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ABSTRACT
Results are given for applying the helicity formalism
to spin and parity analysis of a certain eclass of resonances
decaying into another resonance and a non-resonant particle
with the subsequent decay of the intermediate resonance into
non-resonant particles. Integer and half integer cases are
treated separately. The method outlined herein is hoped to
be useful to those experimenters interested in performing a

spin and parity analysis on resonance decay data.



I. INTRODUCTION

During the past few years theoretical physicists have shown an ever in-
creasing interest in assisting their experimental colleagues in the problem
of spin and parity analysis of rescnances. It is our feeling that msny of
the treatments are somewhat too elaborate and formal to be of maximum value
to experimentalists. We therefore would like to enter another work into the
already large amount of literature in this field with hope that the treatment
herein will show how these problems may be studied in what we believe to be
a very simple manner. Rather than examine problems to which solutions have
already been giﬁen, we illustrate the methed in connection with a new avenue
— the two-stage decay process where a parent resonance decays into a pseudo-
scalar meson and intermediate resonance which then subsequently decays into
two or three final non-resonant particles.l An example for boson type reso-
nances is B —ox; w — 31, and an example for fermion type resonances is
= {1820) s (1330) + =3 = {(1530) - = + n. In the actual detailed exercises
which are treated here we have in mind the determination of the spin and parity
of the parent resonance which decays via the two stage processes into particles
and resonances whose quantum numbers are known. In particular we consider
only those cases where the intermediate fermion resonance has spin 3/2, and
the intermediate boson resonance has spin 1. These causes appear to be of
great practical interest. Boson decays are treated in Section II and fermion
decays in Section ITII. The method of calculation leading to the proposed
weighted averages is outlined in the Appendix.

In all the analyses proposed here we have ignored the problem of separat-
ing the variocus resonances of fixed angular momentum from the background and
have assumed that in the actual applications, the data will be sufficiently

amenable tc make this separation possible.
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IT. TWO-STEP BOSON DECAYS

We consider here a method for determining the spin and parity of a
boson which decays into a spin-one and a spin-zero particle with the subse-
quent decay of the spin-one particle into two or three spin-zero particles.
Some examples are (i) A —pn; p = nx, (ii)B —am; @ — 3w, (iii) K** —K* + .
The analysis makesg use of ratios of weighted averages over the angular digtri-
bution in both stages of decay and does not assume any particular dynamical
mechanism for the production process. Furthermore the analysis can be carried

out even if the produced boson is unpolarized.

A. Coordinate Systems

It is convenient for the description of the analysis presented here to
introduce the following coordinate systems. The resonance whose spin and

parity i1s to be analyzed is considered to be produced by the reaction
K+pl—>Q+p2

where K and p, are the incident‘boson and target particle momentum respec-
tively; Q@ is the momentum of the produped boson resonance and P, ig the sum
of the momenta of all other particles produced in the reaction. The resonance
then decays in two stages where the intermediste state is & resonance state
(p, ®or K*) of momentum g and & xn(K) of momentum t. The vector meson
(p, o, K*) eventually decays into 21, 3t or Krn according to its known

major decay channel. Thus we have

+q + (w decay)
Q 2 gtt; a4 - " =" 5
s +r (p, K, ¢ decay)

where 8 and r are the two momenta corresponding to the two bodies in the

decays of p and K* and A s 9z q3 are the momenta of the decay pions in
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the decay o — 3w. A unit reactor ﬁw normal to the plane of the three pions

in the w decay is useful to consider and is defined in the o rest frame as

8 = (2 xa)la x3a It is also convenient t > S vari
o = (3 X a, lq1 a|- s also convenie o express n, in a co -

ant normalized form as

B (ﬁ‘”)v = Cuvor 4 Lo L/

where GHVUT is the completely antisymmetric tensor of the fourth rank with

- -
€ = +1 and where n_is simply m |q, X q2| in the w rest frame and
o123 o ol

may be expressed invariantly as®

= mZ [mi - (ql-qz)a] + (q-ql)[(q-qz)(ql-qa) - (a-q;) mi]

2
o w
+ (a-q,) [ (q,-a,)(arq,) - (a-q)) mi]

A scalar of the form, for example, t-nm = euvc-r qp. tV G qu may be evaluated

in any coordinate system by the L X U determinant

Ay qy 2, R
+ t t t
x v z o)
(-8 ) =
qlx qu qlz qLO
qex 2y qzz quo
>
Note that the matrix a-*b = ag bo - g«b is used throughout this presentation for

invariant scalar products a-b.

The two coordinate systems of interest are referred to as the Q frame and
the g frame which are respectively the rest frame of the produced resonance,
i.e., the system where Q has only a fourth component and the rest system

of the vectcor meson, i.e., where q has only a fourth component. In the
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Q frame the =z axis is chosen as the beam directlion K and the x axis along
N the normal to the production plane; i.e., along the dirsction K x 51- The
vector meson of momentum E in the @ frame makes angles @ and @ with
respect to these axes as shown in Fig. 1. The direction of the vector E then
becomes the z' axis in the ¢ fest frame which is simply the opposite di-
rection to the vector f while the v axis is chosen to be normal to the

plane containing = aﬁd a and remains invariant in direction going from

the @ to the q system, i.e., y i1s along i x'a in the @Q system or
equivalently along a X K in the q system. A unit vector ﬁv along the

y axis may be expressed covariantly as

SLvgT Qp Xy 9
1

0

A--_
N, =

. - . ; . 2
where no is a normalizing factor which can be expressed invariantly as

N = mj[mgmi - (@)F+ (00 [(@K) (@) - (a:K) mg |

+ (Q-q) [(Q.K) (0.K) - m (q-Q)]

where'mq is the mass asgociated with momentum g which in this case refers
to the vector meson, p, w, K¥; mQ is the mass of the parent resonance boson
agsociated with momentum @, and m is the mass of the incident beam par-

ticle. In terms of the vectors thus defined, the relevant angles may be ex-

pressed in invariant form as

o - a:_g i (Q-q) (kK-Q) - (a.X) my (2.1)

|E1 ﬁa \/(Q.q)2 - mz 111(2l \/(Q.K)E--mé2 mi




_)
3N _ €uvor Q‘u 9, X Ple

sin 6 cos @ = ——— = = (2.2)
’qIINl N ‘/Lglil_ - m?
o ms a
where
W = of [nf 02 - (xp))%] + (,-0) [Ep:)(x0) - (v,-0) |
(2.2a)

+ () [ (o, Q)(p,K) - @K) u|

and m is the target mass, i.e., the mags asgociated with the momentum P, -
For p and K* decay, 6' the angle between the outgoing decay pion or

kaon and the =2' axis, can be expregsed asg
J

-
=5

1 mi (s+t) = (ars)(q-t)

IEH%l ) \[(s-q)2 - mi mi ‘V(‘t-q)‘2 - mz m;i

(2.3)

cos 9" =

where mS is the mass associated with the momentum s and mt the mass

associated with t. The azimuthal angle @' can be determined from the angle

between the outgoing pion or keon and the ¥y*' axis as

sin @' sin @' = 8+n/|3[n,

wor St o (2.4)

E)E

S-

no_v ( 2 m?
m

where o is as above.

The angle &' 1is defined between 0O and =n and therefore determined by
(2.3). with (2.4) however, we camnot distinguish between ' and n - of.
This ambiguity is harmless in the boson case as shown oy (2.13) and (2.14).
In the fermion cage ¢' (which is defined between 0O and 2n) must be de-

termined precisely.



In order to eliminate this ambiguity, the frame of reference defined by
> . . - - .
the vector q {z' axis) and K X g (y' axis) has to be completed by a vector

(E % q) x a (x' axis). A unit vector.r’g\V along the x' axis may be expressed

covariantly as

E _ Euch eabsy Qu Qa KB qV e
v

o

where

In that case one has

sin 6" cos ®' = - m (2.5)

where
st = mZ((xe0) m2 - (s (x-0) - @@ uf - (s ()
+(@((s-Q (&K - (6K (a-Q)) (2.6

”~
For w decay, the normal vector nw has a zeroc time component in the w

rest system, hence

(7 -t)
cos O' = X (2.7)
(@)™ _ 2
= T
"a



and

gin 8' sin @' = - n -

(Q-a) [(q-ql)(Ki-qe) ~ (q-qa)(K-ql)]

- (Q'ql)

*(kq) - (29,)(a0)]
v (ag) [of (0g) - (g)(am)] (2.8)

Expressing the relevant angles in invariant form allows the evaiuation
of these angles directly in terms of the measured laboratory values in the
most direct and unambiguous manner. Thus one may use (2.1) to (2.8) to ex-
press the angles in the @ and gq frames in terms of laboratory system
or c¢c.m. system values.

B. Types of Weighted Aversges

The angular distribution of the decay products of the vector meson may
be thought of as a function of four varisbles 6, @, 0', ®'. Thus we can
ask for the number of particles decaying into angles €' and @' for a
fixed value of 6 and ¢. This quantity is labeled I(9,9; 6,9'). It can
be expressed in terms of the vector meson density matrix p‘ik(6,$) where
i and k take on the values 1, 0, -1, referréd to the vector meson direc-

tion as the axis of quantization (the z' axis). Ae shown in the appendix,

I may be expressed as
*
o'oY = 1 1 1 1 1 1 1 2.
T(0,0:0%9") = % |6 [Py, (6,0) D} (97,8",0) Dy (9',6",0) (2.9)

where the D functions are the representation of the rotation group and

are defined as in Rose? as

Dilm (q)BJ7) = e-. djl (6) e



and where

QJE is & coupling constant for the vector meson decay. The
density matrix pik (6,9) can in turn be expressed in terms of the density

matrix Pt of the parent decaying boson resonance in the form

. %
I J J *
Pix = SEt Pet Dsj_ (9,8,0) Dy (9,6,0) Fi ke (2.10)

where J 1s the spin of the parent decaying boson and the Fi are the

strengths of the decay amplitudes into a given vector meson helicity state.
The values of 1 and k refer to the z' axis while s &and t refer to
the z axis. It can be shown that parity conservation in the decay of the

parent boson yields the relationt

F, = (-1)3 € F . (i = 1,0,-1) (2.11)

where ¢ 1is the relative parent boson vector-meson parity taking into account
the negative parity of the pseudo scalar meson in the decay §Q —>gq + t. From

equation (2.10) which relates p' to p one can derive the following useful

result
u/\ Epi L (9,8) sin® ¢ 4 )
- _ 5osti e+
=¢ (=1 - 2.12
@0 + o (2)(()%()
)9 )e e - }_ dﬂ
f[pu 9,0) + 0l _ (9,0)] (3 cos
The quantities p' , p' and p' wmay be determined from I (6,9,8',9')
1’ T -1-L 1-1
by the relations
3
t 1 s = T (8 ;er 1 { - 2 ,J 1 2.1
pn(qn,e)m_l_l(cpe) o oF f (6,9;6",¢') ] 3-5 cos® 0% | an' (2.13)
and
-3
p!_, (9,8) = ——= f I (6,9;6%,9') cos 2g' At (2.14)
7L L 1qbl



Equations (2.12), (2.13) and (2.14) can be used as a direct means for
determining the spin and pariiy of the decaying boson. Alsc from eguation
(2.11) we see that the helicity state i = 0 is allowed only when € = (—l)‘j

or that the helicity zero state is non vanishing for the choices l+,2',3+

etc., for the spin and parity of the decaying parent boson. Presence of
the helicity state zero allows for a term cos® @ which would be absent if
the helicity state zero was not allowed. For example, if the process under
study was the decay A —*pﬂ; p 7w then a cos®® allows for all three final
pions tobe collinear in the A rest frame. The absence of the helicity zero
state implies that the following weighted average should be found equal to

zZero

. 2
fI(ef,cp') (5 cos?er -1) ant = 0 = TLEL_ o' (6,9).

3 co

Since no symmetrization has been performed in the analysis presented here,

we note that the method does not apply to regions of the Dalitz plot where

there are overlapping vector meson bands.>



IIT. FERMION DECAYS

We now apply the procedures outlined in Section II to the case of fermion
two stage decays where the intermediate two particle state is assumed to be a
spin 3/2 and a spin O particle. The intermediate spin 3/2 particle subsequently
has a parity conserving decay into a spin 1/2 and a spin O particle. A complete
determination of both spin and parity requires knowledge of either the longi-
tudinal or transverse polarization state of the final spin l/@ particle. The
case when the intermediate particle has spin 1/2 rather than 3/2 has already
been treated by Byers and Fenster®

Unlike the boson case a complete determination of both the spin and parity
of the parent fermion resonance reguires it to have somé net pelarization re-
sulting from the production process.

The coordinate systems describing the two-stage fermion decay are similar
to the systemgused in the boson case except that the normal to the production
plane N replaces the beam direction K as the z axis (axis of quantization) in
the Q rest system. The reason for this difference is that most of the tests
for spin and parity require the parent resonance to be polarized and thus
one chooses the axis of gquantization as that axis alcong which the polarization
is maximum. - If parity is conserved in the process which produces the parent
resonance then the axis of maximum polarization is the normal to the produc-
tion plane.

With this choice for the z axis we proceed as_in the boson case and find

for the @ system angles

cos © —4_555_ = - Spvot QP 1, % Pt
= e = T N
|a )%l N (ﬁ_ﬂ)z cm (3-1)
° \mg a



where N_  is given as before by Eq. (2.2a)
- >
<K

sin 6 cos ¢ = 7 —7 = same as Egq. (2.1)
la]|%|

For the q system angles, cos 8' is given as before by Eg. (2.3). The

y! and x' axes are determined just as in the boson case except that the

v' axis is along (ﬁ x a) and the x' axis along (ﬁ x a)xa. Thus we find
sin ' gin @' = ﬁi {(s—K) [mé (q—pl) - (a-Q) (pl-Q)]
+ (aK) [(s:@) (p -@) - nf (s-p))
+ {(a-Q) (XK-Q) (sep ) - (s-Q) (X-Q) (q-pl)} (3.2)
sin 67 cos o' = I(s'm) - (TF) (@) (s7) - nf (s-Q) N, (3.3)
Nl
V(a-@)? - imZ\I(S-Q)Z-mi mz ©
where ‘ n'!
Fo = < o Ve )® - w2 wd Y@ )® - wf w2
Q K_p

(s-1) = SpvoTr p Sv Pg Pir
N s-Q\* p=!
Q mQ - mS
(q-N) = Civer Y v K5 Poo
2
N g..f_Q - m=
(o] mQ q

and N_ is given by Eg. (2.2a) and Né = N \’l - (q-NTE
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Just as for the boson case the various angles are expressed invariantly
which permits their evaluation in terms of coordinates measured in any frame.
In particular the laboratory system values of the varicus momenta cen be used

in the above expressions tc give directly the angles in the @ and q system.

Types of Weighted Averages

We proceed here in a manner similar to the boson case of Section II and
describe the parent resonance by a density matrix pst referred to fixed
axig defined by the production mechanism. The axis-of quantization can be

chosen as any fixed axis and,as mentioned above,in order to obtain the maxi-

mum polarization we choose the normal to the production plane ag the axis

of quantization in the Q systen.
The density matrix of the intermediate resonance p;k, where 1 and X

refer to an axis along the momentum of the resonance as quantization axis,

can be expressed in terms of pst precisely in the same manner as (2.10),

: i, J J¥
ol (8,9) = Z Pt Dot (9,6,0) Dy, (9,6,0) F, FX (3.4

w

where © and © are the polar and azimuthal angles of the intermediate

resonance in the parent resonance rest system and Jj is the spin of the

parent resonance. Perity conservation in the decay relates the strength of
the helicity amplitudes by the relation *

i, J-1/2
F_; =e(-1) Fy

where ¢ is the relative parity between the parent resonance and the inter-

medigte spin 3/2 particle. The intermediaste resonance is then assumed to

decay into a spin 1/2 and spin O particle. The quantities of interést for
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the decay spin 1/2 particle are its angular distributicn I (8,9; 68',9"),
ite longitudinal polarization 1 (6,0; 0',9') and Eqp {p,0; ©',8') the
component of transverse polarization in the (z',s) plane of Fig. 1. The
component of the transverse polarizaticn which is perpendicular to the (z',s)
plane does not depend on the diageonal elements of Pt and is not treated
here.

As shown in the Appendix, these quantities can be expressed in terms of

1
Pix BoF

1(0,9;6',0")= |6l 5 ol (6,0)
ik

%

a¥ o .
[Du (9',0',0) + D73 (0,8',0) +D°_1(e',6'0) DO ;(cp',e‘m] (3.6)
12 L_P 1 2 k"z

I&(&¢ﬁb@)=fﬂ2£ %k(&m

V[

i-

* *
[ng (9',6',0) D5y (97,0,0) - DS 1(9',9",0) Di_;(w',e',o)] (3.7)
2 2 2

2

' 1 S %
IPT (6:@59 ,P ) = eo(‘l) 2 IG

S* 1 1 S t f ' 5 ! 1
[Di% (9,8,0) D 1 (9',6%,0) + D 1 (9',8',0) D1 (9 _,s,o)] (3.8)

where S and eO are the spin and parity of the intermediate resonance and
]Gl2 is the coupling constant for the decay of the intermediate resonance
into & spin 1/2 and a spin zero particle. In the subsequent discussion we
will take the values 5 = 3/2 and eo = +1l, i.e., the resonance is a member
of the 3/27 decimet.

Ratios of weighted sverages of pik can be related to the spin and

parity of the parent resonance just as in the boson case. In particular
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we have

< sin 8 ZRe p

(o,

1 (8,9) >
2

- ()37 (23 + 1) (3.9)

T
PL_
2"
< cos 8 lp Q) -

\

o' (8,9)}>

AL
272

nH=

1
1
2

< sin®9 2Re ps 5 (8,9) >
32 _ (23+3)(24+1) (25-1) Q(_l)J‘%
3Th9-12; (3+1) (3.10)

< (5 cos9-3 cos 9)

p3 5 (6,0) -0l 5 (0,0)] >
=] 273
where the symbol < > stands for averaging over the angles 8 and . Both
the numerator and denominator of these weighted averages are proporticnal to
the parent iscbars net polarization.

The various density matrix elements of pik appearing in (3.9) and (3.10)
can be determined in two independent ways by suitable averages over the longi-
tudinal and transverse polarizations IpL and IpT. In terms of averages

over IpL we have

5

o1 2(6,9) - pl1 1 (6,9) = fcos o' (7 cos™0' -3) Ip, (6,9;6' .90  (3.11)

2z 272 Bﬂ]Gie

' ' > ) 2

P35 (6,0) - o L (6,9) = —— /cos 8' (15-7 cos™e') Ip, (6,9:6',9")dn’ (3.12)

2z -S—'g QLG-JT]G]

0 2

2Re p1 1 (6,9) = fcos 9* sin 8' (7 cos¥6'+1) Ip. (6,9;0',9')dn (3.13)
e”e 8xla|®

2Re p, 5 (6,9) = fcos 3¢ sin 6' Ip. (8,9;0%¢)d" (3.1%)
272 ﬂlGia
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Independently in terms of PT we have

-15¢
p1y (8,9) - o'y 3(6",0") = —2 fsin 6'(7 cos™6' - 1) Ip,(6,9;6',0')an’
2 2 272 321{,(}]2
t 5€o
P55 (6,0) - pls 5 (8,9) = —— fsin 6'(7 cos®e' - 5) Ip (8,p;6',9')an!
32 22 3zx|cl T
1 ) 56:O - 2
2Re ) p1_1 (e,cp)f = — fcos ¢' cos 8'(7 cos™8' - 3) Ip.(8,9;6',0')an'
272 hniGIa T
' =5 €
2Re | p, (e,CP)s — fcos 3 @' cos 6" Ip,(6,9;6',9')an'
-3 ﬂ’G'

The polarizations IpL and IPT can in turn be determined from the decay
asymnetry of the spin 1/2 baryon. They are respectively cbtained from the for-
ward backward asymmetry and the up-down asymmetry ss given below by Eq. (4.3)
and Eq. (4.4).

Even though the determination of such polarizations is considered as a
well known procedure, we give, for the sake of completeness, invarilant expres-
sions similar to the ones which we have introduced for the other decay angles

in Section IV.

IV. GUIDE FOR THE DETERMINATION OF 23 AND Ppe

To complete the presentation given here we include the necessary angles
for the determination of P and Pr -

The spin 1/2 baryon of momentum s which is present at the final stage of
the two step process is assumed to decay into a spin 1/2 and a spin zerc par-

ticle via a parity violating decay. BSuch a decay allows for the determination
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of and pT by suitable averages over the décay angular distribution.

Py,

For definiteness we assign momenta 8, and s2 to the decay products
of 8 with Sl being the momentum of the spin 1/2 particle. Thus the vari-
ous steps of the decay mey be characterized by the relations Q —aq + t;
Qs +r;s s + 5,

(We recall that in the s system the angular distribution is given by

the familiar equation I(6) =1 - al;[ cos q) where 5 is the polarization

>
of particle s eand 6  1is the angle between p and El.)

Just as in the previous coordinate systems we take the 2" axis in the

s system to be along the direction of the vector E which is along T in

the s system. The y" axis will be along X% and the x" axis along

(2 x t) X 8. For the longitudinal polarization we need cos 6" where 6"

is the angle between s and z" as shown in Fig. 1. While for the com-
ponent of transverse polarization in the (z",x") plane we need sin 6" cos @

where ©" dis the azimuthal angle around the z", with x" as the line of

i

¢'=0.

The angles may be expressed invariantly as

mi (sl~r) - (sl~s)(r-s)

2 2 2 N2 2 2
\/(sl-S) - o msl v (r-s) S m

cos 0"

r

sin 8" cos @" = ’ mi [mi (sl-t)-(sl-s)(s-t)]
~(@9)|(s0) 22 - (s 0) (o)

+ (q.s)[(sl.q)(s-t) - (Sl‘t)(Q'S)]} /AO
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2 (s -5)" 2 2 2]
A = = -m . Wy w - (s*q)
X !mi mi mi - i (s-9)% - mi (g+t)% - mi(s-t)z + 2(s-q)(t-q)(s-t)] (k.2)

In terms of these angles we find

1t 11 " 2
<I (6,9;8',9';6",¢") cos" > = - (-35) a Ip. (8,0;68,9) (%.3)
<1 (6,9;68',9';6",9") sin 8" cos @" > = - (%;) a IpT (8,9;6',9") (4. 14)

where I (6,9;6',9';6",9") 1is the angular distribution of the spin 1/2
particle of momentum 8. for fixed 6, and 6',0' and « is the usual
asymmetry parametef7

2Re B8*P

T [8]2 + |¢|®

V. TESTS FCR SPIN ONLY

In certaln cases the polarizaticn state of the final spin 1/2 baryon
may not be resdily determinable. For example, the two stage decay
N*(1688) - §¥(1230) + n,N*{1230) » Nx has a nucleon as the final spin 1/2
particle whose polarization is usually more difficult to measure as compared
to the A, Z or E. On the other hand the parent rescnance may be produced
in an unpolarized state as, for example, in the reaction =p — N¥(1688). In
either of these cases the method ocutlined in Section IIT could not be applied.
Nevertheless, it is still possible to get information on the spin state of
the parent isobar by considering moments of the decay distribution of the

intermediate spin 3/2 particle.
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Since the tests described below for this case do not depend on the parent
resonance being polarized, the z axis in the parent particles system may be
chosen as either the incident beam direction or the normsl to the production
plane (or any other direction which is convenient). In some cases it may
even be preferable to use the beam direction in which case the invariant ex-
pressions given in the beginning of Section IT are applicable..

Using the same notation as in Section IIT we refer to the angular distri-
bution of the spin 1/2 particle which results from the decay of the inter-
nediate spin 3/2 perticle as I (6,9;8!,9'}. The angles 6,9,8',9' are as
in Section II or III depending on the choice of 2z axis. The alignment
properties of the intermediate spin 3/2 particle are cobtained from the angu-

lar distribution by the equatiocns

3
a (6,9) = [pi 1(6,9) + D'_L_A(G;‘-P)] = - fI (6,9:6",0')(5 cos®e! -1)an’ (5.1)
1 2 2 2= hﬁ,Gl
and
" (0,0) + ! - ( 2
6,0) = g,0}) +p 8,9)| = L/hI 8,0;6,0')(7-1 o')an! .2
a_(8,0) [";g ) -g-.;.( o) WHE ?36",9") (1-15 cos®s') (5.2)

where G 1is a coupling constant for the second stage decay 3/2 —1/2 + 0
and p' refers to the density matrix elements of the intermediate spin 3/2
particle. Ratics of those combinaticns of density matrix elements, i.e.,
of al(e,w) and a (8,9) can be related to the spin J of the initial

3
parent resonance by the equations

f(z cos®s - 1) a_(6,9)40 i 1%2 Li(3 + 1) - 27

(5.3)
;[‘ (3 cos® - 1) al(e,m)dn IF%IE b3(3 + 1) - 3
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and

L/1(35 cos*® - 30 cos®o + 3) az(e,@) ipg’e 25(3 + 1) {j(j +1) - %?}+ 15)(83 o
k/ﬁ(35 cos®6 - 30 cos® + 3) al(G,m) ) ’F%IE 2j(3 + 1) {j(j +1) - % £+ %?

where Fg and F% are the helicity 3/2 and 1/2 coupling constants for the decay
of the parent resonance into the intermediate spin 3/2 particle. The ratio of
these coupling constants is in general unknown. Equation (5.3) may be applied
for j < 3/2 and Eq. (5.4) for j >5/2. For j =1/2 neither (5.3) nor (5.4)
are applicable but I (8,9;8',9') is uniform in 6 and ¢. Equations (5.3) and
(5.4) may be used to determine the spin in the following manner.
(1) Apply (5.3). If Jj = 3/2 then (5.3) is negative.
(ii) If (5.3) is positive then j must be greater than 3/2. In that case
apply the combination Eq. (5.3) + (3/5) Eq. (5.4). This combination
is negative for J = 5/2 and positive for J > 7/2.
(iii) If (ii) yields a positive number then apply (5.4). For 3§ = 7/2
(5.4) is negative and for J > 9/2 (5.4) is positive.
The positive negative tests (i), (ii) and (iii) can be used to determine
the spin of the parent resonance if its spin is less than 11/2. For spins 11/2
and greater, similar tests can be devised using higher powers of cos 8 as
test functions.
Although in general the ratio |Fg- la/iF% | is arbitrary if the dynamical
assumption is made that only the lowest orbital anguler momentum state {b con-
tributes in the decay of the parent resonance into the spin 3/2 particle, then

this ratio is determinable. Making this assumption yields that

—¢ 2443
/F§1E/IF%|2"C 25-1
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where C is equal to 3 (or 1/3) according to the 'ﬁo values Jj - 1/2
(or j - 3/2). The lowest orbital value {b depends on the parity e of

the parent isobar and is related to the parent spin J by the relations

%O =j-1/2 for € = (-1)34'212‘
L=3-32 for e=(1)

We conclude by remarking that a parity determination is possible from
a study of the angular distributions alcone, only with additional dynamical

agsumptions about the first stage decay which relate Fl to F3 .

2 2
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APFENDIX

This appendix is devoted to a derivation of the main results pre-
sented in Sections IT, IIT and IV

For the decay of a parent particle of spin j into two particles of
spin Sl and. 82 we need the relationship between a state | 6,0 A > de-
scribing the decay with angles 6 and ¢ din the rest system of the parent
particle and a proper angular momentum state | jm A > . The quantity A
is the helicity of the two particle system and its values correspond to the
eigenvalues of the component of the total angular momentum along the momentum
direction of the decaying system. The direction of particle Sl is taken
positive. The magnetic quantum number m refers to the eigenvalues of
along a fixed axis independent of the decay. The relationship between these

two states is obtained by the Wigner method. We express this relationship as
j*
jmA>=[D5 (¢, 6,0) |v,6,N > sin 6 a0 do (x-1)

The decay amplitude Tml from a pure state m +to & pure state A 1is then

given by

2%
T = Qi% (9,6,0) F, (N not summed) (x-2)

where FK is the coupling constant for the state A. Although the FA are

in general arbitrary, if the decay is parity conserving then FK A

. j~-8; -5
are related by the equation F , = LG (-1)ydzz F, where N, sn_s€, are

and. F_
the parities of particles 51’82 and the parent particle respectively.” If

the parent particle is not in a pure state but rather in a mixture of states

described by a density matrix qﬁf”then by the usual rule of quantum mechanics,
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(p' = TpT+) we can express the density matrix p; of the decay particles

k
by

' _ J* j 3¢ _
o1 (0,68) = Z o, D (9,6,0) D (9,0,0) F5 (%-3)
S,

In the examples treated here 82 is always zerc, so that pik refers
to the other decay particle of spin Sl. XFrom (X-1) we see that the
indices s end t for Pyt refer to a fixed axis while the indices
i and ¥ refer to the momentum direction of particle Sl.
If we use the Clebsch-Gordap geries for the product of the two
D-functions then (X-3) may be expressed as
( ns=i .0, o, * §
o1 (0,0) = ) o (T Iol5sts st o)y y(0,0,0,  (xeb)
8,b,8
where the Clebsch-Gordan coefficients C(Jj{ﬁ -st) and c(3id; -ik)

are in the notation of Rose.”

If we think of (X-h) as describing the parity conserving decay
of a boson resonance into a vector meson and a picon then the indices
i and k run over the values 1, O and -1, To derive Eq. (2.12) we

consider the densgity matrix elements p:l, p?

ard p!' . If these
11 1"

elements are expressed by (X-4) and weighted by Iﬁo and Dig, and then
averaged over the angles € and @ we have by use of the orthogonality

properties of the D-functions that the ratio

201 (o) P2 (90,00 a8 e(-1)Io(ses 1)
= (X"5)
f(p' +p! D2 (9,6,0)a0 c{3ges 1-1)
11 ~1~1 ©0
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The numeratcr and denominator are in effect both proporticnal to the same
function of p which cancels out in the ratio. Substituting the explicit
form for the D-functions given at the end of this Appendix and specifying
the Clebsch-Gordan coefficients yields immediately Eq. (2.12).

In order to complete the discussilon, the relations between the density
nmatrix elements and some directly measurable gquantities must 5e given. If
the vector meson decays into two spinless particles, both of the same
parity, then we can determine these elements from the angular distribution
of these final decay particles. Since the final particles have spin zero
in the vector meson rest system there is only one density matrix element
for this decay system which is simply the angular distribution. Thus
applying the same rule which led to (X—B) we Tind for the angular distri-

bution of the final spinless particles the expression

1{8,0;61,9') = |G

o}

*
s ; o1, (6,9) D% (61,67,0) DL, (0,0%,0)  (x-6)

The angles ©6' and @' are measured with respect to the z' axis as
shown on Fig. 1. Furthermore since there is only one helicity state for
the final spinless particle system there 1s only one final decay coupling
constant which is labeled by G_ in (X-6). If we expand (X-6) by the

Clebsch-Gordan series, then applying the crthogonality relations for

the D-functions yields that

5 o2 1 . = ( =
f[l -] DoO (CPS,Q )O) I(CPJQ’ CP"Q') a8 = 2« pll l~CP,9)+ p"'l'l(cp,e)] \GO|
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and substituting the values of the D-functions yields (2.13). Equation
(2.14) may be derived directly by multiplying {X-6)} by cos 2¢' and averag-
ing over §'.

For the case of Section III where the parent fermion decays into an
intermedlate spin 3/@ particle with subsequent décay of the spin 3[2 par-
ticle intc a spin l/? and spin zero particle we proceed just as in the
boson case. However, in the fermion case we have in addition to the
angular distribution of the final spin l/é particle 1te longitudinal and
transverse polarization distributions.

The density matrix for the intermediate spin 3/2 particle may be
expressed in terms of the parent fermion resonance density matrix Just as
in the boson case by (X-3) or (3.4) with the parity conservation condition
(3.5).

For the fermion case we think of (X-U4) as determining the spin 3/2
density matrix in which case the indices i and k run from - 3/2 to + 3/2
in integer steps.

Proceeding as in the boson case, we consider various values of 1 and k
and calculste with the use of the orthogonality of the D-functions the fol-

lowing averages

—

fpi 1 (8,9) D2 (9,8,0) a0 = -fp'l_l (6,9) D7, (9,0,0) dq
2 2 2

= |7g|FCara) cosns 3 3) x Z o (-1)°7% o(351; -ss) (x-7)
=3

s

- o o



[}

. s, 1
J iy @0) 53, 00,00 an = - (hxfs) e (0 [y |2 oo 2 B
2 2 X 2

1
S== ..
Ej (-1)7 % p__ €(jj1; -ss)
S

~fpls_3 (0,0) D, (9,0,0) aa
2.2

53 (9,8) D2 (9,6,0) an
2 2

-1
= (T = /7) (3435 -2 2) Z o (-1)°72 c(133; -ss)
2

)

F_|% c(333; 3/2 3/2)

A

J oy o) D2 (9,0,0) an = (bn/7) e(-1)372

o]

}j oSS(-l)S'g c(333; -ss)

S
Taking the ratios (X-7) to (X-8) and (X-10) and expressing the D-
functions as well as the Clebsch-Gordan coefficients explicitly
yields immediately Eqe. (3.9) and (3.10). This generalizes the re-
lation of Byers and Fenster.®

Before giving the relevant equations from which pik can be

determined we remark that there is an important distinction between

the boson and fermion cases. This difference is in the guantity

1
E: Pss (-)°72 ¢(343; -ss) for fermions
s

to which the numerator and denominator of (3.9) and (3.10) are pro-

portional and

}Z Pas (')s-l c(3iz; -ss) for bLosons
S
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t0 which the numerator and denominastor of (2.12) are proportional. Comparing

negative and positive values of the index s we ses that

s-%

0(353; s-8) (1) = - (3435 -ss) (-1)

S is half integer

and

c(332; s-8) (-1)7°7F = c(jj2; -ss) (-1)°7% j is integer

Thug for the fermion case the numerator and denominator of (3.9) and (3.10)
vanish if the parent resonance is unpolarized which is the reason for choos-
ing the normal to the production plane as the =z axis. On the other hand,
the numerator and denominator of (2.12) do not vanish if the boson rescnance
has no net polarization and therefore any choice of direction for the =z
axis is permissible.

Returning to the determination of pik for the fermion case we note that
the density matrix pgb of thé final spin %—particle can be expressed in

termes of pik the same manner as (X;B). Thus we have

*
3.
Piy (8,9,6',9") =Z Pl (9,9) D:?La (p',87,0) Déb (p*,61,0) F! Fl')* (x-11)

ik

The indices a and b take on the values %, -% and refer to the

helicity of the final spin % particle (z" of Fig. 1). In terms of

p;b the various properties of the final spin % particle can be deter-

mined in the usual manner.
The angular distribution

I 6 el ] . " + 1
( 29,0°,0 ) P D_%_% (X—lB)

]
N
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the longitudinal polarization distribution

Ip (0, 9;6',9) =p) , - p"
2

3703 (x-13)
the component of transverse polarization in the (z',s) plane
oy (0,9,6',0') = 0! | 4 p" (1)

1 .2
LT

(We know that (X-14) is in the (z',s) plane because it is given by
Tr < cx,p" > where the axis x' is shown cn Fig. 1. It is by
definition in the (z',s) plane.)

Since we have assumed that the spin 3/2 particle decay is parity
congserving there ia only one Fé and we have that

F', = -
_% EOF% EOG
where €5 is the parity of the intermediate spin 3/2 particle and Fi
2

has been labeled as G in the notation of Section III. Expanding IpL

by the Clebsch-Gordan series and applying the orthogonality relation

yields

[y, (0,0,00,01 )02 (01,07, 0)aw = (um/60) o] [306
22
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and

L/\IpL (8,p;6!,0) DZO (p',07,0) aq! = (3::/35)1(}]2

B(Di 1 p:
2 2

M

- Di3_3i} - (x-16)
z

These equations may be directly solved for (p{ , - P 1) and
55 2T

(b 5 - p'5_ ) and the result is given by (3.11) and (3.12). For
£z 575 '

the determination of p! we proceed as for (X-15) and (X-16) and

1.1
2 2
find

frp (0,9 8,9') D? (97,0°,0) o’ = (3n/35)lGle_
L 10

-

l\);u
fofp

2pt , - VEE p! + 2p? (x-17)
IR

k/ﬁIpL (6,9;6",9%) rio (9',6',0) dr = - (1/15)|G|2

1
2 2

N

[\/é_ pi 5t 8p! 1 +\[6—'p:__3__r} (x-18)
2= 2

These equations can then be solved for p:%lé.yielding (3.13).
Finally, (3.14%) may be derived directly from thé definition (X-13).

The determinaticn of the relevant density matrix elements p{k
by means of the transverse polarization as given by (3.15) to (3.18)
proceeds in a similar manner to the case of the longitudinal polari-
zation. The method is essentially the same as for IpL except that

for the off-diagonal terms the definition (X—ll) is more straightfor-

ward than using (X-11) expanded with the Clebsch-Gordan series.
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Rather than use other more oscillatory test functions to get new ratios
of the type given by (2.12), (3.9), and (3.10) as checks on the analysis,
we suggest that the analysis be repeated changing the direction cof the =z
axis with the reminder that for the fermion case the beam direction as =z
axis will yield vanishing numerator and denominator in (3.9) and (3.10).

Finally, we list the d functions which are useful for the analysis
of the decay of particles of spin less than or equal to 3. UNot all the
d functions are given. The missing ones are easily obtained using the

simple symmetry relations

J _ (_qyeem'
() = ("™, (8
J _ (. m-m' .3
d'm'm (5) - ( l) dm m' (B)
The relevant d are now listed below.
Spin %
dy  (B) = cos —2— dy 1 (B) = sing
2 2 2> B
Spin 1
_ sin B
dll (B) _1+ cgs B dol (B) = =
a () = LogosP (B) = cos B
1-1 - 2 00 -
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in 2
Spin 3

_ 1L+ cos B
d33(6)’_ 2

—

2 2

C}’J’
v

d (B) = J@ﬁl;:EEEE—E cos B

3.1 2
2 2
3ecos B -1 B
éL N (B} > os 3
2 2
Spin 2
[l +cos B .
6 ., o
dzo (B) = — sin® B
2
a (ﬁ)::(l.zﬁgﬂiii)
2-2
a (B) = - % sin B cos B
10

1+ B 3. B
dl 1 B)=-3 ZOS sin
22
l -cosB ., B
d;,géga) = - 5 sin 3
572
1+ 3cosB . B
dimi (B) = - 5 sin 3
22
L + cos B .
dél (B) = 5 sin B
1 cos B,
dz-l(B) = > sin B
a (B) = l_i_%EE_E (2 cos B - 1)
11
a (B) = 1;:_%25_2 (2 cos B + 1)
11

_ 3 cos® B -1
dOO (B) - 2
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Spin g-

_ [1t+cos BY? B _ l+cos By . B
d§ s (B) = <“——2 ) cos 3 d§ N (B) = -\/5_(7) sin 3
22 2 2 :
ds L (B) = _l):l_(_) sin® B cos 5 d5 1 (B) = - _lh_O sin® B sin g
22 z 2
_ l-cos B 8 _ _f{l+cos BV? B
s 2 (8) = ‘/5—(‘—2%2‘:05 2 s () = (T) o3
2 2 2 2
a (B) = 2508 B COSQB -3 s> a (B) = =5 cos B-2) s B sin B
2 2 2
l+5cos B . =2 B g Scos B+3 . 3B
d (B) = ==———=% sin® £ cos = d (B) = - ==————"<2 sin° =
R 2 2 2 2
N (6) = 2 cosZB-2 cos B-1 . B i () = - 2 cos®B+2 cos p-1. B
1r 2 2 1.1 2 2
2 2 2 =
Spin 3
3 )
d33 (B) = (E—%M) d32 (B) = - ig sin B (1 + cos B)~
N .. V5 . s
d31 (B) = —5~ sin B (1L + cos'B) dso (B) = - -~ sin” B
- 1 - .
a__. (B) = -——‘/;2 sin® B (1 - cos B) a__, (B) = - —‘/g— sin B (1 - cos B)%
_}.—cos{33 . _l+cosB‘2
d.3_3 (5) = (‘—'—_2“'_—> d22 (B) —('——2--“-——'—> (3 cOos 5 - 2)
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= - Y= sin B (3 cosEB+g cos B-1) dzo (B) = ![lj cos B sin® B

21 h\/é 2)\/2—

' 2
d (B) = 45_ sin B (3 cos®p-2 cos B-1) a_. (8) =<ﬂ_ﬁ_) (3 cos B + 2)

2-1 )4 Jg_ )

d (B) = E%—S—E (15 cos®p-10 cos B-1) dlo B) = - _@ sin B (5 cos® B-1)

- 3.
d . (B) = l_go._s_g (15 cos®B+10 cos B-1) a. (8) = 2 _cos S 3 cos B
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FIGURE | --TWO-STEP DECAY

(xyz) REFER TO THE PARENT RESONANCE REST SYSTEM.
(x'yz’) REFER TO THE INTERMEDIATE RESONANCE REST SYSTEM.
(x"y"z") IS APPLICABLE TO THE CASE WHERE THE FINAL
SPIN Y, PARTICLE DECAYS IN WHICH CASE IT REFERS
TO THE FINAL SPIN /2 PARTICLES REST SYSTEM .
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