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I. INTRODUCTION

A. OBJECT AND SCOFPE

In a previous report® the optical properties of possible focusing
systems suitable for the two-mile accelerator were discussed. Ideal con-
ditions, specifically the absence of misalignments and other perturbing
effects, were assumed.

The present report will discuss some of these perturbing effects,
namely various kinds of misalignments and errors in the strengths and
spacing of the quadrupoles. Numerical examples will be given only for
a particular focusing system (See Section B below) but the general formu-
lation will be suitable for other types of systems.

It will be convenient to treat each of the various perturbations in-
dependently, as if all others were absent. This is reasonable because
the equations of motion are essentially linear so that superposition ap-

plies.

B. RELEVANT PROPERTIES CF THE FOCUSING SYSTEM
Figure 1-1 illustrates the type of focusing system which will be as-

sumed in numerical examples.

e
¥ z-axis

igure 1-1--System of thin-lens, uniformly spaced quadrupoles.
(See text for explanation. )



As in Ref. 1, it will be convenient to define a quadrupole strength,

Q, and a spacing parameter, {3 as follows:

J

- [OB
Q. EJ ) 4z (1-1)
J ox /.
quad J
1 EL,
L. =—10g 14 (1-2)
JE y,
J
OB
where | —L| is the gradient in the j-th lens;
ox

E is the accelerating field parameter (assumed constant);
Lj is the spacing between Qj and. Qj+15
7j is the relativistic energy of the electrons.
( Unless otherwise noted, it will be assumed that lengths are measured in
cm; that B, E, and Q in units of mc2/e cm which for electrons is
equivalent to 1703 gauss or 0.511 Mv/cm; and vy in units of rest
mass = me® = 0.511 Mev.)
The system in Fig. 1-1 is periodic as a function of the number of

quadrupole pairs if

ﬁ
Qs =a,(-1)
and J=1,2,3....
{n =4 = constant
J 1

The second conditicon may be seen from Eq. (1-2) to imply an ex-

ponential increase in spacing as a function of j, if the acceleration

E is constant. The situation of constant spacing (L. =1L ) may be
1
treated, as in Ref. 1, as an adiabatic deviation from strict periodicity

provided EL <<y (e. g., essentially constant energy).



Some relevant conclusions of Ref. 1 are:
1) In order to take full advantage of the phase-space admittance of
*
the end-station transport system it would be desirable to have the

strength, Q, in the range
0.6 < gl Z 2. (1000 to 4000 gauss)

2) A low energy cut-off is defined by

(laft), . =2

* X%
which is equivalent to

lalL
¥ X — (1-3)
D

3) The condition for minimum number of quadrupoles per unit length

(for a given admittance) is
it =V5 - 1~ 1.20

This may be used to define a practical low-energy band limit of

. 1ojn
> — (1-%)
1.2k

7'm:'m

It will be assumed, additionally, that the fixed quadrupole spacing

is 40 feet, corresponding to the maximum rigid length of accelerator

*
This is particularly important in the case of the positron beam.

x* %
The approximation 1 BL L

L == log (L +—|= -
E S Y

will usually apply because EL << y for the design assumed here.



support beam. Then if the system is to transport multiple beams (without
pulsing the quadrupoles), Eq. (1-4) defines a maximum quadrupole strength
in terms of the minimum beam energy. Taking Ymin = 2 x 10° (1 Bev) and

L = 40 ft =~ 1200 cm,

_ l.2k-2-10°
in <— =2 mcg/e/cm
1200

~ 3.4 kilogauss

It is also of some interest to calculate the trajectory wavelength

defined by

where for a system of equally spaced quadrupoles®

cos 8 =1 - % Qa2

6 ~ql
(This approximation is within 10% even for Q€ = 1.24.) Thus
bl bsy

Ay~ — (1-5)

e g

For 1 Bev and Q = 2 (3.4 kilogauss);

For 10 Bev and Q = 2;



C. MODEL FOR MISALIGNMENT CALCULATIONS

The support structure of the machine presumably will consist of
rigid segments each of nominal 4O-foot length, each supported at one end
and each pair linked together in such a way that angular bends, but no
relative latersl displacements, may occur at the joints. The accelerator
and quadrupoles will be prealigned on these L40-foot segments as accurate-
ly as possible--probably with a precision on the order of 0.010 inches.

Figure 1-2 illustrates the sort of misalignments associated with

the LO-foot rigid support period.

Quadrupole Optic Axis
/‘ P P

[

Accelerator Axis

"Mean Reference
X X Axis"

Arbitrary (straight) line

— e L0 ——p—— L0 —— e L0 — e

Figure 1-2--Illustrating alignment errors as-
sociated with the L4O-foot support
period. (See text for explanation.)



The "Mean Reference Axis" (hereafter referred to as MRA) in Fig. 1-2
is supposed to be a smooth curve which represents the local average posi-
tion of the accelerator axis. The precise meaning of "local" in this
definition depends on the particular problem at hand; usually it will
be sufficient to say that a Fourier analysis of the MRA contains essential-
ly no terms of wavelength shorter than the longest trajectory wavelengths
which may be expected in the region under consideration. From a practical
point of view, the MRA should be essentially straight over the length of
a few sectors.

The MRA will be a useful reference axis provided that the transverse
misalignments (relative to the MRA) may be assumed small compared to the
accelerator aperture.

The following types of errors will be considered in some detail:

1) Displacements of the accelerator between the 40O-foot support
points.

2) Short-range misaligmments; in particular, random displacements
of the support points from the MRA.

3} Intermediate- and long-range misalignments;

a) Random displacements of the support system which are correlat-
ed over a finite range.

b) Isolated discontinuities such as bends or displaced regions.
c) Constant curvature.

4) Rotational errors, in which the quadrupoles have small random
rotations about the reference axis.*

5) Brrors and periodic variations in the quadrupole strengths and

spacing.

¥Rotational errorz in which the quadrupoles are rotated about a
transverse axis have no first-order effect in the thin-lens approximation
and consequently will be considered negligible.

-6 -



D. SUMMARY AND CONCLUSIONS

The results of succeeding sections may be summarized briefly here:*

l) Random, independent misalignments of the gquadrupole optic axes
relative to the mean reference axlis should be not greater than about
0.009 inch rms in order to operate with not more than two (magnetic
dipole) steering periods per sector. (Sect. II.B.)

2) The alignment of the quadrupole optic axes should be stable, to
within about 0.001 inch rms relative to the mean reference axis, against
vibrations and other short-term fluctuations. (Sect. II.B.)

3) For random angular bends of short or intermediate correlation
range (i. e., strong positive correlations between the angular bends of

adjacent quadrupcles, but negligible correlation at distances on the or-

der of orbit wavelengths), the summation over all bends, ‘l@f + @2 + e,
should not be greater than about 107> radian. (sect. III.A.) Some impli-
cations of observed site movements are discussed, and it is estimated that
some sort of realigmment might be necessary at intervals shorter than one
month.

4) For isolated "large" bends the sum '@ll + lw + ... should

not exceed =~ 107° radian. (Sect. III.B.)

-

5) If the misalignment has a component of constant curvature, the
maximum misalignment (relative to a chord through the ends of the machine)
should not exceed =~ 1 cm. (Sect. III.C.)

6) In terms of a harmonic analysis of the transverse misalignments,
(sect. IV.), the most important error components are in the wavelength
bands of > 400 feet (coherent with orbit oscillations), and in the vicinity
of 80 feet (the v = * 1 components); and the latter probably couple more
strongly with the beam deflection.

7) Rendom axial rotations of the guadrupoles (Sect. V.) should not ex-

ceed about 0.2 degrees rms.

*It should be emphasized that these results apply only to the particu-
lar focusing system (40-foot spacing of equal strength cuadrupoles) on
which the numerical examples are based.



8) Random errors in quadrupole strength of about 0.3% may be toler-
ated. (Sect. VI.A.)
9) Random errors in longitudinal position of the quadrupoles of
~ 1.9 inches may be tolerated. (Sect. VI.A.)
10) A Scctor "superperiod" associated with an extra length of ~ 10 feet
every 320 feet would introduce a stopband of about 6% relative width, at a
beam energy of (typically) about 1.6 Bev. (Sect. VI.B.)

Because of the extremely difficult tolerances — in particular on the
short-range alignment — imposed by the quadrupole system at 40-foot spac-
ing, it appears desirable to investigate other types of focusing systems.
A design consisting of closely grouped multiplets (doublets or triplets)
at Sector intervals appears promising; although the power requirement could
be much greater, the short-range alignment problem should be much easier.
Studies of such systems will be reported in the near future.

It would also be extremely desirable to undertake a computer study of
the machine focusing problems. The computer program should be devised in
such a way that it could handle non-random perturbations (e. g., observed
misalignments from site surveys) and also be capable of playing games of

steering and realignment.



IT. SHORT-RANGE MISALIGNMENTS

A. DISPLACEMENTS BETWEEN SUPPORT POINTS

The accelerator sections between the support points will be initially
aligned to high precision on the rigid support beams. However, it may
happen that later realignments of the main support system will unbalance
the waveguilde and water supply leads, resulting in small elastic deflec-
tions.®

This situation has been considered in a previous report,3 where it
was recommended that such deflections should not exceed 0.020 inch, in
order to keep the geometric reduction of the effective radial aperture
to approximately 5%. The dynamic effect, arising from the accelerating

field in the displaced sections being not exactly parallel to the mean

axls, was shown to be negligible.

B. MISALIGNMENTS ASSOCIATED WITH THE L0-FOOT SUPPORT PERIOD

1l. General Formulation

In general one might associate an angular bend, @j’ and a quadrupole
displacement, ej, with the j-th support point. Each of these effects is

equivalent to the injection of a transverse momentum;

5p. = - Q.e. + 7.0, 2-1
P ey 79, (2-1)

where, as in Section I.2, @ 1s a measure of quadrupole strength and vy
is the relativistic energy (longitudinal momentum) of the electron. One
may consider two alternate points of view in calculating the electron
motions (see Fig. 1-2):

a) Motions relative to Mean Reference Axis. In this case we take



b) Motions relative to accelerator axis. 1In this case

where, relative to some arbitrary straight line,

XQ,j is the coordinate of the gquadrupole axis;
Xé,j is the coordinate of the accelerator axis;
Xj is the coordinate of the MRA; and
L is the spacing (40 feet, nominal).

In either case the transformation of the electron coordinates (x,p)
over one section of a periodic focusing system now will have the general

form of a linear inhomogeneous transformation;

X =a_ +a X +a p
n n 11 n-1 12 n-1

(2-2a)

p.=b +a x +a D
n n 21 D% 22 N-3

where (aij) is the transformation for the unperturbed system and an, bn
are the perturbations depending on the accidental misalignments, but
independent of the coordinates x and p.

In matrix form, the transformation is

. = + -
£, =0 Ax. (2-2p)
where
X
- n
x —_—
n
pn
a,
. n
un =
b
n

- 10 -



and

An important property of the transformation An is that it has unit
determinant; |[A | =a a -a a =1.
on 11 22 12 21
The general solution for the transformation over n cascaded sections

is

x, =X +& (2-3)

where Xn is a solution of the homogeneous eguation (corresponding to

a, = 0) and is given by

X
n

P
xn

>
Il

= A(n]o)x, (2-3a)

£g) which is a particular solution of the Inhomogeneous equation, i1s given

by

il
i

3 &
Eﬁ n }J A(nlm)qm (2-3b)

m=i

and A(nlm) is the transformation from the end of the m-th section to
the end of the n-th section, in the homogeneous system.

A(nlm) has the properties

A *(njm) = A(m|n) (2-ka)
A(n|m)  =AA(n - 1|m) (2-bb)
AGolm) = A(alm - LA (2-he)

- 11 -



A(n}m) = AﬁAnﬂ; .. -Am+l (if n>m (2-h4)
_ a1 A"1 -1 . ~
A(n|m) =AY AL AL (if n < m) (2-be)

and of course

A(n‘n) = | =

A(njn - 1) =& _

The particular solution 61’1 is of some interest in the present case
since it represents the perturbation of the trajectories by the misalignments.

a. Periodic system. In the event that An_ is independent of n,

the homogeneous transformation is given by?*’®

%(a - a ) a
11 22 12
A(nlm) = {cos (n - m6 +

21

o
i
Nl
—
o
,...
},.J
H
o
N
\ni/

where 6 1is a parameter defined by
cos 6 = %(a + a )
11 22

In such a system it is possible to define a (complex) eigenvector, W

such that®

eie B ei(n—m)e (2-6)

- 12 -



A suitable representation of v for the present calculations is

which may be shown to satisfy Egs. (2-6) and (2-5) by direct substitution.

Equation (2-7) may be represented as a vector contraction,
)
n n

where

then the equivalent of Eq. (2-3b) turns out to be
n
v = Z o ei(n-m)e
n m

m=j

Note that the displacement of the beam by the perturbat ions is

(2-7a)

(2-9)

(2-10)



b. Adiabatic deviation from periodicity. If the basic matrices An

vary slowly as a function of n, the amplitude of the homogeneous solutions

6
a
n sin 6

For the present discussion it will be a sufficiently good approximation

to take

varies as

1
a . 2 .
W ~ _—1.;2__. _S_E.rl_._e. W elun (2_11)
n . e}
sin 6 a
n 12 o
where
n
b = }, 6 (2-12)
-4
mT_'l

and 'wn:=QurVXn> as before, except that now QJn is based on the local
values of the parameters and consequently is a slowly varying function
of n.

In the same approximation the trajectory perturbation corresponding

to Eq. (2-10) is

L n L
a 2 sin 6\ .
v = 12 }Z e (Ln }nb (2-13)
. m
sin 6 a
n m=1 12 m
The adiabatic invariant function,
T. [sin e I ' 2
L= W
a n
12 n
p— - a X2 4 (a - a |XP_ +a p? (2-1%)
sin Gn 21 11 20 X 12 xf



is useful because the maximum amplitudes of Xn and Pxn in the vicinity

of n are given by5

2 & 2 )
(X)) oax = ;:gg Y - ¥l
? (2-15)
R I
sin 6 )

If the adiabatic invariant is written in the form

s {0y ) -0 G e e 07

(2-1ka)

then it may be seen that the characteristic admittance function® is the
same as in the unperturbed case, only displaced by the particular solution

€ ; see Fig. 2-1.

FIG. 2-1. Displacement of the characteristic admittance function in
perturbed system.

- 15 -



Thus the effect of the perturbation is the reduction of the effective

aperture of the system by ,glmax
2. Independent Random Errors

If the errors are random and uncorrelated, then we may write

nm n mn
X

ococ:lozlaa
nm n mn

where the superior bar denotes expectation value. In this case the

expectation value of the trajectory displacement is

-

}: <S;n I;;I; + Re

If (= n@ if the parameters are constant) is fairly large, the

~

;iéai[gn““mj}> (2-16)

i

oscillatory term in Eq. (2-16) can make only a small contribution in the

summation; hence a fair estimate of gﬁ is given by

sin 6 2
a ’ (2-16a)

a
2 . 1|__a2
£~

2
sin 9/ a
n m=y 12 m

An alternative estimate of the perturbation of the trajectory amplitude
is given in terms of the adiabatic invariant function. The perturbation in

the m-th focusing section may be considered as inJjecting an increment of

transverse phase space given by



or

E)Tm ~ ['_S._J:E___Q_ lam'e
\\ 12 /m

Since the perturbations am have been assumed to be random and independent,

the total increment of Y after n sections is given by the summation,

n N n
oL =) el =) |22 oo (2-17)
m= m= 12 /m

and the expected amplitude of the trajectory perturbation is, by Eq. (2-15),

———— - n 6i ———
k12 =~ ia_\ ; = } ‘oz 2 (2-18)

in}max . J
sin O/ 4= a
in M=1 12 Im

Comparing Egs. (2-16a) and (2-18) it will be noticed that

This simply means that the particles have accumulated transverse momentum
as well as displacement, and have not quite reached their maximum expected
amplitude at the n-th reference plane.

3. System of Thin-Lens Equally-Spaced Quadrupoles

Now consider the quadrupole system mentioned in Section I.B. Let
the basic focusing period be represented by Fig. 2-2.
The €'s and ©'s are the linear and angular misalignments, respectively.
The quadrupole strength Q 1is as defined in Section I.B. To the
approximation that variation in energy over one section may be ignored, the

spacing parameter 1is



m

Reference Axis
(Accelerator or MRA)

FIG. 2-2. Basic, focusing section with misalignment errors. (See

text.
The transformation from m - 1 to

//’1 oY /1 N 72 o\ /1
o (
I\

\-@ 170 1/\g 1/ 0

m is

£ ’\\

| =
1/ -2t 1 -l - ng?/‘?‘,//

1+ @b 20(1 +~%;Q€,)\

(2-19)

(@ and { are assumed tacitly to be functions of m.) The perturbation

vector 1is

‘o /1 o\/1 %\‘\ /0 \
[ i
a, = I+ )( - (2-20)
}JZm"/ \\—Q’ 1, \9 t le/ [b2m + (1 - Q{)/)blm]
where
blm - Qelm * 7chlm
(2-20a)

bam = Ry n%on

- 18 -
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It follows from Eq. (2—19) that the operator w (Eq. 2-8) is

o

1V 21 1+ 3el\2 /3
w=| ——
0/ Q{1 - 3ql 1

from which the complex perturbation vector o, is given by

1
2i [1 + 3L\ 2
a =(w ,am) = /{),blm - —c—g— :it? [(l - %Q‘P/)bm + bzm] (2-21)

If the errors are random and independent, then application of Eq. (2-16a)

gives, after considerable algebra,

— N iof n b2
gi ~ |- fe— z n (2-22)
a V1i- &t L e Voo i @A)

where

b2 =b2 =D

2
im 2m m

4. Example: Random Linear Misalignment

Suppose that the accelerator support points have independent random
displacements from a straight line. (See Fig. 2-3.) This is the sort of
situation which might exist after an optical or mechnical alignment of
the machine. It would apply also to any short region over which one can
define an MRA having negligible curvature. It will be assumed 1) that
the errors Elm’ eZm have an rms expectation value which is small compared
to the accelerator aperture and 2) that the quadrupoles are accurately
prealigned with respect to the accelerator axis so that the zigzag line
in Fig. 2-3 may be considered as coinciding with the quadrupole optic

axes.

- 19 -



. Accelerator Axis

.

- .N_L,,
ey

Reference Axis

4—~.~__

FIG. 2-3. Random linear misalignments

Since the reference axis is straight (at least locally), the @'s

in BEg. (2-20a) are zero, and

P79
bzm - Q “om
Assuming that the errors are everywhere eguivalent (i.e., eim = €2m = gé),
we obtain from Eq. (2-22)
L R S S - Q
!“;rgl ~ ef | — v’f '—,:*—::——:'—1} (2-23)
! )
a Va-det) Lo Vi-de2t?

If Q@ and L are constant (constant energy, constant gquadrupole strength

and spacing)) the result is

o bn €2

2 F e - €

S (2-232)
- 5QL

It Q and L are constant but the energy increcases linearly, then the

s 1 rp— an integre -ak i FORNE = + B z_,
sum may be approximated by an integral (taking - L/7m? Y 75 E n

- 20 -



and 2L =~ dz);

N
m
[\Y]
=
i
i

{
=
=
b
i
ofr
IR
3 =i
\i%
o
-
<
~ !
g
t o
|
N
=
Ay}

]
|
d

22 [1 414 e N
n : 1.2p2" 1 205
~ - Y \/l Q £ Y \/l - Q £
E L 1 - el " nooe °

or, assuming Ta = T enBL > > 757

(2-23p)

Since Eq. (2-23b) agrees with Eq. (2-23a) to first order in @Qf,
Eq.(2-23a) will be a good estimate whether the beam is accelerated or coasting.
We now may relate a guadrupole alignment tolerance to maximum allowable

beam displacement as follows:

l f"‘“'"""‘l*"" 1

E /1 - 3ol

<e> < | ’mag;_} - (2-2ka)
Vin

where <e> is the rms quadrupole alignment tolerance relative to the

MRA and |g‘maX is the maximum allowable beam displacement. Equation (2-24)
may be interpreted as relating the alignment tolerance to the maximum

number of focusing periods which may be allowed before magnetic steering

is required to compensate for the beam deflection. A reasonable value of

of. (for the lowest energy beam in a multiple-beam situation) is (see

Section I.B)

EQ!{’/ 2z 1.2k

- 2] -



Table 2.1 summarizes the tolerance vs number of quadrupoles for this

casa.

TABLE 2.1

Short-range quadrupole alignment tolerance ve
number of gquadrupoles per steering period for
Q| = 1.24 and |glmax = 0.1 cm = 0.0k inch.

Number of Quadrupoles Alignment Tolerance
o 0.009 inch
8 0.006
16 0.00k
80 0.002
240 0.001
U SO .

Several interpretive remarks apply to these results:

a) 1In order to operate with not more than one or two steering periods
per sector, it is necessary to impose an alignment precision of 0.006 to
0.009 inch on the guadrupoles relative to a local mean reference axis.

b) This does not necessarily imply physical alignment to this
tolerance by optical or mechanical means. The position of the quadrupole
optic axes may in principle be adjusted to sufficient precision by using
electron beam-deflection information* and dipole correcting magnets or
dipole biasing of the quadrupoles.

c) Given an initially satisfactory alignment of the quadrupoles, the
above numbers (0.006 to 0.009 inch) indicate the amount of random, short-
range misalignment due to earth movements, etc., which might be tolerated
(i.e., corrected by steering alone) before short-range realignment is
necessary.

d) The last two entries in Table 2.1, for 80 and 240 quadrupole spacings
define the sort of stability required on the quadrupole positions. For
example, random vibrations of the quadrupoles must not exceed 0.001 to 0.002

inch in amplitude.

*
Methods of achieving the required alignment precision are outside the
scope of the present discussion.

- 20 -



III. INTERMEDIATE-AND LONG-RANGE MISALIGNMENTS

A. RANDOM MISALIGNMENTS WITH CORRELATION

Misalignments arising from such eflfects as earth movements and settle-
ment will in general not be completely independent but will be correlated
over a finite range. It is convenient to assume that we may define a

correlation function F (k) such that

amcx; = ’oamlz F (m - k) (3-1)

where am is as defined previously. The correlation period AN is

defined by

o = Z F (k) (3-2)

-

The expectation value of the amplitude of the orbit perturbation now is

given by
fadrec = Jral
njmax n
nn 3 L
a [ sin H\Z sin 02 ¥ i(a )
~ = ' J 1 -
= 12 l a a e Lk um
. ’ | m k
sin 6 a | A /
n m=1 k= 12 / 12 /.,
m K
On the assumption that the parameters vary only slightly in the range
over which correlations are important, this becomes
n i n
- e sin 6} =\ . i(k - m)e
v ~ a F(m - k)e m
n . d )
s o a :



Finally, if both n and the orbit period En/e are fTairly large compared
to AN, the last sum in the equation may be approximated by Eq. (3-2),

, a i sin 8
- 12 z S )
V%~ a2 AN (3-3)
l i sin 6 ! a ! ml
n m=1i 12 -

Example. Random bends in the arcelerator agxis: Suppose that mis-

giving

e

alignments have set in because of earth movements, etc. If we take the
accelerator axis as the reference axis and assume that quadrupole mis-

alignments are negligible, then,

i
~=
<

im m im
2m m’ 2m
If the correlation period is fairly long compared to the quadrupole

spacing, so that the machine axis has essentially constant curvature

over a short range, then

and Eq. (2-21) gives

[
(O)
—_——
'—.4
i
)

Lot
~ v

2 42 (3-4)

2
m

Because of the 72 dependence, the perturbation is stronger at high

energy; hence the most interesting result will be the high energy limit

- 24 .



(b << 1).

In this case substitution of Eg. (3-4) in Eq. (3-3) gives

(assuming Q, ©%, and AN constant),

I 6 97 AN ¢
ng S T ), 7‘; (3-5)
Q .

In the case of constant acceleration, the sum may be approximated by

an integral as was done in Eq. (2-23-b), giving

where

It should be recalled that
axis in the above calculation.

The guantity [ AN may be
quantity in the following way:

misalignments as illustrated in

are interpreted as the net angular bends over the regions

n, ..., where n is the

-n
2 1 o

8_(9—'2@ ""\ 3\\
r —— LT Vo
3 ELQ2 /
8 8% 7>
~ ‘3‘*Q—2*°* = AN (3-52)
L
7 = 2nlL

£  is measured relative to the accelerator
related to an experimentally observable
Suppose we have a partial survey of the

Fig. 3-1. b ® )

-

The quantities ¢
n ton, n to
o 171

number of focusing periods from nO ton , etc.
1
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(

o 'surveyed points

Fig. 3-1--Illustrating '"random walk'" of angular misalignments. (See text
for explanation.

Then

n n
= + =~
0= ) [t %)),
m=n +1 m=n +1
o} 0

where the ©®'s as defined previously are the angular bends at the support

points. The mean square expectation value of @l is

nl n
6‘5 ] 1&-2 —cp—é > F(m - k)
1 m /,

n +1 n +1

e} 0

nl

2
i
2|



Hence

b2+ 02+ ...~ Un 07 AN (3-6)

where the sum is over all the measured angles and n is the total number
of focusing periods included. A fair estimate of the expectation value is

given by

4

R

2
Al
+
(=4

o2+ 2 4
1 2

which gives o©F AN in terms of the measured misalignments.

It is perhaps interesting to note that a site survey7 for the period
March - September, 1962 shows apparent misalignments, resembling a random
walk, over the western end of the site from Station O to about Station 40O

(LOOO feet). The numerically evaluated quantity ULn¢=AN turns out to be

about 1.5 x 10 © (radian)®. If we assume Q =2, E = 0.1, and 2 = 1.2 x 10° cnm

(4000 feet), then Eq. (3-5a) gives for the expected beam displacement

1
(.32 ~ 0.85 cm

max

Assuming that this misalignment builds up linearly as a function of time,
a realignment would be necessary about every 3 weeks, unless pulsed
steering were used.

It may be inferred that we should require

WV¢§ 02 L, < 1.5 x 107° radian

in order to insure (Ei)iax < 0.1 cm with Q = 2. On the other hand, if

Q = 0.6 (1000 gauss) and the other parameters are the same as in the above
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example,

and realignment would be necessary about once a week.

These numbers of course are not to be taken literally because the site
survey does not give the fine structure of the misalignments, and it is
not clear that the statistical picture is valid. When more detailed sur-
veys of site motion become available, numerical ray tracing should be
performed to get a more accurate picture of how the beam dynamics would

be affected.

B. ISOLATED PERTURBATIONS
The accelerator might happen to have a few relatively large misalign-
ments of a localized nature; for example, isolated bends, or possibly a
short region which is displaced with respect to the rest of the machine.
In this case the orbit perturbation for a misalignment in the vicinity

of the n-th focusing section could be approximated by

j-
n

a sin 6

12 a_ Mm el(“n um) (3-7)
n . m
sin 6 a

n 12 /m

<
Q

where a; and Amn are the mean value and effective range, respectively,
of the perturbation vector; it is assumed that Am is short compared to
the orbit period, 2x/6 , and that n > m.

Example 1. Isolated bend. In this case we have

~ ~ 1 &9
Pm = %om T2 A
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or

P

o’
4
o
R
bii
N
~
=

where AP is the total bend. Egquation (2-21) then gives

hi [ 1+ 3 b \2

m Q ‘l - % ol m

from which we may calculate, from Eq. (3-7),

1 oo 1
2y sp| [L+ZQb\" /1 - e
: = ,vl ~ (3-8)
o mx 0 Q R AN
n \ m
where it has been assumed that Q 1s constant.
In the high energy limit, @l << 1, this is simply
2y &0 |
£ ~| (3-8a)
n
max Q

&

As an example, take @ = 2 (=~ 3400 gauss) and T 10% (= 5 Bev). Then

~ 10%
max

o)

so that for g'max < 0.1 cm, we would have to roquire lAwl < 107" radian
! 1

(or else apply pulsed dipole steering).
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Example &, Displaced sectjon of accelerator, Ouppose that a short

region of the machine, consisting of Am  focusing sections, is displaced

by an amount e from the rest of the machine. (ascume € << the

accelerator aperture). In this case,

and BEqg. (2-21) gives

m
From Eq. (3-7), we find
L
B 1+ 4 l\* /
‘gn = vn"x ’Q& em’ —
max m 1 - i ol

In this case the effect is strongest at low energy where
order unity.

For constant parameters,

I\IEQum(
'gn‘max ) L -3t

For example, if @l =~ 1.24,

Ig

n
max
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To keep 1g;mix < 0.1 em, we would have to require ¢ Am < 0.011 inch.

Example 3. Several isclated perturbations. If discontinuities

occur at several points m , m , ..., then the net orbit perturhation
1 2

is given by

a 2
12 5
.- -3
Vn ~ — e Lln (b e uml + O e “mﬂ + )
sin 8 L =
where
S
sin 8 \*° _
o = a mm o, ete,;
1 a 5 1
l(._ m
1

it is assumed that n>m , n>n ,
1 2

Because of the energy-dependence of the phase angle pu , several of
m

the terms of the sum might reinforce one another at particular energies.
<

+la + ),
1 2

where the sum is over all large "non-random" perturbations, should be kept

Hence in order to avoid stop bands, the quantity (

small enough so that ,Vn‘ << accelerator aperture.

C. CONSTANT CURVATURE
Some sort of systematic error in the alignment system might result in
a component of constant curvature in the misalignment. 1In this case we

presumably would have an equal bend at each support pcint, so that
= b = 4
b 7 ?

im 2m

Because the effect is strongest at high energy, it will be of the most

interest to go immediately to the high energy limit (Q&:% QL/y << 1),
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Equation (2-21) then gives

Hence the orbit displacement is (assuming Q constant),

-

n
N big \ iln - )
Vl’l = - T Z‘ 7me & n m

m=1
where
m m m
L = N
= 9 =~ =~ —_—
i >_J k ZQ&‘&' & Z 7
k=1 k=1 k=1

The sums may be approximated by integrals, by identifying 2L as dz;
then

Z
2iQ i f ~ip
viz) = - =— e e dz
( ) QL 71 1 1
0

z dz

3 1
w(z) ~ Q) —
O 71

where the notation 9(z ) = y , etc., is used. For constant acceleration,
1 1

ol

Z = E, straightforward integration gives

o,
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L BE\ 72 - 42 ™M
Vo~ — {1 -
Lo\ a2/ &f+ (4®)*
Hence 1if 75 <<y = Ez,
7% LE2
E,:Re(v)z—-———z——————-—-
R Q° + (4E)”

where R = L/@ = radius of curvature of the accelerator axis.

The maximum misaligmment relative to a chord through the ends of the

machine is given in this case by

&

1l
o =
b

where 7 1s the total length; hence

£(z) = € o ™

X @2 4+ (4E)2

For a maximum misalignment of 1 cm, with

32 §2
X

E =0.1 and

3 ~ 0.08 cm

max

which is about the maximum tolerable deflection.
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IV. HARMONIC ANALYSIS IN PERIODIC SYSTEM

TFourier analysis of the errors 1s not quite as natural in a linear
accelerator as in a circular machine, because

a) the independent variable (z) is not cyclic and

b) many modes of operation are possible and hence there is no well-

defined "phase" variable.

Nevertheless considerable insight may be gained by considering
either a beam coasting at constant energy, or a short section of machine
over which relative energy change is small.

Assume that the function a which describes the trajectory perturba-

tion per focusing section, is given by
a_ = a(2nL) (4-1)

where a(z) is an appropriate continuous function. 1In terms of a

Fourier analysis,
[oo]
a(z) = f a(k) ™ (4-2)
-00
The error spectrum &(k) will be specified uniquely if we make some

assumption as to the form of «(z) outside the range 0 < z < Z; for

example,

6(e) = & [ alz) e e (4-3)

if we assume Qz) =0 for z <O and =z > Z. Equation (2-10) with
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substitution of Tg. (4-2) becomes

o0 n
; PN \ sl DT -
Vn _ C].ne / (Y(k) (1k> o 1,m((_.k,!v1—6)
o m=1
(o8]
. L . 1
_ oine / a(x) el(n+1)(kL—29) sin n(kT, - 48) %
o sin (kI, - 50)
[e¢]
ing ~ 8 i(n+1 )kl sin nkl
- e 8in nkl b
€ Jf o ( + ?L) ¢ sin k1, dx (# +)
-00
where k = k - L .
2L

If n is large, the function sin nKL/sin kI, has a sharp rescnance
near kL = vx, where v 1is any integer; hence Eq. (4-4) may be approxi-

mated by a sum over the various resonances;

[o] o0
_ in@ ~ i(n+1)kl  sin nklL
v, me }j k/ﬁ a(kv + k) e 5 dk (L-5)
\Y

== -0

where the substitution k = % (vt + £0) has been made and sin kI, has
been replaced by kL. Since the resonance function (sin nkL)/kL has an
effective range of - n/E Z nklL < ﬂ/E, Eq. (4-5) says that for a given
error spectrum &(k), the important contributions to the beam deflection
are for the argument in the range

k - Ak <k <k + Ak,
\Y v

where

K thi(m+%ei£)v=o,iu.”. (4-6)
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The width of these resonances is thus

2o ~ 2%
n

or since 6 = %%, the energy band width is

Ay  2ny _ 2n (A-?)

This means that in order to transmit a given energy, we must "tune out"
(e.g., by a suitable steering or alignment procedure) the band of error

components in the vicinity of

<

7
- —— — = +
k=T tgp vV=0,%1 ;

and that tuning at a given energy only guarantees transmission over an
energy band given by Eg. (4-7).

As an example, suppose we wish to transport beams, in the energy
range of 1 to 10 Bev, over one-third of the machine. With L = 1.2 x 10° cm
(40 feet), Q@ = 2 (3400 gauss), and 2n = 80,

Ay

7

0.13 at 1 Bev

0.78 at 6 Bev

The "wavelengths" of the important error components would be typically

21 2L
|kvl = lv - g%g- =10.5 L (1 Bev, v = 0)
71 =1.68 1 (1 Bev, v = 1)
=2.47 1 (1 Bev, v = - 1)
=63 1L (6 Bev, v = 0)
= (2% 0.064), (6Bev, v =t1)
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Resonances higher than lv' = 1 probably are relatively unimportant
because the error spectrum would be expected to fall off rapidly for
wavelengths shorter than 2L.

Suppose we consider the previous example of equally spaced quadru-
poles which have linear misalignments relative to a straight reference

axis. (See Fig. 2-3.) Then b . and b, in Eqg. (2-21) are given by

b - . QG - - Q, [E (k) e(2m—l)1kL ak

im im

(4-8)

o'
1t

2m

_ ~ 2mikl,
Qegm—Qfe (k) e dk

wvhere ¢ (k) is the Fourier transform of the misalignment error e(z).

In this case, one finds

Qb

& (k) = 21 L eLEERLY L 2y (4-0a)

1 - 3t

or in the vicinity of the v-th resonance,

According to the latter equation, error components of wavelengths in the
vicinity of 2L(v = * 1) couple more strongly to the transverse motion
than do the v = O components which are coherent with the transverse
motions, of trajectory wavelengths an/G. Thus even at high energies
where the trajectory wavelengths are long, the short-range misalignment

effects are predominant.
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V. ROTATTONAL MISALIGNMENTS

Rotation of a quadrupole about the reference axis introduces coupling
between the x and y components of motion. In a system in which the
principal axcs of the guadrupole are the x and y axes, the guadrupole

may be represented by a 4 X 4 matrix;

"X /1L 0 0 O x
P @ 1 0 O D
t X = A (5-1)
¥y o 0 1 0 vy ©
P 0o 0 q 1
¥ py 3

The rotation matrix which transforms the reference system to the

rotated quadrupole system is

cos V¥ 0 sin ¥ 0
0 cos ¥ 0 sin ¥
R = (5-2)
-gin ¥ 0 cos 0
0 ~sin ¥ 0 cos V¥

where V 1is the angle by which the quadrupole is rotated from the re-

ference system. The matrix for the rotated quadrupole, then, is given
by
A, p =R "AgR
1 0 0] 0
-Qcos 2¢ 1 -Qsin 2¢ O
0] 0 1 0

-Qsin 2¢y O Qeos 2¢ 1

-8



Hence, if ¢ 1s a small angle, the nct first-order effect of the

rotational error is Lo inbroduce a4 transverse momentum impulse given

by
6px = - 2Q¥y
(5-1)
5p. = - 2
py Q¥x

(The convention is that @ is positive if the quadrupole is focusing
in the x-~direction and defocusing in the y—direction.)
The transformation over a focusing period, analogous to Eq. (2—19),

now is given by

T = (A 5—
n = (AgrbA g5 by (5-5)
where
1 0 0 0 /1 4L o o
tQ 1+ 2qQy 0 0 1 0 0
A-Q R = ’ and L =
T 2 0 0 0 0 o o 1 4
+ -
* 2Q¢1)2 0 + Q 1 0 0 0 1
To first order in the rotations and V¢ , the product turns
in 2n
out to be of the form
A E
T, = (5-6)
F B
n

where A~ is the 2 X 2 matrix given by Eg. (2—19);8n is the analogous
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transformation in the y plane;* En and Fn are 2 X 2 matrices of

first order in the V's (the explicit forms of E and F will not

be required.)
We now make the substitution

xn - xn +£n
(5-7)
yn = Yn +17n
where
X
X = , ete.;
n pX
n

Xn, Yn are solutions of the unperturbed system

(i. e., all V¥'s set equal to zero);

én’nn’ the orbit perturbations, are assumed to

be small.
It then follows that
E [An gn-l +EnYn—1J Ennn-l
: + (5-8)
m 4 [Bn Tn-1 * ann-l] Fn En-l

But the last term in Eq. (5-8) is second-order small and hence will be

dropped. Thus we have

En ~A, En—l TEYha (5-9)

*In the present system, where the focusing pericd consists of two
gquadrupoles of equal strength and opposite sign, B is derived from

A by changing the sign of Q.
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and an analogous expression for 7) . Since Eq. (5-9) is of the same

form as Eq. (2-2), the solution is given by Eq. (2-13);

xn

]

X 1 By Hym
(wx’EmYm—l) ¢ (5-10)

(Subscripts x and y are used to indicate that in general the various
quantities may be different in the x and y planes.)

Rather than evaluate this expression explicitly it will be convenient
to calculate the mean increment of the adiabatic invariant function.
(The results through Eq. (5-9) are still important in showing that the
orbit perturbations are decoupled to first order.)

From Eqs. (2-14) and (5-4) the rotational error of the second quad-
rupole in the m-th period contributes an increment to the invariant

function given by

a ——— e
— 12 =)
o [22] )
2,m \sin g pz,x m
x/ m
a
sin @ moe2,mom

~

where 312, Ym refer to the matrix element and coordinate, respectively,

evaluated at reference planes at the mid-period. In the present system

S s



A

of equally-spaced quadrupoles of equal strength, Am is found simply

by changing the sign of @ in Arﬁ
The net increment of T after n periods is

Because of the quasi-periodic form of Ym’ we may replace Yi by

1 2 . . .
E(Ym>max in a summation over many orbit wavelengths;

n
>‘1 12 2 2
5Y = bqs v
2.m . 2,m m
e ’ sin 6 ?
m=1 m=1 x/ m

with a similar result for the contributions from the mid-period gquadru-

poles. Finally, using the identity analogous to Eq. (2-15), namely

sin 6 sin @

Y, = —2% (Y\a

= 2
ITL/ max m\) max

o
T
<>



we obtain

n ~
a sin 6 ~ _ a b +a _b
2 2 12
(E )2 ~ 2 1 v (Y > !ngT 12 12 12 Q@ (5-11)
njmax 3 nj max , , m
n

sin @
X 12 /n m= X y /m

where it has been assumed that the rotational errors Ylm, Wzm’ have the
same mean square expectation value everywhere.
In the present system (equally spaced, equal strength guadrupoles)

we find from results given in Section IT and above, that

A
- - 1
a,=b, = 201 + 3ql)
AN - _ 1
a,=b = 241 - 3qb)
and
sin 6 = sin ey =yl - 1QRLE

from which comes the simple result

max max

(g_n—)_z— z16n(§n)2 2 (5-11a)

The result has been expressed in terms of lgnliax because in the
present system Y has its maximum amplitude at the mid-period (i.e., the
quadrupole in the middle of the period is focusing in the y plane).

As a numerical example, suppose that lY’max ~ 1 cm; 2n = 240 = total
number of quadrupoles; and that we require lglmax < 0.1 cm. Then the
tolerance on quadrupole rotational error is given by
(g_)% iglmax

< —_—— = 2.3 X 1072 radian
byn oyl

~ 0,13 degrees
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VI. NON-ADIABATIC LONGITUDINAL VARIATIONS IN THE PARAMETERS

A. RANDOM ERRORS IN QUADRUPOLE STRENGTH AND SPACING
If an error occurs in the strength or position of a quadrupole, it
will always be possible to write the perturbed matrix for the quadrupole

in the form

@' = @+Ag (6-1)

1 O> is the unperturbed matrix, and A contains the

Q 1 Q

perturbation terms. For instance we have:

where @ = <

case (1): BError in quadrupole strength. 1In this case

Q' = + (6-2)
Q 1 5 O

where ©Q 1s the error term.
Case {(2): Error in quadrupole position. In this case the perturbed

matrix, transformed to the "correct" reference plane, is

1 -8\ /1 o\ /1 &b
Q' =
0 1 \Q 1 0 1
1 0 -l - qad? ‘
- + (6-3)
Q 1] 0 el
or to first order in the error,
-1 0
- asd (6-1)
A 0] 1

where &L = %% and 8L 1is the error in position.

- bl



In either case, the transformation over the n-th focusing period may

be written

[ -1
Al = [ +A > o+ > Ll
_ko Q2 L \Q AQl .
n
A
where L = 0 l)' Expanding and keeping only first-order error terms, we
find
1 — -
Al = AL+ A (6-5)

where A 1is as given by Eq. (2-19);

A~ (Q'l LA L) (A LQL>
" Wy e n (6-6)
and Aan’Aan are the appropriate quadrupole perturbation matrices

defined by Eq. (6-2) or (6-4). The explicit form of A will not be
required.
It will be noticed that cos 6 1is on the average unchanged to first

order in the errors;

i

POjt~

cos @' (a + a + 0 o+ A
\ 11 22 11 22

|
=

@ + a = cos 0O,
11 22

because the errors are assumed randomly distributed about the correct
values. TFurthermore, the second-order error terms can only be important
when the system is near the short-wavelength cut-off (cos 6 = - 1 or

Qf = %%:w 2) which will never be the case in practice.

If we now make the substitution

x1'1 - xn +€I’1



where Xn is a solution of unperturbed system, and the orbit perturbation

En is presumed small, then to first order,
€n mAngn—l +Anxn—1 (6-7)

(A second-order term,AnEn_l , is neglected.)

Thus as in Section V the problem is reduced to the form of the linear
inhomogeneous transformation, Eq. (2—2), and the solution is given formally
by Eq. (2-13). However, it will again be more convenient to calculate
the expected mean square orbit perturbation by considering the increment
of the adiabatic invariant function.

1. Error in Quadrupcle Strength. In this case the quadrupole injects

a transverse momentum which by Eq. (6-2) is

dp = XBQ

Thus the quadrupole at the end of the m-th focusing period increases

the invariant function by

a ———
oY = |—E—) 82 X2
2,m sin 6 m Qg’m n

and the effect of the midperiod quadrupole is

where as in Section V, 312 and X refer to the quantities as evaluated
at the midperiod reference planes. Summing over n periods, assuming

52 = 5Q2 , and using Eq. (2-15), we find
2m

im
n
afe + a®
= 1 12
) T
lon sin? @
m=1
m



(The oscillatory part of the expression

« |

> 1 2 [ 12 o my |
X = 3 'Wm"‘- + \\ Re (wo e ) 1
J

has as usual been ignored in the summation over several orbit wavelengths.)

Thus we have

[e4

—_ a ., + as —_—

o2 -2 2 12 12 > _

(Jn) ‘(Xn) E; — Q7 (6-8)
Using the parameters for the equi-spaced quadrupole systems, we find

— Eﬁ E)Q2 1 4+ %Q2/&2—
2 — 2 e
()7 = 40w (6-9)

max — 1 Q%2 1 - qRfR o

Since the effect is strongest for low energy (Qf of order unity), it

will suffice to evaluate the sum for constant parameters, whence the

5Q

tolerance on 75 is given by

<o

(6-10)

=0.lem, X =1 cm, Ql = 1.24, and 2n = 240, this gives

< 0.30%

which seems a not unreasonable requirement on quadrupole uniformity.
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2. Errors in Quadrupole Spacing. According to Eq. (6-L4) the effect of

an error in quadrupole position is

ox

- xQet

dp = PXQ&F/

where &0 = %% is the longitudinal displacement of the quadrupole from
its correct position. The inecrement of the adiabatic invariant from the

lens at the end of the period thus is

—_ 1 J—— —_
Y = ————{-a B2+ fa - a 33X ®p + a  op2
2,m sin em 21 ( 11 QQ P 12 P m
2617
= (- 2a X2 +2a P2} -Ysin 6
sin 6 21 12 X m n

where Y is the adiabatic invariant in the unperturbed system. Proceeding

as in the previous example, one finds

- 2 (811 -a )2 + @11 - a );l
N =~ %;Y} Q2l? 22 22 (6-11)
L) Sin2 Jal
m=1 Jm
whence for the present system,
. 512 \
(E'n) 2 =~ 2(xp)2  — Z QL2 1+ 3ot (6-12)
max max L2 1 - %Qﬂ/m

Since the effect is again largest for low energy, the longitudinal

position tolerance may be based on the constant-parameter case:

i
- %Q{ 2

< 8L > £ l 1
rms < Q’& l Imax . (6—13)
L - X 2n 1 + 4l

max
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Using Qf,: 1.2k, ’E‘ = 0.1 em, X =1 cm, and 2n = 240,
: max

max
ve find

AN
o
= jomd

< 0. 50%

or, if L = 40 inches,
<dL > < 1.9 inch

Thus it may be concluded that no particular pains need be taken

in longitudinal positioning of the quadrupoles.

B. PERTODIC VARIATION; SUPERPERIOD STOP-BAND

A periodically recurring perturbation of parameters of the focusing
system can introduce stop-bands when the perturbation period ("super-
period") has an approximately rational relationship with the orbit
half-wavelength.

The most likely such effect in the present type of system would
consist of one abnormally large quadrupole spacing per sector (eight
LOo-foot intervals). It will be of some interest to treat this particular
example.

Consider the case where one extra-long spacing occurs at the beginning
of AN regular sections. The transformation over the superperiod then

*
is given, with the help of Eq. (2-5), by

18t
B=A (aN|0)
0 1
1 st 1 a + pd
= cos ANG + 12 ) sin AN@
0 1 a - + a oL .
21 N o1 sin 6
(6-14)

*The eftect will be important only if the system is strictly periodic;
consequently parameters of the transformations are considered constant.
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where 71 = %(all - a22) 3 aij are the elements of the transformation

over a regular period; and cos 8 = %(é + a ).
11 22

The characteristic phase angle for the superperiod thus is given by

cos @ = %(bll + bgg) = cos ANG + %321 e E%%Eégg (6-15)

Since the last term in Eq. (6-15) is in general small, we expect that

stopbands, for which

’cos @l >1
will occur in the viecinity of

lcos AN@‘ ~ 1,

or

where v 1s a positive integer.

In order to investigate the stopband in detail, it will be necessary

to consider a specific system. TFor the present system,

Q2L2
cos 8 =1 - % -
y
oF sin 36 = 5 &
Y
and Q,2L2 SI,
8231 ol = - -
7 L
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from which Eq. (6-15) becomes

cos @ = cos ANG - 2% tan 46 sin ANG (6-16)
If we make the substitution
ANG = vrt + 36 (6-17)

where v 1is a positive integer, then Eq. (6-16) becomes (keeping only

terms up to second order smallness in B®L and 56 )

cos @~ (- 1) [1 - 2ANBe (ANBG + 2 24 %ev)] (6-18)
L

.Y
vV AN
The extent of the stopband (for which |cos @‘ > 1) is

where 6

2 BL 1 .
- =22 < Bg < >
A T ten 29, 0 < 0 (if BdL > 0)
2 sL . L
0 <88 < —f— tan 39, (if oL < 0)

- 2 1
89, = my Tt tAn 29y
. . . 1 1 QL
or, using the identity sin 56 = 3 =
AN - 1ot d _1 Jal ,
(7.)v = 5 cot 368,06, 7 T (6-19)

The extreme value of cos ®, which we define as (- l)v cosh T

within the stopband, is from Eq. (6-18)

s = L QE 2 2 L
cosh FV =1 ’(L) tan EGV
or l l
~ JBLL 1 -
Pv T tan 36, (6-20)



This quantity is of some interest because within the stopband we

expect the amplitudes to vary as

!X max <€V (6-21)
where N 1s the number of superperiods.

The important vaiues of v will be v =1,2,...AN - 1; the cases
of v =0 and v > AN are uninteresting because the former defines
the long-wavelength cutoff (Qv = 0) and the latter are within the short-
wavelength stopband (Qv.Z 7).

In the present case we have AN = 4 (i.e., four sections of period

2L = 80 feet per 320-foot sector). Of the possible values of v(v = 1,2 or 3),
only v =1 1is likely to give trouble because

> 1.34

where 1.34 is the value of 6 corresponding to @f = 1.2k, If @ = 2,
the energy of the (v = 1) stopband would be given by

QL 1 2-1.2.10°
y =k —— e - 3.1 x10°

1 sin * %@l 2 sin* /8

or 1.6 Bev.
It is likely that there will be an extra length increment of =~ 10 feet

occurring at sector intervals; hence the stopband width would be given

by Eq. (6-19)

Ay 1,10
SRR~ o

The quantity T, [Eq. (6-20)] is

1 7T
' = tan = 0,10
, K 8

so that, as a result of Eq. (6—21) one would want to avoid transporting energies
within the stopband over more than one or two sectors. This could of course be
accomplished either by a slight change in quadrupole strength or by initially
accelerating the beam to higher energy and back-phasing a few sections just

before extracting the beam.
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