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ABSTRACT 

The SLAC Electron Trajectory Program is described and instructions 

and examples for users are given. The program is specifically written 

to compute trajectories of charged particles in electrostatic and mag- 

netostatic focusing systems including the effects of space charge and 

self-magnetic fields. Starting options include Child's Law conditions 

on cathodes of various shapes. Either rectangular or cylindrically sym- 

metric geometry may be used. Magnetic fields may be specified using 

arbitrary configurations of coils, or the output of a magnet program 

such as Poisson or by an externally calculated array of the axial 

fields. 

The program is available in IBM FORTRAN but can be easily converted 

for use on other brands of hardware. The program is intended to be used 

with a plotter whose interface the user must provide. 
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I. INTRODUCTION 

This report is intended as a user's reference manual for the SLAC 

Electron Trajectory Program. It contains all the currently relevant 

material from the earlier publications about this program which were 

SLAC-51 and SLAC-166. In addition, I have included specific instruc- 

tions for using a number of the special features which have been added 

to the program. These features have usually been incorporated as a direct 

result of the needs of some particular user and I wish to take this oppor- 

tunity to express thanks to everyone who has at some time or other sug- 

gested improvements to the program. I think we have all benefited by this 

open process and it is for the purpose of making all these features bet- 

ter available that this report is being prepared. The most recent version 

of the program has benefited greatly from some careful program house 

cleaning, including a complete revision of the plotting sections, making 

the problem of interfacing with other plotter systems much easier. It 

is a pleasure to acknowledge the contributions of Glen Herrmannsfeldt in 

making these improvements. 
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11. APPLICATION 

The SLAC Electron Optics Program is specifically written to calcu- 

late electron trajectories in electrostatic and magnetostatic fields. 

Poisson's equation is solved by finite difference equations using bound- 

ary conditions defined by specifying the type and position of the bound- 

ary. Electric fields are determined by differentiating the potential 

distribution. The electron trajectory equations are fully relativistic 

and account for all possible electric and magnetic field components. 

Space charge forces are realized through appropriate deposition of 

charge on one cycle followed by another solution of Poisson's equation 

which is in turn followed by another cycle of trajectory calculations. 

The program may be used in either rectangular or cylindrical coor- 

dinates. A special option allows space charge forces in a cylindrical 

beam to be calculated in a rectangularly symmetric array of electric and 

magnetic fields. Magnetic fields are read in either as axial strengths 

or as arrays of coils with specified coordinates and currents. The pre- 

ferred technique of defining the magnetic field is to calculate the 

axial field from an arbitrary configuration of solenoids. Alternatively, 

the program accepts the output data from a magnet design program, which 

can include the effects of saturable iron. In cylindrical coordinates, 

the magnetic fields are axially symmetric. Off-axis field components 

are calculated by a sixth-order expansion of the radial coordinate. In 

rectangular coordinates the external field is assumed to be normal to 

the plane of the problem, which is assumed to be the median plane. Off- 
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median plane components are calculated by expansion of the perpendicular 

coordinate. 

Electron trajectories may be started by three methods: 

1. Child's law for spherical geometry based on Pierce geometry. 

2. Child's law for generalized cathodes including effects of 

holes, shadow grids and other irregularities. 

3. Direct input of the starting conditions, including the output 

from previously run problems. 

The program is designed to yield a combination of printed and plotted 

output. Printed output includes all input data, maps of the potential 

fields, starting conditions for each cycle, and final conditions for 

each cycle. Plotted output is made for the trajectory calculations and 

for equipotential lines. Plotted output may be obtained for selected 

cycles always including the last cycle. 

III. IMPLEMENTATION 

The program is written in IBM-style FORTRAN IV. Reasonable appli- 

cation requires about 400 K bytes of total storage. Running times vary 

greatly with the problem and the computer. However a "typical" problem 

run on an IBM 370-168 takes about 2 minutes. 

The program is designed for use with a computer controlled plotter. 

Data needed for plotting are placed on an external storage device (disk) 

from which they are called by a plotter interface program. Such a pro- 

gram calling standard CALCOMP routines is available and can be used as a 

model for users with other piotter systems. 
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IV. GENERAL DESCRIPTION 

Starting with the input boundary description, the program first 

solves Laplace's equation (i.e., Poisson's equation without space charge). 

The result of this calculation, together with all the boundary informa- 

tion is then printed. 

Next, the first iteration of electron trajectories is started. 

These are initiated by one of four schemes: (1) "GENERAL" cathode in 

which electrons are started assuming Child's law holds near a surface 

designated as the cathode; (2) USPHERE" for a spherical cathode (cylin- 

drical in rectangular coordinates) in which the electrons are assumed to 

be emitted at right angles to the surface defined by a radius of curva- 

ture and a radial limit. Child's law for space charge limited current 

is again used. (3) "CARDS" in which the specific starting conditions 

for each ray are specified. (4) "GENCARD" which combines the versatil- 

ity of "CARDS" with the assumptions of Child's law from "'GENERAL." 

On the first iteration cycle, space charge forces are calculated 

from the assumption of paraxial flow. As the rays are traced through 

the program, space charge is computed and stored in a separate array. 

After all the electron trajectories have been calculated, the program 

begins the second cycle by solving Poisson's equation with the space 

charge from the first iteration. For problems meeting the paraxial 

assumptions, especially if relativistic electron beams are involved, 

this one cycle may be sufficient to solve the entire prohlem. 
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Subsequent iteration cycles (as many as are requested) follow the 

above pattern. The Child's law calculations for the starting conditions 

are remade for every cycle. Perveance converges through the iterative 

process by averaging the perveance used for the previous cycle with the 

perveance calculated directly from the solution of Poisson's equation. 

An additional starting option is "LAPLACE" intended for any appli- 

cation of Laplace's equation not involving electron ray tracing. In 

this case the number of cycles is used simply to improve the accuracy of 

the solution to Laplace's equation. The "LAPLACE" option includes a 

provision for inputting arbitrary data in the "space chargetl array. 

The program always operates in two dimensions; either R and Z in 

cylindrical coordinates or Y and X in rectangular coordinates. The rec- 

tangular coordinate output retains the R and Z labels however. Electron 

orbits are calculated through azimuthal changes (labeled "PHI") refer- 

enced to the Z axis. In rectangular coordinates, PHI is actually the 

third Cartesian coordinate. 

Magnetic fields, except for the self-magnetic field of a beam, are 

input directly in one of three ways: (1) by specifying the field along 

the Z-axis, (2) by specifying a set of coils (giving position, radius 

and current), or (3) by using the vector potential output from a magnet 

program. In cylindrical coordinates, the field is interpreted as an 

axial magnetic field with radial terms as required by Maxwell's equations. 

In rectangular coordinates the field is interpreted as going in the PHI 

direction, i.e., at right angles to the plane of the problem. The rec- 

tangular coordinate field is assumed to extend to infinity in Y (R) and 
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the PHI = 0 plane (the plane of the problem) is assumed to be the median 

plane. The Bx(Bz) terms are calculated for PHI # 0 from Maxwell's 

equations. 

Self-magnetic fields are calculated for both coordinate systems 

from the current in the rays on the present cycle. It is generally 

assumed that the rays are sequentially numbered from the axis outwards. 

The self-magnetic field calculation assumes all the current from the 

previous rays lies on the axis in an infinitely long conductor. If the 

ray being calculated crosses the last preceding ray, then the current 

from that ray is dropped. However, if the ray continues to cross other 

rays, then the current from those rays is only dropped if the ray goes 

below the minimum radius of a previous ray. If several rays cross the 

axis, the results are apt to be somewhat incorrect, depending of course, 

on how significant the self-magnetic field is. Note that if the self- 

magnetic field is very significant, then almost by definition, one is 

dealing with a very intense relativistic beam. This problem is generally 

better suited to the paraxial ray approach, as solved in the first 

cycle, or to a program such as EBQ (by Art Paul of LBL) which handles 

the cancellation of space charge by self-magnetic field directly, rather 

than by the off-setting effects of two large terms. 

In rectangular coordinates, the self-magnetic field assumes symme- 

try about the y = 0 (R = 0) plane. If this is not correct, or if for 

other reasons it is desired to turn off the self-magnetic field, then an 

external field of strength zero can be specified. In any case, in rec- 

tangular coordinates, the self-magnetic field functions only if there is 

no external field. 
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A single variable controls plotting. If this variable, MI, is set 

to zero to reject all plotting, then on the first and last cycles every 

tenth point that would have been plotted is printed so that it may be 

hand plotted. Normally at least the last cycle is plotted. The first 

cycle may also be plotted or one may even plot every cycle. All plots 

may include equipotential plots, either separate or overlaid with the 

trajectory plots. If there is an external magnetic field, then this 

field is also plotted, overlaid on the trajectory plots. Finally, there 

are a pair of simple plots; current density vs. radius and alpha vs. 

radius. (Alpha = tan-' dR/dZ). 

V. POISSON EQUATION SOLVER 

A. General Description 

The program contains a subroutine which reads in data cards 

describing the boundary conditions and calculates the coefficients of 

the finite difference equations for each mesh point within the problem. 

Other subroutines are made to proceed to generate the solution to 

Poisson's equation which match those boundary conditions. The solution 

is found in terms of a set of points which form a mesh of identical 

squares. It is recognized that a provision for a rectangular mesh 

(i.e., different horizontal and vertical spacing) would improve the 

utility of the program and it is planned to incorporate this feature as 

soon as possible. The potential is calculated for each intersection of 

the mesh. Figure 1 shows a small section of the mesh. 
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11-79 3730AZ 

Fig. 1. Section of mesh for solution of Poisson's equation. 

In rectangular coordinates, the finite difference form of Poisson's 

equation is 

vl + v2 + v3+ v5 - 4V4 = (R-H.) (1) 

where the V's refer to the numbered points in Fig. 1 and R.H. is the 

value of the right-hand side of Poisson's equation at point 4 when writ- 

ten in the form 

V2V = (R.H.) (2) 

All equations use the mesh space, h, as the basic unit, so h does not 

appear explicitly. 

For problems with cylindrical symmetry, the finite difference equa- 

tion becomes 

RVl + RiJ2+ (R + 1/2)V3 + (R - 1/2)V5 - 4RV4 = R ' tRsH*) (3) 

where R is the distance in mesh units from the axis of symmetry to the 

point at 4. 
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A number of references l-6 give the derivation of these equations 

and the special equations at boundaries. Three types of boundaries are 

of interest. A Dirichlet boundary is that boundary on which the poten- 

tial is known. In an electrostatic problem, this would be an electrode 

fixed at a given potential. An ordinary Neumann boundary is one which 

lies coincident with the mesh and on which the normal derivative of the 

potential is known. In practice, the only value of the normal derivative 

that is ever known is zero. Thus, for example, the axis of symmetry of 

a cylindrically symmetric device has the normal derivative equal to zero 

and is a Neumann boundary. 

However, the axis of a cylindrical symmetry problem is a special 

case for which the difference equation is 

vl + v2 + 4v3 - 6V4 = (R.H.) (4) 

The difference equation for ordinary Neumann boundaries parallel to 

either axis can be derived from Eqs. (l), (3) or (4) by setting the poten- 

tials which straddle the boundary equal to each other. Thus a vertical 

Neumann boundary in cylindrical coordinates has the form 

2R 71,2) + (R + 1/2)V3 + (R - l/2>V5 - 4RV4 = R x (R.H.) (off-axis) 

(5) 

where the subscript 1 or 2 applies to the point inside the problem. 

The third type of boundary is the general Neumann boundary, i.e., 

one which does not lie along a mesh line. It is always assumed that the 

normal derivative is zero. The program has a provision for overriding 

the internally computed difference coefficientsand it is feasible to 
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hand calculate difference coefficients for a general Neumann boundary. 

However, in practical applications to electron optics problems, it is 

almost never necessary to go to such extremes. 

A special case of general Neumann boundary which can be handled 

easily is the 45O Neumann boundary. All that is required is to specify 

each successive point using the ordinary Neumann condition for both 

coordinates; i.e., both DELTAR and DELTAZ = 0. A tilted boundary that 

is sufficiently far from the area of most interest can frequently be 

adequately approximated by a combination of normal and 45' Neumann 

boundaries. 

B. Problem Input 

In this section the rules for problem input will be described using 

an actual example and following through the process card by card. The 

new user is urged to read this section carefully while the old user or 

reader trying to gain an overall familiarity with the program may well 

skip this section. In this section especially, no attempt will be made 

to be concise. 

Condensed instructions for problem input are printed at the head of 

the source listing and are intended to be up-to-date. A copy of the cur- 

rent version of these instructions in printed in Appendix II. The 

reader should follow the instructions which are relevant to this discus- 

sion while studying the example. 

Except for the TITLE, boundary input, and ray starting cards, all 

input to the program is by means of the NAMELIST option by which certain 

variables are defined at the place in which the program expects them. 
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The definitions are by means of short defining statements, e.g., 

RLIM = 50. A given set of these statements may be placed on one card, 

but the number of data cards used is unimportant. Each set of inputs is 

preceded by a designator, e.g., &INPUTl, which must begin in column 2. 

Never use column 1 of any NAMELIST card. The NAMELIST block is closed 

by an &END entry. 

Preparation for running a problem consists of making a suitable 

scale drawing on graph paper. Figure 2 shows the region between cathode 

and grid for the SLAC injection gun. Figure 3 is the line-by-line list- 

ing of the input data. 

1. Title and Potential Cards 

(Title) The first card of the data set is the title card. The 

contents of this card will appear at various points in the printed out- 

put and as the title for the plots. 

The second card is &INPUTl, starting in column 2. 

The following remarks about array limits apply specifically to the 

current version of the program. It is suggested that most problems 

should use about 5000 mesh points although there are occasions when much 

smaller, or somewhat larger, numbers of mesh points are useful. 

The third card is the potential card. It contains the basic infor- 

mation for setting up the program. 

(RLIM) RLIM is the maximum size of the problem area in the radial 

direction. RLIM can be made larger than necessary if it is desired to 

affect the way plots are scaled. 

RLIM is a positive integer; the present limit is 100. 
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Fig. 2. Example of preparation for a problem. 
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INJFCTTON GUN MODFI 4-1A GPIf'-CbTHfDF RFGICh (k@H) IrCC. 11-20-67 MI=O,SPC=O 
E INPUT 1 

RLI~=72,ZLI~=4C~P~7t~‘=4,PCT=C.Cr5CCC.CtC.O,C.O,~I=O,IVAGSFG=1r ’ 
EENC’ 
& INPUT2 

Z1=20,Z7=4C,Z7=2C,~C=CrC,25.CrC.CrC.C~O.O,0.0,OrOr 
t ENC 

1 
1 
1 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
0 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
0 
0 

88A 

0 1 c-c 
16 1 2.c 
37 2 
3f! 4 

c.sc 
2.c 

4P 10 2.c 
55 14 c.=+ 
5t 15 2.c 
57 15 2.c 
5e 15 2.c 
59 15 2.c 
60 15 2.c 
61 14 -c.=o 
61 13 -c.7 
62 12 -c.7 
62 6 -c.7 
62 0 -c.7 
6C 0 2.c 
71 0 c.=s 
71 10 C.SS 
71 26 C.CC 
71 27 C.SS 
70 27 -c.2 
6G 26 2.c 
49 17 -C.? 
41 13 2.c 
40 13 2.c 
34 13 2.c 
27 11 2.c 

0 10 c.c 
C P c.c 
C 2 c.c 

-c. SC 
-c.4 

-C.l 
- 1’. c 
-C.P 
-c.t 
-1.c 
-c.4 
-c.3 
-c.4 
-1.c 

1.c 
-c. P 

7.c 
2.c 
c.c 
c.c 
c. c 
2-c 
2.c 

c. qs 
C.FS 
C.P 
c.2 
C.P 
c.4 
C.7 
c.2 
C.3 
2.c 
2.c 

t INPUT5 
IZl= 1, lZS=2r IZC=lC, Fbf'=257, RCbX=?7.5, CPTTIh=O.Ol~ SPC=O.O, 

E ENC 

Fig. 3. FORTRAN data prepared for the problem shown in Fig. 2. 
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(ZLIM) ZLIM is the maximum size of the problem in the axial direc- 

tion. A larger than necessary value of ZLIM may also affect the way the 

plots are scaled. If an attempt is made to create a boundary which 

exceeds the limits RLIM by ZLIM, or goes negative, error messages are 

printed and the program will not attempt the solution of Poisson's 

equation. 

ZLIM is a positive integer; the present limit is 300. 

Note that although the problem area is (RLIM + 1) x (ZLIM + 1) mesh 

points the actual requirement is for (RLIM + 1) x (ZLIM + 2). (An extra 

column is required as a buffer.) The present limit for the total area 

is 9001 mesh points. 

(POTN) POTN is the number of potentials which are to be read in. 

There may be reasons to assign different numbers to parts of surfaces 

which are at the same potential. Normally the cathode will be potential 

number 1 and the anode will be number 2. Usually the grid, if any, will 

be number 3. A focus electrode, even if at cathode potential, should be 

assigned a different number to enable the general cathode starting 

method to be applied. The present limit for POTN is 101. 

POTN is a positive integer for cylindrical symmetry. 

POTN is a negative integer for rectangular symmetry. 

RECTANGULAR COORDINATES. The code to the program to switch to 

rectangular coordinates is the sign of POTN. If POTN is negative, the 

program assumes rectangular symmetry and a message: ***RECTANGULAR 

COORDINATES, PHI IS TRANSVERSE appears immediately after the list of 

potentials. 
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POT(I) The next numbers are the elements of the array of poten- 

tials. They are read in in order from 1 to POTN. Potentials are car- 

ried in double precision which means that up to 15 significant decimal 

figures can be used. Examples of valid ways of punching 250 volts are 

as follows: 250., 250, 2.532, 2500E-1, 250.000. For NAMELIST, the list 

need consist only of POT = (string of potentials separated by commas). 

POT(I) is an element of an array of floating point numbers. 

Negative potentials are indicated by a minum sign, e.g., -250. 

Negative potentials are permitted but it is preferable to avoid using 

them. Since a constant can always be added to all potentials, it is 

possible to make the most negative potential zero. The reason for 

avoiding negative numbers is that space charge is negative and some 

diagnostics of the output are simplified if there are no negative poten- 

tials. On the other hand, certain problems have a symmetry that can be 

quickly examined if a symmetry plane or surface is made to be zero by 

having equal + and - potentials. Then negative potentials are certainly 

desirable. 

Note that it is acceptable to include potentials corresponding to 

potential numbers which are not used by the problem. One reason for 

doing this is to get a desired set of equipotential lines on the plotter 

output. 

The program is intended to be run using engineering units. Thus 

potentials are in volts and magnetic fields are in gauss. If a problem 

does not use magnetic fields or relativistic energies, there is no rea- 

son not to scale the potentials. The perveance and running time will 
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not be affected. However, there is also nothing gained by scaling. Of 

course, when a problem has been run at one set of potentials, all the 

scaling rules of electron optics may be applied to avoid the cost of 

running the problem again. 

(MI) MI is a code number which determines the selection of plots. 

If MI = 0 there are no plots generated. However, every tenth point 

of the trajectories is printed for the first and last cycles. 

The following table, reprinted from the condensed instructions, 

shows the available options for MI 

Cycle for which electron 
trajectories are plotted: Initial & Final All Final 

Plots with equipotential lines 1 2 3 
superimposed on trajectories: 

Separate plots of equipotential 4 5 6 
lines: 

No equipotential lines: 7 8 9 

MI is a positive integer or zero. If MI is negative it is inter- 

preted as a deliberate boundary error for help in debugging boundaries. 

TYME =X TYME = 5 MAX. PROBLEM RUN TIME (MIN.) 

TYME is used to make an internal check of how much time is being 

used to guard against running out of computer time, as specified on a JOB 

card, just before printing and plotting the results. TYME uses special 

machine language subroutines to measure actual use of CPU time which is 

the parameter used to determine JOB time and charges in a multitask 

environment. This avoids gross variations in time due to the presence 

of other jobs on the system. The subroutine must be supplied by non- 
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Stanford users to suit their hardware or, alternatively, dummy subrou- 

tines may be used to defeat this feature. The program only tests for 

TYME once each cycle and determines that there is adequate time left to 

do the extra plotting, etc., that is involved in the last cycle, based 

on the previous cycle time. When time appears limited, the program cuts 

out intermediate cycles, with a note that: 

THERE IS NOT ENOUGH TIME TO DO THE SPECIFIED NUMBER OF CYCLES 

TYME does not need to correspond exactly to the job card. The user may 

wish to modify the value according to his experience, or disable TYME 

entirely by setting it much larger than his JOB card time. 

LSTPOT = 1, 2 or 3 causes the program to print a table of the poten- 

tials of all the mesh points. This is the most useful diagnostic avail- 

able for the Poisson solution and, when studied together with the equi- 

potential plot, can show quite subtle errors. The default value; 

LSTPOT = 0, suppresses this output and thus saves quite a lot of printing 

if the same or a very similar boundary is run many times. The choices 

for LSTPOT cause the printing of the first (LAPLACE) solution (LSTPOT = l), 

or the last solution (LSTPOT = 2), or the solutions from both the first 

and last cycles (LSTPOT = 3). 

The parameter MAGSEG controls two of the four possible ways of 

reading in magnetic fields. The example case will be explained in the 

next paragraph. 

2. Magnetic Field Data 

Electron optics calculations include the effects of any external 

magnetic fields that may be present. The input methods for magnetic 

fields have been greatly revised and will be treated later in a special 



I 

-18- 

section. If there are external magnetic fields then the input could 

occur at this point. The parameter MAGSEG signals that segments of mag- 

netic field data will follow; one segment for MAGSEG = 1, etc. The 

namelist &INPUT2 is called MAGSEG times to read in segments, which may 

be anything from constants to sixth order polynomial functions of Z. 

Please note that this discussion is only included here to explain the 

&INPUT2 namelist data card in Fig. 3. It is grossly incomplete as an 

explanation of the magnetic field situation which will be found in an 

expanded form in Section VI-D. 

The example problem contains a meaningless magnetic field inserted 

only as an example. The magnetic field plotted on the right-hand side 

of Fig. 2 shows an axial field starting at Z = 20 going from 0 to 500 

gauss in 20 mesh units. A sixth order expression is used by the program 

to fit the fields on any segment of the axis. The data on the card are 

Zl and 22, the limits of the range of the segment being described; 23, 

the origin for the segment being described, and seven coefficients for 

the equation: 

BZA(Z) = CBC(n) (Z - Z3)n-1 

n = 1to7 (6) 

Zl, 22 and 23 are integers. 

BC(n) is an element of a seven member real array. 

The parameters Zl, 22 andZ3 are read in by simple statements 

(22 = 100, etc.) and are defaulted to 0, ZLIM and 0, respectively. The 

coefficients, BC, are read in as an array by BC = (string of coefficients 

separated by commas). 
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A second option (MAGSET = -1) allows the axial array to be read in 

directly. See Section VI-D for a description of this feature. 

3. Boundary Input 

The main thing for a user of the program to learn is the technique 

and conventions used to input boundary data. Since the primary applica- 

tion for the program is for electrostatic optics, the terminology used 

will be appropriate to that class of problem. Each line on the table in 

Fig. 3 represents one data card for the problem in Fig. 2. The input 

uses FORTRAN fixed field input; three integers followed by two floating 

point numbers. The fixed field format requires one card for each point. 

The chief feature of the input routines is the ability to fill in 

for segments of the problem that the programmer skips. This saves a 

great deal of labor since a typical problem which uses perhaps 300 bound- 

ary points may be specified with about 50 cards. This technique will be 

called "fitting" in the description for the ability of the program to fit 

a curve to three specified data points. 

Two types of boundaries are used: Dirichlet boundaries are those 

on which the potential is known. Neumann boundaries are those on which 

the normal derivative of the potential is known. 

Dirichlet boundaries are used to represent metal surfaces. Neumann 

boundaries represent gaps between surfaces and must be chosen so that 

the normal component of the field is zero since that is the only value 

that is ever known in practice. Thus the cathode is a Dirichlet boundary 

and the axis is a Neumann boundary in a typical example. Neumann bound- 

aries can meet at a corner. 
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For electrostatic problems it has been found satisfactory to 

restrict Neumann boundaries to lie along mesh lines. Dirichlet bounda- 

ries may have any shape desired although the mesh spacing limits the 

resolution of the smallest details which can be effectively used. 

Slanted Neumann boundaries are possible however, and the input technique 

will be described later in this section. 

A boundary point is defined as any mesh point less than one mesh 

unit from the boundary of the problem, but always within the boundary. 

The points on a Neumann boundary are always boundary points. The points 

on a Dirichlet boundary are never boundary points. This difference, 

which is inherent in the formulation and not just a program convention, 

gives rise to a code to determine which type boundary is being specified. 

Thus, if the distance from a point to a boundary in either the R or Z 

direction is zero, then that boundary is defined as a Neumann boundary. 

1. 

2. 

3. 

4. 

Potential number, integer, corresponds to the surface numbers 

denoting elements of the array POT (n) described earlier. 

R, integer, the value of the radial coordinate of the mesh at 

the boundary point. 

Z, integer, the value of the axial coordinate of the mesh at 

the boundary point. 

DELTAR, floating point, the distance from the mesh point to 

the boundary in the radial direction. DELTAR is negative if 

the boundary intersects the radial line at a point in the minus 

direction from the mesh point. If the intersection is greater 

than one mesh unit from the boundary point then the intersec- 

tion is not significant. Any number greater than 1.0 could be 
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used but typically the distance is specified as 2.0 if it is 

greater than 1.0. 

5. DELTAZ, floating point, the distance from the mesh point to 

the boundary in the Z or axial direction. The same rules as 

for DELTAR, above, apply. 

In the case of a point on a Neumann boundary, the potential number 

is not significant. If the point is simultaneously within one mesh unit 

of a Dirichlet boundary, then the potential number is the number for 

that surface. Otherwise it is customary to punch a zero for the poten- 

tial number. It is important to realize that a zero for the potential 

number is not the code number for a Neumann boundary. Repeating, the 

code for a Neumann boundary is a zero for DELTAR if the boundary is par- 

allel to the axis. If the boundary is a radial plane, then the code is 

DELTAZ = 0. I_ 

A mesh point cannot simultaneously be a boundary point for two 

Dirichlet surfaces at different potentials. This is not usually a prob- 

lem for the programmer. However, there can be situations when it is 

necessary to make some adjustment in the problem to avoid a situation in 

which, either DELTAR or DELTAZ should have two values, or in which DELTAR 

and DELTAZ refer to two different surfaces in which neither is a Neumann 

boundary. 

Note that this also means that a single point cannot be a complete 

row or a complete column. A column nust have a top point and a bottom 

point, each of which has a DELTAR between -1.0 and +l.O. Since one 

point cannot have both of these, one point cannot be a column. The same 
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thing applies to rows. However, the program applies tests for the col- 

umns only. 

Boundary points must be read in in sequential order. Adjacent 

points must be within one mesh unit in both R and Z. If a boundary 

point is not within one mesh unit of the previous point, then a special 

procedure starts with the purpose of determining and filling in the miss- 

ing point or points. This procedure, referred to as "fitting," fits 

a second degree equation to the three boundary points defined by the two 

cards referred to above and the immediately next card. The equation is 

either of the forms 

R = AZ2+BZ+C SLOPE I 1.0 (7) 

or 

Z = A'R2 + B'R + C' SLOPE > 1.0 (8) 
._ 

depending on whether SLOPE = ABSC(2Z + 1) A + Bl is less than or greater 

than unity. 

Use of fitting demands some care and understanding on the part of 

the user. It should not be used on curves with more than one curvature 

or on curves that go through too large an angle, i.e., never more than 

45O. It is more useful on long straight or slightly curving segments. 

Three points always define a segment and if the third point is 

missing or goes around a corner to another segment, the result will be 

chaotic. 

The programmer must realize that each boundary point may actually 

define two points on the surface at the intersections in the R and Z 

directions. If both points do not lie on the same segment, the results 
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are unpredictable. This is a common difficulty at inside corners of 

Dirichlet boundaries. The solution is to provide a data card for one 

extra point in each direction from the corner. 

In the special, but quite common, case in which one of the surfaces 

at a corner is a Neumann boundary, the program takes account of the cor- 

ner ambiguity and no extra cards are required. 

The boundary output listing shown on Fig. 4 will now be examined 

in detail as an example. Notice that there are seven columns; POINT, 

CARD, POTENTIAL, R. Z, DELTAR, DELTAZ. The POINT column is just the 

point number. The CARD column contains a sequential number if such a 

card exists; otherwise it contains a zero. The remaining columns con- 

tain the identical data asare found on the cards, or the data resulting 

from fitting. It is useful to compare Figs. 2, 3 and 4 as the following 

discussion progresses. 

Card number one: Potential number one, (cathode), R = 0, Z = 1, 

(this is the usual starting place), DELTAR = 0.0, (code for Neumann 

boundary along the axis), DELTAZ = -0.99,(-1.0 could have been used but 

1.0 for the DELTA terms can result in some confusion for the fitting 

routine). The point R = 0, Z = 0 could also have been used but it is 

risky to use -0.01, for example, for DELTAZ because the curve could try 

to cross the Z = 0 line before R = 1, thus resulting in a point with two 

values of DELTAR, 0.0 and some positive fraction. This would also have 

the result of adding another column to the problem without increasing 

the resolution or the actual area, thus resulting in a fractional slow 

down. Thus 0.99 or 0.999 is, frequently used for DELTAR or DELTAZ. 
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: 

: 
* 

: 

: 
2 

: 

: 

: 

: 

E 
0 

Fig. 4. Output listing of boundary data for the problem of Fig. 2. 
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Card number two: POT = 1, R = 16, Z = 1, DELTAR = 2.0, DELTAZ = 0.4. 

Since R = 16 is more than one unit from R = 0 on card one, the automatic 

fitting routine will be called. It will read the next card which must 

also be on the cathode surface. The DELTAR = 2.0 indicates that the 

boundary does not cross within one mesh unit in the R direction. 

Card number three: POT = 1, R = 37, Z = 3, DELTAR = 0.99, 

DELTAZ = -0.1. Both DELTAR and DELTAZ refer to the same curve segment, 

so there is no ambiguity for the fitting. This is the third card for 

the fitting set for the cathode. The coordinates of the points through 

which the curve will fit are: (r = 0, z = O.Ol>, (r = 16.0, z = 0.6) 

and (r = 37.99, z = 3.0). It will use Eq. (3) rather than Eq. (2) 

because the absolute value of the slope is greater than one. 

Card number four: POT = 4, R = 38, Z = 4, DELTAR = 2.0, 

DELTAZ = -1.0. POT = 4 is used to permit the focus electrode, which 

this surface is, to be distinguished from the cathode. The -1.0 for 

DELTAZ is inadvisable but works on the first point of the set of three. 

No fitting since R and Z are 1 mesh unit from those on card 3. 

Card number five: POT = 4, R = 48, Z = 10, DELTAR = 20, 

DELTAZ = -0.8. This card causes the automatic fitting procedure to be 

called. 

Card number six: POT = 4, R = 55, Z = 15, DELTAR = 0.99, 

DELTAZ = -0.6. This is the third card of the set and fits the straight 

section of the focus electrode. 

The next several cards define the boundary around the point on the 

focus electrode. The logic should be obvious by inspection. Fitting is 

used for the top of the focus electrode. 
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Card number sixteen: POT = 4, R = 62, Z = 0, DELTAR = -0.7, 

DELTAZ = 0.0. This card is interesting because it defines the end of the 

segment to be fit along the top of the focus electrode and the beginning 

of the Neumann segment along Z = 0. Because of the Neumann condition 

(DELTAZ = 0.4) the program recognizes the corner condition and fits to 

the point (r = 61.3, z = 0.0). 

Card number seventeen: POT = 0, R = 66, Z = 0, DELTAR = 2.0, 

DELTAZ = 0.0. This is a case where one might forget to skip a point and 

make R = 63 . . . don't. Also note especially the DELTAR = 2.0 . . . there 

is no surface in the R direction for more than one mesh unit, even though 

the point lies right on the Neumann boundary. 

Card number eighteen: POT = 2, R = 71, Z = 0, DELTAR = 0.99, 

DELTAZ = 0.0. Potential 2 is for the anode, which is the role played by 

the gun grid in this example. The 0.0 for DELTAZ signifies the vertical 

Neumann boundary. Note that this card is used to begin the next fitting 

segment. 

Card number twenty: POT = 2, R = 71, Z = 27, DELTAR = 0.99, 

DELTAZ = 2.0. This is an "extra" card inserted to avoid the corner 

ambiguity which would occur if the fitting program had to use the next 

card which points to two different line segments of the same surface. 

Cards number twenty-one and twenth-two: POT = 2, R = 71 and R = 70, 

Z = 27, DELTAR = 0.99 and 0.2, and DELTAZ = 0.99. These two cards form 

a short column to avoid a column of length one at the corner. Clearly 

they do not agree with the design surface, but the location is such that 

the discrepancy cannot affect the solution. 
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The last three boundary cards define the Neumann segment on the 

axis. Note that the last card, POT = 0, R = 0, Z = 2, DELTAR = 0.0, 

DELTAZ = 2.0, specifies the point immediately adjacent to the first 

point, thus completely defining the boundary. The boundary must be com- 

pleted in this way without ever repeating a boundary point. 

The next card, with 888 in the POT field, or any other potential 

number greater than POTN, terminates the boundary input. The next step 

in the program is to calculate the difference equations and to perform 

some checks on the boundary data. 

4. Special Boundary Conditions 

A curved or slanted Neumann boundary, except for 45', requires the 

general Neumann conditions. The special case of a 45O Neumann boundary 

is correctly described in both DELTAR = 0 and DELTAZ = 0. General 

Neumann and other boundary conditions such as dielectric surfaces, may 

be put in as calculated values by overwriting the difference equations 

calculated by the program. The normal ending to the boundary data is by 

a potential number greater than POTN. If 999 is used, the program will 

commence reading cards containing R and Z; the coordinates of an exist- 

ing boundary point, and Dl, D2, D3 and D5; the four coefficients of the 

difference equation for the point (R,Z). 

R and Z are integers locating an existing boundary point. Dl, D2, 

D3 and D5 are the real positive coefficients of the difference equation 

at (R,Z). 

Any number of such cards may be used in any sequence. An R value 

greater than RLIM terminates, this input. 
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Dielectric materials may be simulated by special boundary values at 

the dielectric surface. The rules for this are summarized in the con- 

densed instructions and will be explained in Section VI.1. 

5. Boundary Diagnostics 

If the input data are acceptable, the next message printed on the 

output is: SPECTRAL RADIUS=O.995. The spectral radius is a constant 

used by the program for the convergence of the solution of Poisson's 

equation. 

BOUNDARY ERROR IN COLUMN XX 

If this message appears somewhere in the middle of the listing of 

boundary data, it is a signal that the boundary data have exceeded the 

limits of the problem, 0 5 R 5 RLIM and 0 -< Z 5 ZLIM, or that the bound- 

ary data have exceeded the maximum number allowed which is 901. Thus, 

this message appears if the boundary calculation goes into a loop. 

Loops usually result from an error in boundary fitting as might be 

caused by omitting one of the three points of a line segment. Normally 

the program will attempt to pick up the boundary computation and com- 

plete the listing. However, the problem will not attempt to run and 

there may be other errors caused by the program in trying to interpret 

the rest of the boundary. 

BOUNDARY ERROR IN COLUMN XX 

If this message appears at the end of the boundary listing it indi- 

cates that the program checks have found an error. The program checks 

are based on the requirement that each column must have a top and a bot- 

tom. Since there can be more than one segment to a column, the require- 

ment translates to mean that there must be an even number of ends for 
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each value of Z. An end is defined by a DELTAR value between +1 and -1. 

Thus the programmer need only determine why there are not an even number 

of such points for the indicated column. 

Note that there are similar checks which could be made but aren't. 

Each row must have two ends also, but no such check is included. Also 

obviously a bottom end must have DELTAR between 0.0 and -1.0, i.e., not 

greater than 0.0. This and similar boundary mistakes are left to the 

programmer's care to prevent or correct. 

BOUNDARY ERROR OR MI NEGATIVE 

If this message appears at the end of the boundary listing the pro- 

grammer must check for messages of the previous two types. If there are 

none, and he has set MI negative, then the boundary data have passed the 

program checks. It is worthwhile for the programmer to look at all the 

output carefully to catch other boundary errors. The programmer should 

also always endeavor to get at least one plot including equipotential 

lines of any new geometry. Unsuspected errors frequently become glar- 

ingly obvious on examination of a plot. The optional printout of the 

table of potentials caused by LSTPOT > 1 should always be used for a new 

or revised boundary configuration. 

C. Poisson's Equation 

After reading the boundary input, and before reading the starting 

conditions, the program makes the first solution of Poisson's equation 

(actually Laplace's equation at this point since there is no space 

charge, hence right-hand side (R.H.) equals zero). The description of 

the input data for the example will be interrupted here for a brief 

description of the mechanics of the solution of Poisson's equation. 
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The program solves the complete set of equations for one column at 

a time. Mathematically, a matrix for a column consists of a tridiagonal 

matrix which must be solved (inverted) to find values for the potentials 

of each of the points in one column. To do this, the adjacent columns 

are assumed to contain "known" values, and the end points are also 

"knowns." That is, either the value is known or, in the case of a 

Neumann boundary, the adjacent point is assumed to be the same as the 

point being solved since the derivative is zero. The relaxation method 

is known as the "semi-iterative Chebyshev" method and is described by 

Varga. 4 

Each column consists of two or more points, with upper and lower 

end points being boundary points for which -1.0 < DELTAR < 1.0. Thus 

each column has at the top and bottom a condition, either Neumann or 

Dirichlet, that permits the program to write a set of n equations in n 

unknowns for that column. A column of the problem area defined simply 

by the value of Z, may have more than one segment which must each meet 

the above definition of a "column." Each such column must have its 

proper ends. In the example problem, there are two columns for each 

value of Z up to and including Z = 14. 

When a column is solved, the adjacent columns are considered fixed. 

Alternate columns are solved so that on two passes first the odd numbered 

columns and then the even numbered columns are solved. After 50 itera- 

tions, or less if the error criterion is satisfied, the calculation is 

stopped and a message is printed: 

N = 51, ERR = X.XXE - XX 
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This is the signal that after 50 iterations (the counter is already set 

to 51) the maximum error is expected to be ERR in volts. The actual 

test is on the largest single change in the iteration, but the value 

printed takes into consideration the dimensions of the problem. The 

convergence criterion can be adjusted by using the parameter ERROR (see 

VI.A.(4)). It is automatically tightened by a factor of ten for the 

final cycle. Certain problems using large areas of Neumann boundaries, 

are subject to slow convergence so that the results may be incorrect. 

This can be remedied either by iterating for more cycles or by giving 

the program a better starting distribution. These techniques will be 

described in a subsequent section. Generally the iteration process is 

quite satisfactory and after 50 iterations the field is sufficiently 

determined to start ray tracing leading to the inclusion of space 

charge. 

After finishing the first cycle of Poisson's equation, a potential 

map, or POTLIST, is printed giving the potential (normalized to 100% of 

the maximum potential) for every point in the RLIM by ZLIM space. Since 

this includes background points (points behind the surfaces) one can 

usually trace the outline of the problem. The background points have 

the initial values and should not be confused with the internal points. 

The POTLIST is an exceptionally effective diagnostic device and should 

always be studied for peculiarities. An error in boundary data may, for 

example, leave a strange zero in the middle of the high potential part 

of a device, thereby greatly distorting the fields. When used together 

with the equipotential plots, it is possible to pinpoint errors in a few 

minutes. The POTLIST is suppressed by the default value of LSTPOT = 0. 
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VI. STARTING CONDITIONS 

After the first calculation of Poisson's equation, the program 

reads the starting conditions. The format is NAMELIST consisting of 

defining equations in which the variable is named followed by an "equal" 

sign and the value. Only those variables that need to be altered from 

the default conditions need to be specified. The sample problem demon- 

strates how little data needs to be specified in many cases. Using the 

sample problem, the following remarks will illustrate the technique. In 

the rest of this section, a brief description will be given for each of 

the options currently included in the programs. Since other options can 

always be added, the user must refer to the comments in the program for 

the up-to-date implementation. 

The sample problem is coded as a spherical diode or Pierce gun. 

The card with &INPUT5 signals that the namelist entries follow. The 

entry START = 'SPHERE' directs that the spherical diode conditions will 

be used. The entries RAD = 257 and RMAX = 37.5 give the spherical 

radius and cathode radius respectively. UNITIN = 0.01 specifies that 

the scale of the problem is 0.01 inches/mesh unit. All problem scaling 

is in MKSA units so that UNITIN is immediately converted to UNIT in 

meters. After reading these items the program prints a table of all the 

starting parameters . 

The starting conditions are described in the follobTing sections 

according to function as follows: 
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Universal; apply to more than one case, 

Equipotential lines; controls equipotential plotting, 

Plotting; plot controls, 

Magnetic fields; input and calculation parameters for magnetic 

fields, 

General cathode; parameters controlling the general cathode option, 

Spherical cathode; parameters specifically applicable to START 

= 'SPHERE'. 

Card starting; parameters controlling the use of specified starting 

conditions. 

Laplace starting; parameters controlling the use of the program for 

applications other than ray tracing. 

Universal Parameters 

For each starting parameters, there is a default value which will 

be the value used if it is not changed by the input. In the following 

discussions, the entries will be given as described by the program com- 

ments with the format: 

INSTRUCTION DEFAULT,MAX COMMENT 

This will be followed by a discussion of the use of the parameter. 

When a second 

value, it refers to 

array limits. 

number, separated by a comma, appears for the default 

the maximum allowed value, usually determined by 
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(1) PERVO = X.X.X PERVO = 0 ZERO USES LAPLACE/ 

PERVO is the initial value of the perveance of the beam for either 

the START = 'SPHERE' or START = 'GENERAL' methods. Perveance is defined 

as the constant K in the expression 

1 = K IJ312 X If6 (9) 

where K is expressed in micropervs so that, for example, a microperveance 

1.0 device operating at lo4 volts would have a current of 1.0 ampere. 

The entry X.XX indicates that a decimal number is the expected value. 

When a single X is used, it implies that an integer is expected. The X's 

do not indicate the input format; the number of significant figures is not 

restricted except by the computer hardware, and by the logic of the 

program. 

PERVO normally controls only the perveance of the first cycle. 

However, it may be "held" for any desired number of cycles by using 

HOLD = X. The process by which the program determines perveance is to 

average the perveance calculated for a given cycle with the perveance 

actually used in the preceding cycle. The new averaged value is then 

used to determine the current per ray. The averaging process has proven 

very effective in quickly arriving at a stable value. It has been so 

successful that it is frequently better to start with the averaging 

method than with a value "known" to be "correct" from experiment or from 

prior calculations. The default value PERVO = 0 is a code instruction 

which takes the value of perveance calculated for the LAPLACE solution 

and simply divides it by two to arrive at the perveance for the first 
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cycle. The new user of the program is advised to use the default value 

until specific experiences lead him to try something else. 

(2) HOLD = X HOLD = 1 PERVO 'HOLDS' FOR HOLD ITERATIONS 

HOLD = 2 or more causes the input value of PERVO to remain 

unchanged by the averaging process for HOLD iterations. There are some 

problems, particularly with very non-uniform cathode loading, where using 

HOLD helps establish the necessary space charge environment for the process 

to stabilize. A more frequent application is to simulate emission limited 

conditions by running the entire problem with a fixed reduced perveance. 

Then, of course, HOLD must be at least as large as NS. 

(3) PE = X.X PE = 2.0 INITIAL ENERGY AT CATHODE (EV) 

PE is the incremental energy that is added to every trajectory to 

account for the combined effect of work function potential and thermal 

energy. Like PERVO and HOLD, PE is only used for starting with one 

of the Child's Law routines for calculating the initial conditions. It 

is normally not necessary to have any initial PE, but some small changes 

may be observed by varying it. In a few low emission devices, it has 

been found essential to have some initial energy to avoid instabilities 

near the cathode. 

(4) ERROR = X.X ERROR = 1.0 MULTIPLIES ERROR TEST 

ERROR = 2.0 doubles the built in error test by which the program 

determines that an adequate solution of Poisson's equation has been 

reached. If the problem is slow to converge, particularly if there are 

large areas of Neumann boundary, it may be necessary to reduce the 
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allowed error, e.g., ERROR = 0.1, to get the program to converge at all. 

Slow convergence is indicated if each cycle only iterates three times, 

prints N = 3, ERR = nnn, and calculates the trajectories. On the last 

cycle, the error test is reduced by a factor of 10 from whatever level 

was set by the user. Some hints about convergence problems will be found 

in a later section. 

(5) UNIT = X.XXX UNIT = 0.001 METERS/MESH UNIT 

(6) UNITIN = X.XXX (SEE UNIT) INCHES/MESH UNIT 

The default scale value for the program is 0.001 meters/mesh unit. 

If a value is given for UNITIN (inches/mesh unit) this value will be 

immediately converted to meters. Except for problems using magnetic 

fields, the optics of an electron gun does not depend on the scale factor. 

All the standard rules of scaling in electron optics can be used once a 

problem has been solved. 

(7) MAXMY = xx MAXRAY = 27, 51 MAXIMUM NUMBER OF RAYS 

IF MAXRAY IS NEGATIVE, THE NUMBER OF RAYS=ABS(MAXRAYS) 

MAXRAY determines the maximum number of electron trajectories that 

can be calculated. The arrays for trajectories have a limit of 51. The 

number of rays used by START = 'GENERAL' or START = 'SPHERE' is deter- 

mined by a program algorithm unless the value read in is negative. With 

the limit MAXRAY, the program tries to make an integral number of rays 

per mesh unit at the cathode. 

(8) STEP = O.XX STEP = 0.8 MESH UNITS/STEP 

in 

STEP is the iteration step length for ray tracing. It must be less 

than 1.0 for the program to properly account for space charge, calculate 
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magnetic fields, etc., when crossing a mesh line. The equations of 

motion are time dependent, thus the program uses STEP to calculate step 

time from the velocity at the start of the step. Since the electron can 

accelerate during a step, it may actually go slightly farther than STEP. 

The default value is about the largest that should be used. If magnetic 

fields are present, STEP should usually be reduced at least a factor of 

two. On the last cycle, STEP is automatically reduced by a factor of 

two. Shortening the step means more time will be required for a problem. 

As a rule of thumb, the program spends roughly half of the time with 

Poisson's equation and half with the ray tracing. Thus reducing STEP by 

a factor of two could increase cost by about 25% the first time but may 

nearly double it thereafter. The Runge-Kutta method is used to solve the 

differential equations of motion. Because of the necessity to take small 

steps anyway, and because of the time needed, the program does not use 

any of the "predictor-corrector" techniques of verifying step length. 

Experience has shown that errors due to STEP being too large, especially 

if magnetic fields are included, become glaringly obvious when the plots 

are examined. The most frequent effect is for a trajectory to get too 

close to the axis, violate conservation of angular momentum in one step, 

and fly out of the problem area with beta > 1.0, where beta = v/c. An 

error message to this effect is printed when a ray ends with beta > 1.0. 

At the very least, this is a signal to reduce STEP in subsequent runs. 

(9) NS = X NS = 7 NUMBER OF ITERATIONS 

NS defines the number of program cycles to be made. In the program, 

NL is used as the running variable to record the number of cycles left to 
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be run. Initially NL = NS. The default value is usually acceptable 

unless the program is having trouble converging on the perveance. For 

the special case of no space charge, it is advisable to still use NS = 2 

to gain the insight afforded by the reduction of ERROR and STEP on the 

final cycle. For START = 'LAPLACE', NS is the number of times that 

Laplace's equation will be cycled. 

(10) SPC = o.XX SPC = 0.5 ESTIMATED SPACE CHARGE 

SPC SIMULATES PARAXIAL APPROXIMATION ON FIRST CYCLE. SPC IS THE 

FRACTION OF THE RADIAL FORCE USED. SPC = 1 FOR FULL EFFECT, SPC = 0 

FOR NO EFFECT. 

SPC determines the fraction of the ordinary radial electrostatic 

force that will be applied to the rays on the first cycle. In a device 

in which space charge forces play a strong part in the focusing, the 

electrostatic fields usually have a strong radial restoring effect. If 

not opposed by space charge on the first cycle, these forces may cause 

the rays to strongly over focus leading to a poor initial distribution 

of the space charge. The full contribution, SPC = 1.0, adds a term to 

the radial equation of motion simulating all the current, of all the rays 

calculated, to lie in a conductor on the axis. Thus it is assumed that 

the rays are calculated in sequence starting with the ray nearest to the 

axis. In the case of an electron gun calculation starting at the cath- 

ode, a better choice is SPC = 0.5 which attenuates the force by 0.5. 

Near the cathode, this corresponds to a current starting from the cathode 

and extending infinitely in only one direction. Further from the cathode, 

SPC = 0.5 is a less logical choice, but the beam is less sensitive to 
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radial forces as it gains in energy. Empirically, it has been found that 

SPC = 0.5 is a good choice for gun problems involving starting from the 

cathode. For other types of problems, the user should be aware of the 

fact that SPC exists and can be changed. In rectangular coordinates, SPC 

simulates an infinite sheet of current on the axis. If the problem does 

not involve reflection about the R = 0 plane, then there is a transverse 

force (which does not depend on distance from the x-axis) which should be 

turned off by SPC = 0.0. Since SPC only affects the first cycle, the 

program will usually forgive any misuse of it. SPC can be useful in 

arriving at a satisfactory solution of one usually difficult problem, 

that of a long thin beam with magnetic fields providing the focusing. 

This can be a difficult problem to get to stabilize because of the poor 

aspect ratio which frequently finds a large fraction of the beam within 

oneortwo mesh units of the axis. However, it is usually well repre- 

sented by the paraxial approximation so that a single cycle run, NS = 1, 

with SPC = 1, will frequently result in a good solution. In this case 

one must be sure that STEP is small enough and that an adequate solution 

of Laplace's equation was attained, since ERROR had no effect on the 

first cycle. 

(11) PHILIM = X.X PHILIM = 0.0 AZIMUTHAL LIMIT 

PHILIM .NE. 0 ENDS TRAJECTORY AT PHI .GT. PHILIM 

For special applications, it is possible to establish an orbit that 

would continue until the program is stopped. An example is an electron 

orbiting in a uniform magnetic field. PHILIM has the units of PHI; 

radians in cylindrical coordinates and mesh units in rectangular 

coordinates. 
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(12) SAVE = 1 SAVE = 0 SAVE = 1 SAVES BOUNDARIES 

TO USE SAVE = 1, OMIT BOUNDARY CARDS FROM NEXT PROBLEM 

SAVE = 1 is a signal to the program to expect a second problem run 

immediately after the first problem, and that the second problem will use 

the same boundary conditions. It is always possible to run tandem prob- 

lems although, at most computer facilities, there is no particular incen- 

tive to do so. Programs are usually run from load modules, or from a 

library of compiled subroutines to be linked with very little expense, 

and separate problems can be run independently without the risk that a 

failure in the first problem will affect or knock out the second one. 

However, in the case where successive problems use the same boundary con- 

ditions, considerable savings in effort and computer time can result by 

saving the boundaries, which also saves the arrays of potentials and 

space charge. 

The SAVE = 1 parameter is put in the starting conditions of the 

first problem, not the second one unless there is still to be a third 

problem. The data deck for the second problem starts immediately after 

the last data card of the first deck with no EOF or /* control cards. 

The second deck is complete in every respect including title, potential, 

magnetic fields, etc., except that the boundary cards and the accompany- 

ing large potential number card are omitted. The potentials can be 

changed between runs; if the largest potential is changed, the program 

will scale all potentials in the potential map proportionately. Other- 

wise the program will start out just as if a cold start was being made, 

except that the old solution, including the last space charge array, is 

used as a "preload." 
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One example of the use of SAVE is to be able to trace rays with 

small changes of either voltage or magnetic fields. Another use is in 

the case in which the Laplace solution is difficult to achieve because of 

extended lengths of Neumann boundaries. In this case, it may help to run 

the first part with START = 'LAPLACE' (see section VI-H) and SAVE = 1 and 

then do the ray tracing in the following problem. This saves the time 

and expense of ray tracing in an incorrect potential distribution. This 

procedure is not normally required since the usual procedure allows the 

program to improve the solution on successive iterations as the space 

charge is entered. 

The special case of a pair of electrodes separated by a long length 

of Neumann boundary parallel to the z-axis causes special problems with 

convergence that might respond to the approach using START = 'LAPLACE'. 

An alternative approach, which is easier, is to introduce a few boundary 

points along the top or bottom Neumann boundaries, with potential num- 

bers. If the corresponding voltages, which must be entered in the poten- 

tial list, represent approximate values for the potentials in the final 

solution at that point, then the starting load to the program will be 

much better than the normal starting load. Usually the starting load is 

of very little significance, but in this special case it can be crucial. 

The special boundary points are exactly like the usual Neumann points, 

except that the potential number is given and refers to an appropriate 

element of the POT array. After the preload, the Neumann points relax 

as usual and the potentials change accordingly. 
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(13) SAVE = 2 SAVE = 0 USES FINAL DATA 

FROM PREVIOUS RUN TO START THIS RUN. USE ONLY WHEN START = 'CARDS'. 

Save = 2 allows consecutive runs to use the final conditions of a 

preceding problem as the initial conditions of the succeeding problem. 

Necessary scaling and positioning adjustments are made as described under 

START = 'CARDS', below. The SAVE = 2 goes to INPUT5 of the second run. 

Note that the dual use of SAVE = 1 and SAVE = 2 in one problem is 

not permitted, but that SAVE = 1 on the first problem followed by SAVE = 2 

in the second is both permitted and quite common. It simulates the 

repeated use of a drift tube, periodic focusing section, etc. 

(14) MASS = x.x MASS = 0.0 MASS > 0 FOR IONS 

MASS IS THE MASS TO CHARGE RATIO, 1.0 FOR PROTONS 

USE MASS > 0 FOR RAYS WITHOUT INERTIA; CAN BE USED FOR MAGNETIC 

FLUX LINES OR ELECTRIC FIELD LINES. 

MASS is used to signal the program that particles other than elec- 

trons are to be followed. The units are in 1836 electron masses, so that 

a proton would be 1.0 and a doubly ionized tritium ion would be 

3/2 = 1.5, for example. The Child's Law routines for starting still 

function. Note that the intrinsic charge built into the program is nega- 

tive. Ion problems are normally run as if charge is negative, although 

negative currents (positive charges) are permitted for START = 'CARDS'. 

(15) AV = X AV = 0 SPACE CHARGE AVERAGED LAST AV CYCLES 

(16) AVR = X.X AVR = 1.0 WEIGHT OF PREVIOUS CYCLE FOR AV 

AV and AVR are companion parameters to help improve stability by 

averaging the contribution of space charge over successive cycles. It 
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should not be confused with the different process of emission averaging 

to determine perveance. In fact, to keep the emission averaging and 

space charge averaging from affecting each other, it is suggested that AV 

be small enough so that the emission averaging is essentially complete 

before space charge averaging starts. Note that AV is for the last AV 

cycles, e.g., if NS = 7 and AV = 3, then only cycles 5, 6 and 7 are aver- 

aged. However, this may have a very small effect since the trajectory 

calculations of cycle 5 are not affected and the space charge determined 

by the cycle 7 is never used (since there is no cycle 8). Thus the 

effect of averaging is only observed for AV-1 cycles. AVR determines the 

weight of the previous cycle such that with AVR = 1.0, the space charge 

from the previous cycle is weighted equally with the present cycle. AVR 

can have any value, 0 < AVR < a. 

Experience with averaging has shown the effect to be less dramatic 

than one might anticipate. A poorly designed gun, with strong spherical 

aberrations and resulting crossovers, is likely to be unstable and con- 

verge poorly even with averaging. Also, application of averaging to 

relativistic high intensity beams does not do much to solve the inherent 

difficulty caused by the fact that the self-magnetic field forces nearly 

cancel the space charge forces. With the two-cycle format of the program 

(i.e., space charge from the previous cycle and self-fields from the 

present cycle) the program has difficulty converging on long beam trans- 

port problems. The solution to this situation is frequently to use the 

first cycle only with the paraxial approximation and SPC = 1.0 as 

described in VT.A.10 above. 



-44- 

(17) BEND = X.X BEND = 0.0 MAGNETIC BENDING FIELD 

IN GAUSS IN THE DIRECTION NORMAL TO THE R-Z PLANE FOR THE AXIALLY 

SYMMETRIC PROBLEMS. FIELD MUST BE UNIFORM. THE EFFECTS OF SELF- 

MAGNETIC FIELD ARE LOST AND SPACE CHARGE IS STILL AXIALLY SYMMETRIC 

SO THAT IF BEAM IS DEFLECTED, CHARGE DISTRIBUTION IS PROBABLY INCOR- 

RECT. AN AXIAL FIELD MUST BE INCLUDED IN THE INPUT, EVEN IF IT IS 

ZERO, E.G., BC=0 IN INPUT2. 

This feature is most useful for problems with little or no space 

charge. Various types of photo tubes have tight tolerance for transverse 

magnetic field effects. Residual transverse fields, earth's field, etc., 

can be calculated. Note that a cylindrical beam in a rectangular coor- 

dinate geometry, including transverse field and space charge, can be sim- 

ulated as described below in Section VI,G,4. 

(18) MAGMLT = X.X MAGMLT = 1.0 MULTIPLIES BZA ARRAY 

MAGMLT multiplies the entire BZA ( ) array after it has been read 

in or calculated internally. It also multiplies the entire vector poten- 

tial array if that option is used. It can be thought of as a knob on all 

the magnetic field generating power supplies. 

(19) IPBP = Kl, K2,...K6 IPBP = 0 

FOR POINT-BY-POINT PRINTOUT: 

UP TO SIX RAY NUMBERS 

K, RHO, ZETA, RDOT, ZDOT, TDOT, PHI, BR, BZ, STEP, BPHI 

In special situations, especially when program behavior is not as 

expected, it is useful to be able to print out every iterative step. 

This feature operates on the last program cycle. Thus if for example a 

bug is stopping the program in the first cycle, it is necessary to set 



-45- 

NS = 1 and set IPBP = (the number of the trajectory at question). Note 

that it is possible to generate a great deal of paper this way. In some 

cases, one might rather have other items printed than those in the above 

list. It is a simple change to substitute ER, EZ, etc., for BR, BZ, for 

example. 

(20) ZEND = X.X ZEND = 1000.0 EXACT END OF TRAJECTORY 

CAUTION: IF ZEND IS NOT THE RIGHT-HAND BOUNDARY, THE SPACE CHARGE 

DISTRIBUTION MAY BE INCORRECT. 

Normally a trajectory is calculated until the program can no longer 

determine the electric fields. Thus the trajectories usually go up to 

one-half mesh unit beyond the boundaries. In special situations, such as 

high-resolution photo tubes, this makes exact interpretation of the 

results difficult. Setting ZEND to a specific value causes the program 

to back up to this value when a trajectory passes through this value of 

zeta. 

(21) VION = X.X VION = -1E8 LOWEST POTENTIAL PERMITTED 

USE VION TO SIMULATE SPACE CHARGE NEUTRALIZATION. 

Space charge depression can be reduced in a real device by positive 

ions in an electron device or by electron clouds in an ion beam. Since 

the program normally runs with negative charges, the above cases both 

result in negative space charge depression. If it is desired to limit 

the depression, VION can be set to the lowest depressed potential that is 

desired. The default value is intended to be low enough so that it will 

never disturb a practical problem. 
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Under the heading: 

INPUT FOR EQUIPOTENTIAL PLOTS, 

the instructions list the parameters which may be used to control the 

output of the equipotential lines. 

If the plot control parameter MI, on the potential card, has been 

set to MI 5 6, then the subroutines which draw equipotential lines will 

be called at the appropriate times. If the entire problem is at one 

potential, it is usually better not to call for equipotential plots. 

The method used in the program to find the equipotential lines con- 

sists of first finding a starting point for the potential to be followed, 

and then following a line of constant potential from that point. This 

does not guarantee that every point of that potential will necessarily be 

found and plotted. If POT (2) # 0 the program always draws the equi- 

potential line for V = b l POT (2) where b = 0.05, 0.15, 0.25, 0.35, . . . 

0.95. Also if POT (3) # 0, the program draws lines for V = b l POT (3) 

where b = 0.2, 0.4, 0.6, 0.8, 1.0 Normally the lines are started at the 

points on the axis which are at that potential. The expectation is that 

POT (2) will be used for the anode and POT (3) will be used for the grid, 

if any. If, for example, one is designing a gridded gun to be operated 

at V G = 0.01 VA, then, by first designing the gun as a diode, and plotting 

POT (3) at 0.01 POT (2), one gets the ideal contour for the grid to be 

electrically invisible. 

(1) EQUIPR = X.X EQUIPR = 0.0 R-INTERSECT. FOR EQUIP. LINES 

EQUIPR is the radius of the line along which the program hunts for 

the potentials which are to be plotted. It sometimes happens, particularly 
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in rectangular coordinates, that the equipotential lines do not intersect 

the z-axis, (R = 0 line). EQUIPR lets the programmer indicate along 

which horizontal line the program should look for the starting points. 

(2) LM = XXX LM = 303 LENGTH OF EQUIPOTENTIALS 

LM is the array limit for the points to be plotted for any one equi- 

potential. If a line simply stops in midstream, it may be desired to 

increase LM. Arrays BX and BY must be as large as LM. 

(3) EQLN = 0 to 20 EQLN = 1 *NO. OF CORRECTIONS 

EQLN controls the iterative corrections made as each point is found 

along the equipotential line. These corrections prevent the lines from 

deviating from sharply curving equipotential lines. The default value, 

EQLN = 1, is usually adequate. 

(4) EQST = X EQST = 2 *STEPS PER MESH UNIT 

EQST gives the density of points for the equipotential plots. The 

maximum length of a line is given by the ratio LM/EQST. If EQST is too 

small (steps too long), fine detail may be smoothed over. 

*ALSO APPLIED TO GENERAL CATHODE 

This footnote warns that the starting surface for the GENERAL CATH- 

ODE routine is generated just like an equipotential (but is not plotted), 

and thus the parameters EQLN and EQST may determine the accuracy of the 

starting surface. It is primarily for this application that EQLN and 

EQST are made variable parameters. 
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(5) IZl = x, 122 = x, IZS = x IZl = 0, IZ2 = -1, IZS = 10 EXTRA 

EQUIPOTENTIALS AT THE INDICATED VALUES OF Z. 

IZl and 122 are the end points of a line segment, at EQUIPR, along 

which some extra equipotential lines will be started. The lines will be 

equally spaced 

not mean field 

off. 

by IZS, instead of by voltage, so that their density will 

gradient. The default value, IZ2 = -1, turns this device 

C. Plotting Controls 

(1) SCALE = 'YES' SCALE=' ' 'YES'=DIFFERENT X,Y SCALES 

SCALE = 'YES' allows the axis routines to adjust both the X and Y 

scales to take maximum advantage of the size of the paper. The default 

value constrains the axis to have the same scale factor in both direc- 

tions, thus preserving the actual proportions. Using SCALE = 'YES' 

allows the plots to show more detail between trajectories in problems 

with low height/length ratios. 

(2) sx = xx sx = 22 MAX. HORIZ. PLOT LENGTH 

(3) SY = xx SY = 9 MAX VERTICAL PLOT HEIGHT 

SX and SY control the area for each picture. The dimensions are 

given in inches. SX can be adjusted to suit the length of a given 

problem. 

Plot data generated by the program are stored on an external file 

(disk) in a format very similar to that normally used as input to the 

software supplied with CALCOMP plotters. A separate job, or second job 

step, can then be run to generate the plots. A simple program is 
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printed in the appendix to convert these data to make CALCOMP plots. 

Other plotter software such as that used at Stanford can be programmed 

by making the appropriate calls to the local subroutines. With the 

changes that resulted in the above system, a programmer at another 

installation does not need to search for plotting commands within the 

electron trajectory program. Conversion to local software is usually 

quite simplified. 

D. Magnetic Fields 

Magnetic fields play a vital role in steering and focusing many 

kinds of electron beam devices. The capabilities and limitations of the 

magnetic field implementation in the program will be described in this 

section. The following areas will be discussed: 

1. Magnetic Field Input; (a) axial, (b) ideal coils, (c) vector 

potential data; 

2. Off-axis field expansions; 

3. Magnetic fields in Rectangular Coordinates. 

1. Magnetic Field Input 

In the present implementation of the program, there are three meth- 

ods of inputting magnetic field data: 

(a) By reading in the field on the axis using either a poly- 

nomial expansion or by reading the full array, 

(b) By specifying ideal coils (radius, position and strength). 

(c) By reading in vector potential data from the output of a 

two-dimensional magnet design program such as TRIM or 

POISSON. 
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(a) The data cards for an axial magnetic field are put in 

before the boundary data. The format was briefly described in Section V.B. 

The input data for the polynomial method consist of MAGSEG segments of 

data including: 'Zl' to '22' with origin at '23' (three integers) and 

seven coefficients, BZ, Bl, B2,...,B6; 

B = BZ + Bl * DZ + B2 * DZ ** 2 +...+B6 * DZ ** 6, where DZ = Z - 23. 

For the sixth order expansion, the field must start six units behind the 

cathode or starting point, and go six units past ZLIM. In rectangular 

coordinates, the normal magnetic field is in the transverse (phi) 

direction. 

The NAMELIST input for RLIM,etc., (&INP~L) includes the parameter 

MAGSEG (default MAGSEG = 0) which determines how many segments are to be 

read, each with &INPUT2 and &END cards. Each segment consists of the 

data for Zl, 22 and 23 followed by the array'BC in NAMELIST format. 

Zl and 22 are the end points of a line segment on the axis 

(Zl 5 22) in the range -6 < Zl, 22 I ZLIM + 6. It is necessary to per- 

mit fields to be described beyond the ends of the problem in order that 

the off-axis fields can be calculated at the ends of the problem. 23 is 

the local origin for the polynomial expansion in powers of DZ = Z - 23. 

Having a local origin simplifies the input of, for example, a straight 

line that does not go through (0,O). As many of the coefficients BZ, 

Bl, etc., can be used as are necessary, simply by setting the remaining 

ones to zero. 

In cylindrical coordinates, this field must be in the axial direc- 

tion. In rectangular coordinates, the field on the axis may be either 

in the direction normal to the plane of the plot, i.e., in the PHI 
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direction, where PHI is the orthogonal linear coordinate to R and Z, or 

in the R (vertical) direction. 

With the above format, data can be entered with any degree of poly- 

nomial up to 6. The data may be divided into segments ranging from a 

point at a time to the whole length of the problem. Typically, magnetic 

measurements of an axially symmetric permanent magnet will be taken on 

the axis. The data are then frequently smoothed by a polynomial least 

squares fitting program and the resulting coefficients read into the 

program. Alternatively, a field may be designated by the user as in the 

example problem, segmented into short lengths of quadratic or linear 

dependence, and read in to the program. Either method will usually give 

a good representation of the field on the axis. However, difficulties 

arise when the program needs to calculate the off-axis fields. These 

will be described in Section 2, below. 

A separate provision allows one to read in the BZA array directly. 

Note that this array starts with BZA(1) at Z = -6 and goes to 

BZA(ZLIM + 13) at Z = ZLIM + 6. The program switches to this mode by 

having MAGSEG < 0, i.e., if MAGSEG = -1, then a different NAMELIST, 

&INPUT3, is called to read the array BZA ( >. If measured and/or 

plotted data are used, note especially the inherent risks in expanding 

such data for the off-axis field components. This format lends itself 

readily to computer calculated output, properly edited, and with up to 

15 effective decimal digits. 

(b) The data for ideal coils are read in as part of the 

INPUT5 starting conditions. The starting conditions pertaining to mag- 

netic fields are as follows: 



-52- 

MAGNETIC FIELDS 

METHOD ONE: READ IN AXIAL FIELD. 

RMAG = X.X RMAG = RLIM12 OFF-AXIS MAG FIELD LISTING 

ZMAG = X.X ZMAG = ZLIM + 6 B CONSTANT BEYOND ZMAG 

MAGORD = x MAGORD=2 HIGHEST ORDER FIELD TERM < 6 

IF Mf%ORD < 0, RECT. COORD. MAG FIELD =Y BZA IS IN THE R DIRECTION 

NMAG = X NMAG = 0 NO. OF FIELD COILS (SEE BELOW) 

METHOD TWO: READ IN POSITION AND STRENGTH OF NMAG IDEAL COILS 

NELL = 1 NELL = 0 1 FOR ELLIPTIC INTEGRALS 

CR(I) = x.x CR(I) = RLIM RADIUS OF COIL (MESH UNITS) 

cz (1) = x.x cz (1) = 0.0 AXIAL POSITION OF COIL 

M(I) = x.x CM(I) = 0.0 CURRENT IN AMPERE TURNS 

B(AXIS) = 0.2 * CM * PI * CR ** 2/SORT(((Z-CZ) ** 2 + CR ** 2)) ** 3 GAUSS 

WHERE I IS COIL NUMBER, E.G., XZ(2) = 20.0. 

'METHOD ONE' REFERS TO THE POLYNOMIAL INPUT JUST DESCRIBED. 

(1) RMAG = X.X RMAG = BLIM/2 OFF-AXIS MAG FIELD LISTINGS 

RMAG is used only by an output routine that prints the axial and 

radial components of the magnetic field at the radius RMAG. The default 

value is chosen to be typical of the maximum radius of the beam, but it 

should be adjusted to suit the problem. For a pencil beam, RMAG should 

be equal to the expected average beam radius (in mesh units). This 

printout is a useful diagnostic device to check on unrealistic off-axis 

components that can result if the inputs have discontinuities in one of 

the higher derivatives. 
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(2) ZMAG = X.X ZMAG = ZLIM + 6 B CONSTANT BEYOND ZMAG 

ZMAG permits some simplification of data by setting the axial field 

from ZMAG to ZLIM + 6 equal to the calculated value at ZMAG. The prin- 

cipal use for ZMAG is where a converging magnetic field in the gun 

region merges into the uniform field of a solenoid. The field expres- 

sions or coils must describe a field which converges to parallelism at 

the solenoid entrance, and ZMAG is then the Z coordinate (in mesh units) 

of this point. 

The default value of ZMAG (ZLIM + 6) ensures that it then has no 

effect in the working region up to ZLIM. 

ZMAG is a positive integer. 

(3) MAGORD = X MAGORD = 2 HIGHEST ORDER FIELD TERM i 6 

MAGORD is the highest order term, in powers of R, that will be used 

to calculate off-axis fields. It is not related to the power of the 

polynomial input. Usually MAGORD has one of the values, 2, 4 or 6. If 

MAGORD is higher than warranted by the quality of the data, particu- 

larly if data from magnetic measurements are used, then the off-axis 

fields may be just plain nonsense. If MAGORD < 0 (rectangular coordi- 

nates only), the array BZA ( ), on the z-axis, is taken to be in the R 

directions. Off axis expansion, in powers of R, are used to generate BZ 

(off axis). This case is suitable for quadrupole symmetry in rectangu- 

lar coordinates as viewed end-on to the beam. 

(4) NMAG = X NMAG = 0 NO. OF FIELD COILS 

"Method Two" refers to the method of ideal coils. NMAG is the num- 

ber of ideal circular current loops, centered on the axis and lying in 
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planes perpendicular to the axis. NMAG may have any positive integer 

value, but practical field shapes can usually be represented by no more 

than 11 coils, which is the array size. Each coil is described by three 

parameters: 

CR(I) = radius of coil (mesh units); 

CZ(1) = axial position of coil; 

CM(I) = ampere-turns; 

where I = 1toNMAG 

The index is not related to the strength or position of the coils. Some 

methods of obtaining CR and CM values that will fit a desired field are 

discussed in Ref. 7. 

The subsidiary parameters WG and ZMAG which have been discussed 

above, apply equally to method two (coils) as to method one. 

All CR( ) values must be positive (not zero, or a zero divide will 

occur); CR is not restricted to be within RLIM, but may have any posi- 

tive value. It need not be an integer. The CR values should be larger 

than the beam radius to avoid strong local non-uniformities. 

CZ( ) values may be positive, negative or zero, integer or decimal, 

and are not restricted by ZLIM. The program calculates the field only 

within the working space RLIM x ZLIM, but the coils may be inside or 

outside this space. 

CM( ) values are unrestricted. 

All the coil data are entered in the &INPUT5 NAMELIST block. 

Examples of magnet field entry using coils (these data represent a 

field converging into a solenoid which starts at Z = 100): 
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(last boundary card) 

888 

&INPUT5 

(usual START cards) 

NMAG=3, 

ZMAG = 100, 

RMAG=5, 

CR(l) = 150, 

CZ(1) = 6.8, 

CM(l) = -900, 

CR(2) = 50.0, 

CZ(2) = 50.0, 

CM(2) = -2000, 

CR(3) = 32.0, 

CZ(3) = 100.0, 

CM(3) = 31000, 

&END 

(Card start data, if any) 

I" 

2. Off-Axis Field Expansions 

The two input methods described above both result in an array of 

fields from Z = -6 to Z = ZLIM+ 6. The array is for the axial field 

and is in double precision. With this number of significant figures, 

it is possible to get meaningful results for finite differences up to 

the sixth difference, which is necessary for the sixth order derivative 
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used to find the off-axis fields. Each difference requires one larger 

value of n in Z 5 n, the range used to find the field at Z, at any 

radius. The range Z f 6 requires that the fields be specified beyond 

the limits of the problem from Z = -6 to Z = ZLIM + 6. 

To sixth order, the field expansions are8 

BZ = Bz(Z) - R2(d2B/dZ2 - d4B/dz4 . R2/16 + d6B/dz6 l R4/576>/4 (10) 

Br = -R(dB/dZ - d3B/dZ3 l R2/8 + d5B/dz5 = R5/192)/2 (11) 

By specifying MAGORD = 2 or MAGORD = 4, the derivatives higher than 

MAGORD are set to zero. This results in a less accurate expansion, if 

the original data are worthy of the high order differences. If they are 

not, then the result of the lower order expansion is apt to be far more 

acceptable. Generally, measured data, no matter how smoothed, are only 

worthy of second order expansion. Synthesized data from an ideal curve, 

if there is only one segment, can generally be expanded to fourth order. 

Coil data can be expanded to sixth order. Note, however, that it is 

virtually impossible to use the full sixth order expansion with either 

measured data or arbitrary polynomials, especially if more than one seg- 

ment is to be fit together without running the risk of having a very 

unphysical result. The off-axis fields generated by poor models, or 

ones with insufficient accuracy, are apt to show very wild fluctuations 

with extremely large peak values. 

3. Rectangular Coordinate Expansions 

In rectangular coordinates, the usual expansion is normal to the 

plane of the paper. The central plane, with coordinate PHI = 0, can be 
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thought of as the median plane of a magnet whose pole face is normal to 

the z-axis, i.e., dB/dR = 0. 

The off-median-plane expansion is 

BPHI = BPHI (Z) - PHI2 9 d2B/dZ2 (12) 

BZ = PHI l dB/dz (13) 

The alternative expansion has the median plane lying normal to the 

R-Z plane, at R = 0. The off-axis expansion is then in the R direction. 

The second order expansion has been adequate for the applications 

that have been made. One example is the "alpha" magnet deflection system 

used to bend the low energy SLAC beam from the gun to the line of the 

accelerator. A proper choice of angle makes the vertical focusing of 

the pole face edge compensate for the vertical phase space of the beam. 

Runs at different entrance angles, using the measured field profile of 

the magnet, were used to determine the optimum angle. Space charge of a 

cylindrical beam, in rectangular coordinates can be included in such 

runs by the features described for CARD starting in section V1.G. 

4. Elliptic Integrals 

For coil input (Method Two"), if elliptic integral routines are 

available at compilation, a table of off-axis fields with elliptic inte- 

gral calculations is printed. If NELL = 1 in &INPUT5, the elliptic 

integrals are used for the ray tracing. 

(c) Inputting Vector Potential Data 

In &INPUTl, the option INTPA = .TRUE., calls for &INPUTA to be 

called next. The condensed instructions are: 
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--------------------------------------------------------------- 
&INPUTA (TO INPUT VECTOR POTENTIAL DATA) 

RRo=x . x RRo=o . 0 POSITION OF FIRST ELEMENT OF A( ), IN MU 
zzo=x. x zzo-0.0 RELATIVE TO ORIGIN OF GUN PROB. 
DELR=X.X DELR=l.O INCREMENT IN R (CM) FROM POSSON/EDIT 
DELZ=Z.Z DELZ=l.O INCREMENT IN Z (CM) FROM POISSON/EDIT 
RLMAG=xx RLMAG30 NUMBER OF ROWS OF A( ) DATA 
ZLMAG=XX ZLMAG=200 NUMBER OF COLUMNS OF A( ) DATA 
A( 1 VECTOR POTENTIAL DATA ARRAY OF A, EXCEPT A*R AT R=O 

UNITS OF A IN GAUSS-CM. A( ) IS A LINEAR ARRAY WITH 
COLUMNS RLMAG LONG. MAX SIZE OF A( ) IS 8000. 

----------------------------------------------------------------- 

Use of this option requires the output from a magnet design pro- 

gram, such as POISSON, which solves for the magnetic field including iron 

segments, which may even be partially saturated. The output of such 

programs is usually in the form of an array of the azimuthal component 

of the vector potential A( ). This array is currently set to a maximum 

of 8000 elements, but may be reduced to one element to save space for 

users not interested in this option. The array elements correspond to 

points in a rectangular mesh which does not need to coincide with the 

mesh used for the electrostatic problem. To save running time for the 

magnet program and to reduce storage requirements for the data, it is 

preferable to identify a rectangular area that is expected to include 

the space that the electron trajectories will require. The array starts 

at RRO, ZZO, proceeds in steps of DELR in columns RLMAG long, and con- 

tains ZLMAG columns separated by increments DELZ. During operation, 

the program finds the differences from the four points nearest the par- 

ticle to find the components BR and BZ. 
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E. General Cathode and GENCARD 

------------------------------------------------------------------------ 
START GENERAL 
------------______-_---------------------------------------------------- 

START = 'GENERAL' START = 'GENERAL' GENERAL CATHODE 

RC = X.XXX 

zc = x.xX 

CL = x.XX 

DENS = XX.X 
BETA2 = 1.0 

EUD = x.x 

SURFACE = X 

RC = 0.0 LOWER END OF STARTING SUR- 
FACE 

ZC = 2+CATHODEZ CATHODEZ IS Z VALUE OF 
BOUNDARY FROM FIRST 
DATA CARD. 

CL = RLIM MAXIMUM LENGTH OF STARTING 
SURFACE 

DENS = 10.0 MAXIMUM EMISSION (A/CM**2) 
BETA2= 0.0 IF > 0.0 USES LANGMUIR- 

BLODGETT 
--- USE RAD FOR WIRE RADIUS IN 

RECTANGULAR COORDINATES, 
BETA2 > 0.0 

SURFAC = 1 STARTING SURFACE ITERATION 
---------------------~~~-----~--~-~~~~~~- -_---- 
USE POT(S) FOR NON-EMITTING SURFACE, E.G. 
HOLLOW CATHODE OR SHADOW GRID. DO NOT USE 
POT(3) OR POT(5) FOR FOCUS ELECTRODE . . . 
USE POT(4) TO STOP ELECTRONS ON IMPACT. 

-------_-----_-___-_---------------------------------------------------- 
START GENCARD 
------__-_-________---------------- --------__-_----___----~-~~~~~~~ ----- 

START = 'GENCARD' START = 'GENENERAL' GENERAL WITH CARD START 

HAVE UP TO MAXRAY CARDS WHICH SPECIFY: 
1) RAY NO. 
2) INITIAL RADIUS R 
3) INITIAL AXIAL VALUE Z 
4) DISTANCE FROM CATHODE DX (CATHODE MUST BE POT(l)). 
5) EFFECTIVE SPACING BETWEEN RAYS, DR. 
6) PARAMETER WHICH MODIFIES CHILD LANGMUIR EQUATION. ALPH2 

NORMAL DX IS 1.0 TO 2.0 MESH UNITS. 
NORMAL DR IS 1.0 BUT MAY BE VARIED ALONG THE SURFACE. 
NORMAL ALPH2 IS 1.0 FOR A PLAIN DIODE. 

FOR CYLINDRICAL COORDINATES: 
ALPH2=(ALPHA*(RADIUS OF CURVATURE)/(STARTING STEP))**2 

FOR RECTANGULAR COORDINATES: 
ALPH2=(BETA**2)*(RADIUS OF CURVATURE)/(STARTING STEP) 
WHERE ALPHA AND BETA ARE AS DEFINED IN THE LITERATURE,E.G., 
SPANGENBERG FOR BETA AND BREWER IN SEPTIER, VOL II, FOR ALPHA. 
FORMAT IS THE SAME AS FOR CARD STARTING; RAY NO..R.Z.DX.DR.ALPH2 

(15.5X.SF(10.5)). 
_----___-_______--__-------------------------- ----__---__--------------- 



This section describes the use of the GENERAL cathode method which 

applies to anything that cannot be described using the assumptions of a 

spherical cathode. It includes the GENCABII option. 

In calculating starting conditions using Child's Law, the basic 

assumption is that of space charge limited emission. Mathematically, 

this means that the electric field on the surface of the cathode is 

zero. Thus, in order to calculate the emission current, the calculation 

must start some finite distance from the cathode. This leads to the use 

of Langmuir diodes, or pill boxes, which become annular in shape in cyl- 

indrical coordinates. The typical thickness is 2.0 mesh units, with the 

range 1.0 to 3.0 generally acceptable. 

The basic Child-Langmuir equation for emission in a plane diode is9 

-6 312 
J = 2.335 x 10 v 

2 in amperes per unit area (14) 
X 

The 3/2 power dependence of the thermionic emission current density 

leads directly to the concept of perveance here defined as the constant K 

in the expression 

I = K v3j2 x 18 (15) 

Since K depends only on geometric factors, the perveance becomes an 

identifying characteristic of the device. Because of common usage, per- 

veance for the program is expressed with the implied factor of 10 
-6 

, 

. 3/2 i.e., microperveance having units microamperes per volt . 
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The central problem for the GENERAL cathode starting routine is to 

define the starting surface and to calculate the distance x for the 

thickness of the pill box. The starting surface is initiated at the 

point (RC,ZC) with default values RC = 0 and ZC = 2.0 + CATHODEZ. The 

default point represents a point on the axis, 2 mesh units in front of 

the Z value of the first boundary point. If the cathode does not start 

on the axis, a different value for RC must be used. If the first bound- 

ary point does not describe the beginning of the cathode, then a differ- 

ent value of ZC must be used. 

The term CATHODEZ refers explicitly to the value Z + AZ of the first 

boundary point. It is frequently convenient to make the R = 0 intercept 

of the cathode be the first boundary point, but there is no rule about 

this. The starting step (or diode thickness) of 2.0 mesh units can also 

be adjusted by using a different value of ZC. The parameter ST, used 

for spherical starting, does not apply to GENERAL starting. 

The starting surface is calculated by starting an equipotential 

line at (RC, ZC) and following it, in one direction only, until one of 

three things happens: 

1. The line leaves the boundary of the problem. 

2. The line becomes longer than the parameter CL. (default; 

CL = RLIM) 

3. The boundary points intercepted by a line drawn at right 

angles to the starting surface, extended to the left as viewed 

along the line starting at (RC, ZC), cease to be represented 

by POT(l) or POT(S). Emission will occur from surfaces repre- 

sented by POT(l). No emission will occur from POT(5) surfaces; 
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hollow cathodes or shadow grids may use POT(5). Any other 

potential number will cause the line to stop, with the excep- 

tion that POT(3), usually used for grids, will not stop the 

line because it may be so close to the starting surface that 

confusion would result. Thus the notes suggest using POT(4) 

to end the starting surface. 

Tests 1 and 2, above, are included as "safety valves." Test 3 is 

intended to determine the length of the starting surface. As the start- 

ing surface has to follow a more tortuous curve, due to holes, wires and 

corners, the equipotential parameters EQLN and EQST may be adjusted as 

described in Section V1.A. 

DENS = X.X DENS = 10.0 MAX EMISSION (A/CM**2) 

DENS limits the current density to a maximum value controlled by 

the user. It can be used to limit the emission as in temperature 

limited emission. The normal use is to avoid extreme values of current 

from local high-field points until space charge depression becomes 

effective on subsequent iterations. Note that temperature limited emis- 

sion can also be simulated by using PERVO and HOLD as described in 

Section V1.A. 

BETA2 = 1.0 BETA2 = 0.0 IF > 0.0, USES LANGMUIR-BLODGETT 

RAD = x.x USE RAD FOR WIRE RADIUS IN RECT. COORD. BETA2 > 0.0 

BETA2 and RAD refer to the parameters B2 and r C in the Langmuir- 

Blodgett 10 theory of emission between coaxial cylinders. The material 

is covered in Ref. 8. The Langmuir equations are included in the pro- 

gram for the particular case of emission from an array of wires in 
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rectangular coordinates. BETA2 is calculated internally once it has 

been activated by the user specifying a value greater than 0.0. The 

program uses the distance from the wire, the radius BAD of the wire, and 

the Langmuir equations to calculate currents in each ray. More than one 

wire can be used provided that the starting surface can get from one 

wire to the next by "seeing" POT(5) surfaces between wires. The wires 

that emit are of course POT(l). The current per mesh unit in length (in 

rectangular coordinates) is 

I/R = 14.66 x 10 -6V3'2/(r l B2) amperes/mesh unit (16) 

where r is the starting radius in mesh units and 

P2 = U(l- 0.4 u + 0.344 u2> where U = Rn(r/RAD). (17) 

The more usual configuration of emission from a flat or concave 

surface in cylindrical coordinates is treated by the program if 

BETA2 = 0.0. Then the program treats the annular pill boxes formed by 

dividing the starting surface into a number of equal segments. The num- 

ber of rays is calculated by the program to be the largest number 

(-< MAXRAY) that can be distributed evenly along the starting line, 

. i.e., 1 or 2 per mesh unit, not 1.5! 

The program determines the potential at the point on the starting 

surface from which the rays are to start and calculates the starting 

velocity and the current using either the equation for cylindrical emis- 

sion, if in rectangular coordinates, or the equation for emission from 

concentric spheres 
11 in cylindrical coordinates: 
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-6 312 
I = 2.335 x 10 V 

2 P6P amperes per radian 08) 

where 

(-a) 2 = (Y- o.3y2 + 0.75A3 - ...)2 (19) 

and 

Y = EnC (rC - x)/rcl (20) 

where, as in (14), x is the thickness of the pill box, and in which rc 

is the radius of the cathode and p and 6 p are the radius and thickness 

of the annular ring on the starting surface. This equation calculates 

the current in a one radian segment of the annular ring. The program 

prints this current in the one radian segment in the table of initial 

conditions. Under final conditions, the current is printed divided by 

the initial radius, p. This column gives a measure of current density 

to determine uniformity of cathode loading. The cathode radius rc is 

estimated for general cathodes by comparing the length of the cathode to 

the length of the starting surface. This may be incorrect if the cath- 

ode does not have a constant radius of curvature but the result is so 

close to the simple 1/x2 dependence that the discrepancy does not seem 

generally significant. 

For cases involving cylindrical coordinates, for spherical and gen- 

eral cathodes, the starting step is much smaller than the radius of 

curvature. Thus, it is possible to simplify (19) by expanding it to 

second order in (x/rc): 

rz (-a)2 = x2(1 + 1.6 x/rc + 2.06 x2/,%) (21) 
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in which x has been redefined as positive for the usual case of a con- 

cave spherical emitting surface. With this change, (14) and (18) are 

essentially the same except for the correction factor, the term in paren- 

theses in (21), called ALPH2 in the program. It is this term that is 

called for explicitly in the input for GENCARD. 

SURFAC = X SURFAC = 1 STARTING SURFACE CYCLES 

SURFAC controls the number of program cycles for which the starting 

surface will be regenerated. Frequently, the most satisfactory looking 

starting surface is generated on the first cycle, without space charge 

depression. The starting surface, it should be recalled, is only a 

locus of starting points from which particles start out in the direction 

of the electric field. The potential difference between the starting 

point and the cathode determines the initial particle velocity and the 

current for that ray. As space charge depression is included, the shape 

of the starting surface may, or may not change, although generally the 

potential on it will change. In any case, it is well to limit the num- 

ber of cycles during which the surface is recomputed so that the final 

cycles converge to a stable solution. SURFAC controls the number of 

such cycles and, while it may often be more than one, it should gener- 

ally be 2 or 3 less than NS, the total number of cycles. 

General Cathode Diagnostics 

If the START = 'GENERAL' option is selected, the program will print 

a special table of the appropriate constants: RC, ZC, CATHODE LENGTH, 

MAXRAYS, etc. After successful calculation of a starting surface, the 

message 
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STARTING SURFACE: LENGTH=X.X ENDS AT RHO=X.X, ZETA=X.X 

will appear. Next the headings for the initial conditions will be 

printed followed by the initial condition data. 

If the starting surface fails by not being able to trace an equi- 

potential for at least two mesh units, or because it is asked for points 

outside of the problem, then the message: 

GENERAL CATHODE STARTING SURFACE FAILED : LENGTH=X.X 

ENDS AT RHO= X.X ZETA=X.X 

is printed. If SURFAC > 1 and this failure occurs on the second program 

cycle, then the program will cycle once more with a smaller perveance 

(currently 80%) and try again to fit the starting surface. Otherwise, 

the program will terminate, but in either case the complete potential 

map will be printed to aid in diagnosis of the difficulty. 

GENCARD is a starting option introduced to permit better response 

to highly nonuniform cathodes. A specific example would be the sharp 

outer corner of a right cylinder emitting from the end face. This cor- 

ner is usually handled poorly by START = 'GENERAL' because of implicit 

assumptions that the radius of curvature of the surface is much greater 

than the starting step. GENCARD was specifically intended for use with 

high current field emission devices, but applies also to thermionic 

emitters. 

GENCARD combines some of the functions of GENERAL with the basic 

philosophy of CARDS in which the user specified all the starting condi- 

tions. In GENCARD, the user specifies the initial coordinates Ro,Zo; 
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the effective distance to the cathode DX; the spacing between rays DR; 

and the "fudge factor" ALPH2. Thus the user has defined all the param- 

eters needed to start the space charge limited problem except initial 

energy and direction. These are calculated by the second part of SUB- 

ROUTINE CHILDA which is the subroutine called by GENERAL. The first 

part of CHILDA calculates the starting surface, and is not needed by 

GENCARD. 

The p,arameter ALPHZ is the term in parentheses on the right side 

of (21). In rectangular coordinates, ALPH2 corresponds to the BETA2 of 

the literature with (STARTING STEP/CYLINDRICAL RADIUS)lSt 'Ower factored 

out. The effect of this is to make the normal, i.e., plain diode, value 

of ALPH2 = 1. Anything else is a perturbation at the user's control. 

F. Spherical Cathode 

------------------------a-m -----------_--------________________I___--- 

START SPHERE 
----------____-------------------------- ---------------------------- ---- 

START = 'SPHERE' 
RAID = x.xX 
RMAX = x.xX 
ORAD = x.xX 
ST = X.xX 

START = 'GENERAL' SPHERICAL CATHODE 
IUD= 2*ZLIM SPHERICAL RADIUS 
RMAx=RLIM CATHODE RADIUS 
ORAD = CATHODEZ CENTER OF CATHODE 
ST = 2.0 STARTING STEP 
-----_----_____------------------------ 
'SPHERE' ALSO WORKS FOR CYLINDRICAL 
CATHODE IN RECTANGULAR COORDINATES 

IF START = 'SPHERE' is elected, the program will first print the 

special table of parameters for the spherical cathode: SPHERICAL 

RADIUS, CATHODE RADIUS, CATHQDE CENTER, etc. The first two values, 

RAD and RMAX, determine the essential geometry of the spherical cathode 

as shown in Fig. 5. Obviously the default values, 2 x ZLIM and RLIM 
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I 
I I 

ORAD ZLIM 
2309A2 

Fig. 5. Basic geometry for spherical cathode configurations 
defining the input parameters. 
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respectively, have almost no chance of being correct, so the user must 

specify them. The default value for ORAD, the cathode center, is at 

CATHODEZ, the first boundary point as defined for the general cathode in 

Section V1.E. The starting step ST, is the value used for the thickness 

of the Langmuir pill boxes. As in the START = 'GENERAL' case, in cylin- 

drical coordinates these pill boxes are annular rings and the current is 

that current in a one radian segment of that ring. The current is cal- 

culated as in Eqs. 18-20 using the geometry of Fig. 5. Figure 6 is the 

plotted output of the sample problem of Fig. 2 using START = 'SPHERE'. 

In rectangular coordinates, START = 'SPHERE' operates with the same 

input and the same geometry to calculate the current per mesh unit in 

the direction normal to the plane of the paper. Again, as in START = 

'GENERAL' Eqs. 16-17 are used according to Ref. 8. 

Immediately after printing the headings the spherical cathode rou- 

tines print a message: 

ITERATION NO. X, I = X.X MICROAMPS, PERVEANCE = X.X MICROPERV. 

The current and perveance printed are those calculated according to the 

fields and geometry by the appropriate equations as indicated above. In 

other words, these are the unnormalized values. After printing this 

message, the program averages the perveance according to the method 

described under PERVO in Section V1.Z. The initial currents that are 

printed out with the initial conditions reflect this averaging process. 

Between the initial and final conditions, the same message as above is 

printed, except with the normalized values for current and perveance. 

As in START = 'GENERAL' the currents printed with the final conditions 
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Fig. 6. Plotted output of sample problem shown in Fig. 2. 
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are divided by the initial radius (if in cylindrical coordinates) and 

thus give a measure of uniformity of cathode loading. 

The special case of magnetic fields reaching the cathode, i.e., 

'immersed flow" is treated by both SPHERE and GENERAL according to 

Busch's theorem. 12 The program must use magnetic fields on the cathode 

and on the starting surface to integrate the azimuthal motion through 

the gap between the cathode and the starting surface. If there is any 

inconsistency in the off-axis magnetic fields within rt: 6 mesh units of 

the entire range of the starting area, then peculiar bunching of the rays 

will occur. That is why the proper use of MAGORD and the careful input 

of fields near the cathode were stressed in Section V1.D. Fortunately, 

any problem of this sort becomes immediately obvious on examination of 

either the starting conditions or the plots. 

G. Card Starting 

The program starting instructions are as follows: 

START = 'CARDS' START = 'GENERAL' CARD STARTING 
zo = x.xX 20 = 0.0 OLD ORIGIN IN NEW FRAME 
SKAL = x.xX SKAL = 1.0 OLD MESH/NEW MESH 
HAVE UP TO MAXRAY DATA CARDS WITH (1 INTEGER, 6 FLOAT PT.) NO., R, 

Z, EMERGY (EV), ANGLE (RADIANS), CURRENT (MICROAMPERES IN ONE RADIAN 
SEGMENT), TRANSVERSE ANGLE, TRANSVERSE POSITION (PHI). FORMAT 15, 5X, 
7F10.5. OLD USERS GETTING THE NEW VERSION OF THE PROGRAM SHOULD NOTE 
THE CHANGE TO TRANSVERSE ANGLE AND TOTAL KINETIC ENERGY. 

STOP READING WITH RAY NO. GREATER THAN MAXRAY. 
IF RECTANGULAR COORDINATES: 

PHI IS TRANSVERSE POSITION IN MESH UNITS. 
CURRENT IS MICROAMPERES IN ONE MESH UNIT DEEP SEGMENT. 

****SPECIAL TESTS IN RATNST; CROSSING OR 3-D CPACE CHRAGE** 
IRAT=l IRAT=O 3-D SPACE CHARGE 
IRAT= IRAT=O CROSSING DETECTION 

USE OF NEGATIVE RAY NUMBERS: 
A) IF IRAT=l (3-D SPACE CHARGE) 

1) MAKE RAY NUMBERS NEGATIVE FOR BEAM EDGE CARDS. 
USE BEAM EDGE CARDS (lO=O)TO STIMULATE SPACE CHARGE SPREADING 
OF A CYLINDRICAL BEAM OF CURRENT I AND RADIUS R IN RECT. COORD. 
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PAIRS OF Bw EDGE CARDS PRECEDE SETS OF RAY CARDS DEFINING 
PART OF BEAM FOR WHICH 3-D SPACE CHARGE SPREADING IS TO BE SIMULATED. 
SEVERAL PARTS, DIFFERENTIATED BY SELECTED ATTRIBUTES; E.G., ENERGY 
ALPHA OR RADIUS, CAN BE USED SIMULTANEOUSLY WITH ANY NUMBER OF RAYS 
IN EACH PART. END OF PART IS DEFINED BY NEXT RAY WITH NEGATIVE RAY 
NUMBER, WHICH BEGINS THE NEXT PART. 

TO SIMLJLATE CYLINDRICAL BEAM SPACE CHARGE IN RECT. COORD. MAKE 
CURRENT PER MESH UNIT, I' = I/(PI*R) INSTEAD OF I' = 2 * I/(PI * R) 
WHICH WOULD HAVE THE SAME CURRENT DENSITY. IN OTHER WORDS, MAKE 
I'(K) = I(K)/(2*R(K)) INSTEAD OF I(K)/R(K). NOTE THAT THIS REQUIRES 
TWICE AS MANY RAYS AS FOR CYLINDRICAL BEAM WITH SYMMETRY. 
BEAM EDGE CARDS (RAY < 0) APPLY TO OFF-AXIS PENCIL IN CYL. COORD. 

The START = 'CARDS' mode uses data cards for the initial conditions 

rather than computing the initial conditions from a thermionic model. 

There are several typical applications for this feature that will be 

described in some detail. These are: 

1. The simplest case of user specified data. 

2. Use of cards generated by a preceding run to restart in a new 

segment of the same problem. 

3. Study thermal and other perturbing influences on a beam. 

4. Rectangular coordinate application with a cylindrical beam, 

including cylindrical space charge and off-axis bends. 

1. Format for User Specified Data 

If START = 'CARDS' has been selected, the program will respond by 

printing a table of appropriate parameters: STEP, NS, Z(O), SKAL, 

UNIT. Following the end of the NAMELIST input &END card, the program 

will expect to read up to MAXRAY cards with the starting data. A card 

with ray number greater than MAXRAY will terminate this input. If MAX- 

RAY cards are present, the termination card should be used anyway. How- 

ever, no effort should be made to make MAXRAY agree with the number of 

cards used, so long as it is big enough. The computer can, after all, 

count better than most humans. 
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Data to be entered on the ray cards consist of a ray number and 

the initial values for R, Z, ENERGY, ANGLE, CURRENT, TRANSVERSE ANGLE 

and TRANSVERSE POSITION. The format is 15, X5, 7F (10,5). 

(a) Ray Number: the ray number is only included for user conven- 

ience, and for the termination purpose described above. Rays 

are numbered by the program , sequentially as the cards are 

read in. Negative ray numbers have special implications that 

will be described below. 

(b) R: the initial radial position in mesh units. 

(c) z: the initial axial position in mesh units. 

(d) ENERGY (EV): The initial kinetic energy of the particle in 

electron volts. It should be obvious, but sometimes requires 

stating, that ENERGY has nothing whatever to do with the poten- 

tial values on the boundaries, or on the potential at which the 

ray tracing starts. For ray tracing, only fields are impor- 

tant, not absolute potentials. 

(e) ANGLE: the initial angle that the ray makes with respect to 

the z-axis, in radians. 

(f) CURRENT: the current in microamperes for a one radian segment 

of that ray. In rectangular coordinates, it is for a one mesh 

unit deep segment. 

(g) TRANSVERSE ANGLE: the angle normal to the R-Z plane. 

(h) PHI:~ the initial transverse position. In rectangular symme- 

try, PHI is a linear coordinate, measured in mesh units. In 

cylindrical symmetry, PHI is the azimuthal position in 

radians. 
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2. Use of Program Generated Cards 

At the end of a run, the program generates a set of cards with the 

final conditions of each ray according to the above format. These cards 

may be punched, or saved as a data set in card format on a direct access 

device. If it is planned to use the cards in a subsequent run, it is 

only necessary to be sure they are saved somehow. In a pinch, the same 

data are printed in the final conditions of the output and can be hand 

punched. 

Typically, these cards are intended to be used in a subsequent seg- 

ment of a problem. Thus the results of the sample problem, Fig. 2, are 

intended to be used in the complete gun with card starting just past the 

grid. Between runs, it is normal to expect that a different scale and 

origin will be used, otherwise there is not much reason for the second 

run. The companion parameters ZO and SRAL are used to modify the data, 

as read in on the cards, as follows: 

zo = x.xX zo = 0.0 OLD ORIGIN IN NEW FRAME 

SKAL = x.xX SJCAL = 1.0 OLD MESH/NEW MESH 

In words, if the first problem is plotted on the same graph with 

the second problem, then the origin of the first problem will be found 

displaced left or right by ZO mesh units in the new coordinate system. 

Usually ZO is negative. SRAL is interpreted as the ratio of sizes of mesh 

units (in meters). Thus a problem in which many mesh units were used to 

calculate cathode conditions will have a relatively smaller mesh than 

the follow on problem and SKAL < 1.0 in this example. 



-75- 

3. Thermal Effects 

SUBROUTINE THERM IS CALLED IF THE PARAMETER TC > 0. 
TC=XXXX. X TC = 0 KELVIN TEMP. OF CATHODE 
TWO MODELS ARE INCLUDED IN THIS VERSION 
KRAY=3 KRAY=l THREE RAY SPLIT 
KRAY=5 KRAY=l FIVE RAY SPLIT 
THREE RAY SPLIT PUTS CURRENTS IN 1-2-1 RATIO WITH 2 PARTS IN 
UNDEFLECTED RAY AND 1 PART EACH IN RAYS WITH V(PERP)=SQRT(2KT/M) 
IN R-Z PLANE, UP AND DOWN RELATIVE TO UNDEFLECTED RAY. 

FIVE RAY SPLIT PUTS CURRENTS IN l-9-0-9-1 RATIO WITH 
V(PERP)=2*SORT(2KT/M) FOR 1 PART RAYS AND V(PERP)=l*SORT(2KT/M) 
FOR 9 PART RAYS. NO CURRENT IN CENTER RAY. 

USERS SHOULD FEEL FREE TO MODIFY SUBROUTINE THERM. 
THERM CAN BE CALLED FOR START='SPHERE', 'GENERAL', 'CARDS'. 
OR 'GENCARD'. 
IT CANNOT BE USED FOR START='CARDS' WITH SAVE=2. ------------_----------------------------------------------------------- 

4. Rectangular Coordinates with Cylindrical Beams 

The basic assumption in rectangular coordinates is that the beam 

consists of a sheet extending infinitely in the directions in-and-out of 

the problem. The space charge forces on such a beam are much greater 

than in cylindrical symmetry because the field does not fall off by l/R. 

However, if the current is properly reduced, the transverse space charge 

forces can be made the same as they would be for a cylindrical beam. 

Further reductions in the current can compensate for further expansion 

of the beam. 

Consider first a uniform density cylindrical beam of total current I 

and radius R. The current density is J = I/sR2. If one wished to have 

a rectangular symmetry beam of thickness 2R at the same current density, 

the total current per unit length would be 

I' = 2RJ = ~I/ITR (equal densities) (22) 
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One could divide I' by some integer n and make n rays, suitably spaced, 

each with a current of I'/n. If one wishes to use starting data from a 

previous run, then each ray has a current per unit length I(K)/R(K). 

Unless the rectangular beam has reflection symmetry on the z-axis, there 

would have to be twice as many trajectories created as in cylindrical 

symmetry to represent both halves of the beam. 

Consider now a particle of charge e on the edge of a cylindrical 

beam of radius R and current I. The radial space charge force on the par- 

ticle is 

md2R/dt2 
. 

= eI/(2aRZco) (23) 

The force on the similar particle next to a current sheet in rectangular 

symmetry is 

md2y/dt2 
. 

= eI' / (2%Eo) (24) 

To make d2R/dt2 = d2y/dt2 we have only to require 

I' = I/nR (equal forces) (25) 

This is just one half of the result for equal densities in Eq. (21). 

Thus, if the results from the previous run were treated as described 

above, except divided by two, then the initial space charge forces on 

the rays would be the same as in cylindrical coordinates. 

A special feature allows the user to designate groups of rays, as 

few as one per group, to be bounded by "beam edge" cards which do not 

carry current. As the beam edge cards spread apart, the current on all 
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rays within the group is reduced proportionately. The groups may cross 

or overlap, but should not cross their own beam edge rays. The initial 

conditions of the beam edge rays can be chosen so that they do not cross 

the rays of the group. Beam edge cards are designated by being inserted, 

with negative ray numbers, in pairs just before the members of their 

group. Successive groups would thus be separated by the pair of beam 

edge cards for the next group. 

Beam edge cards may also be used in cylindrical coordinates. In 

this case, the effect would be of an off-axis pencil beam, i.e., not an 

annular ring. Assuming that the thickness of the pencil is small com- 

pared to the radial displacement, the same factor of one-half should be 

applied to the initial currents as was derived for rectangular 

coordinates. 

B) IF IRAT= (R-Z AND PHI CROSSOVERS) 
1) R-Z: MAKE RAY NUMBERS NEGATIVE FOR SEQUENTIAL RAYS FOR 

WHICH FINAL CROSSOVER SHOULD BE DETECTED. CROSSINGS WILL BE 
LISTED AND PLOTTED. NEGATIVE RAY NUMBERS SHOULD BE IN PAIRS. 
TO FIND CROSSOVERS WITH 2 AXIS, RUN A RAY WITH R=O,ALPHA=O 
PRECEDING THE RAY TO TEST AXIS CROSSING. 

2) PHI: LEAVE RAY NUMBERS POSITIVE FOR TRANSVERSE RAYS TO 
DETECT LAST CROSSING OF PHI=PI* INTEGER. 

A special application of beam edge cards is to specifically detect 

crossovers. For this application, the beam edge control code is set to 

IRAT= in SrINPUT5. The program instruction comments appear above. This 

feature is used to find the locus of foci to determine the position of 

the scintillator surface in image intensifier tubes. No space charge 

is involved. Pairs of trajectories, started sequentially from the same 

point with different initial conditions (energy and direction) are 

focused to a crossing, which must be located exactly. The program finds 

such crossovers and prints a table of their coordinates. 
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H. Laplace's Equation Applications 

START .= 'LAPLACE' START = 'GENERAL' NO RAY TRACING 

NS =x NS = 7 NUMBER OF LAPLACE CYCLES 

ADD DATA CARDS WITH (R,Z SPACE CHARGE) FOR NON-ZERO POINTS. END POINT 

INPUT BY R > RLIM. 

Laplace's equation has many applications besides solving electro- 

static potential problems. Some examples are temperature distributions 

and magnetic fields. 

As a reminder, by Laplace's equation one usually means 02$ = 0 

while Poisson's equation is 02$ = p. The program always solves Poisson's 

equation but with p = 0 on the first iteration. However, if one selects 

START = 'LAPLACE', one can then add data cards with the coordinates 

@,A), and the right hand or space charge term for any non-zero point. 

These data are appended after the end of the 'starting namelist and are 

terminated by R z= RLIM. 

The program will then cycle for NS cycles on just these data, with 

no ray tracing. It prints the potential map or POTLIST before and after 

the last cycle to show how things may be changing. Following the last 

cycle, the program prints a list of the fields, i.e., the derivatives of 

the potentials, on all the boundaries. Fields at specified interior 

points can be obtained by making a dummy boundary go through such points. 

Dummy boundary points have DELTAR = DELTAZ = 2.0 and can be fitted 

according to the same rules as Neumann boundaries, i.e., along mesh 

lines. The fields are normalized to 100% of the field on the first 

boundary point. Choose it carefully, i.e., not where the field is near 

zero. 
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To do ray tracing with the arbitrary space charge solution found 

by LAPLACE, it is simply necessary to set SAVE=1 in &INPUT5 of the first, 

LAPLACE, problem followed by a second problem, without boundary data, 

but with ray tracing starting instructions. See the discussion under 

SAVE=1 in Section VI.A.12. 

I. Dielectric Boundaries 

The input provision for special boundary points, described in Sec- 

tion V can be used for the particular case of a dielectric boundary. 

The difference equations are only affected on the boundary of the 

dielectric. The normal method of using this feature is to specify 

dummy boundary points, i.e., points with DELTAR = DELTAZ = 2.0, which 

can be put in point-by-point or with the fitting (three-point) method as 

if the points were Neumann boundaries. That is, they must lie on mesh 

lines. 

The difference equations were derived by Seeger 13 for the special 

cases of horizontal and vertical dielectric boundaries. These relatively 

simple cases are sufficient for most applications because the actual 

position and angle of even a curved dielectric are relatively less 

important to the fields in the vicinity than the fact that the boundary 

is located nearby. Thus a good approximation results from a stepwise 

simulation of the dielectric and a small displacement to the nearest 

mesh point does very little to the fields a few mesh units away. 

The coefficients of the difference equation are given by Eq. (3) in 

Section IV, and can be expressed as: 
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LEFT = RIGHT = R 

UP = R + l/2 

DOWN = R - l/2 

(Vacuum) 

(26) 

For a horizontal dielectric, where E 1 is the dielectric constant for the 

lower region and c2 is the constant for the upper region, the coeffi- 

cients become: 

LEFT = RIGHT = $(R - l/2) + E~(R + l/2)1/2 (horizontal) 

UP= E~(R + l/2) 

DOWN = cl(R - 1/2) (27) 

For a vertical dielectric boundary, the coefficients become 

LEFT = ERR RIGHT = c2R 

UP= (cl + c2) (R + l/2)/2 

DOWN = (El + E2> (R - l/2)/2 

(vertical) 

(28) 

where E 1 is the dielectric constant for the left side region and c2 is 

the constant for the right side region. For rectangular coordinates, 

set all the R's and (R + 1/2)'s to unity. 

The terms LEFT, RIGHT, UP and DOWN refer to the points, 1, 2, 3 

and 5 respectively in Fig. .l. The notes summarizing Eqs. (27) and (28) 

in the program instructions are reprinted below; 

SPECIAL BOUNDARY POINTS (INCLUDING GENERAL NEUMANN BOUNDARIES) USE 

999 IN COLUMNS 3-5 TO END BOUNDARY INPUT. BOUNDARY MUST INCLUDE ALL 

POINTS TO BE USED AND ALL POT NUMBERS. THEN INCLUDE ANY NUMBER OF CARDS 

WITH R, Z AND FOUR DIFFERENCE NUMBERS FOR LEFT, RIGHT, UP AND DOWN, 
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SEQUENTIALLY. NUMBERS SHOULD ADD TO 4 * R OR 4 IF RECTANGULAR COORDI- 

NATES. END WITH R > RLIM. FOR GENERAL NEUMANN, SEE APPENDIX II. TERMS 

ARE 4 * TAN@/l+TAN@) AND 4/TAN@) WHERE TAN@ < 1. 

HORIZONTAL DIELECTRIC BOUNDARY: 

LEFT = RIGHT = (EL * (R - 0.5) + E2 * (R+O.5))/2 

UP= E2 * (R + 0.5) 

DOWN = El * (R - 0.5) 

where El OR E2 = 1.0 FOR VACUUM AND E2 IS UPPER 'MATERIAL'. 

VERTICAL DIELECTRIC BOUNDARY: 

LEFT = El * R RIGHT =E2*R 

UP= (El + E2) * (R + 0.5)/2 

DOWN = (El + E2) * (R - 0.5)/2 

WHERE E2 IS RIGHT HAND 'MATERIAL'. 

VII. TRAJECTORY CALCULATIONS 

The program uses a fourth-order Runge-Kutta method of solving the 

relativistic differential equations given below. Suitable substitutions 

are used to reduce the three second-order equations to six first-order 

differential equations. 

The independent variable is time but the time interval is calcu- 

lated from the allowed iteration step and the velocity. It is neces- 

sary to use fairly short steps because of the auxiliary calculations 

that must be made at each mesh unit. Thus it is generally not helpful 
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to use any self-checking "corrector" solving routine. If some unusual 

application requires shorter iteration steps, the results usually show 

this by their internal inconsistency. 

The relativistic differential equations are derived in Appendix I 

and are 

* . 2 l/2 . . . . . . 
Z = a(l-B) - EZ(l - Z2) + ZRE, + ZAE 

cp - -P + cAB r 1 , (29) 
. . . . . . '2 

. . 2 l/2 
R = a(l-B) - E,(l = R2) + ZREz + RAE9 + cZB 

cp 
-cAB +$ 

Z 1 
(30) 

and 
. . 2 l/2 A = a(l-8) 

. . . . . . 
- A2) + ZAEz + RAE, 

. . 
- cZB - cRB r r 1 -y . 

(31) 

where 

P2 = ;;2 + ;12 + i2 and 6 = v/c (32) 

The constant c1 = eX/moc2 where e is the magnitude of the electron charge 

(the "-" sign is in the equations), moc2 is the rest energy of the elec- 

tron and h is the constant of proportionality between the real coordi- 

nates and the dimensionless coordinates. Thus 

z = AZ, r = XR, a = hA and ct = XT (33) 

By an arbitrary choice, A = 5.11 x lo5 mesh units so that c1 = 1.0 mesh 

unit per volt. Inspection of the differential equations shows that they 

are dimensionally correct if the electric fields are specified in volts 

per mesh unit. 
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Dimensionally E = vB, so that in mksa units E is in volts per 

2 meter, v is in meters per second and B is in webers per meter. Then 

cB has units of volts per meter. To convert to program fields of volts 

per mesh unit, fields are multiplied by the value UNIT in meters per 

mesh unit. Magnetic field input to the program is in gauss, which is 

the common engineering unit, and is internally converted to 

2 webers/meter . 

The azimuthal magnetic field B comes from the current in the elec- 
cp 

tron beam and is called the self-magnetic field of the beam. The mag- 

netic field created by an axial current is 

B po I 
cp =2?rr webers/meter2 

The field is assumed to be due to an infinite conductor which is a 

pretty good approximation in the area in which the field is significant. 

After multiplying BV by the scale factor and expressing r in meters 

which requires multiplying r by the scale factor also, the scale factor 

cancels as might be expected. Thus the scale factor only enters for 

external magnetic fields. The current I in Eq. (34) is the summation of 

the current in the trajectories at lower radii than the trajectory being 

calculated, but including the one being calculated. 

Two field components are neglected. The azimuthal electric field 

is neglected because of the axial symmetry assumed. The axial magnetic 

field can have a contribution from the beam due to azimuthal velocity of 

the beam. The magnitude has been shown to be less than one gauss in 

most practical cases and so is neglected. 



I 

-84- 

The space charge is calculated to supply the right side of Poisson's 

equation which is 

v2v = P = g- 
EO 0 

(35) 

The element of area for J is (r x 1.0) mesh units2 where r is the parti- 

cle radius. The velocity is only the Z-component since the space charge 

is being spread between adjacent points on the same column. The one 

mesh unit space between adjacent points accounts for the 1.0 in the area 

expression above. 

In the finite difference form, Eq. (3) replaces Eq. (35), and the 

right hand side becomes 

36~ x 10' IO(K) -6 
RO = x 10 

ABS(ZDOT) x 3 x lo8 
= (3.77** - 4) IO(K)/ABS(ZDOT) (36) 

where RO is to be spread between two points in inverse ratio to the dis- 

tance the ray is between them, IO(K) is the current in the one radian 

segment of the ray (in microamperes) and ZDOT is the velocity in units 

of c. If the angle of inclination, dR/dZ, exceeds 45', the calculation 

is made for RDOT. The absolute value of ZDOT is used to allow a negative 

ZDOT. The explicit value of R in Eq. (3) is canceled by the R which 

would convert the current to current density, thus avoiding special 

problems as R -+ 0. 

In practice, however, there are still some space charge problems 

near the axis. In rectangular coordinates, if the axis is a plane of 

symmetry, then an,y trajectory between R = 0 and R = 1 has a mirror image 
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between R = 0 and R = -1. To account for all the space charge on the 

axis, the calculated charge is doubled. In cylindrical coordinates, it 

has been found necessary to multiply the axial space charge by an empir- 

ical factor of 5.5. While no satisfactory explanation of this has ever 

appeared, the behavior of ideal laminar beams in test problems is markedly 

improved and highly convergent beams appear to behave as expected. 

VIII. TRAJECTORY ANALYSIS 

The program does some analysis of the quality of the beam resulting 

in a quantity which is similar to the phase volume, or emittance, of the 

beam. For those not familiar with the concept of phase volume, the 

material presented by Steffan 13 is a good introduction. The direct 

application of the concept of phase volume to electron guns was derived 

by Miller. 14 

The simplest formulation of phase volume is to consider the area of 

an ellipse plotted in dr/dz vs. r. Assume that the beam (e.g., the 

first standard deviation) fills this ellipse. Subsequent drifting and 

focusing can be shown to affect only the aspect ratio of the ellipse, 

and the rotation of the major axis, but not the area. The ellipse can 

become unrecognizable through nonlinear elements. 

At the end of each computer run, two extra plots are generated. 

One is a plot of current density as a function of final radius, i.e., 

the beam profile. The second plot is a point plot of the location in 

dr/dz vs. r of the final conditions of each ray. Figure 7 is the plot 

in dr/dz for the sample problem in Fig. 2. Using this second plot, the 
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Fig. 7. Phase space calculation for problem shown in Fig. 2. 
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effective phase area is calculated at the end of each run according to 

the method described by Miller. 14 First the center of the distribution 

is calculated, with suitable weighting for the current of each ray. 

This results in a location <r>, <dr/dz> in the half-plane. Then the 

area A i for the ith trajectory is calculated as the weighted cross 

product between the ith point, ri, (dri/dz), and the center of the dis- 

tribution. The resulting expression which is used in the program is 

l/2 

(37) 

This definition for the emittance area of a number of discrete points 

has the following desirable characteristics: 

1. It vanishes when the points lie on a straight line through 

the origin. 

2. It approaches the area of the ellipse for a very large number 

of equally weighted points uniformly distributed in the inte- 

rior of an ellipse. 

3. It is invariant. under linear transformations which conserve 

phase area such as that representing an aberrationless lens. 

When multiplied by the particle momentum, Eq. (37) retains the same 

invariance through subsequent acceleration. That is, transverse momen- 

tum times radius is conserved. 
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APPENDIX I 

DERIVATION OF EQUATIONS OF MOTION* 

The equations of motion are derived* from the Lorentz force equation 

d = -e(j$ + $ x 8) 
at Y (1) 

where e is the magnitude of the charge of an electron. The electron 
velocity vector v, expressed in cylindrical coordinates is 

3=u !i+u G+u 4. 
Z r cp (2) 

Here uz, ur and J.+,, are unit vectors and 6 = r$ is the azimuthal or 
peripheral velocity. The left side of Eq. (1) can be found from 

(3) 

where m. is the electron rest mass. Differentiating Eq. (3) yields 

d; 
E = uz 8'+ u r( E'- r$') + uV (25 + r $) 

which becomes 

d; - = uzY+ u,(Y- dt L'/r) + ucp (X/r + &'> . 

Frcxn v = (H2+ G2 +i 21 
)2 where v is the scalar velocity, 

(6) 

(7) 

we have 
dv 1: (’ l * 

at=v z z +b?+i i’) . (8) 

* 
This derivation was suggested by Dr. Gene Lang in a private cormnunication. 
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Substituting Eqs. (6), (7) and (8) in Eq. (4) yields 

V2 
+ l-- ( ) c2 1 

UZk' + ur(E' - i'/r) + u&G i/r + 'a') ‘I . 

Equation (9) can be expanded and grouped by vector components yielding 

A similar vector component expansion can be made for the right side of 
Eq. (1) yielding 

a0 = Be 
dt uz(EZ + ;B - 

cp &B,) + u~(E~ + IBM-;" + U$E~ + GB,-GBJ 
I 

. (ii) 

Equating vector components we have finally 

= -e(E,-iBv + iBZ) (13) 



and 

m 

= -e("cp + iBr - GBZ) . 

For computer programming it is convenient to express the variables 
in a normalized form. Accordingly, we let 

z = AZ, r = ?$I, a = AA and ct = AT. 

We differentiate with respect to T = % to get 

c22’ ; = $, ‘i =- 
A ’ 

(15) 

(16) 

From the definitions in Eqs. (16) it follows that 

(17) 

Making the normalizing substitutions in Eqs. (l2), (13), and (17) yields 

mOC 
2 

$2 b - 82 
+ ?', i' + !% x + ifi 

3 
, (18) 

N1-82> 

moc2 
3k i' f (l-fF+fi2)!3=+ CL K (19) 

Nw2> 
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and 

mOC 

2 

A( l-B2!) 42 
i'+ AR R' f (l-P2+ A2)k' +fl% (1-B")] =-ekV+&Br-&BZ] l (20) 

Our goal is to get separated equations solved for the second order 
derivative of each of the orthogonal variables. To solve the equations, 
we arrange them in the form 

A z + Blk' + CIA = D 1 1 

A,i' + B,# + C2A = D2 (21) 

A3z + B3ii + C3P; = D 
3 

and apply the standard determinant method of solving simultaneous 
equations. Rearranging Eqs. (18), (19) and (20) in the form of Eq. (21) 
yields 

(l-p2+i2)Y + iii k' + ti x' = + (i+~~)~" (~~fciiB~-ciiB~), m!) 

mOC 

.g 'i + (1-p+A2)ii + M 'p: = (1-p) g - + x (Er-ciB~+ciiBZ)(1-82)3'2, (23) 
mOC 

and 

Ai i’ + AR ‘R’ + ( 1-p2+A2)x’ = - (1-p) $i - eh 

mOC 

2 
x (~~+ciB~-c~B~)(l-@~)~'~. 

(24) 



-92- 

The determinant of the coefficients is 

a = (1-S"+ig) [(l-82+~2)(l-~2+;2)-A2fii21+ +.LF- $l-@2+L2)] 

c % 
[ 
it-l2 i - ti (l-S2+ R2)j = (l-S2+?2)(1-S2)(1-S2+~2+fi2) 

- i2R2(l-@2)- i2L2(l-82) = (1-82)2(1-82+ A2+ R2+ d") 

which is simply 
a = (l#)' . (25) 

It is convenient to let CX = eh/moc2 . The axial acceleration z, is 
given by 

& = D1(B2C3 - C2B3) + D2(C1B3 - B1C3) + D3(B1C2 - C1B2) 

which becomes 

(l-S2)2 i'= [-a(1-S2)'2(Ez +cR$-&Br) 1 [(l-S2+c2) x (l-S2+i2)-k2A2 1 
+ 2fi(1-S2+A2) 1 
+ -(l-p) + - a(l..S2)3/2 

[ 
(E~+c~B,-cRB~) 1 1 x iB2L-(1-B2+fi2).G . 1 

Simplified, the above equation yields 

2 = a(@)+ 
[ 
-(EZ+&~9-~~r)(l-S2+fi2+A2) + (E,-&B,+cLB~)~R 

+ (E~+&B,-&~) % 1 . 

Noting that (l-S2 + fi2 + A2) = 1 - A2 , we have finally 

(2.6) 
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The radial acceleration y, iS giVen by 

6 = Dl(A3C2-A2C3) c D2(ALC3-A3C1) + D3(A2C1-A1C2) 

which becomes 

(1-@2)2 ii'= [-a(l-~2)3'2(Ez + &BP - c;zBr)]X [(m2-% (l-p2z2)] 

+ 
[ 
(1-p2) A; - a(l-p2)3'2(~rYci~;p+~BZ) x 

I [ 
(1-82+i")(l-B2~2) 

_ i2i2 + -(1+2> % - a(i-f32)312(~W+~i~r-~RBZ) I[ 1 [ x 12% 

- z (l-P2 + i')] . 

Simplified, the above equation yields 

K = ~$l-p~)' [Ezf$ + &"Bq - &xBr - (E,-cZ$ + cffBZ)(l-@2+i2+A2) 

+ E,M + ciBr% - cfi2+Bz + R 1 A2 (p32+g2+~2) + !g!z . 

Noting that (l-P2 + i2 + H2) = (1-fi2), we have finally 

+ Ez% + ET% + ciB cp - cf;Bz 1 ii2 + R . (27) 

The azimuthal acceleration x' , is given by 

& = D1(A2B3 - A3B2) + D2(A3B1- A1B3) + D3(A1B2 - A2B1) 
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which becomes 

(bp2)2 Y= 312 - iA. x (l-P2+fi2) 
3 

+ 

- t2fi2] . 
Simplified, the above equation.yields 

'A = a(1-& 
[ 
EZti + ckE@ - d’B,i + &$ - l ** cZAR$ + Ci2BZfi 

- (13~+&~~-&)(1-8~+i"+ii~) - gi - i&p2+;2+fiy 1 . 
Noting that (l-B2+i2+fi2) = (1-A2) we have finally 

'A' = a(1+2)~ 
C 

. . 
-E&l-A") + EZg + Erfi - &Br + criB - F . 

I 
z (28) 
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APPENDIX II 

GENERAL NEUMANN BOUNDARIES 

If a boundary with normal derivative equal to zero is as shown, then 
a problem boundary is drawn as shown by the dashed line. A point at "a" 
is chosen such that V, = Vb. Point "a" is seen to lie on the normal to 
the boundary through the point 'b' at the intersection between points 
"c" a.nd "d" . The slope of the boundary is given by tan a. 

Starting from 
11-79 373Ob7 

'a = Vb (1) 
we have 

Va-Vc Vd’Va, *- 
-=- 

ac ad (2) 

where, for example, ac is the distance from point "a" to point "c". The 

mesh interval is taken to be unity. Cross-multiplying, we have 

or 

adV -a.dV =acV -acV a c d a 

(Z + ET) va =Evd+ziv . C (3) 

But, ad +-ii-c = $2 and ,Va = Vb, hence 

d’ ‘b =zvd+m . C (4) 

From the law of sines, 

ac 1 = 1 = 1 -= 
sin CX sin(r-$ 4) cos($- a) cos t cosa + sin 5 sina 
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which becmes 

- 
ac = viii sin CX 

sin a f cos a 

Then the other segment is 
I 

&tan a 
= 1 + tan a l 

The ccmplete difference equation from Eq. (4) is 

di ‘b = lza;2 a vd + 1 +Tan v C 

which in the notation used in the main text is 

1 E"EaZ (2 '1 + 1 + tan a v4-vo = O ' 

(5) 

(6) 

(7) 
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APPENDIX III 

INSTRUCTION COMMENTS FROM THE PROGRAM 

SLAC ELECTRON UPTICS PUUGRAM: VECTUR POf./PLOTFiLE VERSiO)U OF NOV 1979 

08 HERRMAhhSFELDl 
::ANF”ND LINCAR ACCELERATUR CENTER 
STANFORIJ UNibkRSiTY 
STANFORD* CALiFL)RNiA 94305 

SbURUUT I hk Liht: No. 

SUt3HUUTiNE 
SUMRUUTINE 
SUBRUUT INE 
SUfJROUfiNE 
SlBbtUUTiNE 
SUi3ROUTiNE 
SWRUUT INE 
SUkJRUUTiNE 
SUBROUTihE 
SUidROUTINE 
SIIBRUUTXNE 
SUbRUUT INE 
SUBROUTINE 
SUtIROUT INE 
SWRUUT INE 
SU0RUUTiNE 
StMRLiUT INE 
SUBRbUTiNE 
SWRUUT I NE 
SUURUUTINE 
SrWRUUT INE 
SUtlRUUTiNE 
SWROUT I NE 
SUC)RUUT INt; 

ANALYLlrliJ 
TiMT.STliT~NLJ 
CHILOA 14) 
CHiLCU 
f3SETlK~BOUL~ l J 
CHiLCGlYR2 J 
PRF I LE 
POTLST 
Pc)iSSN lN**J 
BUUNO tPUTN.YAD,*J 
Cc)EFl*J 
TRAJCT l*J 
PLOTS 
k:oUiP lFL*NO J 
LAPLAC 14) 
FRAME 
DSPRCC<IE~OIEQB.*J 
LISTL 1SSJ 
COORDlNeRHGeLETAJ 
MAGI=0 
LISTYG 
PRTiALlHHO~LETA~PU~LJ 
TUUCHliaLe * J 
RZPlIeYeEmElsCJ 

FUNCTION RCMXXlOJ 
SUBROUliNE RATNSTliRATJ 
SUBRUUTINE PERVNClMiJ 
SU~+RUUT~NE Tk4ERhf 
SUt)RUUTiNE LUOPS lRHUsLETA~HR.HLJ 
SWRUUTINE SCALE2 lXXmAXLENmNb=TS,XO.XLJ 
SUl3ROUTiNE REAOA 
SU6ROUTlNE CALBRZlRHO~ZETA~6H.d~.*J 
SUBRUUTXNE LEFT1 

650. 
696. 
734. 

: %? 
1220: 
izsi. 
1314. 
1348* 
1447. 
1661 
1847. 
2251. 
2287. 
23400 
2404. 
2463. 
2493. 
2527. 
2554. 
2614. 
2655. 
2891. 
2962. 
3004. 
gzz- 

3451: 
3529. 
3560. 
360 I r2 
3604.3 

SAMPLE PROtrLEY: 
!+ECTiOn GUN MCV~L 4-LA GRID-CATHODE REGION lU8JiJ MCJO.lI-20-67 MI=0 

CC LNPUT I 
C RLiM=72.LLi~4O~PUTN=4.POT=O.O.SOOO.O~O.O~O.O~M~=O~~AGS6G=l~TYME~2. 
CSENO 
CCiNPUT2 
C 21=20~22=40~L3=2O~8C0.0.2S.0. 
C&END 

: t 0 
c A :: 

: Lo::: -0 -0 099 04 
0.99 -0.1 

:t 3e 

c 4 :: 

IO t 2.0 2*0 -0.8 -1.0 

14 0.99 -0.6 
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5: 
c 4 
c 4 
c 4 
c 4 
c 4 

:: 
c 4 

:: 

::22 
c 2 
c 2 

ss 
c 2 
c 2 

ES 
c 2 
c 0 

50 
S? 
5: 
60 

:t 
62 
62 

2 

3: 
71 

3: 
69 
49 
41 

3: 
22 

0 
0 

s :ee 
0 

Ct INPUT5 

15 2.0 
:55 

2.0 
2.0 

1s 2.0 
15 2.0 

:3 
-0.99 
-0.2 

12 -O*? 

ifi 
-0.7 
-0.7 

00 
2.0 
0.99 

:: 
0.99 
0.09 

s3 
0.99 

-0.2 
26 2.0 
I7 -0.3 
13 2.0 
13 2.0 
13 
11 2: 
10 

2B 
::: 
0.0 

-1.0 
-0.4 
-0.3 
-0.4 
-1.0 

-2,” 
2.0 
L-0 

2: 
0.0 
2.0 
2.0 

0.99 
0.99 

2,” 
0*8 

::f. 

::‘3 
2:: 

c 121=1* IL2=2* IZS=lO* RAD=257. HMAX=37.b. UNlTIN=O.Ol. SPC=O.Oe 
CGEND 

cc 
t&XNP 
C 
C 
C c 
C 
C 
C 
C 

2 
C 
C 
C 

CARD NU. 1 CUNTAINS TITLE UN UNt CAR0 
‘UT1 CARD ND. 2; &INPUTl. (STARTS IN CGL. 2) 

CARD NO. 3 CONTAINS RLIHs LLIMs POTNe PUT(l)e POTlP).... 
POT( PUTN) *MI l MAGSEG, ALL IN NAMtAIST FCRWAT. 

INSTRUCTIUN DEFAULTeYAX COMMENT 
RLIM=XX HLIM=50* 100 HEIGHT OF*-PkOBLEM 
LLIM=XX LLIM=SOm 300 *I OTH CF PROtiLEM 

(SILE LIMIT (RLIW+IJ(LLIM+~) < 9001) 
IAX=XX lAX=O DEPRESSED AX1 S 

PUTN= XX POTN=lOl~ 101 NUMBER GF PUT ENT I ALS 
POTtIJ=X.X TU PDT(POTNb OEFAULT TG ZECOsPOTENTIALS IN VOLTS 

(USE NEGATIVE PDTN TO SIGNAL RECTANGULAR CODRDINATESJ 
LI1=x MI=1 PLOT IhSTRUCTION~ SEE TABLE 

(IF MI IS NEGATIVE. PRLICRAM WILL CNLY PROCESS BOUhOARY OATAJ 
MAGSEG=X MAGSEG=O hUMBER UF SEGMENTS W MAGNETIC 

: 
FItAD OATA-% iiE IiEiO NEXT. 

INTPA=.TRUE. INTPA=.FALSE. CALLS INPUTA TO REAO VECTOR PUTENTIALS. 
C LSTPOT=X LSTPOT=O OOh’T PRINT POT MAP 
C A.STPUT=l PRINT FIHST. “29 PRINT FIhAi. =3 PRINT FIRST AND LAST DEC-78 
C TIME = x.x TYYt = 2.0 MAX PRCIBLEM RUN TIME WIN. 

: 
EXPkCTEO POTENTIALS 

x::; 
= CATHODE 

C = ANUDE 
C PUT(J) = GRID (CUNTRULS EXTRA EQU IPOTtNTI ALSJ 

s: 
POT(4) = FUH A SURFACE W-IICH UILL STOP RAYS-NUT A GRID. 
POT(S) = FUR A ShADUb GRID-&UT kOR FUCUS ELECTRODE 

: 
UTtiEk PCT( J VALUES AS OESIREO 

TAME FOR VALUES OF Ml ;(USE MI = 0 FCR NO PLOTS) 
C CYCLE TU BE PLOTTED INIT & FIkAL ALL FINAL ONLY 
c; WITH EQUlPLltNTIAL LINES I 2 3 
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: 
SEPARATE EQUtPDTEhTlAL PLOT 4 5 6 
NO EGUIPUTENTIAL PLCTS 7 &I 9 

C&END I INSERT WERt-STARTS IN CM. 2 1 
C 

s. 
--------------------_-------------------------- 

MAGNETIC FIELD METHODS 
C 1) INPUT2 . . . PDLYNOM~AL SEGMENTS . . . *AGSEG=N IN &INPUT1 

: 
INPuT L.. AXIAL FIELD . . . MACSEG=-1 lh &INPUT 1 
INPUTA . . . VtCTOR PUTENTIAL ARR4yr.e INTPA=.TRUE. IN &INPUT1 

cc 
4) INPUTS . . . COlL DATA...FIWS AXIAL FIEAOS 

COXL OAlA.r.ELLIPTIC INTEGRALS 

t ----------------------------------------u_-------- .-- 
C 

s 
MAGNETlC FIELD DATA (READ IN MAGSEG SEGMENTS) 1N NAYELlST FORMAT 
WARNING: T&IS APPRuACli IS VIRTUALLY IMPOSSIBLE TO USE IN A PHlSICALAV 

CCCINPUTP 
REALISTIC 1111 AND IS MDT RECJMMENWD. 

( FOR EACli SEGMENT ) 

fi 
USE NAMELIST FDRMAT FUR TtlREE INTEGERS. AN0 AN ARRAV BC 

OF SEVtN COEFFICIENTS OF VALUE BZe El. 82. . . . . 86 

2 
6 =l3Z+~ICD2+82+DZ*+2+. ..+ti6**6 bkU?RE DZ=Z-Z3 

2 TAKE5 THE VALUES .Zl’ TCJ ‘22’ MITH ORIGLN AT ‘23. 
C FOR SIX URGER EXPANSIOk. FIELD MUST START 6 UkITS BEHINO 
c C ATHOOE. Oli STARTING PUINT. AND CO SIX UNITS PAST ZLIY. 
c IN RtCTANCULAR COORDINATES-YAGNETIC FIELP- 1s I*I-TYs - -- -.. . ..- 
C TRANSVERSE (PHI) DIRECTION UNLESS MAGDRD ~. ~~ < 1. 1SEE NAGORD. 8ELOLJ ._ 
C IF MAGNETIC FIUD INPUT IS USED IN A RECTANGULAR COORDINiiE PROBLEM. 

t 
THERE IS NL TERM FUR SELF MAGNETlC FIELD . EVEN IF INPUT FIELO IS LERO. 
WITHOUT IhPUT FItLD SELF-FIELD IS IN PIiI DIRECTION. SELF-FIELD IS 

E 
CALCULATE0 FROM CURRENT Ih RAYS BETmE iEN Z-AXIS AND KTH RAY INCLUDING 
IiAAF OF IO(K). INPUT f-DR 13LK COILS IS IN SECTIbk 5. 

C USE &EN0 AFTER EACH SEGMENT r 
~CINPUT~ 
C POINT BY POINT INPUT OF MAGNETIC FIELDS: 

2 
IF MAGSEG < 0. E.G.* MAGSEG=-1~ TeN USE tINPUS TO READ ARRAy 

BZA=IAXIAL FIELD STARTING AT 2x-6 TO 2=2AIW+6) 
C&END 

s ---I--------------------------------------- 
CC INPUTA 
C 

ITC IN$PU;E;TC)R POTENTIAL DATA) 
HUo=X.X 

cc 
zzo=x.x zzo=o:o 

WSITION OF FIRST ELEMENT OF AlJsIN MU 
REAATlVE TO DRIGIN OF CUh PROB. 

EE?i 
DELR= 1 .O INCRkMENT IN R (CIJ FROM POSSON/EDIT 

C DtLZ=l .O INCREMEhT IN Z (CM) FROM PCISSON/EDlT 

: 
RLMAZ=;X RAMAG=JO NUMBER UF ROlS OF A0 DATA 
ZAMAG=XX LLMAGr200 NUMtlEH OF COLUMNS OF A 1 J DATA 

c’ 
At J VECTOR POTENTIAL DATA ARRAV OF A. EXCEPT AIR AT R=O. 

UNITS OF A IN GAUSS-CM. A( J IS A LINEAR ARRAY mITn 

: 
COLUMNS RLMAG LONG. MAX SIZE OF AI) 1S 8000. 

------------I-------------L- 
: BOUNDARY INPUT 

-------e------ 

2 
-----------------L------L- -e------------ 

CIOUNOARY IhPUT I3 INTEGERS. 2 FAOATIhG POINT NUMBERS) 

: 
PUT. N0.m R. Z, DELTA R. DELTA 2 

FORMAT ~159SX~2FlO.S 
c TO TERMINATE INPUT. USE PDT. NU. >POTN. E.G. 200 IN COL. 3. 

cc 
IF 999 IS bSED, SPECIAL UDUNOARIES BILL L3E READ. SEE BELOW. 
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C -----------------------------_1--------------- 

: 
STARTIhG CCNDITIONS VALlD INSTRlKTIGNS AND DEFAULT CONOITIONS 

------------------------------I----------------- 
C&INPUTS ( INSEtiT FiERE J C GOES IN CDLUME 2. 
C&EN0 1 INSERT AFTtR START INSTRUCTIONSJ 

INSTRUCTION DEFAULT .MAX CO YMEhT 

UNIVERsAL PARAMETERS 

PERVO = X.XX 
nOLO = x 

PE = X.X 

PERVO = 0 
nDL0 = 1 

PC; = 2.0 

ZERO USES LAPLACE/ 
PtRVU ‘nOLDS’ FOR HOLO 
1 TERATIONS 
INITIAL ENERGY AT CATHODE 
IN EV 

ERRdR = X.X ERRUR = ‘1.0 MULTIPLIES ERROR TEST 
UNIT = X.XxX UNIT = 0.001 UETERS / MESH UNIT 
UNITIN = X.XxX (SEE UNIT) INCHES/MESH UhIT 
MAXRAY = xx MAXtiAY’r27.51 MAXIMUM NUMBER OF RAYS 

IF MAXRAY IS NEGATIVE. Tut NUMBER UC RAYSrABSlMAXRAYJ 
STEP = 0.Xx STEP = 0.8 MESk UNITS / STEP 
NS = X NS = 7 NUMBER OF ITERATIONS 
SPC = O.XX SPC = 0.5 ESTIMATED SPACE CnARGE 

SPC SIMULATES PARAXIAL APPHUXIMATION ON FIRST CYCLE. 
SPC IS THE FRACTION UF THE RADIAL FORCE USED. 
SPCrl.0 FUH FULL EFFECT, SPC’O FUR NCI EFFECl 

PnILIM=X.X PnlL IMxO.0 AZIMUTnAA LIMIT 
PHIAlY .~t. 0 ENUZ TRAJECTORY AT PHI .GT. PHIAIM 

SAVE = I SAVE=0 SAVE= 1 SAVES BOUNOARIES. 
TO USE SAVE=1 . OMIT trGUhDARY CARDS F RUM NEXT PROBLEM. 

SAVE=2 SAVE=0 SAVE=2 USES FINAL OATA 
FROM PREVIOUS RUN TO START TtiIS RUN. 
USE CNLY lllHEN STAdT=‘CAHD5’. 

MASS = X:X MASS = 0 - MASS > 0 FOR IONS 
MASS 1S TkUi MASS TO CHARGE RATIO, 1.0, F&JR PROTLNS 
USE MASS<0 FUR RAYS bIrH3UT INERTIA: CAN BE USE0 

FDH MAGNETIC FLUX LIhES OR ELECTRIC FIELD LINES. 
AV = X AV = 0 SPACE CHARGE AVERAGtD 

LAST AV ITERATION 
AVR = X.X AVR = 1.0 It IGnl OF SPACE CnARGE 

IN PRECtOING PROGRAM CYCLE FCR AV. 
BEND = X.X BENV=O. 0 MAGhETIC BtNOING FIELD 

IN GAUSS IN THE OIRECTIDN NUCMAL TO TIiE R-2 PLANE 
FUR AXIALLY SYMMETRIC PRUBLEMS. FIELD MUST BE 
UNIFORM. Tnt EFFECTS OF SELF-MAGNETIC FIELD ARE LUST 
AN0 SPACE CHARGE IS STILL AX IALLV SYMMETRIC SO THAT 
IF SEAM IS DEFLECTED. CnAkGE DISTRIBUTION IS PROBAeLY 
INCORWEC T . AN AXIAL FIELD MUST tit INCLUOED IN TtiE 
INPUT. EVtN IF IT IS ZERU . t.G.. DC=0 IN INPUTZ. 

MAGHLT=X .X MAGnAT= 1 .O MULTIPLIES S2A ARRAV 
IPBP=Ul.KP....Kt4 IPkaPO=0 UP TO SIX RAY NUMBERS FOR POINT 

BY-pUIhT PRlNT3UT:K~R~O~ZETA~ROOT~ZOGT.TOOT.PnI.~R~~Z~STEP.~PnI 

2EhDrX.X ZtNV=lOOO. 0 EXACT END OF TUAJECTDRY 
CAUTION: IF ZENU IS NOT THE RIGbiT-HAND BOUNDARY. THE SPACE 

CHARGE OISTRIfWlICN MAY DE INCORRECT. 
V1DNrX.X VION=-IES LOlEST POTENTIAL PERMITTED 
USE VIDN TO SIMULATE 5PACE CHARGE NtuTRALIZATIUN 

INPUT FUR EClUIPOTEtdTIAA PLOTS 
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EQUIPR = X.X EQUIPH = 0.0 R-iNlEkSECTlOh FOR EOUI- 
POTEhTIAL LINES 

LM = XXX LW = 300 LENGTII OF EQUIPOTENTI ALS 
EQLN = 0 TC 20 EOLN = 1 hue OJ= CORRECTIONS 

--------------Y--- 
EQST = X EOSl = 2 STEPS PER MESJi UNIT 

------v------------ 
APPLIES ALSU TO GENERAL CATJIODE 

IZl=X~iZ2=*riZ!S=X 121=0*122=-I EXTRA EQUIPOTENTIALS AT 
iZS=lO THE INOICATED VALUES OF Z. 

--1----------------------------------------------- 
PLUTTING CUNTCCJLS 
---------------------------------------------------- 

SCALE = *YES’ SCALE = ’ ’ ‘YES*= OIFFERENT XeY SCALE 
sx = xx sx = 22 MAXIMUM HURIZGNTAL PLOT 

HE I GHT 
SY = xx SY = Y MAXIMUM VERT iCAL PLOT 

HEIGHT 
------------------------------- ---e----w- --v- 
MAGNETIC FIELUS; METIiOO ONE; READ ih AXIAL FIELD IN SECTION 3tAf30VEJ 
------------------------------------------------------ 

RMAG = x.x HYAG = RLtm/2 OFF-AXIS MAGNETIC FIELD 
LISTING AT R.=AMAG 

ZMAG = x.x 
WAGORO = 294 

ZMAG = ZLiMt6 i!J CONSTAhT BEYONti ZYAG 
WAGURD = b HIGHEST ORDER FIELO 1ERM 

IF MAGORO < ie FOR RECTANGULAR 
COORDINATES. BZA IS IN THE 
R-OIRECTION Ah0 TtiE OFF AXIS 

NNAG = X NWAG = 0911 
ELPANSION IS A FUNCTION OF R. 

. UF FitLD COILS FOR 
Mt;THOD Tbu (GELLIYJ 

MElHOD TmU; READ IN POSITION AND STRkhrGTH OF NMAG IDEAL COILS. 
IF NELL=Oa PRCCRAM CALCULATES AXIAL FIELOS AN0 PROCEEDS AS IN METMOD ONE. 
IF NELL=l. TtliS WETJWD CALCULATE5 FIELDS USING THE CCMPLETE 
ELLIPTIC INTEGRAL JUNCTIONS. FIELDS ARE TtiEN VALID ih ALL SPACE. 

I*** ELLIPTIC INTEGRAL METHOD IS VEWY SLOM l *** 
1F ELLIPTIC INTEGRAL FUNCTIONS ARE INCLUDED W)rEh PROGRAM IS 
CDYPLILED (USER MUST COMMENT UUT TtiE DUMMY FUNCflONS AT THE 
END UF THt PRUGfiAYJ THEN. FOR COIL MtTHOD ONLY* THf PRCGAAM 
bILL LIST THE OFF-AXIS FiEL3.S f3Y BOTH OFF-AXIS EXPANSiChS 
AND BY USING ELLIPTIC INTEGRALS* EVEN IF NELLIOI THIS 

C PROVIDES AN INTERESTihC CJIECK Oh THL VALIDITY OF THE OFF- 
C AXIS EXPANSIONS lN TtlE USER’S SPECIAL SITUATION. 

f 
NELL’=1 NEAL =0 I FOR ELLIPTIC INTEGRALS 

C CRIIJ = X.X CMILJ = RLIM RADIUS OF COIL (YkSH UNIT) 
C CZ(i J = X.X CZ(i J = 0.0 AXIAL POSITION OF COIL 

cc 
CM(l) = X.X CWtAJ = 0.0 CURRENT IN AMPERE-TURNS 

----------------------------------------------------- 
C START GE NEHAL 

: 
---------__-------------------------------------- 

START = ‘GENLRAL’ START = * GENERAL ’ GENERAL CATHODE 

cc 
RC = X.XX RC = 0.0 LOWER EN0 OF STARTING SUR- 

FACE 
C zc = x-xx zc = O*CATHODEZ CATtiO0E.Z IS 2 VALUE OF 
C BOUNDARY FROM FIRST 

OATA CARD. 
CA = X*Xx CL = RLIM MAXIMUM LENGTH OF STARTING 
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DENS = XXIX 
SURFACE 

DENS = 10.0 
BETA2 = 1.0 

MAXIMUM EMISSION (UCM**2J 
BEfA2= 0.0 IF > 0.0 USES LANGWUIR- 

BLOOGETT 
RAD = X.X --- USE RAD FOR UiRf RAOIUS Ih 

RECTANGULAR COORDINATES. 
BETA2 > 0.0 

SURFAC = X SURFAC = 1 STARTING SURFACE ITERAT IOh 
------------1_------------ 
USE POT’(5J FOR NCN-EYiTTiNG SURFACE. E.G. 
HOLLOW CATHODE OR SNAOOI GRID. DO NOT USE 
POT(3J OR PUTlSJ FOR FOCUS ELECTRODE . . . 
USE POT(4J Tt STOP ELECTRONS ON IMPACT. 

----I_------------------------- P------s------ 
START GENCARD 
-----------I----------------------- ----w- 

START = l GENCARD’ START = ‘GENERAL* GENERAL MATH CAR0 STAHT 

NAVE UP TO WAXRAY CAROS llHIcH SPECIFY: 
IJ RAY NO. 
2J INITIAL RADIUS R 
3J IN1 TILL AXIAL VALUE Z 
4J DISTANCE FROM CATHOOE DX (CATWDE MUST BE POT(l)). 
SJ EFFECTIVE SPACING METbEEN RAYS OR- - -.._ 
bJ PAWANElLR YHiCli MOOIFIES CHILD AAhGMUIR EQUATION, ALPH2. 

NORMAL DX IS I.0 TO 2.0 MESH UNITS. 
NORMAL CJR I5 1.0 BUT MAY DE VARIED ALONG THE SURFACE. 
NORMAL ALPNZ IS 1.0 F&JR A PLAIN DICOE. 

FOR CYLihORiCAL COORDINATES: 
ALPH2=(ALPHAC(RADiUS OF CURVATUREJ/tSTARTING STEP))**2 

FUR RECTANGULAR CO0ROiNAlES: 
ALPH2=(META**2J*(RADiUS OF CURVAfUC~J/(STARTING STEP) 
rHEWE ALPHA AN0 META ARE AS DEFINE0 IN THE L1TERATUREeE.G.. 
SPANGENBERG FUR META AN0 BREWER IN SEPTIEW. VOL ii. FOR ALPHA 
FOHNAT IS THE sAME AS FJR CAR0 STARTING; 

~15.5X~5F<l0.5JJ. 
RAY NO~~R~Z~DX~DR~ALPN2 

. . 

:  

--------^-----------________I -F-----II------- 
START SPHERE 

: 
------__------------------------- --------------- 

START = ’ SPHERE ’ START = ‘GENERAL’ 

: 

SPHER AC AL CATHUDE 
WAD = X.XX RAD = 2*ZLiM SP~IER~CAL R~olus 
RWAX = X.XX RNAX = RLIU CATHODE RADIUS 

: 
ORAD = X.XX UHAO = 
ST = 

CATHOOEZ CENTER OF CATHOOE 
X.XX ST = 2.0 

E 

STARTfhG STEP 
------------------I------------- 

C 
‘SPHERE’ AL5L; hURKS FOR CYLINDRICAL 

: 

CATWCDE IN RECTANGULAR COORDINATES 
----------------------------------------------- 
START CARDS 

c -------------------------------------------------- e START = *CARDS’ START = ‘GENkRAL’ CARD STARTING 

: 
zo = X.XX 

fOKAf 
0.0 OLD URIGIN IN NEJEY FRAME 

SKAL = X.Xx = I.0 OLD MESH/NEU MESH _- c 

s 
NAVE UP TO YAXRAY DATA CARDS (J INTEGER* 
RAY NO.* A* 2. 

b FLOATING PUINTJ 
ENERGY ( EV J. ANGLEdRADiANS J. 

C IN ONE RADiAh SLGNENTJ. THANSVERSE ANGLE. 
CURRENT (MI CROANPERES 

s 
4 NUTE CHANGE: TRANSVERSE ANGLE* 

TRAhSVERSE POSI TION~PNI J 

TOTAL KINETIC ENERGY.) 
NOT TRANSVERSE ENERGY: ENERGY IS NUU 

c FORMAT iS~5X97FIO~5 
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: 
C 

5 
c 

: 
c 
C 

s 

STOP READING wlTH HAY NU. GREATER THAN MAXRAYS 
INITIAL TRAhSVEHSt VELOCITY HAS THE SIGN OF ThE TRAhSVERSE AhGLE 

IF HECTAluGULAR COUROINATEj: 
1 J PHI 15 THANSVERSt POSIliUN IN MESH UNITS. 
2J CURRENT IS YiCROAHPERES IN OhrL MESb U&IT DEEP StGNENT. 

****SPECIAL TESTS IN RATtuSl; CROSSING CR 3-D SPACE CHARGE** 
iRAT=I IRAT=0 3-O SPACE CHARGE 
I RAT=2 lHAT=O CRO5SiNG DETECTION 

USE OF htGATiVt: HAY NUMBERS: 
AJ IF iRAT=l (3-D SPACL CHARGE J 

1J MAKE RAY NUHdER5 NEGATIVE FLIG f.?EAM EDGE CARDS. 
USE BtAM EDGE CARDS IiO=OJ TO SIMULATE 5PACE CHARGE SPREAOING 
UF A CYLINDRICAL BEAM OF CURRENT I AN0 RADIUS R IN RECT. CWRO. 

PAIRS OF BEAM EDGE CARDS PHECEOE SETS OF RAY CARDS OEFINING 
PAHl UF BEAM FUH WHlCH 3-L) 3PACt CtiAf-iGE SPREADING IS TO BE SiMULATtO 
SEVERAL PAFiTS, DIFFERENTIATED BY SELECTtD ATTRIBUTES; E.G.. ENERGY 
ALPHA UR HADlUb. CAk BE USED SiMULATEUUbLY biTti AhY NUMBER UF RAYS 
IN EACH PALT. END OF PART lb DEFINED BY kEXT RAY niTH NEGATIVE RAY 
NUMBER. WHICH BEGINS THt NEXT PART. 

2J Tb SIMULATE CYLINORICAL LIEAN bPACE CHARGE IN RECTANGULAR 
COORDINATES MAKt CURRENT PER NESh UNIT. I’ = i/(Pi*RJ INSTEAD 
OF I’ = 2*i/tPI*RJ mHiCH YGULO HAVt THE SANE CURREkT DENSlTY. 
IN uTHEH wLHDSs MAKE i*(hJ = i(K) / (2*R(KJJ INSTEAD OF i(K)/ 
R(K). NUTE THAT THIS RtOUiHES TkiCE AS MANY RAYS AS FUR 
CYLINDRICAL BEAM mITH SYMMETRY. BEAM EDGE CAROS (GAY NO. < OJ 
ALSO APPLY TU UFF-AXIS PENCIL IN CYLINDRICAL COORDINATES. 

UJ IF IRAT= ( H-Z AND PHI CRUSSUVERS J 
1 J R-Z: MAKE RAY hUMdEHS NEGATIVE FUR SEOUEhliAL RAYS FUR 

YliICtl FINAL CROSSUVER SHUULO BE DETECTED. CRUSSINGS WILL BE 
LISTED AND PLUTTED. NtGATiVE RAY NUMBERS SHOULD tit IN PAIRS. 
TU FIN0 CRUSSUVEHS bITn Z AXIS. RUN A RAY UiTt-4 R=OmALPHA=O 
PRECEDING Tbt RAY 73 TEST AXIS CROSSING. 

2J PHI: LEAVE RAY NUABERS PO5iTIVE F&? TGANSVEHSE RAYS TD 
DETECT LAST CROSSING OF PHi=PI*INTEGEfi. 

IF SAVE=2. RUN STAHTS Ui1I-l f ANAL RAY DATA FROM PRtVIOUS RUN. 
DU NUT PUT 5AVE=2 Uh THE FIHST HUN OF A SET. 

--------------------________l_______l___---- 
THERMAL EFFECTS 
-------------------------------------------~I--- 

SUBROUTINE THERM IS CA;C’E; IF THt PARAMETER TC>O. 
TC=XXXX.X KELVIN TEMP. 
TbO MODELS ARE INCLUDED TN THIS VERSICN 

OF CATtiODE 

KRAY=3 KHAY= I THREE RAY SPLIT 
KRAY= 5 KHAY= I FIVE RAY SPLIT 
THREE RAY SPLIT PUTS CURRENTS IN 1-2-1 RATIO CliTl-4 2 PARTS IN 

UNDEFLECTEO RAY AN0 I PART EACH IN RAYS kiTH VIPERPJ=SQRTI2KT/NJ 
IN R-Z PLANE. UP AND DLWN RELATIVE TO UNOEFLECTEO RAY. 

fiiVE HAY SPLIT PUTS CURRtNTS IN I-9-0-9-1 RATIO MATH 
V(PERPJ=28SQRTI2KT/MJ FUR I PART RAYS AND V(PERPJ=I*SORT(2KT/MJ 
FOR 9 PART HAYS. NO CURREhl IN CtNTER RAY. 

USERS SHUULC FEEL FHtE TO MGDIFY SUERCUTihtE THERM. 
THERM CAN tlE CALLED FUR START=‘SPHERE’s ‘GENERAL’. ‘CARDS’. 

OR ’ GtNCARD’ . 
IT CANNOT BE UStU FUR START=‘CARDS’ uITH SAVE=P. 

--------------------_____I___________I__----------- 
SlART LAPLACE 
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--------------------------------- ------------- 
START = *LAPLACk ’ STAkT = .GENEC(AL* N0 AAI TRACING 
NS = X 

ADD DATA CARDS YITHN:Rf2 
7 NUMBER OF LAPLACE CYCLES 
. SPACE CHAAGEJ FOK NON-ZERO PUlNTS. 

FORMAT lZiSrE20.7J 
END CARD INPUT UlTH R > RLIM. 

SPECIAL BOUNOARY POINTS (INCLUDING GEhERAL NEUMAtuN BOUNDARIESJ 
-w-m ---------------------------------- --- 

USE 999 XN CDLS. 3-5 TU END 8WNOARV lhPUT. BOUNDARY 
MUST INCLUDE ALL POlNTS TO f3E USED AND ALL PO1 NUMBERS. THEN 
INCLUDE ANY NUMuER OF CARDS WITH R ~2 AND FOUR DIFFERENCE 
NUMtlERS FDA LEFT. RIGHT. UP, AND DCYNs SEQUt;NT/ALLr. NUMBERS 
SHOULD ADD TO 44R OR 4 IF RECTANGULAR COORDINATESe END WITH 
R > RLIM. FOR GENERAL NEUMANN* SEE APPENDIX II OF SLAC 166. 
TERMS ARE 4*lTAIv AJ/tl+ TAh AJ AND 4/<1 4 TAN AJ &HERE TAN A <1 

__-------I------------------------------------ 
HORIZONTAL DIELECTRIC 0OUNOARI 
------------------------------ ------a-------- 

LEFT=RIGHT=lEI*lR-.SJ+E2*lR+.SJJ/2 
UP = E2+lR+.SJ DOYN = El*tR-.SJ 
WHERE El OR t2 = 1-O FOR VACUUM AND E2 AS UPPER ‘MATERIALS. 

-------__------------------------ ------e------w 
VERTI CAL 01 ELECTRIC BOUNDARY 
----__------------------------ P--------------- 

bpEFT = EL*R 
RIGHT = EOLR 

= lEI+E2J*lR*.5J/2 DOYN = lEl+EZJ+lR-r5J/2 
YHU(E E2 IS RIGHT HAND ‘MATERIAL’. 

----------------------I-------------------------^- 
SUMMARY OF FILE I FORMAT FUR PLOT DATA OUTPUT 
mu- --------------------______________uI___----- 

E YRITE~~JI~L~A~B~CDD.~X~~J~~~~D~J~~Y~JJ.~~.AJ 

C UHERE: ‘* 
C I=0 THROUGIi 8 
C FOR X=0.708 PLCT A LINE 

s 
C=NUMBER OF DATA POINTS TO BE PCGTTED 
Xm Y ARE ARRAYS OF LENGTH >= Le YITH XeY DATA 

C FOR I=le PLOT X AXIS* FOR 112. PLOT Y AXIS 

E 
L=WMklER OF COMPUTER UBRDS IN TITLE 

FOR 1 BY/360 L=lN+JJ/4 IF N=NUMBER OF CHARS 

cc 
AlSCALE (DATA UNIlS/INCHJ 
&=AXIS LENGTH 1INCHESJ 

: 
C=X COW0 UF V AXIS. OR Y CCIDWD OF X 1 GTIiER CDORD IS 0. J 
OrDATA VALUE TO APPEAR ON COYER END OF AXIS 

C FOR 1=3e END 4F PICTURE. GET A CLEAN AREA ON PAPER* ETC. 

: FOR 
L=l; A,EI.CID. Xe Y-0.0 

I=4 . CLOSE PLUTe THIS IS TflE LAST RECORD OF THE FiLE 
C l-=1 ; AIB~C~D~XIY=OO 

: FDR Its* 
PLOT PCINTS 1DR X’S* OR SOME SYWBOLJ 

CsAeBeCeD,XeY SAME AS FOR I=0 1LIhESJ 
C FOR X=6* SET SCALE FACTDR 

E 
A=X AXIS LkNGTH 
B=V AXIS LENGTH 

: 
C=SX 1FWOW &INPUTS) 
D=SV 

: 
PLOT AREA MUST tlE AT LEAST -O.S<X<A+O.S -o.s<Y<8+0.5 
C AND 0 CAN IdE USED IF NEEDED. 
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C THE TITLE ON THE AXIS SHOULD C1L UNDER THE X AXIS. 

s: 
AND TO THE LEFT OF THE Y AX1 S (TkE PROGRAM CAN PLOT 
MORE THAN ONE Y AXIS ON A PLOT. SCi BE CAREFUL. J 

C I LESS THAN Oe OR GREATER TMAN 8 Sl-iOUADN’T HAPPENm BUT CHECK IT- 

cc 
C 
C 

: 
------------------ ---e-e --w----w---- I_---- 

ARRAY SI LES 

MA% SIZE OF POTENTIAL ARRAYelOl. ADJUST POTN=lOl~PDT~lOlJ.LAL=l.lOl 
WAX BOUNDARY SIZE: 9019 ADJbST iWNDL~l30N02~80ND3 080ND1~D6OND2~ 

A~CXl901+4J~ABCYl90l+4J~ORDERl9Ol+lOlJ~XT~9Ol+lOl~6J 
MAX RLIY 100. ADJUST ORDERl901+LOl J.XT1901+101.6J,A110i.SJ .XllOlJ 
MAX NUMBE A OF RAYS; 511 ADJUST AL(51+2J~10151J~11(51J~RR151+2J~RMIN1 

TP~f~SiJ~VV~SlJ~X~l9~SlJ~2~~SlJ~lI~5lJ.LL~5lJ~IR~IN=Sl 
MAX SIZE llF PROBLEM; 9001, <RLIM+l J*lZLIM+<? <= 9001 

ADJUST TYPEl9001JeUl9001J~WHl9OOlJ. 
MAX ZLIW; 300. ADJUST t3X~301+2J~BY(301+2J~R~X12*301+2J~R2Y~2*301+2J 

RZY INIT. LOOP =lr2*301+2. fiZA( 301 +I 4J l IBZA=JOl+ 14 . RARR (301 J 
LM=301 LENGTH OF EUUIPOTENTAAL 

MAX NUMBER UF COLUMIvSi 401,ADJUST LINC( 3.401 J. 
t SHOULD BE LARGER THAN LLIWI 

RARRlJel51 J ONLV FUR RECT. SPRD. IN CYA. COORD. 
LltU8888888888888888888888888 MAIN +8888+88+8#8+8488888888888888 
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4. 
5. 
6. 
7. 
8. 

ii: 
. 

:3: 

::: 
16. 

::: 

4:: 

2:: 

f3: 
25. 
26. 

E: 

52 

3:: 
330 
34. 
3s. 

3;: 
36. 

3:: 

2: 
43. 
44. 

t:: 
47. 

Z: 

APPENDIX IV 

SAMPLE PLOTTER INTERFACE PROGRAM 

REAL X(1000,.Y11000, 
REAL88 Tl9, 

l /‘LINE.~‘X-AXIS**‘Y-AXIS*~‘~U PIC.‘~~UOSE’~‘POINTS’~*~EN*~ 
8 .LINE* l *LINE’/ 

CALL STRTP2117) 
1 READll.END=99~1~C~DX.DY~SX.SY.lXlJ~~J=l~L,~lYlJ~~J=l~L, 

URfTEl6.101, Tt I+! Bv I .LwDXeDYeSXeSY 
101 FORWAT~lX~A6~2112~4FlO.4~ 

1=x+1 
COT0 110~11~12~13~14~15~1.10.10,,~ 

C CHEC,: TO; ERRORS 

&T&6.100, I 
100 FORWATt. OOeSm*m112~’ FOUND IN FILE’, 

GO TO 1 
C DRAU A LIliE 
10 XlLtl a=sx 

xlL+2B*Dx 
YlLtl ,=SY 
YlL+Z)=DY 
CALL LIRE2lX~Y~L~l.0~0~ 
GO TO I 

C DRAU AN X-AXIS 
11 CALL AXIS2lSX~O~~XvL84.0X~O..SY.DY) 

SAVFOXtDX 
GO TO 1 

C DRAU Y-AXIS 
12 CALL AXIS2~SX~O.O~X~L*4.0X~9O.O.SY.DY~ 

GO TO I 4- 
C END OF PLOT 
13 ~CALL PLOT2tSAVEOX+T.eO.e--3, 

GO TO 1 
C CLOSE FILE (TAPE) 
14 CALL ENDPL 

GO TO I 
C PLOT X’S 
15 xlL+l t=sx 

XlL+2,*DX 
YtL+l ,=SY 
YiL+Pi=DY 
CALL LfNE2lXeYeLsl.-1.4, 
GO TO I 

99 URtTt?t6.102, 
102 FORMAT 1 l END OF FILE FOUND.‘) 

STOP 
EYD 
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APPENDIX V 

8 1 

LA% G”N3?5.0,204&” 50 60 
UB7H012-19% 

90 100 

Fig. 8. Sample output for a very high perveance gun. 

110 
I 

120 
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Fig. 9. Sample output for a hollow beam gun. 
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-- .- ..- 
6”RITlll EX#nPIC 

Fig. 10. Sample output for a gyrotron gun. 
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Fig. 11. Sample output for a klystron gun. 
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