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SUMMARY

From the condition of dynamical equilibrium between particles and
fields (accelerating and space-charge fields) the maximum current which
can be accelerated using optical frequenciles has been calculated. This
current maximum is proportional to the product of the wavelength A and
the accelerating field E <Imax = %E>, The average current for this type
of optical particle accelerator 1s about 1077 times the average current
in microwave accelerators. However, the product of the average current
and the accelerator length is approximately equal for the two types of
accelerators. Because of the high field strength in these optical accel-
erators, the equivalent dc confinement force on the particles can be
significant. This dc force in gradient fields is proportional to
V}E(r)2g This force may be used for confinement of a particle beam or
even for medium-energy acceleration of the beam. Experiments to measure

and utilize this effect are proposed.
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I. INTRODUCTION

Since the electrical field strength from laser radiation may be of
the order of 10° V/m it is very inviting to try to use this tremendous

172 The proposed systems may

field strength for particle acceleration.
be feasible in theory but the technical difficulties are very serious and
even theoretical problems concerning the final design like breakdown
effects at optical frequencies, space charge effects, etc., are not known
in detail.

In this report we would like to investigate the effect of the space
charge and beam confinement prchblem in a medium energy accelerator. Be-
cause at fully relativistic energies (T >> mc2) there is no space charge
problem, we would like to restrict our discussion to the energy region
where the kinetic energy of the accelerated particle is of the same order
of magnitude as or lower than its rest energy. For electron accelerators
this energy region is a few Mev but for a proton linac it is in the Bev

region.

II. SPACE CHARGE LIMIT

In the prcposed laser accelerators the diameter of the accelerated
beam is of the order of magnitude of the wavelength of the emitted light
(107% cm).

First we would like to consicer the motion of a bunch of particles

with total charge Q in an accelerating field given by:

—~—
N
= i

E}—ﬁ 0, 0, Eo(r) sin o/t - ——}

e

“*Koichi Shimoda, "Proposal for an electron accelerator using an
optical maser," Applied Optics 1 (Wo. 1): Januvary 1962.

2 A. Lohman, IBM Internal Report, San Jose, California.



It is convenient to introduce a moving axis, moving with the velocity,
v of the traveling wave. If z' ig the displacement of the center of

the bunch with respect to these moving axes, we then have

z' = 2z - v t
o)

The motion equation, without the space charge term is

dp . VA
EE—QEO sin wit —'-\f—
o)
which will transform to
dp fazt e
Friai QE San;;_, = - QE olﬂ(@o/

where mO is the equilibrium phase.

In order to take into account the space charge forces which act on
bunched particles in the linear accelerator, we have to calculate the
magnitude of the diverging field (ED) acting on a particle at the surface

of the bunch. Now if we assume that the bunch has an angular length of

¢ then the motion equation along the axis for particle (1) is: (See Fig. 1)

dp , . 7

1 . / 1 ,
—L = - e |E_ sin (9 + /20 + B
at (O Ve ’ D
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FIG. 1--Space charge forces acting on particles in a bunch.



and for particle (2):

dp

' ]
—m— = e - ~h - i
o e gEO sin (@ m/a, E |

i
i -

To calculate ED we first would like to obtain an expression for the
scalar potential for two moving point charges. Then the interaction be-
tween a particle on the surface of the bunch and the remaining charge in
the bunch can be evaluated by integrating over the volume of the bunch.

The Lagrangian for two charges moving with the velocity v can be written as

e .
v2 A v
L =-me®\[1 « — - eld ~ 2~

\,1
E o

where ¢ and A; the scalar and vector potentials established by (Q - e),

are the retarded potentials which are given by

[ _ '
oo [eli)ar, Fol [ )y
r C r

Here the guantities p and J should be evaluated at the retarded times
t' =t - r/c. However these potential expressions can be expanded in

series3 as

pdvV. 1 9 1 o
‘D = f—*—- - —— pdv + '—“—: '—"“: f rpdV
r c ot 2c” ot©

31,. Landau and E. Lifshitz, The Classical Theory of Fields (trans.
M. Hamermesh), Addison-Wesley Press, Cumbridge, Massachusetts, 19513
pp. 160-185. .



But L/ﬂpdV = Q@ 1is the total charge at the bunch which is constant inde-
pendent of time. Therefore the second term in the expression for ¢ 1is

zero, so0 that

pdV 1 0%
o = f—-—+————-—~ rodv
T 202 3%

For a point charge the potential expressions can be written in the

following simple form

Q Q o°r
O = — 4 ——— ——

r 2c? dt?
R >
A

er

is

— -\ o

ve eQ ve o+ v - L

L=-m“\/1 -— - —11-
c? r 2c®

From this the effective potential is
1 — —-r2
1 o\1 -2 | v+ |t
V = J[J[JF av
T

bye
o

After a straightforward but tedious integration (see Appendix), one can
obtain the expressions for the longitudinal and transverse field for
different bunch shapes and for constant and normal charge distribution

in the bunch.



For example, for a spherical bunch shape with a uniform charge dis-

tribution, the longitudinal and the transverse fields at the surface

Q@ 1 ove F {Q Ve
E. = — 1l - = Ll +
L Mneo R® 5¢% R®

Qa 1 yv2\) F (Q v2)
E = m—— l - - — == .._.T..__%—
T hne_ R 5 ¢2 R2

are:

Using these results one can express the condition required for keeping

the surface electrons in the bunch. The accelerations for the two elec-

trons have to be the same because otherwise one of them would leave the

bunch. Therefore

dp dp
—i o2
dt dt

*
is the condition for stability. Or one may write that, using ED

E sin(@o + m/2) + B = E sin {@O - @/2) - E

¢} L

or

E, (sin @_ cos ®/2 + cos ¢ sin ®/2) + E

)

os ¢_ sin ¢/2 + cos @_ sin @/2}'+ 2E,

it
g3l

b
E <31n ¢, cos ®/2 - cos ¢, sin @/P> - B
f
°\

,X_
Similarly, for a given charge distribution one can write the
type of conditions for stability.
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Then

B,

Eo cos wo sin @/2

Because usually @/2 << x, one may write that

E ¢

B, = -—— cos

L5

Using the expressions for the transported

the "half bunch angle"

ol
O

nl-a
[
E

CpO

charge per wavelength and for

one gets
IA 1 2ve R n
=Pt -z =k - cos @
he c RZ 50 2 v/ch
and
2nfe c”
~ E R® cos
! ove © ’ $O
ML - = ﬁ)
be”
From this, using R = kA, one gets
2 &
N Qﬂ‘GOCL . _
I< k-ﬁox = f(v,k)EoA

2
(l - EVG) v
BCC_
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For an electron accelerator using an optical maser the maximum field

intensity at the center is given by4

90
=

&
=
it

When the radial mode number N is large, the field intensity at r = O

becomes large. For example, for N = 10%, (1 - R) = 5 x 107> and

P/S = 10 Kw/cmz. The rms electric field is 1.2 x 10° eV per meter.
The wavelengths in these accelerators are the order of magnitude of
A=~ 10"°m Then AE =~ 10 ° x 107 = 10° eV. For microwave accelerators

A=~ 107 meter and E_ =~ 107 eV/m; then (AE) =107t x 107 = 10°

microwave
and.

10° )
~ ~ 1077
10°

Ilaser

I.
microwave

The duty cycle (pulse length x repetition rate) can be larger in laser
accelerators than in microwave linacs because the pulse length in laser
accelerators is of the order of magnitude of 1 msec compared to 1-10 psec
in linacs. The repetition rate can be as high as 10 pulses per second in
laser accelerators and 100 pps in linacs. Then the average current ratio

is

ave

(Ilinac) linac 1072
ave

If one congiders that the length of a laser accelerator is about l/lOO of
the length of a microwave accelerator, it is evident that at constant
energies the product of the average current and the length is about the
same. This fact demonstrates the usefulness of laser accelerator research,

especially for low current use.

*Shimoda, op.cit.



III. CONFINEMENT

Until now we have considered only one {ield component which travels
with the electrons at the same velocity as that of the equilibrium par-
ticle. The effect of the radial acceleration in the waveguide structure
was neglected completely. Now we would like to consider the effect of
all radial components which in microwave linacs produce only alternating
deflections of small amplitude but in laser accelerators may contribute
to the beam dynamics significantly. Specifically, we would like to dis-
cuss the motion of an electron which is performing simple harmonic motion
in an alternating electric field which has a gradient normal to the beam
direction. Because the net outward force on the electron (from the
centerline of the beam) is different from the net inward force, one might
expect that the electrons perform a simple harmonic motion with the fre-
quency of the field variation. Superimposed on this simple harmonic
motion is the particle's average acceleration toward the point of minimum

field. The equivalent dc force acting on the particle is

which is very important, for example, in the case of a plasma dbreakdown
where rf confinement is a factor.>

The motion of a charged particle in the moving coordinate system can
be described by the following Hamiltonian when the radiation reaction can

be neglected.6

4’

H=cY(p - eA)® + (moc)21 = Ve®p® - 2ep Ac®r e® ARc® 4+ mi c

SE. S. Weibel, Symposium on Magnetohydrodynamics, "The plasma in a
magnetic field," (ed. R. Landshoff), Stanford University Press, Stanford,

California, 1958.

6W.K.H. Panofsky and M. Phillips, Classical Electricity and Magnetism,
Addison-Wesley Publishing Company, Cambridge, Massachusetts, 19555 p. 357.
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Where E = éﬁ&il

H

Eo(r) sin wt, then

ot
. aA(I‘) o o 6A2 o
b - %E o - 2jm =g © + e’ g ¢
S— o : _
T T J>capd -2 jgm A(r)c® + Pe? A%(r) + m:c4
E (r) 5 (r)
- . 2 6 o - ) o2 2 6 ( o] 2
. 2jm ¢ 55 (\ -~ sin wt +e"ct 5 ~—ZET-sin wt,
\/02p2 - 2 5c®m A(r) + eg.Kéb(r) c? + mi et
E_(r) ) <E (r) )
_ 29 [o X 2 20 [Zo 1 - cos 2wt
2 jmc 5T ( n sin whb| + ¢c“ e 57 e —

2‘/c2p2 - 2jm A(r)c® + c%e® A%(r) + mS c*

Taking the time average of this expression one gets

2
e 8 EZ( p=4 2 2
— r) c e 0o -e< 9
5r _ . @2 Or o :_% — E2 (r)= . [%i (rﬁjll _ B2
by m? dr © hmom? dr
or in the non-relativistic case
e 3 5
T 1
b =-% — E_ (r)
r mou? dar ©

Now one can show that the radiation reaction is negligible compared

to the acting external force.

The motion equation of the electron, with the radiation term, can be

written as

-

w
F + —
ext =

il
=
o]

bre ¢
0

where F_ . = eEo(r) sin wh
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In first approximation

¢ = <L (r) cos wt
m o

and the equation of motion is

3

e~ w
mr = eEo(r) sin wt + —————— Eo(r) cos wt
6re c-m
o
But because
7 e an(r)
Fot eEO(r)

is small, using v = 3 X 10'% sec ! and %% = 10*% V/cm®, one can neglect

the radiation term in the motion equation. The time averaging process is
justified because the damping and the frequency change are small.

This equivalent dc force in gradient fields, like the radial modes
in a linac, can be used for beam confinement if the field increases with
increasing r. (Alternatively, the equivalent dc force might be useful
for beam acceleration when the particle beam is traveling perpendicular
to the light beam where the field decreases with increasing r.) Just to
estimate the equivalent field in laser accelerators corresponding to this

force, one can make an order of magnitude calculation:

e d 2
E = - — E
e b2 dr O
1.6 x 10°*° d

= EE

L x 0.9 x 1079 x 4x® x 9 x 10%* dr

da_ ES

_ =17
= 9.45 x 1077 — EZ
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Now when “he beam thickness is 10 * m and the field is 10° V/m then
EDC = 1 Mev/m which is an order of magnitude less than the acceleration
field achievable in microwave lirnacs. However, if the field strength can

be increased by a Tacter of 10, then EDC would be of the order of

100 Mev/m, But in this energy region the beam is relativistic and EDC

y
has ©0 be corrected by a factor cf V1 - 62 which reduces the accelerating
field considerably. Using multiple light beams and a drift section as
shown in Fig. 2, one might use this gradient field for beam acceleration

n the non-relativistic energy region. One other possible application is

[6)]

to release electrons Ifrom photo-cathodes by modulated laser beams’ and to

inject them into microwave tubes tc demodulate the transmitted signal.
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FIG. 2--Use of multiple light beams and a qrift section for beam
acceleration in the non-relativistic energy region.
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APPENDIX

Calculation of the Pield Quantities

The potential of the charge distribution in the bunch can be expanded
very conveniently in rectangular coordinates. Terminating the expansion
at second order presents the potential in a form readily applicable to a
generalized distribution.

The vector notation convention employed is shown below:

T
bs

il

transpose of X

xTy = yTx = scalar product of x and y

T T
xy© = yx

Hi

direct product of x and y

The potential represented by

o1 p 1 2
V*Wﬂr L-—
e} 2c

can be restated more precisely as

-
V e T

dv

v(e) = = M _e(x) (. ~évTv o1 (VT[g T v

hﬁeo le - x| c? 2c® IE - x|®
> T T
-2 /1_.;:1& jj] p(x) gy . 1L Mp(x)v(g—x)(g-x)vdv
lmeo c? Ig - x| 8ﬂC2€O lg - x’z

(1)

-1h .



With the conventions that

qup p (x) av = q
LUXEMﬂW=R

any distribution may be represented to second order with the coordinate
axes chosen so that R is diagonal.

To calculate the integral, two expansions are required for ix! < {gl,

First,
+
1 T T T
= -2 A
I§ - (g 13 E'x + XX
) -3
-5 T T
SRR Y
EE EE
-1 T 2
T} 2 E'x 1xX 3 3 X)
BRI T S G
| T e ° (£T)7
T 2 Tx 1 §§T T
:(gg) l+-§————%”—T—(I-3—"——~) XX +
£ ¢ £ € £ ¢
Ix )2
where the remaining terms are of the order of TET
Likewise
1 T -3/2 Elx s 1| eel T
—_— = (§ §) 1+35%F -5 < (I -5 S5 )° XxXT o+ .
le - x|? e 2t £t

Now substituting these expansions in the integral (1) for the potential



exprescsion and leaving out the higher order terms, one obtains the

foliowing Tor the potential

T‘\ [ T )
V:——__——_@Lrp—-}: (l-%‘vz l—% % I—B——-—Eg ,R
bre (£78)2 1| c‘} £TE | eg
T { T\ T T
-1 \:;j—,%— ‘1—651% R+%;— 1-—3-,% 1-55%
® ge oy g £ ®ee £e

As an example of the application of this expression let

/’v g%
v =( 0 R = =
\~O c?
o / X\\ " /l
| | T
o e o

£
i
.
"2, lx
3
vee |
]
ft
H

e /5N
T \
- b i . N
T - oo — H i
- ) m =1 - :
g 1/
\. -
- A
/=iy 5
T |
- - 3 .
L-2 T -
!
o \ ]‘
N\ -
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Then, with these, the "longitudinal" potential is

) \
P

_ Q v 1 ) . .
vl | B B R CORCRSY
anox i cof | 2x° vj
/ \
- \ / \
~Ha, i1 \
- ._]'_. VT (l = \§ 3
2V vl o -2 (e)(ee® - v?) | v
2¢ X< C/ / 9x2
b=/ (0] [ - ~_| P
.8 J-l’-;\+i: (512(1,--\5)—13’“(1-————?\[@%
hncox e x© \. = o2 )
0 0 a®
For ¢ = Ng et _ 1, R = 'S
0 ele 0 b2

the "transverse' potential is

2 2 2
A \Jl-%—‘—’g -—l—[ae (1+L> e L.)]
hneoy } c 2y2 oc? 202

If the charge distribution is uniform, then for sphere bunch a =b = %

the average of ra, <r®> e 2 R® where R 1is the radius of the
charge cloud. Then
b= | 2
bye x e X c”
o)
= Q ._’1_‘_ _}_ - Y____ 1 - ._l_ _}i\
bxe X o 7 x2}
o}
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and
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From these, the field quantities are:

and the fields at the surface x =y = R are:

/ 2
g, - 2 l_(l__%x.>
bye R® \ S 2
1 2
ET=Q ""(1“‘:%1{‘;"
hre R2 \ < c” /

Similarly one can calculate the fields in the x and y directions
for any charge configuration. For a sphere, an ellipscid and a cylinder
(supposing normal and uniform charge distribution in the bunch), the

values for a and b are as shown in Fig. A.l.

- 18 -

=




_61:_

Distribution

Sphere
a b = Ro Normal
R
0 :
a=>b=— Uniform
)
Ellipsoid
a=0Q b =B Normal
o B .
a == b =z Uniform
> 5
Cylindrical
/ a=4 b=R Normal
0
l
|
\ a=%24 b=%R Uniform
N 3 o
f—
FIG. A.l--Values of a and b for a sphere, an ellipsoid, and a cylinder.




