays of coils with specified coordinates and currents. The pre-
ferred technique of defining the magnetic field is to calculate the
axial field from an arbitrary configuration of solenoids. Alternatively,
the program accepts the output data from a magnet design program, which
can include the effects of saturable iron. In cylindrical coordinates,
the magnetic fields are axially symmetric. Off-axis field components
are calculated by a sixth-order expansion of the radial coordinate. In
rectangular coordinates the external field is assumed to be normal to

the plane of the problem, which is assumed to be the median plane. Off-



median plane components are calculated by expansion of the perpendicular
coordinate.
Electron trajectories may be started by three methods:
1. Child's law for spherical geometry based on Pierce geometry.
2. Child's law for generalized cathodes including effects of
holes, shadow grids and other irregularities.
3. Direct dinput of the starting conditions, including the output
from previously run problems.
The program is designed to yield a combination of printed and plotted
output. Printed output includes all input data, maps of the potential
fields, starting conditions for each cycle, and final conditions for
each cycle. Plotted output is made for the trajectory calculations and
for equipotential lines. Plotted output may be obtained for selected

cycles always including the last cycle.

IIT. IMPLEMENTATION

The program is written in IBM-style FORTRAN IV. Reasonable appli-
cation requires about 400 K bytes of total storage. Running times vary
greatly with the problem and the computer. However a "typical" problem
run on an IBM 370-168 takes about 2 minutes.

The program is designed for use with a computer controlled plotter.
Data needed for plotting are placed on an external storage device (disk)
from which they are called by a plotter interface program. Such a pro-
gram calling standard CALCOMP routines is available and can be used as a

model for users with other plotter systems.



IV. GENERAL DESCRIPTION

Starting with the input boundary description, the program first
solves Laplace's equation (i.e., Poisson's equation without space charge).
The result of this calculation, together with all the boundary informa-
tion is then printed.

Next, the first iteration of electron trajectories is started.
These are initiated by one of four schemes: (1) "GENERAL'" cathode in
which electrons are started assuming Child's law holds near a surface
designated as the cathode; (2) "SPHERE" for a spherical cathode (cylin-
drical in rectangular coordinates) in which the electrons are assumed to
be emitted at right angles to the surface defined by a radius of curva-
ture and a radial limit. Child's law for space charge limited current
is again used. (3) "CARDS" in which the specific starting conditions
for each ray are specified. (4) "GENCARD" which combines the versatil-
ity of "CARDS" with the assumptions of Child's law from "GENERAL."

On the first iteration cycle, space charge forces are calculated
from the assumption of paraxial flow. As the rays are traced through
the program, space charge is computed and stored in a separate array.
After all the electron trajectories have been calculated, the program
begins the second cycle by solving Poisson's equation with the space
charge from the first iteration. For problems meeting the paraxial
assumptions, especially if relativistic electron beams are involved,

this one cycle may be sufficient to solve the entire prohlem.
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Subsequent iteration cycles (as many as are requested) follow the
above pattern. The Child's law calculations for the starting conditions
are remade for every cycle. Perveance converges through the iterative
process by averaging the perveance used for the previous cycle with the
perveance calculated directly from the solution of Poisson's equation.

An additional starting option is "LAPLACE" intended for any appli-
cation of Laplace's equation not involving electron ray tracing. 1In
this case the number of cycles is used simply to improve the accuracy of
the solution to Laplace's equation. The "LAPLACE" option includes a
provision for inputting arbitrary data in the "space charge" array.

The program always operates in two dimensions; either R and Z in
cylindrical coordinates or Y and X in rectangular coordinates. The rec-
tangular coordinate output retains the R and Z labels however. Electron
orbits are calculated through azimuthal changes (labeled "PHI") refer-
enced to the Z axis. In rectangular coordinates, PHI is actually the
third Cartesian coordinate.

Magnetic fields, except for the self-magnetic field of a beam, are
input directly in one of three ways: (1) by specifying the field along
the Z-axis, (2) by specifying a set of coils (giving position, radius
and current), or (3) by using the vector potential output from a magnet
program. In cylindrical coordinates, the field is interpreted as an
axial magnetic field with radial terms as required by Maxwell's equations.
In rectangular coordinates the field is interpreted as going in the PHI
direction, i.e., at right angles to the plane of the problem. The rec-

tangular coordinate field is assumed to extend to infinity in ¥ (R) and
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the PHI = O plane (the plane of the problem) is assumed to be the median
plane. The BX(BZ) terms are calculated for PHI # 0 from Maxwell's
equations.

Self-magnetic fields are calculated for both coordinate systems

fraom +
4 LU o

assumed that the rays are sequentially numbered from the axis outwards.
The self-magnetic field calculation assumes all the current from the
previous rays lies on the axis in an infinitely long conductor. If the
ray being calculated crosses the last preceding ray, then the current
from that ray is dropped. However, if the ray continues to cross other
rays, then the current from those rays is only dropped if the ray goes
below the minimum radius of a previous ray. If several rays cross the
axis, the results are apt to be somewhat incorrect, depending of course,
on how significant the self-magnetic field is. Note that if the self-
magnetic field is very significant, then almost by definition, one is
dealing with a very intense relativistic beam. This problem is generally
better suited to the paraxial ray approach, as solved in the first
cycle, or to a program such as EBQ (by Art Paul of LBL) which handles
the cancellation of space charge by self-magnetic field directly, rather
than by the off-setting effects of two large terms.

In rectangular coordinates, the self-magnetic field assumes symme-
try about the y = 0 (R = 0) plane. If this is not correct, or if for
other reasons it is desired to turn off the self-magnetic field, then an
external field of strength zero can be specified. In any case, in rec-
tangular coordinates, the self—magnetic field functions only if there is

no external field.
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A single variable controls plotting. If this variable, MI, is set
to zero to reject all plotting, then on the first and last cycles every
tenth point that would have been plotted is printed so that it may be
hand plotted. Normally at least the last cycle is plotted. The first
cycle may also be plotted or one may even plot every cycle. All plots
may include equipotential plots, either separate or overlaid with the
trajectory plots. If there is an external magnetic field, then this
field is also plotted, overlaid on the trajectory plots. Finélly, there
are a pair of simple plots; current density vs. radius and alpha vs.

-1
radius. (Alpha = tan ~ dR/dZ).

V. DPOISSON EQUATION SOLVER

A. General Description

The program contains a subroutine which reads in data cards
describing the boundary conditions and calculates the coefficients of
the finite difference equations for each mesh point within the problem.
Other subroutines are made to proceed to generate the solution to
Poisson's equation which match those boundary conditions. The solution
is found in terms of a set of points which form a mesh of identical
squares. It is recognized that a provision for a rectangular mesh
(i.e., different horizontal and vertical spacing) would improve the
utility of the program and it is planned to incorporate this feature as
soon as possible. The potential is calculated for each intersection of

the mesh. Figure 1 shows a small section of the mesh.
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Fig. 1. Section of mesh for solution of Poisson's equation.

In rectangular coordinates, the finite difference form of Poisson's

equation is

V1 + V2 + V3+ V5 - 4V4 = (R.H.) 1)

where the V's refer to the numbered points in Fig. 1 and R.H. is the
value of the right-hand side of Poisson's equation at point 4 when writ-

ten in the form

v2v = (R.H.) (2)

All equations use the mesh space, h, as the basic unit, so h does not
appear explicitly.
For problems with cylindrical symmetry, the finite difference equa-

tion becomes

RV1 + RV2+ (R + l/2)V3 + (R - 1/2)V5 - 4RV4 = R x (R.H.) (3

where R is the distance in mesh units from the axis of symmetry to the

point at 4.



-9-

A number of referencesl_6 give the derivation of these equations
and the special equations at boundaries. Three types of boundaries are
of interest. A Dirichlet boundary is that boundary on which the poten—
tial is known. In an electrostatic problem, this would be an electrode
fixed at a given potential. An ordinary Neumann boundary is one which
lies coincident with the mesh and on which the normal derivative of the
potential is known. 1In practice, the only value of the normal derivative
that is ever known is zero. Thus, for example, the axis of symmetry of
a cylindrically symmetric device has the normal derivative equal to zero
and is a Neumann boundary.

However, the axis of a cylindrical symmetry problem is a special

case for which the difference equation is

vy, o+ 4V3 - 6V4 = (R.H.) (4)

The difference equation for ordinary Neumann boundaries parallel to
either axis can be derived from Eqs. (1), (3) or (4) by setting the poten-
tials which straddle the boundary equal to each other. Thus a vertical

Neumann boundary in cylindrical coordinates has the form

2 + (R + l/2)V3 + (R - 1/2)V5 - 4RV, = R x (R.H.) (off-axis)

RV1,2) 4
(5)
where the subscript 1 or 2 applies to the point inside the problem.
The third type of boundary is the general Neumann boundary, i.e.,
one which does not lie along a mesh line. It is always assumed that the

normal derivative is zero. The program has a provision for overriding

the internally computed difference coefficientsand it is feasible to
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hand calculate difference coefficients for a general Neumann boundary.
However, in practical applications to electron optics problems, it is
almost never necessary to go to such exitremes.

A special case of general Neumann boundary which can be handled

easily is the 45° Neumann boundary. All that is required is to specify

1 1 N Assmasem  Amaa AL 2 A Frr A+l
each successive point using the ordinary Neumann condition for both

coordinates; i.e., both DELTAR and DELTAZ = 0. A tilted boundary that
is sufficiently far from the area of most interest can frequently be
adequately approximated by a combination of normal and 45° Neumann

boundaries.

B. Problem Input

In this section the rules for problem input will be described using
an actual example and following through the process card by card. The
new user is urged to read this section carefully while the old user or
reader trying to gain an overall familiarity with the program may well
skip this section. In this section especially, no attempt will be made
to be concise.

Condensed instructions for problem input are printed at the head of
the source listing and are intended to be up-to-date. A copy of the cur-
rent version of these instructions in printed in Appendix II. The
reader should follow the instructions which are relevant to this discus-
sion while studying the example.

Except for the TITLE, boundary input, and ray starting cards, all
input to the program is by means of the NAMELIST option by which certain

variables are defined at the place in which the program expects them.
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The definitions are by means of short defining statements, e.g.,
RLIM = 50. A given set of these statements may be placed on one card,
but the number of data cards used is unimportant. Each set of inputs is
preceded by a designator, e.g., &INPUT1, which must begin in column 2.
Never use column 1 of any NAMELIST card. The NAMELIST block is closed
by an &END entry.

Preparation for running a problem consists of making a suitable
scale drawing on graph paper. Figure 2 shows the region between cathode
and grid for the SLAC injection gun. Figure 3 is the line-by-~line list-

ing of the input data.

1. Title and Potential Cards

(Title) The first card of the data set is the title card. The
contents of this card will appear at various points in the printed out-
put and as the title for the plots.

The second card is &INPUT1, starting in column 2.

The following remarks about array limits apply specifically to the
current version of the program. It is suggested that most problems
should use about 5000 mesh points although there are occasions when much
smaller, or somewhat larger, numbers of mesh points are useful.

The third card is the potential card. It contains the basic infor-
mation for setting up the program.

(RLIM) RLIM is the maximum size of the problem area in the radial
direction. RLIM can be made larger than necessary if it is desired to
affect the way plots are scaled.

RLIM is a positive integer; the present limit is 100.
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Fig. 2. Example of preparation for a problem.
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INJECTION GUN MODEl 4-1A GRIN-CATHCDF RFGICMN (WBH) MCC. 11-20-67 MI1=0,SPC=0

& INPUT1
RL IM=72,ZLIM=4C,POTN=44POT=2Ce C9y5CCC.C4Ca04Ca O y¥I=04VMAGSEG=1,
& ENC
& INPUT 2
211=220022=4Cy23=2CyPL=CeCy25.CyCeC4Ce(40.C10.C40.0,
EENC
1 0 1 C.C -C.CC
1 l¢ 1 2.C -C.4
1 37 2 (.C¢S -C.l
4 38 4 2.C -1.C
4 48 10 2.C -C.°?
4 5¢ 14 (.c6 ~C.€
4 S€ 15 2.C -1.C
4 57 15 2.C ~-Ce4
4 58 15 2.C -C.3
4 59 15 2.C -Cu%
4 60 15 Z-C —l.C
4 61 14 -C.€S 2.C
4 61 13 -C.? -C.8
4 62 12 -C.7 2.¢ .
4 62 € -C.7 2.C
4 62 0 -Ca7? c.C
0 6¢ 0 2.C c.C .
2 71 0 (.<6 C.C
2 71 10 C.<S 2.C
2 71 2¢ C.CS 2.C
2 71 27 (. 6S Ce GG
2 70 27 =C.2 C.c¢<
2 65 26 2.C C.?
2 45 17 -C.2 C.?2
2 41 13 2.C C.nP
2 40 13 2.C Cet
2 36 13 2.C C.2
2 22 11 2.C C.2
2 0 10 (.C Ce2
0 C f (.C 2.C
0 C 2 C.C 2.C
888
& INPUTS

121=1, 12S=2, 12S=1Cy FADP=257, RMAX=27,5, LPITIN=0.01y SPC=0.0,
GEENE
/*
’/

Fig. 3. FORTRAN data prepared for the problem shown in Fig. 2.
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(ZLIM) ZLIM is the maximum size of the problem in the axial direc-
tion. A larger than necessary value of ZLIM may also affect the way the
plots are scaled. If an attempt is made to create a boundary which
exceeds the limits RLIM by ZLIM, or goes negative, error messages are
printed and the program will not attempt the solution of Poisson's
equation.

ZLIM is a positive integer; the present limit is 300.

Note that although the problem area is (RLIM + 1) x (ZLIM + 1) mesh
points the actual requirement is for (RLIM + 1) x (ZLIM + 2). (An extra
column is required as a buffer.) The present limit for the total area
is 9001 mesh points.

(POTN) POTN is the number of potentials which are to be read in.
There may be reasons to assign different numbers to parts of surfaces
which are at the same potential. Normally the cathode will be potential
number 1 and the anode will be number 2. Usually the grid, if any, will
be number 3. A focus electrode, even if at cathode potential, should be
assigned a different number to enable the general cathode starting
method to be applied. The present limit for POTN is 101.

POTN is a positive integer for cylindrical symmetry.

POTN is a negative integer for rectangular symmetry.

RECTANGULAR COORDINATES. The code to the program to switch to
rectangular coordinates is the sign of POTIN. If POTN is negative, the
program assumes rectangular symmetry and a message: ***RECTANGULAR
COORDINATES, PHI IS TRANSVERSE appears immediately after the list of

potentials.
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POT(I) The next numbers are the elements of the array of poten-
tials. They are read in in order from 1 to POTIN. Potentials are car-
ried in double precision which means that up to 15 significant decimal
figures can be used. Examples of valid ways of punching 250 volts are
as follows: 250., 250, 2.5E2, 2500E-1, 250.000. For NAMELIST, the list
need consist only of POT = (string of potentials separated by commas).

POT(I) is an element of an array of floating point numbers.

Negative potentials are indicated by a minum sign, e.g., —-250.
Negative potentials are permitted but it is preferable to avoid using
them. Since a constant can always be added to all potentials, it is
possible to make the most negative potential zero. The reason for
avoiding negative numbers is that space charge is negative and some
diagnostics of the output are simplified if there are no negative poten-
tials. On the other hand, certain problems have a symmetry that can be
quickly examined if a symmetry plane or surface is made to be zero by
having equal + and - potentials. Then negative potentials are certainly
desirable.

Note that it is acceptable to include potentials corresponding to
potential numbers which are not used by the problem. One reason for
doing this is to get a desired set of equipotential lines on the plotter
output.

The program is intended to be run using engineering units. Thus
potentials are in volts and magnetic fields are in gauss. If a problem
does not use magnetic fields or relativistic energies, there is no rea-

son not to scale the potentials. The perveance and running time will
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not be affected. However, there is also nothing gained by scaling. Of
course, when a problem has been run at one set of potentials, all the
scaling rules of electron optics may be applied to avoid the cost of
running the problem again.

(MI) MI is a code number which determines the selection of plots.

If MI = 0 there are no plots generated. However, every tenth point
of the trajectories is printed for the first and last cycles.

The following table, reprinted from the condensed instructions,
shows the available options for MI

Cycle for which electron

trajectories are plotted: Initial & Final All Final

Plots with equipotential lines 1 2 3
superimposed on trajectories:

Separate plots of equipotential 4 5 6
lines:
No equipotential lines: 7 8 9

MI is a positive integer or zero. If MI is negative it is inter-
preted as a deliberate boundary error for help in debugging boundaries.

TYME = X TYME = 5 MAX. PROBLEM RUN TIME (MIN.)

TYME is used to make an internal check of how much time is being
used to guard against running out of computer time, as specified on a JOB
card, just before printing and plotting the results. TYME uses special
machine language subroutines to measure actual use of CPU time which is
the parameter used to determine JOB time and charges in a multitask

. environment. This avoids gross variations in time due to the presence

of other jobs on the system. The subroutine must be supplied by non-
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Stanford users to suit their hardware or, alternatively, dummy subrou-
tines may be used to defeat this feature. The program only tests for
TYME once each cycle and determines that there is adequate time left to
do the extra plotting, etc., that is involved in the last cycle, based
on the previous cycle time. When time appears limited, the program cuts
out intermediate cycles, with a note that:

THERE IS NOT ENOUGH TIME TO DO THE SPECIFIED NUMBER OF CYCLES

TYME does not need to correspond exactly to the job card. The user may
wish to modify the value according to his experience,; or disable TYME
entirely by setting it much larger than his JOB card time.

LSTPOT = 1, 2 or 3 causes the program to print a table of the poten-
tials of all the mesh points. This is the most useful diagnostic avail-~-
able for the Poisson solution and, when studied together with the equi-
potential plot, can show quite subtle erxrrors. The default value;

LSTPOT = O, suppresses this output and thus saves quite a lot of printing
if the same or a very similar boundary is run many times. The choices

for LSTPOT cause the printing of the first (LAPLACE) solution (LSTPOT = 1),
or the last solution (LSTPOT = 2), or the solutions from both the first
and last cycles (LSTPOT = 3).

The parameter MAGSEG controls two of the four possible ways of
reading in magnetic fields. The example case will be explained in the

next paragraph.

2. Magnetic Field Data
Electron optics calculations include the effects of any external
magnetic fields that may be present. The input methods for magnetic

fields have been greatly revised and will be treated later in a special
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section. If there are external magnetic fields then the input could
occur at this point. The parameter MAGSEG signals that segments of mag-
netic field data will follow; one segment for MAGSEG = 1, etc. The
namelist &INPUT2 is called MAGSEG times to read in segments, which may
be anything from constants to sixth order polynomial functions of Z.

Please note that this discussion is only included here to explain the
&INPUT2 namelist data card in Fig. 3. It is grossly incomplete as an
explanation of the magnetic field situation which will be found in an
expanded form in Section VI-D.

The example problem contains a meaningless magnetic field inserted
only as an example. The magnetic field plotted on the right-hand side
of Fig. 2 shows an axial field starting at Z = 20 going from 0 to 500
gauss in 20 mesh units. A sixth order expression is used by the program
to fit the fields on any segment of the axis. The data on the card are
Z1 and Z2, the limits of the range of the segment being described; Z3,
the origin for the segment being described, and seven coefficients for

the equation:

BZA(Z) £BC(n) (Z - z3)™7t

1 to 7 (6)

=}
It

Zl, Z2 and Z3 are integers.

BC(n) is an element of a seven member real array.

The parameters Z1, Z2 andZ3 are read in by simple statements
(z2 = 100, etc.) and are defaulted to 0, ZLIM and 0, respectively. The
coefficients, BC, are read in as an array by BC = (string of coefficients

separated by commas).
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A second option (MAGSET = -1) allows the axial array to be read in

directly. See Section VI-D for a description of this feature.

3. Boundary Input

The main thing for a user of the program to learn is the technique
and conventions used to input boundary data. Since the primary applica-
tion for the program is for electrostatic optics, the terminology used
will be appropriate to that class of problem. Each line on the table in
Fig. 3 represents one data card for the problem in Fig. 2. The input
uses FORTRAN fixed field input; three integers followed by two floating
point numbers. The fixed field format requires one card for each point.

The chief feature of the input routines is the ability to fill in
for segments of the problem that the programmer skips. This saves a
great deal of labor since a typical problem which uses perhaps 300 bound-
ary points may be specified with about 50 cards. This technique will be
called "fitting" in the description for the ability of the program to fit
a curve to three specified data points.

Two types of boundaries are used: Dirichlet boundaries are those
on which the potential is known. Neumann boundaries are those on which
the normal derivative of the potential is known.

Dirichlet boundaries are used to represent metal surfaces. Neumann
boundaries represent gaps between surfaces and must be chosen so that
the normal component of the field is zero since that is the only value
that is ever knmown in practice. Thus the cathode is a Dirichlet boundary
and the axis is a Neumann boundary in a typical example. Neumann bound-

aries can meet at a corner.
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For electrostatic problems it has been found satisfactory to
restrict Neumann boundaries to lie along mesh lines. Dirichlet bounda-
ries may have any shape desired although the mesh spacing limits the
resolution of the smallest details which can be effectively used.
Slanted Neumann boundaries are possible however, and the input technique
will be described later in this section.

A boundary point is defined as any mesh point less than one mesh
unit from the boundary of the problem, but always within the boundary.
The points on a Neumann boundary are always boundary points. The points
on a Dirichlet boundary are never boundary points. This difference,
which is inherent in the formulation and not just a program convention,

- gives rise to a code to determine which type boundary is being specified.

Thus, if the distance from a point to a boundary in either the R or Z

direction is zero, then that boundary is defined as a Neumann boundary.

1. Potential number, integer, corresponds to the surface numbers
denoting elements of the array POT (n) described earlier.

2. R, integer, the value of the radial coordinate of the mesh at
the boundary point.

3. Z, integer, the value of the axial coordinate of the mesh at
the boundary point.

4. DELTAR, floating point, the distance from the mesh point to
the boundary in the radial direction. DELTAR is negative if
the boundary intersects the radial line at a point in the minus
direction from the mesh point. If the intersection is greater
than one mesh unit from the boundary point then the intersec-

tion is not significant. Any number greater than 1.0 could be
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used but typically the distance is specified as 2.0 if it is
greater than 1.0.

5. DELTAZ, floating point, the distance from the mesh point to
the boundary in the Z or axial direction. The same rules as
for DELTAR, above, apply.

In the case of a point on a Neumann boundary, the potential number
is not significant. If the point is simultaneously within one mesh unit
of a Dirichlet boundary, then the potential number is the number for
that surface. Otherwise it is customary to punch a zero for the poten-
tial number. It is important to realize that a zero for the potential
number is not the code number for a Neumann boundary. Repeating, the
code for a Neumann boundary is a zero for DELTAR if the boundary is par-
allel to the axis. If the boundary is a radial plane, then the code is
DELTAZ = 0.

A mesh point cannot simultaneously be a boundary point for two
Dirichlet surfaces at different potentials. This is not usually a prob-
lem for the programmer. However, there can be situations when it is
necessary to make some adjustment in the problem to avoid a situation in
which, either DELTAR or DELTAZ should have two values, or in which DELTAR
and DELTAZ refer to two different surfaces in which neither is a Neumann
boundary.

Note that this also means thaf a single point cannot be a complete
row or a complete column. A column nust have a top point and a bottom
point, each of which has a DELTAR between -1.0 and +1.0. Since one

point camnot have both of these, one point cannot be a column. The same
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thing applies to rows. However, the program applies tests for the col-
umns only.

Boundary points must be read in in sequential order. Adjacent
points must be within one mesh unit in both R and Z. If a boundary
point is not within one mesh unit of the previous point, then a special
pfocedure starts with the purpose of determining and filling in the miss-
ing point or points. This procedure, referred to as "fitting," fits
a second degree equation to the three boundary points defined by the two
cards referred to above and the immediateiy next card. The equation is

either of the forms

A22 + BZ + C SLOPE < 1.0 @)

=
1]

or

A'R2 + B'R + C' SLOPE > 1.0 (8)

N
[

ABS[{(2Z + 1) A + B] is less than or greater

depending on whether SLOPE
than unity.

Use of fitting demands some care and understanding on the part of
the user. It should not be used on curves with more than one curvature
or on curves that go through too large an angle, i.e., never more than
450. It is more useful on long straight or slightly curving segments.

Three points always define a segment and if the third point is
missing or goes around a corner to another segment, the resuit will be
chaotic.

The programmer must realize that each boundary point may actually

define two‘points on the surface at the intersections in the R and Z

directions. If both points do not lie on the same segment, the results
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are unpredictable. This is a common difficulty at inside corners of
Dirichlet boundaries. The solution is to provide a data card for one
extra point in each direction from the corner.

In the special, but quite common, case in which one of the surfaces
at a corner is a Neumann boundary, the program takes account of the cor-
ner ambiguity and no extra cards are required.

The boundary output listing shown on Fig. 4 will now be examined
in detail as an example. Notice that there are seven columns; POINT,
CARD, POTENTIAL, R. Z, DELTAR, DELTAZ. The POINT column is just the
point number. The CARD column contains a sequential number if such a
card exists; otherwise it contains a zero. The remaining columns con-
tain the identical data as are found on the cards, or the data resulting
from fitting. It is useful to compare Figs. 2, 3 and 4 as the following

discussion progresses.

Card number one: Potential number one, (cathode), R = 0, Z 1,
(this is the usual starting place), DELTAR = 0.0, (code for Neumann
boundary along the axis), DELTAZ = -0.99,(-1.0 could have been used but
1.0 for the DELTA terms can result in some confusion for the fitting
routine). The point R = 0, Z = 0 could also have been used but it is
risky to use -0.01, for example, for DELTAZ because the curve could try
to cross the Z = 0 line before R = 1, thus resulting in a point with two
values of DELTAR, 0.0 and some positive fraction. This would also have
the result of adding another column to the problem without increasing

the resolution or the actual area, thus resulting in a fractional slow

down. Thus 0.99 or 0.999 is frequently used for DELTAR or DELTAZ.



—24-

SLAC ELECTRCN OPYICS PRKUGRAM STATIC ARRAY VERSION OF AUG. 1, 1S72 1% o 0 &5 0 2.0000 €.0000
TNJECT ION GUN MODEL 4-1tA CKIC~CATHODE REGICN (WBHM) MCDIFIED 11-20-87 a0 17 0 66 0 2.0070 €. 0000
RLIM: 7z ILIM = 40 PCTENTIALS ... ’ el 0 [ 61 o 2.0000 €.0000
0.000 €2 [ 0 68 c 2.0000 €.0000
2 $000,0C0 LE] c 0 €9 o 2.0000 €.0000
3 0.000 €4 0 0 7c 4 2.0000 c.0000
4 0.000 €5 18 2 71 [ €.9900 €.0000
MEo=oe €e 0 2 71 1 0.9970 2.0000
87 0 2 71 2 0.9900 2.0000
FRCM 25 20 TC  4C WITH CRIGIN AT 2= 20 an 0 2 71 3 €.9900 2.0000
RIxBCeBISCZ+R2%CI4*24RI*NI942,, (496807920 8s ° ? 71 4 0.99%0 2.0000
WHERE (222 ~ 2C 90 c 2 71 s €. 9900 2.0000
ANC  BC=  C.CCOOQCCOCCCOOCCE+00 s1 0 2 71 6 €.9900 2.0000
Als  2.%00UCOCCOCCCOOCOE+0L 52 0 2 71 7 €.9920 £.0000
#2s  (.CCCOOCCOCCCOOCCF+00 [H ° 2 71 8 €. 5900 2.0000
#3=  0.C0000CCOCCCOCCLE+CC G4 ¢ 2 71 s €.9900 2.0000
24x  C.CCO00CCOGCCOOCCESCO 55 19 2 71 o €.9900 2.0000
BEx  (.C00COCU000COCCCE+CC se [ 2 71 1l €. 9900 2.0000
#ex  C.COCCCCCUOCCOCCCEOO 57 0 2 71 12 €.5900 2.0000
20 0.CCFeCC 58 0 2 71 13 0.9900 2.0000
21 2.5CE4C1 <9 0 2 71 14 0.9900 2.0000
22 £.CCEeCL 1cc c 2 71 15 €.9900 1.0000
23 7.5CEeCY 1t [+ 2 71 16 £.9930 2.0000
2 102 c 2 71 17 €. 9900 2.0000
25 1c2 ¢ 2 71 18 €.9900  2.0000
26 14 c 2 71 15 0.9900 2.0000
27 1cs 0 2 71 20 0.9970 2.0000
28 Z.COE+02 1o c 2 71 21 €.9900 2.0030
29 2.25E402 1c? c 2 7 22 049900 2.0000
20 «ECE+02 1¢8 ¢ 2 71 23 €.9990 2.0000
E) 2.756402 1c9 0 2 7 24 0.9900 2.0000
32 2.CCE+C2 116 - < 2 7 25 €.9990 2.0000
33 2.25E402 111 20 2 71 26 €.9900 240000
2 112 21 2 71 27 €.9900  €.9900
35 113 22 H 7¢ 27 -0.2000 €.9900
e 114 23 2 65 2¢ 2.0020 €.8000
E 115 ¢ 2 68 26 -C.5168 €.2709
28 116 [} 2 ¢? 25 2.0000 C.7487
29 117 0 2 66 25  -0.4415 €.2272
40 f.COEeC2 MAG=*1'B3 . 118 0 2 65 24 2.0000 €.7125
118 c 2 64 24 =0.4013 c.2027
PCINT  CARD  POTENTIAL R I CELTA R CELTA 1 1i0 c 2 €3 23 2.0000 C.6976
1 1 1 [ 1 0.0000 -0.9900 121 ] 2 62 23 -C.39P3 €.1973
2 ¢ 1 i 1 2.0000 -C.9817 122 [ 2 61 22 2.0000 €.7019
3 [ 1 2 1 2.0000 9695 122 o 2 6c 22 -0.4346 c.2112
4 0 1 3 1 2.0000 -C.9536 124 0 2 56 21 2.0000 €.7253
s ] 1 4 ! 2.0000  ~-C.9338 12¢ 0 2 sq 21 -C.5128 C.2442
6 [ 1 5 1 2.0000 ~C.9102 126 c 2 57 20 2.0000 C.7679
7 o 1 & 1 2.0000 -C.8829 127 4 2 5¢ 20 -C.6353 0.2965
8 ° )3 ? 1 2.0000 L8517 128 0 2 55 19 2.0000 €.8298
9 ¢ 1 ] 1 2.0000 -0.8167 129 ¢ 2 54 19 -0.8049 €.3679
10 ° 1 s 1 2.0000 -C.7780 130 c z 51 18 2.0000 c.9108
11 c 1 10 1 2.0000 -C.7354 121 c 2 €2 18 2.0000 €.4585
12 [ t 11 1 2.0000 -C.6890 122 c 2 51 18 -0.0249 €.0110
13 [ 3 12 1 2.0000 ~-0.8388 123 c 2 5¢C 17 2.0000 C.5683
14 0 1 13 1 2.0000 <5848 124 24 2 45 17 -C.3012 €.1304
15 [ 1 14 1 2.0000 -€.5270 0 2 48 16 2.0€00 0.6573
16 [ 1 15 I} 2.0000 -C.4654 0 2 «7 16 -0.6353 0.2690
17 2 1 16 1 2.0000 -(.4000 [ 2 4€ 15 2.0000 C.8455
18 ¢ 1 17 1 2.0000 -C.3308 2oms c 2 45 15 2.0000 0.4268
210987
19 [ 1 18 1 2.0000 *ia9 ¢ 2 44 15 -C.C316 €.0129
20 c 1 1s 1 2.0000 140 [ 2 43 14 2.0000 C.6038
21 0 i 20 1 2.0000 141 ¢ 2 42 14 -0.4994 €.1955
iz c 1 21 1 0.1801 142 5 2 41 13 2.0000 €.8000
23 < 1 22 2 2.0000 142 26 2 4C 13 2.000Q €.4000
i [ i 23 2 2.0000 144 27 2 35 13 2.0000 €.3000
25 0 1 24 2 2.0000 145 0 2 38 13 -c.9307 C. 1426
2 0 1 25 2 2.0000 146 [} 2 37 12 2.0000 €.9894
27 0 1 2¢ 2 2.0020 147 c 2 36 12 2.0000 C.8404
28 0 1 27 2 2.0000 148 [ 2 35 12 2.0000 €.6957
z¢ ¢ 1 28 2 2.0000 149 o 2 34 12 2.0000 €.5552
20 0 1 25 2 2.0000 150 [ 2 23 12 2.0000 €.4190
i1 0 1 30 2 0.6925 141 c 2 32 12 2.0000 C.2870
12 0 1 31 3 2.0000 142 c 2 31 12 2.0000 €.1592
22 [ 1 22 3 2.0000 153 ¢ 2 ac 12 -0.2993 €.0357
34 [ 3 33 3 2.0000 154 [ 2 25 11 2.0000 C.9164
b o 1 34 3 2.0000 155 ] 2 2e 11 2.0000 €.8014
2 0 1 35 3 2.0000 1%6 [ 2 21 11 2.0000 €.6905
27 0 1 36 3 2.0000 157 c 2 2¢ I 2.0000 €.5840
28 3 1 37 3 €.9900 1ee c 2 25 1 2.0000 C.4918
3 4 4 38 4 2.0000 155 c 2 24 11 2.0000 €.3835
40 Q - 3¢ “ €.5902 160 ¢ 2 23 11 2.0000 €.2876
‘1 [ 4 40 s 2.0000 1€1 28 2 22 11 2.0000  €.2000
42 0 4 41 5 0.1886 1e2 [ 2 21 i 2.0000 C.l146
42 0 4 “«2 6 0,7959 1¢3 c 2 2¢ 11 -C.4348 €.0334
44 [ 4 43 7 2.0000 1¢4 c 2 19 10 2.0000 €.9565
45 0 “ “4 7 Je4123 1€5 [V 2 18 1c 2.0000 C.A838
“€ ° 4 4t e 2.0000 166 [ 2 17 1c 2.0000 c.8154
“7 0 4 “¢ 8 0.0374 17 0 2 16 10 2.0000 €.7512
48 c 4 47 s 0.6723 168 ¢ 2 15 10 2.0090 0.6912
49 < “ e 10 2.0070 165 [ 2 14 10 2.0000 C.6355
sC 0 4 45 1c 0.3164 170 ¢ 2 13 10 2.0000 €.5840
€1 0 4 50 11 €.9677 171 c z 12 1c 2.0090 C.5367
L2 [ . 51 12 2.0000 172 ¢ 2 11 10 2.0000 C.4937
€2 0 4 €2 12 C.6131% 173 ¢ 2 1c 1e 2.0000 C.4549
4 o 4 53 13 2.0000 174 0 2 5 10 2.0000 C.4203
£s a 4 54 13 €.3Cs0 175 ¢ 2 ] 1 2.0000 €.3900
s € 4 55 14 €. 9900 17¢ 0 2 7 10 2.0000 C.3639
s 7 4 56 15 2.0000 1 [4 2 6 10 2.0000 €.3421
€9 e 4 57 15 2.0000 178 c 2 s 10 2.0000 €.3245
59 s “ s8 715 2.¢000 179 () 2 “ 10 2.0000 c.3111
€0 10 s 59 15 2.6000 tec [ 2 3 10 2.0000 €.23020
(3 11 4 6 15 2.0000 1€1 [ z 2 16 2.0000 €.2971
€2 12 4 €l 14 -C.9900 1€2 c 2 1 10 2.0000 c.29¢4
€3 12 4 €1 13 -0.2000 103 29 2 ¢ 10 €.0000 €.3000
I 14 4 62 12 -C.7000 184 0 0 0 9 €. 0000 2.0000
€5 0 « €2 11 -0.7000 185 30 c c 8 0.0000 2.0000
e 9 “ €2 10 -0.7070 186 o Q c 7 0.0000 2.0000
67 ¢ 4 62 @ -0.7000 187 o 0 [ 6 0.0000 7.0000
68 0 4 €2 A -0.7000 188 [ o o 5 0.0000 2.0000
€ o 4 &2 7 -0.7000 189 o o c 4 0.0000 2.0000
7C 15 4 €2 6 -3.7020 190 a o ¢ 3 0.C000 2.0000
n ¢ “ €2 5  ~C.7070 191 ER 0 [ 2 €.0000 2.0000
W2 ¢ “ 62 4 -C.7000 SPECTRAL RACILS 20.995C00
53 ¢ 5 62 3 -C.7000 AN= €1, ERR =  1,232]1172f-Ct MAG= 118
14 c 4 €2 2 -0.7000 130988
5 [ 4 62 1 -C.7000
76 16 4 62 9 -C.7000
7 o o 63 0 2.0000
78 9 o 64 ¢ 2.0000

730988

Fig. 4. Output listing of boundary data for the problem of Fig. 2.
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Card number two: POT =1, R = 16, Z

1, DELTAR = 2.0, DELTAZ = 0.4.

Since R = 16 is more than one unit from R 0 on card one, the automatic
fitting routine will be called. It will read the next card which must
also be on the cathode surface. The DELTAR = 2.0 indicates that the
boundary does not cross within one mesh unit in the R direction.

Card number three: POT = 1, R = 37, Z = 3, DELTAR = 0.99,
DELTAZ = ~-0.1. Both DELTAR and DELTAZ refer to the same curve segment,
so there is no ambiguity for the fitting. This is the third card for
the fitting set for the cathode. The coordinates of the points through
which the curve will fit are: (r =0, z = 0.01), (r = 16.0, z = 0.6)

and (r = 37.99, z = 3.0). It will use Eq. (3) rather than Eq. (2)

because the absolute value of the slope is greater than one.

Card number four: POT = 4, R = 38, Z = 4, DELTAR = 2.0,
DELTAZ = -1.0. POT = 4 is used to permit the focus electrode, which
this surface is, to be distinguished from the cathode. The -1.0 for
DELTAZ is inadvisable but works on the first point of the set of three.
No fitting since R and Z are 1 mesh unit from those on card 3.

Card number five: POT = 4, R = 48, Z = 10, DELTAR = 20,
DELTAZ = -0.8. This card causes the automatic fitting procedure to be
called.

Card number six: POT = 4, R = 55, Z = 15, DELTAR = 0.99,
DELTAZ = -0.6. This is the third card of the set and fits the straight

section of the focus electrode.

The next several cards define the boundary around the point on the
focus electrode. The logic should be obvious by inspection. Fitting is

used for the top of the focus electrode.
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Card number sixteen: POT = 4, R = 62, Z = 0, DELTAR = -0.7,
DELTAZ = 0.0. This card is interesting because it defines the end of the
segment to be fit along the top of the focus electrode and the beginning
of the Neumann segment along Z = 0. Because of the Neumann condition
(DELTAZ = 0.4) the program recognizes the corner condition and fits to
the point (r = 61.3, z = 0.0).

Card number seventeen: POT = 0, R = 66, Z = 0, DELTAR = 2.0,

DELTAZ

0.0. This is a case where one might forget to skip a point and

]

make R = 63 ... don't. Also note especially the DELTAR = 2.0 ... there
is no surface in the R direction for more than one mesh unit, even though
the point lies right on the Neumann boundary.

Card number eighteen: POT = 2, R = 71, Z = 0, DELTAR = 0.99,
DELTAZ = 0.0. Potential 2 is for the anode, which is the role played by
the gun grid in this example. The 0.0 for DELTAZ signifies the vertical
Neumann boundary. Note that this card is used to begin the next fitting
segnment.

Card number twenty: POT = 2, R = 71, Z = 27, DELTAR = 0.99,
DELTAZ = 2.0. This is an "extra" card inserted to avoid the cormner
ambiguity which would occur if the fitting program had to use the next
card which points to two different line segments of the same surface.

Cards number twenty-one and twenth-two: POT = 2, R = 71 and R = 70,
Z = 27, DELTAR = 0.99 and 0.2, and DELTAZ = 0.99. These two cards form
a short column to avoid a column of length one at the corner. Clearly

they do not agree with the design surface, but the location is such that

the discrepancy cannot affect the solution.
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The last three boundary cards define the Neumann segment on the
axis. Note that the last card, POT = 0, R = 0, Z = 2, DELTAR = 0.0,
DELTAZ = 2.0, specifies the point immediately adjacent to the first
point, thus completely defining the boundary. The boundary must be com-
pleted in this way without ever repeating a boundary point.

The next card, with 888 in the POT field, or any other potential
number greater than POTN, terminates the boundary input. The next step
in the program is to calculate the difference equations and to perform

some checks on the boundary data.

4. Special Boundary Conditions

A curved or slanted Neumann boundary, except for 450, requires the
general Neumann conditions. The special case of a 45° Neumann boundary
is correctly described in both DELTAR = 0 and DELTAZ = 0. General
Neumann and other boundary conditions such as dielectric surfaces, may
be put in as calculated values by overwriting the difference equations
calculated by the program. The normal endiﬁg to the boundary data is by
a potential number greater than POTN. If 999 is used, the program will
commence reading cards containing R and Z; the coordinates of an exist-
ing boundary point, and D1, D2, D3 and D5; the four coefficients of the
difference equation for the point (R,Z).

R and Z are integers locating an existing boundary point. D1, D2,
D3 and D5 are the real positive coefficients of the difference equation
at (R,Z).

Any number of such cards may be used in any sequence. An R value

greater than RLIM terminates this input.
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Dielectric materials may be simulated by special boundary values at
the dielectric surface. The rules for this are summarized in the con-

densed instructions and will be explained in Section VI.I.

5. Boundary Diagnostics

If the input data are acceptable, the next message printed on the
output is: SPECTRAL RADIUS=0.995. The spectral radius is a constant
used by the program for the convergence of the solution of Poisson's
equation.

BOUNDARY ERROR IN COLUMN XX

If this message appears somewhere in the middle of the listing of
boundary data, it is a signal that the boundary data have exceeded the
limits of the problem, 0 < R < RLIM and 0 < Z < ZLIM, or that the bound-
ary data have exceeded the maximum number allowed which is 901. Thus,
this message appears if the boundary calculation goes into a loop.
Loops usually result from an error in boundary fitting as might be
caused by omitting one of the three points of a line segment. Normally
the program will attempt to pick up the boundary computation and com-
plete the listing. However, the problem will not attempt to run and
there may be other errors caused by the program in trying to interpret
the rest of the boundary.

BOUNDARY ERROR IN COLUMN XX

If this message appears at the end of the boundary listing it indi-
cates that the program checks have found an error. The program checks
are based on the requirement that each column must have a top and a bot-
tom. Since there can be more than one segment to a column, the require-

ment translates to mean that there must be an even number of ends for
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each value of Z. An end is defined by a DELTAR value between +1 and -1.
Thus the programmer need only determine why there are not an even number
of such points for the indicated column.

Note that there are similar checks which could be made but aren't.
Each row must have two ends also, but no such check is included. Also
obviously a bottom end must have DELTAR between 0.0 and -1.0, i.e., not
greater than 0.0. This and similar boundary mistakes are left to the
programmer's care to prevent or correct.

BOUNDARY ERROR OR MI NEGATIVE

If this message appears at the end of the boundary listing the pro-
grammer must check for messages of the previous two types. If there are
none, and he has set MI negative, then the boundary data have passed the
program checks. It is worthwhile for the programmer to look at all the
output carefully to catch other boundary errors. The programmer should
also always endeavor to get at least one plot including equipotential
lines of any new geometry. Unsuspected errors frequently become glar-
ingly obvious on examination of a plot. The optional printout of the
table of potentials caused by LSTPOT > 1 should always be used for a new

or revised boundary configuration.

C. Poisson's Equation

After reading the boundary input, and before reading the starting
conditions, the program makes the first solution of Poisson's equation
(actually Laplace's equation at this point since there is no space
charge, hence right-hand side (R.H.) equals zero). The description of
the input data for the exampie will be interrupted here for a brief

description of the mechanics of the solution of Poisson's equation.
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The program solves the complete set of equations for one column at
a time. Mathematically, a matrix for a column consists of a tridiagonal
matrix which must be solved (inverted) to find values for the potentials
of each of the points in one column. To do this, the adjacent columns
are assumed to contain "known' values, and the end points are also
"knowns." That is, either the value is known or, in the case of a
Neumann boundary, the adjacent point is assumed to be the same as the
point being solved since the derivative is zero. The relaxation method
is known as the "semi-iterative Chebyshev' method and is described by
Varga.

Each column consists of two or more points, with upper and lower
end points being boundary points for which -1.0 < DELTAR < 1.0. Thus
each column has at the top and bottom a condition, either Neumann or
Dirichlet, that permits the program to write a set of n equations in n
unknowns for that column. A column of the problem area defined simply
by the value of Z, may have more than one segment which must each meet
the above definition of a "column." Each such column must have its
proper ends. In the example problem, there are two columns for each
value of Z up to and including Z = 14.

When a column is solved, the adjacent columns are considered fixed.
Alternate columns are solved so that on two passes first the odd numbered
columns and then the even numbered columms are solved. After 50 itera-
tions, or less if the error criterion is satisfied, the calculation is

stopped and a message is printed:

N = 51, ERR = X.XXE - XX
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This is the signal that after 50 iterations (the counter is already set
to 51) the maximum error is expected to be ERR in volts. The actual
test is on the largest single change in the iteration, but the value
printed takes into consideration the dimensions of the problem. The
convergence criterion can be adjusted by using the parameter ERROR (see
VI.A.(4)). It is automatically tightened by a factor of ten for the
final cycle. Certain problems using large areas of Neumann boundaries,
are subject to slow convergence so that the results may be incorrect.
This can be remedied either by iterating for more cycles or by giving
the program a better starting distribution. These techniques will be
described in a subsequent section. Generally the iteration process is
quite satisfactory and after 50 iterations the field is sufficiently
determined to start ray tracing leading to the inclusion of space
charge.

After finishing the first cycle of Poisson's equation, a potential
map, or POTLIST, is printed giving the potential (nmormalized to 1007 of
the maximum potential) for every point in the RLIM by ZLIM space. Since
this includes background points (points behind the surfaces) one can
usually trace the outline of the problem. The background points have
the initial values and should not be confused with the internal points.
The POTLIST is an exceptionally effective diagnostic device and should
always be studied for peculiarities. An error in boundary data may, for
example, leave a strange zero in the middle of the high potential part
of a device, thereby greatly distorting the fields. When used together
with the equipotential plots, it is possible to pinpoint errors in a few

minutes. The POTLIST is suppressed by the default value of LSTPOT = O.
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VI. STARTING CONDITIONS

After the first calculation of Poisson's equation, the program
reads the starting conditions. The format is NAMELIST consisting of
defining equations in which the variable is named followed by an "equal
sign and the value. Only those variables that need to be altered from
the default conditions need to be specified. The sample problem demon-
strates how little data needs to be specified in many cases. Using the
sample problem, the following remarks will illustrate the technique. In
the rest of this section, a brief description will be given for each of
the options currently included in the programs. Since other options can
always be added, the user must refer to the comments in the program for
the up-to-date implementation.

The sample problem is coded as a spherical diode or Pierce gun.

The card with &INPUT5 signals that the namelist entries follow. The
entry START = 'SPHERE' directs that the spherical diode conditions will
be used. The entries RAD = 257 and RMAX = 37.5 give the spherical
radius and cathode radius respectively. UNITIN = 0.01 specifies that
the scale of the problem is 0.0l inches/mesh unit. All problem scaling
is in MKSA units so that UNITIN is immediately converted to UNIT in
meters. After reading these items the program prints a table of all the

starting parameters

The starting conditions are described in the follewing sections

according to function as follows:
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Universal; apply to more than one case,

Equipotential lines; controls equipotential plotting,

Plotting; plot controls,

Magnetic fields; input and calculation parameters for magnetic
fields,

General cathode; parameters controlling the general cathode option,
Spherical cathode; parameters specifically applicable to START

= 'SPHERE’.

Card starting; parameters controlling the use of specified starting
conditions.

Laplace starting; parameters controlling the use of the program for

applications other than ray tracing.

Universal Parameters

For each starting parameters, there is a default value which will

be the value used if it is not changed by the input. In the following

discussions, the entries will be given as described by the program com-

ments with the format:

INSTRUCTION DEFAULT ,MAX COMMENT

This will be followed by a discussion of the use of the parameter.

When a second number, separated by a comma, appears for the default

value, it refers to the maximum allowed value, usually determined by

array limits.
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oh) PERVO = X.XX PERVO = 0 ZERO USES LAPLACE/2

PERVO is the initial value of the perveance of the beam for either
the START = 'SPHERE' or START = 'GENERAL' methods. Perveance is defined

as the constant K in the expression

I = KV x 10 (9)

where K is expressed in micropervs so that, for example, a microperveance
1.0 device operating at lO4 volts would have a current of 1.0 ampere.
The entry X.XX indicates that a decimal number is the expected value.
When a single X is used, it implies that an integer is expected. The X's
do not indicate the input format; the number of significant figures is not
restricted except by the computer hardware, and by the logic of the
program.

PERVO normally controls only the perveance of the first cycle.
However, it may be "held" for any desired number of cycles by using
HOLD = X. The process by which the program determines perveance is to
average the perveance calculated for a given cycle with the perveance
actually used in the preceding cycle. The new averaged value is then
used to determine the current per ray. The averaging process has proven
very effective in quickly arriving at a stable value. It has been so
successful that it is frequently better to start with the averaging
method than with a value "known'" to be "correct'" from experiment or from
prior calculations. The default value PERVO = 0 is a code instruction
which takes the value of perveance calculated for the LAPLACE solution

and simply divides it by two to arrive at the perveance for the first
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cycle. The new user of the program is advised to use the default value

until specific experiences lead him to try something else.

2) HOLD

X HOLD = 1 PERVO 'HOLDS' FOR HOLD ITERATIONS

HOLD

2 or more causes the input value of PERVO to remain

unchanged by the averaging process for HOLD iteratioms. There are some
problems, particularly with very non-uniform cathode loading, where using
HOLD helps establish the necessary space charge environment for the process
to stabilize. A more frequent application is to simulate emission limited
conditions by running the entire problem with a fixed reduced perveance.

Then, of course, HOLD must be at least as large as NS.
(3) PE = X.X PE = 2.0 INITIAL ENERGY AT CATHODE (EV)

PE is the incremental energy that is added to every trajectory to
account for the combined effect of work function potential and thermal
energy. Like PERVO and HOLD, PE is only used for starting with one
of the Child's Law routines for calculating the initial conditions. It
is normally not necessary to have any initial PE, but some small changes
may be observed by varying it. In a few low emission devices, it has
been found essential to have some initial energy to avoid instabilities

near the cathode.
(4) ERROR = X.X ERROR = 1.0 MULTIPLIES ERROR TEST

ERROR = 2.0 doubles the built in error test by which the program
determines that an adequate solution of Poisson's equation has been
reached. If the problem is slow to converge, particularly if there are

large areas of Neumann boundary, it may be necessary to reduce the
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allowed error, e.g., ERROR = 0.1, to get the program to converge at all.
Slow convergence is indicated if each cycle only iterates three times,
prints N = 3, ERR = nnn, and calculates the trajectories. On the last
cycle, the error test is reduced by a factor of 10 from whatever level
was set by the user. Some hints about convergence problems will be found

in a later section.
(5) UNIT = X.XXX UNIT = 0.001 METERS/MESH UNIT
(6) UNITIN = X.XXX (SEE UNIT) INCHES/MESH UNIT

The default scale value for the program is 0.001 meters/mesh unit.
If a value is given for UNITIN (inches/mesh unit) this value will be
immediately converted to meters. Except for problems using magnetic
fields, the optics of an electron gun does not depend on the scale factor.
All the standard rules of scaling in electron optics can be used once a

problem has been solved.
(7) MAXRAY = XX MAXRAY = 27, 51 MAXTMUM NUMBER OF RAYS

IF MAXRAY IS NEGATIVE, THE NUMBER OF RAYS=ABS(MAXRAYS)

MAXRAY determines the maximum number of electron trajectories that
can be calculated. The arrays for trajectories have a limit of 51. The
number of rays used by START = 'GENERAL' or START = 'SPHERE' is deter-
mined by a program algorithm unless the value read in is negative. Within
the limit MAXRAY, the program tries to make an integral number of rays

per mesh unit at the cathode.
(8) STEP = 0.XX STEP = 0.8 MESH UNITS/STEP

STEP is the iteration stép length for ray tracing. It must be less

than 1.0 for the program to properly account for space charge, calculate
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magnetic fields, etc., when crossing a mesh line. The equations of
motion are time dependent, thus the program uses STEP to calculate step
time from the velocity at the start of the step. Since the electron can
accelerate during a step, it may actually go slightly farther than STEP.
The default value is about the largest that should be used. If magnetic
fields are present, STEP should usually be reduced at least a factor of
two. On the last cycle, STEP is automatically reduced by a factor of
two. Shortening the step means more time will be required for a problem.
As a rule of thumb, the program spends roughly half of the time with
Poisson's equation and half with the ray tracing. Thus reducing STEP by
a factor of two could increase cost by about 25% the first time but may
nearly double it thereafter. The Runge-Kutta method is used to solve the
differential equations of motion. Because of the necessity to take small
steps anyway, and because of the time needed, the program does not use
any of the '"predictor-corrector' techniques of verifying step length.
Experience has shown that errors due to STEP being too large, especially
if magnetic fields are included, become glaringly obvious when the plots
are examined. The most frequent effect is for a trajectory to get too
close to the axis, violate conservation of angular momentum in one step,
and fly out of the problem area with beta > 1.0, where beta = v/c. An
error message to this effect is printed when a ray ends with beta > 1.0.

At the very least, this is a signal to reduce STEP in subsequent runs.

(99 NS =X NS =7 NUMBER OF ITERATIONS

NS defines the number of program cycles to be made. In the program,

NL is used as the running variable to record the number of cycles left to
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be run. Initially NL = NS. The default value is usually acceptable
unless the program is having trouble converging on the perveance. For
the special case of no space charge, it is advisable to still use NS = 2
to gain the insight afforded by the reduction of ERROR and STEP on the
final cycle. For START = 'LAPLACE', NS is the number of times that

Laplace's equation will be cycled.
(10) SPC = 0.XX SPC = 0.5 ESTIMATED SPACE CHARGE

SPC SIMULATES PARAXTAIL APPROXIMATION ON FIRST CYCLE. SPC IS THE
FRACTION OF THE RADIAL FORCE USED. SPC = 1 FOR FULL EFFECT, SPC = O

FOR NO EFFECT.

SPC determines the fraction of the ordinary radial electrostatic
force that will be applied to the rays on the first cycle. In a device
in which space charge forces play a strong part in the focusing, the
electrostatic fields usually have a strong radial restoring effect. If
not opposed by space charge on the first cycle, these forces may cause
the rays to strongly over focus leading to a poor initial distribution
of the space charge. The full contribution, SPC = 1.0, adds a term to
the radial equation of motion simulating all the current, of all the rays
calculated, to lie in a conductor on the axis. Thus it is assumed that
the rays are calculated in sequence starting with the ray nearest to the
axis. In the case of an electron gun calculation starting at the cath-
ode, a better choice is SPC = 0.5 which attenuates the force by 0.5.

Near the cathode, this corresponds to a current starting from the cathode
and extending infinitely in only one direction. Further from the cathode,

SPC = 0.5 is a less logical choice, but the beam is less sensitive to
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radial forces as it gains in energy. Empirically, it has been found that
SPC = 0.5 is a good choice for gun problems involving starting from the
cathode. For other types of problems, the user should be aware of the
fact that SPC exists and can be changed. In rectangular coordinates, SPC
simulates an infinite sheet of current on the axis. If the problem does
not involve reflection about the R = 0 plane, then there is a transverse
force (which does not depend on distance from the x-axis) which should be
turned off by SPC = 0.0. Since SPC only affects the first cycle, the
program will usually forgive any misuse of it. SPC can be useful in
arriving at a satisfactory solution of one usually difficult problem,
that of a long thin beam with magnetic fields providing the focusing.
This can be a difficult problem to get to stabilize because of the poor
aspect ratio which frequently finds a large fraction of the beam within
one or two mesh units of the axis. However, it is usually well repre-
sented by the paraxial approximation so that a single cycle run, NS = 1,
with SPC = 1, will frequently result in a good solution. In this case
one must be sure that STEP is small enough and that an adequate solution
of Laplace's equation was attained, since ERROR had no effect on the

first cycle.

(11) PHILIM = X.X PHILIM = 0.0 AZIMUTHAL LIMIT

PHILIM .NE. 0 ENDS TRAJECTORY AT PHI .GT. PHILIM

For special applications, it is possible to establish an orbit that
would continue until the program is stopped. An example is an electron
orbiting in a uniform magnetic field. PHILIM has the units of PHI;
radians in cylindrical coordinates and mesh units in rectangular

coordinates.
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(12) SAVE =1 SAVE = 0 SAVE = 1 SAVES BOUNDARIES

TO USE SAVE = 1, OMIT BOUNDARY CARDS FROM NEXT PROBLEM

SAVE = 1 is a signal to the program to expect a second problem run
immediately after the first problem, and that the second problem will use
the same boundary conditions. It is always possible to run tandem prob-
lems although, at most computer facilities, there is no particular incen-
tive to do so. Programs are usually run from load modules, or from a
library of compiled subroutines to be linked with very little expense,
and separate problems can be run independently without the risk that a
failure in the first problem will affect or knock out the second one.
However, in the case where successive problems use the same boundary con-
ditions, considerable savings in effort and computer time can result by
saving the boundaries, which also saves the arrays of potentials and
space charge.

The SAVE = 1 parameter is put in the starting conditions of the
first problem, not the second one unless there is still to be a third
problem. The data deck for the second problem starts immediately after
the last data card of the first deck with no EOF or /* control cards.

The second deck is complete in every respect including title, potential,
magnetic fields, etc., except that the boundary cards and the accompany-
ing large potential number card are omitted. The potentials can be
changed between runs; if the largest potential is changed, the program
will scale all potentials in the potential map proportionately. Other-
wise the program will start out just as if a cold start was being made,
except that the old solution, including the last space charge array, is

1

used as a ''preload."”
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One example of the use of SAVE is to be able to trace rays with
small changes of either voltage or magnetic fields. Another use is in
the case in which the Laplace solution is difficult to achieve because of
extended lengths of Neumann boundaries. In this case, it may help to run
the first part with START = 'LAPLACE' (see section VI-H) and SAVE = 1 and
then do the ray tracing in the following problem. This saves the time
and expense of ray tracing in an incorrect potential distribution. This
procedure is not normally required since the usual procedure allows the
program to improve the solution on successive iterations as the space
charge is entered.

The special case of a pair of electrodes separated by a long length
of Neumann boundary parallel to the z-—axis causes special problems with
convergence that might respond to the approach using START = 'LAPLACE'.
An alternative approach, which is easier, is to introduce a few boundary
points along the top or bottom Neumann boundaries, with potential num-
bers. If the corresponding voltages, which must be entered in the poten-
tial list, represent approximate values for the potentials in the final
solution at that point, then the starting load to the program will be
much better than the normal starting load. Usually the starting load is
of very little significance, but in this special case it can be crucial.
The special boundary points are exactly like the usual Neumann points,
except that the potential number is given and refers to an appropriate
element of the POT array. After the preload, the Neumann points relax

as usual and the potentials change accordingly.
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(13) SAVE = 2 SAVE = 0 USES FINAL DATA

FROM PREVIOUS RUN TO START THIS RUN. USE ONLY WHEN START = 'CARDS'.

Save = 2 allows consecutive runs to use the final conditions of a
preceding problem as the initial conditions of the succeeding problem.

Necesgarvy scalin
y scallr

asclioooal

START = 'CARDS', below. The SAVE

2 goes to INPUTS5 of the second run.
Note that the dual use of SAVE = 1 and SAVE = 2 in one problem is

not permitted, but that SAVE = 1 on the first problem followed by SAVE = 2

in the second is both permitted and quite common. It simulates the

repeated use of a drift tube, periodic focusing section, etc.

(14) MASS = X.X MASS = 0.0 MASS > 0 FOR IONS
MASS IS THE MASS TO CHARGE RATIO, 1.0 FOR PROTONS
USE MASS > 0 FOR RAYS WITHOUT INERTIA; CAN BE USED FOR MAGNETIC

FLUX LINES OR ELECTRIC FIELD LINES.

MASS is used to signal the program that particles other than elec-
trons are to be followed. The units are in 1836 electron masses, so that
a proton would be 1.0 and a doubly ionized tritium ion would be
3/2 = 1.5, for example. The Child's Law routines for starting still
function. Note that the intrinsic charge built inte the program is nega-—

tive. Ion problems are normally run as if charge is negative, although

negative currents (positive charges) are permitted for START = 'CARDS'.
(15) AV =X AV = 0 SPACE CHARGE AVERAGED LAST AV CYCLES
(16) AVR = X.X AVR = 1.0 WEIGHT OF PREVIOUS CYCLE FOR AV

AV and AVR are companion parameters to help improve stability by

averaging the contribution of space charge over successive cycles. It
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should not be confused with the different process of emission averaging

to determine perveance. In fact, to keep the emission averaging and

space charge averaging from affecting each other, it is suggested that AV

be small enough so that the emission averaging is essentially complete
h

e last AV

before space charge averaging starts. Note that AV is for t

cycles, e.g., if NS = 7 and AV = 3, then only cycles 5, 6 and 7 are aver-
aged. However, this may have a very small effect since the trajectory
calculations of cycle 5 are not affected and the space charge determined
by the cycle 7 is never used (since there is no cycle 8). Thus the
effect of averaging is only observed for AV-1l cycles. AVR determines the
weight of the previous cycle such that with AVR = 1.0, the space charge
from the previous cycle is weighted equally with the present cycle. AVR
can have any value, 0 < AVR < o,

Experience with averaging has shown the effect to be less dramatic
than one might anticipate. A poorly designed gun, with strong spherical
aberrations and resulting crossovers, is likely to be unstable and con-
verge poorly even with averaging. Also, application of averaging to
relativistic high intensity beams does not do much to solve the inherent
difficulty caused by the fact that the self-magnetic field forces nearly
cancel the space charge forces. With the two-cycle format of the program
(i.e., space charge from the previous cycle and self-fields from the
present cycle) the program has difficulty converging on long beam trans-
port problems. The solution to this situation is frequently to use the
first cycle only with the paraxial approximation and SPC = 1.0 as

described in VI.A.10 above.
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(17) BEND = X.X BEND = 0.0 MAGNETIC BENDING FIELD
IN GAUSS IN THE DIRECTION NORMAL TO THE R-Z PLANE FOR THE AXTALLY
SYMMETRIC PROBLEMS. FIELD MUST BE UNIFORM. THE EFFECTS OF SELF-
MAGNETIC FIELD ARE LOST AND SPACE CHARGE IS STILL AXTALLY SYMMETRIC
SO THAT IF BEAM IS DEFLECTED, CHARGE DISTRIBUTION IS PROBABLY INCOR~-
RECT. AN AXTIAL FIELD MUST BE INCLUDED IN THE INPUT, EVEN IF IT IS

ZERO, E.G., BC=0 IN INPUT2.

This feature is most useful for problems with little or no space
charge. Various types of photo tubes have tight tolerance for transverse
magnetic field effects. Residual transverse fields, earth's field, etc.,
can be calculated. Note that a cylindrical beam in a rectangular coor-
dinate geometry, including transverse field and space charge, can be sim-

ulated as described below in Section VI.G.4.
(18) MAGMLT = X.X MAGMLT = 1.0 MULTIPLIES BZA ARRAY

MAGMLT multiplies the entire BZA ( ) array after it has been read
in or calculated internally. It also multiplies the entire vector poten-
tial array if that option is used. It can be thought of as a knob on all

the magnetic field generating power supplies.

(19) 1IPBP = K1, K2,...K6 IPBP = 0 UP TO SIX RAY NUMBERS

FOR POINT~BY~-POINT PRINTOUT:

K, RHO, ZETA, RDOT, ZDOT, TDOT, PHI, BR, BZ, STEP, BPHI

In special situations, especially when program behavior is not as
expected, it is useful to be able to print out every iterative step.
This feature operates on the last program cycle. Thus if for example a

bug is stopping the program in the first cycle, it is necessary to set
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NS = 1 and set IPBP = (the number of the trajectory at question). Note
that it is possible to generate a great deal of paper this way. In some
cases, one might rather have other items printed than those in the above
list. It is a simple change to substitute ER, EZ, etc., for BR, BZ, for

example.

(20) ZEND = X.X ZEND = 1000.0 EXACT END OF TRAJECTORY
CAUTION: TIF ZEND IS NOT THE RIGHT-HAND BOUNDARY, THE SPACE CHARGE

DISTRIBUTION MAY BE INCORRECT.

Normally a trajectory is calculated until the program can no longer
determine the electric fields. Thus the trajectories usually go up to
one-half mesh unit beyond the boundaries. In special situations, such as
high-resolution photo tubes, this makes exact interpretation of the
results difficult. Setting ZEND to a specific value causes the program
to back up to this value when a trajectory passes through this value of

zeta.

(21) VION = X.X VION = -1E8 LOWEST POTENTIAL PERMITTED

USE VION TO SIMULATE SPACE CHARGE NEUTRALIZATION.

Space charge depression can be reduced in a real device by positive
ions in an electron device or by electron clouds in an ion beam. Since
the program normally runs with negative charges, the above cases both
result in negative space charge depression. If it is desired to limit
the depression, VION can be set to the lowest depressed potential that is
desired. The default value is intended to be low enough so that it will

never disturb a practical problem.
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B. Equipotential Plots

Under the heading:
INPUT FOR EQUIPOTENTIAL PLOTS,
the instructions list the parameters which may be used to control the
output of the equipotential lines.

If the plot control parameter MI, on the potential card, has been
set to MI < 6, then the subroutines which draw equipotential lines will
be called at the appropriate times. If the entire problem is at one
potential, it is usually better not to call for equipotential plots.

The method used in the program to find the equipotential lines con-
sists of first finding a starting point for the potential to be followed,
and then following a line of constant potential from that point. This
does not guarantee that every point of that potential will necessarily be
found and plotted. If POT (2) # 0 the program always draws the equi-
potential line for V = b - POT (2) where b = 0.05, 0.15, 0.25, 0.35,
0.95. Also if POT (3) # 0, the program draws lines for V = b « POT (3)
where b = 0.2, 0.4, 0.6, 0.8, 1.0 Normally the lines are started at the
points on the axis which are at that potential. The expectation is that
POT (2) will be used for the anode and POT (3) will be used for the grid,
if any. If, for example, one is designing a gridded gun to be operated
at VG = 0.01 VA’ then, by first designing the gun as a diode, and plotting

POT (3) at 0.01 POT (2), one gets the ideal contour for the grid to be

electrically invisible.
(1) EQUIPR = X.X EQUIPR = 0.0 R-INTERSECT. FOR EQUIP. LINES

EQUIPR is the radius of the line along which the program hunts for

the potentials which are to be plotted. It sometimes happens, particularly



-47-

in rectangular coordinates, that the equipotential lines do not intersect
the z~-axis, (R = 0 line). EQUIPR lets the programmer indicate along

which horizontal line the program should look for the starting points.
(2) 1M = XXX LM = 303 LENGTH OF EQUIPOTENTIALS

LM is the array limit for the points to be plotted for any one equi-
potential. If a line simply stops in midstream, it may be desired to

increase LM. Arrays BX and BY must be as large as LM.
(3) EQLN = 0 to 20 EQLN =1 *NO. OF CORRECTIONS

EQLN controls the iterative corrections made as each point is found
along the equipotential line. These corrections prevent the lines from
deviating from sharply curving equipotential lines. The default value,

EQLN = 1, is usually adequate.
(4) EQST =X EQST = 2 *STEPS PER MESH UNIT

EQST gives the density of points for the equipotential plots. The
maximum length of a line is given by the ratio IM/EQST. 1If EQST is too
small (steps too long), fine detail may be smoothed over.

*A1.S0 APPLIED TO GENERAL CATHODE

This footnote warns that the starting surface for the GENERAL CATH-
ODE routine is generated just like an equipotential (but is not plotted),
and thus the parameters EQLN and EQST may determine the accuracy of the
starting surface. It is primarily for this application that EQLN and

EQST are made variable parameters.
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(5) 1zl =X, 122 =X, Iz8 = X 1Z1 = 0, 1Z2 = -1, IZS = 10 EXTRA

EQUIPOTENTIALS AT THE INDICATED VALUES OF Z.

IZ1 and IZ2 are the end points of a line segment, at EQUIPR, along
which some extra equipotential lines will be started. The lines will be
equally spaced by IZS, instead of by voltage, so that their density will
not mean field gradient. The default value, IZ2 = -1, turns this device

off.

C. Plotting Controls

(1) SCALE 'YES' SCALE = ' ! 'YES'=DIFFERENT X,Y SCALES

SCALE

]

'YES' allows the axis routines to adjust both the X and Y
scales to take maximum advantage of the size of the paper. The default
value constrains the axis to have the same scale factor in both direc-
tions, thus preserving the actual proportions. Using SCALE = 'YES'
allows the plots to show more detail between trajectories in problems

with low height/length ratios.

(2) sx

XX SX

22 MAX. HORIZ. PLOT LENGTH

(3) sY = XX SY

Il
el

MAX VERTICAL PLOT HEIGHT

SX and SY control the area for each picture. The dimensions are
given in inches. SX can be adjusted to suit the length of a given
problem.

Plot data generated by the program are stored on an external file
(disk) in a format very similar to that normally used as input to the
software supplied with CALCOMP plotters. A separate job, or second job

step, can then be run to generate the plots. A simple program is
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printed in the appendix to convert these data to make CALCOMP plots.
Other plotter software such as that used at Stanford can be programmed
by making the appropriate calls to the local subroutines. With the
changes that resulted in the above system, a programmer at another
installation does not need to search for plotting commands within the
electron trajectory program. Conversion to local software is usually

quite simplified.

D. Magnetic Fields

Magnetic fields play a vital role in steering and focusing many
kinds of electron beam devices. The capabilities and limitations of the
magnetic field implementation in the program will be described in this
section. The following areas will be discussed:

1. Magnetic Field Input; (a) axial, (b) ideal coils, (c) vector

potential data;

2. Off-axis field expansions;

3. Magnetic fields in Rectangular Coordinates.

1. Magnetic Field Input
In the present implementation of the program, there are three meth-
ods of inputting magnetic field data:
(a) By reading in the field on the axis using either a poly-
nomial expansion or by reading the full array,
(b) By specifying ideal coils (radius, position and strength).
(¢) By reading in vector potential data from the output of a
two~dimensional magnet design program such as TRIM or

POISSON.
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(a) The data cards for an axial magnetic field are put in
before the boundary data. The format was briefly described in Section V,B.
The input data for the polynomial method consist of MAGSEG segments of
data including: 'Z1' to 'Z2' with origin at 'Z3' (three integers) and

seven coefficients, BZ, Bl, B2,...,B6;
B=BZ + Bl #* DZ + B2 * DZ %% 2 +,,.+B6 % DZ ** 6, where DZ = Z - Z3.

For the sixth order expansion, the field must start six units behind the
cathode or starting point, and go six units past ZLIM. In rectangular
coordinates, the normal magnetic field is in the transverse (phi)
direction.

The NAMELIST input for RLIM, etc., (&INPUTL) includes the parameter
MAGSEG (default MAGSEG = 0) which determines how many segments are to be
read, each with &INPUT2 and &END cards. Each segment consists of the .
data for Z1, Z2 and Z3 followed by the array BC in NAMELIST format.

Z1 and Z2 are the end points of a line segment on the axis
(Z1 < Z2) in the range -6 < Z1, Z2 < ZLIM + 6. It is necessary to per-
mit fields to be described beyond the ends of the problem in order that
the off-axis fields can be calculated at the ends of the problem. Z3 is
the local origin for the polynomial expansion in powers of DZ = Z - Z3;
Having a local origin simplifies the input of, for example, a straight
line that does not go through (0,0). As many of the coefficients BZ,
Bl, etc., can pe used as are necessary, simply by setting the remaining
ones to zero.

In cylindrical coordinates, this field must be in the axial direc-
tion. In rectangular coordinates, the field on the axis may be either

in the direction normal to the plane of the plot, i.e., in the PHI
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direction, where PHI is the orthogonal linear coordinate to R and Z, or
in the R (vertical) direction.

With the above format, data can be entered with any degree of poly-
nomial up to 6. The data may be divided into segments ranging from a
point at a time to the whole length of the problem. Typically, magnetic
measurements of an axially symmetric permanent magnet will be taken on
the axis. The data are then frequently smoothed by a polynomial least
squares fitting program and the resulting coefficients read into the
program. Alternatively, a field may be designated by the user as in the
example problem, segmented into short lengths of quadratic or linear
dependence, and read in to the program. Either method will usually give
a good representation of the field on the axis. However, difficulties
arise when the program needs to calculate the off-axis fields. These
will be described in Section 2, below.

A separate provision allows one to read in the BZA array directly.
Note that this array starts with BZA(1l) at Z = -6 and goes to
BZA(ZLIM + 13) at Z = ZLIM + 6. The program switches to this mode by
having MAGSEG < 0, i.e., if MAGSEG = -1, then a different NAMELIST,
&INPUT3, is called to read the array BZA ( ). If measured and/or
plotted data are used, note especially the inherent risks in expanding
such data for the off-axis field components. This format lends itself
readily to computer calculated output, properly edited, and with up to
15 effective decimal digits.

(b) The data for ideal coils are read in as part of the
INPUTS5 starting conditions. The starting conditions pertaining to mag-

netic fields are as follows:
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MAGNETIC FIELDS

METHOD ONE: READ IN AXTAL FIELD.

RMAG = X.X RMAG = RLIM/2 OFF-AXIS MAG FIELD LISTING
ZMAG = X.X ZMAG = ZLIM + 6 B CONSTANT BEYOND ZMAG
MAGORD = X MAGORD = 2 HIGHEST ORDER FIELD TERM < 6

IF MAGORD < 0, RECT. COORD. MAG FIELD ARRAY BZA IS IN THE R DIRECTION

NMAG = X NMAG = 0 NO. OF FIELD COILS (SEE BELOW)

METHOD TWO: READ IN POSITION AND STRENGTH OF NMAG IDEAL COILS

NELL = 1 NELL = O 1 FOR ELLIPTIC INTEGRALS
CR(I) = X.X CR(I) = RLIM RADIUS OF COIL (MESH UNITS)
Cz(I) = X.X CZ(I) = 0.0 AXTAL POSITION OF COIL
M(I) = X.X CM(I) = 0.0 CURRENT IN AMPERE TURNS

B(AXIS) = 0.2 * CM * PI * CR ** 2/SORT (((Z -CZ) ** 2 + CR ** 2)) #** 3 GAUSS
WHERE I IS COIL NUMBER, E.G., XZ(2) = 20.0.
'METHOD ONE' REFERS TO THE POLYNOMIAL INPUT JUST DESCRIBED.
(1) RMAG = X.X RMAG = BLIM/2 OFF-AXIS MAG FIELD LISTINGS
RMAG is used only by an output routine that prints the axial and
radial components of the magnetic field at the radius RMAG. The default
value is chosen to be typical of the maximum radius of the beam, but it
should be adjusted to suit the problem. For a pencil beam, RMAG should
be equal to the expected average beam radius (in mesh units). This
printout is a useful diagnostic device to check on unrealistic off-axis
components that can result if the inputs have discontinuities in one of

the higher derivatives.
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(2) ZMAG = X.X ZMAG = ZLIM + 6 B CONSTANT BEYOND ZMAG

ZMAG permits some simplification of data by setting the axial field
from ZMAG to ZLIM + 6 equal to the calculated value at ZMAG. The prin-
cipal use for ZMAG is where a converging magnetic field in the gun
region merges into the uniform field of a solenoid. The field expres-
sions or coils must describe a field which converges to parallelism at
the solenoid entrance, and ZMAG is then the Z coordinate (in mesh units)
of this point.

The default value of ZMAG (ZLIM + 6) ensures that it then has no
effect in the working region up to ZLIM.

ZMAG is a positive integer.

(3) MAGORD = X MAGORD = 2 HIGHEST ORDER FIELD TERM < 6
MAGORD is the highest order term, in powers of R, that will be used
to calculate off-axis fields. It is not related to the power of the
polynomial input. Usually MAGORD has one of the values, 2, 4 or 6. 1If
MAGORD is higher than warranted by the quality of the data, particu-
larly if data from magnetic measurements are used, then the off-axis
fields may be just plain nonsense. If MAGORD < O (rectangular coordi-
nates only), the array BZA ( ), on the z-axis, is taken to be in the R
directions. Off axis expansion, in powers of R, are used to generate BZ
(off axis). This case is suitable for quadrupole symmetry in rectangu-

lar coordinates as viewed end-on to the beam.

(4) NMAG = X NMAG = 0 NO. OF FIELD COILS
"Method Two" refers to the method of ideal coils. NMAG is the num-

ber of ideal circular current loops, centered on the axis and lying in
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planes perpendicular to the axis. NMAG may have any positive integer
value, but practical field shapes can usually be represented by no more

than 11 coils, which is the array size. Each coil is described by three

parameters:
CR(I) = radius of coil (mesh units);
cz(I) = axial position of coil;
cM(I) = ampere-turns;
where I = 1 to NMAG

The index is not related to the strength or position of the coils. Some
methods of obtaining CR and CM values that will fit a desired field are
discussed in Ref. 7.

The subsidiary parameters RMAG and ZMAG which have been discussed
above, apply equally to method two (coils) as to method one.

All CR( ) values must be positive (not zero, or a zero divide will
occur); CR is not restricted to be within RLIM, but may have any posi-
tive value. It need not be an integer. The CR values should be larger
than the beam radius to avoid strong local non-uniformities.

CZ( ) values may be positive, negative or zero, integer or decimal,
and are not restricted by ZLIM. The program calculates the field only
within the working space RLIM x ZLIM, but the coils may be inside or
outside this space.

CM( ) values are unrestricted.

All the coil data are entered in the &INPUT5 NAMELIST block.

Examples of magnet field entry using coils (these data represent a

field converging into a solenoid which starts at Z = 100):
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(last boundary card)
888
&INPUTS

(usual START cards)

NMAG = 3,
ZMAG = 100,
RMAG = 5,
CR(1) = 150,
Cz(1) = 6.8,
cM(1) = -900,

CrR(2) = 50.0,
CZ(2) = 50.0,
cM(2) = - 2000,
CR(3) = 32.0,
CZ(3) = 100.0,
CcM(3) = 31000,
&END
(Card start data, if any)
/*
2. Off-Axis Field Expansions
The two input methods described above both result in an array of
fields from Z = -6 to Z = ZLIM + 6. The array is for the axial field
and is in double precision. With this number of significant figures,
it is possible to get meaningful results for finite differences up to

the sixth difference, which is necessary for the sixth order derivative
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used to find the off-axis fields. Each difference requires one larger
value of n in Z £ n, the range used to find the field at Z, at any
radius. The range Z * 6 requires that the fields be specified beyond
the limits of the problem from Z = -6 to Z = ZLIM + 6.

To sixth order, the field expansions are8

o}
]

B (2) - RZ(a%s/az® - a*B/az® - R%/16 + ajaz® - R%/576)74  (10)

_R(dB/dZ - d°B/dz> + R%/8 + d°B/dz” - R°/192)/2 (11)

o]
]

By specifying MAGORD = 2 or MAGORD = 4, the derivatives higher than
MAGORD are set to zero. This results in a less accurate expansion, if
the original data are worthy of the high order differences. If they are
not, then the result of the lower order expansion is apt to be far more
acceptable. Generally, measured data, no matter how smoothed, are only
worthy of second order expansion. Synthesized data from an ideal curve,
if there is only one segment, can generally be expanded to fourth order.
Coil data can be expanded to sixth order. Note, however, that it is
virtually impossible to use the full sixth order expansion with either
measured data or arbitrary polynomials, especially if more than one seg-
ment is to be fit together without running the risk of having a very
unphysical result. The off-axis fields generated by poor models; or
ones with insufficient accuracy, are apt to show very wild fluctuations

with extremely large peak values.

3. Rectangular Coordinate Expansions
In rectangular coordinates, the usual expansion is normal to the

plane of the paper. The central plane, with coordinate PHI = 0, can be
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thought of as the median plane of a magnet whose pole face is normal to
the z-axis, i.e., dB/dR = 0.

The off-median-plane expansion is

_ 2 2 2
Boup = BPHI(Z) PHI d“B/dz (12)
B, = PHI - dB/dz (13)

The alternative expansion has the median plane lying normal to the
R-Z plane, at R = 0. The off-axis expansion is then in the R direction.

The second order expansion has been adequate for the applications
that have been made. One example is the "alpha'" magnet deflection system
used to bend the low energy SLAC beam from the gun to the line of the
accelerator. A proper choice of angle makes the vertical focusing of
the pole face edge compensate for the verticél phase space of the beam.
Runs at different entrance angles, using the measured field profile of
the magnet, were used to determine the optimum angle. Space charge of a
cylindrical beam, in rectangular coordinates can be included in such

runs by the features described for CARD starting in section VI.G.

4. Elliptic Integrals
For coil input (Method Two'), if elliptic integral routines are
available at compilation, a table of off-axis fields with elliptic inte-
gral calculations is printed. 1If NELL = 1 in &INPUT5, the elliptic
integrals are used for the ray tracing.
(c) Inputting Vector Potential Data
In &INPUT1, the option iNTPA = ,TRUE., calls for &INPUTA to be

called next. The condensed instructions are:
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&INPUTA ' (TO INPUT VECTOR POTENTIAL DATA)

RRO=X.X RR0=0.0 POSITION OF FIRST ELEMENT OF A( ), IN MU
220=X.X 220=0.0 RELATIVE TO ORIGIN OF GUN PROB.

DELR=X.X DELR=1.0 INCREMENT IN R (CM) FROM POSSON/EDIT
DELZ=Z.Z DELZ=1.0 INCREMENT IN Z (CM) FROM POISSON/EDIT

RLMAG=XX  RLMAG=30 NUMBER OF ROWS OF A( ) DATA
ZIMAG=XX  ZLMAG=200 NUMBER OF COLUMNS OF A( ) DATA
AC) VECTOR POTENTIAL DATA ARRAY OF A, EXCEPT A*R AT R=0

UNITS OF A IN GAUSS-CM. A( ) IS A LINEAR ARRAY WITH
COLUMNS RLMAG LONG. MAX SIZE OF A( ) IS 8000.

Use of thisvoption requires the output from a magnet design pro-
gram, such as POISSON, which scolves for thé magnetic field including iron
segments, which may even be partially saturated. The output of such
programs is usually in the form of an array of the azimuthal component
of the vector potential A( ). This array is currently set to a maximum
of 8000 elements, but may be reduced to one element to save space for
users not interested in this option. The array elements correspond to
points in a rectangular mesh which does not need to coincide with the
mesh used for the electrostatic problem. To save running time for the
magnet program and to reduce storage requirements for the data, it is
preferable to identify a rectangular area that is expected to include
the space that the electron trajectories will require. The array starts
at RRO, ZZ0O, proceeds in steps of DELR in columns RLMAG long, and con-
tains ZLMAG columns separated by increments DELZ. During operation,
the program finds the differences from the four points neareét the par-

ticle to find the components BR and BZ.
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E. General Cathode and GENCARD
START GENERAL
START = 'GENERAL' START = 'GENERAL' GENERAL CATHODE
RC = X.XXX RC = 0.0 LOWER END OF STARTING SUR-
FACE
ZC = X.XX ZC = 24-CATHODEZ CATHODEZ IS Z VALUE OF
BOUNDARY FROM FIRST
DATA CARD.
CL = X.XX CL = RLIM MAXIMUM LENGTH OF STARTING
SURFACE
DENS = XX.X DENS = 10.0 MAXIMUM EMISSION (A/CM*%2)
BETA2 = 1.0 BETA2= 0.0 IF > 0.0 USES LANGMUIR-
BLODGETT
RAD = X.X - USE RAD FOR WIRE RADIUS IN
RECTANGULAR COORDINATES,
BETA2 > 0.0
SURFACE = X SURFAC =1 STARTING SURFACE ITERATION

USE POT(5) FOR NON-EMITTING SURFACE, E.G.
HOLLOW CATHODE OR SHADOW GRID.

POT(3) OR POT(5) FOR FOCUS ELECTRODE ...
USE POT(4) TO STOP ELECTRONS ON IMPACT.

DO NOT USE

START GENCARD

' GENENERAL'

START = 'GENCARD' START =
HAVE UP TO MAXRAY CARDS WHICH SPECIFY:
1) RAY NO.
2) INITIAL RADIUS R
3) INITIAL AXTAL VALUE Z
4) DISTANCE FROM CATHODE DX (CATHODE MUST BE POT(1)).

5)
6)

NORMAL DX IS 1.0 TO 2.0 MESH UNITS.
NORMAL DR IS 1.0 BUT MAY BE VARIED ALONG THE SURFACE.
NORMAL ALPH2 IS 1.0 FOR A PLAIN DIODE.

FOR CYLINDRICAL COORDINATES:

EFFECTIVE SPACING BETWEEN RAYS, DR.
PARAMETER WHICH MODIFIES CHILD LANGMUIR EQUATION. ALPH2

ALPH2=(ALPHA* (RADIUS OF CURVATURE)/(STARTING STEP))**2

FOR RECTANGULAR COORDINATES:

ALPH2=(BETA**2)* (RADIUS OF CURVATURE)/(STARTING STEP)
WHERE ALPHA AND BETA ARE AS DEFINED IN THE LITERATURE,E.G.,
SPANGENBERG FOR BETA AND BREWER IN SEPTIER, VOL II, FOR ALPHA.

FORMAT IS THE SAME AS FOR CARD STARTING; RAY NO..R.Z.DX.DR.ALPH2

(15.5X.5F(10.5)).

GENERAL WITH CARD START
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This section describes the use of the GENERAL cathode method which
applies to anything that cannot be described using the assumptions of a
spherical cathode. It includes the GENCARD option.

In calculating starting conditions using Child's Law, the basic
assumption is that of space charge limited emission. Mathematically,
this means that the electric field on the surface of the cathode is
zero. Thus, in order to calculate the emission current, the calculation
must start some finite distance from the cathode. This leads to the use
of Langmuir diodes, or pill boxes, which become annular in shape in cyl-
indrical coordinates. The typical thickness is 2.0 mesh units, with the
range 1.0 to 3.0 generally acceptable.

The basic Child-Langmuir equation for emission in a plane diode is9

J = 2:335 x 10—6V3/2 in amperes per unit area (14)

2

X

The 3/2 power dependence of the thermionic emission current density
leads directly to the concept of perveance here defined as the constant K

in the expression

3/2 -6

I = KV x 10 (15)

Since K depends only on geometric factors, the perveance becomes an

identifying characteristic of the device. Because of common usage, per-

-6
veance for the program is expressed with the implied factor of 10 -,

3/2

i.e., microperveance having units microamperes per volt .
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The central problem for the GENERAL cathode starting routine is to
define the starting surface and to calculate the distance x for the
thickness of the pill box. The starting surface is initiated at the
point (RC,ZC) with default values RC = 0 and ZC = 2.0 + CATHODEZ. The
default point represents a point on the axis, 2 mesh units in front of
the Z value of the first boundary point. If the cathode does not start
on the axis, a different value for RC must be used. If the first bound-
ary point does not describe the beginning of the cathode, then a differ-
ent value of ZC must be used.

The term CATHODEZ refers explicitly to the value Z + AZ of the first
boundary point. It is frequently convenient to make the R = 0 intercept
of the cathode be the first boundary point, but there is no rule about
this. The starting step (or diode thickness) of 2.0 mesh units can also
be adjusted by using a different value of ZC. The parameter ST, used
for spherical starting, does not apply to GENERAL starting.

The starting surface is calculated by starting an equipotential
line at (RC, ZC) and following it, in one direction only, until one of
three things happens:

1. The line leaves the boundary of the problem.

2. The line becomes longer than the parameter CL. (default;

CL = RLIM)

3. The boundary points intercepted by a line drawn at right
angles to the starting surface, extended to the left as viewed
along the line starting at (RC, ZC), cease to be represented
by POT(1) or POT(5). Emission will occur from surfaces repre-

sented by POT(1). No emission will occur from POT(5) surfaces;
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hollow cathodes or shadow grids may use POT(5). Any other
potential number will cause the line to stop, with the excep-
tion that POT(3), usually used for grids, will not stop the
line because it may be so close to the starting surface that
confusion would result. Thus the notes suggest using POT(4)
to end the starting surface.

Tests 1 and 2, above, are included as "safety valves." Test 3 is
intended to determine the length of the starting surface. As the start-
ing surface has to follow a more tortuous curve, due to holes, wires and

corners, the equipotential parameters EQLN and EQST may be adjusted as

described in Section VI.A.

DENS = X.X DENS = 10.0 MAX EMISSION (A/CM*#*2)

DENS limits the current density to a maximum value controlled by
the user. It can be used to limit the emission as in temperature
limited emission. The normal use is to avoid extreme values of current
from local high-field points until space charge depression becomes
effective on subsequent iterations. Note that temperature limited emis-
sion can also be simulated by using PERVO and HOLD as described in

Section VI.A.

BETA2 = 1.0 BETA2 = 0.0 IF > 0.0, USES LANGMUIR-BLODGETT

RAD = X.X USE RAD FOR WIRE RADIUS IN RECT. COORD. BETA2 > 0.0

BETA2 and RAD refer to the parameters 62 and r, in the Langmuir-
Blodgettlo theory of emission between coaxial cylinders. The material
is covered in Ref. 8. The Langmuir equations are included in the pro-

gram for the particular case. of emission from an array of wires in
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rectangular coordinates. BETA2 is calculated internally once it has
been activated by the user specifying a value greater than 0.0. The
program uses the distance from the wire, the radius RAD of the wire, and
the Langmuir equations to calculate currents in each ray. More than one
wire can be used provided that the starting surface can get from one
wire to the next by "seeing' POT(5) surfaces between wires. The wires
that emit are of course POT(l). The current per mesh unit in length (in

rectangular coordinates) is

—6V3/2

I/9 = 14.66 x 10 /(r - 82) amperes/mesh unit (16)

where r is the starting radius in mesh units and

82 = UL - 0.4 U+ 0.34k U?) where U = n(r/RAD).  (17)

The more usual configuration of emission from a flat or concave
surface in cylindrical coordinates is treated by the program if
BETA2 = 0.0. Then the program treats the annular pill boxes formed by
dividing the starting surface into a number of equal segments. The num-
ber of rays is calculated by the program to be the largest number
(< MAXRAY) that can be distributed evenly along the starting line,
i.e., 1 or 2 per mesh unit, not 1.5!

The program determines the potential at the point on the starting
surface from which the rays are to start and calculates the starting
velocity and the current using either the equation for cylindrical emis-
sion, if in rectangular coordinates, or the equation for emission from

11 . .
concentric spheres =~ in cylindrical coordinates:
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: -6_3/2
1 = 2:33 ; 10 2V p & p amperes per radian (18)
r (-a)
c
where
and
Y = G, - ©/r,] (20)

where, as in (1l4), x is the thickness of the pill box, and in which r,
is the radius of the cathode and p and 8§ p are the radius and thickness
of the annular ring on the starting surface. This equation calculates
the current in a one radian segment of the annular ring. The program
prints this current in the one radian segment in the table of initial
conditions. Under final conditions, the current is printed divided by
the initial radius, p. This column gives a measure of current density
to determine uniformity of cathode loading. The cathode radius r. is
estimated for general cathodes by comparing the length of the cathode to
the length of the starting surface. This may be incorrect if the cath-
ode does not have a constant radius of curvature but the result is so
close to the simple 1/x2 dependence that the discrepancy does not seem
generally significant.

For cases involving cylindrical coordinates, for spherical and gen-
eral cathodes, the starting step is much smaller than the radius of
curvature. Thus, it is possible to simplify (19) by expanding it to

second order in (x/rc):

ri (—a)2 = x2(1 + 1.6 x/rc + 2.06 xz/ri) (21)
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in which x has been redefined as positive for the usual case of a con-
cave spherical emitting surface. With this change, (14) and (18) are
essentially the same except for the correction factor, the term in paren-—
theses in (21), called ALPH2 in the program. It is this term that is

called for explicitly in the input for GENCARD.

SURFAC = X SURFAC = 1 STARTING SURFACE CYCLES

SURFAC controls the number of program cycles for which the starting
surface will be regenerated. Frequently, the most satisfactory looking
starting surface is generated on the first cycle, without space charge
depression. The starting surface, it should be recalled, is only a
locus of starting points from which particles start out in the direction
of the electric field. The potential difference between the starting
point and the cathode determines the initial particle velocity and the
current for that ray. As space charge depression is included, the shape
of the starting surface may, or may not change, although generally the
potential on it will change. In any case, it is well to limit the num-
ber of cycles during which the surface is recomputed so that the final
cycles converge to a stable solution. SURFAC controls the number of
such cycles and, while it may often be more than one, it should gener-—

ally be 2 or 3 less than NS, the total number of cycles.

General Cathode Diagnostics
If the START = 'GENERAL' option is selected, the program will print
a special table of the appropriate constants: RC, ZC, CATHODE LENGTH,

MAXRAYS, etc. After successful calculation of a starting surface, the

message
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STARTING SURFACE: LENGTH =X.X ENDS AT RHO=X.X, ZETA=X.X

will appear. Next the headings for the initial conditions will be
printed followed by the initial condition data.

If the starting surface fails by not being able to trace an equi-
potential for at least two mesh units, or because it is asked for points

outside of the problem, then the message:

GENERAL CATHODE STARTING SURFACE FAILED : LENGTH =X.X

ENDS AT RHO = X.X ZETA=X.X

is printed. If SURFAC > 1 and this failure occurs on the second program
cycle, then the program will cycle once more with a smaller perveance
(currently 80%) and try again to fit the starting surface. Otherwise,
the program will terminate, but in either case the complete potential

map will be printed to aid in diagnosis of the difficulty.

GENCARD is a starting option introduced to permit better response
to highly nonuniform cathodes. A specific example would be the sharp
outer corner of a right cylinder emitting from the end face. This cor-
ner is usually handled poorly by START = 'GENERAL' because of implicit
assumptions that the radius of curvature of the surface is much greater
than the starting step. GENCARD was specifically intended for use with
high current field emission devices, but applies also to thermionic
emitters.

GENCARD combines some of the functions of GENERAL with the basic
philosophy of CARDS in which the user specified all the starting condi-

tions. 1In GENCARD, the user specifies the initial coordinates RO,ZO;
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the effective distance to the cathode DX; the spacing between rays DR;
and the "fudge factor" ALPH2. Thus the user has defined all the param-
eters needed to start the space charge limited problem except initial
energy and direction. These afe calculated by the second part of SUB-
ROUTINE CHILDA which is the subr;utine called by GENERAL. The first
part of CHILDA calculates the starting surface, and is not needed by
GENCARD.

The parameter ALPH2 is the term in parentheses on the right side

of (21). In rectangular coordinates, ALPH2 corresponds to the BETA2 of

Ist power factored

the literature with (STARTING STEP/CYLINDRICAL RADIUS)
out. The effect of this is to make the normal, i.e.; plain diode, value

of ALPH2 = 1. Anything else is a perturbation at the user's control.

F. Spherical Cathode

START SPHERE

START = 'SPHERE' START = 'GENERAL' SPHERICAL CATHODE
RAD = X.XX RAD = 2%ZLIM SPHERICAL RADIUS

RMAX = X.XX RMAX = RLIM CATHODE RADIUS

ORAD = X.XX ORAD = CATHODEZ CENTER OF CATHODE

ST = X.XX ST = 2.0 STARTING STEP

'SPHERE' ALSO WORKS FOR CYLINDRICAL
CATHODE IN RECTANGULAR COORDINATES

IF START = 'SPHERE' is elected, the program will first print the
special table of parameters for the spherical cathode: SPHERICAL
RADIUS, CATHODE RADIUS, CATHQDE CENTER, etc. The first two values,

RAD and RMAX, determine the essential geometry of the spherical cathode

as skhown in Fig. 5. Obviousiy the default values, 2 x ZLIM and RLIM
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Fig. 5. Basic geometry for spherical cathode configurations
defining the input parameters.
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respectively, have almost no chance of being correct, so the user must
specify them. The default value for ORAD, the cathode center, is at
CATHODEZ, the first boundary point as defined for the general cathode in
Section VI.E. The starting step ST, is the value used for the thickness
of the Langmuir pill boxes. As in the START = 'GENERAL' case, in cylin-
drical coordinates these pill boxes are annular rings and the current is
that current in a one radian segment of that ring. The current is cal-
culated as in Eqs. 18-20 using the geometry of Fig. 5. Figure 6 is the
plotted output of the sample problem of Fig. 2 using START = 'SPHERE'.

In rectangular coordinates, START = 'SPHERE' operates with the same
input and the same geometry to calculate the current per mesh unit in
the direction normal to the plane of the paper. Again, as in START =
'GENERAL' Egs. 16-17 are used according to Ref. 8.

Immediately after printing the headings the spherical cathode rou-

tines print a message:
ITERATION NO. X, I = X.X MICROAMPS, PERVEANCE = X.X MICROPERV.

The current and perveance printed are those calculated according to the
fields and geometry by the appropriate equations as indicated above. 1In
other words, these are the unnormalized values. After printing this
message, the program averages the perveance according to the method
described under PERVO in Section VI.Z. The initial currents that are
printed out with the initial conditions reflect this averaging process.
Between the initial and final conditions, the same message as above is
printed, except with the normalized values for current and perveance.

As in START = 'GENERAL' the currents printed with the final conditions
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are divided by the initial radius (if in cylindrical coordinates) and

thus give a measure of uniformity of cathode loading.

The special case of magnetic fields reaching the cathode, i.e.,
"immersed flow" is treated by both SPHERE and GENERAL according to
Busch's theorem.12 The program must use magnetic fields on the cathode
and on the starting surface to integrate the azimuthal motion through
the gap between the cathode and the starting surface. If there is any
inconsistency in the off-axis magnetic fields within * 6 mesh units of
the entire range of the starting area, then peculiar bunching of the rays
will occur. That is why the proper use of MAGORD and the careful input
of fields near the cathode were stressed in Section VI.D. Fortunately,
any problem of this sort becomes immediately obvious on examination of

either the starting conditions or the plots.

G. Card Starting

The program starting instructions are as follows:

START = 'CARDS' START = 'GENERAL' CARD STARTING
20 = X.XX 20 = 0.0 OLD ORIGIN IN NEW FRAME
SKAL = X.XX SKAL = 1.0 OLD MESH/NEW MESH

HAVE UP TO MAXRAY DATA CARDS WITH (1 INTEGER, 6 FLOAT PT.) NO., R,
Z, EMERGY (EV), ANGLE (RADIANS), CURRENT (MICROAMPERES IN ONE RADIAN
SEGMENT), TRANSVERSE ANGLE, TRANSVERSE POSITION (PHI). FORMAT I5, 5X,
7F10.5. OLD USERS GETTING THE NEW VERSION OF THE PROGRAM SHOULD NOTE
THE CHANGE TO TRANSVERSE ANGLE AND TOTAL KINETIC ENERGY.

STOP READING WITH RAY NO. GREATER THAN MAXRAY.
IF RECTANGULAR COORDINATES:

PHI IS TRANSVERSE POSITION IN MESH UNITS.

CURRENT IS MICROAMPERES IN ONE MESH UNIT DEEP SEGMENT.
*%**SPECTAL TESTS IN RATNST; CROSSING OR 3-D CPACE CHRAGE#**

IRAT=1 IRAT=0 3-D SPACE CHARGE

IRAT=2 IRAT=0 CROSSING DETECTION
USE OF NEGATIVE RAY NUMBERS:

A) IF IRAT=1 (3-D SPACE CHARGE)

1) MAKE RAY NUMBERS NEGATIVE FOR BEAM EDGE CARDS.
USE BEAM EDGE CARDS (10=0) TO STIMULATE SPACE CHARGE SPREADING
OF A CYLINDRICAL BEAM OF CURRENT I AND RADIUS R IN RECT. COORD.
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PATRS OF BEAM EDGE CARDS PRECEDE SETS OF RAY CARDS DEFINING
PART OF BEAM FOR WHICH 3-D SPACE CHARGE SPREADING IS TO BE SIMULATED.
SEVERAL PARTS, DIFFERENTTIATED BY SELECTED ATTRIBUTES; E.G., ENERGY
ALPHA OR RADIUS, CAN BE USED SIMULTANEOUSLY WITH ANY NUMBER OF RAYS
IN EACH PART. END OF PART IS DEFINED BY NEXT RAY WITH NEGATIVE RAY
NUMBER, WHICH BEGINS THE NEXT PART.
TO SIMULATE CYLINDRICAL BEAM SPACE CHARGE IN RECT. COORD. MAKE
CURRENT PER MESH UNIT, I' = I/(PI*R) INSTEAD OF I' = 2 * I/(PI * R)
WHICH WOULD HAVE THE SAME CURRENT DENSITY. 1IN OTHER WORDS, MAKE
I'(K) = I(K)/(2*R(K)) INSTEAD OF I(KX)/R(K). NOTE THAT THIS REQUIRES
TWICE AS MANY RAYS AS FOR CYLINDRICAL BEAM WITH SYMMETRY.
BEAM EDGE CARDS (RAY < 0) APPLY TO OFF-AXIS PENCIL IN CYL. COORD.

The START = 'CARDS' mode uses data cards for the initial conditions
rather than computing the initial conditions from a thermionic model.
There are several typical applications for this feature that will be
described in some detail. These are:

1. The simplest case of user specified data.

2. Use of cards generated by a preceding run to restart in a new

segment of the same problem.

3. Study thermal and other perturbing influences on a beam.

4. Rectangular coordinate application with a cylindrical beam,

including cylindrical space charge and off-axis bends.

1. Format for User Specified Data

If START = 'CARDS' has been selected, the program will respond by
printing a table of appropriate parameters: STEP, NS, Z(0), SKAL,
UNIT. Following the end of the NAMELIST input &END card, the program
will expect to read up to MAXRAY cards with the starting data. A card
with ray number greater than MAXRAY will terminate this input. If MAX-
RAY cards are present, the termination card should be used anyway. How-
ever, no effort should be made to make MAXRAY agree with the number of
cards used, so long as it is big enough. The computer can, after all,

count better than most humans.
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Data to be entered on the ray cards consist of a ray number and

the initial values for R, Z, ENERGY, ANGLE, CURRENT, TRANSVERSE ANGLE

and TRANSVERSE POSITION. The format is 15, X5, 7F (10,5).

(a)

(b)
(c)
(d)

(e)

(£)

(2)
(h)

Ray Number: the ray number is only included for user conven-
ience, and for the termination purpose described above. Rays
are numbered by the program, sequentially as the cards are
read in. Negative ray numbers have special implications that
will be described below.

R: the initial radial position in mesh units.

Z: the initial axial position in mesh units.

ENERGY (EV): The initial kinetic energy of the particle in
electron volts. It should be obvious, but sometimes requires
stating, that ENERGY has nothing whatever to do with the poten-
tial values on the boundaries, or on the potential at which the
ray tracing starts. For ray tracing, only fields are impor-
tant, not absolute potentials.

ANGLE: the initial angle that the ray makes with respect to
the z-axis, in radians.

CURRENT: the current in microamperes for a one radian segment
of that ray. In rectangular coordinates, it is for a one mesh
unit deep segment.

TRANSVERSE ANGLE: the angle normal to the R-Z plane.

PHI: the initial transverse position. In rectangular symme-
try, PHI is a linear coordinate, measured in mesh units. In
cylindrical symmetry, PHI is the azimuthal position in

radians.
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2. Use of Program Generated Cards

At the end of a run, the program generates a set of cards with the
final conditions of each ray according to the above format. These cards
may be punched, or saved as a data set in card format on a direct access
device. If it is planned to use the cards in a subsequent run, it is
only necessary to be sure they are saved somehow. In a pinch, the same
data are printed in the final conditions of the output and can be hand
punched.

Typically, these cards are intended to be used in a subsequent seg-
ment of a problem. Thus the results of the sample problem, Fig. 2, are
intended to be used in the complete gun with card starting just past the
grid. Between runs, it is normal to expect that a different scale and
origin will be used, otherwise there is not much reason for the second
run. The companion parameters ZO and SKAL are used to modify the data,
as read in on the cards, as follows:

20 = X.XX Z0 = 0.0 OLD ORIGIN IN NEW FRAME

SKAL = X.XX SKAL = 1.0 OLD MESH/NEW MESH

In words, if the first problem is plotted on the same graph with
the second problem, then the origin of the first problem will be found
displaced left or right by ZO mesh units in the new coordinate system.
Usually Z0 is negative. SKAL is interpreted as the ratio of sizes of mesh
units (in meters). Thus a problem in which many mesh units were used to
calculate cathode conditions will have a relatively smaller mesh than

the follow on problem and SKAL < 1.0 in this example.
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3. Thermal Effects

SUBROUTINE THERM IS CALLED IF THE PARAMETER TC > O.

TC=XXXX.X TC =0 KELVIN TEMP. OF CATHODE
TWO MODELS ARE INCLUDED IN THIS VERSION

KRAY=3 KRAY=1 THREE RAY SPLIT

KRAY=5 KRAY=1 FIVE RAY SPLIT

THREE RAY SPLIT PUTS CURRENTS IN 1-2-1 RATIO WITH 2 PARTS IN
UNDEFLECTED RAY AND 1 PART EACH IN RAYS WITH V(PERP)=SQRT (2KT/M)
IN R-Z PLANE, UP AND DOWN RELATIVE TO UNDEFLECTED RAY.

FIVE RAY SPLIT PUTS CURRENTS IN 1-9-0-9-1 RATIO WITH
V(PERP)=2*SORT (2KT/M) FOR 1 PART RAYS AND V(PERP)=1*SORT (2KT/M)
FOR 9 PART RAYS. NO CURRENT IN CENTER RAY.

USERS SHOULD FEEL FREE TO MODIFY SUBROUTINE THERM.

THERM CAN BE CALLED FOR START='SPHERE', 'GENERAL', 'CARDS'.
OR 'GENCARD'.

IT CANNOT BE USED_FOR START='CARDS' WITH SAVE=2.

4, Rectangular Coordinates with Cylindrical Beams

The basic assumption in rectangular coordinates is that the beam
consists of a sheet extending infinitely in the directions in-and-out of
the problem. The space charge forces on such a beam are much greater
than in cylindrical symmetry because the field does not fall off by 1/R.
However, if the current is properly reduced, the transverse space charge
forces can be made the same as they would be for a cylindrical beam.
Further reductions in the current can compensate for further expansion
of the beam.

Consider first a uniform density cylindrical beam of total current T
and radius R. The current density is J = I/ﬂRz. If one wished to have
a rectangular symmetry beam of thickness 2R at the same current density,

the total current per unit length would be

I' = 2RJ = 2I/7mR (equal densities) (22)
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One could divide I' by some integer n and make n rays, suitably spaced,
each with a current of I'/n. If one wishes to use starting data from a
previous run, then each ray has a current per unit length I(K)/R(K).
Unless the rectangular beam has reflection symmetry on the z-axis, there
would have to be twice as many trajectories created as in cylindrical
symmetry to represent both halves of the beam.

Consider now a particle of charge e on the edge of a cylindrical
beam of radius R and current I. The radial space charge force on the par-

ticle is

mdzR/dt2 = eI/(ZNRZeO) (23)

The force on the similar particle next to a current sheet in rectangular

symmetry is

md’y/dt? = eI'/(zéeO) (24)

To make dZR/dt2 = dzy/dt2 we have only to require
I' = I/®R (equal forces) (25)

This is just one half of the result for equal densities in Eq. (21).
Thus, if the results from the previous run were treated as described
above, except divided by two, then the initial space charge forces on
the rays would be the same as in cylindrical coordinates.

A special feature allows the user to designate groups of rays, as
few as one per group, to be bounded by 'beam edge" cards which do not

carry current. As the beam edge cards spread apart, the current on all
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rays within the group is reduced proportionately. The groups may cross
or overlap, but should not cross their own beam edge rays. The initial
conditions of the beam edge rays can be chosen so that they do not cross

the rays of the group. Beam edge cards are designated by being inserted,

group. Successive groups would thus be separated by the pair of beam
edge cards for the next group.

Beam edge cards may also be used in cylindrical coordinates. In
this case, the effect would be of an off-axis pencil beam, i.e., not an
annular ring. Assuming that the thickness of the pencil is small com~
pared to the radial displacement, the same factor of one-half should be
applied to the dinitial currents as was derived for rectangular
coordinates.

B) 1IF IRAT=2 (R~-Z AND PHI CROSSOVERS)

1) R-Z: MAKE RAY NUMBERS NEGATIVE FOR SEQUENTIAL RAYS FOR
WHICH FINAL CROSSOVER SHOULD BE DETECTED. CROSSINGS WILL BE
LISTED AND PLOTTED. NEGATIVE RAY NUMBERS SHOULD BE IN PAIRS.

TO FIND CROSSOVERS WITH Z AXIS, RUN A RAY WITH R=0,ALPHA=0
PRECEDING THE RAY TO TEST AXIS CROSSING.

2) PHI: LEAVE RAY NUMBERS POSITIVE FOR TRANSVERSE RAYS TO
DETECT LAST CROSSING OF PHI=PI % INTEGER.

A special application of beam edge cards is to specifically detect
crossovers. For this application, the beam edge control code is set to
IRAT=2 in &INPUT5. The program instruction comments appear above. This
feature is used to find the locus of foci to determine the position of
the scintillator surface in image intensifier tubes. No space charge

is involved. Pairs of trajectories, started sequentially from the same
point with different initial conditions (energy and direction) are

focused to a crossing, which must be located exactly. The program finds

such crossovers and prints a table of their coordinates.
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H. Laplace's Equation Applications

'LAPLACE' START 'GENERAL' NO RAY TRACING

START

NS = X NS =7 NUMBER OF LAPLACE CYCLES
ADD DATA CARDS WITH (R,Z SPACE.CHARGE) FOR NON-ZERO POINTS. END POINT
INPUT BY R > RLIM.

Laplace's equation has many applications besides solving electro-
static potential problems. Some examples are temperature distributions
and magnetic fields.

As a reminder, by Laplace's equation one usually means V2¢ =0
while Poisson's equation is V2¢ = p. The program always solves Poisson's
equation but with p = 0 on the first iteration. Howé&er, if one selects
START = 'LAPLACE', one can then add data cards with the coordinates
(R,A), and the right hand or space charge term for any non-zero point.
These data are appended after the end of the starting namelist and are
terminated by R > RLIM.

The program will then cycle for NS cycles on just these data, with
no ray tracing. It prints the potential map or POTLIST before and after
the last cycle to show how things may be changing. Following the last
cycle, the program prints a list of the fields, i.e., the derivatives of
the potentials, on all the boundaries. Fields at specified interior
points can be obtained by making a dummy boundary go through such points.
Dummy boundary points have DELTAR = DELTAZ = 2.0 and can be fitted
according to the same rules as Neumann boundaries, i.e., along mesh
lines. The fields are normalized to 100% of the field on the'first
boundary point. Choose it carefully, i.e., not where the field is near

Z€Tro.
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To do ray tracing with the arbitrary space charge solution found
by LAPLACE, it is simply necessary to set SAVE=1 in &INPUT5 of the first,
LAPLACE, problem followed by a second problem, without boundary data,
but with ray tracing starting instructions. See the discussion under

SAVE=1 in Section VI.A.12.

I. Dielectric Boundaries

The input provision for special boundary points, described in Sec-
tion V can be used for the particular case of a dielectric boundary.

The difference equations are only affected on the boundary of the
dielectric. The normal method of using this feature is to specify

dummy boundary points, i.e., points with DELTAR = DELTAZ = 2.0, which
can be put in point~by-point or with the fitting (three-point) method as
if the points were Neumann boundaries. That is, they must lie on mesh
lines.

The difference equations were derived by Seeger13 for the special
cases of horizontal and vertical dielectric boundaries. These relatively
simple cases are sufficient for most applications because the actual
position and angle of even a curved dielectric are relatively less
important to the fields in the vicinity than the fact that the boundary
is located nearby. Thus a good approximation results from a stepwise
simulation of the dielectric and a small displacement to the nearest
mesh point does very little to the fields a few mesh units away.

The coefficients of the difference equation are given by Eq. (3) in

Section IV, and can be expressed as:
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LEFT = RIGHT = R (Vacuum)
UP =R + 1/2
DOWN = R - 1/2 (26)

For a horizontal dielectric, where € is the dielectric constant for the

lower region and €, is the constant for the upper region, the coeffi-

2

cients become:

LEFT = RIGHT = [el(R - 1/2) + ez(R + 1/2)1/2 (horizontal)
UP = SZ(R + 1/2)

DOWN = el(R -1/2) 27)

For a vertical dielectric boundary, the coefficients become

1 2
UP = (el + 62)(R + 1/2)/2

LEFT = ¢,R RIGHT = ¢_R (vertical)

DOWN = (sl + ez)(R -1/2)/2 (28)

where €1 is the dielectric constant for the left side region and €y is
the constant for the right side region. For rectangular coordinates,
set all the R's and (R + 1/2)'s to unity.

The terms LEFT, RIGHT, UP and DOWN refer to the points, 1, 2, 3
and 5 respectively in Fig. 1. The notes summarizing Eqs. (27) and (28)
in the program instructions are reprinted below;

SPECIAL BOUNDARY POINTS (INCLUDING GENERAL NEUMANN BOUNDARIES) USE
999 IN COLUMNS 3-5 TO END BOUNDARY INPUT. BOUNDARY MUST INCLUDE ALL
POINTS TO BE USED AND ALL POT NUMBERS. THEN INCLUDE ANY NUMBER OF CARDS

WITH R, Z AND FOUR DIFFERENCE NUMBERS FOR LEFT, RIGHT, UP AND DOWN,
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SEQUENTIALLY. NUMBERS SHOULD ADD TO 4 * R OR 4 IF RECTANGULAR COORDI-
NATES. END WITH R > RLIM. FOR GENERAL NEUMANN, SEE APPENDIX II. TERMS

ARE 4 * TAN@/1+TAN@) AND 4/TAN@) WHERE TAN@ < 1.

HORIZONTA

B
(@]
[
=
[sal
(@]
=
=
=
(@]
o
(@]
%

LEFT = RIGHT = (EL * (R -~ 0.5) + E2 * (R+0.5))/2
UP = E2 * (R + 0.5)
DOWN = E1 * (R - 0.5)

where E1 OR E2 = 1.0 FOR VACUUM AND E2 IS UPPER 'MATERIAL'.
VERTICAL DIELECTRIC BOUNDARY:

LEFT = E1 * R RIGHT = E2 * R
UP = (E1 + E2) * (R + 0.5)/2
DOWN = (E1 + E2) * (R - 0.5)/2

WHERE E2 IS RIGHT HAND 'MATERIAL'.

VII. TRAJECIORY CALCULATIONS

The program uses a fourth-order Runge-Kutta method of solving the
relativistic differential equations given below. Suitable substitutions
are used to reduce the three second-order equations to six first-order
differential equations.

The independent variable is time but the time interval is calcu-
lated from the allowed iteration step and the velocity. It is neces-
sary to use fairly short steps because of the auxiliary calculations

that must be made at each mesh unit. Thus it is generally not helpful
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to use any self-checking "corrector" solving routine. If some unusual
application requires shorter iteration steps, the results usually show
this by their internal inconsistency.

The relativistic differential equations are derived in Appendix I

and are
E = (1l - 62)1/2 - E (1 - 22) + ééE + éAE - céB + CAB
z T ® ¢ T , (29)
"=0L(l—62)l/2 —E(l=1.{2)+é1.{E +1.21;E+£B—CAB +‘;*—2—
R r z 10) ¢ ©® z R
(30)
and
o 2.1/2 “y . .o . . RA
A = oa(l 87) [ E@(l AT) + ZAEz + RAEr cZBr - cRBr]- R .
(31)
where
82 = Z2 + R2 + A2 and B = v/c (32)

The constant o = eA/mOc2 where e is the magnitude of the electron charge

(the "-" sign is in the equations), m0c2 is the rest energy of the elec-

tron and A is the constant of proportionality between the real coordi-

nates and the dimensionless coordinates. Thus

z = AZ, r = AR, a= ) and ct = AT (33)

By an arbitrary choice, A = 5.11 x lO5 mesh units so that o = 1.0 mesh
unit per volt. Inspection of the differential equations shows that they
are dimensionally correct if the electric fields are specified in volts

per mesh unit.
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Dimensionally E = vB, so that in mksa units E is in volts per
meter, v is in meters per second and B is in webers per meter.2 Then
cB has units of volts per meter. To convert to program fields of volts
per mesh unit, fields are multiplied by the value UNIT in meters per
mesh unit. Magnetic field input to the program is in gauss, which is
the common engineering unit, and is internally converted to
webers/meterz.

The azimuthal magnetic field B® comes from the current in the elec-
tron beam and is called the self-magnetic field of the beam. The mag-

netic field created by an axial current is

0 %— Webers/meter2 (34)
The field is assumed to be due to an infinite conductor which is a
pretty good approximation in the area in which the field is significant.
After multiplying B@ by the scale factor and expressing r in meters
which requires multiplying r by the scale factor also, the scale factor
cancels as might be expected. Thus the scale factor only enters for
external magnetic fields. The current I in Eq. (34) is the summation of
the current in the trajectories at lower radii than the trajectory being
calculated, but including the one being calculated.

Two field components are neglected. The azimuthal electric field
is neglected because of the axial symmetry assumed. The axial magnetic
field can have a contribution from the beam due to azimuthal velocity of
the beam. The magnitude has been shown to be less than one gauss in

most practical cases and so is neglected.
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The space charge is calculated to supply the right side of Poisson’s

equation which is

2
vy o= e (35)

0 0

The element of area for J is (r x 1.0) mesh units2 where r is the parti-
cle radius. The velocity is only the Z-component since the space charge
is being spread between adjacent points on the same column. The one
mesh unit space between adjacent points accounts for the 1.0 in the area
expression above.

In the finite difference form, Eq. (3) replaces Eq. (35), and the
right hand side becomes

9 -6
Ro = 6mx 10 T0(K) x 108 = (3.77%% - 4) I0(K)/ABS(ZDOT) (36)

ABS(ZDOT) x 3 x 10

where RO is to be spread between two points in inverse ratio to the dis-
tance the ray is between them, I0(K) is the current in the one radian
segment of the ray (in microamperes) and ZDOT is the velocity in units
of c¢. If the angle of inclination, dR/dZ, exceeds 450, the calculation
is made for RDOT. The absolute value of ZDOT is used to allow a negative
ZDOT. The explicit value of R in Eq. (3) is canceled by the R which
would convert the current to current density, thus avoiding special
problems as R +~ 0.

In practice, however, there are still some space charge problems
near the axis. In rectangular coordinates, if the axis is a plane of

symmetry, then any trajectory between R = 0 and R = 1 has a mirror image
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between R = 0 and R = -1. To account for all the space charge on the
axis, the calculated charge is doubled. In cylindrical coordinates, it
has been found necessary to multiply the axial space charge by an empir-
ical factor of 5.5. While no satisfactory explanation of this has ever
appeared, the behavior of ideal laminar beams in test problems is markedly

improved and highly convergent beams appear to behave as expected.

VIII. TRAJECTORY ANALYSIS

The program does some analysis of the quality of the beam resulting
in a quantity which is similar to the phase volume, or emittance, of the
beam. TFor those not familiar with the concept of phase volume, the
material presented by Steffan13 is a good introduction. The direct
application of the concept of phase volume to electron guns was derived
by Miller.14

The simplest formulation of phase volume is to consider the area of
an ellipse plotted in dr/dz vs. r. Assume that the beam (e.g., the
first standard deviation) fills this ellipse. Subsequent drifting and
focusing can be shown to affect only the aspect ratio of the ellipse,
and the rotation of the major axis, but not the area. The ellipse can
become unrecognizable through nonlinear elements.

At the end of each computer run, two extra plots are generated.

One is a plot of current density as a function of final radius, i.e.,
the beam profile. The second plot is a point plot of the location in
dr/dz vs. r of the final copditions of each ray. Figure 7 is the plot

in dr/dz for the sample problem in Fig. 2. Using this second plot, the
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Fig. 7. Phase space calculation for problem shown in Fig. 2.



-87-

effective phase area is calculated at the end of each run according to
the method described by Miller.14 First the center of the distribution
is calculated, with suitable weighting for the current of each ray.
This results in a location <r>, <dr/dz> in the half-plane. Then the
area Ai for the ith trajectory is calculated as the weighted cross
product between the ith point, L (dri/dz), and the center of the dis-

tribution. The resulting expression which is used in the program is

(37)

This definition for the emittance area of a number of discrete points

has the following desirable characteristics:

1. It vanishes when the points lie on a straight line through
the origin.

2. It approaches the area of the ellipse for a very large number
of equally weighted points uniformly distributed in the inte-
rior of an ellipse.

3. It is invariant. under linear transformations which conserve

phase area such as that representing an aberrationless lens.

When multiplied by the particle momentum, Eq. (37) retains the same
invariance through subsequent acceleration. That is, transverse momen-

tum times radius is conserved.
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APPENDIX I
DERIVATION OF EQUATIONS OF MOTION"

*
The equations of motion are derived from the Lorentz force equation

>
) o o(F 4T x B, (1)

where e 1s the magnitude of the charge of an electron. The electron

velocity vector v, expressed in cylindrical coordinates is

v=u f+4u r+u_ 4 (2)
v = uz z + ur r + uCP a . 2

Here wu,, u, and Uy are unit vectors and & = r$ is the azimuthal or

peripheral velocity. The left side of Eq. (1) can be found fram

alur) amo<_f_); 3)

at  at

where m_ 1is the electron rest mass. Differentiating Eg. (3) yields

o]
-3/
) o, .2 vav g f v\ e ()
at o o2 .2 at o2/ at
where
d—)
_V'.= .0 cn— L¥=) LK biRd
T S Uy Ztu (r' - ro=) + Uy (29 + r 9 ) (5)
which becomes
& 2
'z s oo . °e o
% - Wzt ur(r -a/r) + Uy (ra/r +28") . (6)
2 2 02% .
Fram v = (2" +1r +a ) where v is the scalar velocity, (7)
we have
@ lGyeisedd) . (8)
*

This derivation was suggested by Dr. Gene Lang in a private communication.
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Substituting Eqs. (6), (7) and (8) in Eq. (%) yields
3 .')(uzi + urf + u@é)

dm;f)) V2 -3/2 l L[] LA * e
at ':II].O - — {2z zZ+Tr2r+aa
(:2 c2
(9)

uz+u(?r- ég/r) + uQ(f a/r + 53$ .

2
+1-T
02

Equation (9) can be expanded and grouped by vector components yielding

-3/2 .
a(mv) v2 1 apsse st v2 3
s - — u {—z(rr+aa)+z |l-—+
o o2 Z | 2 02 o2
2
. > hd 2 LR ] 2 .2
+u, Lz (zz +aa)- = - K—) +r1-L+ E—): (10)

c® c® c c®

. L] LN ] [ 3 L] v s 2 LN ] 2 .2
+u lg a(z 2"+ 1 ¥) + =2 ( - Z_) +a (1-L + & }

2 2 2

C

|

¢

A similar vector component expansion can be made for the right side of

Eg. (1) yielding

>
d IIIV') _ hd 03 L] Ld . L)
rralle [uZ(EZ + rB - aBI_) + ur(Er + aBZ-zBCP) + ucp(Ecp + zBr-rBZ)] . (11)
have finally

Equating vector components we

v
T\ T 2 2 2

c c c c c

~3/2 2

2 2 * .2

v l oo o0 v Ir oo e L 2
mofL - - — Tz Z + {1l - — + = + L ra &-2 (1-%X

c c ® 2 c® T eZ

(13)
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> - 3/2 > .2 .o 2
m l-v—> I A U LA N 1-L+§—)é'+-x-‘-a—<l-z—)
o o2 o2 o2 02 o2
] . (14)
= —e(Ecp + zBr - rBZ) .

For computer programming it is convenient to express the variables
in a normalized form. Accordingly, we let

N, r=MAR, a = M and ct

= AT, (15)
We differentiate with respect to T = N to get
. 20°
z = ¢z, 2 = Exz R
. .e 2..
r=cR, r= EXB s (16)
and
2..
. -4 ce CA
a=ch, a= = -
From the definitions in Egs. (16) it follows that
2 L]
B2 = L =22 L 2L 42, (17)
2
c
Making the normalizing substitutions in Egs. (12), (13), and (17) yields
m002 2 '2 (X} L ) . g L4 [
———————gzg Q- B + 7 ) Z +2RR + 7ZA K} = -e[EZ+cRB®-cABr], (18)
A(1-B%)
me® | ] .
3 ‘[Rz + (1-B2 )R + RA A - T (1 BZ_J [ —cZB@+cABZ] (19)
A(1-82)
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and

m_c® . : 2 “RA - . .
—2 BT+ E+ (8% X 4 = (1-52)] =-e LE +cZB_-cRB ] (20)
7\(1_32)3/2 CP r Z

Our goal is to get separated equations solved for the second order
derivative of each of the orthogonal variables. To solve the equations,
we arrange them in the form

AV +BR+cKk=0D
1 1 1 1

AZ+BR+cE=0 (21)
= 2 2 2
AZ+BR+cZ=0D
3 3 3 3

and apply the standard determinant method of solving simultaneous
equations. Rearranging Egs. (18), (19) and (20) in the form of Eq. (21)
yields

(1-028 ) + 2R B + 28 K = 'ez (1-82)>2 (5 efiB -clB ), (22)

m ¢

O
o ® o9 2 .2 (1] 3 e A‘_Z e?\ L4 [ d .3/2 '
RZ Z + (1-B%4R )R + RA 4 = (1-B3) - X (E_-czZB +cAB )(1-p%)7", (23)
moc2 T CP z

and
127+ BRE + (1-p2e5)K = - (1-p2) B2 D <E<P+czar-cRBz>(1-52)3/2.

II].C2

© (2k)
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The determinant of the coefficients is

A= (1-82450) [(i-azﬂ‘f)(1-52+A2)-A2ﬁ2]+ ZR[RZA2 if{(l-62+1§.2)]

+ 2R [Zfa&' i - A2 (1-8%4 R2)] - (1-B242%) (1-3) (1-BA+2)

- F2RR(1-82)- 22R2(1-83) = (1-82)3(1-82+ 254 Rk £)

which is simply
A= (1-83)° . (25)

It is convenient to let O = e%/moc2 « The axial acceleration 2, is

given by
& =D(BC -CB)+D(CB -BC)+D(BC ~-CB)
123 2 = 21 3 13 31 2 12
which becomes

3/2(

(1-69)° & = [-a(1-67) (e, vofip -ehn )| [(1-828%) x (1-62eh0)-2%17]

o2 -
+ [(1-52) = - o(1-82)7 (B,~c2B, + cABZa]xl'f{AZ-ZR(l-BE%'e):,
+ [-(1-52) B—If - a(1-82)°2 (E_+c2B_-chB )] x[:z:ﬁ%&-(l-saﬁz)z&] .
) T Z
Simplified, the above equation yields

Y = 05(1-62)% [—(EZ+CRBCP-CABI‘)(1-62+ﬁ2+A2) + (Er-cZB(Pﬁ:ABZ)Z'E‘{

+ (E

cp+cZBr-cRBZ) ZA} .

Noting that (1-B2 + &% + £%) =1 - 22 , we have finally

1
¥ - o(1-p2)2 [.EZ(1-22>+ to v 85 - ofE 4 CABJ . (26)
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The radial acceleration R , is given by

MK=D(AC-AC)+D(AC-AC)+D(AC-AC)
1 32 23 2 13 31 3 21 1 2
which becomes

2 oo

(1-82)° & = [—a(1-62)3/2 (5, + cfB, - CABr)]x [(ﬁZA B (1-5242)]

+ {(1-32) jé—z - of1-p2)7% (Erch..Bcp+c!§.BZ)4]X [(1—32+i2)(1-62+ée)

- 22'2]+[-(l—52) RA a(1-62)3/2 (E +cZB_-cRB )J X [7:}!{&
R P T Z
- ﬁA’. (1—62 + Z.lz)] .
Simplified, the above equation yields
% o 2 2
L = - 2 [ 1 ..2 - [ B8] - - B - L d
B = o(1-8%) [EZZR + CZR"B, cZRAB_ (Er cZBq) +ch Z)(1 B=+Z +A )

2

*n RA 22 £ 2,82 22 R242
+ E@RA + cZB RA - cR ABZ] + 3 (1-B2+2°4A7) + —
Noting that (1-B2 + 22 + A2) = (1-%%), we have finally
B 2 ‘é‘ 22 AT 21 - A IS
R = o(1-B%) [—Er(l-R ) + B IR + E RA + LB - c-_ABZ] + 5 (27)

The azimuthal acceleration K , 1s given by

M=D(AB -AB)+D(AB-AB)+D(AB -AB)
1 23 3 2 2 3 1 1 3 3 12 2 1
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which beccmes

(1-8%)% 1" = [—a(l-Bz)z/e(EZ+cﬁBcp-cABr)] [A.REZ - ZA x (1-62+§2)]

+ l—(l-Bz) % - a(1-52)3/2(Er-cz°Bcp+cABZ)} X [Aﬁeﬁ-ﬁé(l-62+22)]

L

+ [—(1—62) % - a(l-ﬁ?)3/2(Ecp+ciBr-ef{Bz)]x [(1-5?+22)(1-f32+1%2)'

- 22%2]
Simplified, the above equation yields
.8 -]; @ L] * & . L] .0 LK L d L 3
A = o(1-B%)2 [ﬁ ZA + cRB ZA - cA®B 7 + ARE - cZARB + CA®B R
VA ¢ r r % Z

- (B +cEB ~chB )(1-p2472452) - AR _ Bhy g2 22 aay |
¢ r Z R R

Noting that (1-B2+Z2+R3) = (1-A%) we have Tinally

RA
T (28)

1
ee = - 25 _ - 2 e * e _ ‘0 * _
A = a(1-p%) [E@(l £2) + EZZA + ErAR cZBr + cRBZ]
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APPENDIX II

GENERAL NEUMANN BOUNDARIES

If a boundary with normal derivative equal to zero is as shown, then

fn_n

a problem boundary is drawn as shown by the dashed line. A point at "a
is chosen such that Vg = Vi,. Point "a" is seen to lie on the normal to
the boundary through the point "b" at the intersection between points

"e" and "d". The slope of the boundary is given by tan O.

o
1N-79 373047
Starting from
Vo=V, (1)
we have
Va—Vc Vd-Va .-
— = ——— (2)
ac ad

where, for example, ac is the distance from point "a" to point "e¢". The

mesh interval is taken to be unity. Cross-multiplying, we have

2dV -2adV =acV_, -acV
a c d a

or
(ad + ac) vV, =ac Vg +ad Vc i (3)
But, ad + ac = /2 and  V_ = V., hence
3 s Aav . I
va V, =acV, +adV, (&)
From the law of sines,
ac 1 _ 1 1

sin @ 7 4T T R
s1n(ﬂ~E -) cos(E-a) cos ; cosQ + sin 7 sind
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which becomes

S_oM2 sin® _ V2tano (5)
sin C + cos & 1 + tan O ° 2

Then the other segment is

" T+ten® ] T T+tand

a?i:x/e_-EE:/a‘(l tano‘) ve (6)

The complete difference equation from Eq. (%) is

_ V2 tan @ V2
a Vo = 1+tanc Va 1 + tan Vc
which in the notation used in the main text is
(0
tan Vo4 < VY =0. (7)

14+ tan O "3 1l + tan O 4— o)



(alsYaXatalaYaYaYaXalalalalaYaYalaalalalalalalalalalataXalalaXalatoalaYaYalalalalaNalaYaYaYaYal

SLAC ELECTRON UPTICS PRUGRAM:

e Be MHE

STANFURD L INEAK ACCELERATUR CENTER

STANFURD
STANFOROD

SUURU

SUBROUT INE
SUBRUVTINE
SUBRUUTINE
SUBROVTINE
SUBRUUTINE
SUBROVUTINE
SUBRUUT INE
SUBRUVT INE
SUBROUT INE
SUBROUT INE
SUBRUUTINE
SUBRUUT INE
SUBROUT INE
SUBROUT INE
SUBRUUT INE
SUBRUVTINE
SUBRUUTINE
SUBRUUT INE
SUBRUUTINE
SULRUUTINE
SUBRUUTINE
SUBRUUTINE
SUBROUT INE
SUBROUT INE
FUNCTION RC
SUBROUVTINE
SUBRUUT INE
SUBRUUT INE
SUBRUOUTINE
SUBROVTINE
SUBROUT INE
SUBROUT INE
SUBRUVUTINE

APPENDIX III

INSTRUCTION COMMENTS FROM THE PROGRAM

RRMANNSFELDT

UNIVERSITY
o CALIFURNIA

UTINE

POTLST

PULSSEN (Ne®)

BUUNL (PUTNeMAD,*)
CJUEF (%)

TRAJCT (%)

PLOTS

EQUIP (FLoNOD)
LAPLAC (%)

FRAME
DSPRCC(IEUC+EQB*)
LISTL (SS)
COORD(Ne KNGO+ ZETA)
MAGFD

LISTMG
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9430¢

LINE NO.

PRTIAL(RHU s ZETAPUs*)

TOUCH(LI+le * )
RZIP(ZeYsEsBesC)
MXX(E)
RATNST(IRAT)
PERVNC(M])
THERWM

LUOPS (RHUSZETAsHR ML)

SCALEZ (XX sAXLENsNFT S XDyXL)

READA

CALBRZIRHO+ZETA+BReC29%)

LEFTI

VECTUR POT./PLOTFILE VERSION OF NOV

1978

S LRSS LR LSS SRS LS4 435 4% % INSTRUCTIUNS 583556058285 588552 8

SAMPLE PROBLEM:
lNgEﬁrlON GUN MCULEL 4-1A GRID-CATHODE REGION (WBH) MOD.L1—-20-67 MI=0
CEINPUT
2‘2L5H372.ZLIN340.PUfN8‘.907301005000.000000000'Nl=°o~AGSEG=l.TYHE82.
N
CeINPUT2
C Z1T20:22=80443%20eBC=0e002500
CELEND
c 1 [ [} 0«0 -0 .99
c 1 16 3 240 =0ea
Cc 1 37 3 0499 =0e1l
C 4 38 4 240 ~1le0
C 4 48 10 260 -0e8
C 4 55 (¥ 3 0699 =0es6
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C & So 15 Ze0 =1le0
C 4 ST 15 200 -0e4
C & 58 15 20 =063
C o 59 15 200 ~0. 4
C o 60 15 240 -1e0
C & (-3} 14 ~0699 20
C 4 61 13 =062 ~0e8
C & 62 12 -0e7 240
C & 62 () ~0a7 240
C 4 62 4] ~0e? Ve O
C 0 66 Q 260 Q060
C & 71 [¢) 099 0.0
C 2 71 10 0499 240
Cc 2 71 26 Qe99 20
C 2 71 27 099 099
C 2 70 27 -0e2 099
Cc 2 69 26 20 Ve 8
Cc 2 49 17 ~0e3 Oe2
Cc 2 4l 13 20 0.8
C 2 4“0 13 o0 Jed
cC 2 39 13 240 Je3
C 2 22 [ 20 0e 2
C 2 Q 10 0«0 O0e3
C 0 (o] 8 0e0 240
C © (4] 2 040 260
C 888

CEINPUTS

C 1Zi=l,e 1£2=2s 125=10 RAD=257s RMAX=37e5¢ UNITIN=0.01¢ SPC=040+
CEEND

CARD NUe 1 CUNTAINS TITLE UN UNE CARD
CEINPUT L CARD NOe 23 EINPUTL, (STARTS IN CCGLe 2)
CARD NO«. 3 CONTAINS RLIM, ZLIMs POTNe PUT(1)e POT(2)seee
POT(PUTN) s MI o MAGSEGs ALL IN NAMELIST FGRMAT.

OTHER PCT( ) VALUES AS OESIRED
TABLE FOR VALUES OF MI;(USE MI = 0 FCR NO PLOTS)
CYCLE TV BE PLUTTED INIT € FINAL ALL FINAL ONLY
WITH EQUIPCIENTIAL LINES 1 2 3

[

C

C INSTRUCTIUN DEFAULT ¢ MAX COMMENT

[ RL I M=XX RLIM=50, 100 HE IGHT OUF«-PROBLEM

C LLIM=XX LZLIM=S50, 300 wlOTH CF PRUBLEM

C (SILE LIMIT (RLIM#L)(ZLIM+2) < 900L)

C TAX=XX 1AX=0 DEPRESSED AXIS

C POTN= XX POTN=101, 101 NUMBER GF PUTENTIALS

C POT(l)=XeX TU PUT(POTN) OEFAULT TU ZERQ.+POTENTIALS IN VOLTS

C (USE NEGATIVE PUTN TO S1GNAL RECTANGULAR CUOUORDINATES)

C MIzx MI=1 PLOT INSTRUCTION. SEE TABLE

C (IF MI IS NEGATIVE., PRUGRAM WILL CNLY PRUCESS BUOUNDARY DATA)

C MAGSEG=X MAGSEG=0 NUMBER UF SEGMENTS OF MAGNETIC
C FIELD DATA TU BE READ NEXT.

C INTPA=4TRUE < INTPASFALSE. CALLS INPUTA TO READ VECTUR PUTENTIALS .
C LSTPOT=X LSTRPOUT=0 DUN'T PRINT POT MAP

C LSTPUT=1 PRINT FIRSTes =2, PRINT FINALe =3 PRINT FIRST AND LAST DEC-78
C TYME = XeX TYME = 240 MAX PRUBLEM RUN TIME MINe
C EXPECTED POTENTIALS

C POT(1) = CATHODE

C POT(2) = ANUDE

C POT(3) = GRID (CUNTROULS EXTRA EQUIPOTENTIALS)

C POT(4) = FUR A SURFACE WwHICH wiLL STOP RAYS—=NUT A GRID.

C PUT(S) = FUR A SHADUW GRID-NUT FOR FUCUS ELECTRODE

C

C

C

C



-99-

SEPARATE EQUIPOTENTIAL PLUT o
NO EQUIPUTENTIAL PLCTS 7
EEND (INSERT MHERE-STARTS IN COLe 2 )

cv
oo

NETIC FIELD METHODS

MAG
1) INPUTZ2 eee POLYNOMIAL SEGMENTS eee MAGSEG=N IN EINPUT
2) INPUT3 eee AXIAL FIELD eoe MAGSEG=—1 IN CLINPUTI
3) INPUTA eee VECTOR PUTENTIAL ARRAYeee INTPA=.TRUEe IN CINPUTL
4) INPUTS oeee COIL UDATAceoFINDS AXIAL FIELDS
S) INPUTS eee COIL DATAGo+ELLIPTIC INTEGRALS
USE (1) UR (2) FOR RECTANGULAR SYMMETRY

MAGNETIC FIELD DATA (READ IN MAGSEG SEGMENYS) IN NAMELIST FORMATY
WARNING: THIS APPRUACH IS VIRTUALLY IMPOSSIBLE TO USE IN A PHYSICALLY
REALISTIC ®WAY AND IS NOT RECUMMENDEO.
& INPUT2 ( FOR EACH SEGMENT )
USE NAMELIST FORMAT FUR THREE INTEGERSs AND AN ARRAY BC
OF SEVEN COEFFICIENTS OF VALUE BZe Ele B2¢ eees
B =BZ¢0l*D2+82%DZ%%24,,0486%%6 WHERE 02=2-23
Z TAKES THE VALUES *21°* TOU ‘22 wilih ORIGIN AT */Z3°
FOR SIX URCER EXPANSIONe FIELD MUST START 6 UNITS BEHIND
CATHODEs Ok STAKTING PUINT, AND GU SIX UNITS PAST ZLIM.
IN RECTANGULAR CUORDINATES MAGNETIC FIELD IS IN THE
TRANSVERSE (PHI) OIRECTION UNLESS MAGORD < 1. (SEE MAGORD, BELOW)
IF MAGNETIC FIELD INPUT IS USED IN A RECTANGULAR COORDINATE PROBLEM,
THERE IS NC TERM FOR SELF MAGNET IC FlELDs EVEN IF INPUT FIELD 1S ZERCG.
WITHOUT INPUT FIELD SELF-FIELD IS IN PrI DIRECTIOMN. SELF-FIELD IS
CALCULATED FROM CURRENT IN RAYS BETWEEN Z-AX1S AND KTH RAY INCLUDING
HALF OF 10(K). INPUT FOR IOEAL COILS IS IN SECTIGN S.
USE EEND AFTER EACH SEGMENT

& INPUT 3
POINT 8Y PUINT INPUT OF MAGNET IC FLELLS:
kF MAGSEG < O EeGeos MAGSEG==~1s THEN USE EINPUTI TO READ ARRAY
BZA=(AX 1AL FIELD STARTING AT 2=-6 TO 2=2LIM+6)

EEND

CINPUTA (TC INPUT VECTUOR POTENTIAL DATA)
RRO=Xe X HRO=0e0 POSITION OF FIRST ELEMENT OF A().IN MU
ZZ0=Xe X 4Z20=040 RELATIVE YO ORIGIN OF GUN PROB.
DELR=X o X DELR=1e0 INCREMENT IN R (CHM) FROM POSSON/ELIY
DELZ=xLeZ DELZ=140 INCREMENT IN Z (CM) FROM PCISSON/EDLT
RLMAG=XX RLMAG=30 NUMBER UF ROWS OF A() DATA
ZLMAG=XX LLMAGZ200 NUMBER OF CULUMNS OF A() DATA
Al) VECTOR POTENTIAL DATA ARRAY OF As EXCEPT A®R AT R=0.

UNITS OF A IN GAUSS-CMs A() IS A LINEAR ARRAY wiTH
COLUMNS RLMAG LONGe NMAX SIZE OF Al) 1S 8000.

BOUNDARY INPUT

BOUNDARY INPUT (3 INTEGERS: 2 FLOATING POINT NUMBERS)
PUTe NOoe Re Zo DELTA Ry DELTA Z
FORMAT J1Se¢SXe2F10.5
TO TERMINATE INPUT, USE PUTe NUes >POTNes EeGe 200 IN COLe 3o
IFf 999 IS USELs SPECIAL HOUNDARIES wILL BE READ, SEE BELOW.

(a¥aYalalalolatoXalaNalalol alal ol ol ol ol ol ol oW alolal oY ol ol oY oY o ol oV oY ol o¥ oY o Vol oY oY Y o¥ oV oV o ¥ ¥ H P N W Y WY Y P Y e
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C ———————

2 STARVING CONDITIONS VALID INSTRUCTICONS AND DEFAULT CONDITIONS
CEINPUTS (INSERT HERE) & GOES IN COLUME 2.

CEEND (INSERT AFTER START INSTRUCTIONS)

[ INSTRUCTION DEFAULT sMA X COMMENT

UNIVERSAL PARAMETERS

PERVO = XeXX PERVO = 0O ZERDO USES LAPLACE/2

HOLD = X HOLL = 1 PERVU °*HOLDS®* FOR HOLD
LTERATIONS

PE = XeoX PE = 200 :NIIIAL ENERGY AT CATHUDE
N EV

ERRUR = XoX ERRUR = 140 MULTIPLIES ERROR TEST

UNIT = XaoXXX UNIT = 04001 METERS / MESH UNIT

UNITIN = XoXXX (SEE UNIT) INCHES/MESH UNIT

MAXRAY = XX MAXRAY=2T7 4,51 MAX1IMUM NUMBER OF RAYS

IF MAXRAY 1S5S NEGATIVE., THt NUMBER OF RAYS=ABS(MAXRAY)

STEP = QeXX STEP = 0Qe8 MESF UNITS / STEP

NS = X NS = 7 NUMBER OF ITERATIUNS

SPC = QeXX SPC = 0.5 ESTIMATED SPACE CHARGE

SPC SIMULATES PARAXIAL APPRUXIMATION ON FIRST CYCLE.
SPC IS THE FRACTION UF THE RADIAL FOUORCE USED.
SPC=1e40 FUR FULL EFFECT, SPC=0 FUR NO EFFECT

PHILIME=X ¢ X PHIL IMx0.,0 AZIMUTHAL LIMIY
PHILIM oNEe 0O ENULUS TRAJECTURY AT PHI +GTe PHILINM
SAVE = } SAVE=0 SAVE=]1 SAVES BOUNOCARIES,
TO USE SAVE=1ls OMIT BCUNDARY CARDS FRUM NEXT PROBLEM.
SAVE=2 SAVE=0 SAVE=2 USES FINAL DATA

FROM PREVIOUS RUN TO START THIS RUN.
USE CNLY WHEN START=*CARDS e
MASS = XeX MASS = 0 MASS > 0 FOR IONS
MASS IS5 THE MASS TU CHARGE RATIG, leQ, FUR PROTUNS
USE MASS<0 FUR RAYS wITHOUT INERT1A: CAN BE USED
FOR MAGNETIC FLUX LINES OR ELECTRIC FIELD LINES.

AV = X AV = 0 SPACE CHARGE AVERAGED
LAST AV ITERATION
AVR = XoX AVR = 140 WEIGHT OF SPACE CHARGE
IN PRECEDING PROGRAM CYCLE FGR AV,
BEND = XX BEND=040 MAGNETIC BENDING FIELD

IN GAUSS IN THE ODIRECTION NURMAL TO THE R-Z PLANE
FUR AXIALLY SYMMETRIC PRUBLEMS. FIELD MUST BE
UNIFORMe THE EFFECTS UF SELF-MAGNETIC FIELDC ARE LOST
AND SPACE CHARGE 1S STILL AXIALLY SYMMETRIC SO THAT
IF BEAM 1S DEFLECTED., CHAKGE DISTRIBUTICN 1S PROBABLY
INCORRECT, AN AXIAL FIELD MUST BE INCLUDED IN THE
INPUTs EVEN IF IT IS5 ZERU ¢ EeGes BC=0 IN INPUT2.
MAGMLT=xA o X MAGMLT=1.0 MULTIPLIES BZA ARRAY
IPHP =K1l ¢ K2seee Kb IPBP()=0 UP TO SIX RAY NUMBERS FOR POINT
BY-POINT PRINTUUTIKsRHU» ZETA+RDOT s ZOCT o TOCT oPHI+BReBZeSTEP+BPHI

ZEND=Xo X ZEND=100040 EXACT END OF TRAJECTORY

CAUTION: [F ZEND IS5 NOT THE RIGHT-HAND BOUNDARY, THE SPACE
CHARGE DISTRIBUTICON MAY BE INCORRECT.

VION=E=X o X V1ON=-1E8 LOWEST POTENTIAL PERMITTED

USE VION TO SIMULATE SPACE CHARGE NEUTRALIZATION

INPUTY FOR EQUIPOTENTIAL PLOTS

lalalalalalslalalalaXalalalalalatalalalalalalalalalalatalatalalalaYatalalalalalalalalalelalalalalalatalakal sl
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- —— e

EQUIPR = XeX EQUIPR = 0.0 R=INTERSECTION FOR EQUI-~-
POTENTIAL LINES

LM = XXX LM = 300 LENGTH OF EQUIPOTENTIALS
EQLN = 0 TC 20 EGLN = 3 NUe OF CORRECTIONS

EQST = X EQST = 2 STEPS PER MESH UNIT

APPLIES ALSU TU GENERAL CATHODE
L1Z1=XelZ2=Xe1LS=X 1Zi=0,122=~1 EXTRA EQUIPOTENTIALS AT
125=10 THE INDICATED VALUES OF Z.

— —— g e B e o T > . T — -

PLUTTING CUNTAOLS

- - — > . e o g e e o i o

SCALE = *YES® SCALE = ¢ . *YES*= DIFFERENT X.Y SCALE

SX = XX Sx = 22 MAXIMUM MHURIZONTAL PLOUT
HEIGHT

SY = XX SY = 9 MAX IMUM VERTICAL PLOT
HEIGHT

MAGNETIC FIELOS: METHUD ONE; READ IN AXIAL FIELD IN SECTION 3(ABQOVE)

RMAG = XeX RMAG = RLIM/2 OFF-AXIS MAGNETIC FIELD
LISTING AT R=RMAG

IMAG = XeoX IMAG = ZLIM+6 B CONSTANT BEYOND ZMAG

MAGORD = 244 MAGURD = © HIGHEST ORDER FIELD TERM

IF MAGORD < le FOR RECTANGULAR
COORDINATES. BZA IS IN THE
R-DIRECTION AND THE OFF AX1S
EXPANSIUN IS A FUNCTION OF Re.
NMAG = X NMAG = Q.t1 NOe UF FIELD COILS FOR
METHOO TwU (GELOW)
METHUOD TwU; READ IN POSITION AND STRENGTH OF NMAG IDEAL COILS.
IF NELL=0s PRCGRAM CALCULATES AXIAL FIELDS AND PRUCEEDS AS IN METHOD ONE.
IF NELL=1s THIS METHUD CALCULATES FIELOS USING THE CCMPLETE
ELLIPTIC INTEGRAL FUNCTIONS. FIELDS ARE THEN VALID IN ALL SPACE.
sk ELLIPTIC INTEGRAL METHOD [S VERY SLOw *%3%s%
IF ELLIPTIC INTEGRAL FUNCTIUNS ARE INCLUDED wHEN PRUGRAM IS
COMPLILED (USER MUST CUMMENT CUT THE DUMMY FUNCTL1ONS AT THE
END UF THE PRUGKRAM) THEN, FOUR COIL METHCOD ONLY, THE PRLUGRAM
il LIST THE OFF-~AXIS FIELDS BY BOTH OFF~AXIS EXPANSICNS
AND BY USING ELLIPTIC INTEGRALSs EVEN IF NELL=0. THIS
PRUVIDES AN INTERESTING CHECK ON THE VALIDITY OF THE OFF-
AXLS EXPANSIUONS IN THE USER®S SPECIAL SITUATIGN.

NELL=} NELL=0 I FOR ELLIPTIC INTEGRALS
CR(L) = XeX Cr(1) = RLIM RADIUS OF CUIL (MESH UNIT)
CZ(I) = XaX CZ(I) = 0.0 AXIAL POSITICN OF COIL

CM (L) = XeX CM(L) = 0.0 CURRENT IN AMPERE-TURNS

START GENERAL
START = ®GENERAL* START = SGENERAL® GENERAL CATHODE
RC = XeXX RC = 040 LOWER END OF STARTING SUR-
FACE
4C = XeXX LC = 2¢CATHODEZ CATHODEZ 1S Z VALVUE OF

BOUNDARY FRCNM FIRST
DATA CARD.
cu XeXX Ccu RL IM MAXIMUM LENGTHN OF STARTING
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SURFACE

DENS = XXaeX DENS = 10.0 MAXIMUM EMISSIUN (A/7CMEs2)

BETAZ2 = 1.0 BETA2= Q.0 IF > 040 USES LANGMUIR-
BLOOGETYT

RAD = XoX - USE RAD FUR WIRE RADIVUS IN
RECTANGULAR COORDINATES,
BETAZ2 > 0.0

SURFAC = X SURFAC = 1} STARTING SURFACE ITERATION

USE POT(S) FOR NUN-EMITTING SURFACEs EeGe
HOLLOUW CATHODE OR SHADOW GRIDe DO NOT USE
POT(3) OR POT(S5) FOR FOCUS ELECTRGDE eee
USE PUT(4) TC STOP ELECTRONS ON IMPACT.

START GENCARD

START = *GENCARD?® START = *GENERAL® GENERAL WITH CARD START

HAVE UP TO MAXRAY CARDS mHICH SPECIFY:
1) RAY NG.
2) INITIAL RADIUS R
3) INITIAL AXIAL VALVUE 2
4) DISTANCE FROM CATHUDE OX (CATHUODE MUST BE POT(1))e.
S) EFFECTIVE SPACING DBETWEEN RAYS DRe
6) PARAMETER WHICH MODIFIES CHILD LANGMUIR EQUATIONs ALPHZ,.
NORMAL OX IS 10 TU 240 MESH UNITS.
NORMAL OR IS 1.0 BUT MAY BE VARIED ALONG THE SURFACEe.
NORMAL ALPH2 IS 10 FUR A PLAIN DICDE.
FOR CYLINDRICAL CUOORDINATES:
ALPHZ2=(ALPHA®(RADIUS OF CURVATURE)Z(STARTING STEP) )*s2
FUR RECTANGULAR COORDINATES:
ALPH2=(BETA%$2 )% (RADIUS UF CURVATURE )/ (STARTING STEP)
WHERE ALPHA AND BETA ARE AS DEFINED IN THE LITERATURE ¢EeGe s
SPANGENBERG FUR UETA AND BREWER IN SEPTIERs VOL Il. FOR ALPHA
FORMAT 1S THE SAME AS FUR CARD b'ARthG. RAV NOeoResZeDX DR ALPH2
(ISeSXs5F(105)) 0

STA

RT SPHERE

START = *SPHERE"* START = SGENERAL?® SPHERICAL CATHUDE
RAD = XoXX RAD = 2%2L IM SPHERICAL RADIUS

RMAX = XoXX RMAX = RLIM CATHODE RADIUS

ORAD = XeXX URAD = CATHODEZ CENTER OF CATHODOE

ST = XeXX ST = 2.0 STARTING STEP

*SPHERE®* ALSU WURKS FOR CYLINDRICAL
CATHCDE IN RECTANGULAR COURDINATES

START CARDS

START = ¢CARDS?* START = 'GENERAL®* CARD STARTING
ZO = XeXX Z0 = 060 OLD URIGIN IN NEW FRAME
SKAL = XeXX SKAL = 140 0LD MESH/NEW MESH

HAVE UP TO MAXRAY DATA CARDS (L INTEGERes 6 FLOATING PUINT)
RAY NOee Re Zs ENERGY(EV)e ANGLE(RADIANS)e CURRENT (MICROAMPERES
IN UNE RADIAN SEGMENT), TRANSVERSE ANGLEe. TRANSVERSE POSITION(PHI)
(NUTE CHANGE: TRANSVERSE ANGLE:, NOT TRANSVERSE ENERGY: ENERGY IS NUW
TOTAL KINETIC ENERGY.)

FORMAT [S+5Xe7F1045
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STUP READING WlTH RAY NUe GREATER THAN MAXRAYS
INITIAL TRANSVERSE VELOCITY HAS THE SIGN OF THE TRANSVERSE ANGLE

IF RECTANGULAR CUURDINATES:

1) PHI I3 TRANSVERSE POSITIUN IN MESH UNITS.

2) CURRENT IS5 MICROAMPLRES IN ONE MESH UNIT DEEP SEGMENT.
**82SPECIAL TESTS IN RATNST; CROSSING CR 3-D SPACE CHARGE*®

IRAT=1 IRAT=0 3~-D SPACE CHARGE

IRAT=2 IRAT=0 CROSSING DETECTIUN
USE OF NEGATIVE RAY NUMBERS:

A) IF IRAT=\} (3-D SPACtL CHARGE)

1) MAKE RAY NUMOERS NEGATIVE FUR BEAM EDGE CARDS.
USE BEAM EDGE CARDS (10=0) TO SIMULATE SPACE CHARGE SPREADING
UF A CYLINDRICAL BEAM UF CURRENT [ AND RADIUS R IN RECTs COURD.
PAIRS OF BEAM EDGE CARDS PRECEVDE SETS OF RAY CARDS DEFINING
PART UF BEAM FUR WHICH 3-D 3PACE CHARGE SPREADING IS TU BE SIMULATED
SEVERAL PARTSe DIFFERENTIATED BY SELECTED ATTRIBUTESS EeGes ENERGY
ALPHA UR RADIUSs CAN BE USED SIMULATEOUSLY WITH ANY NUMBER UF RAYS
IN EACH PART. END OF PART 5 BEFINED BY NEXT RAY wnlITH NEGATIVE RAY
NUMBER, WHICH BEGINS THE NEXT PART.
2) Tu SIMULATE CYLINDRICAL BEAM SPACE CHARGE IN RECTANGULAR
COORDINATES MAKE CURRENT PER MESH UNIT, 1* = I/(PI$R) INSTEAD
OF 1° = 2%1/7(P1*R) wHICH WOULD HAVE THE SAME CURRENT DENSITY.
IN UTHER WwURDS e MAKE L°(R) = I(K) 7/ (2%R(K)) INSTEAD OF I(K)/
R(K)e NUTE THATYT THIS REGQUIRES TRICE AS MANY RAYS AS FUR
CYLINODRICAL BEAM wlTH SYMMETRYe. BEAM EDGE CARDS (RAY NU. < 0)
ALSO APPLY TU UFF—-AXIS PENCIL IN CYLINORICAL COURDINATES.

8) IF IRAT=Z2 (R—-Z AND PHI CRUSSUVYERS)

1) R-=Z: MAKE RAY NUMBERS NEGATIVE FUR SEQUENTIAL RAYS FUR
WHICH FINAL CROSSUVER SHOULD BE DETECTEDe CRUSSINGS WILL BE
LISTED AND PLUTTEDe. NEGATIVE RAY NUMBERS SHOULD BE IN PAIRS.
TOU FIND CRUSSUVERS wliTH Z AXISe RUN A RAY WITH R=0,ALPHA=0
PRECEODING ThE RAY TJ TEST AXIS CROUSSING.

2) PHILI: LEAVE RAY NUMBERS POSITIVE FOR TRANSVERSE RAYS TU
DETECT LAST CROSSING UF PHI=PI*INTEGER.

IF SAVE=2e RUN STARTS WITH FINAL RAY DATA FROM PREVIOQUUS RUNe.
DU NUT PUT SAVE=2 UN THE FIRST RUN OF A SET.

- — ————— > —— e e - -

THERMAL EFFECTS
SUBROUTINE THERM IS CALLED IF THt PARAMETER TC>Q.

TC=XXXXe X TC=0 KELVIN TEMP. OF CATHODE
TwO MODELS AKE INCLUDED IN THIS VERSICN

KRAY=3 KrRAY= ] THREE RAY SPLIT

KRAY=S KRAY=1 FIVE RAY SPLIT

THREE RAY SPLIT PUTS CURRENTS IN 1-2-1 RATIU wlTH 2 PARTS IN
UNDEFLECTED RAY AND | PART EACH IN RAYS wlITH V(PERP)=SQRT(2KT/M)
IN R-Z PLANEs UP AND DCWN RELATIVE TO UNDEFLECTED RAY.

FIVE RAY SPLIT PUTS CURRENTS IN 1-9-0-9-1 RATIO wlTH

V(PERP )=2%SQRT(2KT/M) FUR 1 PART RAYS AND V(PERP)I=1%SQRT(2KT/M)
FOR 9 PART RAYS. NU CURRENT IN CENTER RAY.

USERS SHUOULC FEEL FREE TOU MCGDIFY SUERGUTINE THERM.

THERM CAN HE CALLED FUR START='SPHERE®s °*GENERAL', °*CARDS®,
OR *GENCARD®.

IT CANNOT BE USED FUR START=*CARDS®' WwWITH SAVE=2.

START LAPLACE
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START = *LAPLACE® START = SGENERAL® NO RAY TRACING
NS = X NS = 7 NUMBER OF LAPLACE CYCLES
ADD DATA CARDS WITH (ReZys SPACE CHARGE) FOR NON~2ERQ PUINTS.
FORMATY (215,E20.7)
END CARD INPUT WITH R > RLIM.

————

SPECIAL BOUNDARY PUOINTS (INCLUDING GEMERAL NEUMANN BOUNDARIES)

USE 999 IN COLSe. 3-5 TOU END BUUNDARY INPUTe BOUNDARY

MUST INCLUDE ALL POINTS TU B8E USED AND ALL POT NUMBERS. THEN
INCLUDE ANY NUMBER UF CARDS WITH ReZ AND FOUR DIFFERENCE
NUMBERS FUR LEFT, RIGHT, UPs ANDO OCWNes SEQUENTIALLY. NUMBERS
SHOULD ADD TO 4%R 0OR 4 IF RECTANGULAR COORDINATESe END WITH

R > RLIMe FUR GENERAL NEUMANNes SEE APPENDIX Il OF SLAC 166.
TERMS ARE 4%(TAN A)/(L+ TAN A) AND 4/(1L + TAN A) WwHERE TAN A <1

HORIZONTAL ODIELECTRIC BOUNDARY
LEFT=RIGHT=(ELI*#(R-«5)¢+E2%(R¢5)) /2
UP = E2%(R+.5) DOWN = E1*(R-e5)
WHERE E1 OR E2 = 1.0 FOR VACUUM AND E2 IS UPPER 'MATERIAL®.

VERTICAL DIELECTRIC BOUNDARY

LEFT = EL1&R RIGHY = E2&R
UP = (EL1+E2)%(R¢.5)/2 DOWN = (EL1+E2)%(R-e5)/2
WHERE E2 IS RIGHT HAND °*MATERIAL ',

SUMMARY OF FILLE 1| FORMAT FUR PLOT DATA OQUTPUT

WRITE(L)I oL oA eBesCoDe(X(J)eJd=1ode(Y(JD)eJ=1olL)

WHERE A
I=0 THROUGH 8
FOR I=0s7¢8 PLGT A LINE

L=NUMBER OF DATA POINTS TO BE PLCGTTED
Xes Y ARE ARRAYS OF LENGTH >= Le WITH Xo¥Y DATA

FOR =1, PLOT X AXIS, FOR 1=2, PLOT ¥ AXIS

L=NJUMBER OF COMPUTER WORDS IN T1TLE
FOR IBM/360 L=(N+3)/4 IF N=NUMBER OF CHARS
A=SCALE (DATA UNITS/INCH)
B8=AX1S LENGTH (LINCHES)
C=X COURD OF Y AXISs OR Y COORD OF X (GCTHER COORD IS 0Oe)
O=DATA VALUE TO APPEAR UN LUWER END OF aXls

FOR I=3s END OF PICTURE., GET A CLEAN AREA ON PAPER, ETC.

L=l AeBeCoeDeXeY=040

FOR I=4, CLOSE PLUTs THIS IS THE LAST RECURD OF THE FILE

=13 A9sBeCoDeXo¥=0oe

FOR I=5¢ PLOT PCLINTS (UR X*Se OR SUME SYMBOL)

LoAeBeCoDoXsY SAME AS FOR I=0 (LINES)

FOR 1I=6+ SET SCALE FACTOR

A=X AXIS LENGTH

B=Y AXIS LENGTH

C=SX (FROM & INPUTS)

D=SY
PLOT AREA MUST BE AT LEAST —0e5<X<A+0e5 —=0,5<Y<B+0.5
C AND D CAN BE USED IF NEEDED.
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THE TITLE ON THE AXIS SHOULD HBE UNDER THE X AXIS,
AND TO THE LEFT OF THE Y AXIS (THE PROGRAM CAN PLOT
MORE THAN UNE Y AXIS ON A PLUTs SU BE CAREFULG)
I LESS THAN 0O+ OR GREATER THAN 8 SHOULDN®'T HAPPEN., BUT CHECK IT.

ARRAY Sl ZES

—

MAX SI1ZE OF POTENTIAL ARRAY:101e ADJUST POTN=101,POT(101)+LLL=1,101
MAX BOUNDARY SIZE: 901+ ADJUST BUNDL.BUND2,BOND3 DBONDI1 +DBOND2,

ABCX(90144),ABCY(901¢4) ¢ORDER(901+101)¢XT(901+101,6)
MAX RLIM 100e ADJUST ORDER(901+4101)eXT(901+101+6)5A(101+5)+X(1201)
MAX NUMBER OF RAYS; Sle ADJUST AL(S142)¢10(S1)e11(51)eRR(51¢2)+RMIN(
TPHI(S1)eVVI(S1) oXU(9651)eZ2(51)e11(51)ell(S1),IRMIN=S]
MAX SIZE OF PROBLEM; 9001, (RLIM#1)$(ZLIM42) <= 9001
ADJUST TYPE(9001)sU(9001)sRH(9001). -
MAX ZLIM; 300s ADJUST BX(30142)sBY(301¢2)RZX(2%301+¢2),RZVY(2%301¢2)
RZY INITe LUOP =1+2%301+2, BZA(301+14), IBZA=3014+14 , RARR(301)

LM=301 LENGTH OF EQUIPOTENT IAL

MAX NUMBER UF CULUMNS: 401+ADJUST LINC(3+401),

(SHOULD BE LARGER THAN ZLIM)

RARR(36151) ONLY FUR RECTe SPRDe IN CYLe CQORD.

EEE RS X SE0BSBELE RS XK S XS EERESEE MAIN S5 XSRS S LELC LS SRS SR SE RS EERESE
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APPENDIX IV

SAMPLE PLOTTER INTERFACE PROGRAM

REAL X(1000).Y{1000)
REAL®S T(9)
B/ L INE® s *X=AXIS* s *Y=AXIS® s 'NEW PICa®s*CLOSE® (*POINTS®, *OPEN"',
® TLINE®,°LINE®/ _
CALL STRTP2(17)

1 READ(1sEND=99) I oL ¢DXsOY¥sSXeSYs {X(JI) e I=1sL) o (V(JI)aJ=1,L)
WRITE(6.101) t:

.
[ 1 Joelel oDXsDYoeSXeSY
101 FORMAT(1XeAB,2112,4F10.4)
I=1e¢1
GOVTO (10s11¢02:13,14,15.1.,10,10),1
€ CHECK FOR ERRORS ’
I=1-1
WRITE(6,100) |
100 FORMAT(® OOPS,*5112,° FOUND IN FILE®)
GO TO 1
C ORAW A LINE
10 X{(L#1)=SX
X{L#*2)=DX
Y(L+1)=SY
Y{L+2)=DY
CALL LINE2(XeYel s140,0)
GO 70O 1
DRAW AN X—-AXIS
CALL AXIS2(SXs0eosXoe=L $4,DXs0e+SY,DY)
SAVED X=D X *
GO YO 1
DR AW Y-AXIS
CALL AXIS2(SXs0e0eXolL %4 ,0X:90,0,5SY,DY)
GO TO 1 ‘-
END OF PLOT
CALL PLOT2(SAVEDX$74¢0e0—-3)
GO 7O 1t
CLOSE FILE (TAPE)
CALL ENDP2
GD TO 1
PLOY X*S
X(L+1)=SX
X(L+2)=DX
Y(L+1)=SY
Y(L+2)=DY
CALL LINE2(XsYelslo~1e8)
GO Y0 1
99 WRITE(G6,102)
102 FORMAT(®* END OF FILE FOUND.')
sSTOP
END

Le
*t
24

-y e = = -
» ("] N s

)]
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Y AY
1 Ay
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10 20 30 40 50 60 70 80 a0 100
GLAG2 LASER GUN 75.0,200KV WBH 12-19-79

Fig. 8. Sample output for a very high perveance gun.
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N

3
i

B(Z) GAUSS
190 195 200 205 210 215 220 225

185

10 20 3D 40 50 80 70
HBLGUN.11 TWB CRIL MAG FEILD WITH H@=135 BERSTED

ab 110 120

Fig. 9. Sample output for a hollow beam gun.
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N

- n 7 — 5
CTRBTREN CXANPLE 17 [ 1 i [} 4 [t 161 170 180 i 200 a

Fig. 10. Sample output for a gyrotron gun.
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30

20

Fig. 11.

5 { 15 20 2 30 35
XK-5 FROM WYL.KL.GTK.LIB#STANGUL WITH MORE GRIDS

40 45 50 55 6

Sample output for a klystron gun.

70
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