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I. INTRODUCTION

The first-order optical effects of the entrance and exit field bound-
aries of a wedge-type magnetic spectrometer with external source and image

have been described by Cross and others.>’%23

In particular, it has been
shown that rotation of the boundary relative to a radius through the
center of curvature is equivalent to a thin stigmatic lens located at the
boundary, in the approximation of negligibly small azimuthal extent of
the fringing field.

Numerous investigatérsl’3’4’5 have extended these calculations to
include second-order effects in the magnetic midplane of a spectrometer
whose boundaries are curved as well as inclined, essentially by intro-
ducing geometric corrections to the first-order edge focusing. These
results have been summarized in terms of second-order expansion coeffi-
cients by Brown,6 who has developed also a second-order matrix formalism®
in which the expansion coefficients are particularly useful.

In the present report the second-order calculation of the magnetic
boundary is extended to include off-midplane rays. In this case, the
appearance of second derivatives in the field expansion introduces new
terms which would not be found in a purely geometric calculation.® The
calculation of Ikegami5 does not include these new terms and therefore
may be significantly incorrect insofar as off-midplane rays are concerned.

The present calculation is essentially an impulse approximation and
does not treat explicitly the finite extent of an actual fringing field.
However, in the case of the first-order edge focusing, it is well known
that the impulse approximation gives the dominant effect, and that semi-
empirical corrections to first order in the gap height give a very good
representation of the first-order coefficients. Thus it seems reasonable
that the impulse calculation may give a useful first approximation for

the second-order coefficients.

*

The writer is indebted to R. Belbeoch who, in a conversation in
August 1961, suzgested the implications of the second derivative terms
in the off-midplane field expansion.



IT. FORMULATION

Consider the system shown in Fig. 1, which represents a slight gener-
alization of the problem of entrance to (exit from) a wedge magnet with
curved field boundaries. The mean ray is supposed to have constant curv-
ature %— in Region I, to the left of the boundary BB, and constant

1
curvature L in Region II, to the right of the boundary; the field is

T
supposed to ie azimuthally constant along the mean ray in both Regions I
and II, but to vary discontinuously across a negligibly small region at
the boundary.

It is desired that the net effect of the boundary on a ray near the
mean ray be represented by a fictitious optical element of zero thickness,
located at the reference plane 2z = { = 0. This breaks down naturally
into three steps:

1. A transformation T(1|0) from the initial point (0) to point (1),
Jjust to the left of the boundary;

2. The transformation T(2|1) across the boundary, from point (1)
to point (2);

3. The transformation T(f|2) from point (2) back to the final
point (f), just to the right of the reference plane.

The net transformation across the fictitious element then is repre-

sented schematically by

T(£|0) = T(f|2)T(2[1)T(1]0)

A. TRANSFORMATION FROM REFERENCE PLANE TO BOUNDARY, IN REGION I
It is convenient to make the calculation in the rectangular (x, y, z)

system. The coordinate transformation (in Region I) is

£ = \/22 + (rl + x)g'— r,

A
{ = r arctan (——ji——)
1 I'1+X



REGION T

GENERAL RAY

REG/ION II

~

/ \ E-AXIS

Z—AX/S\

MEAN RAY

FIG. 1--Midplane geometry. The ¢ and ¢ coordinates
are measured, respectively, along and perpendicular
to the mean ray. The y axils, not shown, is normal
to (¢,&) and (z,x).
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Expansion to second order in small quantities gives

1 2
E =x + 5 C.z~ +
(1.v)
£ =2z - Clzx + .
where Cl = %— = curvature of mean ray in Region I.
b
The magnetic field in the midplane is assumed given in Region I by
BY(x,0,2) =B (x,2) =b (L+a t+p & + ) (2.8)
y 2D 1 2 1 1 1’: . * * N
or with the substitution of Eq. (1.b),
2 1 2
Bl(x,z) = bl(l tax+ B X +FCaz 4L ) (2.p)
With the help of Maxwell's Equations and the symmetry of the field
about the midplane, one finds the general relationships
[ 2 2 h 7
B =11 YE/ ° + ° %+ B (x,0,z) {
= -5 4‘——2 = | IAE) !
y 27\ > 17 |
l »;’ 82 62\ a
BZ =1y -—6—y i?_2+—'é')+ EB},(X,O,Z) (3)
\Ox z i
. 2 2 y !
B =|y - = v’ —é— + —é— + é—»B (x,0 z)é
= ) . . . P
* L 6 ax 22 N aX y J
which in the present case gives
( 2 1 2 1 2 ’
By = bl’wl +ax 4B X - (Bl + 3 Clal)y +5Caz” 4+ _!
BZ = b;[clalyz + o0 .. J (4)
Bx = bl!_ozly + Eley + .. ] J
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With 2z as the independent variable, the equations of motion may be

written

=y'B
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where P = scalar momentum expressed as magnetic rigidity (Bp); the

prime (') indicates differentiation by z (e.g., x' = dx , ete.); and

dz
2
u ='\/l +x'% 4 y'

Expansion of Eg. (5) to second-order (considering x, x', y, y' 1o be

small) and substitution of Eq. (4) for the fields gives
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The condition that the mean ray must have curvature Cl is expressed by

where PO is the magnetic rigidity of the mean ray and is related to

P by

P=(14+ e)Po (8)

where € also is assumed small. (It will, however, be convenient to keep
P in parametric form and not expand in powers of € until the final step
of the transformation.)

The solution of Eg. (6) is readily found as a Taylor expansion in z,



and is given to second order by

x =x_ +x'z ~ %-C A }
ol o] b
P
x' =x' -2Cz-COx2z+...
P h 110
(9)
= + ! .
Yy =V¥q Vo2 +
| B L
y' =y, + Clalyoz + . )

The equation of the boundary BB (Fig. 1) is given by

R cos T —”\/R2 - (x + R sin 7)°

N
fl

2
x tan T + % Kx sec3 T4+ o« . . (10)

t

where

K =

i

= curvature of boundary.

Simultaneous solution of Egs. (9) and (10) gives z the abscissa

at the point of intersection of the ray and the boundary:
- 1 3 3 2 2
z, = x_ tan 7 + 2(K sec” T - C_ tan T)XO +x x! tan” T+ . L. (11)

Substitution of Eq. (11) in Eq. (9) now yields T(1]0), the first part

of the desired transformation:

X =X - ‘% C tan2 T]xz + [£an Tix x' + .
1 0 L 1 J o i o 0
'p
x!' = - ;—9 C tan T|{x + x!
1 ; 1 o o
(P
X = _ t
1 3 3 2 2 \
- {E’CI(K sec” T - C, tan” T + 20 tan T)]XO - lcl tan f]xoxé +...5  (12)
= + ita T !
yl yo L n ' Xoyo + .
"= y! o+ l— a .
Y, =¥ lCl N tan f}xoyo + ..., J




Another quantity which will be requiréd is the slope of the boundary at

the intersection, defined by
tan 7. = ($2 = tan T + Kx_ sec” T 4 . . . . (13)
o \%/pp *

(It turns out that tan T, 1is needed only to first order.)

It is also of some interest to calculate the path-length difference

between the general ray and the mean ray. This is given in the present

case (note that the mean ray has zero path length to the boundary) by

Z

1
8&1 = Sﬂb + ‘/ﬂ udz

where &L

o~ 1s the initial value. Calculation to second order gives

6{1 = 8{b ozt (14)
with =z given by Eq. (11).

B. TRANSFORMATION ACROSS THE BOUNDARY

This part of the transformation is most readily carried out in a
rotated coordinate system (t, vy, w) as illustrated in Fig. 2.

The usefulness of this system arises from the field derivatives which
appear in the expansion [Eq. (3)1]; the first derivatives in the t-direction
are essentially finite while the variation in the w-direction is discon-
tinuous.

The coordinate transformation (with w treated as the independent

variable) is
t = (x - xl) cos T+ (z - zl) sin 1,
w=-(x- xl) sin T+ (z - z) cos T,

dt tan Tl + x!

t= aw 1 - x' tan Tl

1
dy y' sec T,

y = aw 1 - x' tan Tl

-7 -



x-AXIS

T~ AXIS

=

3-AXIS

B w-AXIS

FIG. 2--Rotated coordinate system for boundary transformation
calculation. The t and w axes are respectively
tangent and normal to the boundary at the point of
intersection; y 1s unchanged.



Note that %, the slope of the t-coordinate, may not be assumed small
in this system because of the zero order term tan T It will be con-

venient to introduce the notation
t = tl + 7

where %l is the initial value; ﬁl =n. = 0; and ﬁ may hopefully be

1
treated as small.
Use of the analogues of Egs. (3) and (5) (which, of course, are in-

variant in form) gives

i
1
v}
+
-
d

(A
. OB
) g;§+at—2B+ywa+.

a (y\_ .93 _.0B
Paw@—ya—t A=
U= \/l +t5 4y

where the midplane field, B, is [see Eq. (2.b)]

_ 2 1 2 . .
B, = bl(l +ox 4 pxT 4300z 4 ) (in Region I)

2 . .
= b2(l +ox + BX 4 . ) (in Region II)

N
Q
NQ
[N
+

Second~-order expansion and use of the identities

OB dB OB

—_— = — -t —

ow  dw ot

\
d°B a4 OB d OB %R
. o2
— === -t ==+t —
ow aw Ow dw ot Jt

(16)

(17)

(19)



in Eq. (17) gives

.2 1 .2)3/2 R
a_ 1323 2 _ oty _pg.1d [2 OB
aw |1 -2y 2, 2|~ 2 3w Sw
+ tl P
3*B
1: .2 4 0B . 1 .
-2t st 2<; + t1>y S_E + .00 L (20)
t
. i/2
a ; tony 1+t [ tyd‘B+(l+%2)yaBJ
- - .2 = - ——
dw 14 tl p aw St | + e

In order to integrate Eq. (20), it is assumed that the midplane field
may be represented by
2
B =B, + (B - Bl) S(w - & Kt%) (21)
where Bl and B2 are defined by Eq. (18), and s(w) 1is essentially
the unit step function. DNote that Eq. (21) expresses the fact that the
midplane field is B, to the left of the boundary and B, to the right

of the boundary, since the equation of the boundary in the (t, y, w)

system is

- 10 -



Equation (20) may now be integrated by successive approximations,

with the help of Eq. (21). After the second approximation one obtains

(l + )3/2

2
- (B2 - Bl)yl + .

il

5

]
o

-

1/2
2 .2
tl(i + tl)

=t - - (B, - B)yy,

P

3/2

((1 T 1 t

+ +

= 1) 71 2 ( * OB OB :

T2y, 2 (B2 - Bl) + .[ - t) - (5; -t
[

Terms which contain first and second integrals of B, 3%’ etc.,
have been dropped after the integration, because it is assumed that B

and its tangential first derivatives are everywhere finite and that the

OB

-a_t-l

thickness of the boundary is negllglbly small. However, one notices that

there is a term containing 5— (in the expression for ﬁ); this means
that the assumption of negligible boundary thickness must be used with
caution, since %% (and consequently 1) would become infinite at the
boundary if B were really discontinuous, and the series expansion of
U in powers of ﬁ would not be valid. This difficulty is avoided by

assuming that the boundary actually has a "finite but small' thickness,

- 11 -




e.g., of the same order of smallness as x and Y, so that gg and ﬁ
remain finite everywhere (the troublesome term is in any event only of
the order y®). Final dropping of terms which depend on details of boun-
dary structure, as is usually done in the ordinary calculation of first-
order edge focusing, may still give a useful first approximation for the
effect of real fringe fields.

It is necessary to evaluate the partial derivative terms which ocecur

in Eq. (22). With the help of Eq. (15), it is readily shown that

g% - %l %% = - 2bQ sin Tl + .

(where ba = b, in Region I, etc.).
In order to transform back to the original (x, y, z) coordinate system,
one uses Eq. (15) to transform the initial conditions (xl, xi, Yoo yi) to
£
(5, &
(te’ I A ya) to (Xz, X5 Vo y;); and Eq. (13) to express tan T,

s Voo &l); the inverse of Eq. (15) to transform the final values

in terms of tan v. The result of this straightforward but tedious cal-

culation gives T(2/1), the second part of the desired transformation:

‘L _ 2 2
-2(02 Cl) sec {}yl + .

X, = %, +
] 2 -
X} = X+ &%(C2 - Cl) tan® T - (CZOE - Clal) tan nyi
i 2
- L(C2 - Cl) tan T(ylyi + .. .. F
' |
Yo =V, * " -
2 1 % (‘3)
,PO ]
L, — - 1
yh = - (C2 Cl) tan lel +y!

3
- _K(Cz - Cl) sec” T + (02a2 - Clal) tan flxlyl

— h

- - 2 |
(C2 Cl) sec” Ty 4 .




The substitutions [Eq. (7))

o’
"

CP

and

have been made.

The path-length difference is found readily; it is

W

2 2 2
st =l + /ﬁ daw M1+t +y

2 1
o}

To the same approximation as Egs. (22), this gives

.2\-1/2

fl

6{1 + [%(C

-C) tan 1 sec” T]yz + .
h 1 1

2

C. TRANSFORMATION FROM BOUNDARY BACK TO REFERENCE PLANE, IN REGION IT

The trajectory of the ray 1s again found by a Taylor's series solution

of the differential equations. By analogy with Eq. (9),

2

x = x, + xi(z - 22) - % Cg(z - z2) + .
s
- | — - - -
x' = x} . Cg(z Ze) Czaéxz(z z,) + .
Yy =y, +yilz - z,) + ..
| R 4 -
y'i=yh s Oy (2 - z,) +

- 13 -




The final conditions (xf, X4 Yoo y%) are given by Eq. (25) by set-

ting z = 0. Equation (10) gives z, in terms of X5

1 2 3
= T+ 5 ec T + .
zZ, X, tan 5 Kx2 s

With these substitutions Eq. (25) yields T(f|2), the third part of the

desired transformation:
Lot = = ata Tlx x! + A
xf = XE -2 C, tan 7 x2 n X .

2

rfi
i
|
ol
(@

' i 3 2
- tan %]xg +x) 4—[2 KCE sec” T + Czoé tan %]x + .

—

— - 1
Vs Ltan f]x2y2 + .

<
H
l

1 [
yf =Y, [Caoé tan TJX2y2 + .

e

The path-length difference in this case is

which when evaluated to second order gives

6£f =8t - 2, + .
where =z, is given by Eq. (26).

D. EQUIVALENT TRANSFORMATION AT THE REFERENCE PLANE 2z = O
By successive substitution of Eqs. (23) and(12) in (27), the final

transformation

T(£{0) = T(£l2)T(2]1)T(1]0)

- 14 -
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is

formed. The result is

I

3
of- )
e
Py
Q
V]
t
Q
N
[0
[6)]
e
a
1
fr

3 ~
Cl(CE - Cl) tan” T + (u2aé -

2 1
+ T(C2 - Cl) tan zjox - [(CZ - Cl) tan TJXO€

1

3 \ 2 T 2
- Cl) sec Tj'yo - [(02 - Cl) tan %Jy v+ .

[}
[N
=
—~
Q

0o O

3 2
- K(02 - Cl) sec” T - Cl(Ce- Cl) tan T sec T + 2(02a2

— —

2 1
- L(C - Cl) tan® Tlx y! +[(C2 - Cl) tan T’yoe

-t

2

[oxgye]

A
- {(C2 - Cl) sec® Tlx'y o+ .
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- C.) tan Tltan T - (Ca
L i 2 2

\

=
/

3 2

Ca ) tan 75 x

11 )
J

-C.a ) tan 7

11

plal) tan %]xdyo

>~ (29)




where, by way of summary, the notation is

Cl = fL = curvature of mean ray to the left of the boundary;
1
02 = g; = curvature of mean ray to the right of the boundary;

K = % = curvature of the boundary;

T = angle of rotation of the boundary relative to a normal to
the mean ray (See Fig. 1 for sign convention of
Ty Too Too and K);

P-P

0 o .
€ = —— = momentum deviation relative to the mean ray.

P
o

Similarly, substitution of Egs. (26), (24), (14), and (11) in (28) yields
8ﬂf = Sﬁb oo (30)

i.e., there is no net first- or second-order path-length difference in

the present approximation.

ITIT. APPLICATIONS

By way of illustration, the general expressions [Eq. (29)] will now
be applied to the examples of entrance to and exit from a wedge magnet

with curved boundaries.

Example 1: Magnet Entrance

In this case, the definitions are (see Fig. 3)

C. =0 C =1
1 2
1
T = Tl K = R
1
(12:—1’1
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MEAN RAY

FIG. 3--Magnet entrance.

_MEA/V RAY
/ > ——

FIG. L4--Magnet exit.

- 17 -



*
The transformation then becomes (in the notation of Streib7)

() =G [x1) = (vlyg) = (' fyl) = 2

i — 1 - -
(x lxo) = tan T, (v }yo) = - tan T,
2 _ _ 1 2 _
(xh& = - 5 tan” T, (yh&b) tan T,
: 3
sec”T
2 2
(ijo) = % sec Tl (y'ixoyo) = - + 2n tan 7t
R
- sec” T, ;
(X’IXO) = %'——;——— - n tan T, (y"xoyé) = - tan® 7
1
! vy 2 tl _ 2
(x lXoXo) = tan Tl (y 'Xoyo) = - sec T,
1 _ ! _
(x }xoe) = - tan T (y !yoe) = ten 1,
- sec” T
(x' yo) =(n+2+tan” 7)) tan T - 3
R
1
1 '___
(x !yoyo) = - tan T

(All coefficients not listed are zero.)

Example 2: Magnet Exit

The sign conventions for R and 1 1in the case of magnet exit, as

*

shown in Fig. 4, are different from the entrance case.” In this case,

the definitions are

c. =1, C.=0, T == 1, , K = d = -n

L
R2 ’ 1

(xixo), ete.

0]
o
il

*¥%
The usual convention is that 11 1is positive for positive focusing

in y, and that R 1is positive if the field boundary is convex outward.
(See, e.g., Ref. 6.)
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Substitution in Eq. (29) gives the following non-zero coefficients:

(dx ) = (x'x) = (v]y)) = &vl) =1
1 — 1 .
(x ‘xo) = tan T, (y ‘yo) = - tan T
2 _ 1 2 = 2
(XIXO) =5 tan T2 (ylxoyo) = - tan 12
3
sec” T
(xlyﬁ) = - % sec? T (e xoyo) = - . 2 4+ (2n + sec® Tz)tan T
2
3
sec” T
ot 2 -1 2 _ 1.2
(x']xo) a-R \? + 5 tan r2> tan 71
2
' 'y o 2
(y ‘xoyo) = tan 12
2 1 1 _ 2
(x'|xox5) = - tan® T, (y ‘xoyo) = sec® T
(x'lxoe) =~ tan T (y'iyoe) = tan T
3
sec T
4 — = 2 . _1; 2
(x [yi) = (n - = tan T2> tan 1, - 3
R
2
] 1 - 2
(x !yoyo) = tan T,

The first-order coefficients given in the preceding examples are
equivalent to the usual edge-focusing effect given in numerous refer-
ences.»2,3,% The midplane second-order coefficients — (x’xi), (x'lxi),
(x'!xox'), and (x'lxoe) — are equivalent to the results summarized by
Brown® and in part by others.1:3:* 0Of the second-order terms, the (x‘yi),
(x',yi), and (x'lyoyé) arise entirely from the dynamic effect of the
second-order terms in the equation of motion; the (y]xoyo), (y']xoyo),
(y'|yoe), and (y’lxéyo), in addition to the midplane terms, are implicit
in the first-order theory through geometric corrections or expansion of

momentum dependent terms.
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May 1L, 1964

To: Recipients of SLAC-24, "First and Second Order Beam Optics

of a Curved, Inclined Magnetic Field Boundary in the Impulse

Approximation.”
From;: R. H. Helm
Subject: Brratum SLAC-2L

The second of Equations (23), p. 12, should read

i(c, - cl)g tan’r - (Co, - C.a )tan 7 - £ K(C, - Cl>S€C3T}yf
- [(02 - Cl)tanET] Yyl 4

The omission occurred only in Eg. (23) and does not affect any of the

subsequent results of the paper.

R. H. Helm



